US7532455B2 - Energy storage device having a separator blocking parasitic ions - Google Patents
Energy storage device having a separator blocking parasitic ions Download PDFInfo
- Publication number
- US7532455B2 US7532455B2 US11/279,788 US27978806A US7532455B2 US 7532455 B2 US7532455 B2 US 7532455B2 US 27978806 A US27978806 A US 27978806A US 7532455 B2 US7532455 B2 US 7532455B2
- Authority
- US
- United States
- Prior art keywords
- energy storage
- storage device
- separator
- chitosan
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 29
- 150000002500 ions Chemical class 0.000 title claims abstract description 23
- 230000003071 parasitic effect Effects 0.000 title claims abstract description 16
- 230000000903 blocking effect Effects 0.000 title 1
- 229920001661 Chitosan Polymers 0.000 claims abstract description 30
- 239000003792 electrolyte Substances 0.000 claims abstract description 25
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 20
- FRTNIYVUDIHXPG-UHFFFAOYSA-N acetic acid;ethane-1,2-diamine Chemical group CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.NCCN FRTNIYVUDIHXPG-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000003446 ligand Substances 0.000 claims abstract description 9
- 239000002738 chelating agent Substances 0.000 claims abstract description 7
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 6
- 239000001913 cellulose Substances 0.000 claims description 7
- 229920002678 cellulose Polymers 0.000 claims description 6
- 239000003990 capacitor Substances 0.000 claims description 5
- 229920002101 Chitin Polymers 0.000 claims description 4
- 230000006196 deacetylation Effects 0.000 claims description 2
- 238000003381 deacetylation reaction Methods 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 125000006159 dianhydride group Chemical group 0.000 claims 1
- 239000002657 fibrous material Substances 0.000 claims 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 26
- 150000001875 compounds Chemical class 0.000 abstract description 5
- 239000002184 metal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000000835 fiber Substances 0.000 description 8
- 239000012535 impurity Substances 0.000 description 5
- -1 poly(D-glucosamine) Polymers 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 241000238557 Decapoda Species 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- WCXLUNWLWFPGBC-ZKJCNTLTSA-N CO[C@@H]1C(CO)O[C@H](O[C@H]2C(CO)O[C@@H](OC)C(NC(C)=O)[C@@H]2O)[C@H](NC(C)=O)C1O Chemical compound CO[C@@H]1C(CO)O[C@H](O[C@H]2C(CO)O[C@@H](OC)C(NC(C)=O)[C@@H]2O)[C@H](NC(C)=O)C1O WCXLUNWLWFPGBC-ZKJCNTLTSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- DUKURNFHYQXCJG-UHFFFAOYSA-N Lewis A pentasaccharide Natural products OC1C(O)C(O)C(C)OC1OC1C(OC2C(C(O)C(O)C(CO)O2)O)C(NC(C)=O)C(OC2C(C(OC3C(OC(O)C(O)C3O)CO)OC(CO)C2O)O)OC1CO DUKURNFHYQXCJG-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- YMLYLBXNSDYPEH-ZIUGGVOOSA-N NC1[C@H](O)[C@H](O)C(CO)O[C@H]1COC[C@@H]1C(CO)O[C@@H](COC[C@@H]2C(CO)O[C@@H](O)C(N)[C@@H]2O)C(N)[C@@H]1O Chemical compound NC1[C@H](O)[C@H](O)C(CO)O[C@H]1COC[C@@H]1C(CO)O[C@@H](COC[C@@H]2C(CO)O[C@@H](O)C(N)[C@@H]2O)C(N)[C@@H]1O YMLYLBXNSDYPEH-ZIUGGVOOSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N O=C(O)CN(CCN(CC(=O)O)CC(=O)O)CC(=O)O Chemical compound O=C(O)CN(CCN(CC(=O)O)CC(=O)O)CC(=O)O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229920002544 Olefin fiber Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HRKQOINLCJTGBK-UHFFFAOYSA-N dihydroxidosulfur Chemical compound OSO HRKQOINLCJTGBK-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JVKAWJASTRPFQY-UHFFFAOYSA-N n-(2-aminoethyl)hydroxylamine Chemical compound NCCNO JVKAWJASTRPFQY-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 229940073020 nitrol Drugs 0.000 description 1
- 239000004767 olefin fiber Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 150000003512 tertiary amines Chemical group 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0027—2-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
- C08B37/003—Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
Definitions
- the present invention concerns an energy storage device, and, more particularly, an energy storage device comprising a pair of electrodes in contact with an electrolyte and a dielectric separator therebetween, wherein parasitic metal ions emanating from the electrode active material and disposed within the electrolyte are substantially removed from the electrolyte by adding a chelating material to the separator.
- Energy storage devices typically comprise one or more pairs of electrodes separated by a dielectric layer, wherein one electrode (called a cathode) within a pair is adapted to store a positive charge, while the other electrode (called an anode) is adapted to store a negative charge.
- An electrolyte typically in liquid form
- the electrodes are produced from carbon powder that is prepared from by-products of natural materials such as coconut shells, rice hulls, peat and coal for cost reasons.
- natural materials inherently contain high levels of metal contaminants, particularly multivalent metal impurities, that leach into the electrolyte when an electro-chemical potential is applied between the electrodes during the operation of the energy storage device.
- these multivalent metal ions Once in the electrolyte, these multivalent metal ions have the propensity to undergo redox electrochemical reactions between the electrodes whenever the cell potential is greater than the half cell redox reactions of the multivalent metal ions.
- the multivalent metal ion redox reactions therefore reduce the time dependent charge storage stability of the energy storage device, causing the phenomenon otherwise known as leakage current.
- the applied voltage is sufficient to cause the metal ions within the electrolyte to act as parasitic charge carriers between the anode and the cathode electrodes as they undergo half cell charge transfer reactions.
- these impurities drain away electrons from the electrodes through their redox couple reactions by undergoing reductions or oxidation reactions at the electrodes that reduce the charged voltage potential of the capacitor.
- Another solution is subjecting the carbon particles to extensive washing and thermal treatments aimed at reducing the total metal impurity content.
- these impurities are mostly contained within the bulk of the natural starting material, and these washing and thermal treatments are suited only to remove those impurities present on or near the surface of the carbon particles.
- Due to the electro-chemical potential on the carbon particles during capacitor operation the metal contaminants contained in bulk or in the deep pores of the carbon material that are not accessible to the purification treatments migrate by diffusion to the surface of the particle and enter the electrolyte, contributing to the problematic self-discharge and leakage currents experienced in energy storage devices in the prior art.
- An energy storage device comprises a pair of electrodes in contact with an electrolyte and a dielectric separator therebetween.
- the separator comprises a chelating material capable of binding parasitic to ions with the electrolyte, so to prevent the free circulation of the parasitic ions within the electrolyte.
- the chelating material comprises chitosan, which may be provided in fibrous form and which may be included within a non-woven fabric of cellulose and/or olefinic fibers, or which may be instead coated on the separator or otherwise comprised in the separator.
- the chelating material comprises chitosan
- the ion-binding capability of the chitosan is enhanced by chemically binding a chelating agent to the chitosan so to create a multi-dentate ligand that binds with the parasitic ions, particularly multi-valent metal ions, to create coordination compounds.
- a chelating agent is ethylendiamine tetraacetic acid (EDTA).
- metal ions dispersed in the electrolyte In an energy storage device, in order to move from one electrode device to the oppositely charged electrode, metal ions dispersed in the electrolyte must travel through the separator interposed between the electrodes.
- the present invention relates to inhibiting metal ion mobility by binding the ions to the separator, thereby isolating the ions from the driving force generated by the voltage potential between the electrodes.
- “Chelation” is defined as the process of binding a ligand to a metal ion to form a metal complex.
- metal ions are immobilized by embedding a metal chelating material within the separator. As a consequence, the ions become bound to the separator upon contact with the metal chelating material and are prevented from moving inside the electrolyte.
- the metal chelating material is embedded in the inner portion of the separator, so that the outer surfaces of the separator create a dielectric separation between the electrodes and the chelating material, reducing the possible decrease in metal ion binding capacity of the chelating material by contact with the electrode.
- chelating materials bind more efficiently to multi-valent ions (such as metal ions) and less efficiently to mono-valent ions (such as the electrolyte ions). Additionally, chelating materials can be tailored to have greater specificity towards one or more types of metal ions by tailoring the coordinating dentates of the material by means of process of a chemical synthesis.
- Chitosan is a poly(D-glucosamine).
- Chitosan is extracted from chitin, a material readily available in nature, as it can be found, among others, in the exoskeletons of crustaceans, such as shrimp and crabs.
- Chitin is essentially a polysaccharide composed of units of acetylglucosamine linked together in ⁇ -1,4 fashion, in the same fashion as the glucose groups that form cellulose, and has the following structure:
- Chitosan is produced commercially by deacetylation of chitin and has the following formula:
- Chitosan can be wet spun into fibers, from which a non-woven fabric may be produced, made only of chitosan fibers alone, or of chitosan fibers in combination with other fibers such as cellulose and/or olefinic fibers.
- the non-woven chitosan fabric is sandwiched between two layers of conventional paper separator, in order to create a metal ion-scavenging separator and at the same time prevent a direct contact between the chitosan and the electrode that would affect the ionic binding capacity of the chelating material.
- a single layer separator layer contains a blend of chitosan and non-chitosan fibers, such as cellulose and/or olefin fibers.
- the chitosan fibers would be predominantly oriented in the direction of the negative electrode, as experiments have shown that there exists a greater interaction between the separator and the positive electrode, so that a direct interface between the chitosan material and the positive electrode would likely cause a reduction in the potential of the positive electrode.
- chitosan may be coated on, or interleaved with, the cellulose or olefinic separator, or at least a portion thereof.
- a second chelating agent is chemically attached to the first chelating material, in order to enhance the capability of absorbing metal ions of the first chelating material.
- a chelating material is a tetra-dentate or hexa-dentate ligand, because multi-dentate ligands ordinarily react with metal ions in a single step process, whereas the complexation with unidentate ligands usually involves the production of two or more intermediate species.
- EDTA ethylendiamine tetraacetic acid
- EDTA is capable of forming a coordination compound with metals by having the ligands of the EDTA wrap around the metal ions and effectively form a “cage” that provides a stable metal complex.
- Other metal complexing agents include compounds with amino, imino, hydroxy, thioether, carboxylate, and phosphonates multidentate groups. Examples of those other chelating compounds include crown ethers, ion exchange resins, other aminopolycarboxyics such as diethylene triamine pentaacetic acide (DTPA); hydroxy ethylene diamine triacetic acid (HEDTA); and nitrol triacetic acid (NTA).
- the chitosan-EDTA combination can be used to add a fibrous component to the separator between the electrodes, or to otherwise treat the separator in a manner that will effectively remove multivalent metal ions from the electrolyte.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Abstract
Description
which contains six potential sites for complex formation, namely, the four carboxylic acid and the two tertiary amine groups. EDTA is capable of forming a coordination compound with metals by having the ligands of the EDTA wrap around the metal ions and effectively form a “cage” that provides a stable metal complex. Other metal complexing agents include compounds with amino, imino, hydroxy, thioether, carboxylate, and phosphonates multidentate groups. Examples of those other chelating compounds include crown ethers, ion exchange resins, other aminopolycarboxyics such as diethylene triamine pentaacetic acide (DTPA); hydroxy ethylene diamine triacetic acid (HEDTA); and nitrol triacetic acid (NTA).
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/279,788 US7532455B2 (en) | 2006-04-14 | 2006-04-14 | Energy storage device having a separator blocking parasitic ions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/279,788 US7532455B2 (en) | 2006-04-14 | 2006-04-14 | Energy storage device having a separator blocking parasitic ions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070242415A1 US20070242415A1 (en) | 2007-10-18 |
US7532455B2 true US7532455B2 (en) | 2009-05-12 |
Family
ID=38604628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/279,788 Active 2027-04-13 US7532455B2 (en) | 2006-04-14 | 2006-04-14 | Energy storage device having a separator blocking parasitic ions |
Country Status (1)
Country | Link |
---|---|
US (1) | US7532455B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130279069A1 (en) * | 2010-09-20 | 2013-10-24 | Paul Lenworth Mantock | Multifunction Charge Transfer Device |
CN106133946A (en) * | 2014-03-25 | 2016-11-16 | 可乐丽股份有限公司 | Alkaline battery separator and use its alkaline battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3054078B1 (en) * | 2016-07-13 | 2018-09-07 | Institut Polytechnique De Grenoble | ION CONDUCTION MATERIAL FOR ELECTROCHEMICAL GENERATOR AND METHODS OF MAKING |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010181A (en) | 1988-03-28 | 1991-04-23 | Coughlin Robert W | Partially treated shellfish waste for removal of heavy metals from aqueous solution |
US5057972A (en) * | 1990-04-11 | 1991-10-15 | Jelmax Co. Ltd. | Electrolytic capacitor |
US5695887A (en) | 1996-05-09 | 1997-12-09 | Bell Communications Research, Inc. | Chelation treatment for reduced self-discharge in Li-ion batteries |
US5824434A (en) | 1992-11-30 | 1998-10-20 | Canon Kabushiki Kaisha | Secondary battery |
US6042740A (en) * | 1997-04-23 | 2000-03-28 | Hitachi Chemical Co., Ltd. | Composition for forming electrolyte for solid electrolytic capacitor and solid electrolytic capacitor |
US6275371B1 (en) * | 1998-08-12 | 2001-08-14 | Hitachi Maxwell, Ltd. | Electrode material for electrochemical capacitor, electrochemical capacitor comprising the same, and method for the production of the same |
US6285543B1 (en) * | 1998-12-01 | 2001-09-04 | Rubycon Corporation | Electrolytic solution for use in electrolytic capacitor and electrolytic capacitor |
US6349028B1 (en) * | 1998-12-03 | 2002-02-19 | Rubycon Corporation | Electrolytic capacitor |
US6493211B1 (en) * | 1999-03-17 | 2002-12-10 | Nippon Chemi-Con Corporation | Electrolyte for electrolytic capacitor |
-
2006
- 2006-04-14 US US11/279,788 patent/US7532455B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010181A (en) | 1988-03-28 | 1991-04-23 | Coughlin Robert W | Partially treated shellfish waste for removal of heavy metals from aqueous solution |
US5057972A (en) * | 1990-04-11 | 1991-10-15 | Jelmax Co. Ltd. | Electrolytic capacitor |
US5824434A (en) | 1992-11-30 | 1998-10-20 | Canon Kabushiki Kaisha | Secondary battery |
US5695887A (en) | 1996-05-09 | 1997-12-09 | Bell Communications Research, Inc. | Chelation treatment for reduced self-discharge in Li-ion batteries |
US6042740A (en) * | 1997-04-23 | 2000-03-28 | Hitachi Chemical Co., Ltd. | Composition for forming electrolyte for solid electrolytic capacitor and solid electrolytic capacitor |
US6275371B1 (en) * | 1998-08-12 | 2001-08-14 | Hitachi Maxwell, Ltd. | Electrode material for electrochemical capacitor, electrochemical capacitor comprising the same, and method for the production of the same |
US6285543B1 (en) * | 1998-12-01 | 2001-09-04 | Rubycon Corporation | Electrolytic solution for use in electrolytic capacitor and electrolytic capacitor |
US6349028B1 (en) * | 1998-12-03 | 2002-02-19 | Rubycon Corporation | Electrolytic capacitor |
US6493211B1 (en) * | 1999-03-17 | 2002-12-10 | Nippon Chemi-Con Corporation | Electrolyte for electrolytic capacitor |
Non-Patent Citations (1)
Title |
---|
Shimizu, Izumi, Saito, Yamaoka, Ethylendiamine Tetraacetic Acid Modification of Crosslinked Chitosan Designed for a Novel Metal-Ion Adsorbent, Journal of Applied Polymer Science, vol. 92, 2758-2764, Wiley Periodicals, Inc. (US). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130279069A1 (en) * | 2010-09-20 | 2013-10-24 | Paul Lenworth Mantock | Multifunction Charge Transfer Device |
CN106133946A (en) * | 2014-03-25 | 2016-11-16 | 可乐丽股份有限公司 | Alkaline battery separator and use its alkaline battery |
CN106133946B (en) * | 2014-03-25 | 2019-05-21 | 可乐丽股份有限公司 | Alkaline battery separator and the alkaline battery for using it |
US10461294B2 (en) | 2014-03-25 | 2019-10-29 | Kuraray Co., Ltd. | Separator for alkaline batteries, and alkaline battery using same |
Also Published As
Publication number | Publication date |
---|---|
US20070242415A1 (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Efficient removal of uranium (VI) with a phytic acid-doped polypyrrole/carbon felt electrode using double potential step technique | |
Li et al. | A novel amine-shielded surface cross-linking of chitosan hydrogel beads for enhanced metal adsorption performance | |
US7532455B2 (en) | Energy storage device having a separator blocking parasitic ions | |
Pyrzynska | Carbon nanostructures for separation, preconcentration and speciation of metal ions | |
CN100346872C (en) | Novel silica gel loaded cross-linked chitosan adsorbent for heavy metal | |
EP3125335B1 (en) | Separator for alkaline batteries, and alkaline battery using same | |
CN104059167B (en) | A kind of preparation method and applications of polyamine compounds modified magnetic chitosan | |
CN102641722A (en) | Arsenic removal material by adsorption of electrochemistry strengthened nano ferro-manganese loaded carbon fiberand arsenic removal method by using same | |
Kaushal et al. | Superb sono-adsorption and energy storage potential of multifunctional Ag-Biochar composite | |
US11779861B2 (en) | Use of electrochemical devices or systems comprising redox-functionalized electrodes for bioseparation and biocatalysis | |
Hu et al. | Study on the adsorption behavior of cadmium, copper, and lead ions on the crosslinked polyethylenimine dithiocarbamate material | |
CN107583673A (en) | Modified anion resin material and its preparation method and application | |
CN104258830A (en) | Polyethyleneimine modified chitosan microsphere medium as well as preparation and application methods thereof | |
CN106390956A (en) | Preparation method and application of double-network gel adsorber for treating heavy metal wastewater | |
Shi et al. | Amidoxime-functionalized cellulose nanofibers/MXene aerogel for electric field enhanced uranium extraction from seawater | |
Wang et al. | Recovery of rare earth by electro-sorption with sodium diphenylamine sulfonate modified activated carbon electrode | |
CN105680012A (en) | Silicon-based anode material and preparation method and application thereof | |
CN112421133A (en) | Graphene/functionalized metal-organic framework material composite intercalation and preparation method and application thereof | |
Ren et al. | Novel malonamide-amidoxime bifunctional polymers decorated graphene oxide/chitosan electrode for enhancing electrosorptive removal of uranium (VI) | |
Wang et al. | Effective electrosorption and recovery of phosphorus by capacitive deionization with a covalent organic framework-membrane coating electrode | |
CN114084940A (en) | Active material, adsorption electrode, capacitive deionization device, preparation method and application | |
Xue et al. | Combined electrosorption and chemisorption of As (III) in aqueous solutions with manganese dioxide as the electrode | |
Li et al. | Plasma-enhanced vanadium-based hybrid capacitive deionization for high selective removal of Pb2+ | |
Liu et al. | A coupling technology of capacitive deionization and carbon-supported petal-like VS2 composite for effective and selective adsorption of lead (II) ions | |
CN102645473A (en) | Kaolin nanotube/hemoglobin/ionic liquid nanocomposite film-modified electrode and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MAXWELL TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITCHELL, PORTER;REEL/FRAME:017473/0304 Effective date: 20060414 |
|
AS | Assignment |
Owner name: ENERGY, UNITED STATES DEPARTMENT OF, DISTRICT OF C Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MAXWELL TECHNOLOGIES, INC.;REEL/FRAME:019491/0517 Effective date: 20070612 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: EAST WEST BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:MAXWELL TECHNOLOGIES, INC.;REEL/FRAME:036064/0636 Effective date: 20150703 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.) |
|
AS | Assignment |
Owner name: MAXWELL TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK;REEL/FRAME:049216/0304 Effective date: 20190516 |
|
AS | Assignment |
Owner name: MAXWELL TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK;REEL/FRAME:051441/0005 Effective date: 20190524 |
|
AS | Assignment |
Owner name: MAXWELL TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITCHELL, PORTER;REEL/FRAME:051716/0150 Effective date: 20200131 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: TESLA, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAXWELL TECHNOLOGIES, INC.;REEL/FRAME:057890/0202 Effective date: 20211014 |