US7678234B2 - Dewatering arrangement on the press section of a web-forming machine - Google Patents
Dewatering arrangement on the press section of a web-forming machine Download PDFInfo
- Publication number
- US7678234B2 US7678234B2 US11/550,656 US55065606A US7678234B2 US 7678234 B2 US7678234 B2 US 7678234B2 US 55065606 A US55065606 A US 55065606A US 7678234 B2 US7678234 B2 US 7678234B2
- Authority
- US
- United States
- Prior art keywords
- press
- saveall
- suction roll
- press suction
- fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000004744 fabric Substances 0.000 claims abstract description 33
- 230000000694 effects Effects 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims description 4
- 210000003850 cellular structure Anatomy 0.000 claims description 3
- 238000009423 ventilation Methods 0.000 description 12
- 238000005406 washing Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 8
- 239000000835 fiber Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000003351 stiffener Substances 0.000 description 2
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F3/00—Press section of machines for making continuous webs of paper
- D21F3/02—Wet presses
- D21F3/04—Arrangements thereof
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21F—PAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
- D21F3/00—Press section of machines for making continuous webs of paper
- D21F3/02—Wet presses
Definitions
- the present invention concerns a dewatering arrangement in the press section of a web-forming machine of the type having a press suction roll which is arranged to form a press nip with another roll in the web-forming machine, and a press fabric which is arranged to run via the press suction roll, and having a dewatering saveall extending essentially over the entire width of the web-forming machine.
- the saveall being installed in an area between an opening gap and a closing gap defined by the press suction roll and the press fabric, and having drainage facilities for removing the collected water from the saveall.
- the press suction roll serves two main purposes. In addition to dewatering taking place in the press nip, the press suction roll controls the travel of the web on the press section.
- the shell of the press suction roll is open, and a vacuum effect is only exerted on a part of the circumference of the shell in order to establish a vacuum zone.
- the bores and grooves on the shell hence contain much water after the suction zone, and this water is ejected to the environment of the press suction roll after the press nip for example by centrifugal force. Water removal is only partial, and some water still remains in the bores of the shell and returns to the press nip. This impairs the dewatering ability of the press section and disturbs pressing.
- web-forming machines In order to prevent the spreading of water and to remove water from the press suction roll, web-forming machines usually have a dewatering arrangement which contains a saveall.
- the saveall follows the shape of the press suction roll and extends over a part of the length of the circumference of the shell.
- the saveall is also often provided with ventilation, which aims to create a vacuum in the saveall.
- water released from the surface of the shell is ejected against the walls of the saveall and descends to the bottom part of the saveall and finally runs out of the press section via a discharge connection.
- the saveall can also be provided with doctoring equipment which doctors water from the surface of the shell into the saveall.
- Savealls of known type have a flat and open structure, and they also have many types of reinforcements to accomplish sufficient rigidity. Especially internal reinforcements inside savealls form corners and pockets which disturb and decelerate the flow rate of water-containing air inside the saveall.
- the flow inside the saveall is turbulent. Impurities and fibers contained in water-containing air hence accumulate on the inner surfaces of the saveall, on the top surface of the washing shower pipe and in the above-mentioned corners and pockets. In this way, the saveall becomes gradually dirty, and if the dirt accumulations become loose, they cause quality deviations and even web breaks in production.
- the press section fabrics and roll coatings may also be damaged.
- the saveall covers the circumference of the shell only partially so that some water mist spreads to the environment of the press suction roll. Furthermore, there are uncontrolled circulating air flows, which contain much water mist and steam, in the opening gap formed by the press fabric and the press suction roll after the press nip. The impurities contained in the air flows escaping from the saveall also become attached onto other rolls and the frame structures of the press section. In this way, for example access bridges become slippery and favorable conditions are created for bacterial growth. In order to avoid accidents and production interruptions, both the saveall and its environment require regular cleaning, which calls for a shutdown because of washing.
- the object of the present invention is to accomplish a new type of dewatering arrangement on the press section of a web-forming machine, with the arrangement being more efficient than before and avoiding the drawbacks of known solutions.
- the characteristic features of the present invention will be more fully understood from the enclosed patent claims.
- the dewatering arrangement according to the present invention comprises a new type of saveall, the structure and operating principle of which are different from known solutions.
- the saveall can remove an increasing portion of the water that remains on the press suction roll.
- the press suction roll and its environment remain clean, which reduces considerably the need for shutdowns due to washing.
- the saveall according to the invention can be installed in confined locations, and the maintenance of the dewatering arrangement is easier than before.
- the water collection capacity of the saveall can also be adjusted so that the operation of the press section of the web-forming machine can be adjusted optimally. Furthermore, the fouling of the press section and resulting problems and production shutdowns are avoided.
- FIG. 1 shows the dewatering arrangement according to the invention on the press section of a web-forming machine.
- FIG. 2 a shows the dewatering arrangement according to the invention in the operating position.
- FIG. 2 b shows the dewatering arrangement according to the invention in the service position.
- FIG. 3 shows a side view of the saveall included in the dewatering arrangement according to the invention in the operating position.
- FIG. 4 shows an axonometric view of the saveall included in the dewatering arrangement according to the invention in the service position.
- FIG. 1 illustrates an ordinary press section of a web-forming machine, where water is removed from the web on the press section.
- paper and board machines are web-forming machines.
- the structure of the press section varies in different applications, but it comprises at least one press nip in order to press the web formed on the web-forming machine.
- the web is supported by means of a press fabric which runs via the press nip, with water being absorbed into the press fabric.
- the press suction roll 10 forms a press nip 11 with another roll 12 included in the web-forming machine.
- the press suction roll 10 forms a press nip 11 with two rolls 12 and 12 ′.
- the press fabric 13 has been arranged to run via the press suction roll 10 .
- the press fabric 13 is usually a press felt which revolves as an endless loop supported by guide rolls.
- the press suction roll 10 also contains a vacuum zone 14 , and a vacuum effect created in this zone keeps the web in contact with the surface of the press fabric 13 .
- the dewatering arrangement comprises a saveall 15 which extends essentially over the entire width of the web-forming machine. As shown in FIG. 2 a , the saveall 15 is installed in the area between the opening gap 16 and closing gap 17 limited by the press suction roll 10 and the press fabric 13 . Furthermore, the dewatering arrangement comprises drainage facilities 18 for removing the collected water from the saveall 15 . In FIG. 1 , the saveall 15 according to the invention as well as the drainage connected to it are described by broken lines. As shown in FIG. 2 a , according to the invention, the saveall 15 has a concave guide surface 19 which in the cross direction is located on a partial distance of the circumference of the press suction roll 10 and at a distance from the surface of the press suction roll 10 .
- a vacuum is hence created between the guide surface and the shell of the press suction roll as the suction roll revolves, and water is removed from the suction press roll by the vacuum.
- the vacuum effect removes water from the holes, grooves and bores on the outer surface of the shell. Fibers and impurities are also removed with the water.
- the press suction roll hence remains clean for a long period of time, which improves the efficiency of the press section and reduces the need for service.
- the washing shower pipe used in known solutions can also be omitted, which simplifies the structure of the dewatering arrangement and stabilizes the flow of water-containing air in the saveall.
- the shell of the press suction roll is washed internally by means of a washing shower (not illustrated).
- the vacuum created by the guide surface absorbs this washing water through the bores, which prevents the bores from clogging. In other words, shutdowns caused earlier by washing to unclog the bores can often be avoided completely.
- the structure of the saveall differs from the known structure.
- the saveall 15 extends from the opening gap 16 to the closing gap 17 .
- the escaping of water and gases from the saveall is hence prevented, which reduces the fouling of the environment of the press section.
- the saveall extends from the closing gap below at least up to the top dead center of the press suction roll, but preferably the saveall extends from one gap to the other as illustrated in the application of FIG. 2 a .
- the guide surface must be located sufficiently close to the press suction roll.
- the distance of the guide surface from the surface of the press suction roll is 5-30 mm, preferably 10-25 mm.
- the guide surface is arranged so that the said distance increases in the direction of rotation of the press suction roll.
- a type of an opening gap is hence formed, with the gap forming a vacuum over the entire length of the press suction roll when the press suction roll revolves.
- the drainage facilities 18 can also include a ventilation connection 20 by means of which a vacuum is created in the saveall 15 . The operation of the ventilation connection is described in more detail below.
- Savealls of known type are stationary and they have been placed at a distance from the press suction roll.
- the saveall is now supported only at its ends to the web-forming machine.
- the support is carried out by means of support arms 21 so that the saveall 15 can be moved from the operating position to the service position and vice versa.
- the press suction roll can be removed without disassembling the dewatering arrangement in other respects, which speeds up service further.
- FIGS. 2 a and 2 b there are two support arms 21 at each end of the saveall 15 , with the support arms 21 installed so that the saveall 15 hangs in a way.
- An actuator 22 such as a hydraulic cylinder, is preferably used for moving the saveall 15 .
- the actuator 22 is illustrated with the broken line in FIGS. 2 a and 2 b .
- the actuator 22 is only intended for moving the saveall, because according to the invention, locking devices 23 are installed between the saveall 15 and the web-forming machine to lock the saveall 15 both to the operating position and service position.
- Unintentional movements of the saveall can hence be avoided, and the actuator can be dimensioned on the basis of the force required by moving alone. Without the locking devices, the actuator would make up a functional spring so that the dewatering equipment would become a system which vibrates in a dynamic environment. This can be avoided by means of rigid locking, and the guide surface remains at a desired distance from the press suction roll irrespective of changes in the operating conditions.
- the locking pin is preferably spring-loaded, and it is retracted for example by means of a pneumatic cylinder. In other words, when pressure is released, the locking pin returns to the locking position and stays there.
- suitable sensors can be used for detecting the position of the saveall so that the locking can be ensured. Sensor data can also be used for controlling the actuator when moving the saveall. It is hence also possible to detect the unintentional moving of the saveall, which gives reason for the conclusion that something is wrong. In this case, the situation can be checked quickly and damage to the press section and other structures can be avoided.
- the saveall and its support arms are fastened to the frame of the press section as planned. If necessary, the position of the saveall can be adjusted optimally for each application by changing the location of the top ends of the support arms. In other words, this is a rough adjustment carried out when the saveall is mounted.
- the saveall 15 comprises equipment 26 for adjusting the desired location and position of the saveall 15 with respect to the press suction roll 10 and/or press fabric 13 .
- the length of the rearmost support arms 21 can be changed so that fine adjustment is accomplished.
- a telescope structure with threads on the support arm is simple and easy to use. The guide surface and the entire saveall can hence be brought precisely to the desired location and to the correct position. Adjustment is also quick.
- a saveall according to the invention comprising one part and equipped with a guide surface, works as planned.
- the saveall 15 preferably comprises two parts 27 and 28 which are connected to each other by a joint.
- the parts can be turned with respect to each other, which facilitates the service of the saveall, among other things.
- the guide surface 19 is in the first part 27 in the direction of rotation of the press suction roll 10 .
- the guide surface is located as soon as possible after the opening gap so that the vacuum effect created can be utilized as well as possible and so that water has sufficient time to be ejected into the saveall.
- the saveall is preferably made of a plate material from which the desired shapes can be made easily.
- both parts 27 and 28 have a cellular structure, with the internal reinforcements inside the structure also made of a plate material.
- ribbed structures 29 in cross direction to the saveall are preferably used. The vacuum hence spreads evenly inside the parts without disturbing the flow of water. In fact, the ribbed structures guide the water and gases towards the bottom part of the saveall and simultaneously prevent harmful turbulence. Furthermore, the ribbed structures in the parts are placed so that they are against each other in the operating position. This stiffens the saveall and avoids flow disturbances.
- the objective in the design of both parts 27 and 28 is also that, as shown in FIG.
- the internal flow surface 30 of a saveall 15 which is in the operating position is as smooth as possible.
- the back wall of the saveall is uniform and smooth so that water hitting it turns down in a controlled manner and flows to the bottom of the saveall without obstruction.
- the saveall hence also stays clean as there are no locations where the water can stand. Due to the structure of the saveall and especially due to its design, the velocity of air flowing from the press fabric and generally from the press nip area remains relatively constant inside the saveall, which prevents dirt from accumulating on the internal surfaces of the saveall.
- the cellular structure of the saveall can also be utilized in dewatering.
- the front part 31 of the first part 27 in the direction of rotation of the press suction roll 10 is open in the cross direction of the web-forming machine. Water-containing air hence flows from the opening gap 16 , shown in FIG. 2 a , through the first part 27 to the second part 28 , shown in FIG. 3 .
- some of the water and gases travel with the press fabric despite the guide surface.
- the vacuum in the saveall extends to the press fabric so that the spreading of water is prevented. This further improves the cleanliness of the environment of the press section.
- an air doctor can also be installed in the top edge of the front part to remove the boundary layer air which travels with the press fabric and to guide this air into the saveall.
- the dewatering arrangement comprises doctor equipment 32 installed in conjunction with the press suction roll 10 , with the doctor equipment 32 located after the guide surface 19 in the direction of rotation of the press suction roll 10 .
- the water removed from the bores and grooves by the vacuum effect can hence be doctored into the saveall 15 . This prevents the water from going back into the press nip.
- the guide surface 19 is made up of a shaped plate 33 which is fastened to the saveall 15 .
- a separate plate can be shaped easily, although the bottom surface of the upper part of the saveall could also serve as a guide surface.
- the front edge of a separate plate can also be fitted very deep into the opening gap.
- the plate can be manufactured from a material other than the one used in the saveall, or a different type of surface treatment can be used.
- the plate also prevents impurities from falling on the press suction roll from above.
- the front edge of the plate is shaped so that the water jet ejected from the press nip tends to follow the top surface of the plate.
- the ability of the plate to create a vacuum in conjunction with its guide surface and in conjunction with the surface structure of the press suction roll can be adjusted by changing the length and curvature of the plate. The main dimensions naturally depend on the press suction roll used.
- the back part of the saveall 15 also has a curved stiffener 34 which, together with the flow surface 30 , forms a channel 35 over the entire width of the saveall 15 .
- the stiffener 34 also has a ventilation connection 20 which is connected to a ventilation duct 36 , as shown in FIGS. 2 a and 2 b .
- the duct 35 is used as a type of a manifold from where the vacuum is distributed into the saveall 15 through several nozzles 37 . In practice, one nozzle is installed in each space restricted by two ribbed structures, and the diameter of the nozzle is dimensioned on the basis of the location of the nozzle.
- the smaller the distance of a nozzle from the ventilation connection the smaller its flow cross-sectional area.
- the ventilation connection is situated at one end of the saveall as low as possible. The flow of air hence continues steadily over the entire internal length of the saveall, which ensures that the internal surface of the saveall remains clean.
- the vacuum also pulls gases from the closing nip below the saveall.
- the vacuum zone in the press suction roll is arranged to start before the press fabric. The pressure caused by the closing gap is hence released into the press suction roll, which further prevents the spreading of impurities to the environment of the press section.
- the saveall is made so stiff that it does not get into contact with the press fabric or press suction roll in any situation.
- the water load and the deflection caused by the mass of the saveall and by the vacuum effect are also taken into account in dimensioning.
- the bottom part of the saveall 15 contains longitudinal vertical walls 38 which form water channels 39 that prevent the water from flowing back to the press nip. There are several water channels to avoid the harmful wave action of water. The water is led back into the process from the water channels. In the application example, the total volume of the water channels is approximately 225 liters per width meter of the saveall.
- FIG. 3 also illustrates a suction connection 42 which is here installed in the middle water channel 39 .
- the suction connection 42 also comprises a suction nozzle 43 which is placed so low that it is always below the water level. Dewatering is efficient because only water is hence absorbed.
- the suction connection is used for example in a saveall with a smaller water volume or in conjunction with a higher water volume or if the saveall needs to be installed so that it leans forward.
- the locking is released and the saveall 15 is moved to the service position shown in FIG. 2 b .
- the locking elements 40 installed in conjunction with the first part 27 and the second part 28 are released before moving the saveall 15 , see FIG. 4 .
- the mutual position of the parts 27 and 28 which are joined to each other by means of the said locking elements, can be locked in the operating position and service position of the saveall.
- the edges of the upper part 27 of the saveall are also equipped with rollers 41 which meet the shell of the press suction roll 10 when the saveall 15 is being moved. During operation, the rollers are not in contact with the shell. Finally, the saveall 15 is locked to the service position and the upper part 27 is lifted.
- the guide surface according to the invention accomplishes a significant vacuum effect which absorbs water even from the bores on the shell.
- the bores and the entire surface of the shell hence remain clean, which prolongs the lifetime of the press suction roll and improves the operating degree of the web-forming machine.
- Cleaning is further improved by a ventilated press suction roll.
- air flows outwards from inside the shell through the bores.
- the shape of the saveall maintains a flow inside the saveall without protruding parts which would gather dirt.
- the water ejected from the opening gap can be guided into the saveall in a controlled manner.
- the ventilation of the saveall provides a good vacuum over the entire area of the saveall so that the escaping of impurities from the saveall is prevented.
- the vacuum is also distributed evenly, which results in disturbance-free flows so that the internal surfaces of the saveall remain clean.
- the dewatering capacity of the saveall can be adjusted in many ways so that its operation can be optimized when the operating conditions change.
- the saveall also has a specific service position, which speeds up washing, among other things.
- the essential feature is the vacuum effect created by the guide surface so that the press suction roll can be cleaned without external energy.
Landscapes
- Paper (AREA)
- Drying Of Solid Materials (AREA)
Abstract
Description
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20055570A FI120745B (en) | 2005-10-24 | 2005-10-24 | Dewatering assembly on press section of web forming machine |
FI20055570 | 2005-10-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070089848A1 US20070089848A1 (en) | 2007-04-26 |
US7678234B2 true US7678234B2 (en) | 2010-03-16 |
Family
ID=35185276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/550,656 Expired - Fee Related US7678234B2 (en) | 2005-10-24 | 2006-10-18 | Dewatering arrangement on the press section of a web-forming machine |
Country Status (4)
Country | Link |
---|---|
US (1) | US7678234B2 (en) |
CN (1) | CN1955374B (en) |
DE (1) | DE102006049225A1 (en) |
FI (1) | FI120745B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20105921A7 (en) * | 2010-09-02 | 2012-03-03 | Valmet Technologies Inc | SCRAPER CHUTE |
CN103669082A (en) * | 2012-09-10 | 2014-03-26 | 国能纸业有限公司 | Mesh part gravity dewatering system for multi-cylinder long mesh paper machine |
CN110565430B (en) * | 2019-09-11 | 2021-07-16 | 上海金熊造纸网毯有限公司 | Dewatering device of special wool winding roller for papermaking felt |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3057402A (en) * | 1959-12-31 | 1962-10-09 | David R Webster | Silent suction roll assembly |
US3468242A (en) * | 1966-03-30 | 1969-09-23 | Black Clawson Co | Paper machinery |
US4209360A (en) * | 1978-02-15 | 1980-06-24 | Ab Karlstads Mekaniska Werkstad | Two-sided drainage in a roll-type twin-wire former |
DE3123131A1 (en) | 1981-06-11 | 1982-12-30 | J.M. Voith Gmbh, 7920 Heidenheim | "GUIDE ROLLER WITH WATER GUIDE ELEMENT FOR A PAPER MACHINE SCREEN BELT" |
FI880723A7 (en) | 1987-03-13 | 1988-09-14 | Voith Gmbh J M | VAOTPRESS. |
US5573644A (en) * | 1993-12-03 | 1996-11-12 | Valmet Corporation | Apparatus for guiding a wire |
US5580424A (en) * | 1993-11-05 | 1996-12-03 | Valmet Corporation | Apparatus and method for sealing a suction box of a suction roll in a paper machine |
US5810974A (en) * | 1995-10-20 | 1998-09-22 | Valmet Corporation | Press section including an extended-nip press with an internally heated center roll |
DE19939893A1 (en) | 1999-08-23 | 2001-03-01 | Voith Paper Patent Gmbh | Web press section at a papermaking/cardboard prodn machine has a center press roller with flanking suction and shoe press rollers and a closed web path with blanket separation to the next drying station |
US6358370B1 (en) * | 1999-11-12 | 2002-03-19 | Valmet Corporation | Sealing arrangement for a suction box of a suction roll |
US6461478B1 (en) * | 1997-01-24 | 2002-10-08 | Voith Sulzer Papiertechnik Patent Gmbh | Method and device for treating a fibrous material web |
JP2004084122A (en) | 2002-08-27 | 2004-03-18 | Mitsubishi Heavy Ind Ltd | Saveall pan of paper machine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0950759A3 (en) * | 1998-04-15 | 2000-11-29 | Voith Sulzer Papiertechnik Patent GmbH | Pressing arrangement |
DE10024294A1 (en) * | 2000-05-17 | 2001-11-29 | Voith Paper Patent Gmbh | Press section to extract water from a wet paper/cardboard web has a shoe press roller with two lower press rollers forming two extended roller press gaps with blankets to carry the web in an enclosed path |
-
2005
- 2005-10-24 FI FI20055570A patent/FI120745B/en not_active IP Right Cessation
-
2006
- 2006-10-18 DE DE102006049225A patent/DE102006049225A1/en not_active Withdrawn
- 2006-10-18 US US11/550,656 patent/US7678234B2/en not_active Expired - Fee Related
- 2006-10-24 CN CN2006101320712A patent/CN1955374B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3057402A (en) * | 1959-12-31 | 1962-10-09 | David R Webster | Silent suction roll assembly |
US3468242A (en) * | 1966-03-30 | 1969-09-23 | Black Clawson Co | Paper machinery |
US4209360A (en) * | 1978-02-15 | 1980-06-24 | Ab Karlstads Mekaniska Werkstad | Two-sided drainage in a roll-type twin-wire former |
FI80088B (en) | 1981-06-11 | 1989-12-29 | Voith Gmbh J M | MED VATTENAVLEDNINGSORGAN FOERSEDD STYRVALS FOER EN PAPPERSMASKINS VIRABAND. |
DE3123131A1 (en) | 1981-06-11 | 1982-12-30 | J.M. Voith Gmbh, 7920 Heidenheim | "GUIDE ROLLER WITH WATER GUIDE ELEMENT FOR A PAPER MACHINE SCREEN BELT" |
US4909903A (en) | 1987-03-13 | 1990-03-20 | J. M. Voith Gmbh | Wet press nip with nonrotating adjustable belt exit guides |
FI880723A7 (en) | 1987-03-13 | 1988-09-14 | Voith Gmbh J M | VAOTPRESS. |
US5580424A (en) * | 1993-11-05 | 1996-12-03 | Valmet Corporation | Apparatus and method for sealing a suction box of a suction roll in a paper machine |
US5573644A (en) * | 1993-12-03 | 1996-11-12 | Valmet Corporation | Apparatus for guiding a wire |
US5810974A (en) * | 1995-10-20 | 1998-09-22 | Valmet Corporation | Press section including an extended-nip press with an internally heated center roll |
US6461478B1 (en) * | 1997-01-24 | 2002-10-08 | Voith Sulzer Papiertechnik Patent Gmbh | Method and device for treating a fibrous material web |
DE19939893A1 (en) | 1999-08-23 | 2001-03-01 | Voith Paper Patent Gmbh | Web press section at a papermaking/cardboard prodn machine has a center press roller with flanking suction and shoe press rollers and a closed web path with blanket separation to the next drying station |
US6358370B1 (en) * | 1999-11-12 | 2002-03-19 | Valmet Corporation | Sealing arrangement for a suction box of a suction roll |
JP2004084122A (en) | 2002-08-27 | 2004-03-18 | Mitsubishi Heavy Ind Ltd | Saveall pan of paper machine |
Non-Patent Citations (4)
Title |
---|
English Abstract of DE19939893, 2001. |
English Abstract of DE3123131 (corresponds to FI830149/FI80088), 1983. |
English Abstract of JP2004084122, 2004. |
Search Report issued in foreign priority application FI20055570, May 2006. |
Also Published As
Publication number | Publication date |
---|---|
FI20055570L (en) | 2007-04-25 |
FI120745B (en) | 2010-02-15 |
DE102006049225A1 (en) | 2007-04-26 |
US20070089848A1 (en) | 2007-04-26 |
CN1955374A (en) | 2007-05-02 |
FI20055570A0 (en) | 2005-10-24 |
CN1955374B (en) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6004429A (en) | Machine and method for producing a fibrous creped web | |
CA2113849C (en) | Method and apparatus for removing water from a web by means of presses | |
US8337666B2 (en) | Systems and methods for providing improved dewatering performance in a papermaking machine | |
JP4301619B2 (en) | Double netting former | |
CN101133207B (en) | A device and method for removing liquid and application of the device | |
FI107059B (en) | Molding press portion of a paper machine and method for transferring a web from a former to a pressing portion | |
US7678234B2 (en) | Dewatering arrangement on the press section of a web-forming machine | |
EP1736597B1 (en) | A dry end of a paper machine, an arrangement therein and a method for reducing dust spreading therein | |
CA2376238C (en) | Sealing arrangement for a pulp dewatering arrangement | |
US6491791B1 (en) | Apparatus and method for treating roll surfaces and/or fabrics | |
FI124583B (en) | Fiber web machine fitted with a felt heater | |
US7067042B2 (en) | Twin wire former | |
FI123510B (en) | Arrangement for restoration of a press fabric in a fiber web machine | |
US6716315B2 (en) | Water draining device | |
CN106120424A (en) | Repacking external member, runnability component and the method improving suction box | |
US5354426A (en) | Apparatus and method for removing debris from forming wire | |
US7294236B2 (en) | Arrangement for controlling the web in a press section of a paper or board machine | |
FI121477B (en) | Arrangement and method with a press section of a fiber web machine | |
WO2007118930A1 (en) | A suction device equipped with an overpressure apparatus, and an overpressure apparatus | |
EP0264799B1 (en) | A means in the vat section of a vat machine | |
WO2010103169A1 (en) | Conditioning equipment for the fabric of a fiber web machine | |
CN101589195B (en) | System for guiding a web in association with grooved rolls in a web forming machine | |
CA2686721A1 (en) | Overpressure apparatus | |
NO162430B (en) | DEVICE FOR CONDITIONING A PAPER MACHINE FILTER AND PROCEDURE BY CONDITIONING A PAPER MACHINE FILTER. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: METSO PAPER, INC.,FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAIKO, RISTO;HIETAMAKI, ERKKI;KAUPPINEN, MIKKO;AND OTHERS;SIGNING DATES FROM 20061025 TO 20061105;REEL/FRAME:018565/0382 Owner name: METSO PAPER, INC., FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAIKO, RISTO;HIETAMAKI, ERKKI;KAUPPINEN, MIKKO;AND OTHERS;REEL/FRAME:018565/0382;SIGNING DATES FROM 20061025 TO 20061105 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: VALMET TECHNOLOGIES, INC., FINLAND Free format text: CHANGE OF NAME;ASSIGNOR:METSO PAPER, INC.;REEL/FRAME:032551/0426 Effective date: 20131212 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180316 |