US7487660B2 - Method and system for monitoring the functional capability of a particle detector - Google Patents
Method and system for monitoring the functional capability of a particle detector Download PDFInfo
- Publication number
- US7487660B2 US7487660B2 US10/531,168 US53116805A US7487660B2 US 7487660 B2 US7487660 B2 US 7487660B2 US 53116805 A US53116805 A US 53116805A US 7487660 B2 US7487660 B2 US 7487660B2
- Authority
- US
- United States
- Prior art keywords
- particle
- filter
- detector
- soot
- regeneration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 239000002245 particle Substances 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012544 monitoring process Methods 0.000 title claims abstract description 23
- 230000008929 regeneration Effects 0.000 claims abstract description 38
- 238000011069 regeneration method Methods 0.000 claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 238000011156 evaluation Methods 0.000 claims abstract description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 17
- 239000004071 soot Substances 0.000 claims description 58
- 238000004590 computer program Methods 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 230000015654 memory Effects 0.000 claims description 5
- 230000002950 deficient Effects 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 claims 5
- 230000006870 function Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/222—Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/002—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1466—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/0606—Investigating concentration of particle suspensions by collecting particles on a support
- G01N15/0618—Investigating concentration of particle suspensions by collecting particles on a support of the filter type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/0656—Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/04—Filtering activity of particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/05—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0042—Investigating dispersion of solids
- G01N2015/0046—Investigating dispersion of solids in gas, e.g. smoke
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/10—Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
- Y10T436/101666—Particle count or volume standard or control [e.g., platelet count standards, etc.]
Definitions
- the invention relates to a method and a system for monitoring the functional capability of a particle detector, using a particle filter connected upstream, in the flow direction, of the particle detector.
- the invention also relates to a computer program (computer program product) suitable for use in such a system.
- the concentration of particles, in particular soot particles, in diesel internal combustion engines is often measured by electrical methods.
- a sensor for detecting soot particles which includes a first high-voltage electrode and a second ground electrode.
- the electrical voltage beyond which sparks occur between the two electrodes or, if the electrical voltage is kept constant, the magnitude of the ionization current flowing between the two electrodes is used as a standard for the concentration of soot particles in the exhaust gas.
- Other possibilities are charging the particles by means of an ionization source, such as a corona discharge, or by the combustion process itself.
- the charged particles are then passed through a suitable detector structure (grid) and can give up their charge again there.
- the measured current is thus a measure for the charge picked up by the particles, and for a known degree of ionization of the particles, it is also a standard for the number of particles that reach the detector.
- Particles that have been charged by one of the methods described above or that become charged on their own from a combustion process can also cause a shift in the charge in a detector structure by influence, which can in turn be proved detected.
- the known detection methods thus use the measurement of small currents or charge shifts.
- particles that occur in the regeneration of the particle filter are detected by the particle detector, and the resultant measurement finding is compared with an expected finding.
- the signal furnished by the particle detector during the measurement can be compared, for instance continuously, with an expected signal.
- Particle filters are often regenerated, at certain time intervals or periodically, in order to restore the original filter capacity. For instance, in order to detach soot particles that adhere to the particle filter, soot filters are periodically burned off, from the filter by oxidation processes at high temperatures.
- a measurement is now performed by the particle detector during this regeneration phase. The particles that occur during the regeneration are detected, and the resultant measurement finding is compared with the finding to be expected. If there are marked deviations in the measurement finding from the expected finding, this is as a rule a clear indication that the particle detector is defective.
- the function of the particle detector can be monitored at periodic intervals, whenever the actual function of the particle detector is not critical, since after all the particle concentration is to be measured only during normal operation.
- the invention thus assures that during normal operation, the particle detector can function uninterruptedly, and during the filter regeneration, the functional capability of the particle detector can simultaneously be monitored.
- the expected finding from the measurement of the particle detector can be determined on the basis of the fill status of the particle filter and on the regeneration conditions.
- the particle stream that occurs upon regeneration of the particle filter depends primarily on the current fill status (degree of filling) of the filter and on the conditions of the regeneration. From this a model can be developed that makes it possible to determine the expected finding of measurement by the particle detector during the regeneration.
- soot detectors In monitoring the functional capability of soot detectors using a soot filter that is upstream in the flow direction of the soot detector, and that can be regenerated by being burned off, it is advantageous for the ions that occur during the regeneration to be detected by the soot detector.
- soot detectors operate by the measurement methods already described at the outset above.
- the deviation from the expected finding or measurement finding of the measured signal or measurement finding is preferably compared with a limit value, and if the limit value is exceeded the detector is classified as defective.
- the temperature in burning off the soot filter can be increased, to make it possible to measure a higher, more-conclusive ion concentration. If for instance an exhaust gas temperature of 500° C. is exceeded, then upon regeneration of the soot filter, ions occur in the exhaust gas stream even downstream of the filter, once the filter overall has assumed the higher temperature. These ions are then delivered in a higher concentration to the downstream particle detector. Temperatures between 600° C. and 1000° C. for the burnoff have proved advantageous in this respect.
- the invention furthermore proposes a system for monitoring the functional capability of a particle detector, using a particle filter connected upstream of the particle detector in terms of the flow direction, in which a control and evaluation unit is provided, which during the regeneration of the particle filters detects measurement findings furnished by the particle detector and compares them with expected findings.
- control and evaluation unit is advantageously designed such that by means of a predetermined model, an expected measurement finding can be determined from the current filter load (filter fill status) and the given regeneration conditions.
- such a model Upon the regeneration of a soot filter by burnoff, such a model simply comprises a correlation of the fill status (filter load) of the soot filter and the exhaust gas temperature or filter temperature during the regeneration. The ion current measured at the detector can then be defined as a function of these two variables. Such a model can be ascertained empirically, for instance.
- a temperature sensor in, at or downstream, in the flow direction, of the particle filter. If the particle filter is regenerated by heating or burnoff, then such a temperature sensor furnishes an important parameter of the regeneration conditions.
- the method described can be implemented by means of a computer program, which can advantageously be placed in the aforementioned control and evaluation unit for execution.
- the computer program can assure that the various sensors, such as the particle detector or the temperature sensor, will respond at the appropriate time and pick up and or store in memory the appropriate data.
- the computer program may, from a predetermined model stored in memory, determine expected measurement findings and compare them with the currently measured findings. Deviations can be compared in a simple way with predetermined limit values, from which a conclusion can be drawn about the functional capability of the particle detector.
- a computer program of this kind can advantageously be executed in the aforementioned control and evaluation unit and can assure periodic monitoring of the functional capability of the particle detector.
- the computer program can be stored in memory on suitable data media, such as EEPROMs, flash memories, or CD-ROMs, diskettes, or hard drives. Another option is to download the computer program from an external server, for instance over the Internet.
- FIGURE schematically shows a system for monitoring the functional capability of a particle detector according to the invention.
- the present invention will be described taking as an example a soot detector 3 and a soot filter 7 , which are located in an exhaust gas line 1 of a diesel engine.
- the drawing shows the flow direction 2 of the exhaust gas in the exhaust gas line 1 , the soot filter 7 , and the downstream soot detector 3 .
- the soot detector 3 has a first electrode 5 , which is connected to a high-voltage source HV via a line.
- the second electrode 4 of the soot detector 13 is embodied cylindrically and is connected to ground.
- the first electrode 5 and second electrode 4 are located coaxially to one another.
- the second electrode 4 has axial openings, or recesses 6 , through which exhaust gas can flow.
- an ion current can be measured that occurs from the arrival of charged particles at the electrodes 4 and 5 .
- the ground line and the high-voltage line are carried into a control and evaluation unit 9 , in which the further processing of the signals then takes place. It is understood that the supply of high voltage can also be done from outside the control and evaluation unit 9 .
- a temperature sensor 8 is also located downstream of the soot filter 7 in the flow direction 2 , and its signals are likewise delivered to the control and evaluation unit 9 , at the input marked T.
- the system shown in the drawing is suitable for performing the method of the invention, in which whenever the soot filter 7 is burned off, monitoring of the functional capability with the soot detector 3 can be done.
- the ion current through the soot detector 3 is recorded.
- the ion current increases over the course of time when charged particles move past the soot detector 3 .
- a temperature measurement is done by the temperature sensor 8 .
- the temperature downstream and consequently also at the soot filter 7 increases, and it has been found that at elevated temperatures of between 600 and 1000° C., the ion concentration is especially well suited for monitoring the functional capability of the soot detector 3 .
- a “testable” bit is set to 1.
- the monitoring is done along with the regeneration of the soot filter 7 .
- the current received by the soot detector 3 during the regeneration and monitoring phase is detected by the control and evaluation unit 9 and compared with a set-point value.
- This set-point value can be ascertained empirically; a model that determines the set-point value from the measured temperature and the degree of filling of the soot filter 7 is suitable. If the current measured by the soot detector 3 is below the set-point value by a definable limit, then the soot detector 3 can be recognized as defective.
- the onset and course of the measurement as well as the evaluation are preferably done by means of a computer program that is contained in the control and evaluation unit 9 .
- the invention makes it possible to monitor the functional capability of particle detectors, in particular soot detectors, in a way that does not interrupt normal operation, and it thus increases the reliability of the entire system, and in particular the mode of operation of a diesel engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
A method and a system for monitoring the functional capability of a particle detector connected downstream, in the flow direction, of a particle filter, in which particles occurring upon the regeneration of the particle filter, in particular ions, are detected by the particle detector and the resultant measurement finding are compared with an expected finding. The measurement and evaluation are effected in a control and evaluation unit. The invention enables monitoring of the functional capability of a particle detector that does not interrupt normal operation and thus increases the reliability of the entire system.
Description
This application is a 35 USC 371 application of PCT/DE 03/02097 filed on Jun. 24, 2003.
1. Field of the Invention
The invention relates to a method and a system for monitoring the functional capability of a particle detector, using a particle filter connected upstream, in the flow direction, of the particle detector. The invention also relates to a computer program (computer program product) suitable for use in such a system.
2. Prior Art
The concentration of particles, in particular soot particles, in diesel internal combustion engines is often measured by electrical methods. From German Patent Disclosure DE 198 53 584 A1, for instance, a sensor for detecting soot particles is known which includes a first high-voltage electrode and a second ground electrode. In operation, there is a flow of exhaust gas through the space between the electrodes, and either the electrical voltage beyond which sparks occur between the two electrodes, or, if the electrical voltage is kept constant, the magnitude of the ionization current flowing between the two electrodes is used as a standard for the concentration of soot particles in the exhaust gas. Other possibilities are charging the particles by means of an ionization source, such as a corona discharge, or by the combustion process itself. The charged particles are then passed through a suitable detector structure (grid) and can give up their charge again there. The measured current is thus a measure for the charge picked up by the particles, and for a known degree of ionization of the particles, it is also a standard for the number of particles that reach the detector.
Particles that have been charged by one of the methods described above or that become charged on their own from a combustion process can also cause a shift in the charge in a detector structure by influence, which can in turn be proved detected. The known detection methods thus use the measurement of small currents or charge shifts.
For various reasons (to meet legal requirements, and for reasons of safety and environmental aspects), there is a need for the detection devices described above to be monitored for proper functioning. This is true particularly since the charges or charge shifts to be detected are very small, and interference can incorrectly lead to a finding of proper operation.
According to the invention, particles that occur in the regeneration of the particle filter are detected by the particle detector, and the resultant measurement finding is compared with an expected finding. In particular, the signal furnished by the particle detector during the measurement can be compared, for instance continuously, with an expected signal.
Particle filters are often regenerated, at certain time intervals or periodically, in order to restore the original filter capacity. For instance, in order to detach soot particles that adhere to the particle filter, soot filters are periodically burned off, from the filter by oxidation processes at high temperatures. According to the invention, a measurement is now performed by the particle detector during this regeneration phase. The particles that occur during the regeneration are detected, and the resultant measurement finding is compared with the finding to be expected. If there are marked deviations in the measurement finding from the expected finding, this is as a rule a clear indication that the particle detector is defective.
By means of the invention, the function of the particle detector can be monitored at periodic intervals, whenever the actual function of the particle detector is not critical, since after all the particle concentration is to be measured only during normal operation. The invention thus assures that during normal operation, the particle detector can function uninterruptedly, and during the filter regeneration, the functional capability of the particle detector can simultaneously be monitored. To that end, the expected finding from the measurement of the particle detector can be determined on the basis of the fill status of the particle filter and on the regeneration conditions. The particle stream that occurs upon regeneration of the particle filter depends primarily on the current fill status (degree of filling) of the filter and on the conditions of the regeneration. From this a model can be developed that makes it possible to determine the expected finding of measurement by the particle detector during the regeneration.
In monitoring the functional capability of soot detectors using a soot filter that is upstream in the flow direction of the soot detector, and that can be regenerated by being burned off, it is advantageous for the ions that occur during the regeneration to be detected by the soot detector. Such soot detectors operate by the measurement methods already described at the outset above.
In this connection, it is advantageous to measure the temperature in, at or downstream of the soot filter, and from the fill status of the soot filter and the measured temperature to determine the expected measurement finding or signal of the soot detector. To that end, a model of the fill status of the soot filter is prepared and correlated for instance with the measured exhaust gas temperature downstream of the soot filter. As the exhaust gas temperature increases, the concentration of ions that are delivered to the detector also increases. This makes it possible to draw a conclusion about the expected finding of measurement by the soot detector, which can then be compared with the finding currently ascertained.
The deviation from the expected finding or measurement finding of the measured signal or measurement finding is preferably compared with a limit value, and if the limit value is exceeded the detector is classified as defective.
It may be advantageous to change the regeneration conditions during monitoring of the functional capability of the particle detector, in order to obtain more-reliable conclusions. For instance, the temperature in burning off the soot filter can be increased, to make it possible to measure a higher, more-conclusive ion concentration. If for instance an exhaust gas temperature of 500° C. is exceeded, then upon regeneration of the soot filter, ions occur in the exhaust gas stream even downstream of the filter, once the filter overall has assumed the higher temperature. These ions are then delivered in a higher concentration to the downstream particle detector. Temperatures between 600° C. and 1000° C. for the burnoff have proved advantageous in this respect.
If a defined temperature range is gone through in the regeneration without an increase in the number of ions, then with high probability a detector flaw is involved.
The invention furthermore proposes a system for monitoring the functional capability of a particle detector, using a particle filter connected upstream of the particle detector in terms of the flow direction, in which a control and evaluation unit is provided, which during the regeneration of the particle filters detects measurement findings furnished by the particle detector and compares them with expected findings.
Moreover, the control and evaluation unit is advantageously designed such that by means of a predetermined model, an expected measurement finding can be determined from the current filter load (filter fill status) and the given regeneration conditions.
Upon the regeneration of a soot filter by burnoff, such a model simply comprises a correlation of the fill status (filter load) of the soot filter and the exhaust gas temperature or filter temperature during the regeneration. The ion current measured at the detector can then be defined as a function of these two variables. Such a model can be ascertained empirically, for instance.
It is advantageous to locate a temperature sensor in, at or downstream, in the flow direction, of the particle filter. If the particle filter is regenerated by heating or burnoff, then such a temperature sensor furnishes an important parameter of the regeneration conditions.
The method described can be implemented by means of a computer program, which can advantageously be placed in the aforementioned control and evaluation unit for execution. The computer program can assure that the various sensors, such as the particle detector or the temperature sensor, will respond at the appropriate time and pick up and or store in memory the appropriate data. The computer program may, from a predetermined model stored in memory, determine expected measurement findings and compare them with the currently measured findings. Deviations can be compared in a simple way with predetermined limit values, from which a conclusion can be drawn about the functional capability of the particle detector. A computer program of this kind can advantageously be executed in the aforementioned control and evaluation unit and can assure periodic monitoring of the functional capability of the particle detector.
The computer program can be stored in memory on suitable data media, such as EEPROMs, flash memories, or CD-ROMs, diskettes, or hard drives. Another option is to download the computer program from an external server, for instance over the Internet.
The invention is described in further detail herein below, with reference to an exemplary embodiment, in conjunction with the single drawing FIGURE which schematically shows a system for monitoring the functional capability of a particle detector according to the invention.
The present invention will be described taking as an example a soot detector 3 and a soot filter 7, which are located in an exhaust gas line 1 of a diesel engine. The drawing shows the flow direction 2 of the exhaust gas in the exhaust gas line 1, the soot filter 7, and the downstream soot detector 3.
The soot detector 3 has a first electrode 5, which is connected to a high-voltage source HV via a line. The second electrode 4 of the soot detector 13 is embodied cylindrically and is connected to ground. The first electrode 5 and second electrode 4 are located coaxially to one another. The second electrode 4 has axial openings, or recesses 6, through which exhaust gas can flow. With the electrode assembly shown, an ion current can be measured that occurs from the arrival of charged particles at the electrodes 4 and 5. To that end, the ground line and the high-voltage line are carried into a control and evaluation unit 9, in which the further processing of the signals then takes place. It is understood that the supply of high voltage can also be done from outside the control and evaluation unit 9.
A temperature sensor 8 is also located downstream of the soot filter 7 in the flow direction 2, and its signals are likewise delivered to the control and evaluation unit 9, at the input marked T.
The system shown in the drawing is suitable for performing the method of the invention, in which whenever the soot filter 7 is burned off, monitoring of the functional capability with the soot detector 3 can be done. To that end, after the regeneration process is started, the ion current through the soot detector 3 is recorded. The ion current increases over the course of time when charged particles move past the soot detector 3. During this time, a temperature measurement is done by the temperature sensor 8. During the regeneration, the temperature downstream and consequently also at the soot filter 7 increases, and it has been found that at elevated temperatures of between 600 and 1000° C., the ion concentration is especially well suited for monitoring the functional capability of the soot detector 3.
Since the ion concentration increases with an increasing temperature, when the soot detector 3 is monitored an increasing ion current must be associated with this. If an increasing ion current is absent, then it is highly likely that a detector flaw is involved.
At the onset of monitoring of the functional capability, a “testable” bit is set to 1. The monitoring is done along with the regeneration of the soot filter 7. The current received by the soot detector 3 during the regeneration and monitoring phase is detected by the control and evaluation unit 9 and compared with a set-point value. This set-point value can be ascertained empirically; a model that determines the set-point value from the measured temperature and the degree of filling of the soot filter 7 is suitable. If the current measured by the soot detector 3 is below the set-point value by a definable limit, then the soot detector 3 can be recognized as defective.
The onset and course of the measurement as well as the evaluation are preferably done by means of a computer program that is contained in the control and evaluation unit 9.
The invention makes it possible to monitor the functional capability of particle detectors, in particular soot detectors, in a way that does not interrupt normal operation, and it thus increases the reliability of the entire system, and in particular the mode of operation of a diesel engine.
The foregoing relates to a preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined by the appended claims.
Claims (19)
1. A method for monitoring the functional capability of a particle detector (3) in a gas flow stream, using a regenerated particle filter (7) connected upstream of the particle detector (3) in terms of the flow direction (2), the method comprising,
regenerating the particle filter,
detecting particles that occur in the regeneration of the particle filter (7) by the particle detector (3), and
comparing the resultant measurement finding with an expected finding.
2. The method of claim 1 , wherein the expected finding from the measurement of the particle detector (3) is determined on the basis of the fill status of the particle filter (7) and on the regeneration conditions.
3. The method of claim 2 , wherein the particle filter comprises a soot filter (7) and wherein the particle detector comprises a soot detector (3), and further comprising
using the soot filter (7) which can be regenerated by being burned off, and detecting ions that occur during the regeneration by the soot detector (3).
4. The method of claim 2 , wherein, during the monitoring of the functional capability of the particle detector (3), the regeneration conditions are changed by increasing the temperature in the environment of a soot filter (7) which comprises the particle filter.
5. The method of claim 1 , wherein the particle filter comprises a soot filter (7) and wherein the particle detector comprises a soot detector (3), and further comprising
using the soot filter (7) which can be regenerated by being burned off, and detecting ions that occur during the regeneration by the soot detector (3).
6. The method of claim 5 , further comprising
measuring the temperature in, at or downstream in the flow direction (2) of the soot filter (7), and
determining the expected finding of the measurement by the soot detector (3) from the fill status of the soot filter (7) and the measured temperature.
7. The method of claim 5 , wherein, during the monitoring of the functional capability of the particle detector (3), the regeneration conditions are changed by increasing the temperature in the environment of the soot filter (7).
8. The method of claim 5 , wherein for regeneration of the soot filter (7), the temperature in its environment is increased to above 500° C.
9. A computer program with program code means, for performing the steps of claim 8 , and executing said computer program on a system for monitoring the functional capability of a particle detector (3), using a regeneratable particle filter (7) connected upstream of the particle detector (3) in terms of flow direction (2), the system comprising,
means for regenerating the filter (7), and
a control and evaluation unit (9), operable during the regeneration of the particle filters (7) to detect measurement findings furnished by the particle detector (3) and compare the detected measurements with expected findings.
10. The method of claim 1 , further comprising determining the deviation of the measurement finding from the expected finding and comparing the deviation with a limit value, and if the limit value is exceeded the particle detector (3) is classified as defective.
11. The method of claim 10 , wherein, during the monitoring of the functional capability of the particle detector (3), the regeneration conditions are changed by increasing the temperature in the environment of a soot filter (7) which comprises the particle filter.
12. The method of claim 10 , wherein for regeneration of the soot filter (7), the temperature in its environment is increased to above 500° C.
13. The method of claim 1 , wherein, during the monitoring of the functional capability of the particle detector (3), the regeneration conditions are changed by increasing the temperature in the environment of a soot filter (7) which comprises the particle filter.
14. The method of claim 13 , wherein for regeneration of the soot filter (7), the temperature in its environment is increased to above 500° C.
15. A computer program with program code means, for performing the steps of claim 1 , and executing said computer program on a system for monitoring the functional capability of a particle detector (3), using a regeneratable particle filter (7) connected upstream of the particle detector (3) in terms of flow direction (2), the system comprising,
means for regenerating the filter (7), and
a control and evaluation unit (9), operable during the regeneration of the particle filters (7) to detect measurement findings furnished by the particle detector (3) and compare the detected measurements with expected findings.
16. A computer program product with program code means which are stored in memory on a computer-readable data medium, for performing the method of claim 1 , and executing said computer program on a system for monitoring the functional capability of a particle detector (3), using a regeneratable particle filter (7) connected upstream of the particle detector (3) in terms of flow direction (2), the system comprising,
means for regenerating the filter (7), and
a control and evaluation unit (9), operable during the regeneration of the particle filters (7) to detect measurement findings furnished by the particle detector (3) and compare the detected measurements with expected findings.
17. A system for monitoring the functional capability of a particle detector (3), using a regeneratable particle filter (7) connected upstream of the particle detector (3) in terms of flow direction (2), the system comprising,
means for regenerating the filter (7), and
a control and evaluation unit (9), operable during the regeneration of the particle filters (7) to detect measurement findings furnished by the particle detector (3) and compare the detected measurements with expected findings.
18. The system of claim 17 , wherein the control and evaluation unit (9) is designed such that by means of a predetermined model, an expected measurement finding can be determined from the current fill status of the filter and the given regeneration conditions.
19. The system of claim 17 , further comprising a temperature sensor (8) located in, at or downstream in the flow direction (2) of the particle filter (7).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102479771 | 2002-10-15 | ||
DE10247977A DE10247977A1 (en) | 2002-10-15 | 2002-10-15 | Method and system for checking the functionality of a particle detector |
PCT/DE2003/002097 WO2004036006A1 (en) | 2002-10-15 | 2003-06-24 | Method and system for verifying the functionality of a particle detector |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060107730A1 US20060107730A1 (en) | 2006-05-25 |
US7487660B2 true US7487660B2 (en) | 2009-02-10 |
Family
ID=32049270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/531,168 Expired - Fee Related US7487660B2 (en) | 2002-10-15 | 2003-06-24 | Method and system for monitoring the functional capability of a particle detector |
Country Status (5)
Country | Link |
---|---|
US (1) | US7487660B2 (en) |
EP (1) | EP1554475B1 (en) |
JP (1) | JP4038209B2 (en) |
DE (2) | DE10247977A1 (en) |
WO (1) | WO2004036006A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110048106A1 (en) * | 2009-09-02 | 2011-03-03 | Ford Global Technologies, Llc | Method for evaluating degradation of a particulate matter sensor after an engine start |
US10375107B2 (en) | 2010-07-22 | 2019-08-06 | International Business Machines Corporation | Method and apparatus for dynamic content marking to facilitate context-aware output escaping |
US10372899B2 (en) | 2010-07-22 | 2019-08-06 | International Business Machines Corporation | Method and apparatus for context-aware output escaping using dynamic content marking |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6947831B2 (en) * | 2003-04-11 | 2005-09-20 | Ford Global Technologies, Llc | Pressure sensor diagnosis via a computer |
DE102004000065A1 (en) * | 2004-12-07 | 2006-06-08 | Ford Global Technologies, LLC, A Subsidiary of Ford Motor Company, Dearborn | Controlling the regeneration of a particulate filter for an internal combustion engine comprises spatially resolved modeling of the combustion of particulates in the filter |
DE102005000978B4 (en) * | 2005-01-07 | 2011-06-01 | Continental Automotive Gmbh | Device for controlling the pollutant emissions of a self-igniting internal combustion engine |
DE102006055520A1 (en) * | 2006-11-24 | 2008-05-29 | Robert Bosch Gmbh | Device and method for checking the functionality or plausibility of a sensor based on an interdigital electrode system sensor and a sensor for detecting particles in a gas stream and its use |
JP4676420B2 (en) * | 2006-12-21 | 2011-04-27 | 株式会社堀場製作所 | Multistage switching particulate matter measuring device |
JP5081897B2 (en) * | 2007-03-15 | 2012-11-28 | 日本碍子株式会社 | Particulate matter detection device and particulate matter detection method |
JP5635776B2 (en) * | 2010-01-07 | 2014-12-03 | 日本碍子株式会社 | Particulate matter detection device and inspection method for particulate matter detection device |
DE102010006708B4 (en) * | 2010-02-02 | 2013-01-17 | Continental Automotive Gmbh | Diagnostic procedure of a soot sensor |
EP2492481A1 (en) | 2011-02-22 | 2012-08-29 | Delphi Technologies Holding S.à.r.l. | Soot sensor functional capability monitoring |
DE102012001044A1 (en) * | 2012-01-20 | 2013-07-25 | Daimler Ag | Method for determining operability of resistive soot sensor for monitoring particulate filter in motor car, involves outputting notification if change in signal falls below threshold value, where notification indicates malfunction of sensor |
JP6014429B2 (en) * | 2012-09-12 | 2016-10-25 | 日野自動車株式会社 | Particle sensor |
GB201410283D0 (en) * | 2014-06-10 | 2014-07-23 | Cambridge Entpr Ltd | Sensing methods and apparatus |
US20180073973A1 (en) | 2016-09-12 | 2018-03-15 | Hyundai Motor Company | Particulate matters sensor device and manufacturing method of sensor unit provided in this |
US10132262B2 (en) * | 2016-11-02 | 2018-11-20 | GM Global Technology Operations LLC | Methods for optimizing exhaust gas system regeneration and cleaning |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0506083A1 (en) | 1991-03-29 | 1992-09-30 | Matsushita Electric Industrial Co., Ltd. | A filter regenerating apparatus for an internal combustion engine |
US5157340A (en) | 1990-08-03 | 1992-10-20 | Atomic Energy Of Canada Limited | Method and apparatus for detecting soot concentration in particulate trap |
JPH04301125A (en) | 1991-03-29 | 1992-10-23 | Matsushita Electric Ind Co Ltd | Filter renovator for internal combustion engine |
JPH05141223A (en) * | 1991-11-15 | 1993-06-08 | Matsushita Electric Ind Co Ltd | Filter regenerating device for internal combustion engine |
US5458673A (en) * | 1992-11-26 | 1995-10-17 | Nippon Soken, Inc. | Exhaust gas particulate purifying process for internal combustion engine |
JPH08284643A (en) * | 1995-04-14 | 1996-10-29 | Nippondenso Co Ltd | Exhaust particulate purifying device |
DE19853841A1 (en) | 1998-11-23 | 1999-06-02 | Victor Prof Dr Ing Gheorghiu | High voltage detection electrode for particles in gases |
JP2003027919A (en) * | 2001-07-12 | 2003-01-29 | Nissan Motor Co Ltd | Exhaust emission control device of diesel engine having turbocharger |
US6769246B2 (en) * | 2000-11-11 | 2004-08-03 | Robert Bosch Gmbh | Method and device for controlling an exhaust gas aftertreatment system |
US6854265B2 (en) * | 2002-01-11 | 2005-02-15 | Denso Corporation | Exhaust gas filter regenerating apparatus effectively burning particulate material |
US6935155B2 (en) * | 2002-05-16 | 2005-08-30 | Honda Giken Kogyo Kabushkiki Kaisha | Apparatus for detecting failure of exhaust gas sensor utilizing element temperature |
US6975967B2 (en) * | 2001-07-31 | 2005-12-13 | Revco Technologies, Inc. | CO2/O2 incubator predictive failure for CO2 and O2 sensors |
US6976382B2 (en) * | 2002-02-20 | 2005-12-20 | Denso Corporation | Abnormality diagnosing apparatus of exhaust gas sensor |
US7028466B2 (en) * | 2003-01-16 | 2006-04-18 | Nissan Motor Co., Ltd. | Regeneration of diesel particulate filter |
US20080046213A1 (en) * | 2006-08-21 | 2008-02-21 | Honeywell International Inc. | Method and System for Detection and Remediation of Sensor Degradation in a Monitoring Device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10133384A1 (en) * | 2001-07-10 | 2003-01-30 | Bosch Gmbh Robert | Particle detection sensor and method for checking its function |
-
2002
- 2002-10-15 DE DE10247977A patent/DE10247977A1/en not_active Withdrawn
-
2003
- 2003-06-24 WO PCT/DE2003/002097 patent/WO2004036006A1/en active IP Right Grant
- 2003-06-24 EP EP03808662A patent/EP1554475B1/en not_active Expired - Lifetime
- 2003-06-24 DE DE50304245T patent/DE50304245D1/en not_active Expired - Lifetime
- 2003-06-24 US US10/531,168 patent/US7487660B2/en not_active Expired - Fee Related
- 2003-06-24 JP JP2004543925A patent/JP4038209B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5157340A (en) | 1990-08-03 | 1992-10-20 | Atomic Energy Of Canada Limited | Method and apparatus for detecting soot concentration in particulate trap |
EP0506083A1 (en) | 1991-03-29 | 1992-09-30 | Matsushita Electric Industrial Co., Ltd. | A filter regenerating apparatus for an internal combustion engine |
JPH04301125A (en) | 1991-03-29 | 1992-10-23 | Matsushita Electric Ind Co Ltd | Filter renovator for internal combustion engine |
JPH05141223A (en) * | 1991-11-15 | 1993-06-08 | Matsushita Electric Ind Co Ltd | Filter regenerating device for internal combustion engine |
US5458673A (en) * | 1992-11-26 | 1995-10-17 | Nippon Soken, Inc. | Exhaust gas particulate purifying process for internal combustion engine |
JPH08284643A (en) * | 1995-04-14 | 1996-10-29 | Nippondenso Co Ltd | Exhaust particulate purifying device |
DE19853841A1 (en) | 1998-11-23 | 1999-06-02 | Victor Prof Dr Ing Gheorghiu | High voltage detection electrode for particles in gases |
US6769246B2 (en) * | 2000-11-11 | 2004-08-03 | Robert Bosch Gmbh | Method and device for controlling an exhaust gas aftertreatment system |
JP2003027919A (en) * | 2001-07-12 | 2003-01-29 | Nissan Motor Co Ltd | Exhaust emission control device of diesel engine having turbocharger |
US6975967B2 (en) * | 2001-07-31 | 2005-12-13 | Revco Technologies, Inc. | CO2/O2 incubator predictive failure for CO2 and O2 sensors |
US6854265B2 (en) * | 2002-01-11 | 2005-02-15 | Denso Corporation | Exhaust gas filter regenerating apparatus effectively burning particulate material |
US6976382B2 (en) * | 2002-02-20 | 2005-12-20 | Denso Corporation | Abnormality diagnosing apparatus of exhaust gas sensor |
US6935155B2 (en) * | 2002-05-16 | 2005-08-30 | Honda Giken Kogyo Kabushkiki Kaisha | Apparatus for detecting failure of exhaust gas sensor utilizing element temperature |
US7028466B2 (en) * | 2003-01-16 | 2006-04-18 | Nissan Motor Co., Ltd. | Regeneration of diesel particulate filter |
US20080046213A1 (en) * | 2006-08-21 | 2008-02-21 | Honeywell International Inc. | Method and System for Detection and Remediation of Sensor Degradation in a Monitoring Device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110048106A1 (en) * | 2009-09-02 | 2011-03-03 | Ford Global Technologies, Llc | Method for evaluating degradation of a particulate matter sensor after an engine start |
US20110047978A1 (en) * | 2009-09-02 | 2011-03-03 | Ford Global Technologies, Llc | Method for evaluating degradation of a particulate matter sensor |
US8438899B2 (en) * | 2009-09-02 | 2013-05-14 | Ford Global Technologies, Llc | Method for evaluating degradation of a particulate matter sensor |
US8448511B2 (en) * | 2009-09-02 | 2013-05-28 | Ford Global Technologies, Llc | Method for evaluating degradation of a particulate matter sensor after an engine start |
US8959979B2 (en) | 2009-09-02 | 2015-02-24 | Ford Global Technologies, Llc | Method for evaluating degradation of a particulate matter sensor after an engine start |
US10375107B2 (en) | 2010-07-22 | 2019-08-06 | International Business Machines Corporation | Method and apparatus for dynamic content marking to facilitate context-aware output escaping |
US10372899B2 (en) | 2010-07-22 | 2019-08-06 | International Business Machines Corporation | Method and apparatus for context-aware output escaping using dynamic content marking |
Also Published As
Publication number | Publication date |
---|---|
EP1554475A1 (en) | 2005-07-20 |
DE10247977A1 (en) | 2004-04-29 |
EP1554475B1 (en) | 2006-07-12 |
US20060107730A1 (en) | 2006-05-25 |
JP4038209B2 (en) | 2008-01-23 |
DE50304245D1 (en) | 2006-08-24 |
WO2004036006A1 (en) | 2004-04-29 |
JP2006503270A (en) | 2006-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7487660B2 (en) | Method and system for monitoring the functional capability of a particle detector | |
US10364717B2 (en) | Methods and systems for increasing particulate matter deposition in an exhaust particulate matter sensor | |
US8915645B2 (en) | Method and device for monitoring a component arranged in an exhaust region of an internal combustion engine | |
US10078043B2 (en) | Method and system for exhaust particulate matter sensing | |
US8091408B2 (en) | Procedure for operating a collecting particle sensor and device for implementing this procedure | |
JP2015520387A (en) | Function monitoring method of particle detection sensor and particle detection sensor | |
US7081154B2 (en) | Device and method for determining a malfunction in a filter | |
US9964481B2 (en) | Method and system for exhaust particulate matter sensing | |
WO2008004917A1 (en) | Diagnosis of a cracked multi-chamber solid-electrolyte gas sensor | |
JP2006194116A (en) | Exhaust emission control device for internal combustion engine | |
US11933751B2 (en) | Method for assessing the operatability of a sensor for detecting soot | |
US10067048B2 (en) | Method for controlling the function of a sensor for detecting particles | |
US20130204540A1 (en) | Method for conditioning signals for a collecting particle sensor | |
JP3146064B2 (en) | Apparatus for detecting abnormality of spark plug of internal combustion engine and apparatus for detecting misfire of internal combustion engine | |
US10920702B2 (en) | Method for operating an electrostatic soot sensor | |
US10626776B2 (en) | Method and system for exhaust particulate matter sensing | |
US10132218B2 (en) | Exhaust system for a motor vehicle | |
US7698887B2 (en) | Method and apparatus for determining local emissions loading of emissions trap | |
US20230332982A1 (en) | Method for monitoring a sensor arranged in an exhaust gas region of an internal combustion engine | |
CN112443380B (en) | Method for monitoring a particle filter by means of a particle sensor | |
US10845290B2 (en) | Failure detection device for particulate matter filter and method of detecting failure of particulate matter filter | |
US11022536B2 (en) | Method for operating a sensor element for detecting particles of a measuring gas in a measuring gas chamber | |
CN111024568A (en) | Method and device for evaluating sensor signals of a soot sensor | |
CN117662278A (en) | Particulate trap monitoring system, method, device and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROBERT BOSCH GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHUMANN, BERND;REEL/FRAME:017270/0395 Effective date: 20050418 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20170210 |