US7622413B2 - Multifunctional additive for maximizing properties relevant to the process of fluid catalytic cracking and the process for preparation thereof - Google Patents
Multifunctional additive for maximizing properties relevant to the process of fluid catalytic cracking and the process for preparation thereof Download PDFInfo
- Publication number
- US7622413B2 US7622413B2 US11/497,262 US49726206A US7622413B2 US 7622413 B2 US7622413 B2 US 7622413B2 US 49726206 A US49726206 A US 49726206A US 7622413 B2 US7622413 B2 US 7622413B2
- Authority
- US
- United States
- Prior art keywords
- multifunctional additive
- rare earth
- preparation
- additive
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000000654 additive Substances 0.000 title claims abstract description 76
- 230000000996 additive effect Effects 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000008569 process Effects 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 238000004231 fluid catalytic cracking Methods 0.000 title description 19
- -1 rare earth salt Chemical class 0.000 claims abstract description 35
- 150000001336 alkenes Chemical class 0.000 claims abstract description 34
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 19
- 239000010457 zeolite Substances 0.000 claims abstract description 19
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 239000000356 contaminant Substances 0.000 claims abstract description 15
- 150000002739 metals Chemical class 0.000 claims abstract description 15
- 238000001354 calcination Methods 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 11
- 239000004005 microsphere Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 4
- 239000008119 colloidal silica Substances 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 239000000908 ammonium hydroxide Substances 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims description 2
- 238000004523 catalytic cracking Methods 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims description 2
- 238000006460 hydrolysis reaction Methods 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 4
- 238000002156 mixing Methods 0.000 claims 1
- 150000003839 salts Chemical group 0.000 claims 1
- 238000001694 spray drying Methods 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 23
- 239000011574 phosphorus Substances 0.000 abstract description 23
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 23
- 239000003054 catalyst Substances 0.000 abstract description 13
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 235000012245 magnesium oxide Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 208000003173 lipoprotein glomerulopathy Diseases 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
- 239000007966 viscous suspension Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/16—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
- B01J27/18—Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
- B01J27/1802—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
- B01J27/1804—Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/405—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/28—Propane and butane
Definitions
- the application field of this invention is found among the additives for maximizing the properties relevant to fluid catalytic cracking (FCC) and the process for preparation of these.
- FCC fluid catalytic cracking
- multifunctional additives in other words, those capable of simultaneously maximizing a plurality of properties relevant to the FCC process and the preparatory processes of these.
- multifunctional additives that are capable of maximizing vanadium tolerance and of producing light olefins and liquefied petroleum gas (LPG) in fluid catalytic cracking, and the preparatory process of these.
- Fluid catalytic cracking (FCC) process is one of the technologies of major strategic importance in the petroleum refining industry. Through said technology, hydrocarbons of low molecular weight are produced, which are used by the final consumer as well as by the petrochemical industry.
- this effect may be obtained through changes in the FCC processing conditions or through catalytic systems.
- zeolite ZSM-5 in the formulations of catalysts or in separate particles is well known in the state of the art. Separate particles are usually applied in small proportions and is known in the field as “olefin additive”. Due to greater flexibility of application and to a more favorable distribution of the products concerned, the use of olefin additives is practiced with greater frequency.
- Pure ZSM-5 zeolite possesses lower selectivity for olefins.
- the referenced zeolite is stabilized with a source of phosphorus, as described in the American patents, U.S. Pat. No. 3,972,832, U.S. Pat. No. 4,356,338 and U.S. Pat. No. 4,456,780.
- olefin additives besides containing a zeolite as a binder, such as for example, silica-alumina, also contain a species of phosphorus.
- a metal trap may contain components like rare earths, strontium, titanium, etc., that have a tendency to form stable compounds with types of vanadium, like several types of vanadates.
- European patent EP 0 554 968 protects a metal trap made from aluminum, lanthanum and magnesium oxides co-precipitated in order to passivate the vanadium.
- Compounds that work as metal traps may be incorporated within the catalyst's own particles, or in separate particles as additives.
- an additive containing a component to maximize olefins together with a component that is usually used as a metal trap does not necessarily imply that the newly created particle will also possess the properties described as optimized. It is known that alkaline materials that make up metal traps may neutralize the zeolite acid sites, reducing its activity and/or the light olefin yield. On the other hand, the phosphorus source may also interact with metal traps, creating a phosphate and reducing the ability to passivate the contaminant metals. Therefore, in addition to increasing processing costs, the joint use of two additives tends to produce results that are not very satisfactory.
- a multifunctional additive for the maximization of properties relevant to the fluid catalytic cracking process which is the object of this invention, designed to maximize the yield of light olefins and LPG, with a tolerance to contaminant metals and to minimize costs associated with including two additives to the reaction system, through the use of a zeolite treated with a phosphorus source, calcined and impregnated with a rare earth salt.
- the process for preparation of the referenced catalyst includes the following steps:
- This invention deals with a multifunctional additive for the maximization of properties relevant to the fluid catalytic cracking process and the process for its preparation designed to maximize the yield of light olefins and LPG, with a tolerance to contaminant metals and to minimize costs associated with including two additives to the reaction system
- the additive for maximizing light olefins contains, among other substances, zeolite ZSM-5 and a source of phosphorus.
- the zeolite mentioned is a component that is quite selective for the formation of light olefins in an FCC process.
- the multifunctional additive is produced from treating a precursor that contains, among other components, zeolite ZSM-5 and a source of phosphorus with rare earth salts.
- the rare earth salts capture and passivate the contaminant metals such as, for example, vanadium.
- the process of preparation and optimization so that the structure of the additive is made accessible is accomplished not only by using organic compounds but also through inorganic compounds of vanadium, which facilitates capture of these.
- the rare earth salts and the phosphorus species do not interfere with the function of the zeolite in the production of light olefins.
- the precursor is prepared by adding a mixture of:
- drying takes place with a “spray dryer” in such a way that the additive acquires particle size and is in a micro-sphere format.
- the prepared micro-spheres have the properties of an additive for the maximization of light olefins. From these properly prepared micro-spheres, the process for preparation of the referenced multifunctional additive includes the following steps:
- This step is designed to avoid excessive interaction of the phosphorus species with the components to be deposited on the surface of the additive in the following steps.
- the referenced placement is made through calcination at a temperature in the range of between 350° C. and 750° C., preferably in the range of between 450° C. and 500° C., during a period of between 0.5 and 5 hours, preferably between 2 and 4 hours;
- a solution containing rare earth salts that may be selected from: rare earth chlorides, rare earth nitrates or mixtures of these which are diluted in deionized water until the total volume of the solution is equal to the pore volume of the prepared micro-spheres.
- the percentage in weight of the rare earth salts in relation to the multifunctional additive is between 0.5% and 20%, preferably between 1% and 10%, and better yet between 2% and 6%; and
- drying of the multifunctional additive create should be at a temperature in the range of between 60° C. and 120° C., preferably in the range of between 100° C. and 120° C., during a period of between 1 and 24 hours, preferably between 4 and 16 hours.
- the multifunctional additive created from an additive to maximize light olefins is prepared by the steps of placing the phosphorus source, depositing the rare earth salts and drying.
- the referenced multifunctional additive possesses characteristics that maximize the yield of light olefins and tolerance to contaminant metals in an FCC process.
- the placement may be accomplished by washing with warm deionized water, at a temperature of between 60° C. and 100° C. with moderate agitation for a period of between 0.5 and 5 hours.
- the step of depositing the rare earths may be accomplished by adding a solution of ammonium hydroxide, at a concentration of between 1 and 8 mols, preferably between 2 and 6 mols, and then added. Consequently, the pH of the solution falls within a range of between 7 and 11, preferably between 8 and 10. As a result, the rare earth salts are deposited through hydrolysis.
- this example is to determine some properties of the multifunctional additive prepared by the process disclosed in this patent. Moreover, said example also demonstrates the efficiency of an alternative step to place the phosphorus species in a preparatory process for the multifunctional additive.
- phosphoric acid is blended into kaolin.
- zeolite ZSM-5 crystals, colloidal silica and peptized alumina are added.
- the viscous suspension formed is then dried by atomization in a “spray dryer”, creating micro-spheres.
- Several types of micro-spheres were produced and the percentages by weight of the components and a few of the properties are summarized in Table 1.
- the placement step for the species of phosphorus is done. This step is designed to avoid excessive interaction of the phosphorus species with the rest of the components to be deposited on the micro-spheres of the additive in the subsequent steps. In this way, the proper placement of the phosphorus helps to optimize both the maximization of the tolerance to contaminant metals and the yield of light olefins and LPG.
- Table 2 shows that, after calcination, washing with warm water does not remove a significant amount of phosphorus, indicating that the phosphorus is properly fixed on the catalyst particle.
- the step for the deposit of rare earth salts is executed.
- a certain amount of rare earth chlorides was dissolved in 19.2 ml of deionized water creating a solution that was slowly dripped into 40 g of sample A with constant homogenization.
- Said quantity of rare earth chloride was calculated so as to obtain a concentration of RE 2 O 3 of approximately 2.5% w/w in the multifunctional additive.
- the total volume of this solution was calculated so as to be the same as the total volume of pores in the prepared micro-spheres.
- sample A1 After depositing the rare earth salts, the sample was air dried at a temperature of 120° C., during a period of 12 hours, producing sample A1.
- sample A2 follows the procedure as sample A1. However, for sample A2, the amount of rare earth chlorides used in the preparation of sample A1 was doubled.
- the purpose was to test the multifunctional additive relative to the function of the metal trap.
- the samples were tested in the function of metal traps using the following procedure: 1 g of sample was mixed with 4 g of an FCC commercial catalyst, containing 20000 ppm of vanadium and ultra-stable zeolite having a sodium level lower than 3000 ppm. The mixture was then submitted to a severe deactivation with 100% steam at a temperature of 800° C. for 5 hours. During this treatment, the vanadium of the commercial catalyst was released and it attacked the structure of the ultra-stable zeolite. In order to measure the attack on the ultra stable zeolite structure, a determination was made regarding the reduction of the micro-porosity of the total mixture.
- Table 3 shows the composition of the samples tested and the results of the micro-pore volume after deactivation.
- the purpose was to test the multifunctional additive relative to the function of the additive to maximize the yield of light olefins and LPG.
- Table 6 shows the yield for the samples tested at 535° C. and catalyst/stream ratio equal to 5.
- Samples A1 and A2 increase the yield of LPG, mainly in the yield of propane. It is important to highlight that sample A, precursor of samples A1 and A2, achieves baseline yields close to commercial additives for maximizing the yield of light olefins and LPG.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
| TABLE 1 | ||||
| Samples | A | B | C | D |
| Al2O3 (% p/p) | 24.3 | 39.5 | 32.4 | 28.7 |
| Na2O (% p/p) | 0.19 | 0.58 | 0.43 | 0.46 |
| SiO2 (% p/p) | 60.6 | 49.1 | 56.4 | 59.5 |
| P2O5 (% p/p) | 14.1 | 9.82 | 9.80 | 10.3 |
| MiPV 3-5 (ml/g) | 0.022 | 0.003 | 0.024 | 0.023 |
| MSA 3-5 (m2/g) | 17.8 | 14.4 | 20.5 | 16.3 |
| SA (m2/g) | 65.4 | 22 | 72 | 65 |
| Average Size of Particle (μm) | 70 | 70 | 70 | 70 |
| TABLE 2 | |||||
| Samples | B | C | D | ||
| Analysis of the Solids |
| P2O5 before washing (%) | 9.8 | 9.8 | 10.3 | |
| P2O5 after washing (%) | 9.8 | 9.8 | 10.9 |
| Prospective Loss (analysis of the wash water) |
| P2O5 (%) | 0.005 | 0.012 | 0.024 | ||
| TABLE 3 | ||||
| Samples | R1 | A1 | A2 | R2 |
| Al2O3 (%) | 26.0 | 23.8 | 23.1 | 15.1 |
| Na2O (%) | <0.05 | 0.16 | 0.16 | — |
| SiO2 (%) | 63.0 | 59.0 | 57.2 | 41.1 |
| P2O3 (%) | 0.0 | 14.0 | 14.0 | 0.0 |
| RE2O3 (%) | 0.0 | 2.44 | 5.14 | 0.0 |
| CaO (%) | 0.0 | 0.0 | 0.0 | 23.0 |
| MgO (%) | 0.0 | 0.0 | 0.0 | 18.2 |
| Micro-pore volume of the | 0.027 | 0.048 | 0.044 | 0.075 |
| mixture after deactivation (ml/g) | ||||
| TABLE 4 |
| Physical Properties |
| BET SA (m2/g) | 142 | |
| MiPV (cm3/g) | 0.053 | |
| MSA (m2/g) | 29.7 |
| Chemical Analysis |
| SiO2 (% p/p) | 55.3 | ||
| Al2O3 (% p/p) | 40.1 | ||
| RE2O3 (% p/p) | 2.48 | ||
| Na2O (% p/p) | 0.53 | ||
| Fe2O3 (% p/p) | 0.46 | ||
| P2O5 (% p/p) | 0.60 | ||
| Ni (ppm) | 3579 | ||
| V (ppm) | 3074 | ||
| TABLE 5 | |||
| °API | 18.3 | ||
| Density | 0.924 | ||
| Aniline Point (° C.) | 96.4 | ||
| Total Sulfur (% p/p) | 0.7 | ||
| Nitrogen Total (ppm) | 2800 | ||
| Basic Nitrogen (ppm) | 1000 | ||
| RCR (%) | 0.6 | ||
| TABLE 6 | ||||||
| Samples | E-Cat | A1 | A2 | A | ||
| Conversion (%) | 64.9 | 67.2 | 64.8 | 63.6 |
| Yield normalized at 65% (% p/p) conversion |
| Combustible Gas | 2.50 | 3.07 | 2.67 | 2.88 | ||
| LPG | 13.9 | 21.6 | 17.8 | 18.5 | ||
| Propane | 4.11 | 8.03 | 6.33 | 6.87 | ||
| Gasoline | 43.8 | 35.3 | 39.8 | 38.7 | ||
| LCO | 18.1 | 16.0 | 17.8 | 18.8 | ||
| Beds | 17.1 | 15.7 | 17.5 | 18.5 | ||
| Coke | 4.81 | 5.08 | 4.76 | 4.89 | ||
Claims (15)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BRPI0503182-6 | 2005-08-04 | ||
| BRPI0503182-6A BRPI0503182B1 (en) | 2005-08-04 | 2005-08-04 | MULTIFUNCTIONAL ADDITIVE FOR MAXIMIZING PROPERTIES RELEVANT TO A FLUID CATALYTIC CRACKING PROCESS AND PREPARATION PROCESS |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20070032374A1 US20070032374A1 (en) | 2007-02-08 |
| US7622413B2 true US7622413B2 (en) | 2009-11-24 |
Family
ID=37718319
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/497,262 Active 2027-07-27 US7622413B2 (en) | 2005-08-04 | 2006-08-02 | Multifunctional additive for maximizing properties relevant to the process of fluid catalytic cracking and the process for preparation thereof |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US7622413B2 (en) |
| KR (1) | KR101060538B1 (en) |
| AR (1) | AR055988A1 (en) |
| BR (1) | BRPI0503182B1 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9764314B2 (en) * | 2006-11-07 | 2017-09-19 | Saudi Arabian Oil Company | Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks |
| CN101611118B (en) * | 2006-11-07 | 2013-11-20 | 沙特阿拉伯石油公司 | Advanced control of severe fluid catalytic cracking process for maximizing propylene production from petroleum feedstock |
| US20090095657A1 (en) * | 2006-11-07 | 2009-04-16 | Saudi Arabian Oil Company | Automation and Control of Energy Efficient Fluid Catalytic Cracking Processes for Maximizing Value Added Products |
| CN101462740B (en) * | 2007-12-20 | 2010-12-22 | 中国石油化工股份有限公司 | Method for preparing ZSM-5 zeolite by in situ crystallization |
| US8062987B2 (en) * | 2009-10-05 | 2011-11-22 | Saudi Basic Industries Corporation | Phosphorus-containing zeolite catalysts and their method of preparation |
| US9278342B2 (en) | 2012-07-02 | 2016-03-08 | Saudi Basic Industries Corporation | Method of modifying a phosphorus-containing zeolite catalyst |
| CN109304222B (en) * | 2017-07-28 | 2021-09-28 | 中国石油天然气股份有限公司 | Catalytic cracking catalyst for cracking coking wax oil to produce more liquefied gas and preparation method thereof |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3972832A (en) | 1974-09-23 | 1976-08-03 | Mobil Oil Corporation | Phosphorus-containing zeolite catalyst |
| US4356338A (en) | 1979-07-27 | 1982-10-26 | Mobil Oil Corporation | Extending catalyst life by treating with phosphorus and/or steam |
| US4456780A (en) | 1979-07-27 | 1984-06-26 | Mobil Oil Corporation | Extending zeolite catalyst life for disproportionation by treating with phosphorus and/or steam |
| US4889615A (en) | 1988-12-06 | 1989-12-26 | Mobil Oil Corporation | Additive for vanadium capture in catalytic cracking |
| US5071807A (en) | 1989-12-29 | 1991-12-10 | Chevron Research Company | Hydrocarbon processing composition |
| EP0554968A1 (en) | 1992-02-05 | 1993-08-11 | W.R. Grace & Co.-Conn. | Metal passivation/SOx control compositions for FCC |
| US5380690A (en) * | 1993-03-29 | 1995-01-10 | China Petro-Chemical Corporation | Cracking catalyst for the production of light olefins |
| US5456821A (en) * | 1991-03-12 | 1995-10-10 | Mobil Oil Corp. | Catalytic conversion with improved catalyst |
| US6858556B2 (en) * | 2002-02-25 | 2005-02-22 | Indian Oil Corporation Limited | Stabilized dual zeolite single particle catalyst composition and a process thereof |
-
2005
- 2005-08-04 BR BRPI0503182-6A patent/BRPI0503182B1/en not_active IP Right Cessation
-
2006
- 2006-07-10 AR ARP060102965A patent/AR055988A1/en active IP Right Grant
- 2006-08-01 KR KR1020060072678A patent/KR101060538B1/en active Active
- 2006-08-02 US US11/497,262 patent/US7622413B2/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3972832A (en) | 1974-09-23 | 1976-08-03 | Mobil Oil Corporation | Phosphorus-containing zeolite catalyst |
| US4356338A (en) | 1979-07-27 | 1982-10-26 | Mobil Oil Corporation | Extending catalyst life by treating with phosphorus and/or steam |
| US4456780A (en) | 1979-07-27 | 1984-06-26 | Mobil Oil Corporation | Extending zeolite catalyst life for disproportionation by treating with phosphorus and/or steam |
| US4889615A (en) | 1988-12-06 | 1989-12-26 | Mobil Oil Corporation | Additive for vanadium capture in catalytic cracking |
| US5071807A (en) | 1989-12-29 | 1991-12-10 | Chevron Research Company | Hydrocarbon processing composition |
| US5456821A (en) * | 1991-03-12 | 1995-10-10 | Mobil Oil Corp. | Catalytic conversion with improved catalyst |
| EP0554968A1 (en) | 1992-02-05 | 1993-08-11 | W.R. Grace & Co.-Conn. | Metal passivation/SOx control compositions for FCC |
| US5380690A (en) * | 1993-03-29 | 1995-01-10 | China Petro-Chemical Corporation | Cracking catalyst for the production of light olefins |
| US6858556B2 (en) * | 2002-02-25 | 2005-02-22 | Indian Oil Corporation Limited | Stabilized dual zeolite single particle catalyst composition and a process thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0503182A (en) | 2007-03-20 |
| AR055988A1 (en) | 2007-09-12 |
| BRPI0503182B1 (en) | 2014-03-04 |
| KR20070016979A (en) | 2007-02-08 |
| KR101060538B1 (en) | 2011-08-30 |
| US20070032374A1 (en) | 2007-02-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6214211B1 (en) | Catalytic cracking catalyst | |
| US7622413B2 (en) | Multifunctional additive for maximizing properties relevant to the process of fluid catalytic cracking and the process for preparation thereof | |
| EP2047905B1 (en) | Additive for maximizing light olefins in fcc and process for preparation thereof | |
| JP5662936B2 (en) | Additives having a complex system of zeolite and process for preparation | |
| KR102431720B1 (en) | FCC catalyst with alumina derived from crystalline boehmite | |
| CA2793566A1 (en) | Process for making improved zeolite catalysts from peptized aluminas | |
| CN1597850A (en) | Catalytic cracking catalyst for reducing sulfur content of gasoline and preparation method thereof | |
| WO2009145311A1 (en) | Catalyst for fluid catalytic cracking of hydrocarbon oil and method of fluid catalytic cracking of hydrocarbon oil with the same | |
| US6613710B2 (en) | Process for preparation of bi-functional fluid catalytic cracking catalyst composition | |
| WO2022063203A1 (en) | Catalytic cracking catalyst, preparation method therefor, and application thereof | |
| US6605207B2 (en) | Bayerite alumina clad zeolite and cracking catalysts containing same | |
| JPS6233547A (en) | Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method | |
| TW201228727A (en) | Sodium tolerant zeolite catalysts and processes for making the same | |
| JPH08173816A (en) | Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production | |
| EP2874744A1 (en) | Magnesium stabilized ultra low soda cracking catalysts | |
| KR101352318B1 (en) | Desulfurization catalyst for catalytic cracked gasoline and method for desulfurizing catalytic cracked gasoline using the same | |
| JP2009202153A (en) | Catalyst for catalytic cracking | |
| JP7123864B2 (en) | Fluid catalytic cracking catalyst for hydrocarbon oil | |
| JP2001212462A (en) | Method for producing catalyst composition for catalytic cracking of hydrocarbons | |
| CN1055302C (en) | Cracking catalyst containing natural zeolite | |
| KR101190490B1 (en) | Desulfurization catalyst for catalytically cracked gasoline and method of desulfurizing catalytically cracked gasoline using the same | |
| RU2800606C2 (en) | Molecular sieve having mfi structure and high mesopore content, method for its production, catalyst containing it and its application | |
| US11731114B2 (en) | Fluid catalytic cracking catalyst for hydrocarbon oil | |
| KR101330351B1 (en) | Desulfurization catalyst for catalytically cracked gasoline, method of producing the same, and method for desulfurization of catalytically cradcked gasoline with the catalyst | |
| RU2021113493A (en) | MOLECULAR SIEVE CONTAINING PHOSPHORUS AND RARE EARTH ELEMENTS WITH MFI STRUCTURE AND HIGH MESOPORE CONTENT, METHOD FOR ITS PRODUCTION, CATALYST CONTAINING IT AND ITS APPLICATION |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: PETROLEO BRASILEIRO S.A. - PETROBRAS, BRAZIL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAU, LAM YIU;CASTRO MATTOS, ELIANE BERNADETE;KARAM, JOAO EDUARDO CERUTTI;AND OTHERS;REEL/FRAME:018124/0853;SIGNING DATES FROM 20060713 TO 20060718 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |