US7123687B2 - Method for displaying digital X-ray image data at high resolution - Google Patents
Method for displaying digital X-ray image data at high resolution Download PDFInfo
- Publication number
- US7123687B2 US7123687B2 US10/410,819 US41081903A US7123687B2 US 7123687 B2 US7123687 B2 US 7123687B2 US 41081903 A US41081903 A US 41081903A US 7123687 B2 US7123687 B2 US 7123687B2
- Authority
- US
- United States
- Prior art keywords
- pixel data
- image
- data signals
- pixel
- signals corresponding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000005855 radiation Effects 0.000 claims abstract description 14
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000000875 corresponding effect Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 238000003384 imaging method Methods 0.000 description 11
- 238000002594 fluoroscopy Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 238000002601 radiography Methods 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N3/00—Scanning details of television systems; Combination thereof with generation of supply voltages
- H04N3/10—Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
- H04N3/14—Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
- H04N3/15—Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/30—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/40—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
- H04N25/44—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
- H04N25/443—Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by reading pixels from selected 2D regions of the array, e.g. for windowing or digital zooming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/7795—Circuitry for generating timing or clock signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/78—Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/32—Transforming X-rays
Definitions
- the present invention relates to X-ray radiation imaging systems, and in particular, to solid state X-ray radiation imaging systems capable of operating in multiple detection and display modes, including magnification.
- X-ray radiation has become a valuable and widespread tool in medical diagnoses and treatments.
- film radiography a burst of X-rays, after passing through the body, is recorded on high resolution X-ray film.
- an image intensifier tube converts X-ray radiation to a video signal for viewing and recording interior body activity as a video image.
- Film radiography is commonly used due to its good spatial resolution, high signal-to-noise ratio (SNR), large detection area and low cost.
- SNR signal-to-noise ratio
- developing exposed X-ray film typically takes a minimum of ninety seconds which can be too long in emergency situations.
- the relatively low dynamic range of X-ray film can result in under- or over-exposed images and, therefore, necessitate additional exposures which increase the aforementioned time delay as well as the X-ray dosage received by the patient.
- the image intensifier tube used in fluoroscopy has a greater exposure latitude than X-ray film, but also has a more limited active detection area and lower spatial resolution.
- the lower spatial resolution associated with the total active area is somewhat mitigated in that the image intensifier tubes allow magnification of the central image portion, thereby providing a means to enhance visual details.
- the image intensifier tube is typically heavy, bulky and expensive, and can introduce image distortion which can only be partially removed during post processing.
- a number of alternative X-ray imaging technologies have been developed.
- one alternative known as computed radiography, involves the use of a photostimulable phosphor plate which has the same physical appearance as a standard X-ray film cassette and provides good spatial resolution, SNR and dynamic range.
- the photostimulable phosphor plate must be scanned with a laser system which is large and expensive, and the readout process is just as slow as the development of film.
- a-Si detector array arranged as a two dimensional matrix of pixels, each of which consists of a photosensitive element and a transistor switch.
- the detector array is covered with a scintillation layer to convert impinging X-rays into visible light for the photosensitive elements.
- a method in accordance with the presently claimed invention provides X-ray image data signals corresponding to a selected portion of a two-dimensional image at an enhanced image resolution.
- image pixel data corresponding to the region of interest used pixels
- image pixel data corresponding to the region not of interest unused pixels
- normal pixel data discharge times and at either the normal pixel data rate or an increased pixel data rate.
- the X-ray radiation exposure can be continuous or selectively pulsed.
- a method for providing X-ray image data signals corresponding to a selected portion of a two-dimensional image at an enhanced image resolution includes:
- a method for providing X-ray image data signals corresponding to a selected portion of a two-dimensional image at an enhanced image resolution includes:
- FIG. 1 is a functional block diagram of an X-ray imaging system in accordance with the present invention.
- FIG. 2 is an exploded perspective view of an X-ray detector cassette for an X-ray imaging system in accordance with the present invention.
- FIG. 3 is a schematic diagram of a portion of the detector array of FIG. 2 .
- FIG. 4 is a functional block diagram of the array driver circuit assemblies of FIG. 2 .
- FIG. 5 is a functional block diagram of the receiver circuit assembly of FIG. 2 .
- FIG. 6 is a functional block diagram of the readout circuits in the receiver circuit assembly of FIG. 5 .
- FIG. 7 is a simplified schematic diagram of several adjacent preamplifier circuits in the readout circuit of FIG. 6 .
- FIG. 8 is a signal timing diagram for a progressive pixel data scan readout with continuous X-rays.
- FIG. 9 is a signal timing diagram for a progressive pixel data scan readout with pulsed X-rays.
- FIG. 10 is a signal timing diagram for a continuous fluoroscopy pixel data scan with a split data line readout.
- FIG. 11 is a signal timing diagram for a pulsed fluoroscopy pixel data scan with a split data line readout.
- FIG. 12 is a signal timing diagram for a magnification mode pixel data scan readout using X-ray beam-on scanning in accordance with one embodiment of the presently claimed invention.
- FIG. 13 illustrates how the scanning mode of FIG. 12 captures the image region of interest.
- FIG. 14 is a signal timing diagram for a magnification mode pixel data readout using X-ray beam-on scanning in accordance with another embodiment of the presently claimed invention.
- FIG. 15 illustrates how the scanning mode of FIG. 14 captures the image region of interest.
- FIG. 16 is a signal timing diagram for a magnification mode pixel data readout using X-ray beam-on scanning in accordance with still another embodiment of the presently claimed invention.
- FIG. 17 is a signal timing diagram illustrating timing relationships among signals used when resetting and scanning used pixels (i.e., within the region of interest) and unused pixels.
- signal may refer to one or more currents, one or more voltages, or a data signal.
- an X-ray imaging system 10 in accordance with the present invention includes a detector cassette 12 , a computer and control system 14 , a user interface 16 , a fluoroscopic display 18 a and a radiographic display 18 b , interconnected substantially as shown.
- a user controls the system 10 by way of a user interface 16 (e.g., graphical user interface display, keyboard, mouse, etc.) which communicates with the computer and control system 14 .
- the computer and control system 14 generates control signals 13 a for the detector cassette 12 which provides image data signals 13 b in return.
- one display monitor could be used to selectively display both fluoroscopic and radiographic images, as well as the graphical user interface display image, e.g., all images could be displayed simultaneously in a “windowed” format, or either a fluoroscopic image or a radiographic image could be displayed along with a pull down menu bar, which menu bar constitutes the graphical user interface providing for selection of fluoroscopic or radiographic imaging.
- the computer and control system 14 provides fluoroscopic image data 15 a or radiographic image data 15 b for display on a fluoroscopic display 18 a or a radiographic display 18 b , respectively, depending upon the selected mode of operation.
- the fluoroscopic display 18 a preferably employs a phosphor which has a relatively short persistence time, thereby reducing unwanted ghost images when observing motion in the sequence of displayed images.
- the radiographic display 18 b preferably employs a phosphor which yields a bluish tint to gray levels and has a relatively long persistence time, thereby replicating the bluish tint typically found in standard medical X-ray film images and reducing unwanted flicker in the displayed image.
- the detector cassette, or receptor, 12 is similar in external appearance to the typical cassette which contains standard medical X-ray film and is, therefore, highly mobile and easy to use as required for a radiographic mode of operation.
- a scintillation layer 20 e.g., of cesium iodide (CsI), absorbs and converts impinging X-ray photons to visible light photons for detection by photosensitive elements within the detector array 22 , e.g., of amorphous silicon (a-Si).
- the thickness of the scintillation layer 20 is selected so as to absorb sufficient X-ray photons and produce sufficient visible photons so as to generate an adequate SNR for fluoroscopic operation.
- the columns, or “needles,” of the crystalline CsI are selected so as to have diameters sufficiently small to support the spatial resolution sampling desired for radiographic operation.
- the detector array 22 is designed in accordance with well known techniques into a two dimensional array of microscopic squares referred to as picture elements, or “pixels.” Each pixel is composed of an addressable photosensitive element, such as a photodiode and switching transistor combination. As discussed in more detail below, each pixel is accessed in accordance with drive signals from off-array driver circuit assemblies 26 a , 26 b which provide addressing control signals. In accordance with well known techniques, the lateral dimensions of the photodiodes are made sufficiently small to provide the desired spatial resolution imaging for radiographic operation and the capacitance of the photodiodes is designed to be sufficiently large to provide the desired signal handling capacity for accommodating the largest signal produced during radiographic operation.
- the pixel data accessed by the driver circuits 26 are read out by a receiver, or readout, circuit assembly 28 , as discussed in more detail below.
- the receiver circuit assembly 28 and detector array 22 are mounted on opposing sides of a base plate 24 .
- the receiver circuit assembly 28 is placed beneath the array 22 so as to minimize the lateral size of the detector cassette 12 and thereby make the detector cassette 12 approximately the same size as a film cassette. If so desired, the driver circuits 26 can also be placed beneath the array 22 .
- the detector array 22 is composed of a two dimensional array, or matrix, of photosensitive pixels 30 which, in a preferred embodiment, include a switching transistor 32 and a photodiode 34 .
- the anode of the photodiode 34 is biased by a biasing voltage 35 to establish a capacitance for storing electrical charges which accumulate due to the reception of incident light 21 from the scintillation layer 20 ( FIG. 2 ).
- a row address signal 31 from the array driver circuit 26 drives the gate of the switching transistor 32 (TFT), thereby providing a column data signal 33 representing the stored charge from the photodiode 34 .
- This signal 33 is received and buffered by a charge sensitive amplifier within the receiver circuit assembly 28 (discussed in more detail below).
- Each row address signal 31 is asserted for a predetermined period of time, referred to as “pixel discharge time.”
- pixel discharge time a predetermined period of time
- the signal 33 from each pixel along that row is transmitted via the column data lines to the receiver circuit assembly 28 where the signal 33 on each data line is received and buffered by a corresponding charge sensitive amplifier (discussed in more detail below).
- a corresponding charge sensitive amplifier discussed in more detail below.
- the pixel array supports multiple modes of operation. For example, during radiographic operation, the pixel data is sampled on a pixel-by-pixel basis as discussed above. However, during fluoroscopic operation, pixel data access can be accelerated, albeit with a reduction in spatial resolution. This can be done by combining, or “binning,” multiple pixels to produce “super pixels.” For example, a two-by-two pixel subset in which two rows and columns of pixels are combined can be created by addressing two adjacent rows and two adjacent columns of pixels at one time, with the driver circuit assembly 26 performing the simultaneous row addressing and the receiver circuit assembly 28 performing the column line signal combining. Hence, while the spatial resolution is reduced accordingly, significantly less time will be required to capture the image, thereby allowing fluoroscopic imaging to be performed.
- This use of super pixels can also be done in a more selective manner.
- image acquisition in a fluoroscopic magnification mode can be performed when only a portion of the active detection area is of interest.
- the rows outside the region of interest are addressed at a rapid rate or skipped entirely, while the rows within the region of interest are addressed at a slower rate.
- the overall time to sequence through or skip past all of the rows i.e., the frame time, can remain equal to the frame time associated with the fluoroscopic normal mode.
- the super pixels within such region can be reduced in size, thereby increasing the spatial resolution.
- the driver circuit assembly 26 includes a local controller 40 for receiving control signals 13 aa from the computer and control system 14 ( FIG. 1 ), plus a series of gate drivers 42 for providing the row addressing signals 31 .
- These gate drivers 42 can be operated in the manner of shift registers or, alternatively, be individually programmed as desired according to the mode of operation using the control signals 41 from the local controller 40 .
- the driver circuits 42 can be programmed such that the row 1 addressing signal 31 ( 1 ) is asserted while the remaining row addressing signals are de-asserted. Immediately following the next line synchronization cycle, the row 1 signal is de-asserted and the row 2 signal is asserted, while the remaining row signals are de-asserted.
- the receiver circuit assembly 28 includes a local controller 50 for receiving control signals 13 ab from the computer and control system 14 ( FIG. 1 ) and generating local control signals 51 .
- a number of readout circuits 52 (discussed in more detail below), the number of which depends upon the number of columns to be read out from the detector array 22 , receives the column data signals 33 .
- the outputs 53 from the readout circuits 52 are buffered by respective transimpedance amplifiers 54 .
- These transimpedance amplifiers 54 are controlled by local control signals 51 b for purposes of controlling their offset and gain characteristics (discussed in more detail below).
- the buffered column data signals 55 are converted by analog-to-digital converters (ADCs) 56 .
- ADCs analog-to-digital converters
- the resulting digitized column data signals 57 are then multiplexed by a multiplexor.
- the resulting multiplexed data signals 59 are buffered by a data transmitter 60 for transmission to the computer and control system 14 .
- the control signals 51 b for the transimpedance amplifiers 54 are used to selectively optimize the offset and gain characteristics of the amplifiers 54 . This allows the amplifiers 54 to be biased to match the respective output signal ranges of the amplifiers 54 to the input signal ranges of the corresponding ADCs 56 .
- the readout circuits 52 collectively include multiple input preamplifiers 64 , pipelined sample and hold circuits 66 and output multiplexors 68 , interconnected substantially as shown.
- the control signals 51 a from the local controller 50 ( FIG. 5 ) control the preamplifiers 64 , pipelined sample and hold circuits 66 and a multiplexor controller 62 which, in turn, controls the multiplexors 68 via multiplexor control signals 63 .
- the preamplifiers 64 receive the column data signals 33 with charge sensitive amplifiers and provide the aforementioned binning capability for creating super pixels (in conjunction with the multiple row addressing capability of the array driver circuit 26 ( FIG. 4 ) as discussed above).
- the charge sensitive amplifiers are discussed in more detail in U.S. Pat.
- These pipelined sample and hold circuits 66 are described in more detail in U.S. Pat. No. 5,872,470, entitled “Pipelined Sample and Hold Circuit With Correlated Double Sampling,” the disclosure of which is incorporated herein by reference.
- the sampled data signals 67 are multiplexed by their respective multiplexors 68 to provide the final output signal 53 .
- These multiplexors 68 operate in an analog current mode and are described in more detail in U.S. Pat. No. 5,801,571, entitled “Current Mode Analog Signal Multiplexor,” the disclosure of which is incorporated herein by reference.
- the aforementioned pixel binning capability with respect to the column data can be described as follows.
- the second 64 b , third 64 c and fourth 64 d preamplifier circuits are illustrated to represent the interconnection among adjacent preamplifiers 64 .
- the aforementioned charge sensitive amplifier 70 Internal to each preamplifier 64 is the aforementioned charge sensitive amplifier 70 which receives the column data signal 33 .
- the buffered column data signal 71 is coupled by a series coupling capacitor 72 to a summing node 78 for selectively being summed with the buffered and capacitively coupled column data signal from its adjacent preamplifier circuit 64 .
- the third and fourth pixels would be binned together by appropriately asserting and de-asserting the control signals in signal sets 51 aac and 51 aad (and their inverse equivalents via inverters 80 c and 80 d ) so that switches 74 c , 74 e and 76 d are opened and switches 74 d and 76 c are closed. Accordingly, the buffered and capacitively coupled data signal 65 db from the fourth preamplifier 64 d is summed with that of the third preamplifier 64 c at its summing mode 78 c for outputting as binned pixel data signal 65 ca.
- the X-rays can be either pulsed or continuous. Continuous X-rays are on continuously during the entire frame time associated with the display device (e.g., for the entire approximately 33 milliseconds for a 30 frame per second display rate). Pulsed X-rays are delivered only during a portion of the frame time, and can be preferable to continuous X-rays since motion artifacts due to patient motion during the panel scanning are minimized. However, pulsed-X-rays delivered during the detector, or receptor, readout (scanning) cause an offset shift within the data signals, thereby creating a band artifact within the image display. Accordingly, pulsed X-rays are generally delivered during the non-scanning portion of the frame time. To increase the available scanning time while also maximizing the time available for delivering the X-ray beam pulse, split data line architectures have been used to allow parallel scanning of multiple portions of the detector array.
- the typically progressive scanning of an X-ray receptor using a continuous X-ray beam can be represented with a signal timing diagram as shown.
- the X-ray beam is on continuously, while panel readout, i.e., reading of the individual pixel data signals, occurs within the scanning frame boundaries defined by time points t 1 and t 7 .
- a scanning enable signal of some kind such as that represented by the expose_ok signal, is present in the system; however, with continuous X-ray radiation, such signal plays virtually no role, other than perhaps to determine the time interval in which the video output is made available (e.g., via appropriate signal conversion during time interval t 2 –t 6 ).
- timing diagrams include lines with arrows between various leading and trailing edges of the signals depicted; however, unless otherwise indicated, such lines are merely to identify relative “before versus after” timing relationships between the signals and do not necessarily indicate a synchronous or other form of cause and effect relationship between such signals.
- a progressive receptor panel scan using pulsed X-rays can be represented as shown. Again, panel readout occurs within the scanning time frame t 1 –t 7 with the scanning and video output being coincident during the time interval t 2 –t 6 . In this situation, the expose_ok signal serves to enable, or trigger, the X-ray beam during time interval t 6 –t 8 .
- a fluoroscopy mode of operation using continuous X-rays can be represented as shown.
- panel readout occurs for approximately one half of the scanning frame time as defined by time interval t 1 –t 3 .
- the output video signals are available during time interval t 2 –t 6 .
- a fluoroscopy mode of operation using pulsed X-rays can be represented as shown.
- panel readout occurs for approximately half of the scanning frame as defined by time interval t 1 –t 3 .
- the expose_ok signal is de-asserted, corresponding to no application of the X-ray beam.
- the expose_ok signal is asserted, corresponding to application of the X-ray beam as desired, e.g., during time interval t 4 –t 5 .
- the pixel data is made available for display via the video output during time interval t 2 –t 6 .
- This mode of operation allows the entire panel to be read out during time interval t 1 –t 3 at the desired fluoroscopy resolution and is made possible by the use of a split data line so that two halves of the receptor panel can be read out simultaneously in parallel, thereby maintaining the 30 frame per second rate.
- scanning of the region of interest (ROI) on the receptor panel is most desirably done at full resolution and at the maximum scanning frame rate.
- ROI region of interest
- row selection during scanning is typically done with a shift register topology to drive the gates of the individual pixel cells ( FIG. 4 )
- the unused rows i.e., those pixels within the rows not intended for display, must be scanned in order to reach the pixels of interest.
- An issue that arises from this is that of what is to be done with the unused pixels.
- One possibility is to not read, and therefore not discharge, the unused pixels, or do a fast, and therefore incomplete, discharge of the unused pixels.
- the unused pixels could be read (discharged) during the expose_ok time interval, thereby allowing for a full discharge.
- Accelerated scanning i.e., using an increased scanning clock rate and scanning pulses (row address signal 31 , FIG. 3 ) of reduced signal assertion time duration (i.e., shorter “pixel discharge time”), of the unused pixels allows charge to accumulate on the pixels, resulting in a relatively permanent change in their respective offset or background data values.
- Such changes in offset values can cause the image normalization to fail when the panel is returned to a full field of view mode, such as that used for normal fluoroscopy or radiography operation.
- accelerated discharging of the unused pixels can minimize the risk of charge buildup, but charge buildup can occur depending upon the level, or dose, of X-ray radiation to which the receptor is exposed, as well as the particular pixel scanning parameters. Additionally, such accelerated discharging requires more complicated clocking techniques, e.g., using multiple frequency clocks.
- magnification, or “zoom,” mode of operation refers to the use of pulsed X-rays during the imaging process. However, as indicated above, it should be understood that either pulsed or continuous X-rays can be used.
- this last alternative can be represented as shown.
- the expose_ok signal is de-asserted and the X-ray beam is off.
- the region of interest is scanned, e.g., row 384 through row 1152 .
- the expose_ok signal is asserted, thereby allowing activation of the X-ray beam during scanning of the unused pixels, e.g., row 1153 through row 383 (i.e., rows 1153 – 1536 and rows 1 – 383 ).
- this scanning mode can be visualized in terms of the resultant video image to be displayed on the display device.
- rows 384 – 1152 are scanned for accessing the corresponding pixel data and making it available for video display as desired (e.g., in conformance with the discussion above concerning FIGS. 3 , 4 , 5 , 6 and 7 ).
- the X-ray beam is activated (e.g., during time interval t 4 –t 5 ) and the unused pixels, i.e., those corresponding to the image regions outside the region of interest, are scanned for rows 1153 – 1536 and rows 1 – 383 .
- accessing the pixels of interest and the unused pixels in this manner causes the scanning frame rate to be reduced, e.g., by half.
- a higher scanning rate can be maintained, however, if a split data line structure is used so as to allow for reading out of pixels from multiple regions of the receptor panel simultaneously.
- reading out the pixel data in a magnification mode of operation using a split data line architecture can be represented as shown.
- panel readout occurs during de-assertion of the expose_ok signal (time interval t 1 –t 3 ), while the unused pixels are scanned during assertion of the expose_ok signal (time interval t 3 –t 7 ) and activation of the X-ray beam (during time interval t 4 –t 5 ).
- the original data scanning frame rate is maintained by using a split data line architecture such that multiple groups of pixel rows are read out during both panel readout time intervals t 1 –t 3 , t 3 –t 7 .
- the pixels corresponding to the region of interest can be read out during time interval t 1 –t 3 by reading the data pixels corresponding to image rows 768 – 384 and rows 769 – 1152 simultaneously.
- the unused pixels can be read out during time interval t 3 –t 7 by reading the data pixels corresponding to image rows 383 - 1 and rows 1153 – 1536 simultaneously.
- rows 768 and 769 can be read simultaneously, followed by simultaneous reading out of rows 767 and 770 , and so on through simultaneous readout of rows 384 and 1152 .
- rows 383 and 1153 can be read out simultaneously, followed by simultaneous reading of rows 382 and 1154 , and so on through simultaneous readout of rows 1 and 1536 .
- the scanning order in the region of interest can be either row 384 through row 1152 or row 1152 through row 384 , and the scanning for the unused pixels can be ordered as row 1153 through row 383 (i.e., rows 1153 – 1536 and rows 1 – 383 ), or as row 383 through row 1153 (i.e., rows 383 - 1 and rows 1536 – 1153 ), or according to some other order as desired.
- the scanning order in the region of interest can be as either row 768 through row 384 and row 769 through row 1152 simultaneously, respectively, or row 384 through row 768 and row 1152 through row 769 simultaneously, respectively, and the scanning order for the unused pixels can be ordered as row 383 through row 1 and row 1153 through row 1536 simultaneously, respectively, or as row 1 through row 383 and row 1536 through row 1153 simultaneously, respectively, or according to some other order as desired.
- reading-out the pixel data in a magnification mode of operation using the split data line architecture while using an alternative technique for resetting unused pixels can be represented as shown.
- panel readout i.e., scanning of the used pixels (within the region of interest), occurs during de-assertion of the expose_ok signal (time interval t 1 –t 3 ).
- the unused pixels are scanned (and, therefore, reset) in an accelerated manner during a time interval t 3 –t 3 a following the panel readout interval (time interval t 1 –t 3 ) and preceding assertion of the expose_ok signal (time interval t 4 –t 7 ) and activation of the X-ray beam (time interval t 4 –t 5 ).
- a reset pulse R 1 is applied to the charge integrators within the readout circuits 52 ( FIG. 5 ), following which a series of scanning pulses S 1 are applied to each line, or row, of pixels (row address signal 31 , FIG. 3 ) to read out the pixel data for the used pixels.
- the reset signal R 2 is preferably (though need not necessarily be) on at least for the duration of the reset interval (time interval t 3 –t 3 a ).
- scanning pulses S 2 (row address signal 31 , FIG. 3 ) of substantially normal time durations are applied sequentially in accelerated succession to each row, or line, of pixels to read out the pixel data for the unused pixels (even though such pixel data will not be further processed due to the contemporaneous resetting of the charge integrators).
- Such pulses S 2 are applied more rapidly, i.e., with less than normal time between successive pulses, since no time need be allowed for subsequent processing of the pixel data, thereby resulting in a higher effective data rate; however, the pixel discharge times (time duration of signal assertion) of such pulses S 2 remain substantially equal to normal pixel discharge times (pixel discharge times for the scanning pulses S 1 for the used pixels). As noted above, this ensures that the individual photo diodes 34 ( FIG. 3 ) have been discharged, as well as the charge integrators within the readout circuits 52 ( FIG. 5 ).
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Theoretical Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pulmonology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (10)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/410,819 US7123687B2 (en) | 2003-04-10 | 2003-04-10 | Method for displaying digital X-ray image data at high resolution |
JP2006508642A JP4607099B2 (en) | 2003-04-10 | 2004-01-28 | Method for displaying digital X-ray image data at high resolution |
PCT/US2004/002558 WO2004095064A2 (en) | 2003-04-10 | 2004-01-28 | Method for displaying digital x-ray image data at high resolution |
EP04706081.9A EP1611776B1 (en) | 2003-04-10 | 2004-01-28 | Method for acquiring digital X-ray image data |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/410,819 US7123687B2 (en) | 2003-04-10 | 2003-04-10 | Method for displaying digital X-ray image data at high resolution |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040202281A1 US20040202281A1 (en) | 2004-10-14 |
US7123687B2 true US7123687B2 (en) | 2006-10-17 |
Family
ID=33130849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/410,819 Expired - Lifetime US7123687B2 (en) | 2003-04-10 | 2003-04-10 | Method for displaying digital X-ray image data at high resolution |
Country Status (4)
Country | Link |
---|---|
US (1) | US7123687B2 (en) |
EP (1) | EP1611776B1 (en) |
JP (1) | JP4607099B2 (en) |
WO (1) | WO2004095064A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080067388A1 (en) * | 2004-09-23 | 2008-03-20 | Opgal Optronics Industries, Ltd. | Method And System For Increasing Signal-To-Noise Ratio In Microbolometer Arrays |
US20080074343A1 (en) * | 2006-09-26 | 2008-03-27 | Siemens Medical Solutions Usa, Inc. | Digital Video Switch and Method of Switching Between Multiple Digital Video Inputs and Multiple Outputs |
WO2008109565A1 (en) * | 2007-03-08 | 2008-09-12 | Fairchild Imaging | Compact cmos-based x-ray detector adapted for dental applications |
US20190167224A1 (en) * | 2014-09-17 | 2019-06-06 | Konica Minolta, Inc. | Radiation image capturing system |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10320862B4 (en) * | 2003-05-09 | 2007-09-06 | Siemens Ag | Method for automatically adjusting a diaphragm, as well as X-ray system |
US7231014B2 (en) * | 2005-02-14 | 2007-06-12 | Varian Medical Systems Technologies, Inc. | Multiple mode flat panel X-ray imaging system |
JP2006262977A (en) * | 2005-03-22 | 2006-10-05 | Konica Minolta Medical & Graphic Inc | Medical image display |
US7274771B2 (en) * | 2005-05-03 | 2007-09-25 | General Electric Company | Methods and systems for controlling exposure for medical imaging devices |
CN101548234A (en) * | 2006-12-12 | 2009-09-30 | 株式会社岛津制作所 | Imaging device |
JP4795264B2 (en) * | 2007-02-06 | 2011-10-19 | キヤノン株式会社 | Scan conversion device and scan conversion method |
FR2914463B1 (en) * | 2007-03-27 | 2010-12-24 | Gen Electric | METHOD FOR CORRECTING REMANENT LOADS IN AN X-RAY FLAT PANEL DETECTOR |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
JP5027728B2 (en) * | 2008-04-24 | 2012-09-19 | 浜松ホトニクス株式会社 | Solid-state imaging device and X-ray inspection system |
JP5094530B2 (en) * | 2008-04-24 | 2012-12-12 | 浜松ホトニクス株式会社 | X-ray inspection system |
JP5101402B2 (en) * | 2008-06-18 | 2012-12-19 | 浜松ホトニクス株式会社 | Solid-state imaging device |
JP2010005212A (en) * | 2008-06-27 | 2010-01-14 | Canon Inc | Radiographic imaging apparatus, control method thereof and radiographic imaging system |
US8761340B2 (en) * | 2008-09-29 | 2014-06-24 | Carestream Health, Inc. | Acquisition of high speed dual-energy images using a single pixilated digital detector |
US8324586B2 (en) * | 2009-05-18 | 2012-12-04 | General Electric Company | Configurable multi resolution flat panel detector |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
CN104898652B (en) | 2011-01-28 | 2018-03-13 | 英塔茨科技公司 | Mutually exchanged with a moveable tele-robotic |
US20170294033A1 (en) * | 2016-04-06 | 2017-10-12 | Varex Imaging Corporation | Dose efficient x-ray detector and method |
JP6817750B2 (en) | 2016-09-06 | 2021-01-20 | キヤノン株式会社 | Radiation imaging device and control method of radiation imaging device |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
US10483007B2 (en) | 2017-07-25 | 2019-11-19 | Intouch Technologies, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
JP2019193184A (en) | 2018-04-27 | 2019-10-31 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device and driving method of imaging device |
US10617299B2 (en) | 2018-04-27 | 2020-04-14 | Intouch Technologies, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
JP6818724B2 (en) * | 2018-10-01 | 2021-01-20 | キヤノン株式会社 | Radiation imaging device, its control method and radiation imaging system |
JP7319825B2 (en) | 2019-05-17 | 2023-08-02 | キヤノン株式会社 | Radiation imaging device and radiation imaging system |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5027380A (en) * | 1988-10-24 | 1991-06-25 | Kabushiki Kaisha Toshiba | Diagnostic X-ray apparatus |
US5355309A (en) * | 1992-12-30 | 1994-10-11 | General Electric Company | Cone beam spotlight imaging using multi-resolution area detector |
US5436952A (en) * | 1993-01-14 | 1995-07-25 | Siemens Aktiengesellschaft | Telerecording system for x-ray images having a semiconductor image converter |
US5452338A (en) * | 1994-07-07 | 1995-09-19 | General Electric Company | Method and system for real time offset correction in a large area solid state x-ray detector |
US5530238A (en) * | 1993-09-03 | 1996-06-25 | U.S. Philips Corporation | Image detection device having correction circuit for removing artifacts due to delayed charge transfer |
US5715292A (en) * | 1994-11-25 | 1998-02-03 | Loral Fairchild Corporation | Digital sensor cassette for mammography |
US5923722A (en) * | 1996-08-05 | 1999-07-13 | Siemens Aktiengesellschaft | X-ray diagnostic apparatus with control of x-ray emission dependent on the afterglow in the solid-state detector |
US6028913A (en) * | 1995-12-18 | 2000-02-22 | U.S. Philips Corporation | X-ray examination apparatus including an image sensor matrix with a correction unit |
US6330302B1 (en) * | 1998-12-22 | 2001-12-11 | U.S. Philips Corporation | Method of and device for forming an image of an object from plurality of images |
US6333963B1 (en) * | 1997-05-26 | 2001-12-25 | Canon Kabushiki Kaisha | Image sensing apparatus and method |
US6343112B1 (en) * | 2000-12-14 | 2002-01-29 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for reducing photoconductive effects in dual energy applications of solid state digital X-ray detectors |
US6351519B1 (en) * | 1997-08-11 | 2002-02-26 | Sirona Dental Systems Gmbh | Method for compensating the dark current of an electronic sensor having several pixels |
US6453008B1 (en) * | 1999-07-29 | 2002-09-17 | Kabushiki Kaisha Toshiba | Radiation detector noise reduction method and radiation detector |
US6459765B1 (en) * | 2000-12-28 | 2002-10-01 | Ge Medical Systems Global Technology Company, Llc | Automatic exposure control and optimization in digital x-ray radiography |
US6658082B2 (en) * | 2000-08-14 | 2003-12-02 | Kabushiki Kaisha Toshiba | Radiation detector, radiation detecting system and X-ray CT apparatus |
US6823044B2 (en) * | 2001-11-21 | 2004-11-23 | Agilent Technologies, Inc. | System for collecting multiple x-ray image exposures of a sample using a sparse configuration |
US6855937B2 (en) * | 2001-05-18 | 2005-02-15 | Canon Kabushiki Kaisha | Image pickup apparatus |
US6895077B2 (en) * | 2001-11-21 | 2005-05-17 | University Of Massachusetts Medical Center | System and method for x-ray fluoroscopic imaging |
US7010091B2 (en) * | 2002-05-28 | 2006-03-07 | Canon Kabushiki Kaisha | Photodetecting means, X-ray sensing method, X-ray sensing apparatus, and photoelectric conversion element |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970115A (en) | 1996-11-29 | 1999-10-19 | Varian Medical Systems, Inc. | Multiple mode digital X-ray imaging system |
JPH11318877A (en) * | 1998-01-29 | 1999-11-24 | Toshiba Corp | X-ray diagnosing device using x-ray plane detecting instrument and its control method |
JPH11311674A (en) * | 1998-02-12 | 1999-11-09 | Konica Corp | Radiation image pick-up device |
JP2000162320A (en) * | 1998-09-22 | 2000-06-16 | Toshiba Corp | Plane detector and x-ray diagnostic apparatus using it |
JP2002055170A (en) * | 2000-08-09 | 2002-02-20 | Canon Inc | Image pick-up device, radiographic device, and radiographic system |
JP4746762B2 (en) * | 2001-05-08 | 2011-08-10 | キヤノン株式会社 | Imaging apparatus, imaging method, and imaging system |
-
2003
- 2003-04-10 US US10/410,819 patent/US7123687B2/en not_active Expired - Lifetime
-
2004
- 2004-01-28 JP JP2006508642A patent/JP4607099B2/en not_active Expired - Lifetime
- 2004-01-28 WO PCT/US2004/002558 patent/WO2004095064A2/en active Search and Examination
- 2004-01-28 EP EP04706081.9A patent/EP1611776B1/en not_active Expired - Lifetime
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5027380A (en) * | 1988-10-24 | 1991-06-25 | Kabushiki Kaisha Toshiba | Diagnostic X-ray apparatus |
US5355309A (en) * | 1992-12-30 | 1994-10-11 | General Electric Company | Cone beam spotlight imaging using multi-resolution area detector |
US5436952A (en) * | 1993-01-14 | 1995-07-25 | Siemens Aktiengesellschaft | Telerecording system for x-ray images having a semiconductor image converter |
US5530238A (en) * | 1993-09-03 | 1996-06-25 | U.S. Philips Corporation | Image detection device having correction circuit for removing artifacts due to delayed charge transfer |
US5452338A (en) * | 1994-07-07 | 1995-09-19 | General Electric Company | Method and system for real time offset correction in a large area solid state x-ray detector |
US5715292A (en) * | 1994-11-25 | 1998-02-03 | Loral Fairchild Corporation | Digital sensor cassette for mammography |
US6028913A (en) * | 1995-12-18 | 2000-02-22 | U.S. Philips Corporation | X-ray examination apparatus including an image sensor matrix with a correction unit |
US5923722A (en) * | 1996-08-05 | 1999-07-13 | Siemens Aktiengesellschaft | X-ray diagnostic apparatus with control of x-ray emission dependent on the afterglow in the solid-state detector |
US6333963B1 (en) * | 1997-05-26 | 2001-12-25 | Canon Kabushiki Kaisha | Image sensing apparatus and method |
US6351519B1 (en) * | 1997-08-11 | 2002-02-26 | Sirona Dental Systems Gmbh | Method for compensating the dark current of an electronic sensor having several pixels |
US6330302B1 (en) * | 1998-12-22 | 2001-12-11 | U.S. Philips Corporation | Method of and device for forming an image of an object from plurality of images |
US6453008B1 (en) * | 1999-07-29 | 2002-09-17 | Kabushiki Kaisha Toshiba | Radiation detector noise reduction method and radiation detector |
US6658082B2 (en) * | 2000-08-14 | 2003-12-02 | Kabushiki Kaisha Toshiba | Radiation detector, radiation detecting system and X-ray CT apparatus |
US6343112B1 (en) * | 2000-12-14 | 2002-01-29 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for reducing photoconductive effects in dual energy applications of solid state digital X-ray detectors |
US6459765B1 (en) * | 2000-12-28 | 2002-10-01 | Ge Medical Systems Global Technology Company, Llc | Automatic exposure control and optimization in digital x-ray radiography |
US6855937B2 (en) * | 2001-05-18 | 2005-02-15 | Canon Kabushiki Kaisha | Image pickup apparatus |
US6823044B2 (en) * | 2001-11-21 | 2004-11-23 | Agilent Technologies, Inc. | System for collecting multiple x-ray image exposures of a sample using a sparse configuration |
US6895077B2 (en) * | 2001-11-21 | 2005-05-17 | University Of Massachusetts Medical Center | System and method for x-ray fluoroscopic imaging |
US7010091B2 (en) * | 2002-05-28 | 2006-03-07 | Canon Kabushiki Kaisha | Photodetecting means, X-ray sensing method, X-ray sensing apparatus, and photoelectric conversion element |
Non-Patent Citations (2)
Title |
---|
International Preliminary Report on Patentability, date of mailing Sep. 28, 2005. |
International Search Report and Written Opinion dated Mar. 18, 2005, for International application PCT/US04/02558. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080067388A1 (en) * | 2004-09-23 | 2008-03-20 | Opgal Optronics Industries, Ltd. | Method And System For Increasing Signal-To-Noise Ratio In Microbolometer Arrays |
US7560694B2 (en) * | 2004-09-23 | 2009-07-14 | Opgal Optronics Industries, Ltd. | Method and system for increasing signal-to-noise ratio in microbolometer arrays |
US20080074343A1 (en) * | 2006-09-26 | 2008-03-27 | Siemens Medical Solutions Usa, Inc. | Digital Video Switch and Method of Switching Between Multiple Digital Video Inputs and Multiple Outputs |
WO2008109565A1 (en) * | 2007-03-08 | 2008-09-12 | Fairchild Imaging | Compact cmos-based x-ray detector adapted for dental applications |
US20190167224A1 (en) * | 2014-09-17 | 2019-06-06 | Konica Minolta, Inc. | Radiation image capturing system |
Also Published As
Publication number | Publication date |
---|---|
WO2004095064A3 (en) | 2005-05-12 |
WO2004095064A2 (en) | 2004-11-04 |
US20040202281A1 (en) | 2004-10-14 |
JP2006523125A (en) | 2006-10-12 |
EP1611776B1 (en) | 2014-09-24 |
JP4607099B2 (en) | 2011-01-05 |
EP1611776A4 (en) | 2009-09-09 |
EP1611776A2 (en) | 2006-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7123687B2 (en) | Method for displaying digital X-ray image data at high resolution | |
US6744912B2 (en) | Multiple mode digital X-ray imaging system | |
US6424750B1 (en) | Multiple mode digital X-ray imaging system | |
EP0844588B1 (en) | Image processing apparatus and method | |
US7436444B2 (en) | Radiation image pick-up apparatus having reading element, drive circuit for driving reading element, and control circuit for controlling drive circuit | |
CA2244686C (en) | Multiple mode digital x-ray imaging system | |
JP2001189891A (en) | Method for reading sensor element of sensor, and sensor | |
US7122802B2 (en) | Method and apparatus for increasing the data acquisition rate in a digital detector | |
US7075090B2 (en) | Radiological imaging apparatus and radiological imaging method | |
US6160260A (en) | Photoelectric conversion device, and system and image reading method using the device | |
EP2873228B1 (en) | Circuitry and method for collecting image array data with separate addressing and dynamic clamping of pixels to allow for faster pixel data readout and full removal of pixel charges | |
US11812187B2 (en) | Combined imaging array and strip | |
US11750944B2 (en) | Pixel noise cancellation system | |
JP2006043293A (en) | Radiation imaging apparatus and method of controlling the same | |
EP1376470A2 (en) | Multiple mode digital X-ray imaging system | |
JP2004012181A (en) | Radiograph imaging device | |
WO2022251716A1 (en) | Combined imaging array and strip and pixel noise cancellation system | |
JP2019005634A (en) | Solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: VARIAN MEDICAL SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLBETH, RICHARD E.;MOLLOV, IVAN P.;REEL/FRAME:013967/0078 Effective date: 20030408 |
|
AS | Assignment |
Owner name: VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC., CALIFOR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARIAN MEDICAL SYSTEMS, INC.;REEL/FRAME:014561/0791 Effective date: 20030925 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: VARIAN MEDICAL SYSTEMS, INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC.;REEL/FRAME:021669/0687 Effective date: 20080926 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: VAREX IMAGING CORPORATION, UTAH Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VARIAN MEDICAL SYSTEMS, INC.;REEL/FRAME:041602/0309 Effective date: 20170125 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS AGENT, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:VAREX IMAGING CORPORATION;REEL/FRAME:053945/0137 Effective date: 20200930 |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS AGENT, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:VAREX IMAGING CORPORATION;REEL/FRAME:054240/0123 Effective date: 20200930 |
|
AS | Assignment |
Owner name: VAREX IMAGING CORPORATION, UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:066950/0001 Effective date: 20240326 |