New! View global litigation for patent families

US7639861B2 - Method and apparatus for backlighting a wafer during alignment - Google Patents

Method and apparatus for backlighting a wafer during alignment Download PDF

Info

Publication number
US7639861B2
US7639861B2 US11162540 US16254005A US7639861B2 US 7639861 B2 US7639861 B2 US 7639861B2 US 11162540 US11162540 US 11162540 US 16254005 A US16254005 A US 16254005A US 7639861 B2 US7639861 B2 US 7639861B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
wafer
alignment
electroluminescent
lamp
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11162540
Other versions
US20070058168A1 (en )
Inventor
David J. Michael
John B Boatner
Martin Karnacewicz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognex Technology and Investment LLC
Original Assignee
Cognex Technology and Investment LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7007Alignment other than original with workpiece
    • G03F9/7011Pre-exposure scan; original with original holder alignment; Prealignment, i.e. workpiece with workpiece holder
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Abstract

A method and apparatus is provided for illuminating a wafer during wafer alignment using machine vision. An illumination device is fabricated using electroluminescent material, that provides diffuse illumination uniformly over the surface of the lamp to provide backlighting of the wafer. Contrast between the image of the wafer and the diffuse illumination produce edge features in the image that can be analyzed to determine the position and orientation of the wafer.

Description

BACKGROUND OF THE INVENTION

This invention relates to illumination of a silicon wafer when using a machine vision system to obtain alignment characteristics of the wafer.

Silicon wafer fabrication is generally described as a series of sequential photo-chemical processing steps that create an array of semiconductor devices. The silicon wafer, the substrate upon which the semiconductor devices are fabricated, is a flat single monocrystal of silicon. It is typically in the shape of a circle of diameter 150 mm, 200 mm or 300 mm. The various wafer fabrication processing steps require precise alignment of the silicon wafer. Precise alignment may be required for a particular processing step because that step depends on precise crystal alignment either for manufacturing efficacy or manufacturing repeatability such as an ion beam deposition step. Alternatively, precise alignment may be required because a particular processing step is pattern-dependent and needs to be photographically registered with one of the previous steps such as a photolithography step.

In order to facilitate this precise alignment, wafers are manufactured to agreed upon standards with specific features. For example, SEMI M1-0305 Specifications for Polished Monocrystalline Silicon Wafers defines some of these standards and describes notches or flats cut into the outside perimeter of the wafer permitting wafer orientation to be determined by examination of the wafer perimeter.

Wafer Prealignment (sometimes called Wafer Coarse Alignment) is an automated process of examining the shape of a silicon wafer and its notches, flats or other geometric shape characteristics to determine the alignment of a wafer. Alignment of the wafer means determining the position and orientation of the wafer relative to a particular coordinate system. The physical positional accuracy of such an alignment could range from a fraction of a micron to a few millimeters in position and from a few thousands of a degree to a degree or two in orientation. It is possible for some of the processing steps described above to involve creating fiducial marks on the surface of the wafer. In later processing steps, those newly created fiducial marks can also be used for wafer alignment. Such a wafer alignment step that uses fiducial marks on the surface of the wafer is called a fine alignment step and is not the subject of this application. However, it is important to note that even when a fine alignment step is performed to align a wafer, a coarse alignment step is typically performed first in order to reduce the search area of the fiducial mark.

Conventional wafer alignment systems and methods employ LED illumination that provides backlight illumination of the wafer. To provide the requisite uniform diffuse illumination, the LED illuminators require a diffuser that distributes the point source illumination of the LED into a wide area diffused mode of illumination proximate to the peripheral region of the wafer. While effective, the conventional illumination systems and methods become increasingly complex and expensive as the wafer fabrication industry continues in its trend toward larger wafer sizes.

Accordingly, there is a need for a low cost method and apparatus for providing uniform and diffuse illumination over a wide area for backlighting wafers during coarse alignment.

BRIEF SUMMARY OF THE INVENTION

The invention provides a method and apparatus for backlighting a wafer during wafer alignment processing. In a particular embodiment, the invention provides illumination using a sheet of electroluminescent material to backlight a wafer. An image of the backlit wafer is acquired using a camera coupled to a machine vision system. In this embodiment, the wafer is positioned on a stage, and the position and orientation of the wafer can be determined from the image.

In accordance with the principles of the present invention, the sheet of electroluminescent material can be operated while adhered to a rigid substrate and applying electrical power. Alternate embodiments of the invention include the use of a robotic end effector to position the wafer between the electroluminescent lamp and the camera. In this embodiment, the wafer can be held stationary during image acquisition, or dynamically moved through the field of view. Alternatively, the electroluminescent material can be operated in a strobed mode of operation by momentarily cycling the power application when the wafer is in the field of view of the camera.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The invention will be more fully understood from the following detailed description, in conjunction with the following figures, wherein:

FIG. 1 is an illustrative diagram of an exemplary wafer alignment system according to the present invention;

FIG. 2 is an illustrative diagram of an alternative exemplary wafer alignment system according to the present invention;

FIG. 3 is a representation of an image of the wafer acquired during wafer alignment according to the present invention;

FIG. 4 is an exploded view of the electroluminescent material according to the present invention; and

FIG. 5 is an isometric view of the electroluminescent lamp according to an illustrative embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, in accordance with the present invention, there is provided a wafer alignment system that can be deployed in a wafer fabrication process for providing coarse alignment of a silicon wafer. A silicon wafer 100 is presented to a machine vision camera 120 using an alignment stage 130. An electroluminescent lamp 110 projects illumination toward the camera 120 to provide backlight illumination of the wafer 100 through the application of power from a power supply 140.

In an embodiment of the invention, a robot end effector or a person places the wafer 100 upon the alignment stage 130. The wafer can be inaccurately placed on the stage and can have any orientation—the objective of the wafer alignment process is to determine the relative position and angular orientation of the wafer 100 to a reference location or position, so that an automated material transfer system, like a robotic end effector, can accurately pick up and transfer the wafer using the determined relative positional information.

In the wafer alignment process using the present invention, a machine vision system 150 acquires at least one image of the wafer on the alignment stage using the camera 120. In an illustrative embodiment, the machine vision system is a personal computer with a frame grabber, like the MVS-8100 PCI frame grabber available from Cognex Corporation. The camera 120 can be an RS-170/CCIR industry standard 640×480 monochrome camera, coupled to the machine vision system 150 using standard video interconnection cables. Alternatively, the camera 120 and the machine vision system 150 can be an integrated sensor, for example, an In-Sight 1700 Series Wafer Reader, also available from Cognex Corporation, where the functionality of the camera 120 is internally coupled to the machine vision system 150. In a clean-room environment, the integrated camera/system solution will be preferred.

The acquired image of the wafer 100, backlit by the electroluminescent lamp 110, is represented by FIG. 3. An apparent edge is visible in the image between the electroluminescent lamp 110 and the wafer 100; the lamp 110 will appear bright, while the wafer 100 will appear dark. Using boundary tracking methods of fitting a circle template to the image of the wafer 100, a center position of the wafer can be determined. The angular orientation of the wafer can be determined by finding the notch 115, using conventional pattern matching or correlation matching tools commonly known in the art. In 200 mm wafer fabrication implementations, the notch 115 may appear as a short chord feature, or “flat” in the circular profile of the wafer, though the same, or similar, feature locating methods can be similarly applied. One method of performing the machine vision methods for determining the position and orientation of wafer using an acquired backlit image of the wafer is described in commonly assigned U.S. Pat. No. 5,825,913, the entirety of which is herein incorporated by reference.

In an alternate embodiment of the invention shown in FIG. 2, a robot end effector 160 passes the wafer between the lamp 110 and the camera 120 so that the wafer alignment process can be performed, with the determined wafer position and orientation passed to the robot controller. The wafer alignment process in this embodiment is the same as that described above with reference to the camera 120 coupled to the machine vision system 150, or through the use of an integrated sensor. In this alternate embodiment, features of the robot end effector 160, typically a vacuum grip or edge grip configuration, will appear in the acquired image. The wafer alignment process must be tolerant of these extraneous features, and there is the possibility that the notch or flat features may be obscured by the robot end effector 160. In this embodiment, the robot end effector 160 may pause in the predetermined position so that the wafer alignment process can be performed, or the image can be acquired as the end effector 160 dynamically passes the wafer through the predetermined position. In the latter configuration, a strobed actuation of the lamp 110 is preferred, by momentarily actuating the power supply 140, as described below.

An exploded view of a section of the electroluminescent material 112 used in the electroluminescent lamp 110 is shown in FIG. 4. A thin layer of light emitting phosphor 185 is placed between a translucent electrode 195 and an opaque electrode 175. When alternating current (400-1600 Hz) is applied to the translucent electrode 195 and the opaque electrode 175, the phosphor layer 185 rapidly charges and discharges, resulting in the emission of light. An insulating layer 165 electrically isolates the active layers of the composite structure from the base structural material 155. The typical thickness of the electroluminescent material is approximately 0.30+/−0.03 mm.

An illustrative embodiment of the present invention is shown in FIG. 5. The electroluminescent lamp 110 is fabricated by attaching the electroluminescent material 112, which is typically flexible, to a rigid substrate 145. The electroluminescent material can be obtained from MKS, Bridgeton, N.J., as Quantaflex 1600. The rigid substrate material 145 can be, for example, polycarbonate, or any similar material that is suitable for use in a wafer fabrication clean-room environment, such as G10 epoxy-glass composites, or anodized aluminum. To attach the electroluminescent material 112 to the rigid substrate 145, an adhesive suitable for use in a wafer fabrication clean-room environment, such as Dymax “Multi-cure 427”, UV cured epoxy. Electrical power supplied from the power supply 140 is connected to the electroluminescent material 112 via a cable 135 that is attached using a suitable connector 125 in a manner specified by the material provider. During operation, the power applied to the lamp 110 is 60-120 Volts AC at 400-800 Hz. As shown in FIG. 5, the illustrative embodiment of the present invention is a circular shape in an annular ring, with a void area in the center to accommodate the wafer stage 130. In the illustrative embodiment, which is sufficient for illuminating a 300 mm wafer, the lamp is approximately fourteen inches in diameter overall with an six inch center diameter. One skilled in the art will appreciate that nearly any geometric shape is suitable for the design of the lamp 110, so long as the expected edge of the wafer 100 is illuminated in the field of view of the camera 120 by the lamp 110.

During operation, the power supply 140 supplies alternating current to the translucent electrode layer 195 and the opaque electrode layer 175 so that light emits from the surface of the lamp 110. In a static wafer alignment process, the power supply continuously applies current to the lamp 110 during image acquisition. Alternatively, in either a static analysis, or in an implementation according to the alternate embodiment wherein an end effector dynamically passes the wafer through the field of view of the camera 120, the power supply can strobe the lamp 110 with an intermittent actuation in response to a system trigger. In a strobed implementation, the power can be optionally overdriven according to manufacturer specification to increase illumination intensity over a short duration, at the expense of potential reduction in expected life cycle of the lamp. When strobing power supplied to the lamp, the latency is reasonably predictable over the area of illumination, which can be calibrated with the system timing requirements.

One skilled in the art will appreciate that variations to the illustrative embodiment can be contemplated within the purview of the appended claims. For example, the electroluminescent material 112 can be captured between a sheet of transparent glass, quartz, or plastic and a substrate. The flexible material need only be held relatively flat on a plane substantially parallel to the surface of the wafer under alignment so that its perceived illumination is evenly distributed over the area at the expected edge of the wafer in the field of view of the camera 120. Since the illumination output from the material is highly efficient, the material does not generate thermal management issues with respect to the construction or particular design of the electroluminescent lamp 110.

The electroluminescent material can be obtained in any of a variety of illumination colors. In the illustrative embodiment of the present invention, a lime-green color has been selected, since it has been found to be non-reactive to semiconductor fabrication processes that are associated with, or in near proximity to, the wafer alignment processes.

The illustrative embodiment has been shown to be effective for wafer alignment even in installations where ambient light is not controlled. Reflection of ambient light from the lamp 110 can be distinguished from specular reflections of ambient light from the wafer under alignment by the machine vision system 150 such that sufficient contrast at the wafer edge can permit an effective analysis of an acquired image. Alternatively, a band-pass filter (not shown) that is tuned to the wavelength (color) of the light projected from electroluminescent material 112 can be installed in the optical path of the camera 120 to reduce the potential for susceptibility of ambient light reflections.

While the invention has been described with reference to certain illustrated embodiments, the words which have been used herein are words of description rather than words of limitation. Changes may be made, within the purview of the appended claims, without departing from the scope and spirit of the invention and its aspects. Although the invention has been described herein with reference to particular structures, acts and material, the invention is not to be limited to the particulars disclosed, but rather extending to all equivalent structures, acts, and materials, such as are within the scope of the appended claims.

Claims (16)

1. An apparatus for backlighting a wafer during alignment comprising:
a wafer alignment stage;
a camera coupled to a machine vision system, the camera positioned to acquire an image of a wafer placed on the wafer alignment stage; and
an electroluminescent lamp projecting illumination toward the camera, the wafer alignment stage disposed between the camera and the electroluminescent lamp.
2. The apparatus according to claim 1 wherein the electroluminescent lamp further comprises: a rigid substrate; a sheet of electroluminescent material adhesively attached to the substrate; and a power supply electrically coupled to the electroluminescent material.
3. The apparatus according to claim 2 wherein the electroluminescent lamp has a circular annular shape.
4. The apparatus according to claim 2 wherein the rigid substrate is an epoxy-glass composite.
5. The apparatus according to claim 1 wherein the electroluminescent lamp emits illumination in a particular color, and the camera further comprises a band-pass filter tuned to the particular color of the electroluminescent lamp.
6. The apparatus according to claim 1 wherein the camera coupled to the machine vision system is an integrated sensor.
7. An apparatus for backlighting a wafer during alignment comprising:
a robot end effector;
a camera coupled to a machine vision system, the camera positioned to acquire an image of a wafer placed on the robot end effector; and
an electroluminescent lamp projecting illumination toward the camera, the wafer disposed between the camera and the electroluminescent lamp.
8. The apparatus according to claim 7 wherein the electroluminescent lamp further comprises:
a rigid substrate;
a sheet of electroluminescent material adhesively attached to the substrate; and
a power supply electrically coupled to the electroluminescent material.
9. The apparatus according to claim 8 wherein the electroluminescent lamp has a circular annular shape.
10. The apparatus according to claim 8 wherein the rigid substrate is an epoxy-glass composite.
11. The apparatus according to claim 7 wherein the electroluminescent lamp emits illumination in a particular color, and the camera further comprises a band-pass filter tuned to the particular color of the electroluminescent lamp.
12. The apparatus according to claim 7 wherein the camera coupled to the machine vision system is an integrated sensor.
13. A method for backlighting a wafer during alignment comprising:
positioning a wafer in a field of view of a camera, the wafer having a first side facing the camera and a second side facing away from the camera, the camera cooperatively coupled to a machine vision system;
illuminating the second side of the wafer using an electroluminescent lamp and a portion of the field of view; and
determining the position and orientation of the wafer using the acquired image and the machine vision system.
14. The method according to claim 13 wherein the step of positioning the wafer comprises placing the wafer on a stage.
15. The method according to claim 13 wherein the step of positioning the wafer comprises moving the wafer through the field of view using a robotic end effector.
16. The method according to claim 15 wherein the step of illuminating the second side of the wafer comprises strobing the electroluminescent lamp.
US11162540 2005-09-14 2005-09-14 Method and apparatus for backlighting a wafer during alignment Active 2027-08-13 US7639861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11162540 US7639861B2 (en) 2005-09-14 2005-09-14 Method and apparatus for backlighting a wafer during alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11162540 US7639861B2 (en) 2005-09-14 2005-09-14 Method and apparatus for backlighting a wafer during alignment

Publications (2)

Publication Number Publication Date
US20070058168A1 true US20070058168A1 (en) 2007-03-15
US7639861B2 true US7639861B2 (en) 2009-12-29

Family

ID=37854723

Family Applications (1)

Application Number Title Priority Date Filing Date
US11162540 Active 2027-08-13 US7639861B2 (en) 2005-09-14 2005-09-14 Method and apparatus for backlighting a wafer during alignment

Country Status (1)

Country Link
US (1) US7639861B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049127A1 (en) * 2003-05-08 2008-02-28 Fujifilm Corporation Solid-state imaging device, camera module, and camera-module manufacturing method
US20080142604A1 (en) * 2006-12-14 2008-06-19 Laurens Nunnink Illumination devices for image acquisition systems
US9819847B1 (en) 2015-05-04 2017-11-14 Harris Corporation Uniform lighting of surfaces for visual inspection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010032381A1 (en) * 2009-07-27 2011-02-03 Amb Apparate + Maschinenbau Gmbh Test system for the detection of shape and / or position errors of wafers
EP2339331A1 (en) * 2009-12-23 2011-06-29 Nanda Technologies GmbH Inspection and positioning systems and methods

Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816722A (en) 1970-09-29 1974-06-11 Nippon Electric Co Computer for calculating the similarity between patterns and pattern recognition system comprising the similarity computer
US3936800A (en) 1973-03-28 1976-02-03 Hitachi, Ltd. Pattern recognition system
US3967100A (en) 1973-11-12 1976-06-29 Naonobu Shimomura Digital function generator utilizing cascade accumulation
US3968475A (en) 1974-11-11 1976-07-06 Sperry Rand Corporation Digital processor for extracting data from a binary image
US3978326A (en) 1974-12-27 1976-08-31 Naonobu Shimomura Digital polynomial function generator
US4011403A (en) 1976-03-30 1977-03-08 Northwestern University Fiber optic laser illuminators
US4115762A (en) 1976-12-01 1978-09-19 Hitachi, Ltd. Alignment pattern detecting apparatus
US4115702A (en) 1976-05-05 1978-09-19 Zumback Electronic Ag Device for measuring at least one dimension of an object and a method of operating said device
US4183013A (en) 1976-11-29 1980-01-08 Coulter Electronics, Inc. System for extracting shape features from an image
US4200861A (en) 1978-09-01 1980-04-29 View Engineering, Inc. Pattern recognition apparatus and method
US4238780A (en) 1978-04-14 1980-12-09 Siemens Aktiengesellschaft Process and an apparatus for automatically recognizing the position of semiconductor elements
US4254400A (en) 1978-12-13 1981-03-03 Hitachi, Ltd. Image data processor
US4286293A (en) 1979-05-30 1981-08-25 Western Electric Company, Inc. Laser scanning and multiple detection for video image processing
US4300164A (en) 1980-03-21 1981-11-10 View Engineering, Inc. Adaptive video processor
US4385322A (en) 1978-09-01 1983-05-24 View Engineering, Inc. Pattern recognition apparatus and method
US4435837A (en) 1981-03-05 1984-03-06 President And Fellows Of Harvard College Pattern recognition and orientation system
US4441206A (en) 1980-12-17 1984-04-03 Hitachi, Ltd. Pattern detecting apparatus
US4441124A (en) 1981-11-05 1984-04-03 Western Electric Company, Inc. Technique for inspecting semiconductor wafers for particulate contamination
US4519041A (en) 1982-05-03 1985-05-21 Honeywell Inc. Real time automated inspection
US4534813A (en) 1982-07-26 1985-08-13 Mcdonnell Douglas Corporation Compound curve-flat pattern process
US4541116A (en) 1984-02-27 1985-09-10 Environmental Research Institute Of Mi Neighborhood image processing stage for implementing filtering operations
US4545067A (en) 1983-01-31 1985-10-01 Commissariat A L'energie Atomique Process for automatic image recognition
US4570180A (en) 1982-05-28 1986-02-11 International Business Machines Corporation Method for automatic optical inspection
US4577344A (en) 1983-01-17 1986-03-18 Automatix Incorporated Vision system
US4581762A (en) 1984-01-19 1986-04-08 Itran Corporation Vision inspection system
US4606065A (en) 1984-02-09 1986-08-12 Imaging Technology Incorporated Image processing-system
US4617619A (en) 1985-10-02 1986-10-14 American Sterilizer Company Reflector for multiple source lighting fixture
US4630306A (en) 1983-04-29 1986-12-16 National Research Development Corp. Apparatus and methods for coding and storing raster scan images
US4631750A (en) 1980-04-11 1986-12-23 Ampex Corporation Method and system for spacially transforming images
US4641349A (en) 1985-02-20 1987-02-03 Leonard Flom Iris recognition system
US4688088A (en) 1984-04-20 1987-08-18 Canon Kabushiki Kaisha Position detecting device and method
US4697075A (en) * 1986-04-11 1987-09-29 General Electric Company X-ray imaging system calibration using projection means
US4706168A (en) 1985-11-15 1987-11-10 View Engineering, Inc. Systems and methods for illuminating objects for vision systems
US4707647A (en) 1986-05-19 1987-11-17 Gmf Robotics Corporation Gray scale vision method and system utilizing same
US4728195A (en) 1986-03-19 1988-03-01 Cognex Corporation Method for imaging printed circuit board component leads
US4730260A (en) 1984-09-28 1988-03-08 Asahi Glass Company Ltd. Method for eyewear simulation and a device for its practice
US4731858A (en) 1984-05-11 1988-03-15 Siemens Aktiengesellschaft Arrangement for the segmentation of lines
US4736437A (en) 1982-11-22 1988-04-05 View Engineering, Inc. High speed pattern recognizer
US4742551A (en) 1985-10-07 1988-05-03 Fairchild Camera & Instrument Corporation Multistatistics gatherer
US4752898A (en) 1987-01-28 1988-06-21 Tencor Instruments Edge finding in wafers
US4758782A (en) 1985-09-11 1988-07-19 Kowa Company Ltd. Method and apparatus for inspecting printed circuit board
US4764870A (en) 1987-04-09 1988-08-16 R.A.P.I.D., Inc. System and method for remote presentation of diagnostic image information
US4771469A (en) 1986-06-30 1988-09-13 Honeywell Inc. Means and method of representing an object shape by hierarchical boundary decomposition
US4776027A (en) 1984-02-09 1988-10-04 Omron Tateisi Electronics Co. Geometric figure position and orientation detection method and device
US4782238A (en) 1987-10-20 1988-11-01 Eastman Kodak Company Apparatus for generating edge position signals for use in locating an address element on a mailpiece
US4783828A (en) 1986-06-02 1988-11-08 Honeywell Inc. Two-dimensional object recognition using chain codes, histogram normalization and trellis algorithm
US4783826A (en) 1986-08-18 1988-11-08 The Gerber Scientific Company, Inc. Pattern inspection system
US4783829A (en) 1983-02-23 1988-11-08 Hitachi, Ltd. Pattern recognition apparatus
US4803735A (en) 1985-10-11 1989-02-07 Hitachi, Ltd. Method and apparatus for calculating position and orientation by combination of features of partial shapes
US4809077A (en) 1986-04-22 1989-02-28 Minolta Camera Kabushiki Kaisha Solid state image sensor drive apparatus
US4821333A (en) 1986-08-22 1989-04-11 Environmental Research Inst. Of Michigan Machine learning procedures for generating image domain feature detector structuring elements
US4831580A (en) 1985-07-12 1989-05-16 Nippon Electric Industry Co., Ltd. Program generator
US4860374A (en) 1984-04-19 1989-08-22 Nikon Corporation Apparatus for detecting position of reference pattern
US4860375A (en) 1986-03-10 1989-08-22 Environmental Research Inst. Of Michigan High speed cellular processing system
US4876457A (en) 1988-10-31 1989-10-24 American Telephone And Telegraph Company Method and apparatus for differentiating a planar textured surface from a surrounding background
US4876728A (en) 1985-06-04 1989-10-24 Adept Technology, Inc. Vision system for distinguishing touching parts
US4891767A (en) 1988-06-02 1990-01-02 Combustion Engineering, Inc. Machine vision system for position sensing
US4903218A (en) 1987-08-13 1990-02-20 Digital Equipment Corporation Console emulation for a graphics workstation
US4907169A (en) 1987-09-30 1990-03-06 International Technical Associates Adaptive tracking vision and guidance system
US4908874A (en) 1980-04-11 1990-03-13 Ampex Corporation System for spatially transforming images
US4912559A (en) 1987-09-21 1990-03-27 Kabushiki Kaisha Toshiba Image processing method
US4912659A (en) 1987-10-30 1990-03-27 International Business Machines Corporation Parallel surface processing system for graphics display
US4914553A (en) 1984-07-26 1990-04-03 Sharp Kabushiki Kaisha Lighting device
US4922543A (en) 1984-12-14 1990-05-01 Sten Hugo Nils Ahlbom Image processing device
US4924086A (en) 1987-11-05 1990-05-08 Erwin Sick Gmbh Optik-Elektronik Optical scanning apparatus for detecting faults on a surface
US4926492A (en) 1987-07-24 1990-05-15 Sharp Kabushiki Kaisha Optical character reading apparatus and method
US4932065A (en) 1988-11-16 1990-06-05 Ncr Corporation Universal character segmentation scheme for multifont OCR images
US4953224A (en) 1984-09-27 1990-08-28 Hitachi, Ltd. Pattern defects detection method and apparatus
US4955062A (en) 1986-12-10 1990-09-04 Canon Kabushiki Kaisha Pattern detecting method and apparatus
US4959898A (en) 1990-05-22 1990-10-02 Emhart Industries, Inc. Surface mount machine with lead coplanarity verifier
US4962423A (en) 1988-01-27 1990-10-09 Canon Kabushiki Kaisha Mark detecting method and apparatus
US4969037A (en) 1988-08-11 1990-11-06 Siemens Aktiengesellschaft Arrangement for illuminating and detecting parts in an image processing system
US4972359A (en) 1987-04-03 1990-11-20 Cognex Corporation Digital image processing system
US4982438A (en) 1987-06-02 1991-01-01 Hitachi, Ltd. Apparatus and method for recognizing three-dimensional shape of object
US5005126A (en) 1987-04-09 1991-04-02 Prevail, Inc. System and method for remote presentation of diagnostic image information
US5012524A (en) 1989-02-27 1991-04-30 Motorola, Inc. Automatic inspection method
US5012402A (en) 1987-12-17 1991-04-30 Murata Kikai Kabushiki Kaisha System for modifying a machine's program at a remote location
US5012433A (en) 1987-04-27 1991-04-30 International Business Machines Corporation Multistage clipping method
US5027419A (en) 1989-03-31 1991-06-25 Atomic Energy Of Canada Limited Optical images by quadrupole convolution
US5046190A (en) 1988-09-06 1991-09-03 Allen-Bradley Company, Inc. Pipeline image processor
US5048094A (en) 1988-11-29 1991-09-10 Nippon Seiko Kabushiki Kaisha Method and apparatus for checking pattern
US5054096A (en) 1988-10-24 1991-10-01 Empire Blue Cross/Blue Shield Method and apparatus for converting documents into electronic data for transaction processing
US5060276A (en) 1989-05-31 1991-10-22 At&T Bell Laboratories Technique for object orientation detection using a feed-forward neural network
US5063608A (en) 1989-11-03 1991-11-05 Datacube Inc. Adaptive zonal coder
US5073958A (en) 1989-07-15 1991-12-17 U.S. Philips Corporation Method of detecting edges in images
US5081689A (en) 1989-03-27 1992-01-14 Hughes Aircraft Company Apparatus and method for extracting edges and lines
US5081656A (en) 1987-10-30 1992-01-14 Four Pi Systems Corporation Automated laminography system for inspection of electronics
US5083073A (en) 1990-09-20 1992-01-21 Mazada Motor Manufacturing U.S.A. Corp. Method and apparatus for calibrating a vision guided robot
US5086478A (en) 1990-12-27 1992-02-04 International Business Machines Corporation Finding fiducials on printed circuit boards to sub pixel accuracy
US5091861A (en) 1989-03-03 1992-02-25 N.C.T. Ltd. System for automatic finishing of machine parts
US5091968A (en) 1990-12-28 1992-02-25 Ncr Corporation Optical character recognition system and method
US5090576A (en) 1988-12-19 1992-02-25 Elbicon N.V. Method and apparatus for sorting a flow of objects as a function of optical properties of the objects
US5093867A (en) 1987-07-22 1992-03-03 Sony Corporation Candidate article recognition with assignation of reference points and respective relative weights
US5113565A (en) 1990-07-06 1992-05-19 International Business Machines Corp. Apparatus and method for inspection and alignment of semiconductor chips and conductive lead frames
US5115309A (en) 1990-09-10 1992-05-19 At&T Bell Laboratories Method and apparatus for dynamic channel bandwidth allocation among multiple parallel video coders
US5119435A (en) 1987-09-21 1992-06-02 Kulicke And Soffa Industries, Inc. Pattern recognition apparatus and method
US5124622A (en) 1988-07-26 1992-06-23 Fanuc Ltd. Remote diagnosis system of numerical control apparatus
US5133022A (en) 1991-02-06 1992-07-21 Recognition Equipment Incorporated Normalizing correlator for video processing
US5134575A (en) 1989-12-21 1992-07-28 Hitachi, Ltd. Method of producing numerical control data for inspecting assembled printed circuit board
US5143436A (en) 1991-03-06 1992-09-01 The United States Of America As Represented By The United States Department Of Energy Ringlight for use in high radiation
US6275742B1 (en) * 1999-04-16 2001-08-14 Berkeley Process Control, Inc. Wafer aligner system
US6933172B2 (en) * 2002-02-25 2005-08-23 Seiko Epson Corporation Semiconductor wafer with spacer and its manufacturing method, semiconductor device and its manufacturing method, and circuit substrate and electronic device
US7048400B2 (en) * 2001-03-22 2006-05-23 Lumimove, Inc. Integrated illumination system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371690A (en) * 1992-01-17 1994-12-06 Cognex Corporation Method and apparatus for inspection of surface mounted devices
US5367439A (en) * 1992-12-24 1994-11-22 Cognex Corporation System for frontal illumination
JP3074313B2 (en) * 1993-01-26 2000-08-07 株式会社メックス Wafer positioning device
US5381004A (en) * 1993-08-31 1995-01-10 Applied Materials, Inc. Particle analysis of notched wafers
DE4408948C2 (en) * 1994-03-16 1998-02-26 Till Gea Gmbh & Co Method and apparatus for inspecting containers
US5497007A (en) * 1995-01-27 1996-03-05 Applied Materials, Inc. Method for automatically establishing a wafer coordinate system
US5825483A (en) * 1995-12-19 1998-10-20 Cognex Corporation Multiple field of view calibration plate having a reqular array of features for use in semiconductor manufacturing
US5739913A (en) * 1996-08-02 1998-04-14 Mrs Technology, Inc. Non-contact edge detector
US6025905A (en) * 1996-12-31 2000-02-15 Cognex Corporation System for obtaining a uniform illumination reflectance image during periodic structured illumination
US5953130A (en) * 1997-01-06 1999-09-14 Cognex Corporation Machine vision methods and apparatus for machine vision illumination of an object
US5982132A (en) * 1997-10-09 1999-11-09 Electroglas, Inc. Rotary wafer positioning system and method
US6170973B1 (en) * 1997-11-26 2001-01-09 Cognex Corporation Method and apparatus for wide-angle illumination in line-scanning machine vision devices
US7295314B1 (en) * 1998-07-10 2007-11-13 Nanometrics Incorporated Metrology/inspection positioning system
US6341878B1 (en) * 1999-08-31 2002-01-29 Cognex Corporation Method and apparatus for providing uniform diffuse illumination to a surface
US6191850B1 (en) * 1999-10-15 2001-02-20 Cognex Corporation System and method for inspecting an object using structured illumination
US6914679B2 (en) * 2001-12-18 2005-07-05 Cognex Technology And Investment Corporation Side light apparatus and method
WO2003098668A3 (en) * 2002-05-16 2004-04-01 Asyst Technologies Pre-aligner
DE10222119B4 (en) * 2002-05-17 2004-11-11 Asys Automatisierungssysteme Gmbh Apparatus and methods for adjusting the relative position between a substrate to be printed and a print pattern
US6900877B2 (en) * 2002-06-12 2005-05-31 Asm American, Inc. Semiconductor wafer position shift measurement and correction

Patent Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816722A (en) 1970-09-29 1974-06-11 Nippon Electric Co Computer for calculating the similarity between patterns and pattern recognition system comprising the similarity computer
US3936800A (en) 1973-03-28 1976-02-03 Hitachi, Ltd. Pattern recognition system
US3967100A (en) 1973-11-12 1976-06-29 Naonobu Shimomura Digital function generator utilizing cascade accumulation
US3968475A (en) 1974-11-11 1976-07-06 Sperry Rand Corporation Digital processor for extracting data from a binary image
US3978326A (en) 1974-12-27 1976-08-31 Naonobu Shimomura Digital polynomial function generator
US4011403A (en) 1976-03-30 1977-03-08 Northwestern University Fiber optic laser illuminators
US4115702A (en) 1976-05-05 1978-09-19 Zumback Electronic Ag Device for measuring at least one dimension of an object and a method of operating said device
US4183013A (en) 1976-11-29 1980-01-08 Coulter Electronics, Inc. System for extracting shape features from an image
US4115762A (en) 1976-12-01 1978-09-19 Hitachi, Ltd. Alignment pattern detecting apparatus
US4238780A (en) 1978-04-14 1980-12-09 Siemens Aktiengesellschaft Process and an apparatus for automatically recognizing the position of semiconductor elements
US4385322A (en) 1978-09-01 1983-05-24 View Engineering, Inc. Pattern recognition apparatus and method
US4200861A (en) 1978-09-01 1980-04-29 View Engineering, Inc. Pattern recognition apparatus and method
US4254400A (en) 1978-12-13 1981-03-03 Hitachi, Ltd. Image data processor
US4286293A (en) 1979-05-30 1981-08-25 Western Electric Company, Inc. Laser scanning and multiple detection for video image processing
US4300164A (en) 1980-03-21 1981-11-10 View Engineering, Inc. Adaptive video processor
US4631750A (en) 1980-04-11 1986-12-23 Ampex Corporation Method and system for spacially transforming images
US4908874A (en) 1980-04-11 1990-03-13 Ampex Corporation System for spatially transforming images
US4441206A (en) 1980-12-17 1984-04-03 Hitachi, Ltd. Pattern detecting apparatus
US4435837A (en) 1981-03-05 1984-03-06 President And Fellows Of Harvard College Pattern recognition and orientation system
US4441124A (en) 1981-11-05 1984-04-03 Western Electric Company, Inc. Technique for inspecting semiconductor wafers for particulate contamination
US4519041A (en) 1982-05-03 1985-05-21 Honeywell Inc. Real time automated inspection
US4570180A (en) 1982-05-28 1986-02-11 International Business Machines Corporation Method for automatic optical inspection
US4534813A (en) 1982-07-26 1985-08-13 Mcdonnell Douglas Corporation Compound curve-flat pattern process
US4736437A (en) 1982-11-22 1988-04-05 View Engineering, Inc. High speed pattern recognizer
US4577344A (en) 1983-01-17 1986-03-18 Automatix Incorporated Vision system
US4545067A (en) 1983-01-31 1985-10-01 Commissariat A L'energie Atomique Process for automatic image recognition
US4783829A (en) 1983-02-23 1988-11-08 Hitachi, Ltd. Pattern recognition apparatus
US4630306A (en) 1983-04-29 1986-12-16 National Research Development Corp. Apparatus and methods for coding and storing raster scan images
US4581762A (en) 1984-01-19 1986-04-08 Itran Corporation Vision inspection system
US4776027A (en) 1984-02-09 1988-10-04 Omron Tateisi Electronics Co. Geometric figure position and orientation detection method and device
US4606065A (en) 1984-02-09 1986-08-12 Imaging Technology Incorporated Image processing-system
US4541116A (en) 1984-02-27 1985-09-10 Environmental Research Institute Of Mi Neighborhood image processing stage for implementing filtering operations
US4860374A (en) 1984-04-19 1989-08-22 Nikon Corporation Apparatus for detecting position of reference pattern
US4688088A (en) 1984-04-20 1987-08-18 Canon Kabushiki Kaisha Position detecting device and method
US4731858A (en) 1984-05-11 1988-03-15 Siemens Aktiengesellschaft Arrangement for the segmentation of lines
US4914553A (en) 1984-07-26 1990-04-03 Sharp Kabushiki Kaisha Lighting device
US4953224A (en) 1984-09-27 1990-08-28 Hitachi, Ltd. Pattern defects detection method and apparatus
US4730260A (en) 1984-09-28 1988-03-08 Asahi Glass Company Ltd. Method for eyewear simulation and a device for its practice
US4922543A (en) 1984-12-14 1990-05-01 Sten Hugo Nils Ahlbom Image processing device
US4641349A (en) 1985-02-20 1987-02-03 Leonard Flom Iris recognition system
US4876728A (en) 1985-06-04 1989-10-24 Adept Technology, Inc. Vision system for distinguishing touching parts
US4831580A (en) 1985-07-12 1989-05-16 Nippon Electric Industry Co., Ltd. Program generator
US4758782A (en) 1985-09-11 1988-07-19 Kowa Company Ltd. Method and apparatus for inspecting printed circuit board
US4617619A (en) 1985-10-02 1986-10-14 American Sterilizer Company Reflector for multiple source lighting fixture
US4742551A (en) 1985-10-07 1988-05-03 Fairchild Camera & Instrument Corporation Multistatistics gatherer
US4803735A (en) 1985-10-11 1989-02-07 Hitachi, Ltd. Method and apparatus for calculating position and orientation by combination of features of partial shapes
US4706168A (en) 1985-11-15 1987-11-10 View Engineering, Inc. Systems and methods for illuminating objects for vision systems
US4860375A (en) 1986-03-10 1989-08-22 Environmental Research Inst. Of Michigan High speed cellular processing system
US4728195A (en) 1986-03-19 1988-03-01 Cognex Corporation Method for imaging printed circuit board component leads
US4697075A (en) * 1986-04-11 1987-09-29 General Electric Company X-ray imaging system calibration using projection means
US4809077A (en) 1986-04-22 1989-02-28 Minolta Camera Kabushiki Kaisha Solid state image sensor drive apparatus
US4707647A (en) 1986-05-19 1987-11-17 Gmf Robotics Corporation Gray scale vision method and system utilizing same
US4783828A (en) 1986-06-02 1988-11-08 Honeywell Inc. Two-dimensional object recognition using chain codes, histogram normalization and trellis algorithm
US4771469A (en) 1986-06-30 1988-09-13 Honeywell Inc. Means and method of representing an object shape by hierarchical boundary decomposition
US4783826A (en) 1986-08-18 1988-11-08 The Gerber Scientific Company, Inc. Pattern inspection system
US4821333A (en) 1986-08-22 1989-04-11 Environmental Research Inst. Of Michigan Machine learning procedures for generating image domain feature detector structuring elements
US4955062A (en) 1986-12-10 1990-09-04 Canon Kabushiki Kaisha Pattern detecting method and apparatus
US4752898A (en) 1987-01-28 1988-06-21 Tencor Instruments Edge finding in wafers
US4972359A (en) 1987-04-03 1990-11-20 Cognex Corporation Digital image processing system
US5005126A (en) 1987-04-09 1991-04-02 Prevail, Inc. System and method for remote presentation of diagnostic image information
US4764870A (en) 1987-04-09 1988-08-16 R.A.P.I.D., Inc. System and method for remote presentation of diagnostic image information
US5012433A (en) 1987-04-27 1991-04-30 International Business Machines Corporation Multistage clipping method
US4982438A (en) 1987-06-02 1991-01-01 Hitachi, Ltd. Apparatus and method for recognizing three-dimensional shape of object
US5093867A (en) 1987-07-22 1992-03-03 Sony Corporation Candidate article recognition with assignation of reference points and respective relative weights
US4926492A (en) 1987-07-24 1990-05-15 Sharp Kabushiki Kaisha Optical character reading apparatus and method
US4903218A (en) 1987-08-13 1990-02-20 Digital Equipment Corporation Console emulation for a graphics workstation
US4912559A (en) 1987-09-21 1990-03-27 Kabushiki Kaisha Toshiba Image processing method
US5119435A (en) 1987-09-21 1992-06-02 Kulicke And Soffa Industries, Inc. Pattern recognition apparatus and method
US4907169A (en) 1987-09-30 1990-03-06 International Technical Associates Adaptive tracking vision and guidance system
US4782238A (en) 1987-10-20 1988-11-01 Eastman Kodak Company Apparatus for generating edge position signals for use in locating an address element on a mailpiece
US4912659A (en) 1987-10-30 1990-03-27 International Business Machines Corporation Parallel surface processing system for graphics display
US5081656A (en) 1987-10-30 1992-01-14 Four Pi Systems Corporation Automated laminography system for inspection of electronics
US4924086A (en) 1987-11-05 1990-05-08 Erwin Sick Gmbh Optik-Elektronik Optical scanning apparatus for detecting faults on a surface
US5012402A (en) 1987-12-17 1991-04-30 Murata Kikai Kabushiki Kaisha System for modifying a machine's program at a remote location
US4962423A (en) 1988-01-27 1990-10-09 Canon Kabushiki Kaisha Mark detecting method and apparatus
US4891767A (en) 1988-06-02 1990-01-02 Combustion Engineering, Inc. Machine vision system for position sensing
US5124622A (en) 1988-07-26 1992-06-23 Fanuc Ltd. Remote diagnosis system of numerical control apparatus
US4969037A (en) 1988-08-11 1990-11-06 Siemens Aktiengesellschaft Arrangement for illuminating and detecting parts in an image processing system
US5046190A (en) 1988-09-06 1991-09-03 Allen-Bradley Company, Inc. Pipeline image processor
US5054096A (en) 1988-10-24 1991-10-01 Empire Blue Cross/Blue Shield Method and apparatus for converting documents into electronic data for transaction processing
US4876457A (en) 1988-10-31 1989-10-24 American Telephone And Telegraph Company Method and apparatus for differentiating a planar textured surface from a surrounding background
US4932065A (en) 1988-11-16 1990-06-05 Ncr Corporation Universal character segmentation scheme for multifont OCR images
US5048094A (en) 1988-11-29 1991-09-10 Nippon Seiko Kabushiki Kaisha Method and apparatus for checking pattern
US5090576A (en) 1988-12-19 1992-02-25 Elbicon N.V. Method and apparatus for sorting a flow of objects as a function of optical properties of the objects
US5012524A (en) 1989-02-27 1991-04-30 Motorola, Inc. Automatic inspection method
US5091861A (en) 1989-03-03 1992-02-25 N.C.T. Ltd. System for automatic finishing of machine parts
US5081689A (en) 1989-03-27 1992-01-14 Hughes Aircraft Company Apparatus and method for extracting edges and lines
US5027419A (en) 1989-03-31 1991-06-25 Atomic Energy Of Canada Limited Optical images by quadrupole convolution
US5060276A (en) 1989-05-31 1991-10-22 At&T Bell Laboratories Technique for object orientation detection using a feed-forward neural network
US5073958A (en) 1989-07-15 1991-12-17 U.S. Philips Corporation Method of detecting edges in images
US5063608A (en) 1989-11-03 1991-11-05 Datacube Inc. Adaptive zonal coder
US5134575A (en) 1989-12-21 1992-07-28 Hitachi, Ltd. Method of producing numerical control data for inspecting assembled printed circuit board
US4959898A (en) 1990-05-22 1990-10-02 Emhart Industries, Inc. Surface mount machine with lead coplanarity verifier
US5113565A (en) 1990-07-06 1992-05-19 International Business Machines Corp. Apparatus and method for inspection and alignment of semiconductor chips and conductive lead frames
US5115309A (en) 1990-09-10 1992-05-19 At&T Bell Laboratories Method and apparatus for dynamic channel bandwidth allocation among multiple parallel video coders
US5083073A (en) 1990-09-20 1992-01-21 Mazada Motor Manufacturing U.S.A. Corp. Method and apparatus for calibrating a vision guided robot
US5086478A (en) 1990-12-27 1992-02-04 International Business Machines Corporation Finding fiducials on printed circuit boards to sub pixel accuracy
US5091968A (en) 1990-12-28 1992-02-25 Ncr Corporation Optical character recognition system and method
US5133022A (en) 1991-02-06 1992-07-21 Recognition Equipment Incorporated Normalizing correlator for video processing
US5143436A (en) 1991-03-06 1992-09-01 The United States Of America As Represented By The United States Department Of Energy Ringlight for use in high radiation
US6275742B1 (en) * 1999-04-16 2001-08-14 Berkeley Process Control, Inc. Wafer aligner system
US7048400B2 (en) * 2001-03-22 2006-05-23 Lumimove, Inc. Integrated illumination system
US6933172B2 (en) * 2002-02-25 2005-08-23 Seiko Epson Corporation Semiconductor wafer with spacer and its manufacturing method, semiconductor device and its manufacturing method, and circuit substrate and electronic device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Plessey Semiconductors, Preliminary Information, Publication No. PS2067, (May 1986),1 - 5.
Ray, R. "Automated inspection of solder bumps using visual signatures of specular image-highlights", Computer Vision and Pattern Recognition, Proceedings CVPR, (1989),588 - 596.
Wu, Yifeng et al., "Registration of a SPOT Image and a SAR Image Using Multiresolution Representation of a Coastline", 10th International Conference of pattern Recognition, (Jun. 16 - 21, 1990),913 - 917.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049127A1 (en) * 2003-05-08 2008-02-28 Fujifilm Corporation Solid-state imaging device, camera module, and camera-module manufacturing method
US20080142604A1 (en) * 2006-12-14 2008-06-19 Laurens Nunnink Illumination devices for image acquisition systems
US8016199B2 (en) 2006-12-14 2011-09-13 Cognex Corporation Illumination devices for image acquisition systems
US9819847B1 (en) 2015-05-04 2017-11-14 Harris Corporation Uniform lighting of surfaces for visual inspection

Also Published As

Publication number Publication date Type
US20070058168A1 (en) 2007-03-15 application

Similar Documents

Publication Publication Date Title
US8077305B2 (en) Imaging semiconductor structures using solid state illumination
US6870949B2 (en) Coaxial narrow angle dark field lighting
US6292260B1 (en) System and method of optically inspecting surface structures on an object
US6686753B1 (en) Prober and apparatus for semiconductor chip analysis
US20040027586A1 (en) Processing apparatus, processing method and position detecting device
US20060104061A1 (en) Display with planar light source
US20050036671A1 (en) Edge inspection
US6477447B1 (en) Methods to generate numerical pressure distribution data for developing pressure related components
US6592673B2 (en) Apparatus and method for detecting a presence or position of a substrate
US6471464B1 (en) Wafer positioning device
US5923020A (en) Lighting apparatus
US20050003635A1 (en) Dicing method, method of inspecting integrated circuit element, substrate holding device, and pressure sensitive adhesive film
US20090122304A1 (en) Apparatus and Method for Wafer Edge Exclusion Measurement
JP2006162427A (en) Method and device for inspecting led chip
US7508504B2 (en) Automatic wafer edge inspection and review system
EP0994646A1 (en) Illumination for use in electronic component mounting apparatus
US20020135757A1 (en) LCC device inspection module
US6791686B1 (en) Apparatus for integrated monitoring of wafers and for process control in the semiconductor manufacturing and a method for use thereof
US5570184A (en) Method and apparatus for locating the position of lasing gaps for precise alignment and placement of optoelectric components
US20030102292A1 (en) Method and apparatus for calibrating marking position in chip scale marker
US20090189054A1 (en) System and method including a prealigner
JPH11345865A (en) Semiconductor manufacturing device
US7042568B2 (en) Pre-aligner
JP2004287368A (en) Inspecting device
US20110286738A1 (en) Wet-processing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: COGNEX TECHNOLOGY AND INVESTMENT CORPORATION, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MICHAEL, DAVID J.;KARNACEWICZ, MARTIN;BOATNER, JOHN B.;REEL/FRAME:016831/0172;SIGNING DATES FROM 20051108 TO 20051130

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: COGNEX TECHNOLOGY AND INVESTMENT LLC, MASSACHUSETT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME AND COMPANY IDENTITY OF ASSIGNEE PREVIOUSLY RECORDED ON REEL 016831 FRAME 0172. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:MICHAEL, DAVID J.;KARNACEWICZ, MARTIN;BOATNER, JOHN B.;SIGNING DATES FROM 20140522 TO 20141114;REEL/FRAME:034732/0141

FPAY Fee payment

Year of fee payment: 8