US7460997B1 - Method and system for preselection of suitable units for concatenative speech - Google Patents
Method and system for preselection of suitable units for concatenative speech Download PDFInfo
- Publication number
- US7460997B1 US7460997B1 US11/466,229 US46622906A US7460997B1 US 7460997 B1 US7460997 B1 US 7460997B1 US 46622906 A US46622906 A US 46622906A US 7460997 B1 US7460997 B1 US 7460997B1
- Authority
- US
- United States
- Prior art keywords
- triphone
- phoneme
- cost
- database
- units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 30
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 30
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 description 5
- 238000010606 normalization Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 4
- 241000282326 Felis catus Species 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001944 accentuation Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/06—Elementary speech units used in speech synthesisers; Concatenation rules
- G10L13/07—Concatenation rules
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
- G10L2015/022—Demisyllables, biphones or triphones being the recognition units
Definitions
- the present invention relates to a system and method for increasing the speed of a unit selection synthesis system for concatenative speech synthesis and, more particularly, to predetermining a universe of phonemes—selected on the basis of their triphone context—that are potentially used in speech. Real-time selection is then performed from the created phoneme universe.
- a current approach to concatenative speech synthesis is to use a very large database for recorded speech that has been segmented and labeled with prosodic and spectral characteristics, such as the fundamental frequency (F 0 ) for voiced speech, the energy or gain of the signal, and the spectral distribution of the signal (i.e., how much of the signal is present at any given frequency).
- the database contains multiple instances of speech sounds. This multiplicity permits the possibility of having units in the database that are much less stylized than would occur in a diphone database (a “diphone” being defined as the second half of one phoneme followed by the initial half of the following phoneme, a diphone database generally containing only one instance of any given diphone). Therefore, the possibility of achieving natural speech is enhanced with the “large database” approach.
- this database technique relies on being able to select the “best” units from the database—that is, the units that are closest in character to the prosodic specification provided by the speech synthesis system, and that have a low spectral mismatch at the concatenation points between phonemes.
- the “best” sequence of units may be determined by associating a numerical cost in two different ways. First, a “target cost” is associated with the individual units in isolation, where a lower cost is associated with a unit that has characteristics (e.g., F 0 , gain, spectral distribution) relatively close to the unit being synthesized, and a higher cost is associated with units having a higher discrepancy with the unit being synthesized.
- characteristics e.g., F 0 , gain, spectral distribution
- a second cost referred to as the “concatenation cost” is associated with how smoothly two contiguous units are joined together. For example, if the spectral mismatch between units is poor, perhaps even corresponding to an audible “click”, there will be a higher concatenation cost.
- a set of candidate units for each position in the desired sequence can be formulated, with associated target costs and concatenative costs. Estimating the best (lowest-cost) path through the network is then performed using a Viterbi search. The chosen units may then be concatenated to form one continuous signal, using a variety of different techniques.
- the present invention relates to a system and method for increasing the speed of a unit selection synthesis system for concatenative speech and, more particularly, to predetermining a universe of phonemes in the speech database, selected on the basis of their triphone context, that are potentially used in speech, and performing real-time selection from this precalculated phoneme universe.
- a triphone database is created where for any given triphone context required for synthesis, there is a complete list, precalculated, of all the units (phonemes) in the database that can possibly be used in that triphone context.
- this list is (in most cases) a significantly smaller set of candidates units than the complete set of units of that phoneme type.
- the number of phonemes in the preselection list will vary and may, at one extreme, include all possible phonemes of a particular type. There may also arise a situation where the unit to be synthesized (plus context) does not match any of the precalculated triphones. In this case, the conventional single phoneme approach of the prior art may be employed, using the complete set of phonemes of a given type. It is presumed that these instances will be relatively infrequent.
- FIG. 1 illustrates an exemplary speech synthesis system for utilizing the unit (e.g., phoneme) selection arrangement of the present invention
- FIG. 2 illustrates, in more detail, an exemplary text-to-speech synthesizer that may be used in the system of FIG. 1 ;
- FIG. 3 illustrates an exemplary “phoneme” sequence and the various costs associated with this sequence
- FIG. 4 contains an illustration of an exemplary unit (phoneme) database useful as the unit selection database in the system of FIG. 1 ;
- FIG. 5 is a flowchart illustrating the triphone cost precalculation process of the present invention, where the top N units are selected on the basis of cost (the top 50 units for any 5-phone sequence containing a given triphone being guaranteed to be present); and
- FIG. 6 is a flowchart illustrating the unit (phoneme) selection process of the present invention, utilizing the precalculated triphone-indexed list of units (phonemes).
- System 100 includes a text-to-speech synthesizer 104 that is connected to a data source 102 through an input link 108 , and is likewise connected to a data sink 106 through an output link 110 .
- Text-to-speech synthesizer 104 functions to convert the text data either to speech data or physical speech.
- synthesizer 104 converts the text data by first converting the text into a stream of phonemes representing the speech equivalent of the text, then processes the phoneme stream to produce an acoustic unit stream representing a clearer and more understandable speech representation.
- Synthesizer 104 then converts the acoustic unit stream to speech data or physical speech.
- database units phonemes accessed according to their triphone context, are processed to speed up the unit selection process.
- Data source 102 provides text-to-speech synthesizer 104 , via input link 108 , the data that represents the text to be synthesized.
- the data representing the text of the speech can be in any format, such as binary, ASCII, or a word processing file.
- Data source 102 can be any one of a number of different types of data sources, such as a computer, a storage device, or any combination of software and hardware capable of generating, relaying, or recalling from storage, a textual message or any information capable of being translated into speech.
- Data sink 106 receives the synthesized speech from text-to-speech synthesizer 104 via output link 110 .
- Data sink 106 can be any device capable of audibly outputting speech, such as a speaker system for transmitting mechanical sound waves, or a digital computer, or any combination of hardware and software capable of receiving, relaying, storing, sensing or perceiving speech sound or information representing speech sounds.
- Links 108 and 110 can be any suitable device or system for connecting data source 102 /data sink 106 to synthesizer 104 .
- Such devices include a direct serial/parallel cable connection, a connection over a wide area network (WAN) or a local area network (LAN), a connection over an intranet, the Internet, or any other distributed processing network or system.
- input link 108 or output link 110 may be software devices linking various software systems.
- FIG. 2 contains a more detailed block diagram of text-to-speech synthesizer 104 of FIG. 1 .
- Synthesizer 104 comprises, in this exemplary embodiment, a text normalization device 202 , syntactic parser device 204 , word pronunciation module 206 , prosody generation device 208 , an acoustic unit selection device 210 , and a speech synthesis back-end device 212 .
- textual data is received on input link 108 and first applied as an input to text normalization device 202 .
- Text normalization device 202 parses the text data into known words and further converts abbreviations and numbers into words to produce a corresponding set of normalized textual data.
- syntactic parser 204 performs grammatical analysis of a sentence to identify the syntactic structure of each constituent phrase and word. For example, syntactic parser 204 will identify a particular phrase as a “noun phrase” or a “verb phrase” and a word as a noun, verb, adjective, etc. Syntactic parsing is important because whether the word or phrase is being used as a noun or a verb may affect how it is articulated.
- speech synthesizer 104 may assign the word “cat” a different sound duration and intonation pattern than “ran” because of its position and function in the sentence structure.
- word pronunciation module 206 orthographic characters used in the normal text are mapped into the appropriate strings of phonetic segments representing units of sound and speech. This is important since the same orthographic strings may have different pronunciations depending on the word in which the string is used. For example, the orthographic string “gh” is translated to the phoneme /f/ in “tough”, to the phoneme /g/ in “ghost”, and is not directly realized as any phoneme in “though”. Lexical stress is also marked.
- “record” has a primary stress on the first syllable if it is a noun, but has the primary stress on the second syllable if it is a verb.
- the output from word pronunciation module 206 in the form of phonetic segments, is then applied as an input to prosody determination device 208 .
- Prosody determination device 208 assigns patterns of timing and intonation to the phonetic segment strings.
- the timing pattern includes the duration of sound for each of the phonemes. For example, the “re” in the verb “record” has a longer duration of sound than the “re” in the noun “record”.
- the intonation pattern concerning pitch changes during the course of an utterance.
- Prosody may be generated in various ways including assigning an artificial accent or providing for sentence context. For example, the phrase “This is a test! ” will be spoken differently from “This is a test? ”.
- Prosody generating devices are well-known to those of ordinary skill in the art and any combination of hardware, software, firmware, heuristic techniques, databases, or any other apparatus or method that performs prosody generation may be used.
- the phonetic output and accompanying prosodic specification from prosody determination device 208 is then converted, using any suitable, well-known technique, into unit (phoneme) specifications.
- the phoneme data is then sent to acoustic unit selection device 210 where the phonemes and characteristic parameters are transformed into a stream of acoustic units that represent speech.
- An “acoustic unit” can be defined as a particular utterance of a given phoneme. Large numbers of acoustic units, as discussed below in association with FIG. 3 , may all correspond to a single phoneme, each acoustic unit differing from one another in terms of pitch, duration, and stress (as well as other phonetic or prosodic qualities).
- a triphone preselection cost database 214 is accessed by unit selection device 210 to provide a candidate list of units, based on a triphone context, that are most likely to be used in the synthesis process.
- Unit selection device 210 then performs a search on this candidate list (using a Viterbi search, for example), to find the “least cost” unit that best matches the phoneme to be synthesized.
- the acoustic unit stream output from unit selection device 210 is then sent to speech synthesis back-end device 212 which converts the acoustic unit stream into speech data and transmits (referring to FIG. 1 ) the speech data to data sink 106 over output link 110 .
- FIG. 3 contains an example of a phoneme string 302 - 310 for the word “cat” with an associated set of characteristic parameters 312 - 320 (for example, F 0 , duration, etc.) assigned, respectively, to each phoneme and a separate list of acoustic unit groups 322 , 324 and 326 for each utterance.
- Each acoustic unit group includes at least one acoustic unit 328 and each acoustic unit 328 includes an associated target cost 330 , as defined above.
- a concatenation cost 332 is assigned between each acoustic unit 328 in a given group and an acoustic units 332 of the immediately subsequent group.
- the unit selection process was performed on a phoneme-by-phoneme basis (or, in more robust systems, on half-phoneme—by—half-phoneme basis) for every instance of each unit contained in the speech database.
- each of its acoustic unit realizations 328 in speech database 324 would be processed to determine the individual target costs 330 , compared to the text to be synthesized.
- phoneme-by-phoneme processing (during run time) would also be required for /k/ phoneme 304 and /t/ phoneme 308 . Since there are many occasions of the phoneme / ⁇ / that would not be preceded by /k/ and/or followed by /t/, there were many target costs in the prior art systems that were likely to be unnecessarily calculated.
- a “triphone” database (illustrated as database 214 in FIG. 2 ) is created where lists of units (phonemes) that might be used in any given triphone context are stored (and indexed using a triphone-based key) and can be accessed during the process of unit selection. For the English language, there are approximately 10,000 common triphones, so the creation of such a database is not an insurmountable task.
- each possible / ⁇ / in the database is examined to determine how well it (and the surrounding phonemes that occur in the speech from which it was extracted) matches the synthesis specifications, as shown in FIG. 4 .
- all possible costs can be examined that may be calculated at run-time for a particular phoneme in a triphone context.
- N the number of possible costs
- the preselection cost for every possible 5-phone combination u a -u 1 -u 2 -u 3 -u b that contains this triphone is calculated. It is to be noted that this process is also useful in systems that utilize half-phonemes, as long as “phoneme” spacing is maintained in creating each triphone cost that is calculated.
- one sequence would be k 1 - ⁇ 1 -t 1 and another would be k 2 - ⁇ 2 -t 2 .
- This unit spacing is used to avoid including redundant information in the cost functions (since the identity of one of the adjacent half-phones is already a known quantity).
- the costs for all sequences u a -k 1 - ⁇ 1 -t 1 -u b are calculated, where u a and u b are allowed to vary over the entire phoneme set.
- the costs for all sequences u a -k 2 - ⁇ 2 -t 2 -u b are calculated, and so on for each possible triphone sequence.
- the purpose of calculating the costs offline is solely to determine which units can potentially play a role in the subsequent synthesis, and which can be safely ignored. It is to be noted that the specific relevant costs are re-calculated at synthesis time. This re-calculation is necessary, since a component of the cost is dependent on knowledge of the particular synthesis specification, available only at run time.
- PreslectSet ⁇ ( u 1 , u 2 , u 3 ) ⁇ a ⁇ PH ⁇ ⁇ b ⁇ PH ⁇ CC n ⁇ ( u a , u 1 , u 2 , u 3 , u b )
- CC n is a function for calculating the set of units with the lowest n context costs
- CC n is a function which calculated the n-best matching units in the database for the given context.
- PH is defined as the set of unit types.
- the value of “n” refers to the minimum number of candidates that are needed for any given sequence of the form u a -u 1 -u 2 -u 3 -u b .
- FIG. 5 shows, in simplified form, a flowchart illustrating the process used to populate the triphone cost database used in the system of the present invention.
- the process is initiated at block 500 and selects a first triphone u 1 -u 2 -u 3 (block 502 ) for which preselection costs will be calculated.
- the process then proceeds to block 504 which selects a first pair of phonemes to be to the “left” u a and “right” u b phonemes of the previously selected triphone.
- the concatenation costs associated with this 5-phone grouping are calculated (block 506 ) and stored in a database with this particular triphone identity (block 508 ).
- the process stops and the triphone database is defined as completed. Otherwise, the process returns to step 502 and selects another triphone for evaluation, using the same method. The process will continue until all possible triphone combinations have been reviewed and the costs calculated. It is an advantage of the present invention that this process is performed only once, prior to “run time”, so that during the actual synthesis process (as illustrated in FIG. 6 ), the unit selection process uses this created triphone database.
- FIG. 6 is a flowchart of an exemplary speech synthesis system.
- a first step is to receive the input text (block 610 ) and apply it (block 620 ) as an input to text normalization device 202 (as shown in FIG. 2 ).
- the normalized text is then syntactically parsed (block 630 ) so that the syntactic structure of each constituent phrase or word is identified as, for example, a noun, verb, adjective, etc.
- the syntactically parsed text is then converted to a phoneme-based representation (block 640 ), where these phonemes are then applied as inputs to a unit (phoneme) selection module, such as unit selection device 210 discussed in detail above in association with FIG. 2 .
- a preselection triphone database 214 such as that generated by following the steps as outlined in FIG. 5 is added to the configuration. Where a match is found with a triphone key in the database, the prior art process of assessing every possible candidate of a particular unit (phoneme) type is replaced by the inventive process of assessing the shorter, precalculated list related to the triphone key.
- a candidate list of each requested unit is generated and a Viterbi search is performed (block 650 ) to find the lowest cost path through the selected phonemes. The selected phonemes may then be further processed (block 660 ) to form the actual speech output.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Machine Translation (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
where CCn is a function for calculating the set of units with the lowest n context costs and CCn is a function which calculated the n-best matching units in the database for the given context. PH is defined as the set of unit types. The value of “n” refers to the minimum number of candidates that are needed for any given sequence of the form ua-u1-u2-u3-ub.
Claims (15)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/466,229 US7460997B1 (en) | 2000-06-30 | 2006-08-22 | Method and system for preselection of suitable units for concatenative speech |
US12/325,809 US8224645B2 (en) | 2000-06-30 | 2008-12-01 | Method and system for preselection of suitable units for concatenative speech |
US13/550,074 US8566099B2 (en) | 2000-06-30 | 2012-07-16 | Tabulating triphone sequences by 5-phoneme contexts for speech synthesis |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/607,615 US6684187B1 (en) | 2000-06-30 | 2000-06-30 | Method and system for preselection of suitable units for concatenative speech |
US10/702,154 US7124083B2 (en) | 2000-06-30 | 2003-11-05 | Method and system for preselection of suitable units for concatenative speech |
US11/466,229 US7460997B1 (en) | 2000-06-30 | 2006-08-22 | Method and system for preselection of suitable units for concatenative speech |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/702,154 Continuation US7124083B2 (en) | 2000-06-30 | 2003-11-05 | Method and system for preselection of suitable units for concatenative speech |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/325,809 Continuation US8224645B2 (en) | 2000-06-30 | 2008-12-01 | Method and system for preselection of suitable units for concatenative speech |
Publications (1)
Publication Number | Publication Date |
---|---|
US7460997B1 true US7460997B1 (en) | 2008-12-02 |
Family
ID=24433014
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/607,615 Expired - Lifetime US6684187B1 (en) | 2000-06-30 | 2000-06-30 | Method and system for preselection of suitable units for concatenative speech |
US10/702,154 Expired - Lifetime US7124083B2 (en) | 2000-06-30 | 2003-11-05 | Method and system for preselection of suitable units for concatenative speech |
US11/466,229 Expired - Fee Related US7460997B1 (en) | 2000-06-30 | 2006-08-22 | Method and system for preselection of suitable units for concatenative speech |
US12/325,809 Expired - Fee Related US8224645B2 (en) | 2000-06-30 | 2008-12-01 | Method and system for preselection of suitable units for concatenative speech |
US13/550,074 Expired - Fee Related US8566099B2 (en) | 2000-06-30 | 2012-07-16 | Tabulating triphone sequences by 5-phoneme contexts for speech synthesis |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/607,615 Expired - Lifetime US6684187B1 (en) | 2000-06-30 | 2000-06-30 | Method and system for preselection of suitable units for concatenative speech |
US10/702,154 Expired - Lifetime US7124083B2 (en) | 2000-06-30 | 2003-11-05 | Method and system for preselection of suitable units for concatenative speech |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/325,809 Expired - Fee Related US8224645B2 (en) | 2000-06-30 | 2008-12-01 | Method and system for preselection of suitable units for concatenative speech |
US13/550,074 Expired - Fee Related US8566099B2 (en) | 2000-06-30 | 2012-07-16 | Tabulating triphone sequences by 5-phoneme contexts for speech synthesis |
Country Status (4)
Country | Link |
---|---|
US (5) | US6684187B1 (en) |
EP (1) | EP1168299B8 (en) |
CA (1) | CA2351988C (en) |
MX (1) | MXPA01006594A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090094035A1 (en) * | 2000-06-30 | 2009-04-09 | At&T Corp. | Method and system for preselection of suitable units for concatenative speech |
US7761299B1 (en) * | 1999-04-30 | 2010-07-20 | At&T Intellectual Property Ii, L.P. | Methods and apparatus for rapid acoustic unit selection from a large speech corpus |
US20110313772A1 (en) * | 2010-06-18 | 2011-12-22 | At&T Intellectual Property I, L.P. | System and method for unit selection text-to-speech using a modified viterbi approach |
US10867525B1 (en) * | 2013-03-18 | 2020-12-15 | Educational Testing Service | Systems and methods for generating recitation items |
Families Citing this family (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7082396B1 (en) * | 1999-04-30 | 2006-07-25 | At&T Corp | Methods and apparatus for rapid acoustic unit selection from a large speech corpus |
US8645137B2 (en) | 2000-03-16 | 2014-02-04 | Apple Inc. | Fast, language-independent method for user authentication by voice |
US6505158B1 (en) * | 2000-07-05 | 2003-01-07 | At&T Corp. | Synthesis-based pre-selection of suitable units for concatenative speech |
CN1237465C (en) * | 2001-01-10 | 2006-01-18 | 皇家菲利浦电子有限公司 | Codage |
US6829581B2 (en) * | 2001-07-31 | 2004-12-07 | Matsushita Electric Industrial Co., Ltd. | Method for prosody generation by unit selection from an imitation speech database |
ITFI20010199A1 (en) | 2001-10-22 | 2003-04-22 | Riccardo Vieri | SYSTEM AND METHOD TO TRANSFORM TEXTUAL COMMUNICATIONS INTO VOICE AND SEND THEM WITH AN INTERNET CONNECTION TO ANY TELEPHONE SYSTEM |
US7047193B1 (en) | 2002-09-13 | 2006-05-16 | Apple Computer, Inc. | Unsupervised data-driven pronunciation modeling |
US7353164B1 (en) | 2002-09-13 | 2008-04-01 | Apple Inc. | Representation of orthography in a continuous vector space |
TWI220511B (en) * | 2003-09-12 | 2004-08-21 | Ind Tech Res Inst | An automatic speech segmentation and verification system and its method |
US20050096909A1 (en) * | 2003-10-29 | 2005-05-05 | Raimo Bakis | Systems and methods for expressive text-to-speech |
CN100524457C (en) * | 2004-05-31 | 2009-08-05 | 国际商业机器公司 | Device and method for text-to-speech conversion and corpus adjustment |
US7869999B2 (en) * | 2004-08-11 | 2011-01-11 | Nuance Communications, Inc. | Systems and methods for selecting from multiple phonectic transcriptions for text-to-speech synthesis |
US20060161433A1 (en) * | 2004-10-28 | 2006-07-20 | Voice Signal Technologies, Inc. | Codec-dependent unit selection for mobile devices |
US7418389B2 (en) * | 2005-01-11 | 2008-08-26 | Microsoft Corporation | Defining atom units between phone and syllable for TTS systems |
US8677377B2 (en) | 2005-09-08 | 2014-03-18 | Apple Inc. | Method and apparatus for building an intelligent automated assistant |
US7633076B2 (en) | 2005-09-30 | 2009-12-15 | Apple Inc. | Automated response to and sensing of user activity in portable devices |
US20070106513A1 (en) * | 2005-11-10 | 2007-05-10 | Boillot Marc A | Method for facilitating text to speech synthesis using a differential vocoder |
US9318108B2 (en) | 2010-01-18 | 2016-04-19 | Apple Inc. | Intelligent automated assistant |
US20080129520A1 (en) * | 2006-12-01 | 2008-06-05 | Apple Computer, Inc. | Electronic device with enhanced audio feedback |
JP4406440B2 (en) * | 2007-03-29 | 2010-01-27 | 株式会社東芝 | Speech synthesis apparatus, speech synthesis method and program |
US8977255B2 (en) | 2007-04-03 | 2015-03-10 | Apple Inc. | Method and system for operating a multi-function portable electronic device using voice-activation |
US20090043583A1 (en) * | 2007-08-08 | 2009-02-12 | International Business Machines Corporation | Dynamic modification of voice selection based on user specific factors |
JP5238205B2 (en) * | 2007-09-07 | 2013-07-17 | ニュアンス コミュニケーションズ,インコーポレイテッド | Speech synthesis system, program and method |
US9053089B2 (en) * | 2007-10-02 | 2015-06-09 | Apple Inc. | Part-of-speech tagging using latent analogy |
US8620662B2 (en) | 2007-11-20 | 2013-12-31 | Apple Inc. | Context-aware unit selection |
US10002189B2 (en) | 2007-12-20 | 2018-06-19 | Apple Inc. | Method and apparatus for searching using an active ontology |
US9330720B2 (en) * | 2008-01-03 | 2016-05-03 | Apple Inc. | Methods and apparatus for altering audio output signals |
US8065143B2 (en) | 2008-02-22 | 2011-11-22 | Apple Inc. | Providing text input using speech data and non-speech data |
US8996376B2 (en) | 2008-04-05 | 2015-03-31 | Apple Inc. | Intelligent text-to-speech conversion |
US10496753B2 (en) | 2010-01-18 | 2019-12-03 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US8464150B2 (en) | 2008-06-07 | 2013-06-11 | Apple Inc. | Automatic language identification for dynamic text processing |
CN101605307A (en) * | 2008-06-12 | 2009-12-16 | 深圳富泰宏精密工业有限公司 | Test short message service (SMS) voice play system and method |
US20100030549A1 (en) | 2008-07-31 | 2010-02-04 | Lee Michael M | Mobile device having human language translation capability with positional feedback |
US8768702B2 (en) | 2008-09-05 | 2014-07-01 | Apple Inc. | Multi-tiered voice feedback in an electronic device |
US8898568B2 (en) * | 2008-09-09 | 2014-11-25 | Apple Inc. | Audio user interface |
US8583418B2 (en) | 2008-09-29 | 2013-11-12 | Apple Inc. | Systems and methods of detecting language and natural language strings for text to speech synthesis |
US8712776B2 (en) * | 2008-09-29 | 2014-04-29 | Apple Inc. | Systems and methods for selective text to speech synthesis |
US8676904B2 (en) | 2008-10-02 | 2014-03-18 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
WO2010067118A1 (en) | 2008-12-11 | 2010-06-17 | Novauris Technologies Limited | Speech recognition involving a mobile device |
US8862252B2 (en) | 2009-01-30 | 2014-10-14 | Apple Inc. | Audio user interface for displayless electronic device |
US8380507B2 (en) | 2009-03-09 | 2013-02-19 | Apple Inc. | Systems and methods for determining the language to use for speech generated by a text to speech engine |
US10540976B2 (en) * | 2009-06-05 | 2020-01-21 | Apple Inc. | Contextual voice commands |
US10241644B2 (en) | 2011-06-03 | 2019-03-26 | Apple Inc. | Actionable reminder entries |
US9858925B2 (en) | 2009-06-05 | 2018-01-02 | Apple Inc. | Using context information to facilitate processing of commands in a virtual assistant |
US10255566B2 (en) | 2011-06-03 | 2019-04-09 | Apple Inc. | Generating and processing task items that represent tasks to perform |
US10241752B2 (en) | 2011-09-30 | 2019-03-26 | Apple Inc. | Interface for a virtual digital assistant |
JP5471858B2 (en) * | 2009-07-02 | 2014-04-16 | ヤマハ株式会社 | Database generating apparatus for singing synthesis and pitch curve generating apparatus |
US9431006B2 (en) * | 2009-07-02 | 2016-08-30 | Apple Inc. | Methods and apparatuses for automatic speech recognition |
US8805687B2 (en) * | 2009-09-21 | 2014-08-12 | At&T Intellectual Property I, L.P. | System and method for generalized preselection for unit selection synthesis |
US8682649B2 (en) * | 2009-11-12 | 2014-03-25 | Apple Inc. | Sentiment prediction from textual data |
US8600743B2 (en) * | 2010-01-06 | 2013-12-03 | Apple Inc. | Noise profile determination for voice-related feature |
US8311838B2 (en) | 2010-01-13 | 2012-11-13 | Apple Inc. | Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts |
US8381107B2 (en) | 2010-01-13 | 2013-02-19 | Apple Inc. | Adaptive audio feedback system and method |
US10679605B2 (en) | 2010-01-18 | 2020-06-09 | Apple Inc. | Hands-free list-reading by intelligent automated assistant |
US10553209B2 (en) | 2010-01-18 | 2020-02-04 | Apple Inc. | Systems and methods for hands-free notification summaries |
US10276170B2 (en) | 2010-01-18 | 2019-04-30 | Apple Inc. | Intelligent automated assistant |
US10705794B2 (en) | 2010-01-18 | 2020-07-07 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
WO2011089450A2 (en) | 2010-01-25 | 2011-07-28 | Andrew Peter Nelson Jerram | Apparatuses, methods and systems for a digital conversation management platform |
US8682667B2 (en) | 2010-02-25 | 2014-03-25 | Apple Inc. | User profiling for selecting user specific voice input processing information |
US8798998B2 (en) | 2010-04-05 | 2014-08-05 | Microsoft Corporation | Pre-saved data compression for TTS concatenation cost |
US8713021B2 (en) | 2010-07-07 | 2014-04-29 | Apple Inc. | Unsupervised document clustering using latent semantic density analysis |
US8965768B2 (en) | 2010-08-06 | 2015-02-24 | At&T Intellectual Property I, L.P. | System and method for automatic detection of abnormal stress patterns in unit selection synthesis |
US8719006B2 (en) | 2010-08-27 | 2014-05-06 | Apple Inc. | Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis |
US8719014B2 (en) | 2010-09-27 | 2014-05-06 | Apple Inc. | Electronic device with text error correction based on voice recognition data |
US10762293B2 (en) | 2010-12-22 | 2020-09-01 | Apple Inc. | Using parts-of-speech tagging and named entity recognition for spelling correction |
US10515147B2 (en) | 2010-12-22 | 2019-12-24 | Apple Inc. | Using statistical language models for contextual lookup |
US8781836B2 (en) | 2011-02-22 | 2014-07-15 | Apple Inc. | Hearing assistance system for providing consistent human speech |
US9262612B2 (en) | 2011-03-21 | 2016-02-16 | Apple Inc. | Device access using voice authentication |
US9164983B2 (en) | 2011-05-27 | 2015-10-20 | Robert Bosch Gmbh | Broad-coverage normalization system for social media language |
US10057736B2 (en) | 2011-06-03 | 2018-08-21 | Apple Inc. | Active transport based notifications |
US10672399B2 (en) | 2011-06-03 | 2020-06-02 | Apple Inc. | Switching between text data and audio data based on a mapping |
US8812294B2 (en) | 2011-06-21 | 2014-08-19 | Apple Inc. | Translating phrases from one language into another using an order-based set of declarative rules |
US8706472B2 (en) | 2011-08-11 | 2014-04-22 | Apple Inc. | Method for disambiguating multiple readings in language conversion |
US8994660B2 (en) | 2011-08-29 | 2015-03-31 | Apple Inc. | Text correction processing |
US8762156B2 (en) | 2011-09-28 | 2014-06-24 | Apple Inc. | Speech recognition repair using contextual information |
US10134385B2 (en) | 2012-03-02 | 2018-11-20 | Apple Inc. | Systems and methods for name pronunciation |
US9483461B2 (en) | 2012-03-06 | 2016-11-01 | Apple Inc. | Handling speech synthesis of content for multiple languages |
US9280610B2 (en) | 2012-05-14 | 2016-03-08 | Apple Inc. | Crowd sourcing information to fulfill user requests |
US10417037B2 (en) | 2012-05-15 | 2019-09-17 | Apple Inc. | Systems and methods for integrating third party services with a digital assistant |
US8775442B2 (en) | 2012-05-15 | 2014-07-08 | Apple Inc. | Semantic search using a single-source semantic model |
US9721563B2 (en) | 2012-06-08 | 2017-08-01 | Apple Inc. | Name recognition system |
WO2013185109A2 (en) | 2012-06-08 | 2013-12-12 | Apple Inc. | Systems and methods for recognizing textual identifiers within a plurality of words |
US9495129B2 (en) | 2012-06-29 | 2016-11-15 | Apple Inc. | Device, method, and user interface for voice-activated navigation and browsing of a document |
FR2993088B1 (en) * | 2012-07-06 | 2014-07-18 | Continental Automotive France | METHOD AND SYSTEM FOR VOICE SYNTHESIS |
US10169456B2 (en) * | 2012-08-14 | 2019-01-01 | International Business Machines Corporation | Automatic determination of question in text and determination of candidate responses using data mining |
US9576574B2 (en) | 2012-09-10 | 2017-02-21 | Apple Inc. | Context-sensitive handling of interruptions by intelligent digital assistant |
US9547647B2 (en) | 2012-09-19 | 2017-01-17 | Apple Inc. | Voice-based media searching |
US8935167B2 (en) | 2012-09-25 | 2015-01-13 | Apple Inc. | Exemplar-based latent perceptual modeling for automatic speech recognition |
DE112014000709B4 (en) | 2013-02-07 | 2021-12-30 | Apple Inc. | METHOD AND DEVICE FOR OPERATING A VOICE TRIGGER FOR A DIGITAL ASSISTANT |
US10642574B2 (en) | 2013-03-14 | 2020-05-05 | Apple Inc. | Device, method, and graphical user interface for outputting captions |
US10652394B2 (en) | 2013-03-14 | 2020-05-12 | Apple Inc. | System and method for processing voicemail |
US9977779B2 (en) | 2013-03-14 | 2018-05-22 | Apple Inc. | Automatic supplementation of word correction dictionaries |
US9733821B2 (en) | 2013-03-14 | 2017-08-15 | Apple Inc. | Voice control to diagnose inadvertent activation of accessibility features |
US10572476B2 (en) | 2013-03-14 | 2020-02-25 | Apple Inc. | Refining a search based on schedule items |
US9368114B2 (en) | 2013-03-14 | 2016-06-14 | Apple Inc. | Context-sensitive handling of interruptions |
WO2014144579A1 (en) | 2013-03-15 | 2014-09-18 | Apple Inc. | System and method for updating an adaptive speech recognition model |
AU2014233517B2 (en) | 2013-03-15 | 2017-05-25 | Apple Inc. | Training an at least partial voice command system |
US10748529B1 (en) | 2013-03-15 | 2020-08-18 | Apple Inc. | Voice activated device for use with a voice-based digital assistant |
US10078487B2 (en) | 2013-03-15 | 2018-09-18 | Apple Inc. | Context-sensitive handling of interruptions |
KR101857648B1 (en) | 2013-03-15 | 2018-05-15 | 애플 인크. | User training by intelligent digital assistant |
US9582608B2 (en) | 2013-06-07 | 2017-02-28 | Apple Inc. | Unified ranking with entropy-weighted information for phrase-based semantic auto-completion |
WO2014197334A2 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
WO2014197336A1 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for detecting errors in interactions with a voice-based digital assistant |
WO2014197335A1 (en) | 2013-06-08 | 2014-12-11 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
EP3937002A1 (en) | 2013-06-09 | 2022-01-12 | Apple Inc. | Device, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant |
US10176167B2 (en) | 2013-06-09 | 2019-01-08 | Apple Inc. | System and method for inferring user intent from speech inputs |
AU2014278595B2 (en) | 2013-06-13 | 2017-04-06 | Apple Inc. | System and method for emergency calls initiated by voice command |
DE112014003653B4 (en) | 2013-08-06 | 2024-04-18 | Apple Inc. | Automatically activate intelligent responses based on activities from remote devices |
US8751236B1 (en) * | 2013-10-23 | 2014-06-10 | Google Inc. | Devices and methods for speech unit reduction in text-to-speech synthesis systems |
US20150149178A1 (en) * | 2013-11-22 | 2015-05-28 | At&T Intellectual Property I, L.P. | System and method for data-driven intonation generation |
US10296160B2 (en) | 2013-12-06 | 2019-05-21 | Apple Inc. | Method for extracting salient dialog usage from live data |
US9620105B2 (en) | 2014-05-15 | 2017-04-11 | Apple Inc. | Analyzing audio input for efficient speech and music recognition |
US10592095B2 (en) | 2014-05-23 | 2020-03-17 | Apple Inc. | Instantaneous speaking of content on touch devices |
US9502031B2 (en) | 2014-05-27 | 2016-11-22 | Apple Inc. | Method for supporting dynamic grammars in WFST-based ASR |
US9715875B2 (en) | 2014-05-30 | 2017-07-25 | Apple Inc. | Reducing the need for manual start/end-pointing and trigger phrases |
US9633004B2 (en) | 2014-05-30 | 2017-04-25 | Apple Inc. | Better resolution when referencing to concepts |
US10289433B2 (en) | 2014-05-30 | 2019-05-14 | Apple Inc. | Domain specific language for encoding assistant dialog |
TWI566107B (en) | 2014-05-30 | 2017-01-11 | 蘋果公司 | Method for processing a multi-part voice command, non-transitory computer readable storage medium and electronic device |
US10078631B2 (en) | 2014-05-30 | 2018-09-18 | Apple Inc. | Entropy-guided text prediction using combined word and character n-gram language models |
US9430463B2 (en) | 2014-05-30 | 2016-08-30 | Apple Inc. | Exemplar-based natural language processing |
US9785630B2 (en) | 2014-05-30 | 2017-10-10 | Apple Inc. | Text prediction using combined word N-gram and unigram language models |
US10170123B2 (en) | 2014-05-30 | 2019-01-01 | Apple Inc. | Intelligent assistant for home automation |
US9734193B2 (en) | 2014-05-30 | 2017-08-15 | Apple Inc. | Determining domain salience ranking from ambiguous words in natural speech |
US9760559B2 (en) | 2014-05-30 | 2017-09-12 | Apple Inc. | Predictive text input |
US9842101B2 (en) | 2014-05-30 | 2017-12-12 | Apple Inc. | Predictive conversion of language input |
US9338493B2 (en) | 2014-06-30 | 2016-05-10 | Apple Inc. | Intelligent automated assistant for TV user interactions |
US10659851B2 (en) | 2014-06-30 | 2020-05-19 | Apple Inc. | Real-time digital assistant knowledge updates |
US10446141B2 (en) | 2014-08-28 | 2019-10-15 | Apple Inc. | Automatic speech recognition based on user feedback |
US9818400B2 (en) | 2014-09-11 | 2017-11-14 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
US10789041B2 (en) | 2014-09-12 | 2020-09-29 | Apple Inc. | Dynamic thresholds for always listening speech trigger |
US9668121B2 (en) | 2014-09-30 | 2017-05-30 | Apple Inc. | Social reminders |
US9886432B2 (en) | 2014-09-30 | 2018-02-06 | Apple Inc. | Parsimonious handling of word inflection via categorical stem + suffix N-gram language models |
US10074360B2 (en) | 2014-09-30 | 2018-09-11 | Apple Inc. | Providing an indication of the suitability of speech recognition |
US9646609B2 (en) | 2014-09-30 | 2017-05-09 | Apple Inc. | Caching apparatus for serving phonetic pronunciations |
US10127911B2 (en) | 2014-09-30 | 2018-11-13 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
US10552013B2 (en) | 2014-12-02 | 2020-02-04 | Apple Inc. | Data detection |
US9711141B2 (en) | 2014-12-09 | 2017-07-18 | Apple Inc. | Disambiguating heteronyms in speech synthesis |
US9865280B2 (en) | 2015-03-06 | 2018-01-09 | Apple Inc. | Structured dictation using intelligent automated assistants |
US10567477B2 (en) | 2015-03-08 | 2020-02-18 | Apple Inc. | Virtual assistant continuity |
US9721566B2 (en) | 2015-03-08 | 2017-08-01 | Apple Inc. | Competing devices responding to voice triggers |
US9886953B2 (en) | 2015-03-08 | 2018-02-06 | Apple Inc. | Virtual assistant activation |
US9899019B2 (en) | 2015-03-18 | 2018-02-20 | Apple Inc. | Systems and methods for structured stem and suffix language models |
US9842105B2 (en) | 2015-04-16 | 2017-12-12 | Apple Inc. | Parsimonious continuous-space phrase representations for natural language processing |
US10083688B2 (en) | 2015-05-27 | 2018-09-25 | Apple Inc. | Device voice control for selecting a displayed affordance |
US10127220B2 (en) | 2015-06-04 | 2018-11-13 | Apple Inc. | Language identification from short strings |
US9578173B2 (en) | 2015-06-05 | 2017-02-21 | Apple Inc. | Virtual assistant aided communication with 3rd party service in a communication session |
US10101822B2 (en) | 2015-06-05 | 2018-10-16 | Apple Inc. | Language input correction |
US10186254B2 (en) | 2015-06-07 | 2019-01-22 | Apple Inc. | Context-based endpoint detection |
US11025565B2 (en) | 2015-06-07 | 2021-06-01 | Apple Inc. | Personalized prediction of responses for instant messaging |
US10255907B2 (en) | 2015-06-07 | 2019-04-09 | Apple Inc. | Automatic accent detection using acoustic models |
US10671428B2 (en) | 2015-09-08 | 2020-06-02 | Apple Inc. | Distributed personal assistant |
US10747498B2 (en) | 2015-09-08 | 2020-08-18 | Apple Inc. | Zero latency digital assistant |
US9697820B2 (en) | 2015-09-24 | 2017-07-04 | Apple Inc. | Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks |
US11010550B2 (en) | 2015-09-29 | 2021-05-18 | Apple Inc. | Unified language modeling framework for word prediction, auto-completion and auto-correction |
US10366158B2 (en) | 2015-09-29 | 2019-07-30 | Apple Inc. | Efficient word encoding for recurrent neural network language models |
CN105336322B (en) * | 2015-09-30 | 2017-05-10 | 百度在线网络技术(北京)有限公司 | Polyphone model training method, and speech synthesis method and device |
US11587559B2 (en) | 2015-09-30 | 2023-02-21 | Apple Inc. | Intelligent device identification |
US10691473B2 (en) | 2015-11-06 | 2020-06-23 | Apple Inc. | Intelligent automated assistant in a messaging environment |
US10049668B2 (en) | 2015-12-02 | 2018-08-14 | Apple Inc. | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
US10223066B2 (en) | 2015-12-23 | 2019-03-05 | Apple Inc. | Proactive assistance based on dialog communication between devices |
US10446143B2 (en) | 2016-03-14 | 2019-10-15 | Apple Inc. | Identification of voice inputs providing credentials |
US9934775B2 (en) | 2016-05-26 | 2018-04-03 | Apple Inc. | Unit-selection text-to-speech synthesis based on predicted concatenation parameters |
US9972304B2 (en) | 2016-06-03 | 2018-05-15 | Apple Inc. | Privacy preserving distributed evaluation framework for embedded personalized systems |
US10249300B2 (en) | 2016-06-06 | 2019-04-02 | Apple Inc. | Intelligent list reading |
US10049663B2 (en) | 2016-06-08 | 2018-08-14 | Apple, Inc. | Intelligent automated assistant for media exploration |
DK179588B1 (en) | 2016-06-09 | 2019-02-22 | Apple Inc. | Intelligent automated assistant in a home environment |
US10067938B2 (en) | 2016-06-10 | 2018-09-04 | Apple Inc. | Multilingual word prediction |
US10490187B2 (en) | 2016-06-10 | 2019-11-26 | Apple Inc. | Digital assistant providing automated status report |
US10586535B2 (en) | 2016-06-10 | 2020-03-10 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
US10509862B2 (en) | 2016-06-10 | 2019-12-17 | Apple Inc. | Dynamic phrase expansion of language input |
US10192552B2 (en) | 2016-06-10 | 2019-01-29 | Apple Inc. | Digital assistant providing whispered speech |
DK179343B1 (en) | 2016-06-11 | 2018-05-14 | Apple Inc | Intelligent task discovery |
DK201670540A1 (en) | 2016-06-11 | 2018-01-08 | Apple Inc | Application integration with a digital assistant |
DK179415B1 (en) | 2016-06-11 | 2018-06-14 | Apple Inc | Intelligent device arbitration and control |
DK179049B1 (en) | 2016-06-11 | 2017-09-18 | Apple Inc | Data driven natural language event detection and classification |
US10043516B2 (en) | 2016-09-23 | 2018-08-07 | Apple Inc. | Intelligent automated assistant |
US10593346B2 (en) | 2016-12-22 | 2020-03-17 | Apple Inc. | Rank-reduced token representation for automatic speech recognition |
DK201770439A1 (en) | 2017-05-11 | 2018-12-13 | Apple Inc. | Offline personal assistant |
DK179496B1 (en) | 2017-05-12 | 2019-01-15 | Apple Inc. | USER-SPECIFIC Acoustic Models |
DK179745B1 (en) | 2017-05-12 | 2019-05-01 | Apple Inc. | SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT |
DK201770432A1 (en) | 2017-05-15 | 2018-12-21 | Apple Inc. | Hierarchical belief states for digital assistants |
DK201770431A1 (en) | 2017-05-15 | 2018-12-20 | Apple Inc. | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
DK179560B1 (en) | 2017-05-16 | 2019-02-18 | Apple Inc. | Far-field extension for digital assistant services |
US11699430B2 (en) * | 2021-04-30 | 2023-07-11 | International Business Machines Corporation | Using speech to text data in training text to speech models |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0695696A (en) | 1992-09-14 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | Speech synthesis system |
US5384893A (en) | 1992-09-23 | 1995-01-24 | Emerson & Stern Associates, Inc. | Method and apparatus for speech synthesis based on prosodic analysis |
US5440663A (en) | 1992-09-28 | 1995-08-08 | International Business Machines Corporation | Computer system for speech recognition |
GB2313530A (en) | 1996-05-15 | 1997-11-26 | Atr Interpreting Telecommunica | Speech Synthesizer |
US5794197A (en) | 1994-01-21 | 1998-08-11 | Micrsoft Corporation | Senone tree representation and evaluation |
US5905972A (en) | 1996-09-30 | 1999-05-18 | Microsoft Corporation | Prosodic databases holding fundamental frequency templates for use in speech synthesis |
US5913193A (en) | 1996-04-30 | 1999-06-15 | Microsoft Corporation | Method and system of runtime acoustic unit selection for speech synthesis |
US5913194A (en) | 1997-07-14 | 1999-06-15 | Motorola, Inc. | Method, device and system for using statistical information to reduce computation and memory requirements of a neural network based speech synthesis system |
US5937384A (en) | 1996-05-01 | 1999-08-10 | Microsoft Corporation | Method and system for speech recognition using continuous density hidden Markov models |
EP0942409A2 (en) | 1998-03-09 | 1999-09-15 | Canon Kabushiki Kaisha | Phonem based speech synthesis |
EP0953970A2 (en) | 1998-04-29 | 1999-11-03 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus using decision trees to generate and score multiple pronunciations for a spelled word |
WO2000030069A2 (en) | 1998-11-13 | 2000-05-25 | Lernout & Hauspie Speech Products N.V. | Speech synthesis using concatenation of speech waveforms |
US6163769A (en) | 1997-10-02 | 2000-12-19 | Microsoft Corporation | Text-to-speech using clustered context-dependent phoneme-based units |
US6173263B1 (en) | 1998-08-31 | 2001-01-09 | At&T Corp. | Method and system for performing concatenative speech synthesis using half-phonemes |
US6253182B1 (en) | 1998-11-24 | 2001-06-26 | Microsoft Corporation | Method and apparatus for speech synthesis with efficient spectral smoothing |
US6304846B1 (en) | 1997-10-22 | 2001-10-16 | Texas Instruments Incorporated | Singing voice synthesis |
US6317712B1 (en) | 1998-02-03 | 2001-11-13 | Texas Instruments Incorporated | Method of phonetic modeling using acoustic decision tree |
US20010044724A1 (en) | 1998-08-17 | 2001-11-22 | Hsiao-Wuen Hon | Proofreading with text to speech feedback |
US6366883B1 (en) | 1996-05-15 | 2002-04-02 | Atr Interpreting Telecommunications | Concatenation of speech segments by use of a speech synthesizer |
US6505158B1 (en) * | 2000-07-05 | 2003-01-07 | At&T Corp. | Synthesis-based pre-selection of suitable units for concatenative speech |
US6684187B1 (en) | 2000-06-30 | 2004-01-27 | At&T Corp. | Method and system for preselection of suitable units for concatenative speech |
US7266497B2 (en) * | 2002-03-29 | 2007-09-04 | At&T Corp. | Automatic segmentation in speech synthesis |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55147697A (en) * | 1979-05-07 | 1980-11-17 | Sharp Kk | Sound synthesizer |
SE469576B (en) | 1992-03-17 | 1993-07-26 | Televerket | PROCEDURE AND DEVICE FOR SYNTHESIS |
US6502074B1 (en) * | 1993-08-04 | 2002-12-31 | British Telecommunications Public Limited Company | Synthesising speech by converting phonemes to digital waveforms |
US5987412A (en) * | 1993-08-04 | 1999-11-16 | British Telecommunications Public Limited Company | Synthesising speech by converting phonemes to digital waveforms |
KR950704772A (en) * | 1993-10-15 | 1995-11-20 | 데이비드 엠. 로젠블랫 | A method for training a system, the resulting apparatus, and method of use |
US5970454A (en) * | 1993-12-16 | 1999-10-19 | British Telecommunications Public Limited Company | Synthesizing speech by converting phonemes to digital waveforms |
JPH11501409A (en) | 1995-03-07 | 1999-02-02 | ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー | Synthesis of spoken language |
US6330538B1 (en) * | 1995-06-13 | 2001-12-11 | British Telecommunications Public Limited Company | Phonetic unit duration adjustment for text-to-speech system |
US5949961A (en) * | 1995-07-19 | 1999-09-07 | International Business Machines Corporation | Word syllabification in speech synthesis system |
US5850629A (en) * | 1996-09-09 | 1998-12-15 | Matsushita Electric Industrial Co., Ltd. | User interface controller for text-to-speech synthesizer |
US6041300A (en) | 1997-03-21 | 2000-03-21 | International Business Machines Corporation | System and method of using pre-enrolled speech sub-units for efficient speech synthesis |
JP2000075878A (en) * | 1998-08-31 | 2000-03-14 | Canon Inc | Device and method for voice synthesis and storage medium |
US7209882B1 (en) | 2002-05-10 | 2007-04-24 | At&T Corp. | System and method for triphone-based unit selection for visual speech synthesis |
US7289958B2 (en) | 2003-10-07 | 2007-10-30 | Texas Instruments Incorporated | Automatic language independent triphone training using a phonetic table |
US7223901B2 (en) * | 2004-03-26 | 2007-05-29 | The Board Of Regents Of The University Of Nebraska | Soybean FGAM synthase promoters useful in nematode control |
US7226497B2 (en) * | 2004-11-30 | 2007-06-05 | Ranco Incorporated Of Delaware | Fanless building ventilator |
US7912718B1 (en) * | 2006-08-31 | 2011-03-22 | At&T Intellectual Property Ii, L.P. | Method and system for enhancing a speech database |
US7983919B2 (en) * | 2007-08-09 | 2011-07-19 | At&T Intellectual Property Ii, L.P. | System and method for performing speech synthesis with a cache of phoneme sequences |
-
2000
- 2000-06-30 US US09/607,615 patent/US6684187B1/en not_active Expired - Lifetime
-
2001
- 2001-06-21 EP EP01305403A patent/EP1168299B8/en not_active Expired - Lifetime
- 2001-06-26 MX MXPA01006594A patent/MXPA01006594A/en active IP Right Grant
- 2001-06-26 CA CA002351988A patent/CA2351988C/en not_active Expired - Lifetime
-
2003
- 2003-11-05 US US10/702,154 patent/US7124083B2/en not_active Expired - Lifetime
-
2006
- 2006-08-22 US US11/466,229 patent/US7460997B1/en not_active Expired - Fee Related
-
2008
- 2008-12-01 US US12/325,809 patent/US8224645B2/en not_active Expired - Fee Related
-
2012
- 2012-07-16 US US13/550,074 patent/US8566099B2/en not_active Expired - Fee Related
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0695696A (en) | 1992-09-14 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | Speech synthesis system |
US5384893A (en) | 1992-09-23 | 1995-01-24 | Emerson & Stern Associates, Inc. | Method and apparatus for speech synthesis based on prosodic analysis |
US5440663A (en) | 1992-09-28 | 1995-08-08 | International Business Machines Corporation | Computer system for speech recognition |
US5794197A (en) | 1994-01-21 | 1998-08-11 | Micrsoft Corporation | Senone tree representation and evaluation |
US5913193A (en) | 1996-04-30 | 1999-06-15 | Microsoft Corporation | Method and system of runtime acoustic unit selection for speech synthesis |
US5937384A (en) | 1996-05-01 | 1999-08-10 | Microsoft Corporation | Method and system for speech recognition using continuous density hidden Markov models |
US6366883B1 (en) | 1996-05-15 | 2002-04-02 | Atr Interpreting Telecommunications | Concatenation of speech segments by use of a speech synthesizer |
GB2313530A (en) | 1996-05-15 | 1997-11-26 | Atr Interpreting Telecommunica | Speech Synthesizer |
US5905972A (en) | 1996-09-30 | 1999-05-18 | Microsoft Corporation | Prosodic databases holding fundamental frequency templates for use in speech synthesis |
US5913194A (en) | 1997-07-14 | 1999-06-15 | Motorola, Inc. | Method, device and system for using statistical information to reduce computation and memory requirements of a neural network based speech synthesis system |
US6163769A (en) | 1997-10-02 | 2000-12-19 | Microsoft Corporation | Text-to-speech using clustered context-dependent phoneme-based units |
US6304846B1 (en) | 1997-10-22 | 2001-10-16 | Texas Instruments Incorporated | Singing voice synthesis |
US6317712B1 (en) | 1998-02-03 | 2001-11-13 | Texas Instruments Incorporated | Method of phonetic modeling using acoustic decision tree |
EP0942409A2 (en) | 1998-03-09 | 1999-09-15 | Canon Kabushiki Kaisha | Phonem based speech synthesis |
EP0953970A2 (en) | 1998-04-29 | 1999-11-03 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus using decision trees to generate and score multiple pronunciations for a spelled word |
US20010044724A1 (en) | 1998-08-17 | 2001-11-22 | Hsiao-Wuen Hon | Proofreading with text to speech feedback |
US6173263B1 (en) | 1998-08-31 | 2001-01-09 | At&T Corp. | Method and system for performing concatenative speech synthesis using half-phonemes |
WO2000030069A2 (en) | 1998-11-13 | 2000-05-25 | Lernout & Hauspie Speech Products N.V. | Speech synthesis using concatenation of speech waveforms |
US6665641B1 (en) | 1998-11-13 | 2003-12-16 | Scansoft, Inc. | Speech synthesis using concatenation of speech waveforms |
US6253182B1 (en) | 1998-11-24 | 2001-06-26 | Microsoft Corporation | Method and apparatus for speech synthesis with efficient spectral smoothing |
US6684187B1 (en) | 2000-06-30 | 2004-01-27 | At&T Corp. | Method and system for preselection of suitable units for concatenative speech |
US7124083B2 (en) * | 2000-06-30 | 2006-10-17 | At&T Corp. | Method and system for preselection of suitable units for concatenative speech |
US6505158B1 (en) * | 2000-07-05 | 2003-01-07 | At&T Corp. | Synthesis-based pre-selection of suitable units for concatenative speech |
US7013278B1 (en) * | 2000-07-05 | 2006-03-14 | At&T Corp. | Synthesis-based pre-selection of suitable units for concatenative speech |
US7233901B2 (en) * | 2000-07-05 | 2007-06-19 | At&T Corp. | Synthesis-based pre-selection of suitable units for concatenative speech |
US7266497B2 (en) * | 2002-03-29 | 2007-09-04 | At&T Corp. | Automatic segmentation in speech synthesis |
Non-Patent Citations (1)
Title |
---|
Kitai, M. et al. "ASR and TTS Telecommunications Application in Japan" Speech Communication, Oct. 1997, Elsevier, Netherlands, vol. 23, No. 1-2, pp. 17-30. |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8788268B2 (en) | 1999-04-30 | 2014-07-22 | At&T Intellectual Property Ii, L.P. | Speech synthesis from acoustic units with default values of concatenation cost |
US9236044B2 (en) | 1999-04-30 | 2016-01-12 | At&T Intellectual Property Ii, L.P. | Recording concatenation costs of most common acoustic unit sequential pairs to a concatenation cost database for speech synthesis |
US20100286986A1 (en) * | 1999-04-30 | 2010-11-11 | At&T Intellectual Property Ii, L.P. Via Transfer From At&T Corp. | Methods and Apparatus for Rapid Acoustic Unit Selection From a Large Speech Corpus |
US9691376B2 (en) | 1999-04-30 | 2017-06-27 | Nuance Communications, Inc. | Concatenation cost in speech synthesis for acoustic unit sequential pair using hash table and default concatenation cost |
US8086456B2 (en) | 1999-04-30 | 2011-12-27 | At&T Intellectual Property Ii, L.P. | Methods and apparatus for rapid acoustic unit selection from a large speech corpus |
US8315872B2 (en) | 1999-04-30 | 2012-11-20 | At&T Intellectual Property Ii, L.P. | Methods and apparatus for rapid acoustic unit selection from a large speech corpus |
US7761299B1 (en) * | 1999-04-30 | 2010-07-20 | At&T Intellectual Property Ii, L.P. | Methods and apparatus for rapid acoustic unit selection from a large speech corpus |
US8224645B2 (en) * | 2000-06-30 | 2012-07-17 | At+T Intellectual Property Ii, L.P. | Method and system for preselection of suitable units for concatenative speech |
US20090094035A1 (en) * | 2000-06-30 | 2009-04-09 | At&T Corp. | Method and system for preselection of suitable units for concatenative speech |
US8566099B2 (en) | 2000-06-30 | 2013-10-22 | At&T Intellectual Property Ii, L.P. | Tabulating triphone sequences by 5-phoneme contexts for speech synthesis |
US8731931B2 (en) * | 2010-06-18 | 2014-05-20 | At&T Intellectual Property I, L.P. | System and method for unit selection text-to-speech using a modified Viterbi approach |
US20110313772A1 (en) * | 2010-06-18 | 2011-12-22 | At&T Intellectual Property I, L.P. | System and method for unit selection text-to-speech using a modified viterbi approach |
US10079011B2 (en) | 2010-06-18 | 2018-09-18 | Nuance Communications, Inc. | System and method for unit selection text-to-speech using a modified Viterbi approach |
US10636412B2 (en) | 2010-06-18 | 2020-04-28 | Cerence Operating Company | System and method for unit selection text-to-speech using a modified Viterbi approach |
US10867525B1 (en) * | 2013-03-18 | 2020-12-15 | Educational Testing Service | Systems and methods for generating recitation items |
Also Published As
Publication number | Publication date |
---|---|
MXPA01006594A (en) | 2004-07-30 |
US20130013312A1 (en) | 2013-01-10 |
CA2351988A1 (en) | 2001-12-30 |
US8224645B2 (en) | 2012-07-17 |
US20040093213A1 (en) | 2004-05-13 |
EP1168299A2 (en) | 2002-01-02 |
US20090094035A1 (en) | 2009-04-09 |
EP1168299A3 (en) | 2002-10-23 |
EP1168299B8 (en) | 2013-03-13 |
EP1168299B1 (en) | 2012-11-21 |
US6684187B1 (en) | 2004-01-27 |
US8566099B2 (en) | 2013-10-22 |
US7124083B2 (en) | 2006-10-17 |
CA2351988C (en) | 2007-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7460997B1 (en) | Method and system for preselection of suitable units for concatenative speech | |
US7565291B2 (en) | Synthesis-based pre-selection of suitable units for concatenative speech | |
US20230058658A1 (en) | Text-to-speech (tts) processing | |
Taylor | Concept-to-speech synthesis by phonological structure matching | |
US6778962B1 (en) | Speech synthesis with prosodic model data and accent type | |
US7869999B2 (en) | Systems and methods for selecting from multiple phonectic transcriptions for text-to-speech synthesis | |
US6173263B1 (en) | Method and system for performing concatenative speech synthesis using half-phonemes | |
US20200410981A1 (en) | Text-to-speech (tts) processing | |
US7369994B1 (en) | Methods and apparatus for rapid acoustic unit selection from a large speech corpus | |
US20020099547A1 (en) | Method and apparatus for speech synthesis without prosody modification | |
US11763797B2 (en) | Text-to-speech (TTS) processing | |
US10699695B1 (en) | Text-to-speech (TTS) processing | |
JPH11249677A (en) | Rhythm control method for voice synthesizer | |
KR20010018064A (en) | Apparatus and method for text-to-speech conversion using phonetic environment and intervening pause duration | |
JPH08335096A (en) | Text voice synthesizer | |
EP1589524B1 (en) | Method and device for speech synthesis | |
EP1640968A1 (en) | Method and device for speech synthesis | |
Narupiyakul et al. | A stochastic knowledge-based Thai text-to-speech system | |
EP1777697A2 (en) | Method and apparatus for speech synthesis without prosody modification | |
JP2003108170A (en) | Method and device for voice synthesis learning | |
JPH1097290A (en) | Speech synthesizer | |
JPH07181995A (en) | Device and method for voice synthesis | |
GB2292235A (en) | Word syllabification. | |
Morris et al. | Speech Generation | |
JPH03171099A (en) | Rhythm information forming system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: AT&T CORP., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONKIE, ALISTAIR D.;REEL/FRAME:038138/0564 Effective date: 20000628 |
|
AS | Assignment |
Owner name: AT&T PROPERTIES, LLC, NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T CORP.;REEL/FRAME:038529/0164 Effective date: 20160204 Owner name: AT&T INTELLECTUAL PROPERTY II, L.P., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T PROPERTIES, LLC;REEL/FRAME:038529/0240 Effective date: 20160204 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: NUANCE COMMUNICATIONS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AT&T INTELLECTUAL PROPERTY II, L.P.;REEL/FRAME:041512/0608 Effective date: 20161214 |
|
AS | Assignment |
Owner name: CERENCE INC., MASSACHUSETTS Free format text: INTELLECTUAL PROPERTY AGREEMENT;ASSIGNOR:NUANCE COMMUNICATIONS, INC.;REEL/FRAME:050836/0191 Effective date: 20190930 |
|
AS | Assignment |
Owner name: CERENCE OPERATING COMPANY, MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 050836 FRAME: 0191. ASSIGNOR(S) HEREBY CONFIRMS THE INTELLECTUAL PROPERTY AGREEMENT;ASSIGNOR:NUANCE COMMUNICATIONS, INC.;REEL/FRAME:050871/0001 Effective date: 20190930 |
|
AS | Assignment |
Owner name: BARCLAYS BANK PLC, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:CERENCE OPERATING COMPANY;REEL/FRAME:050953/0133 Effective date: 20191001 |
|
AS | Assignment |
Owner name: CERENCE OPERATING COMPANY, MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052927/0335 Effective date: 20200612 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, N.A., NORTH CAROLINA Free format text: SECURITY AGREEMENT;ASSIGNOR:CERENCE OPERATING COMPANY;REEL/FRAME:052935/0584 Effective date: 20200612 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20201202 |
|
AS | Assignment |
Owner name: CERENCE OPERATING COMPANY, MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE THE CONVEYANCE DOCUMENT WITH THE NEW ASSIGNMENT PREVIOUSLY RECORDED AT REEL: 050836 FRAME: 0191. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:NUANCE COMMUNICATIONS, INC.;REEL/FRAME:059804/0186 Effective date: 20190930 |