US7042214B2 - Non-linear symmetric sweep spectral-spatial RF pulses for MR spectroscopy - Google Patents
Non-linear symmetric sweep spectral-spatial RF pulses for MR spectroscopy Download PDFInfo
- Publication number
- US7042214B2 US7042214B2 US10/823,979 US82397904A US7042214B2 US 7042214 B2 US7042214 B2 US 7042214B2 US 82397904 A US82397904 A US 82397904A US 7042214 B2 US7042214 B2 US 7042214B2
- Authority
- US
- United States
- Prior art keywords
- pulse
- spectral
- pulses
- polynomial
- beta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000004611 spectroscopical analysis Methods 0.000 title abstract description 6
- 230000003595 spectral effect Effects 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000000701 chemical imaging Methods 0.000 claims abstract description 9
- 238000013461 design Methods 0.000 claims description 27
- 239000002207 metabolite Substances 0.000 claims description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 2
- 150000003893 lactate salts Chemical group 0.000 claims 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 abstract description 45
- 230000001629 suppression Effects 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 8
- 150000002632 lipids Chemical class 0.000 abstract description 4
- 238000011160 research Methods 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 description 11
- 230000005284 excitation Effects 0.000 description 10
- 230000005415 magnetization Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- OTCCIMWXFLJLIA-UHFFFAOYSA-N N-acetyl-DL-aspartic acid Natural products CC(=O)NC(C(O)=O)CC(O)=O OTCCIMWXFLJLIA-UHFFFAOYSA-N 0.000 description 7
- OTCCIMWXFLJLIA-BYPYZUCNSA-N N-acetyl-L-aspartic acid Chemical compound CC(=O)N[C@H](C(O)=O)CC(O)=O OTCCIMWXFLJLIA-BYPYZUCNSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 4
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 4
- 238000000264 spin echo pulse sequence Methods 0.000 description 4
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 3
- 229960001231 choline Drugs 0.000 description 3
- 238000012938 design process Methods 0.000 description 3
- 230000036278 prepulse Effects 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 229960003624 creatine Drugs 0.000 description 2
- 239000006046 creatine Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/446—Multifrequency selective RF pulses, e.g. multinuclear acquisition mode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4828—Resolving the MR signals of different chemical species, e.g. water-fat imaging
Definitions
- This invention relates generally to magnetic resonance spectroscopy and more particularly, the invention relates to RF pulses for use in spectral editing in MR spectroscopy.
- Spectroscopic imaging is a combined spatial/spectral imaging where the goal is to obtain a MR spectrum at each spatial position or to display an image of each chemical shift species at each position.
- Chemical shift is a subtle frequency shift in a MR signal that is dependent on the chemical environment of a particular compound or metabolite.
- the chemical shift is a small displacement of resonant frequency due to a shielding dependent on chemical environment and created by the orbital motion of surrounding electrons in response to a main magnetic field, B 0 .
- RF excitation pulses may, for example, invert spin magnetization, saturate spin magnetization, stabilize spin magnetization or refocus spin magnetization.
- the RF pulses selectively affect spin magnetization over a specific frequency range which corresponds to a specific location within the subject being scanned. Such “selective” RF pulses are thus specified by the degree to which they tip magnetization (“flip angle”) over a range of frequencies.
- the step of producing the polynomials A and B employs a Remez (Parks-McClellan) algorithm that is executed in an iterative process.
- Remez Parks-McClellan
- This iterative process is performed until the desired frequency domain pulse profile is approximated to a specified degree of accuracy.
- spectral-spatial EPSE echo-planar spin-echo
- the present invention provides a new RF pulse design method to enable the use of spectral-spatial RF pulses for J-difference editing in magnetic resonance spectroscopic imaging (MRSI).
- MRSI magnetic resonance spectroscopic imaging
- the design of a non-linear RF pulse having symmetric sweep is provided.
- the RF pulse is applied to magnetic resonance spectroscopic imaging (MRSI) and particularly to symmetric sweep spectral-spatial RF pulses for use in spatially resolved measurement of a metabolite (e.g., lactate) in vivo.
- MRSI magnetic resonance spectroscopic imaging
- symmetric sweep spectral-spatial RF pulses for use in spatially resolved measurement of a metabolite (e.g., lactate) in vivo.
- initial design choices of pulse duration and gradient oscillation frequency are chosen, and a beta-polynomial is then designed for the spectral dimension.
- the polynomial roots are computed and plotted in a complex plane, and then a subset of the roots is flipped to a new position in the complex plane both inside and outside the unit circle.
- the new roots are then combined to give a non-linear phase beta-polynomial.
- the non-linear beta-polynomial and a beta-polynomial for a slice (spatial) are applied to an inverse SLR transform to compute the RF waveform.
- Finite gradient ramp times are compensated as necessary, and then performance of the pulse design is evaluated.
- the root pattern of the spectral beta-polynomial is changed if the spectral time-course needs altering. If the root pattern is changed, the steps above for the non-linear phase beta-polynomial are repeated.
- the pulse design is particularly useful for refocusing pulses in echo-planar spin-echo sequences, the pulse design can be applied to any symmetric sweep spectral-spatial pulse.
- FIGS. 1 a – 1 f illustrate reduction of peak RF B 1 magnetization by non-linear RF phase modulation.
- FIGS. 2 a – 2 e illustrate design of a symmetric sweep beta-polynomial for lactate editing at 3T (B 0 ).
- FIGS. 3 a – 3 b illustrate RF and gradient waveforms for lactate editing at 3T.
- FIGS. 4 a – 4 d illustrate performance of the symmetric sweep RF pulse for lactate editing at 3T.
- FIGS. 5 a – 5 b illustrate a symmetric sweep RF pulse for lactate editing at 1.5T.
- FIGS. 6 a – 6 c illustrate performance of the symmetric sweep RF pulse of FIG. 5 .
- FIGS. 7 a – 7 c illustrate experimental excitation profile measurements including spin-echo pulse sequence and experimental and numerically computed lactate profiles.
- FIGS. 8 a – 8 c illustrate implementation of symmetric sweep RF pulses for testing a phantom including a PRESS and spectral profiles for the two MRI acquisitions.
- FIGS. 9 a – 9 d illustrate data from a lactate editing experiment using pulses in accordance with the invention at 3T and at 1.5T.
- FIG. 10 is a flow diagram of the spectral-spatial RF pulse design in accordance with an embodiment of the invention.
- Spectral-spatial radio frequency (SSRF) pulses allow simultaneous selection in both frequency and spatial domains. These pulses are particularly important for clinical and research magnetic resonance spectroscopy (MRS) applications where suppression of the large water resonance and, for some applications, lipid resonances, is critical.
- MRS magnetic resonance spectroscopy
- the use of SSRF pulses allows the incorporation of the suppression of unwanted resonances directly into the excitation scheme without the need for suppression pre-pulses.
- pre-pulse suppression schemes such as CHESS, the level of suppression is sensitive to T1 and RF field variations, and the long duration of the pre-pulses limits the performance of out-of-volume saturation.
- SSRF pulses for MR spectroscopic imaging is also advantageous due to the high bandwidth of the sub-pulses (5–10 kHz) which greatly reduces the spatial-shift errors associated with the different resonant frequencies within the imaging volume. These errors become worse at higher main-field strengths where the frequency difference between different chemical-shift species is larger and susceptibility effects are amplified.
- the present invention provides a new method for designing non-linear phase 180° SSRF pulses that can be used for spectral editing.
- the novel feature of the pulses is that the spectral profile develops as a symmetric sweep, from the outside edges of the spectral window towards the middle, so that coupled components are tipped simultaneously and over a short interval.
- the method has particular utility with MRSI applications, but the method can be used in RF pulse design in general.
- Non-linear phase modulation has become an important tool in RF pulse design for enabling the use of pulses with shorter duration, while keeping the peak amplitude within the limits of the RF amplifier.
- the amplitude of these pulses is spread much more evenly over the pulse duration in comparison to conventional, linear phase pulses which are strongly peaked.
- the tipping of magnetization caused by a non-linear phase pulse is also spread out over the duration of the pulse and this causes problems when applied to coupled spins, such as the protons in lactate.
- FIG. 1 illustrates reduction of peak B 1 by non-linear phase modulation.
- This conventional sync-like 180° pulse (a) has a beta-polynomial root pattern (b) that is characteristic of the Parks-McClellan filter design algorithm used within the SLR design process. By flipping some of the roots across the unit circle as is indicated by the arrows in (b), a new root pattern is created (c).
- the resulting RF pulse (d) has a peak amplitude reduced by 65% relative to (a).
- a magnitude plot of the spin-echo profile at intermediate points within the pulse shows how the time-course is altered by root flipping.
- the time-course for the pulse in (a) shows a typical time-course, with most of the pulse affecting only the edges, and the bulk of the tipping happening at the midpoint (e).
- the time-course for the pulse in (d) shows an atypical pattern, with the left side of the profile being tipped before the right.
- a method for designing spectral-spatial RF pulses with non-linear phase in the spectral dimension.
- the pulses can be 180° refocusing pulses, which provide spin-echo profiles instead of the more common excitation profile.
- the novel feature of the new pulses is that the tipping caused by the pulse acts on coupled components simultaneously and over a short time interval ( ⁇ 1/J).
- the Shinnar-Le Roux (SLR) transform maps the discrete RF pulse waveform samples B 1 (t i ) to two polynomials, A n (z) and B n (z), as follows: B 1 (t i ) A n (z),B n (z)) (1)
- the transform is useful because the coefficients of B n (z) are related to the spin-echo profile by the Fourier transform.
- a whole family of non-linear phase RF pulses can be derived from a conventional linear phase pulse. This is done by computing B n (z), factoring the roots of the polynomial, and plotting them in the complex plane.
- the roots that are within the excitation profile are typically located at the radius ⁇ 1/N where N is the number of samples in the RF pulse.
- new RF pulses can be generated that have the same magnitude excitation profile, but drastically different phase profiles.
- the new method is described below within the context of two-dimensional RF pulse design using the SLR transform.
- the new method relates to the design of the Bn(z) coefficients for the spectral dimension, whose Fourier transform corresponds to the spectral spin-echo profile.
- the following design process is typically iterated a few times to fine-tune the result. One iteration is described first; the method for evaluating the performance of the pulse and refining the design is explained later herein.
- the design begins with a choice for the net duration of the RF pulse, and the frequency at which the slice-select gradient will be oscillated. These two parameters determine the number of sublobes, and thus the number of beta-polynomial coefficients for the spectral dimension (N).
- the time-bandwidth product for the spectral dimension (TB) is computed by multiplying the desired spectral bandwidth of the pulse by the pulse duration.
- FIG. 2 illustrates design of a symmetric sweep beta-polynomial for lactate editing at 3T.
- a conventional, linear phase beta-polynomial is designed. The bandwidth is set to one-half of that necessary to encompass the 1.3 ppm and 4.1 ppm components of lactate at 3T, with a ⁇ 25 Hz tolerance (230 Hz).
- the roots of the beta-polynomial are factored and plotted in the complex plane.
- the inputs to the algorithm are the number of coefficients (N), the time-bandwidth product TB/2 (this beta-polynomial is actually for one-half of the spectral band), and weighting factors for the in-band and out-of-band ripple optimization (typically used is 1000:1 weighting in favor of the out-of-band ripple).
- N the number of coefficients
- TB/2 this beta-polynomial is actually for one-half of the spectral band
- weighting factors for the in-band and out-of-band ripple optimization typically used is 1000:1 weighting in favor of the out-of-band ripple.
- the polynomial roots of the set of filter coefficients are computed and plotted in the complex plane ( FIG. 2 b ). Labels are placed on each of the roots in the passband, as is done in FIG. 2 b , so that the designer is able to specify particular roots to flip. Roots are chosen for flipping such that one-half of the passband contains roots inside the unit circle, and the other half contains roots outside ( FIG. 2 c ). This pattern is chosen as it will result in approximately quadratic phase in the spectral window. Multiplying the new roots together gives a non-linear phase beta-polynomial, shown in FIG. 2 d.
- ⁇ ⁇ j sweep e - i2 ⁇ ⁇ ⁇ y ⁇ TB 4 ⁇ j ⁇ ⁇ ⁇ j + e i2 ⁇ ⁇ ⁇ y ⁇ TB 4 ⁇ j ⁇ ⁇ ⁇ j * ⁇ ⁇
- ⁇ ⁇ j [ 0 , 1 , 2 , ... ⁇ ⁇ ( N - 1 ) ] . ( 2 )
- FIG. 3 Shown in FIG. 3 are the RF (a) and gradient (b) waveforms for lactate editing at 3T, resulting from the spectral beta-polynomial shown in FIG. 2 e .
- the sublobes were 600 ⁇ s in duration, with 66 sublobes covering the 39.6 ms duration.
- the oscillating gradient waveform is designed ( FIG. 3 b ) with ramps and amplitude within hardware constraints, and the samples of the RF waveform that are transmitted during the gradient ramps are corrected using the variable-rate selective excitation (VERSE) algorithm.
- VEL variable-rate selective excitation
- FIG. 4 illustrates performance of the symmetric sweep RF pulse for lactate editing at 3T, shown in FIG. 3 .
- the spectral and spatial selectivity are shown in (a) and (b), respectively.
- (c) The spectral profile of the pulse is plotted at ten equally spaced intervals (3.96 ms apart) during the pulse.
- the two dashed lines denote the frequencies of the two components of lactate.
- the key to the pulse usefulness for editing is that tipping occurs at these two frequencies simultaneously and over a short interval.
- the spectral and spatial profiles are checked for adequate fidelity. If, for example, the ripples within the spectral passband are too large, the weighting factors for the Parks-McClellan algorithm can be modified and the pulse recomputed. Once satisfactory profiles are obtained, the spectral profile is computed at intermediate time points during the pulse ( FIG. 4 c ).
- the ideal spectral time-course shows equal flipping occurring at the frequencies corresponding to coupled spins of interest, with this flipping occurring over a short time (a few ms). For example, the two dashed lines in the time-course shown in FIG. 4 d denote the frequencies of the coupled components of lactate, at 1.3 and 4.1 ppm.
- Altering the spectral time-course of the RF pulse is accomplished by changing the root pattern of the spectral beta-polynomial.
- the first course of action which often yields the desired result, is to use the same Parks-McClellan design, but to flip different roots. If this fails, the Parks-McClellan design can be altered slightly, for example by changing the number of samples in the spectral beta-polynomial, yielding a new initial root pattern to work with. Then, all of the steps above must be repeated.
- symmetric sweep pulses were computed for lactate editing at two different field strengths: 1.5T and 3 T. Both pulses were designed to refocus a spectral window encompassing the 1.3 ppm to 4.1 ppm components of lactate. An important design criterion was to ensure that when the pulse was centered on this window, the two lactate resonances were affected simultaneously and over a short interval ( ⁇ 1/J).
- the beta-polynomial designed in FIG. 2 was used, along with a spatial beta-polynomial with a time-bandwidth of 6.0, to compute the RF pulse shown in FIG. 3 .
- FIG. 5 illustrates symmetric sweep RF pulse for lactate editing at 1.5T.
- the root pattern resulting from a minimum phase filter design is manipulated so that one root is outside the unit circle, and two are inside (root numbers 1 and 2 have been flipped).
- FIG. 6 illustrates performance of the symmetric sweep RF pulse for lactate editing at 1.5T, shown in FIG. 5 .
- the spectral profile (a) is not as good as for the 3T pulse of FIG. 4 , with the relative width of the transition bands more than twice as wide.
- the spatial profile is shown in (b), and the time-course of the spectral refocusing in (c), plotted at ten equally spaced intervals (3.96 ms apart) during the pulse.
- the dashed lines denote the frequencies of the two components of lactate.
- ⁇ ⁇ j sweep e - i2 ⁇ ⁇ ⁇ y ⁇ TB 4 ⁇ j ⁇ ⁇ ⁇ j + e i ⁇ ⁇ ⁇ ⁇ e i2 ⁇ ⁇ ⁇ y ⁇ TB 4 ⁇ j ⁇ ⁇ ⁇ j * ( 3 ) with ⁇ manually varied until a good match between the two parts of the spectral profile was obtained.
- the spin-echo profiles of the symmetric sweep pulses were measured with a phantom experiment using a GE Signa 3T whole-body scanner.
- FIG. 7 illustrates experimental excitation profile measurements.
- the spin-echo pulse sequence used to test the spectral-spatial pulses consisted of a non-selective (hard) ⁇ /2 pulse and a selective, spectral-spatial ⁇ pulse.
- the lines labeled RF and Theta show the magnitude and phase of the RF pulses, respectively. Note the presence of a gradient during the spectral-spatial pulse to encode the spectral profile of the pulse in the read-out direction.
- the experimental profiles for the lactate editing pulse for 3T shows excellent agreement with the numerically computed profile (c). Note the bipolar “ghost” profiles (an artifact due to transmission of RF on both positive and negative gradient lobes).
- Magnetization was excited with a non-selective 90° pulse in a phantom filled with distilled water doped with copper sulphate, with dimensions 1 ⁇ 12 ⁇ 12 cm 3 and T1 and T2 approximately 100 ms.
- the distribution of magnetization refocused by the new pulses was measured with a modified spin-echo pulse sequence (see FIG. 7 a ).
- the spatial variation of the profile was resolved by phase encoding in the through-slice direction, and the spectral variation of the profile was resolved by applying a 0.61 mT/m gradient during application of the SSRF refocusing pulse.
- the new pulses were tested by acquiring MRSI data from phantoms containing metabolites of interest mixed with water. Experiments were performed on the 3T scanner, as well as a GE Signa 1.5T scanner. The pulses were implemented in the PRESS pulse sequence as shown in FIG. 8 a .
- FIG. 8 shows each spectral-spatial implementation of the symmetric sweep RF pulses for testing in a phantom experiment. Each spectral-spatial pulse was inserted in place of the ⁇ refocusing pulse in the PRESS sequence (a).
- the lines labeled RF and Theta show the magnitude and phase of the RF pulses, respectively.
- cycle A with the spectral profile centered on spectral profile shifted to exclude the 4.1 ppm component.
- the spectral profile of the 3T pulse (b) is sharp enough that good water suppression can be achieved in both cycles, whereas the 1.5T profile (c) refocuses a significant amount of water in cycle A.
- the frequencies in the graphs are plotted relative to water at 0 Hz.
- the standard brain spectroscopy phantoms provided with the GE Signa scanners were used (two different phantoms for the two scanners), which contain choline, creatine, N-acetyl aspartate (NAA) and lactate.
- the editing schemes for the two field strengths are shown in FIG. 8 .
- the RF pulses designed with the new method are shown in FIG. 3 and FIG. 5 . It is interesting to note that the sweep through the spectral dimension is reflected in the appearance of the RF waveforms. The act that the effect of the pulse starts at the outer edges of the spectrum and sweeps inwards is reflected in the higher frequency oscillations of the sublobe amplitudes at the start of the pulse.
- the spectral sweep caused by the pulses is shown in FIG. 4 c and FIG. 6 c .
- the pulses are shown to affect the coupled components over a much shorter time than the full duration of the pulse, there is still a transit time of approximately 5 ms. This may explain the imperfect editing quantified below.
- the experimentally measured spin-echo profiles seen in FIG. 7 show the spectral and spatial regions refocused by the new pulses.
- the agreement between the measured and numerically computed profiles show that the hardware is capable of transmitting these challenging waveforms.
- the variation seen in the spatial slice profile across the main spectral lobe is thought to be cross-talk between the spectral and spatial profiles, due to imperfections in implementation of the inverse 2D SLR transform.
- FIG. 9 The performance of the new pulses for lactate editing is seen in FIG. 9 .
- Typical spectra data from the lactate editing experiment using the new pulses is shown.
- Typical spectra acquired with (a) both 1.3 ppm and 4.1 ppm components refocused and (b) 4.1 ppm component excluded are shown.
- the difference of the two spectra (c) shows a resolved lactate doublet at 1.3 ppm, but with some leakage of other metabolites (arrows).
- the sum of the two spectra (d) show well-resolved peaks from choline (3.2 ppm), creatine (3.0 ppm) and NAA (2.0 ppm), but with some leakage of the edited lactate doublet (1.3 ppm). Note that at 3T complete water suppression is achieved in both cycles, but not at 1.5T.
- the relative height of the lactate peak was quantified. From each data set, a group of 32 voxels in a central region was selected (every voxel at least 1 cm away from the edge of refocused volume). The ratio of peak heights between lactate and NAA was calculated for each voxel. For testing the editing, the lactate peak height was determined from the subtracted spectra (e.g., FIG. 9 c ) and the NSS height from the summed spectra (e.g., FIG. 9 d ). As a control, the ratio of lactate to NAA was also computed from the “cycle B” spectra (e.g., FIG.
- the main feature of the new pulses is that the spectral window is refocused in a symmetric sweep, from the outer edges of the window inwards, enabling the simultaneous refocusing of coupled spins. Also, the phase profile of the spectral window is non-linear, and the resulting savings in RF amplitude can be spent on high bandwidth in the spatial dimension (10 kHz), minimizing the spatial offsets between different resonances. Phantom studies showed that lactate editing is feasible using the new pulses, with a 91%–93% editing efficiency. The performance of these two pulses in vivo is currently being investigated.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
B1(ti)An(z),Bn(z)) (1)
RF Pulse Generation
with θ manually varied until a good match between the two parts of the spectral profile was obtained.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/823,979 US7042214B2 (en) | 2004-04-13 | 2004-04-13 | Non-linear symmetric sweep spectral-spatial RF pulses for MR spectroscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/823,979 US7042214B2 (en) | 2004-04-13 | 2004-04-13 | Non-linear symmetric sweep spectral-spatial RF pulses for MR spectroscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050225323A1 US20050225323A1 (en) | 2005-10-13 |
US7042214B2 true US7042214B2 (en) | 2006-05-09 |
Family
ID=35059961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/823,979 Expired - Lifetime US7042214B2 (en) | 2004-04-13 | 2004-04-13 | Non-linear symmetric sweep spectral-spatial RF pulses for MR spectroscopy |
Country Status (1)
Country | Link |
---|---|
US (1) | US7042214B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060220643A1 (en) * | 2005-03-29 | 2006-10-05 | Siemens Aktiengesellschaft | MR method for minimizing the chemical shift artifact, using a localized spatially dependent saturation pulse |
US20080116893A1 (en) * | 2006-11-21 | 2008-05-22 | Stefan Petersson | System and method for fast mr imaging of metabolites at selective excitation frequencies |
US20080231274A1 (en) * | 2007-03-20 | 2008-09-25 | Joerg Ulrich Fontius | Method to control a magnetic resonance system |
US20090118607A1 (en) * | 2007-11-02 | 2009-05-07 | Masashi Ookawa | Mri apparatus |
US20090273346A1 (en) * | 2008-04-30 | 2009-11-05 | Yudong Zhu | Apparatus and method for optimizing the spectra of parallel excitation pulses |
US20100085046A1 (en) * | 2008-10-08 | 2010-04-08 | The Board Of Trustees Of The Leland Stanford Junior University | Hyperpolarized dynamic chemical shift imaging with tailored multiband excitation pulses |
US20110087087A1 (en) * | 2009-10-14 | 2011-04-14 | Peacock Iii James C | Mr spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US8825131B2 (en) | 2009-10-14 | 2014-09-02 | Nocimed, Llc | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US8965094B2 (en) | 2012-04-14 | 2015-02-24 | Nocimed, Llc | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US20150253403A1 (en) * | 2014-03-10 | 2015-09-10 | Vanderbilt University | Mri using rf gradients for spatial encoding |
US9280718B2 (en) | 2010-11-24 | 2016-03-08 | Nocimed, Llc | Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy |
CN110223576B (en) * | 2019-05-23 | 2021-07-06 | 电子科技大学 | Signal sampling teaching demonstration instrument based on complex plane |
US11564619B2 (en) | 2016-06-19 | 2023-01-31 | Aclarion, Inc. | Magnetic resonance spectroscopy system and method for diagnosing pain or infection associated with propionic acid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013190512A2 (en) * | 2012-06-22 | 2013-12-27 | Schlumberger Technology B.V. | Detecting and correcting changes in signal polarity for seismic data processing |
EP3588120B1 (en) * | 2018-06-26 | 2021-02-24 | Bruker BioSpin GmbH | System and method for improved signal detection in nmr spectroscopy |
US10746830B2 (en) * | 2018-08-28 | 2020-08-18 | General Electric Company | Systems and methods for hybrid slice encoding in three-dimensional magnetic resonance imaging |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4760336A (en) | 1987-02-27 | 1988-07-26 | Stanford University | Variable rate magnetic resonance selective excitation for reducing rf power and specific absorption rate |
US4910483A (en) * | 1984-04-09 | 1990-03-20 | U.S. Philips Corporation | Acoustic surface wave filter device with asymmetric transducers and method of manufacturing same |
US4940940A (en) | 1986-07-11 | 1990-07-10 | General Electric Cgr Sa | Method of radio-frequency excitation in an NMR experiment |
US5168229A (en) | 1991-04-02 | 1992-12-01 | General Electric Company | Multidimensional nmr spectroscopy using switched acquisition time gradients for multiple coherence transfer pathway detection |
US5189371A (en) * | 1991-08-08 | 1993-02-23 | The Board Of Trustees Of The Leland Stanford Junior University | Method and means for magnetic resonance imaging and spectroscopy using two-dimensional selective adiabatic PI pulses |
US5402067A (en) * | 1993-08-04 | 1995-03-28 | Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for rare echo imaging using k-space spiral coverage |
US5499629A (en) * | 1994-02-01 | 1996-03-19 | Board Of Trustees Of The Leland Stanford Junior University | Slice profile stabilization for segmented k-space magnetic resonance imaging |
US5572126A (en) * | 1994-07-28 | 1996-11-05 | University Of Pennsylvania | Reduced power selective excitation RF pulses |
US6028428A (en) | 1998-04-09 | 2000-02-22 | Cunningham; Charles H. | Multiband selective RF pulse construction for NMR measurement sequences |
US6069478A (en) | 1997-11-24 | 2000-05-30 | General Electric Corporation | Magnetic resonance spectroscopic imaging having reduced parasitic side band signals |
US6304084B1 (en) * | 1997-04-14 | 2001-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Method of improved magnetic resonance spectroscopic localization using spectral-spatial pulses |
-
2004
- 2004-04-13 US US10/823,979 patent/US7042214B2/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4910483A (en) * | 1984-04-09 | 1990-03-20 | U.S. Philips Corporation | Acoustic surface wave filter device with asymmetric transducers and method of manufacturing same |
US4940940A (en) | 1986-07-11 | 1990-07-10 | General Electric Cgr Sa | Method of radio-frequency excitation in an NMR experiment |
US4760336A (en) | 1987-02-27 | 1988-07-26 | Stanford University | Variable rate magnetic resonance selective excitation for reducing rf power and specific absorption rate |
US5168229A (en) | 1991-04-02 | 1992-12-01 | General Electric Company | Multidimensional nmr spectroscopy using switched acquisition time gradients for multiple coherence transfer pathway detection |
US5189371A (en) * | 1991-08-08 | 1993-02-23 | The Board Of Trustees Of The Leland Stanford Junior University | Method and means for magnetic resonance imaging and spectroscopy using two-dimensional selective adiabatic PI pulses |
US5402067A (en) * | 1993-08-04 | 1995-03-28 | Board Of Trustees Of The Leland Stanford Junior University | Apparatus and method for rare echo imaging using k-space spiral coverage |
US5499629A (en) * | 1994-02-01 | 1996-03-19 | Board Of Trustees Of The Leland Stanford Junior University | Slice profile stabilization for segmented k-space magnetic resonance imaging |
US5572126A (en) * | 1994-07-28 | 1996-11-05 | University Of Pennsylvania | Reduced power selective excitation RF pulses |
US6304084B1 (en) * | 1997-04-14 | 2001-10-16 | The Board Of Trustees Of The Leland Stanford Junior University | Method of improved magnetic resonance spectroscopic localization using spectral-spatial pulses |
US6069478A (en) | 1997-11-24 | 2000-05-30 | General Electric Corporation | Magnetic resonance spectroscopic imaging having reduced parasitic side band signals |
US6028428A (en) | 1998-04-09 | 2000-02-22 | Cunningham; Charles H. | Multiband selective RF pulse construction for NMR measurement sequences |
Non-Patent Citations (7)
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7265548B2 (en) * | 2005-03-29 | 2007-09-04 | Siemens Aktiengesellschaft | MR method for minimizing the chemical shift artifact, using a localized spatially dependent saturation pulse |
US20060220643A1 (en) * | 2005-03-29 | 2006-10-05 | Siemens Aktiengesellschaft | MR method for minimizing the chemical shift artifact, using a localized spatially dependent saturation pulse |
US7719269B2 (en) * | 2006-11-21 | 2010-05-18 | General Electric Company | System and method for fast MR imaging of metabolites at selective excitation frequencies |
US20080116893A1 (en) * | 2006-11-21 | 2008-05-22 | Stefan Petersson | System and method for fast mr imaging of metabolites at selective excitation frequencies |
US7952354B2 (en) | 2006-11-21 | 2011-05-31 | General Electric Company | System and method for fast MR imaging of metabolites at selective excitation frequencies |
US20100156417A1 (en) * | 2006-11-21 | 2010-06-24 | Stefan Petersson | System and method for fast mr imaging of metabolites at selective excitation frequencies |
US20080231274A1 (en) * | 2007-03-20 | 2008-09-25 | Joerg Ulrich Fontius | Method to control a magnetic resonance system |
US7719281B2 (en) * | 2007-03-20 | 2010-05-18 | Siemens Aktiengesellschaft | Method to control a magnetic resonance system with individually controllable RF transmission channels |
US20090118607A1 (en) * | 2007-11-02 | 2009-05-07 | Masashi Ookawa | Mri apparatus |
US7990142B2 (en) * | 2007-11-02 | 2011-08-02 | Kabushiki Kaisha Toshiba | MRI apparatus generating deformed binomial pulse waveforms based on flip angle |
US20090273346A1 (en) * | 2008-04-30 | 2009-11-05 | Yudong Zhu | Apparatus and method for optimizing the spectra of parallel excitation pulses |
US7808240B2 (en) * | 2008-04-30 | 2010-10-05 | General Electric Company | Apparatus and method for optimizing the spectra of parallel excitation pulses |
US20100085046A1 (en) * | 2008-10-08 | 2010-04-08 | The Board Of Trustees Of The Leland Stanford Junior University | Hyperpolarized dynamic chemical shift imaging with tailored multiband excitation pulses |
US7795868B2 (en) | 2008-10-08 | 2010-09-14 | The Board Of Trustees Of The Leland Stanford Junior University | Hyperpolarized dynamic chemical shift imaging with tailored multiband excitation pulses |
US10251578B2 (en) | 2009-10-14 | 2019-04-09 | Nocimed, Inc. | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US20110087087A1 (en) * | 2009-10-14 | 2011-04-14 | Peacock Iii James C | Mr spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US8825131B2 (en) | 2009-10-14 | 2014-09-02 | Nocimed, Llc | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US11844601B2 (en) | 2009-10-14 | 2023-12-19 | Aclarion, Inc. | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US8761860B2 (en) | 2009-10-14 | 2014-06-24 | Nocimed, Llc | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US9392959B2 (en) | 2009-10-14 | 2016-07-19 | Nocimed, Inc. | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
EP3056919A1 (en) | 2009-10-14 | 2016-08-17 | Nocimed, Inc. | Mr spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US9724013B2 (en) | 2009-10-14 | 2017-08-08 | Nocimed, Inc. | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US10285622B2 (en) | 2009-10-14 | 2019-05-14 | Nocimed, Inc. | MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs |
US9280718B2 (en) | 2010-11-24 | 2016-03-08 | Nocimed, Llc | Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy |
US10517504B2 (en) | 2010-11-24 | 2019-12-31 | Nocimed, Inc. | Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy |
US9808177B2 (en) | 2010-11-24 | 2017-11-07 | Nocimed, Inc. | Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy |
US10646135B2 (en) | 2012-04-14 | 2020-05-12 | Nocimed, Inc. | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US10045711B2 (en) | 2012-04-14 | 2018-08-14 | Nocimed, Inc. | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US9345421B2 (en) | 2012-04-14 | 2016-05-24 | Nocimed, Inc. | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US11179057B2 (en) | 2012-04-14 | 2021-11-23 | Nocimed, Inc. | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US11633124B2 (en) | 2012-04-14 | 2023-04-25 | Aclarion, Inc. | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US8965094B2 (en) | 2012-04-14 | 2015-02-24 | Nocimed, Llc | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US12097020B2 (en) | 2012-04-14 | 2024-09-24 | Aclarion, Inc. | Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method |
US9995808B2 (en) * | 2014-03-10 | 2018-06-12 | Vanderbilt University | MRI using RF gradients for spatial encoding |
US20150253403A1 (en) * | 2014-03-10 | 2015-09-10 | Vanderbilt University | Mri using rf gradients for spatial encoding |
US11564619B2 (en) | 2016-06-19 | 2023-01-31 | Aclarion, Inc. | Magnetic resonance spectroscopy system and method for diagnosing pain or infection associated with propionic acid |
CN110223576B (en) * | 2019-05-23 | 2021-07-06 | 电子科技大学 | Signal sampling teaching demonstration instrument based on complex plane |
Also Published As
Publication number | Publication date |
---|---|
US20050225323A1 (en) | 2005-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7042214B2 (en) | Non-linear symmetric sweep spectral-spatial RF pulses for MR spectroscopy | |
US5825185A (en) | Method for magnetic resonance spin echo scan calibration and reconstruction | |
US7777488B2 (en) | Methods for arbitrary shape selective excitation summed spectroscopy and applications of same | |
US8432165B2 (en) | Simultaneous excitation and acquisition in magnetic resonance | |
US7230424B1 (en) | Magnetic resonance imaging | |
JPH07171122A (en) | Correcting method for read gradient magnetic flux polarity in epi and grase mri | |
US20110112393A1 (en) | Magnetic resonance imaging device | |
JP3369688B2 (en) | Inspection equipment using nuclear magnetic resonance | |
JP4889791B2 (en) | Magnetic resonance imaging device | |
US20160192859A1 (en) | Magnetic resonance imaging apparatus and temperature information measurement method | |
US4983920A (en) | NMR spectroscopy with phase encoding within a selected voxel | |
Cunningham et al. | Design of symmetric‐sweep spectral‐spatial RF pulses for spectral editing | |
US5283526A (en) | Method for performing single and multiple slice magnetic resonance spectroscopic imaging | |
JP3838377B2 (en) | Method and apparatus for imaging an object by magnetic resonance | |
US7403002B2 (en) | Method and apparatus for reduction of nyquist ghosts in medical magnetic resonance imaging | |
Gibbons et al. | Body diffusion‐weighted imaging using magnetization prepared single‐shot fast spin echo and extended parallel imaging signal averaging | |
JPH1133012A (en) | Magnetic resonance imaging and imaging method | |
JP5548770B2 (en) | Magnetic resonance imaging device | |
US4853635A (en) | Method of reconstructing a nuclear magnetization distribution from a partial magnetic resonance measurement | |
JP3731135B2 (en) | Magnetic resonance imaging system | |
US4706023A (en) | Method of reducing artefacts in images formed by means of Fourier zeugmatography | |
JP3173612B2 (en) | Improvements in or related to magnetic resonance spectroscopy and imaging | |
US5789922A (en) | Inspecting method and apparatus based on nuclear magnetic resonance using burst wave as exciting high frequency pulse | |
JP4383568B2 (en) | Magnetic resonance spectroscopy imaging method and apparatus | |
JPH11512957A (en) | Method and apparatus for magnetic resonance imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CUNNINGHAM, CHARLES H.;PAULY, JOHN M.;VIGNERON, DANIEL B.;REEL/FRAME:015221/0311;SIGNING DATES FROM 20040329 TO 20040405 |
|
AS | Assignment |
Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIGNERON, DANIEL B.;REEL/FRAME:016481/0473 Effective date: 20050419 Owner name: CALIFORNIA, REGENTS OF THE UNIVERSITY OF, THE, CAL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VIGNERON, DANIEL B.;REEL/FRAME:016481/0473 Effective date: 20050419 |
|
AS | Assignment |
Owner name: BOARD OF TRUSTEES OF THE LELAND STANFORD UNIVERSIT Free format text: THIS IS A CORRECTIVE ASSIGNMET TO REMOVE THE THIRD ASSIGNOR FROM DOCUMENT PREVIOUSLY RECORDED ON REEL 01522, FRAME 0311.;ASSIGNORS:CUNNINGHAM, CHARLES H.;PAULY, JOHN M.;REEL/FRAME:017046/0271 Effective date: 20040329 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |