US7219699B2 - Resin-coated steel pipe excellent in mechanical strength such as sliding property - Google Patents

Resin-coated steel pipe excellent in mechanical strength such as sliding property Download PDF

Info

Publication number
US7219699B2
US7219699B2 US10/517,271 US51727104A US7219699B2 US 7219699 B2 US7219699 B2 US 7219699B2 US 51727104 A US51727104 A US 51727104A US 7219699 B2 US7219699 B2 US 7219699B2
Authority
US
United States
Prior art keywords
resin
steel pipe
coated
thin
engineering plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/517,271
Other versions
US20060162800A1 (en
Inventor
Shuji Yoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Kako Corp
Original Assignee
Yazaki Kako Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Kako Corp filed Critical Yazaki Kako Corp
Assigned to YAZAKI INDUSTRIAL CHEMICAL CO., LTD. reassignment YAZAKI INDUSTRIAL CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOSHINO, SHUJI
Publication of US20060162800A1 publication Critical patent/US20060162800A1/en
Application granted granted Critical
Publication of US7219699B2 publication Critical patent/US7219699B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/147Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]

Definitions

  • This invention belongs to the technical field of resin-coated steel pipe with superior mechanical strength, including the ability to slide, which uses, as its outer coating resin, a crystalline engineering plastic notably superior in mechanical strength, including the ability to slide, and in heat resistance. More particularly, the invention relates to a resin-coated steel pipe with superior mechanical strength, including the ability to slide, the crystalline engineering plastic of which greatly improves the adhesiveness of the steel pipe, making the pipe suited for use as a spline shaft used in live-roller conveyors for light or medium loads, and the like.
  • Crystalline engineering plastics such as PBT (polybutylene terephthalate) resin and nylon resin are notably superior in mechanical strength, including the ability to slide, and in heat resistance.
  • PBT polybutylene terephthalate
  • nylon resin are notably superior in mechanical strength, including the ability to slide, and in heat resistance.
  • PBT polybutylene terephthalate
  • resin-coated steel pipes superior in their ability to slide, as well as in their durability. Accordingly, there are remarkable advantages to such steel pipes, and it is expected that there will also be great demand for the same.
  • Resin-coated steel pipes are most suitable for use as members requiring a significant ability to slide, such as spline shafts used in live-roller conveyors for light or medium loads.
  • the resin-coated steel pipe constructed by bonding a crystalline engineering plastic to the thin-walled steel pipe with an adherent polymer is problematic in that water is liable to seep into the interface between the thin-walled steel pipe and the adherent polymer, causing the separation of the coated resin (crystalline engineering plastic).
  • regular contact with water will result in accelerated separation of the coated resin, thus impairing the practicality of the resin-coated steel pipe for such applications.
  • crystalline engineering plastics are superior in mechanical strength, including the ability to slide, as well as in heat resistance, they have a low melt viscosity and a large shrinkage factor. Consequently, a disadvantage also arises in that shaping stability, and thus dimensional accuracy, is low, lowering production efficiency.
  • crystalline engineering plastics are in themselves expensive and are not economical materials. In the present circumstances, therefore, crystalline engineering plastics should be coated to the smallest possible thickness, thereby reducing the amount of the expensive resins used.
  • the outer resin coating of resin-coated steel pipes is formed using synthetic resins, such as acrylate acrylic styrene (AAS), acrylonitrile-butadiene-styrene (ABS), Acrylonitrile-ethylene-styrene (AES) and Poly(ethylene terephthalate) glycol (PETG), which are inferior to crystalline engineering plastics in mechanical strength, including the ability to slide, and in heat resistance, but permit the use of a rubber-based adhesive which ensures excellent water resistance of the adhesion interface between the thin-walled steel pipe and the coated resin, and does not entail the separation of the coated resin.
  • synthetic resins such as acrylate acrylic styrene (AAS), acrylonitrile-butadiene-styrene (ABS), Acrylonitrile-ethylene-styrene (AES) and Poly(ethylene terephthalate) glycol (PETG), which are inferior to crystalline engineering plastics in mechanical strength, including the ability to slide, and
  • a first object of the present invention is to provide a resin-coated steel pipe with superior mechanical strength, including the ability to slide, in which crystalline engineering plastic has greatly improved adhesiveness with respect to a thin-walled steel pipe, and thus is free from problems of separation.
  • a second object of the present invention is to provide a resin-coated steel pipe with superior mechanical strength including slidability, which can be more economically manufactured with improved production efficiency.
  • the invention as recited in claim 1 relates to a resin-coated steel pipe with superior mechanical strength, including the ability to slide, in which an alloy resin that is a mixture of a styrene-based resin and a crystalline engineering plastic is coated over the outer peripheral surface of a thin-walled steel pipe and is bonded to it by an adhesive.
  • the crystalline engineering plastic of a thickness necessary to exhibit required mechanical strength, including the ability to slide, is coated over the outer peripheral surface of the coated resin such that the resin-coated steel pipe has a double coated structure with a uniform cross-sectional form along its axial direction.
  • the invention recited in claim 2 is characterized in that the styrene-based resin is a resin selected from the group comprised of AAS resins, ABS resins and ABS resins, and the crystalline engineering plastic is a resin selected from the group comprised of PBT resins, nylon resins and polyacetal resins.
  • the invention recited in claim 3 is characterized in that the thin-walled steel pipe is circular in section.
  • the alloy resin bonded and coated over the outer peripheral surface of the thin-walled steel pipe has furrows and ridges formed alternately in the circumferential direction of the thin- walled steel pipe. Further, the furrows and the ridges extend in the axial direction of the thin-walled steel pipe such that the thin-walled steel pipe with the alloy resin coating has a uniform cross-sectional form along its axial direction.
  • Each of the ridges has a groove formed on its outer peripheral surface and extending in the axial direction of the thin-walled steel pipe.
  • the groove is capable of accommodating the crystalline engineering plastic of a thickness and width necessary to exhibit the required mechanical strength, including the ability to slide.
  • the crystalline engineering plastic coated over the outer peripheral surface of the alloy resin has a thickness such that the crystalline engineering plastic coated over the grooves in the respective ridges of the alloy resin has a thickness greater than that coated on other regions, and that the resin-coated steel pipe is spline-shaped as a whole.
  • FIG. 1A is a perspective view showing a resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to the present invention
  • FIG. 1B is a sectional view of the resin-coated steel pipe
  • FIG. 1C is an enlarged view of part X shown in FIG. 1B ;
  • FIG. 2 is an elevation showing a principal part of a crosshead die-type extrusion molding machine
  • FIG. 3 is a sectional view taken along line III—III in FIG. 2 ;
  • FIG. 4A is a front view of an inner resin coating die ring, and FIG. 4B is a sectional view taken along line IV—IV;
  • FIG. 5A is a front view of an outer resin coating die ring
  • FIG. 5B is a sectional view taken along line V—V;
  • FIG. 6 is a reference figure showing an example of how the resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to the present invention may be used.
  • FIGS. 1A to 1C illustrate a resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide, according to an embodiment of the invention as recited in claim 1 .
  • the resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide is suitable for use as a spline shaft, for example, which is used in a live-roller conveyor for light or medium loads, etc., and which is required to have a significant ability to slide.
  • alloying of resins has conventionally been carried out in order to obtain superior functions and properties that cannot be achieved by a single resin.
  • alloy resins containing resins with originally poor compatibility, alloyed using a compatibilizer have become commercially available, and styrene-based resins alloyed with various resins have also appeared in the market.
  • An alloy resin 3 which is a mixture of a styrene-based resin and a crystalline engineering plastic, is used so that a rubber-based adhesive capable of adhering to the styrene-based resin contained in the alloy resin 3 ensures sufficiently high adhesion to the surface of a steel pipe 2 while at the same time the alloy resin can be coated externally with the crystalline engineering plastic 4 and bonded by means of its compatibility with the crystalline engineering plastic 4 .
  • the resin-coated steel pipe 1 is greatly improved in terms of adhesiveness of the crystalline engineering plastic 4 to the thin-walled steel pipe 2 .
  • the required mechanical strength, including the ability to slide, is efficiently attained while minimizing the amount of the expensive crystalline engineering plastic 4 used.
  • a rubber-based adhesive is applied to the outer peripheral surface of the thin-walled steel pipe 2 which is circular in section and has an outside diameter of about 26 mm, and the alloy resin 3 is coated on and bonded to the outer peripheral surface of the steel pipe 2 applied with the adhesive.
  • the alloy resin 3 is composed of an AAS resin, which is a styrene-based resin, and a PBT resin, which belongs to crystalline engineering plastics.
  • the outer peripheral surface of the alloy resin 3 is coated with the same crystalline engineering plastic as that constituting the alloy resin 3 , that is, the PBT resin 4 , which has a thickness necessary to exhibit the required mechanical strength, including the ability to slide, such that the resin-coated steel pipe has a double coated structure with a uniform cross-sectional form along its axial direction, (according to claim 1 of the present invention).
  • the alloy resin 3 is a polymer alloy of AAS resin containing 20% PBT resin.
  • the alloy resin is coated over the outer peripheral surface of the thin-walled steel pipe 2 and has furrows 3 a and ridges 3 b formed alternately in the circumferential direction of the thin-walled steel pipe.
  • the furrows 3 a and the ridges 3 b extend in the axial direction of the thin-walled steel pipe such that the thin-walled steel pipe coated with the alloy resin has a uniform cross-sectional form along its axial direction.
  • the ridges 3 b which are six in number, each has a groove 3 c formed on the outer peripheral surface and extending in the axial direction of the thin-walled steel pipe, the groove 3 c being capable of accommodating the PBT resin 4 for a thickness (about 0.5 mm) and width (about 4 mm) necessary to exhibit the required mechanical strength, including the ability to slide.
  • the PBT resin 4 is coated over the outer peripheral surface of the alloy resin 3 such that the PBT resin has a greater thickness (about 0.8 mm) in regions corresponding to the grooves 3 c in the ridges 3 b of the alloy resin 3 , has a lesser thickness (about 0.3 mm) in regions corresponding to the other regions of the ridges 3 b, and has the least thickness (about 0.1 mm) in regions corresponding to the furrows 3 a, (according to claim 3 of the present invention).
  • the styrene-based resin constituting the alloy resin 3 is not limited to the AAS resins alone, and ABS resin or AES resins may be used instead.
  • the crystalline engineering plastic 4 to be used is not limited to PBT resins 4 ; nylon resin or polyacetal resins may also be used, (according to claim 2 of the current invention). Namely, a resin-coated steel pipe coated with a desired crystalline engineering plastic can be obtained insofar as a styrene-based alloy resin containing the desired crystalline engineering plastic is available.
  • ridges 3 b are arranged at substantially equal intervals in the circumferential direction of the steel pipe, but the number of the ridges is not limited to six.
  • the resin-coated steel pipe 1 of the embodiment is shaped like a spline (spline shaft), but the shape of the steel pipe is, of course, not limited to spline and may be cylindrical.
  • the PBT resin 4 has an increased thickness in the region corresponding to the central portion of each ridge 3 b, as viewed in cross section, in order to efficiently impart the required mechanical strength, including the ability to slide, to the steel pipe, while at the same time minimizing the amount of the expensive crystalline engineering plastic 4 used. Also, in the event the resin-coated steel pipe 1 of the embodiment is used as a spline shaft, the central portions of the ridges 3 b, which are fitted into a bearing, are most likely to wear away due to sliding contact, and this is why the thickness of the PBT resin is increased.
  • the grooves 3 c of the alloy resin 3 which permit the thickness of the PBT resin 4 to be increased, also serve to restrict the extruded PBT resin 4 with the opposing walls of each groove, and the ridges and the furrows can be formed stably even though the PBT resin 4 , which has a low melt viscosity and is difficult to keep in shape, is used.
  • the thin-walled steel pipe 2 used has a thickness of about 1 mm or less and an outside diameter of about 26 mm.
  • the alloy resin 3 is about 0.5 mm thick at the furrow 3 a and about 1.2 mm thick at the ridge 3 b.
  • Each groove 3 c is about 4 mm wide and about 0.5 mm deep.
  • the PBT resin 4 has an increased thickness of about 0.8 mm in the region corresponding to the groove 3 c, has a lesser thickness of about 0.3 mm in the region corresponding to the ridge 3 b excepting the groove 3 c, and has the least thickness of about 0.1 mm in the region corresponding to the furrow 3 a.
  • the resin-coated steel pipe 1 as a whole which is spline-shaped and is formed by extrusion molding, has a major outside diameter of about 29 mm when measured at the ridges 3 b, and a minor outside diameter of about 27.2 mm when measured at the furrows 3 a.
  • the aforementioned resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide, has the following advantages: (1) The PBT resin (crystalline engineering plastic) 4 is coated on the thin-walled steel pipe 2 such that the alloy resin 3 with compatibility to the PBT resin is interposed between the steel pipe 2 and the PBT resin. Accordingly, the PBT resin 4 has sufficiently high adhesion to the thin-walled steel pipe 2 , thus eliminating the possibility of the coated PBT resin being separated. (2) The PBT resin 4 , which has a low melt viscosity and is difficult to keep in shape, is extruded while being restricted by the opposing walls of each groove 3 c of the alloy resin 3 , allowing the shaping to be stabilized and production efficiency to be greatly improved. (3) The use of the expensive crystalline engineering plastic 4 is limited to the minimum amount necessary to ensure the required ability to slide, so that the resin-coated steel pipe can be manufactured economically at a low unit cost.
  • FIGS. 2 and 3 illustrate a crosshead die-type extrusion molding machine used in the extrusion molding method.
  • reference numeral 10 denotes the die ring structure of the cross die, which constitutes a principal part of the extrusion molding machine.
  • the basic structure of the machine is almost identical with that of the extrusion molding machine described in Japanese Patent No. 2867244 granted to this applicant.
  • the distribution piece 14 and the inner resin coating die ring 15 which are arranged adjacent to the adapter 11 attached to the distal end of the cross die, not shown, are fixed in position by a distribution plate 12 , and the radial distribution piece 16 and the outer resin coating die ring 17 are fixed in position by a distribution plate 13 .
  • the distribution plates 12 and 13 are in close contact with, and securely fixed to, each other.
  • a coupling member 20 which is coupled to a heating cylinder, is connected to upper portions of the distribution plates 12 and 13 across the plane where the distribution plates are joined.
  • the alloy resin 3 from the cross die is coated over the outer peripheral surface of the thin-walled steel pipe 2 by the inner resin coating die ring 15 .
  • the PBT resin 4 from the heating cylinder is coated over the outer peripheral surface of the alloy resin 3 by the outer resin coating die ring 17 .
  • a flow passage for introducing the PBT resin (crystalline engineering plastic) 4 from the coupling member 20 to the outer resin coating die ring 17 is constituted by a relatively large semicircular first flow passage 18 concentric with the thin-walled steel pipe 2 , and small-diameter second flow passages 19 , 19 located inside the first flow passage and connected to respective opposite ends of the semicircular first flow passage.
  • the second flow passages 19 , 19 are connected to each other and their junctions are narrowed so that the resin may be uniformly extruded toward the center.
  • the second flow passages 19 , 19 connect with through-holes 17 a and 17 b (see FIG. 5 ) in the outer resin coating die ring 17 through radial flow passages formed in the radial distribution piece 16 .
  • the inner resin coating die ring 15 has through-holes 15 a, 15 b and 15 c.
  • the through-hole 15 a corresponds to the furrows 3 a of the alloy resin 3 to be coated
  • the through-hole 15 c corresponds to the grooves 3 c of the alloy resin 3 .
  • Each of the through-holes 15 c and the through-holes 15 b corresponds to a ridge 3 b of the alloy resin 3 .
  • the outer resin coating die ring 17 has through-holes 17 a, each of which has a circumferential width corresponding to one through-hole 15 c of the inner resin coating die ring 15 and the through-holes 15 b, 15 b located on either side, so as to coat the PBT resin 4 with an increased thickness, and the through-holes 17 b each corresponding in position to through-hole 15 a so as to coat the PBT resin 4 with a lesser thickness.
  • the thin-walled steel pipe 2 is advanced from the cross die, not shown, to the right, and as the steel pipe 2 advances, the alloy resin 3 , which is supplied to the inner resin coating die ring 15 via the adapter 11 and the distribution piece 14 , is coated on and bonded to the steel pipe 2 .
  • the thin-walled steel pipe 2 reaches the outer resin coating die ring 17 , where the PBT resin 4 , which is supplied to the through-holes 17 a and 17 b from the coupling member 20 through the first and second flow passages 18 and 19 , the radial distribution piece 16 and the gap between the inner and outer resin coating die rings 15 and 17 , is coated over the outer peripheral surface of the alloy resin 3 while being kept in shape by the alloy resin.
  • the resin-coated steel pipe 1 including the alloy resin 3 and the PBT resin 4 as its inner and outer coatings, respectively, as shown in FIG. 1 is obtained by extrusion molding, and the steel pipe 1 thus obtained is spline-shaped and has a double coated structure with a uniform cross-sectional form along the axial direction thereof.
  • the crystalline engineering plastic is coated in such a manner that the alloy resin, which is compatible with the engineering plastic, is interposed between the thin-walled steel pipe and the engineering plastic. Accordingly, the coated crystalline engineering plastic has sufficiently high adhesion to the steel pipe and does not separate from it. Also, the PBT resin, which has a low melt viscosity and is difficult to keep in shape, is extruded while being restricted by the opposing walls of each groove of the alloy resin, allowing the shaping to be stabilized and the production efficiency to be greatly improved. Further, the use of the expensive crystalline engineering plastic is limited to the amount necessary to ensure the required ability to slide, and therefore, the resin-coated steel pipe can be economically manufactured at a low unit cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

A resin-coated steel pipe is provided having excellent mechanical strength and sliding properties. A double coated structure is formed that extends in the pipe's axial direction and has substantially the same cross section. The structure has a thin steel pipe. Attached to the outer surface thereof is a coating layer with adhesive and an alloy resin. That alloy resin is a mixture of a styrenic resin and a crystalline engineering plastic. Further, formed on the outer surface of the alloy resin in a thickness required for mechanical strength and sliding properties is a crystalline engineering plastic. The resin-coated steel pipe exhibits markedly improved adhesion of the crystalline engineering plastic to the thin steel pipe and thus is free from a fear of the exfoliation of the plastic.

Description

BACKGROUND OF THE INVENTION
This invention belongs to the technical field of resin-coated steel pipe with superior mechanical strength, including the ability to slide, which uses, as its outer coating resin, a crystalline engineering plastic notably superior in mechanical strength, including the ability to slide, and in heat resistance. More particularly, the invention relates to a resin-coated steel pipe with superior mechanical strength, including the ability to slide, the crystalline engineering plastic of which greatly improves the adhesiveness of the steel pipe, making the pipe suited for use as a spline shaft used in live-roller conveyors for light or medium loads, and the like.
Crystalline engineering plastics such as PBT (polybutylene terephthalate) resin and nylon resin are notably superior in mechanical strength, including the ability to slide, and in heat resistance. Thus, if such plastics can be used as the outer coating resin of resin-coated steel pipes, then it is possible to obtain resin-coated steel pipes superior in their ability to slide, as well as in their durability. Accordingly, there are remarkable advantages to such steel pipes, and it is expected that there will also be great demand for the same. Resin-coated steel pipes are most suitable for use as members requiring a significant ability to slide, such as spline shafts used in live-roller conveyors for light or medium loads.
When using a crystalline engineering plastic as the outer coating resin of a resin-coated steel pipe, there has hitherto been no suitable adhesive that was able to satisfactorily bond the crystalline engineering plastic to a thin-walled steel pipe. The only available measure was to coat the thin-walled steel pipe with a thin film of a modified polyolefin-based adherent polymer and then bond the crystalline engineering plastic to the surface of the polymer.
However, the resin-coated steel pipe constructed by bonding a crystalline engineering plastic to the thin-walled steel pipe with an adherent polymer is problematic in that water is liable to seep into the interface between the thin-walled steel pipe and the adherent polymer, causing the separation of the coated resin (crystalline engineering plastic). Especially in cases where the resin-coated steel pipe is used outdoors, or in the field of agriculture or fisheries, regular contact with water will result in accelerated separation of the coated resin, thus impairing the practicality of the resin-coated steel pipe for such applications.
Also, although crystalline engineering plastics are superior in mechanical strength, including the ability to slide, as well as in heat resistance, they have a low melt viscosity and a large shrinkage factor. Consequently, a disadvantage also arises in that shaping stability, and thus dimensional accuracy, is low, lowering production efficiency.
Moreover, crystalline engineering plastics are in themselves expensive and are not economical materials. In the present circumstances, therefore, crystalline engineering plastics should be coated to the smallest possible thickness, thereby reducing the amount of the expensive resins used.
As stated above, it is extremely difficult to use a crystalline engineering plastic as the outer coating resin of a resin-coated steel pipe, and no such resin-coated steel pipe has been put to practical use yet.
Currently, therefore, the outer resin coating of resin-coated steel pipes is formed using synthetic resins, such as acrylate acrylic styrene (AAS), acrylonitrile-butadiene-styrene (ABS), Acrylonitrile-ethylene-styrene (AES) and Poly(ethylene terephthalate) glycol (PETG), which are inferior to crystalline engineering plastics in mechanical strength, including the ability to slide, and in heat resistance, but permit the use of a rubber-based adhesive which ensures excellent water resistance of the adhesion interface between the thin-walled steel pipe and the coated resin, and does not entail the separation of the coated resin.
A first object of the present invention is to provide a resin-coated steel pipe with superior mechanical strength, including the ability to slide, in which crystalline engineering plastic has greatly improved adhesiveness with respect to a thin-walled steel pipe, and thus is free from problems of separation.
A second object of the present invention is to provide a resin-coated steel pipe with superior mechanical strength including slidability, which can be more economically manufactured with improved production efficiency.
BRIEF SUMMARY OF THE INVENTION
To achieve the objects described above, the invention as recited in claim 1 relates to a resin-coated steel pipe with superior mechanical strength, including the ability to slide, in which an alloy resin that is a mixture of a styrene-based resin and a crystalline engineering plastic is coated over the outer peripheral surface of a thin-walled steel pipe and is bonded to it by an adhesive. The crystalline engineering plastic, of a thickness necessary to exhibit required mechanical strength, including the ability to slide, is coated over the outer peripheral surface of the coated resin such that the resin-coated steel pipe has a double coated structure with a uniform cross-sectional form along its axial direction.
In the resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to claim 1, the invention recited in claim 2 is characterized in that the styrene-based resin is a resin selected from the group comprised of AAS resins, ABS resins and ABS resins, and the crystalline engineering plastic is a resin selected from the group comprised of PBT resins, nylon resins and polyacetal resins.
In the resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to claim 1 or 2, the invention recited in claim 3 is characterized in that the thin-walled steel pipe is circular in section. The alloy resin bonded and coated over the outer peripheral surface of the thin-walled steel pipe has furrows and ridges formed alternately in the circumferential direction of the thin- walled steel pipe. Further, the furrows and the ridges extend in the axial direction of the thin-walled steel pipe such that the thin-walled steel pipe with the alloy resin coating has a uniform cross-sectional form along its axial direction. Each of the ridges has a groove formed on its outer peripheral surface and extending in the axial direction of the thin-walled steel pipe. The groove is capable of accommodating the crystalline engineering plastic of a thickness and width necessary to exhibit the required mechanical strength, including the ability to slide. The crystalline engineering plastic coated over the outer peripheral surface of the alloy resin has a thickness such that the crystalline engineering plastic coated over the grooves in the respective ridges of the alloy resin has a thickness greater than that coated on other regions, and that the resin-coated steel pipe is spline-shaped as a whole.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a perspective view showing a resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to the present invention, FIG. 1B is a sectional view of the resin-coated steel pipe, and FIG. 1C is an enlarged view of part X shown in FIG. 1B;
FIG. 2 is an elevation showing a principal part of a crosshead die-type extrusion molding machine;
FIG. 3 is a sectional view taken along line III—III in FIG. 2;
FIG. 4A is a front view of an inner resin coating die ring, and FIG. 4B is a sectional view taken along line IV—IV;
FIG. 5A is a front view of an outer resin coating die ring, and FIG. 5B is a sectional view taken along line V—V; and
FIG. 6 is a reference figure showing an example of how the resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to the present invention may be used.
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A to 1C illustrate a resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide, according to an embodiment of the invention as recited in claim 1. The resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide, is suitable for use as a spline shaft, for example, which is used in a live-roller conveyor for light or medium loads, etc., and which is required to have a significant ability to slide.
The alloying of resins has conventionally been carried out in order to obtain superior functions and properties that cannot be achieved by a single resin. Recently, alloy resins containing resins with originally poor compatibility, alloyed using a compatibilizer, have become commercially available, and styrene-based resins alloyed with various resins have also appeared in the market. The present invention is based on the following technical concepts: An alloy resin 3, which is a mixture of a styrene-based resin and a crystalline engineering plastic, is used so that a rubber-based adhesive capable of adhering to the styrene-based resin contained in the alloy resin 3 ensures sufficiently high adhesion to the surface of a steel pipe 2 while at the same time the alloy resin can be coated externally with the crystalline engineering plastic 4 and bonded by means of its compatibility with the crystalline engineering plastic 4. Thus, the resin-coated steel pipe 1 is greatly improved in terms of adhesiveness of the crystalline engineering plastic 4 to the thin-walled steel pipe 2. Also, the required mechanical strength, including the ability to slide, is efficiently attained while minimizing the amount of the expensive crystalline engineering plastic 4 used.
In the resin-coated steel pipe 1, a rubber-based adhesive is applied to the outer peripheral surface of the thin-walled steel pipe 2 which is circular in section and has an outside diameter of about 26 mm, and the alloy resin 3 is coated on and bonded to the outer peripheral surface of the steel pipe 2 applied with the adhesive. The alloy resin 3 is composed of an AAS resin, which is a styrene-based resin, and a PBT resin, which belongs to crystalline engineering plastics.
The outer peripheral surface of the alloy resin 3 is coated with the same crystalline engineering plastic as that constituting the alloy resin 3, that is, the PBT resin 4, which has a thickness necessary to exhibit the required mechanical strength, including the ability to slide, such that the resin-coated steel pipe has a double coated structure with a uniform cross-sectional form along its axial direction, (according to claim 1 of the present invention).
The alloy resin 3 is a polymer alloy of AAS resin containing 20% PBT resin. The alloy resin is coated over the outer peripheral surface of the thin-walled steel pipe 2 and has furrows 3 a and ridges 3 b formed alternately in the circumferential direction of the thin-walled steel pipe. The furrows 3 a and the ridges 3 b extend in the axial direction of the thin-walled steel pipe such that the thin-walled steel pipe coated with the alloy resin has a uniform cross-sectional form along its axial direction. The ridges 3 b, which are six in number, each has a groove 3 c formed on the outer peripheral surface and extending in the axial direction of the thin-walled steel pipe, the groove 3 c being capable of accommodating the PBT resin 4 for a thickness (about 0.5 mm) and width (about 4 mm) necessary to exhibit the required mechanical strength, including the ability to slide.
The PBT resin 4 is coated over the outer peripheral surface of the alloy resin 3 such that the PBT resin has a greater thickness (about 0.8 mm) in regions corresponding to the grooves 3 c in the ridges 3 b of the alloy resin 3, has a lesser thickness (about 0.3 mm) in regions corresponding to the other regions of the ridges 3 b, and has the least thickness (about 0.1 mm) in regions corresponding to the furrows 3 a, (according to claim 3 of the present invention).
The styrene-based resin constituting the alloy resin 3 is not limited to the AAS resins alone, and ABS resin or AES resins may be used instead. Also, the crystalline engineering plastic 4 to be used is not limited to PBT resins 4; nylon resin or polyacetal resins may also be used, (according to claim 2 of the current invention). Namely, a resin-coated steel pipe coated with a desired crystalline engineering plastic can be obtained insofar as a styrene-based alloy resin containing the desired crystalline engineering plastic is available.
In this embodiment, six ridges 3 b are arranged at substantially equal intervals in the circumferential direction of the steel pipe, but the number of the ridges is not limited to six. Also, the resin-coated steel pipe 1 of the embodiment is shaped like a spline (spline shaft), but the shape of the steel pipe is, of course, not limited to spline and may be cylindrical.
The PBT resin 4 has an increased thickness in the region corresponding to the central portion of each ridge 3 b, as viewed in cross section, in order to efficiently impart the required mechanical strength, including the ability to slide, to the steel pipe, while at the same time minimizing the amount of the expensive crystalline engineering plastic 4 used. Also, in the event the resin-coated steel pipe 1 of the embodiment is used as a spline shaft, the central portions of the ridges 3 b, which are fitted into a bearing, are most likely to wear away due to sliding contact, and this is why the thickness of the PBT resin is increased. The grooves 3 c of the alloy resin 3, which permit the thickness of the PBT resin 4 to be increased, also serve to restrict the extruded PBT resin 4 with the opposing walls of each groove, and the ridges and the furrows can be formed stably even though the PBT resin 4, which has a low melt viscosity and is difficult to keep in shape, is used.
Specifically, in the example shown in FIG. 1, the thin-walled steel pipe 2 used has a thickness of about 1 mm or less and an outside diameter of about 26 mm. The alloy resin 3 is about 0.5 mm thick at the furrow 3 a and about 1.2 mm thick at the ridge 3 b. Each groove 3 c is about 4 mm wide and about 0.5 mm deep. The PBT resin 4 has an increased thickness of about 0.8 mm in the region corresponding to the groove 3 c, has a lesser thickness of about 0.3 mm in the region corresponding to the ridge 3 b excepting the groove 3 c, and has the least thickness of about 0.1 mm in the region corresponding to the furrow 3 a. Accordingly, the resin-coated steel pipe 1 as a whole, which is spline-shaped and is formed by extrusion molding, has a major outside diameter of about 29 mm when measured at the ridges 3 b, and a minor outside diameter of about 27.2 mm when measured at the furrows 3 a.
The aforementioned resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide, has the following advantages: (1) The PBT resin (crystalline engineering plastic) 4 is coated on the thin-walled steel pipe 2 such that the alloy resin 3 with compatibility to the PBT resin is interposed between the steel pipe 2 and the PBT resin. Accordingly, the PBT resin 4 has sufficiently high adhesion to the thin-walled steel pipe 2, thus eliminating the possibility of the coated PBT resin being separated. (2) The PBT resin 4, which has a low melt viscosity and is difficult to keep in shape, is extruded while being restricted by the opposing walls of each groove 3 c of the alloy resin 3, allowing the shaping to be stabilized and production efficiency to be greatly improved. (3) The use of the expensive crystalline engineering plastic 4 is limited to the minimum amount necessary to ensure the required ability to slide, so that the resin-coated steel pipe can be manufactured economically at a low unit cost.
Referring now to FIG. 2 and the succeeding drawings, an extrusion molding method for producing the resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide according to the embodiment is described.
FIGS. 2 and 3 illustrate a crosshead die-type extrusion molding machine used in the extrusion molding method. In FIG. 3, reference numeral 10 denotes the die ring structure of the cross die, which constitutes a principal part of the extrusion molding machine. The basic structure of the machine is almost identical with that of the extrusion molding machine described in Japanese Patent No. 2867244 granted to this applicant.
In the extrusion molding machine, the distribution piece 14 and the inner resin coating die ring 15, which are arranged adjacent to the adapter 11 attached to the distal end of the cross die, not shown, are fixed in position by a distribution plate 12, and the radial distribution piece 16 and the outer resin coating die ring 17 are fixed in position by a distribution plate 13. The distribution plates 12 and 13 are in close contact with, and securely fixed to, each other. A coupling member 20, which is coupled to a heating cylinder, is connected to upper portions of the distribution plates 12 and 13 across the plane where the distribution plates are joined. The alloy resin 3 from the cross die is coated over the outer peripheral surface of the thin-walled steel pipe 2 by the inner resin coating die ring 15. Subsequently, the PBT resin 4 from the heating cylinder is coated over the outer peripheral surface of the alloy resin 3 by the outer resin coating die ring 17.
A flow passage for introducing the PBT resin (crystalline engineering plastic) 4 from the coupling member 20 to the outer resin coating die ring 17 is constituted by a relatively large semicircular first flow passage 18 concentric with the thin-walled steel pipe 2, and small-diameter second flow passages 19, 19 located inside the first flow passage and connected to respective opposite ends of the semicircular first flow passage. The second flow passages 19, 19 are connected to each other and their junctions are narrowed so that the resin may be uniformly extruded toward the center.
The second flow passages 19, 19 connect with through-holes 17 a and 17 b (see FIG. 5) in the outer resin coating die ring 17 through radial flow passages formed in the radial distribution piece 16.
As shown in FIGS. 4A and 4B, the inner resin coating die ring 15 has through-holes 15 a, 15 b and 15 c. The through-hole 15 a corresponds to the furrows 3 a of the alloy resin 3 to be coated, and the through-hole 15 c corresponds to the grooves 3 c of the alloy resin 3. Each of the through-holes 15 c and the through-holes 15 b corresponds to a ridge 3 b of the alloy resin 3.
As shown in FIGS. 5A and 5B, to coat the alloy resin 3 with the PBT resin 4, the outer resin coating die ring 17 has through-holes 17 a, each of which has a circumferential width corresponding to one through-hole 15 c of the inner resin coating die ring 15 and the through-holes 15 b, 15 b located on either side, so as to coat the PBT resin 4 with an increased thickness, and the through-holes 17 b each corresponding in position to through-hole 15 a so as to coat the PBT resin 4 with a lesser thickness.
To obtain the resin-coated steel pipe 1 with superior mechanical strength, including the ability to slide, by extrusion molding with the use of the aforementioned molding machine, first, the thin-walled steel pipe 2 is advanced from the cross die, not shown, to the right, and as the steel pipe 2 advances, the alloy resin 3, which is supplied to the inner resin coating die ring 15 via the adapter 11 and the distribution piece 14, is coated on and bonded to the steel pipe 2.
Subsequently, the thin-walled steel pipe 2 reaches the outer resin coating die ring 17, where the PBT resin 4, which is supplied to the through-holes 17 a and 17 b from the coupling member 20 through the first and second flow passages 18 and 19, the radial distribution piece 16 and the gap between the inner and outer resin coating die rings 15 and 17, is coated over the outer peripheral surface of the alloy resin 3 while being kept in shape by the alloy resin. In this manner, the resin-coated steel pipe 1 including the alloy resin 3 and the PBT resin 4 as its inner and outer coatings, respectively, as shown in FIG. 1, is obtained by extrusion molding, and the steel pipe 1 thus obtained is spline-shaped and has a double coated structure with a uniform cross-sectional form along the axial direction thereof.
While the embodiment of the present invention has been described with reference to the drawings, it is to be noted that the invention is not limited to the construction of the embodiment shown and described, and that variations in design and applications that will readily occur to those skilled in the art without departing from the technical concepts of the invention should be regarded as falling within the scope of the invention.
In the resin-coated steel pipe with superior mechanical strength, including the ability to slide, according to the present invention, the crystalline engineering plastic is coated in such a manner that the alloy resin, which is compatible with the engineering plastic, is interposed between the thin-walled steel pipe and the engineering plastic. Accordingly, the coated crystalline engineering plastic has sufficiently high adhesion to the steel pipe and does not separate from it. Also, the PBT resin, which has a low melt viscosity and is difficult to keep in shape, is extruded while being restricted by the opposing walls of each groove of the alloy resin, allowing the shaping to be stabilized and the production efficiency to be greatly improved. Further, the use of the expensive crystalline engineering plastic is limited to the amount necessary to ensure the required ability to slide, and therefore, the resin-coated steel pipe can be economically manufactured at a low unit cost.

Claims (2)

1. A resin-coated steel pipe with superior mechanical strength, including an ability to slide comprising:
an alloy resin which is a mixture of a styrene-based resin and a crystalline engineering plastic is coated over an outer peripheral surface of a thin-walled steel pipe and is bonded thereto by an adhesive, and
said crystalline engineering plastic having a thickness necessary to exhibit a required mechanical strength, including said ability to slide, is coated over an outer peripheral surface of said coated alloy resin such that said resin-coated steel pipe has a double coated structure with a uniform cross-sectional form along an axial direction thereof,
said thin-walled steel pipe is circular in section; and
said alloy resin bonded and coated over said outer peripheral surface of said thin-walled steel pipe forms a plurality of furrows and ridges alternately in a circumferential direction of said thin-walled steel pipe, said furrows and said ridges extending in an axial direction of said thin-walled steel pipe such that said thin-walled steel pipe with said alloy resin coated thereon has a uniform cross-sectional form along an axial direction thereof, each of said ridges having a groove formed in an outer peripheral surface thereof and extending in said axial direction of said thin-walled steel pipe, said groove being capable of accommodating said crystalline engineering plastic with a thickness and width necessary to exhibit a required mechanical strength, including the ability to slide, and
said crystalline engineering plastic coated over said outer peripheral surface of said alloy resin having a thickness such that said crystalline engineering plastic coated over said grooves in respective ridges of said alloy resin has a thickness greater than that coated on other regions, and forming a spline-shape in a uniform cross-section along an axial direction as a whole, said spline-shape is formed by furrows and ridges alternatively in a circumferential direction.
2. The resin-coated steel pipe with superior mechanical strength including slidability according to claim 1, wherein said styrene-based resin is a resin selected from a group consisting of AAS resins, ABS resins and ABS resins, and said crystalline engineering plastic is a resin selected from a group consisting of PBT resins, nylon resins and polyacetal resins.
US10/517,271 2002-06-11 2003-05-22 Resin-coated steel pipe excellent in mechanical strength such as sliding property Expired - Fee Related US7219699B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-170143 2002-06-11
JP2002170143A JP4043856B2 (en) 2002-06-11 2002-06-11 Resin-coated steel pipe with excellent mechanical strength such as slidability
PCT/JP2003/006397 WO2003103951A1 (en) 2002-06-11 2003-05-22 Resin-coated steel pipe excellent in mechanical strength such as sliding property

Publications (2)

Publication Number Publication Date
US20060162800A1 US20060162800A1 (en) 2006-07-27
US7219699B2 true US7219699B2 (en) 2007-05-22

Family

ID=29727755

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/517,271 Expired - Fee Related US7219699B2 (en) 2002-06-11 2003-05-22 Resin-coated steel pipe excellent in mechanical strength such as sliding property

Country Status (9)

Country Link
US (1) US7219699B2 (en)
EP (1) EP1512529A4 (en)
JP (1) JP4043856B2 (en)
CN (1) CN100374289C (en)
AU (1) AU2003242394A1 (en)
CA (1) CA2487386A1 (en)
HK (1) HK1079488A1 (en)
MX (1) MXPA04012339A (en)
WO (1) WO2003103951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224123A1 (en) * 2002-08-12 2005-10-13 Baynham Richard R Integral centraliser

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2456619B1 (en) * 2009-07-23 2018-01-24 Basf Se Part comprising an insert and a plastic sheathing and method for the production thereof
WO2014089071A1 (en) * 2012-12-04 2014-06-12 Sabic Innovative Plastics Ip B.V. Coating system for coated metal or polymeric tube
CN105922654A (en) * 2016-05-31 2016-09-07 太仓斯普宁精密机械有限公司 High-performance shockproof durable part

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968321A (en) * 1958-04-02 1961-01-17 Acme Hamilton Mfg Corp Reinforced flexible hose
US3439586A (en) * 1966-01-10 1969-04-22 Maurice O Holtan Iron cylinder liners
JPS549339A (en) 1977-06-23 1979-01-24 Hino Motors Ltd Sliding spline joint
US4839204A (en) * 1987-05-19 1989-06-13 Yazaki Kakoh Co., Ltd. Resin coated metal pipe having a plane surface for a lightweight structure
JPH02114214A (en) 1988-10-25 1990-04-26 Fujitsu Ltd Optical connector
US5373046A (en) * 1992-07-10 1994-12-13 Mitsubishi Petrochemical Co., Ltd. Process for producing a resin compound
US5437311A (en) * 1991-11-05 1995-08-01 Markel Corporation Fuel system conduit
JPH08108136A (en) 1994-10-13 1996-04-30 Nkk Corp Piping material
US5601893A (en) * 1992-09-10 1997-02-11 Elf Atochem S.A. Flexible metal pipes with a shrinkable polymer sheath, a process for their fabrication, and their utilization as flexible tubular conduits
US5902656A (en) * 1996-06-21 1999-05-11 Minnesota Mining And Manufacturing Company Dampers for internal applications and articles damped therewith
US5993924A (en) * 1996-07-30 1999-11-30 Elf Atochem S. A. Coating of metal surfaces, its application to tubes and to cables
US6040025A (en) * 1994-04-28 2000-03-21 Elf Atochem S.A. Adhesion binder containing glutarimide moieties
US6631741B2 (en) * 2000-06-05 2003-10-14 Tokai Rubber Industries, Ltd. Metal-composite corrugated hoses and a process for manufacturing the same
US6659135B2 (en) * 2000-12-29 2003-12-09 Felix L. Sorkin Tendon-receiving duct with longitudinal channels
US6706350B2 (en) * 2001-07-02 2004-03-16 General Electric Company Corrosion-resistant pipe and method for the preparation thereof
US20050031894A1 (en) * 2003-08-06 2005-02-10 Klaus-Peter Klos Multilayer coated corrosion resistant article and method of production thereof
US7069954B2 (en) * 2004-03-29 2006-07-04 Tokai Rubber Industries, Ltd. Composite hose with a corrugated metal tube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114214U (en) * 1989-03-01 1990-09-12
US5590691A (en) * 1994-05-02 1997-01-07 Itt Corporation Extruded multiple plastic layer coating bonded to a metal tube

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2968321A (en) * 1958-04-02 1961-01-17 Acme Hamilton Mfg Corp Reinforced flexible hose
US3439586A (en) * 1966-01-10 1969-04-22 Maurice O Holtan Iron cylinder liners
JPS549339A (en) 1977-06-23 1979-01-24 Hino Motors Ltd Sliding spline joint
US4839204A (en) * 1987-05-19 1989-06-13 Yazaki Kakoh Co., Ltd. Resin coated metal pipe having a plane surface for a lightweight structure
JPH02114214A (en) 1988-10-25 1990-04-26 Fujitsu Ltd Optical connector
US5437311A (en) * 1991-11-05 1995-08-01 Markel Corporation Fuel system conduit
US5373046A (en) * 1992-07-10 1994-12-13 Mitsubishi Petrochemical Co., Ltd. Process for producing a resin compound
US5601893A (en) * 1992-09-10 1997-02-11 Elf Atochem S.A. Flexible metal pipes with a shrinkable polymer sheath, a process for their fabrication, and their utilization as flexible tubular conduits
US6040025A (en) * 1994-04-28 2000-03-21 Elf Atochem S.A. Adhesion binder containing glutarimide moieties
JPH08108136A (en) 1994-10-13 1996-04-30 Nkk Corp Piping material
US5902656A (en) * 1996-06-21 1999-05-11 Minnesota Mining And Manufacturing Company Dampers for internal applications and articles damped therewith
US5993924A (en) * 1996-07-30 1999-11-30 Elf Atochem S. A. Coating of metal surfaces, its application to tubes and to cables
US6631741B2 (en) * 2000-06-05 2003-10-14 Tokai Rubber Industries, Ltd. Metal-composite corrugated hoses and a process for manufacturing the same
US6659135B2 (en) * 2000-12-29 2003-12-09 Felix L. Sorkin Tendon-receiving duct with longitudinal channels
US6706350B2 (en) * 2001-07-02 2004-03-16 General Electric Company Corrosion-resistant pipe and method for the preparation thereof
US20050031894A1 (en) * 2003-08-06 2005-02-10 Klaus-Peter Klos Multilayer coated corrosion resistant article and method of production thereof
US7069954B2 (en) * 2004-03-29 2006-07-04 Tokai Rubber Industries, Ltd. Composite hose with a corrugated metal tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224123A1 (en) * 2002-08-12 2005-10-13 Baynham Richard R Integral centraliser
US20130081802A1 (en) * 2002-08-12 2013-04-04 Eni S.P.A. Integral centraliser

Also Published As

Publication number Publication date
HK1079488A1 (en) 2006-04-07
AU2003242394A1 (en) 2003-12-22
MXPA04012339A (en) 2005-02-25
CA2487386A1 (en) 2003-12-18
WO2003103951A1 (en) 2003-12-18
CN100374289C (en) 2008-03-12
EP1512529A1 (en) 2005-03-09
JP2004009695A (en) 2004-01-15
JP4043856B2 (en) 2008-02-06
CN1659025A (en) 2005-08-24
EP1512529A4 (en) 2009-06-17
US20060162800A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
SU1371494A3 (en) Extrusion head for joint extrusion of several plastic materials in the shape of hose film
US6343919B1 (en) Modular plastics extrusion die
US7219699B2 (en) Resin-coated steel pipe excellent in mechanical strength such as sliding property
JP2000502302A (en) Modular disc coextrusion die
CN108544732B (en) Double-wall corrugated pipe with reinforced coating and manufacturing mold thereof
CN101636338A (en) Banded take up roll
EP1419043A1 (en) Hybrid disk-cone extrusion die assembly
JP3627050B2 (en) Conductive resin-coated steel pipe and extrusion method thereof
EP1419042A1 (en) Hybrid disk-cone extrusion die module
TWI220916B (en) Resin-coated steel pipe with superior mechanical strength, including the ability to slide
CN204183847U (en) The multi-layer co-extruded production equipment of heavy duty packaging film
CN214491543U (en) Novel high-precision extrusion screw for single-screw extruder
CN214448353U (en) Cable insulation sheath extrusion die
CN221392176U (en) Five-layer coextrusion composite extrusion round die head
CN117416027A (en) Three-layer co-extrusion composite extrusion round die head
CN217047426U (en) Single-end screw with wear-resistant, corrosion-resistant and anti-adhesion nano coating
CN202846863U (en) Extruder barrel
CN114030160A (en) Single-end screw with wear-resistant, corrosion-resistant and adhesion-resistant nano coating
WO2003011567A1 (en) Hybrid disk-cone extrusion die module having a spillover surface surrounded by a planar seal surface
CN211636072U (en) Stirring paddle for casting coating
JP3622040B2 (en) Manufacturing method of application destination for applicator
US20050170119A1 (en) Multi-layer plastic conduit comprising a PVC layer
JPH0244988Y2 (en)
CA3016083A1 (en) Coextrusion mandrel for extrusion die
CN117532848A (en) Five-layer coextrusion composite extrusion round die head

Legal Events

Date Code Title Description
AS Assignment

Owner name: YAZAKI INDUSTRIAL CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YOSHINO, SHUJI;REEL/FRAME:016893/0396

Effective date: 20041126

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150522