US7477597B2 - Rural broadband hybrid satellite/terrestrial solution - Google Patents

Rural broadband hybrid satellite/terrestrial solution Download PDF

Info

Publication number
US7477597B2
US7477597B2 US10935457 US93545704A US7477597B2 US 7477597 B2 US7477597 B2 US 7477597B2 US 10935457 US10935457 US 10935457 US 93545704 A US93545704 A US 93545704A US 7477597 B2 US7477597 B2 US 7477597B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
satellite
terrestrial
traffic
traffic flow
route
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10935457
Other versions
US20060050736A1 (en )
Inventor
Jonathan Dean Segel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel-Lucent SA
Original Assignee
Alcatel-Lucent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • H04B7/18591Arrangements for interconnecting multiple systems

Abstract

At a remote site, a satellite route is installed to augment the capacity of a terrestrial route. A specialized forwarding unit is introduced at both ends of these parallel satellite and terrestrial routes. The forwarding unit identifies what type of traffic needs a higher performance forward, and forwards the traffic accordingly. For example, latency-sensitive traffic can be forwarded over the terrestrial route and the latency insensitive traffic can be forwarded over the satellite route.

Description

FIELD OF THE INVENTION

The invention is directed to the communication networks and in particular to a rural broadband hybrid satellite/terrestrial network architecture solution.

BACKGROUND OF THE INVENTION

Many rural areas are characterized by small population centers, which are served via a terrestrial infrastructure with limited capacity, typically copper lines or Digital Microwave Radio (DMR). Although it is possible to substitute or augment the terrestrial capacity through adding a satellite route, the communicating applications have no knowledge or ability to control their forwarding through the different links. Therefore latency sensitive traffic such as Voice over IP may be carried on the high-latency satellite route resulting in poor performance, and latency insensitive file downloads may be carried over the terrestrial route, which is a waste of ‘premium bandwidth’.

Even where a broadband access multiplexer using DSL is available that is appropriately scaled to the size of the potential market, the cost of backhaul from the rural site to and from the network core may be prohibitive. For example, augmenting the terrestrial route could cost millions of dollars, which the potential new revenue cannot possibly justify. The ability to cost effectively augment limited terrestrial networks with satellite would therefore makes it economically practical to extend broadband services to many areas that would not otherwise receive service.

A satellite is a sophisticated electronic communications relay station orbiting the Earth. Earth stations transmit signals to a satellite in orbit over an uplink. Satellites receive this signal, amplify it, shift it to a different (usually lower) frequency and then feed the outgoing signal into an on-board satellite antenna, where the signal is focused into a beam and sent back to Earth along a downlink. Each satellite downlink has a series or set of “beams” (or sectors) illuminating a footprint on the surface of the Earth. A typical satellite might use sixteen such beams. Sometimes multiple beams at different frequencies are used to illuminate the same given area in a single “beam” pattern, with each being referred to as a “sub-beam.” The reception of the satellite signals can either be through a large parabolic antenna at a satellite earth station (e.g. with a 12 meter dish) or received directly at the end customer using a small VSAT (Very Small Aperture ‘Terminal’ dish (eg. typically less than a meter in diameter). It is also possible for the end customer to transmit back to the satellite, although this generally involves larger dishes than for ‘receive only’, and different regulatory conditions such as the need for a certified installation may exist.

In general, satellite-based networks offer certain advantages over terrestrial wireless networks in that they can provide rapid deployment of communication services over a wide geographical area, including remote, rural, urban, and inaccessible areas. They are especially well suited to broadcast transmission of latency insensitive traffic such as broadcast television signals. As an interactive data example, satellite data terminals provide credit and debit card transaction network communications from retail stores, gas stations, and banks at hundreds of thousands of locations around the globe. New locations can be provisioned and decommissioned quickly and at a low cost, compared to the time and cost of connecting locations by other methods. As another example, mobile voice networking via satellites enables individuals to utilize portable computers or handheld satellite phones to connect from remote, low-density population rural areas. Satellite-based networks offer more flexibility in allocating capacity to different sites because the common satellite capacity is shared over what is usually a continental area.

For reception of broadband TV signals at a cable network head-end, parabolic dishes at the earth access station point to each satellite to receive the analog and digital feeds from various content providers utilizing the satellite. The access stations receive, demodulate, decrypt, and decode individual programs; the demodulated (baseband) signals are then remodulated according to a TV standard (NTSC, PAL, SECAM) governing the respective region onto a cable TV frequency plan and combined with local off-air signals and cable modem data to form the broadband service that is amplified and relayed along a coaxial cable plant or hybrid fiber optic and coaxial cable infrastructure to the home subscriber.

The growth in IP traffic and the technical advances in packet technologies have made it possible to support what was once a distinct set of parallel networks (voice, video, wireless), on one integrated data network. This has started a move towards a common packet based network with sharing of common network infrastructure to provide services and interoperability of these services. In addition, there is a trend to enable packet based networks with a new set of feature-rich multimedia communication services, such as integrated messaging, multimedia conversations, on-demand multi-point conference, enhanced security & authentication, various classes of media transport services, numerous automations in electronic Internet commerce activities (banking, shopping, customer care, education, etc.).

Systems have been proposed which make use of satellite communications to access the Internet. For example, Direct TV provides high speed Internet access through a plurality of Direct Broadcast System (DBS) satellites, originally constructed to provide satellite television service. Unfortunately, the Direct TV system does not provide a communication link for the user to send information back to the Internet via the satellite. Accordingly, a computer user must utilize a separate terrestrial telephone line through the PSTN system or the like to provide communications to an Internet provider. Though the transmission rate from the computer user through the PSTN system to an Internet provider is substantially slower than the downlink from the DBS satellite, this system is generally usable where no other form of broadband access is available, as the end users of a DBS system are using internet applications such as web browsing and file transfer that generally receive (download) much greater amounts of data from the Internet than they transmit. Accordingly, it is generally acceptable for the computer user's uplink (transmission) rate to be substantially less than the computer user's download rate.

However, the Direct TV system suffers from several disadvantages as a user must have both a satellite receiver and a connection to telephone service and the performance of the system is fundamentally limited by the speed of the dial-up PSTN link, and more seriously by the latency (delay) in the satellite route. The maximum buffer size in standard TCP/IP implementations of 64 kilobytes combined with a typical satellite delay of 560 ms give a maximum throughput of 936 kbits/sec regardless of what higher speeds the satellite route may theoretically support. The standard Windows receive buffer size is just 8760 bytes, which gives an effective end to end rate of 128 kbit/s or less.

All satellite based communication links have a fundamental latency issue in their performance. The communication satellites to which we refer (excluding Low Earth Orbit) sit in Geostationary orbit about 23,000 miles above the equator, and the delay for a signal to reach the satellite and then return to earth is approximately 500 milliseconds. If the system in question also uses a satellite for the return path from the customer, than the delay exists in both directions (approx. 1 second delay total).

Most Internet Protocol traffic occurs over a TCP layer which assures the integrity of the communication session; it makes the underlying IP transport reliable. TCP uses extensive ‘handshaking’ between the two communicating sites, which unfortunately makes it highly exposed to latency as each of the interactions between the sites must traverse the network.

In downloading a typical web page composed of many individually retrieved elements a unidirectional satellite route nominally described as providing 400 kbit/s downstream throughput may actually load the page slower than a 56 kbit/s dial-up link because the latency in the satellite route causes a delay as each element in the web page is requested, sent, and acknowledged. TCP throughput is fundamentally limited by latency combined with the TCP window size. The TCP/IP protocol incorporates several features which make it work poorly over high latency links, in particular the high number of acknowledgements to verify correct reception of packets, and the ‘slow start’ feature of TCP where the sending rate is gradually increased over time. Most satellite equipment manufacturers have introduced both standard and proprietary modifications to the standard TCP/IP protocol suite in order to minimize these effects, for example by generating using the Internet Engineering Task Force RFC2018 TCP Selective ACK to avoid communications waiting for acknowledgements to traverse the high latency satellite route. Some of the other standardized mechanisms include RFC2488 “Enhancing TCP over Satellite Channels using Standard Mechanisms”, RFC1191 “Path MTU”, and RFC1323 “Large Windows”. Some of these modifications such as TCP protocol spoofing will not work with certain applications; for example IPsec VPN sessions that encrypt the TCP and IP headers. These modifications also have no effect for UDP traffic, which is the basis for most Voice over IP sessions, a key latency sensitive application.

Satellite routes are also generally prone to higher bit error rates than terrestrial routes. The TCP protocol assumes that lost packets are due to congestion in the network, even if bit errors across a satellite route were the real reason. When satellite bit errors occur, TCP will therefore throttle back senders and reduce throughput which degrades service performance and yet has no positive impact on the packet loss rate. TCP will therefore perform better over terrestrial routes for reasons of congestion control mechanisms as well as for latency reasons.

Latency is a critical issue for some but not all applications. Latency is critical for many applications, including Voice, Video-telephony, most online-gaming, Citrix and other thin client applications, Terminal emulators without local echo (e.g. Telnet), PC remote control applications, and online chat. Moderately latency sensitive applications include web browsing and video streaming between a user and their multicast distribution point (due to the need for prompt channel change times). Latency insensitive applications include ftp file transfers, smtp email updates, nntp news updates/Usenet traffic, peer-to-peer file sharing applications, refresh traffic for distributed web caches, broadcast video, and most unicast streaming video.

Voice for example starts degrading substantially in quality when the round trip delay exceeds 200 ms, and special echo cancellation techniques are required. When the voice signal is digitized and transported over Internet Protocol, then latency is even more critical because the encoding and decoding process itself introduces delay.

Many computer systems operating within companies have been programmed with the assumption that the network interconnecting different processing nodes has a known fixed delay, as in fact was true with pre-packet time division multiplexed data networks or in local area terrestrial networks. When the link between two processing nodes in this internal corporate network exceeds the expected latency, it will typically assume that either the network or the remote node has failed and take drastic corrective action such as terminating the session and restarting the associated processing tasks.

General Internet Protocol routers do not examine traffic characteristics to determine which traffic is latency sensitive and do not consider physical link performance characteristics when making forwarding decisions.

The inability of the network to distinguish between the applications it carries is made particularly vivid by recent experience of service providers with peer-to-peer applications such as Kazaa, Morpheus, and Napster. In some parts of the network these applications now constitute over 50% of total traffic volume. They are unusually likely to cause network congestion because they are as likely to be uploading traffic as downloading. Although they are insensitive to latency themselves, they may cause congestion which damages latency and loss sensitive applications.

Current systems deal with latency requirements of the access network by selecting terrestrial or satellite routes according to latency requirements, as for example described in U.S. Pat. No. 6,591,084: “Satellite based data transfer and delivery system” (Chuprun et al.) and related U.S. published Patent application 20030203717: “Satellite based data transfer and delivery system” describe a system for wireless access that has satellite and optionally terrestrial network links. A satellite or terrestrial route is selected based on automatic user node affiliation or user profiles, which may include service cost limitations and allowable delay limitations. As a result, the switching/forwarding decisions are static being based on user profiles and node affiliations and not on real-time inspection of the actual traffic flow. There is a need to provide a system that is more adaptive to changes in traffic patterns and content, for obtaining a more efficient utilization of the satellite and terrestrial network links.

Other prior art solutions that have only satellite network links to access systems for addressing specific requirements. For example, U.S. Patent Application 20030109220: “Communication satellite adaptable links with a ground-based wideband network” (Chuprun et al.) describes basically a land-based network with hub nodes that have satellite routes to remote end-user systems. A communication manager determines the communications requirements between the satellite and the network, and can identify multiple hub nodes for communication with the network if the capacity of a given hub is insufficient to meet the requirements. However, the forwarding of the communication manager is not based on the latency sensitivity of the traffic, and the architecture presents only satellite routes to the end-user systems and not terrestrial ones.

U.S. Patent Application 20030032391: “Low latency handling of transmission control protocol messages in a broadband satellite communications system” (Schweinhart et al.) addresses latency sensitivity of traffic transmitted over satellite communications by queueing and scheduling the traffic for transmission according to its latency limitations. Again, this architecture presents only satellite routes to the end-user systems and not terrestrial ones, so that these systems can not provide any guidance on using alternative types of links, e.g. high-speed terrestrial routes, to reduce latency.

The prior art satellite based access system is a system to give priority to certain users. The invention described is a system to give priority to certain traffic types or applications.

Therefore, viewing the prior art as a whole, an access system for selectively forwarding traffic on satellite and terrestrial routes according to real-time requirements of the traffic and its type is neither disclosed nor suggested. The present invention is directed to such a system.

SUMMARY OF THE INVENTION

It is an object of the invention to provide a broadband hybrid satellite/terrestrial network architecture that optimally matches the performance requirements and priority of data applications to the characteristics of multiple communication links over which that data can be carried.

It is another object of the invention to provide a broadband satellite/terrestrial network architecture that enhances the quality and cost effectiveness of broadband solutions for subscribers in low populated, remote locations (rural locations).

Accordingly, the invention provides a hybrid satellite-terrestrial multiplexer for providing broadband services to a plurality of end-user systems, comprising: a multiplexer for combining data received from said end-user systems into an upstream traffic flow; and a specialized forwarding unit for segregating said upstream traffic flow received form said multiplexer, into a terrestrial traffic flow and a satellite traffic flow, and routing said terrestrial traffic flow along a terrestrial route and said satellite traffic flow along a satellite route, wherein said terrestrial route connects said specialized forwarding unit to a terrestrial network and said satellite route connects said specialized forwarding unit to a satellite network.

The invention also provides a specialized forwarding unit for forwarding a traffic flow over one of a satellite route and a terrestrial route, comprising: a traffic splitting unit for segregating the traffic flow into a terrestrial traffic flow and a satellite traffic flow; a terrestrial route interface for converting the format of the terrestrial traffic flow from a forwarding unit protocol to a terrestrial protocol used for communication along the terrestrial route; a satellite route interface for converting the format of the satellite traffic flow from the forwarding unit protocol to a satellite protocol used for communication along the satellite route; and traffic monitoring means for characterizing the traffic flow, and controlling the traffic splitting unit to recognize the terrestrial traffic flow and the satellite traffic flows based on traffic recognition rules and current traffic performance data.

According to a further aspect, the invention is directed to a method for providing broadband services to a plurality of end-user systems connected to a customer access system, comprising: (a) combining data received from the end-user systems into an upstream traffic flow; and (b) segregating the upstream traffic flow into a terrestrial traffic flow and a satellite traffic flow for forwarding the terrestrial traffic flow along a terrestrial route, and the satellite traffic flow along a satellite route, wherein the terrestrial route and the satellite route connect the specialized forwarding unit to far-end specialized forwarding unit.

Such intelligent splitting of the traffic to take advantage of multiple links with different characteristics may be implemented either in a service providers network, for example for the connectivity from the network core to a DSLAM in a remote community, or in a ‘Direct Broadcast Satellite’ where the upstream traffic splitting occurs in the customers' premises.

Splitting and different forwarding of different application traffic is not possible for packets within an IP tunnel, such as within a PPPoE session. It is therefore a requirement of this invention that the IP traffic not included applications requiring different handling within a tunnel, either through termination of the tunnel in the access multiplexer before examination by the customer end specialized forwarding unit, or never tunneled in the first place, for example by the use of DHCP authenticated high speed internet connections.

The solution of the present invention has the advantage of being adaptive to changes in traffic patterns and content. This adaptability results in higher performance outcomes for end customers for any given mix of satellite and terrestrial assets. It enables basic services such as high speed Internet to be delivered more cost effectively, but also allows higher value services, such as Voice over IP, to be supported thereby making rural broadband access more commercially feasible.

Also, the invention enables a service provider to deploy high quality and cost effective broadband solutions, leveraging the ability to sell broadband access into rural nodes where backhaul costs previously meant that coverage was too expensive.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of the preferred embodiments, as illustrated in the appended drawings, where:

FIG. 1 is a block diagram of a prior art satellite based access system for providing a plurality of users with high rate, low latency data.

FIG. 2 is a block diagram of the hybrid satellite-terrestrial access system according to an embodiment of the invention as it would be deployed in a service provider's network.

FIG. 3 is a block diagram of the hybrid satellite-terrestrial access system according to another embodiment of the invention as it would be deployed with the customer end specialized forwarding unit implemented in an end-customer's premises.

FIG. 4 is a block diagram of the specialized forwarding unit according to an embodiment of the invention.

DETAILED DESCRIPTION

The system provided by the above identified UP Patent is described next with a view to better understanding the operation and advantages of the present invention. FIG. 1 shows a satellite based access system for providing a plurality of users with high rate, low latency data, as for example proposed in the above-referenced U.S. Pat. No. 6,591,084 (Chuprun et al.). In this example, a satellite 10 is connected to a ground antenna 2 in communication with a gateway 5, connected to a terrestrial network 1 (PSTN, ISDN, IP, etc). Satellite 10 may be accessed by a plurality of base stations 6-1 to 6-n at a plurality of cell sites 8-1 to 8-n. The base stations perform seamless protocol conversion and multiport distribution of the satellite signals to each user in the respective cell.

Each cell enables a different type of data service, tailored to the user requirements of each cell population. For example, cell 8-2 could comprise a medical campus, in which case the services provided within this cell include collection and exchange of patient records, outpatient data, X-rays, insurance data, billing information, etc. Each cell has a wireless access multiplexer (WAU) 7-1 to 7-n, each shared by a plurality of users 9-1 to 9-m. This avoids that each user communicates directly with the satellite, which would require a separate high cost transceiver and respective satellite antenna with proper placement for satellite visibility.

While it refers to a hybrid satellite-terrestrial network, the system of FIG. 1 is static, in that static switching/forwarding decisions are based on user profiles and user affiliations to the base station and not the current (real-time) parameters of the traffic flow. As such, the system of FIG. 1 does not perform dynamic forwarding of the traffic between a satellite and a terrestrial network based on the traffic priority as in the present invention.

The present invention relates to the field of broadband access systems, and could be used to service subscribers in rural locations, as shown in FIG. 2. In this example, a plurality of users 8-1 to 8-n dwelling in a remote area are connected to an access node A using an access multiplexer 15. This specification refers to the direction from the network to the customer as the “downstream” (or “forward”, or “inbound”) direction, and to the direction form the customer to the network as the “upstream” (or “reverse”, or “outbound” direction”). It is to be understood that these are relative terms (relative to the specialized forwarding units 20 and 20′); other terms may be equally used to define these directions.

Access multiplexer 15 distributes the broadband access data received from network 1 to remote users 8-1 to 8-n in the forward (downstream) direction, and combines the local traffic from remote users 8-1 to 8-n into the broadband access data destined to network 1 in the reverse (‘upstream’) direction. Access multiplexer 15 could be for example an access multiplexer/demultiplexer (DSL or wireless, etc).

Remote node A is connected to network 1 over a terrestrial route 22, enabling bidirectional communication between the users at access node A and subscribers on network 1 connected at any access node B-F. For example, in case of a bidirectional A-B connection, the traffic sourced by e.g. a node B travels to the remote node A along network 1 and along terrestrial route 22. Similarly, the traffic sourced by remote node A travels to node B along terrestrial route 22 and is forwarded/switched by network 1 to node B. We define such a connection as a terrestrial route. Such a terrestrial route 22 will typically be low latency but also limited bandwidth.

It is to be noted that network 1 and terrestrial route 22 may employ any form of physical media such as wireless, wired optical, coaxial cable or twisted pair copper cable. It is also to be noted that the OSI Layer 2 communication protocol used by network 1 and terrestrial route 22 is irrelevant, i.e. it could be SONET, other TDM technology, Frame Relay, ATM, Ethernet, MPLS, or combinations thereof.

To provide broadband services to users 8-1 to 8-n, connectivity must be established between those users and multiple remote hosts, say at Node B. The capacity and performance of the network will determine the number of users that can receive service, the quality with which that service operates, and the set of services that can be supported.

To increase the number of users, the quality, or the set of services may involve augmenting the capacity of the terrestrial route 22, which may be a very expensive proposition, for example where link 22 is a series of digital microwave radio links.

In order to augment the capacity of the terrestrial route 22, a satellite route is installed in parallel to the terrestrial route. The idea of the invention is to split the traffic of a connection using terrestrial route 22 between the terrestrial route 22 and a satellite connection. Network 1 may be already fitted with satellite capabilities, i.e. a satellite antennae and the respective gateway as shown at 2 may already be installed. For the purpose of this invention, a satellite antenna and the respective gateway 2′ is installed at access node A to access satellite 10 and the nodes of network 1 over the satellite routes 21, 21′.

Traffic is split between the terrestrial and satellite routes using a first specialized forwarding unit 20 at a node C of network 1 and a second specialized forwarding unit 20′ at the remote access node A. The forwarding units switch the traffic along the respective satellite or terrestrial route based on pre-established traffic rules. For example, in each direction, the respective forwarder 20, 20′ identifies latency sensitive and latency insensitive traffic, and forwards the traffic accordingly. More specifically, since the terrestrial route is protected, the latency sensitive traffic is preferably forwarded/switched over the terrestrial route 22 and the latency insensitive traffic is forwarded/switched over the satellite route 21, 21′. In this way, forwarders 20 and 20′ make the decision about what kind of traffic need the higher performance forward in the respective direction of traffic.

In the downstream direction (B-A), the traffic sourced by node B is filtered by network end specialized forwarding unit 20 according to its priority in this example. As a result, the latency insensitive traffic (in this example) is forwarded to antenna 2, then to satellite 10 on uplink 21, to antenna 2′ on downlink 21′ and then to node A. An example of latency insensitive traffic would be an ftp file download. The latency sensitive traffic is forwarded/switched on terrestrial route over network 1, and then to access node A over terrestrial route 22. An example of latency sensitive traffic would be a Voice over IP session. At customer end specialized forwarding unit 20′, the traffic from the terrestrial and satellite routes is combined and forwarded to access multiplexer 15 for distribution to users 8-1 to 8-n.

In the reverse (upstream) direction, the traffic sourced by a users 8-k connected to access node A is combined with the traffic sourced by all users 8-1 to 8-n at access multiplexer 15, and then filtered by customer end specialized forwarding unit 20′ according to its priority. The latency insensitive traffic is forwarded/switched to antenna 2′, then to satellite 10 on uplink 21′, to antenna 2 on downlink 21 and then to the network end specialized forwarding unit 20. The latency sensitive traffic is forwarded/switched along the terrestrial route 22 and then over network 1, to the network end specialized forwarding unit 20. At unit 20, the traffic from the terrestrial is combined with the traffic from the satellite route and the combined traffic is forwarded to the destination node (let's say node B), based on the respective destination address, as well known.

Depending on the nature of the traffic and bandwidth, the traffic filtering function may occur at the network end for terrestrial traffic downstream to the customer, at the customer end for traffic upstream from the customer, or at both locations.

In addition, although this mechanism has been described in terms of a bidirectional satellite route, it is also possible to use one-way satellite communications. Either link type may also have more bandwidth available in one direction than the other.

The mechanism has been described in a configuration that would be used by a service provider. It is also possible that the satellite transceiver 2′ and the customer end specialized forwarding unit 20′ be implemented in a piece of equipment directly at a customer's premises. This case is shown in FIG. 3. In this case there is a satellite route and a terrestrial route per customer instead of a satellite route and terrestrial route shared among many customers as described in FIG. 2.

This terrestrial/satellite traffic splitting mechanism is efficient for the distribution of unicast and especially multicast streaming video via the satellite route. In some cases this may be more cost effective even in urban situations because it allows a large amount of content to be distributed to multiple access points without augmenting the terrestrial capacity.

Details of the mechanism employed in both network end specialized forwarding unit (system) 20 and customer end specialized forwarding unit 30 are shown in FIG. 4. It is to be noted that these units have a similar configuration, with the difference that unit 20 is connected to the network 1 and the satellite antenna 2, while the customer unit 30 is connected to the customer premise and to the antenna 2′. In this drawing, the traffic forwards are illustrated with continuous thicker lines, the satellite routes are shown with dotted lines and the provision/control paths are shown in thinner lines.

The forwarding units are connected to the terrestrial and satellite routes through interfaces 38, 48 and 39,49 respectively. The interfaces are preferably bidirectional. In the downstream direction, interface 38 processes the downstream traffic flow received over the satellite route 21′ and interface 39 processes the downstream traffic flow received over the terrestrial route 22. Similarly, interface 48 processes the downstream traffic flow to be transmitted over the satellite route 21 and interface 49 processes the downstream traffic flow to be transmitted over the terrestrial route 22.

Each forwarding units 20 and 20′ uses a respective traffic merger 35 and 45 that combines the traffic from the two forwards. Thus, downstream traffic merger 35 at customer end specialized forwarding unit 20′ combines the traffic from satellite route 21′ and terrestrial route 22 and forwards the combined downstream traffic to the customer. Similarly, upstream traffic merger 45 combines the traffic from satellite route 21 and terrestrial route 22 and forwards the combined upstream traffic to the network 1.

A link monitor 31, 41 observes the IP traffic flows at the respective interface 38,39 and respectively 48, 49 for measuring the current performance of the forwards. Also, link monitor 31, 41 provides this current performance data to a respective traffic splitter 33, 43 to control traffic separation at the respective splitter. The link monitor 31, 41 may also inject its own test data into the data stream to provide the basis for assessment of link quality to another link monitor at the other end of the hybrid satellite/terrestrial routes.

The splitter 33, 43 uses three key sources of information to decide how the traffic is split on the respective satellite route 22, 22′ and terrestrial route 22.

The first information source is from a traffic recognition rules unit 36, 46. This unit provides the rules by which individual packets are identified as being associated with a known application, communicating entity, or priority. A traffic recognition rule might for example look like the following: “If the Port number is 25 than the application type is Mail”

The second information source is a traffic splitting decision rules unit 34, 44 which provides the rules by which the splitting unit will decide how to forward traffic which as been identified, that is what kinds of traffic should be forwarded on which link type. This may involve rules that are organized according to priority, where a high priority rule (what to do if a link fails) takes priority over a lower priority rule (what to do under normal conditions). A traffic splitting decision rule might look like the following: “If terrestrial route availability status is normal, then forward VoIP traffic over terrestrial route”.

The third information source is the link monitor 31, 41. The link monitor provides real-time information on the availability and performance of the links. This information is used in combination with the traffic splitting rules and the recognition of inbound traffic to dynamically change the traffic splitting decision on the basis of changing conditions.

In order to perform traffic splitting, a traffic recognition rules unit 36, 46 examines the traffic provided by the customer/network and matches the traffic against defined profiles and patterns. The identification (recognition) of the traffic by unit 36, 46 may be based on any combination of IP port, protocol, Source/destination MAC address, unicast versus multicast address type, DSCP or 802.1p priority markings, packet size, or other information contained in the packet. For example a traffic recognition rule could be: “If Port=119, then application=Network News”.

Identification within the traffic recognition rules unit 36, 46 may also be based on a pattern of information in packets over time. For example the identification of traffic may include knowledge of application behavior up to OSI layer 7; such as for the identification of real-time communications traffic that may use knowledge of the H.323 or SIP protocols to identify IP flows based on their behavior over time in a ‘stateful’ fashion.

Traffic recognition rules may be set up dynamically based on observing the traffic. For example, when a client ‘Joe’ sends an ftp request to port 21 on a server, the port number which will be used for the latency insensitive data connection will be sent either by the client with a “PORT xxx” command, or the client will send “PASV” to signal a passive mode transfer and the server will return the server port number (say port xxx again) to be used for the data connection. This would generate a dynamic traffic identification rule for example that says “If destination IP address={Joe's IP address} and Port=xxx, then application=file transfer”.

Information used for traffic recognition may also employ information which can be derived from information in the packet such as host DNS address or URL but is not contained in the packet header.

Further, information relating to the behavior of specific applications, such as the long-lived flows associated with certain peer-to-peer applications or the high cumulative transfer volume associated with streaming video may be used to identify specific flows for forwarding purposes. The classification of traffic may also incorporate monitors looking at the traffic mix to detect hard to spot application types, especially peer-to-peer applications like Morpheus and Kazaa and update the flow forwarding policy.

The splitting decision rules unit 34, 44 may also control the forwarding behavior of the splitter based on load (from the link monitor 31, 41) and the link capacity as configured through the management interface 50, 50′. For example, “During off-peak periods all traffic takes the terrestrial route, and overflow is always carried on the satellite route”.

Other splitting decision rules may be based on availability or performance of each of the links as reported through the management interface 50, 50′ or by observation within the link monitor 31, 41. So for example, the satellite might normally be used only as an ‘overflow’ link, but in the event of problems with the terrestrial route, the satellite would pick up all traffic. A small amount of satellite route bandwidth might therefore offer protection for a large number of geographically distributed terrestrial routes.

In addition to the case where the service provider defines the filtering criteria on all traffic from all customers, the filtering may also allow customers to use the higher performance terrestrial route for a premium. This allows the forwarding decision to be made on customer signaled traffic priorities, and it allows ‘customer priority’ to be mixed with ‘application priority’. For example, a user could be given preferential access to the terrestrial route for web browsing traffic, if that terrestrial route is not needed for higher priority voice over IP traffic. In this case, the subscribers to this service may be identified by incoming interface, Layer 2 identification (VCI or VLAN id, source IP or MAC address). Still further, specific portions of a customer's traffic may be forwarded on the higher performance terrestrial route. These portions may be identified by markings that have been applied to traffic by the customer such as Diffserv code point, 802.1p priority setting or other priority marking mechanism.

The traffic recognition rules unit 36, 46 and traffic splitting decision rules unit 34, 44 are typically statically provisioned into any given specialized forwarding unit, and may be updated from time to time through a management interface, as shown at 50, 50′.

The specialized forwarding units may also be implemented in a split fashion where one unit identifies and marks the traffic according to how it should be carried, and a separate unit implements the forwarding based on the labels that have been applied.

Claims (23)

1. A hybrid satellite-terrestrial unit for providing broadband services to a plurality of end-user systems, comprising:
a multiplexer for combining data received from said end-user systems into an upstream traffic flow; and
a specialized forwarding unit comprising:
a link monitor that measures current performance data for the upstream traffic flow,
a traffic splitting unit that controls separation of said upstream traffic flow received from said multiplexer into a terrestrial traffic flow and a satellite traffic flow based upon traffic recognition rules, priority levels of the traffic recognition rules, and the measured current performance data, and
means for routing said terrestrial traffic flow along a terrestrial route and said satellite traffic flow along a satellite route,
wherein said terrestrial route connects said specialized forwarding unit to a terrestrial network and said satellite route connects said specialized forwarding unit to a satellite network.
2. The hybrid satellite-terrestrial unit of claim 1, wherein said specialized forwarding unit further comprises:
a terrestrial route interface for converting a format of said terrestrial traffic flow from a routing unit protocol to a terrestrial protocol used for communication along said terrestrial route; and
a satellite route interface for converting a format of said satellite traffic flow from said routing unit protocol to a satellite protocol used for communication along said satellite route.
3. The hybrid satellite-terrestrial unit of claim 2, further comprising a traffic recognition rules unit for storing said traffic recognition rules.
4. The hybrid satellite-terrestrial unit of claim 3, further comprising a management interface for updating said traffic recognition rules.
5. The hybrid satellite-terrestrial unit of claim 2, wherein said terrestrial and said satellite route interfaces are bidirectional.
6. The hybrid satellite-terrestrial unit of claim 5, wherein said specialized forwarding unit further comprises a traffic merging unit connected to said terrestrial and satellite route interfaces, for
combining a downstream terrestrial traffic flow received via said terrestrial route with a downstream satellite traffic flow received over said satellite route and
providing a downstream traffic flow to said multiplexer.
7. A specialized forwarding unit for routing a traffic flow over one of a satellite route and a terrestrial route, comprising:
a link monitor for measuring current performance data of the traffic flow;
a traffic splitting unit that controls separation of said traffic flow into a terrestrial traffic flow and a satellite traffic flow based upon traffic recognition rules, priority levels of the traffic recognition rules, and measured current performance data;
a terrestrial route interface for converting a format of said terrestrial traffic flow from a routing unit protocol to a terrestrial protocol used for communication along said terrestrial route; and
a satellite route interface for converting a format of said satellite traffic flow from said routing unit protocol to a satellite protocol used for communication along said satellite route.
8. The specialized forwarding unit of claim 7, further comprising traffic monitoring means for characterizing said traffic flow, wherein said traffic monitoring means comprises
a traffic recognition rules unit for storing traffic recognition rules.
9. A method for providing broadband services to a plurality of end-user systems connected to a customer access system, comprising the following steps:
combining data received from said end-user systems into an upstream traffic flow;
monitoring the upstream traffic flow to measure current performance data; and
splitting said upstream traffic flow into a terrestrial traffic flow and a satellite traffic flow for routing said terrestrial traffic flow along a terrestrial route, and said satellite traffic flow along a satellite route based upon traffic recognition rules, priority levels of the traffic recognition rules, and the measured current performance data;
wherein said terrestrial and said satellite routes connect a specialized forwarding unit to a respective far-end specialized unit.
10. The method of claim 9, further comprising the step of monitoring said terrestrial and satellite traffic flows at said respective terrestrial and satellite interfaces for collecting current traffic performance data.
11. The method of claim 9, further comprising updating said traffic recognition rules.
12. The method of claim 9, further comprising the following steps:
converting the format of said terrestrial traffic flow from a routing unit protocol to a terrestrial protocol used for communication along said terrestrial route; and
converting the format of said satellite traffic flow from said routing unit protocol to a satellite protocol used for communication along said satellite route.
13. The method of claim 9, further comprising:
combining a downstream terrestrial traffic flow received via said terrestrial route with a downstream satellite traffic flow received via said satellite route into a downstream traffic flow; and
distributing said downstream traffic flow to said plurality of end-user systems.
14. A hybrid satellite-terrestrial network having a core end and an access end that provides broadband services to a plurality of end-user systems, comprising:
satellite network links,
terrestrial network links,
an access multiplexer for combining data received from said end-user systems into an upstream traffic flow and distributing downstream data to said end-user systems,
a first specialized forwarding unit at the access end of the network for splitting said upstream traffic from said access multiplexer to the core of the network via said satellite network links and said terrestrial network links and merging downstream data from the core of the network to said access multiplexer via said satellite network links and said terrestrial network links, the first specialized forwarding unit comprising:
a first link monitor that measures current performance data for the upstream traffic; and
a first traffic splitting unit that controls separation of said upstream traffic received from said access multiplexer, into a terrestrial traffic flow and a satellite traffic flow based upon traffic recognition rules, priority levels of the traffic recognition rules, and the measured current performance data, and
a second specialized forwarding unit at the core end of the network for splitting said downstream traffic from the core of the network to said access multiplexer via said satellite network links and said terrestrial network links and merging upstream data from said access multiplexer via said satellite network links to said terrestrial network links second specialized forwarding unit comprising:
a second link monitor that measures current performance data for the downstream traffic; and
a second traffic splitting unit that controls separation of said downstream traffic flow into a terrestrial traffic flow and a satellite traffic flow based upon traffic recognition rules, priority levels of the traffic recognition rules, and the measured current performance data.
15. The hybrid satellite-terrestrial networking system of claim 14, wherein said first specialized forwarding unit further comprises:
a terrestrial route interface for converting the format of said terrestrial traffic flow from a forwarding unit protocol to a terrestrial protocol used for communication along said terrestrial route;
a satellite route interface for converting the format of said satellite traffic flow from said forwarding unit protocol to a satellite protocol used for communication along said satellite route.
16. The hybrid satellite-terrestrial networking system of claim 15, further comprising
a traffic recognition rules unit for storing said traffic recognition rules.
17. The hybrid satellite-terrestrial networking system of claim 15, wherein said first link monitor injects test data into the upstream traffic to provided a basis for its assessment of current performance data.
18. The hybrid satellite-terrestrial networking system of claim 15, further comprising a management interface for updating said traffic recognition rules.
19. A method for providing improving the performance of broadband networks using parallel satellite and terrestrial routes, comprising the following steps:
monitoring an upstream traffic flow to measure current performance data
splitting an inbound traffic flow into an outbound terrestrial traffic flow and an outbound satellite traffic flow based upon traffic recognition rules, priority levels of the traffic recognition rules, and the measured current performance data;
forwarding said outbound terrestrial traffic flow along said terrestrial route, and said outbound satellite traffic flow along said satellite route; and
merging said inbound terrestrial traffic flow and said inbound satellite traffic flow.
20. The method of claim 19, further comprising the following step: storing and updating said traffic recognition rules.
21. The method of claim 19, further comprising the following step: using knowledge of the H.323 or Session Initiation Protocol (SIP) protocols to identify Internet Protocol (IP) flows based on their behavior.
22. The method of claim 19, further comprising updating said traffic recognition rules.
23. The method of claim 19, further comprising the fol1owing steps:
converting the format of said terrestrial traffic flow to and from a forwarding unit protocol to a terrestrial protocol used for communication along said terrestrial route; and
converting the format of said satellite traffic flow to and from said forwarding unit protocol to a satellite protocol used for communication along said satellite route.
US10935457 2004-09-08 2004-09-08 Rural broadband hybrid satellite/terrestrial solution Active 2026-10-28 US7477597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10935457 US7477597B2 (en) 2004-09-08 2004-09-08 Rural broadband hybrid satellite/terrestrial solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10935457 US7477597B2 (en) 2004-09-08 2004-09-08 Rural broadband hybrid satellite/terrestrial solution
EP20050300727 EP1635482B1 (en) 2004-09-08 2005-09-08 Rural broadband hybrid satellite/terrestrial network architecture
CN 200510102533 CN1747353B (en) 2004-09-08 2005-09-08 Rural broadband hybrid satellite/terrestrial network architecture

Publications (2)

Publication Number Publication Date
US20060050736A1 true US20060050736A1 (en) 2006-03-09
US7477597B2 true US7477597B2 (en) 2009-01-13

Family

ID=35134599

Family Applications (1)

Application Number Title Priority Date Filing Date
US10935457 Active 2026-10-28 US7477597B2 (en) 2004-09-08 2004-09-08 Rural broadband hybrid satellite/terrestrial solution

Country Status (3)

Country Link
US (1) US7477597B2 (en)
EP (1) EP1635482B1 (en)
CN (1) CN1747353B (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043759A1 (en) * 2000-10-31 2004-03-04 Mcgovern David Telecommunications systems
US20070268367A1 (en) * 2006-05-11 2007-11-22 Eran Agmon Video Surveillance With Satellite Communication Access
US20080144713A1 (en) * 2006-12-13 2008-06-19 Viasat, Inc. Acm aware encoding systems and methods
US20090041100A1 (en) * 2006-12-13 2009-02-12 Viasat, Inc. Link aware mobile data network
US20090060033A1 (en) * 2006-12-13 2009-03-05 Viasat, Inc. Predictive adaptive coding and modulation
US20090060086A1 (en) * 2006-12-13 2009-03-05 Viasat, Inc. Terminal aware multicasting
US20090073876A1 (en) * 2006-12-13 2009-03-19 Viasat, Inc. Adaptive coding and modulation aware network load balancing
US20090285150A1 (en) * 2008-05-19 2009-11-19 Hughes Network Systems, Llc Method and system for providing a satellite interface to support mobile communication services
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US20100260043A1 (en) * 2006-12-13 2010-10-14 Viasat, Inc. Video and data network load balancing
US20100260259A1 (en) * 2006-12-13 2010-10-14 Viasat, Inc. Acm and fixed coding and modulation of hierarchical layers
US20100260254A1 (en) * 2006-12-13 2010-10-14 Viasat, Inc. Multiple transmission paths for hierarchical layers
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
WO2011150416A1 (en) * 2010-05-28 2011-12-01 Telcordia Technologies, Inc. Context aware adaptive switching in reconfigurable low earth orbit satellite networks
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8395993B2 (en) 2006-12-13 2013-03-12 Viasat, Inc. Video and data network load balancing with video placeholder
US8411571B2 (en) 2006-12-13 2013-04-02 Viasat, Inc. Video and data network load balancing with video drop
US20130138539A1 (en) * 2008-08-21 2013-05-30 Pickpoint Corporation Modular hangers for product storage and retrieval system
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9419702B2 (en) 2009-04-17 2016-08-16 Viasat, Inc. Layer-2 extension services
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9432896B2 (en) 2009-04-17 2016-08-30 Viasat, Inc. Mobility across satellite beams using L2 connectivity
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9774385B2 (en) 2009-04-17 2017-09-26 Viasat, Inc. Layer-2 connectivity from switch to access node/gateway
US20170289625A1 (en) * 2009-03-03 2017-10-05 Viasat Inc. Space shifting over forward satellite communication channels
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050271083A1 (en) * 2004-06-02 2005-12-08 Ses Americom, Inc. High-speed Ethernet satellite bridge
US7636309B2 (en) * 2005-06-28 2009-12-22 Alcatel-Lucent Usa Inc. Multi-path routing using intra-flow splitting
US20070110035A1 (en) * 2005-11-14 2007-05-17 Broadcom Corporation, A California Corporation Network nodes cooperatively routing traffic flow amongst wired and wireless networks
US8270413B2 (en) * 2005-11-28 2012-09-18 Cisco Technology, Inc. Method and apparatus for self-learning of VPNS from combination of unidirectional tunnels in MPLS/VPN networks
US20070263616A1 (en) * 2006-05-15 2007-11-15 Castro Paul C Increasing link capacity via traffic distribution over multiple WI-FI access points
DE102006028686B3 (en) * 2006-06-22 2007-07-12 Siemens Ag Data transmitting method for use between railway vehicle and central control station, involves automatically activating transmission path for time period in which wide-band transmission path is provided
CN101573893B (en) 2006-10-03 2013-03-20 维尔塞特公司 Upstream resource allocation for satellite communications
WO2008077061A3 (en) * 2006-12-19 2009-04-16 Viasat Inc Use of terrestrial channels to augment the number of satellite channels used for low latency traffic
US9276664B2 (en) * 2007-04-30 2016-03-01 Dish Network Corporation Mobile interactive satellite services
US8687544B2 (en) * 2008-01-24 2014-04-01 Samsung Electronics Co., Ltd. Apparatus for distributing data traffic in heterogeneous wireless networks
US8457682B2 (en) 2008-03-04 2013-06-04 Dbsd Satellite Services G.P. Method and system for integrated satellite assistance services
US20100054177A1 (en) * 2008-09-02 2010-03-04 Serdar Sahin Method and system of using ip multimedia system for call setup in mobile satellite systems
US8332528B2 (en) * 2008-11-18 2012-12-11 Agere Systems Llc Personal broadcast and content delivery engine
CN101674529B (en) 2009-03-11 2011-06-29 南京熊猫汉达科技有限公司 Method for realizing fully automatic configuration of broadband video conference broadcasting service based on earth satellite station
US8274981B2 (en) * 2009-04-17 2012-09-25 Viasat, Inc. Acceleration through a network tunnel
US8345650B2 (en) * 2009-04-17 2013-01-01 Viasat, Inc. Access node/gateway to access node/gateway layer-2 connectivity (end-to-end)
US9276663B2 (en) 2009-04-17 2016-03-01 Viasat, Inc. Layer-2 connectivity from switch to access node/gateway
WO2010121221A1 (en) * 2009-04-17 2010-10-21 Viasat, Inc. Multi-satellite architecture
US8279748B2 (en) * 2009-04-17 2012-10-02 Viasat, Inc. Core-based satellite network architecture
US8661118B2 (en) * 2010-03-08 2014-02-25 Microsoft Corporation Detection of end-to-end transport quality
EP2464031A1 (en) 2010-12-08 2012-06-13 SES Astra S.A. Satellite communication system with sub-distribution architecture
CN102624631B (en) * 2012-04-06 2015-05-27 航天恒星科技有限公司 Feedback QoS (quality of service) safeguard system and safeguard method for satellite communication system
CN102624632B (en) * 2012-04-06 2015-04-22 航天恒星科技有限公司 System and method for ensuring end-to-end QoS (Quality of Service) of satellite communication system
US20160028472A1 (en) * 2013-03-22 2016-01-28 Intelsat Corporation Method and system for dynamic sharing of satellite bandwidth by multiple sites with concurrent terrestrial transmission
CN104427290A (en) * 2013-09-11 2015-03-18 航天信息股份有限公司 Processing method and processing system for audio/video data
CN105723784A (en) * 2014-03-03 2016-06-29 柏思科技有限公司 Methods and systems for transmitting and receiving data through tunnel groups
CN104683013A (en) * 2015-02-17 2015-06-03 梁旭文 Geosynchronous orbit satellite communication access system and access method
CN104767559B (en) * 2015-04-07 2017-10-24 苏州大学 A method in a distributed routing network temporary networking scenario constellation
CN104734770B (en) * 2015-04-07 2017-11-21 苏州大学 Context-based distributed network routing method of the constellation
CN104994322A (en) * 2015-06-30 2015-10-21 深圳市九洲电器有限公司 Television signal processing device and television set top box
US20180063760A1 (en) * 2016-08-29 2018-03-01 At&T Intellectual Property I, L.P. Methods and system for providing multiple video content streams over different communication networks
CN107229995A (en) * 2017-05-24 2017-10-03 腾讯科技(深圳)有限公司 Game service amount prediction method and device and computer readable storage medium

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317566A (en) * 1993-08-18 1994-05-31 Ascom Timeplex Trading Ag Least cost route selection in distributed digital communication networks
US5953319A (en) * 1995-09-29 1999-09-14 Amsc Subsidiary Corporation Wide area mobile communication networks with multiple routing mode options
US6115750A (en) * 1994-06-08 2000-09-05 Hughes Electronics Corporation Method and apparatus for selectively retrieving information from a source computer using a terrestrial or satellite interface
US6215772B1 (en) * 1997-11-26 2001-04-10 International Business Machines Corporation Dynamic parameter estimation for efficient transport of HPR data on IP
US6289389B1 (en) 1997-06-03 2001-09-11 Lextron Systems, Inc. Enhanced integrated data delivery system
EP1202507A1 (en) 2000-10-31 2002-05-02 BRITISH TELECOMMUNICATIONS public limited company Telecommunications systems
EP1204244A1 (en) 2000-11-02 2002-05-08 Mitsubishi Denki Kabushiki Kaisha Internet system capable of automatically selecting suitable channels
US6493556B1 (en) 1999-08-30 2002-12-10 Motorola, Inc. Apparatus and method for message routing using disparate communications networks
US20030003815A1 (en) * 2000-12-20 2003-01-02 Yoshiko Yamada Communication satellite/land circuits selection communications system
US20030032391A1 (en) 2001-08-09 2003-02-13 Craig Schweinhart Low latency handling of transmission control protocol messages in a broadband satellite communications system
US6522865B1 (en) 1999-08-10 2003-02-18 David D. Otten Hybrid satellite communications system
US20030104810A1 (en) 2001-11-30 2003-06-05 Matthias Kindler Telecommunication system for the bidirectional transmission of data and voice signals
US20030109220A1 (en) 2001-12-12 2003-06-12 Hadinger Peter J. Communication satellite adaptable links with a ground-based wideband network
US6591084B1 (en) 1998-04-27 2003-07-08 General Dynamics Decision Systems, Inc. Satellite based data transfer and delivery system
US6639898B1 (en) * 1999-05-25 2003-10-28 Motient Communications, Inc. Wide area mobile communication networks with multiple routing mode options
US20040071129A1 (en) * 2002-10-11 2004-04-15 Doerr Bradley S. Real-time protocol (RTP) flow analysis using network processor
US6731931B1 (en) * 1998-06-24 2004-05-04 Ico Services Ltd. Idle mode measurement
US6813259B1 (en) * 1997-07-15 2004-11-02 Viasat, Inc. Method and apparatus for minimizing delay variance via time divided transmissions
US6829221B1 (en) * 1999-12-27 2004-12-07 Nortel Networks Limited Border gateway protocol manager and method of managing the selection of communication links

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289389A (en) * 1965-03-17 1966-12-06 Herrera Arsenio Saddle cincha billet holder

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317566A (en) * 1993-08-18 1994-05-31 Ascom Timeplex Trading Ag Least cost route selection in distributed digital communication networks
US6115750A (en) * 1994-06-08 2000-09-05 Hughes Electronics Corporation Method and apparatus for selectively retrieving information from a source computer using a terrestrial or satellite interface
US5953319A (en) * 1995-09-29 1999-09-14 Amsc Subsidiary Corporation Wide area mobile communication networks with multiple routing mode options
US6289389B1 (en) 1997-06-03 2001-09-11 Lextron Systems, Inc. Enhanced integrated data delivery system
US6813259B1 (en) * 1997-07-15 2004-11-02 Viasat, Inc. Method and apparatus for minimizing delay variance via time divided transmissions
US6215772B1 (en) * 1997-11-26 2001-04-10 International Business Machines Corporation Dynamic parameter estimation for efficient transport of HPR data on IP
US20030203717A1 (en) 1998-04-27 2003-10-30 Chuprun Jeffery Scott Satellite based data transfer and delivery system
US6591084B1 (en) 1998-04-27 2003-07-08 General Dynamics Decision Systems, Inc. Satellite based data transfer and delivery system
US6731931B1 (en) * 1998-06-24 2004-05-04 Ico Services Ltd. Idle mode measurement
US6639898B1 (en) * 1999-05-25 2003-10-28 Motient Communications, Inc. Wide area mobile communication networks with multiple routing mode options
US6522865B1 (en) 1999-08-10 2003-02-18 David D. Otten Hybrid satellite communications system
US6493556B1 (en) 1999-08-30 2002-12-10 Motorola, Inc. Apparatus and method for message routing using disparate communications networks
US6829221B1 (en) * 1999-12-27 2004-12-07 Nortel Networks Limited Border gateway protocol manager and method of managing the selection of communication links
EP1202507A1 (en) 2000-10-31 2002-05-02 BRITISH TELECOMMUNICATIONS public limited company Telecommunications systems
EP1204244A1 (en) 2000-11-02 2002-05-08 Mitsubishi Denki Kabushiki Kaisha Internet system capable of automatically selecting suitable channels
US20030003815A1 (en) * 2000-12-20 2003-01-02 Yoshiko Yamada Communication satellite/land circuits selection communications system
US20030032391A1 (en) 2001-08-09 2003-02-13 Craig Schweinhart Low latency handling of transmission control protocol messages in a broadband satellite communications system
US20030104810A1 (en) 2001-11-30 2003-06-05 Matthias Kindler Telecommunication system for the bidirectional transmission of data and voice signals
US20030109220A1 (en) 2001-12-12 2003-06-12 Hadinger Peter J. Communication satellite adaptable links with a ground-based wideband network
US20040071129A1 (en) * 2002-10-11 2004-04-15 Doerr Bradley S. Real-time protocol (RTP) flow analysis using network processor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Allman, M., et al., Enhancing TCP Over Satellite Channels Using Standard Mechanisms, Network Working Group, Jan. 1999.
Baras et al., "Dynamic Routing In Hybrid Networks With Integrated Voice And Data Traffic", American Institute of Physics, Jan. 8, 1995, pp. 21-26, No. 325, NY, NY.
Jacobson, V., et al., TCP Extensions for High Performance, Network Working Group, May 1992.
Mathis, M., et al., TCP Selective Acknowledgement Options, Network Working Group, Oct. 1996.
Mogul, J., et al., Path MTU Discovery, Network Working Group, Nov. 1990.

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043759A1 (en) * 2000-10-31 2004-03-04 Mcgovern David Telecommunications systems
US20070268367A1 (en) * 2006-05-11 2007-11-22 Eran Agmon Video Surveillance With Satellite Communication Access
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8411572B2 (en) 2006-12-13 2013-04-02 Viasat, Inc. ACM and fixed coding and modulation of hierarchical layers
US20090060086A1 (en) * 2006-12-13 2009-03-05 Viasat, Inc. Terminal aware multicasting
US20090060033A1 (en) * 2006-12-13 2009-03-05 Viasat, Inc. Predictive adaptive coding and modulation
US20100260254A1 (en) * 2006-12-13 2010-10-14 Viasat, Inc. Multiple transmission paths for hierarchical layers
US20090041100A1 (en) * 2006-12-13 2009-02-12 Viasat, Inc. Link aware mobile data network
US20100260043A1 (en) * 2006-12-13 2010-10-14 Viasat, Inc. Video and data network load balancing
US20100260259A1 (en) * 2006-12-13 2010-10-14 Viasat, Inc. Acm and fixed coding and modulation of hierarchical layers
US20080144713A1 (en) * 2006-12-13 2008-06-19 Viasat, Inc. Acm aware encoding systems and methods
US8395993B2 (en) 2006-12-13 2013-03-12 Viasat, Inc. Video and data network load balancing with video placeholder
US7944872B2 (en) * 2006-12-13 2011-05-17 Viasat, Inc. Adaptive coding and modulation aware network load balancing
US7961665B2 (en) 2006-12-13 2011-06-14 Viasat, Inc. Terminal aware multicasting
US9036716B2 (en) 2006-12-13 2015-05-19 Viasat, Inc. Link aware mobile data network
US20090073876A1 (en) * 2006-12-13 2009-03-19 Viasat, Inc. Adaptive coding and modulation aware network load balancing
US8576858B2 (en) 2006-12-13 2013-11-05 Viasat, Inc. Multiple transmission paths for hierarchical layers
US8456986B2 (en) 2006-12-13 2013-06-04 Viasat, Inc. Video and data network load balancing
US8358690B2 (en) 2006-12-13 2013-01-22 Viasat, Inc. Predictive adaptive coding and modulation
US8411571B2 (en) 2006-12-13 2013-04-02 Viasat, Inc. Video and data network load balancing with video drop
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8576767B2 (en) * 2008-05-19 2013-11-05 Hughes Network Systems, Llc Method and system for providing a satellite interface to support mobile communication services
US20090285150A1 (en) * 2008-05-19 2009-11-19 Hughes Network Systems, Llc Method and system for providing a satellite interface to support mobile communication services
US20130138539A1 (en) * 2008-08-21 2013-05-30 Pickpoint Corporation Modular hangers for product storage and retrieval system
US9619777B2 (en) * 2008-08-21 2017-04-11 Maxor National Pharmacy Services Corp. Modular hangers for product storage and retrieval system
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US20170289625A1 (en) * 2009-03-03 2017-10-05 Viasat Inc. Space shifting over forward satellite communication channels
US9774385B2 (en) 2009-04-17 2017-09-26 Viasat, Inc. Layer-2 connectivity from switch to access node/gateway
US9800322B2 (en) 2009-04-17 2017-10-24 Viasat, Inc. Mobility across satellite beams using L2 connectivity
US9419702B2 (en) 2009-04-17 2016-08-16 Viasat, Inc. Layer-2 extension services
US9887766B2 (en) 2009-04-17 2018-02-06 Viasat, Inc. Layer-2 extension services
US9432896B2 (en) 2009-04-17 2016-08-30 Viasat, Inc. Mobility across satellite beams using L2 connectivity
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US8730864B2 (en) * 2010-05-28 2014-05-20 Telcordia Technologies, Inc. Context aware adaptive switching in reconfigurable low earth orbit satellite networks
WO2011150416A1 (en) * 2010-05-28 2011-12-01 Telcordia Technologies, Inc. Context aware adaptive switching in reconfigurable low earth orbit satellite networks
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system

Also Published As

Publication number Publication date Type
CN1747353A (en) 2006-03-15 application
EP1635482B1 (en) 2012-01-11 grant
EP1635482A3 (en) 2008-02-06 application
US20060050736A1 (en) 2006-03-09 application
CN1747353B (en) 2013-04-10 grant
EP1635482A2 (en) 2006-03-15 application

Similar Documents

Publication Publication Date Title
US6968394B1 (en) Asymmetric satellite-based internet service
US7016973B1 (en) Apparatus and methods for providing translucent proxies in a communications network
US6058422A (en) Wireless internet access system
US20060187942A1 (en) Packet forwarding apparatus and communication bandwidth control method
US8457027B2 (en) System and method for dynamic distributed communication
US6948088B1 (en) Methods and apparatus for efficient transaction processing on redundant systems
US6681116B1 (en) Communication system
US20020004834A1 (en) Interception method and system for compensating disadvantageous characteristics of a communication protocol
US6584082B1 (en) Apparatus, method and article of manufacture for transmitting data over a satellite
US7650379B2 (en) Method for channel congestion management
US6831902B1 (en) Routing information packets in a distributed network
US20070124488A1 (en) Vertical Services Integration Enabled Content Distribution Mechanism
US6993353B2 (en) Cable data service method
US6065061A (en) Internet protocol based network architecture for cable television access with switched fallback
US6570851B1 (en) Receiver driven differentiated service marking for unicast and multicast applications
US20020133618A1 (en) Tunneling system for a cable data service
US20020131403A1 (en) Transmit and receive system for a cable data service
US20040022222A1 (en) Wireless metropolitan area network system and method
US20020069292A1 (en) Method and system for sending information on an extranet
US6961539B2 (en) Low latency handling of transmission control protocol messages in a broadband satellite communications system
US6338131B1 (en) Network system with TCP/IP ACK reduction
US6078577A (en) System and method for packet data communication
US6934255B1 (en) Internet over satellite apparatus
US20020009060A1 (en) Satellite transceiver card for bandwidth on demand applications
US20080219266A1 (en) Routing paths onboard satellite with reference terminal functionality

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALCATEL, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SEGEL, JONATHAN DEAN;REEL/FRAME:015773/0974

Effective date: 20040908

AS Assignment

Owner name: ALCATEL LUCENT, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:ALCATEL;REEL/FRAME:021919/0217

Effective date: 20061130

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CREDIT SUISSE AG, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:LUCENT, ALCATEL;REEL/FRAME:029821/0001

Effective date: 20130130

Owner name: CREDIT SUISSE AG, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALCATEL LUCENT;REEL/FRAME:029821/0001

Effective date: 20130130

AS Assignment

Owner name: ALCATEL LUCENT, FRANCE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:033868/0001

Effective date: 20140819

FPAY Fee payment

Year of fee payment: 8