US7299677B2 - Vehicle occupant analysis model for vehicle impacts - Google Patents
Vehicle occupant analysis model for vehicle impacts Download PDFInfo
- Publication number
- US7299677B2 US7299677B2 US11/296,166 US29616605A US7299677B2 US 7299677 B2 US7299677 B2 US 7299677B2 US 29616605 A US29616605 A US 29616605A US 7299677 B2 US7299677 B2 US 7299677B2
- Authority
- US
- United States
- Prior art keywords
- vehicle
- model
- finite element
- impact
- element model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/0078—Shock-testing of vehicles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
Definitions
- the present invention relates to vehicular impact modeling and, more particularly, to a vehicle occupant analysis model for a vehicle impact.
- Computer models capable of simulating the effects of a vehicle impact are often used to analyze the effects on an occupant during impact, to predict how a component will perform during impact, and otherwise.
- the present invention overcomes the disadvantages of the prior art in a method of simulating a vehicle impact.
- the method includes the step of generating a first finite element model of the vehicle.
- the first finite element model includes a plurality of boundary points on the vehicle.
- the method also includes the step of running at least one vehicle impact simulation on the first finite element model to generate impact data at each of the boundary points of the first finite element model.
- the method further includes the step of generating a multi-body model that includes a vehicle occupant and at least one vehicle component.
- the multi-body model includes a plurality of boundary points that coincide with the boundary points included in the first finite element model.
- the method involves running at least one vehicle impact simulation on the multi-body model by inputting impact data generated at each of the boundary points of the first finite element model into the boundary points of the multi-body model.
- the method includes generating a partial vehicle finite element model that includes a plurality of master nodes and a plurality of slave nodes. By inputting boundary conditions at the master nodes, output data at the slave nodes is generated.
- the method further includes generating a coupled model that includes at least a portion of the multi-body model and at least a portion of the partial vehicle finite element model. Additionally, the method includes running at least one impact simulation with the coupled model to thereby identify the effects of the impact on the vehicle and/or the occupant.
- the present invention is a method of simulating a vehicle impact.
- the method involves creating a multi-body model of a plurality of systems.
- the systems are representative of an occupant and at least one component of the vehicle, and each system is located relative to a master joint.
- the method also involves providing an input at the master joint and analyzing the effects on at least one system of the multi-body model due to the input provided at the master joint.
- FIG. 1 is a flowchart representing a method of the present invention
- FIG. 2 is an exploded perspective view of a full structure vehicle finite element model that can be used in connection with the present invention
- FIG. 3 is an exploded perspective view of a partial vehicle multi-body model that can be used in connection with the present invention.
- FIG. 4 is an exploded perspective view of a partial vehicle finite element model that can be used in connection with the present invention.
- FIGS. 5A , 5 B and 5 C are perspective views of a coupled model that can be used in connection with the present invention.
- a method 10 of designing a vehicle by modeling frontal impacts involves simulating vehicle impacts with a series of models to understand the effects of the impacts on the occupants and the vehicle.
- finite element models are utilized during the method 10 .
- finite element models are those that represent objects with multiple, simplified representations of discrete regions (i.e., finite elements) linked by nodes.
- vehicle impact loads are inputted to the finite element model, and resultant stresses, displacements, and other effects on the structure are obtained.
- LS-DYNA software from Livermore Software Technology Corporation is used during the method 10 to generate the finite element models and to simulate vehicle impacts.
- Multi-body models are also used during the method 10 , as will be discussed.
- multi-body models include systems of rigid bodies interconnected by kinematic joints. The bodies can be planes, cylinders, ellipsoids, or other types. A joint can restrict the relative motion of the two bodies it interconnects.
- MADYMO software developed by TNO Road-Vehicles Research Institute is used to generate the multi-body models and to simulate vehicle impacts during the method 10 .
- the method 10 further involves the use of coupled models.
- the coupled models include components from the finite element models and components from the multi-body models.
- Step 12 specifically involves generating a full structural vehicle finite element model 14 , such as the model shown in FIG. 2 .
- the full structural model 14 includes the vehicle body 16 , the tires 18 , the seats 20 , and the steering column 22 .
- the vehicle doors can be included with the full structural model 14 , although they are not shown in FIG. 2 for clarity.
- the full structural model 14 could include any number of components of the vehicle without departing from the scope of the invention. It may be preferable, however, if the full structural model 14 included as many components as needed to accurately represent the behavior of the vehicle's structure during impact.
- At least one and, preferably, a plurality of boundary points are selected on the full structural model 14 .
- the selected boundary points in the embodiment shown are located at the left hinge pillar 24 , the right hinge pillar 26 , the steering gear 28 , the middle of the steering column 30 , the left mid sill 32 , the inboard side of the toe pan 34 , the outboard side of the toe pan 36 , the base of the gas pedal 38 , the forward inboard attachment bracket of the seat 40 , the rearward inboard attachment bracket of the seat 42 , the forward outboard attachment bracket of the seat 44 , and the rearward outboard attachment bracket of the seat 46 .
- the boundary points could be selected at any location without departing from the scope of the invention.
- At least one simulation of a vehicle impact is run on the full structural model 14 .
- These could be any number of simulations, and the simulations could be of any type of frontal test mode including, but not limited to flat front barrier simulations, left or right angular barrier simulations, and offset barrier simulations, each of which are well known in the art.
- loads on the vehicle's components displacement of the components due to the impact, and/or other data is generated.
- impact data at each of the selected boundary points 24 , 26 , 28 , 30 , 32 , 34 , 36 , 38 , 40 , 42 , 44 , 46 is generated.
- the impact data at each of the boundary points 24 , 26 , 28 , 30 , 32 , 34 , 36 , 38 , 40 , 42 , 44 , 46 forms the basis of further simulations as will be discussed.
- a multi-body model 50 is generated, such as the model 50 shown in FIG. 3 .
- the multi-body model 50 includes a plurality of systems, including a system representing an occupant 52 and at least one system representing a component, such as the passenger compartment of the vehicle.
- the multi-body model 50 includes an occupant 52 , an overhead pillar 54 , a steering column 56 , a knee blocker 58 , a toe pan 60 , and a seat 62 .
- the multi-body model 50 includes an airbag 64 and a seatbelt assembly 66 represented in finite elements for more accuracy.
- the multi-body model 50 could include any number of systems without departing from the scope of the invention.
- the dimensions and position of the objects in the multi-body model 50 correspond to the dimensions and position of the objects in the full structural model 14 shown in FIG. 2 and described above.
- a plurality of boundary points are selected on the multi-body model 50 .
- the boundary points selected coincide with the boundary points 24 , 26 , 28 , 30 , 32 , 34 , 36 , 38 , 40 , 42 , 44 , 46 selected in the full structural model 14 of FIG. 2 .
- each system is located relative to a master joint 68 . More specifically, when building the multi-body model 50 , the first body of every system is the master joint 68 , and each system is positioned relative to the master joint 68 . In the embodiment shown, the master joint 68 is located so as to be in the same approximate location as the left mid sill of the vehicle. As will be discussed in greater detail, global vehicle displacements are inputted at the master joint 68 .
- the master joint 68 is a free joint in the embodiment shown such that linear displacements along the X, Y, and Z axes and yaw, pitch, and roll can each be inputted to the multi-body model 50 .
- step 48 of the method 10 involves utilizing the multi-body model 50 to identify potential design alternatives.
- the multi-body model 50 can be used to run a plurality of impact simulations. More specifically, the impact data collected in step 12 of the method (i.e., accelerations and/or displacements of the boundary points 24 , 26 , 28 , 30 , 32 , 34 , 36 , 38 , 40 , 42 , 44 , 46 of the full structural model 14 ) is used as input for running simulations with the multi-body model 50 .
- each simulation can vary the impact mode, the occupant type (e.g., 50 th percentile belted and unbelted occupant simulations, 5 th percentile belted and unbelted occupant), and/or the configuration of the occupant restraints (e.g., airbag inflator pressure, airbag vent size, airbag firing time, the seatbelt retractor force, and seatbelt pretensioner type).
- the occupant type e.g., 50 th percentile belted and unbelted occupant simulations, 5 th percentile belted and unbelted occupant
- the configuration of the occupant restraints e.g., airbag inflator pressure, airbag vent size, airbag firing time, the seatbelt retractor force, and seatbelt pretensioner type.
- the user inputs acceleration data, rather than initial velocity inputs, when running impact simulations with the multi-body model 50 .
- the user inputs acceleration along the X-axis to the occupant 52 .
- the acceleration data is the deceleration of the vehicle from the moment of impact until the vehicle comes to rest in one embodiment.
- the simulations run using the multi-body model 50 can be more accurate, especially when the impact causes extremely high accelerations and/or significant lateral displacement of the vehicle.
- simulations can be run fairly quickly. For instance, in one embodiment, the simulations can be run in approximately forty minutes each. This is because the multi-body model 50 is relatively simple and includes only the relevant structure of the interior of the vehicle. It should also be appreciated that the simulations are sufficiently accurate because the inputs are generated using the full structural model 14 in step 12 of the method 10 . Accordingly, the interior and occupant restraints of the vehicle can be improved quickly and accurately using the multi-body model 50 .
- a finite-element partial vehicle model 72 is generated, such as the embodiment shown in FIG. 4 .
- the finite-element partial vehicle model 72 includes a plurality of components, such as a hinge pillar 74 , a windshield 76 , an instrument panel 78 , a steering column 80 , and a seat 82 .
- Boundary points are selected on the partial vehicle model 72 by attaching a set of master nodes to an empty rigid part.
- the remaining nodes in the part are considered slave nodes.
- boundary conditions are input at the master nodes to obtain output at the slave node.
- the hinge pillar 74 includes a first master node 84 and a second master node 86 .
- the remaining nodes on the hinge pillar 74 are considered slave nodes.
- simulations can be run to identify the load on the hinge pillar 74 , the intrusion of the hinge pillar 74 , or other impact effect relatively quickly because input need only be applied at the first and second master nodes 84 , 86 .
- the seat 82 also includes master nodes, for instance, at each attachment bracket 88 a , 88 b , 88 c , 88 d.
- the impact scenario could be altered quickly using the partial vehicle model 72 .
- the desired intrusion can be input directly into the partial vehicle model 72 without having to utilize the full structural vehicle model 14 .
- the modeling method 10 provides versatility for running impact simulations.
- Step 70 of the method 70 also involves generating a coupled model 90 , such as the model 90 shown in FIGS. 5A , 5 B and 5 C.
- the coupled model 90 is generated using known coupling techniques and software.
- the coupled model 90 includes some or all of the contents of the multi-body model 50 ( FIG. 3 ) and some or all of the components from the partial vehicle model 72 ( FIG. 4 ).
- the coupled model 90 includes redundant components.
- the coupled model 90 includes the steering wheel 56 from the multi-body model 50 and redundantly includes the steering wheel 80 from the partial vehicle model 72 .
- the coupled model 90 includes the seat 62 from the multi-body model 50 and redundantly includes the seat 82 from the partial vehicle model 72 .
- step 70 of the method 10 involves running simulations with the coupled model 90 to evaluate the instrument panel, the seat, the steering wheel, and the column strap.
- step 92 This step is considered the execution phase of the method 10 .
- the coupled model 90 is used to verify and validate the design.
- the boundary conditions generated using the full structural model 14 in step 12 are input into the selected boundary points of the coupled model 90 to analyze the effects of impact.
- Global vehicle motions are input at the master joint 68 .
- acceleration data rather than initial velocity, is input to the occupant. As such, simulations run with the coupled model 90 are more accurate.
- the coupled model 90 can be “uncoupled” for analyzing only the multi-body components or the finite element components, depending on the problem being evaluated. It should be appreciated that the simulations can be run in less time because the uncoupled models are less complex. For instance, if the user wishes to run certain scenarios (such as an increased intrusion of the hinge pillar), the user can simply uncouple the finite element model and directly input the increased intrusion. Because the models can be uncoupled, the modeling method 10 is versatile, even late in the execution phase of the method 10 .
- step 94 the method 10 enters a launch phase, in which the vehicle is manufactured and marketed.
- the method 10 of the present invention provides an efficient means of simulating the structural, restraint, and occupant responses under different frontal impact conditions using a variety of models.
- Vehicle structural motions retrieved from the full structural vehicle model 14 are used as boundary point inputs for improved accuracy.
- the global vehicle kinematics are captured by applying the prescribed motion to the master joint 68 , to which the different multi-body systems are attached.
- Coupling and uncoupling the models provides an accurate, quick, and versatile means of simulating and evaluating the impacts. This approach simplifies the model building process and provides an efficient means for simulating different test modes. Changes in occupant response due to varying vehicle global motions can also be evaluated more quickly. Accordingly, the method 10 provides significant time and cost savings in testing and prototype construction.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
Abstract
Description
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/296,166 US7299677B2 (en) | 2005-12-07 | 2005-12-07 | Vehicle occupant analysis model for vehicle impacts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/296,166 US7299677B2 (en) | 2005-12-07 | 2005-12-07 | Vehicle occupant analysis model for vehicle impacts |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070143087A1 US20070143087A1 (en) | 2007-06-21 |
US7299677B2 true US7299677B2 (en) | 2007-11-27 |
Family
ID=38174819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/296,166 Expired - Fee Related US7299677B2 (en) | 2005-12-07 | 2005-12-07 | Vehicle occupant analysis model for vehicle impacts |
Country Status (1)
Country | Link |
---|---|
US (1) | US7299677B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070179764A1 (en) * | 2006-02-02 | 2007-08-02 | Ford Global Technologies, Llc | Vehicular supplemental restraint device simulation using finite element modeling |
CN104731990A (en) * | 2013-12-19 | 2015-06-24 | 北汽福田汽车股份有限公司 | Car crash safety analysis method |
CN105277373A (en) * | 2014-06-23 | 2016-01-27 | 福特全球技术公司 | Rear seat design and frontal impact simulation tool |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2937132B1 (en) * | 2008-10-15 | 2010-10-15 | Peugeot Citroen Automobiles Sa | METHOD FOR ESTIMATING THE PHYSICAL REQUIREMENTS OF FRONTAL SHOCK OF A FUTURE MOTOR VEHICLE USING A COMPUTER TOOL |
US20100121536A1 (en) * | 2008-11-12 | 2010-05-13 | Gm Global Technology Operations, Inc. | Performance-based classification method and algorithm for passengers |
CN102472683B (en) * | 2009-08-04 | 2014-11-26 | 新日铁住金株式会社 | Method for evaluating collision performance of vehicle member, and member collision test device used for same |
US8504339B2 (en) * | 2010-11-30 | 2013-08-06 | Nissan North America, Inc. | Method for door side intrusion simulation with progressive failures |
GB201604610D0 (en) * | 2016-03-18 | 2016-05-04 | Jaguar Land Rover Ltd | Vehicle analysis method and system |
WO2020242492A1 (en) * | 2019-05-31 | 2020-12-03 | Safran Seats Usa Llc | Recombination of numerical analysis for impact simulation |
US11891053B2 (en) * | 2019-06-03 | 2024-02-06 | Volvo Car Corporation | Vehicle total safety performance application and method utilizing crash configuration information |
CN110399653A (en) * | 2019-07-05 | 2019-11-01 | 中汽研汽车检验中心(天津)有限公司 | A kind of vehicle restraint systems minor structure emulation mode |
CN111324981A (en) * | 2020-02-19 | 2020-06-23 | 上汽大众汽车有限公司 | Finite element modeling method for modal calculation of safety belt retractor |
EP3933651A1 (en) * | 2020-07-03 | 2022-01-05 | Dassault Systemes Deutschland GmbH | Parallelized vehicle impact analysis |
CN113361180B (en) * | 2021-06-30 | 2023-06-23 | 西安工程大学 | Method for analyzing wearing stress state of sports bra in sports state |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4161874A (en) * | 1978-08-08 | 1979-07-24 | The United States Of America As Represented By The Secretary Of The Air Force | Head and neck impact measurement system |
US5483845A (en) * | 1994-09-12 | 1996-01-16 | Morton International, Inc. | Apparatus and method for side impact testing |
US5485758A (en) * | 1993-12-27 | 1996-01-23 | Trw Vehicle Safety Systems Inc. | Method and apparatus for simulating vehicle side impacts |
US20020157450A1 (en) * | 2001-04-27 | 2002-10-31 | Hutchenreuther Alan J. | Proximity suppression system tester |
US6522998B1 (en) * | 1998-10-13 | 2003-02-18 | Breed Automotive Technology, Inc. | Sled test apparatus and method for simulating pre-impact crash event |
US20060095235A1 (en) * | 2003-02-03 | 2006-05-04 | Roland Furtado | Method of designing automotive seat assemblies for rear impact performance |
-
2005
- 2005-12-07 US US11/296,166 patent/US7299677B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4161874A (en) * | 1978-08-08 | 1979-07-24 | The United States Of America As Represented By The Secretary Of The Air Force | Head and neck impact measurement system |
US5485758A (en) * | 1993-12-27 | 1996-01-23 | Trw Vehicle Safety Systems Inc. | Method and apparatus for simulating vehicle side impacts |
US5483845A (en) * | 1994-09-12 | 1996-01-16 | Morton International, Inc. | Apparatus and method for side impact testing |
US6522998B1 (en) * | 1998-10-13 | 2003-02-18 | Breed Automotive Technology, Inc. | Sled test apparatus and method for simulating pre-impact crash event |
US20020157450A1 (en) * | 2001-04-27 | 2002-10-31 | Hutchenreuther Alan J. | Proximity suppression system tester |
US20060095235A1 (en) * | 2003-02-03 | 2006-05-04 | Roland Furtado | Method of designing automotive seat assemblies for rear impact performance |
Non-Patent Citations (3)
Title |
---|
LS-Dyna 3D Interface Component Analysis to Predict FMVSS 208 Occupant Responses, Venkatesh Babu, et al., SAE Technical Paper 2003-01-1294, Mar. 3-6, 2003. |
Tools for Occupant Protection Analysis, Paul M. A. Slaats, et al., SAE Technical Paper 2001-01-2725, Nov. 12-14, 2001. |
Versatile Occupant Analysis Model (V.O.A.M) for Frontal Impacts Using LS-DYNA and MADYMO, Gopal Musale, et al., SAE Technical Paper 2005-01-1000, Apr. 11-14, 2005. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070179764A1 (en) * | 2006-02-02 | 2007-08-02 | Ford Global Technologies, Llc | Vehicular supplemental restraint device simulation using finite element modeling |
US8392162B2 (en) * | 2006-02-02 | 2013-03-05 | Ford Global Technologies | Vehicular supplemental restraint device simulation using finite element modeling |
CN104731990A (en) * | 2013-12-19 | 2015-06-24 | 北汽福田汽车股份有限公司 | Car crash safety analysis method |
CN105277373A (en) * | 2014-06-23 | 2016-01-27 | 福特全球技术公司 | Rear seat design and frontal impact simulation tool |
Also Published As
Publication number | Publication date |
---|---|
US20070143087A1 (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7299677B2 (en) | Vehicle occupant analysis model for vehicle impacts | |
US20060095235A1 (en) | Method of designing automotive seat assemblies for rear impact performance | |
Christensen et al. | Nonlinear optimization of vehicle safety structures: Modeling of structures subjected to large deformations | |
Yang et al. | Mathematical models, computer aided design, and occupant safety | |
Khan et al. | A review of airbag test and analysis | |
Bardini et al. | The contribution of occupant and vehicle dynamics simulation to testing occupant safety in passenger cars during rollover | |
Geigl et al. | Reconstruction of occupant kinematics and kinetics for real world accidents | |
Khalil et al. | Vehicle crashworthiness and occupant protection in frontal impact by FE analysis—An integrated approach | |
Lin et al. | Analytical design of cockpit modules for safety and comfort | |
Ye et al. | Automated analysis of driver response in a finite element crash test reconstruction | |
Enouen et al. | Comparison of models simulating occupant response with air bags | |
Ambrósio et al. | Structural and biomechanical crashworthiness using multi-body dynamics | |
Gandikota et al. | Multilevel design optimisation of a vehicle-dummy model under crash, vibration and injury criteria | |
Dickson et al. | Airbag restraint system design by crash simulation modeling and design of experiments | |
Ambrosio et al. | Vehicle crashworthiness design and analysis by means of nonlinear flexible multibody dynamics | |
Musale et al. | Versatile Occupant Analysis Model (VOAM) for Frontal Impacts Using LS-DYNA and MADYMO | |
Sadeghipour et al. | An approach for the development and the validation of generic simulation models for crash-compatibility investigations | |
Walker et al. | An integrated approach to the simulation of vehicle crashworthiness and occupant protection systems | |
Babu et al. | LS-DYNA 3D interface component analysis to predict FMVSS 208 occupant responses | |
Henson et al. | Computer modeling of intrusion effects on occupant dynamics in very severe frontal crashes | |
Grimes | Using ATB in collision reconstruction | |
Ng et al. | The development of a vehicle angled side collision computer simulation program | |
Hart et al. | The Role of LS-DYNA® in the Design of the New London Electric Taxi | |
Bosma et al. | Side Impact Systems Integration using BASIS Sled Testing and MADYMO PSM Simulation [C] | |
Fischer et al. | Computer modeling in new vehicle design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIMLERCHRYSLER CORPORATION, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUSALE, GOPAL;KESHTKAR, REZA;REEL/FRAME:017204/0961 Effective date: 20051206 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019773/0001 Effective date: 20070803 Owner name: WILMINGTON TRUST COMPANY,DELAWARE Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019773/0001 Effective date: 20070803 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019767/0810 Effective date: 20070803 Owner name: WILMINGTON TRUST COMPANY,DELAWARE Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:019767/0810 Effective date: 20070803 |
|
AS | Assignment |
Owner name: CHRYSLER LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAIMIER CHRYSLER COMPANY LLC (CONVERTED TO LIMITED LIABILITY COMPANY DAIMLERCHRYSLER COMPANY LLC);DAIMLERCHRYSLER COMPANY LLC;REEL/FRAME:019879/0702;SIGNING DATES FROM 20070324 TO 20070724 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: US DEPARTMENT OF THE TREASURY, DISTRICT OF COLUMBI Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022259/0188 Effective date: 20090102 Owner name: US DEPARTMENT OF THE TREASURY,DISTRICT OF COLUMBIA Free format text: GRANT OF SECURITY INTEREST IN PATENT RIGHTS - THIR;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022259/0188 Effective date: 20090102 |
|
AS | Assignment |
Owner name: CHRYSLER LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US DEPARTMENT OF THE TREASURY;REEL/FRAME:022902/0310 Effective date: 20090608 Owner name: CHRYSLER LLC,MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:US DEPARTMENT OF THE TREASURY;REEL/FRAME:022902/0310 Effective date: 20090608 |
|
AS | Assignment |
Owner name: CHRYSLER LLC, MICHIGAN Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0498 Effective date: 20090604 Owner name: CHRYSLER LLC, MICHIGAN Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0740 Effective date: 20090604 Owner name: NEW CARCO ACQUISITION LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022915/0001 Effective date: 20090610 Owner name: THE UNITED STATES DEPARTMENT OF THE TREASURY, DIST Free format text: SECURITY AGREEMENT;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022915/0489 Effective date: 20090610 Owner name: CHRYSLER LLC,MICHIGAN Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - FIRST PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0498 Effective date: 20090604 Owner name: CHRYSLER LLC,MICHIGAN Free format text: RELEASE OF SECURITY INTEREST IN PATENT RIGHTS - SECOND PRIORITY;ASSIGNOR:WILMINGTON TRUST COMPANY;REEL/FRAME:022910/0740 Effective date: 20090604 Owner name: NEW CARCO ACQUISITION LLC,MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHRYSLER LLC;REEL/FRAME:022915/0001 Effective date: 20090610 Owner name: THE UNITED STATES DEPARTMENT OF THE TREASURY,DISTR Free format text: SECURITY AGREEMENT;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022915/0489 Effective date: 20090610 |
|
AS | Assignment |
Owner name: CHRYSLER GROUP LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022919/0126 Effective date: 20090610 Owner name: CHRYSLER GROUP LLC,MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:NEW CARCO ACQUISITION LLC;REEL/FRAME:022919/0126 Effective date: 20090610 |
|
AS | Assignment |
Owner name: CHRYSLER GROUP LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:026343/0298 Effective date: 20110524 Owner name: CHRYSLER GROUP GLOBAL ELECTRIC MOTORCARS LLC, NORT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:026343/0298 Effective date: 20110524 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:026404/0123 Effective date: 20110524 |
|
AS | Assignment |
Owner name: CITIBANK, N.A., NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:026435/0652 Effective date: 20110524 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:032384/0640 Effective date: 20140207 |
|
AS | Assignment |
Owner name: FCA US LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:CHRYSLER GROUP LLC;REEL/FRAME:035553/0356 Effective date: 20141203 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: FCA US LLC, FORMERLY KNOWN AS CHRYSLER GROUP LLC, Free format text: RELEASE OF SECURITY INTEREST RELEASING SECOND-LIEN SECURITY INTEREST PREVIOUSLY RECORDED AT REEL 026426 AND FRAME 0644, REEL 026435 AND FRAME 0652, AND REEL 032384 AND FRAME 0591;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:037784/0001 Effective date: 20151221 |
|
AS | Assignment |
Owner name: FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC), Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:042885/0255 Effective date: 20170224 |
|
AS | Assignment |
Owner name: FCA US LLC (FORMERLY KNOWN AS CHRYSLER GROUP LLC), Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:048177/0356 Effective date: 20181113 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20191127 |