US7037024B2 - Joint between joint faces of two components - Google Patents
Joint between joint faces of two components Download PDFInfo
- Publication number
- US7037024B2 US7037024B2 US10/061,963 US6196302A US7037024B2 US 7037024 B2 US7037024 B2 US 7037024B2 US 6196302 A US6196302 A US 6196302A US 7037024 B2 US7037024 B2 US 7037024B2
- Authority
- US
- United States
- Prior art keywords
- matrix
- capsules
- joint
- joint according
- adhesive system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27G—ACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
- B27G11/00—Applying adhesives or glue to surfaces of wood to be joined
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/04—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/04—Flooring or floor layers composed of a number of similar elements only of wood or with a top layer of wood, e.g. with wooden or metal connecting members
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2400/00—Presence of inorganic and organic materials
- C09J2400/20—Presence of organic materials
- C09J2400/30—Presence of wood
- C09J2400/303—Presence of wood in the substrate
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F2201/00—Joining sheets or plates or panels
- E04F2201/07—Joining sheets or plates or panels with connections using a special adhesive material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/47—Molded joint
- Y10T403/472—Molded joint including mechanical interlock
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T403/00—Joints and connections
- Y10T403/47—Molded joint
- Y10T403/473—Socket or open cup for bonding material
Definitions
- the present invention relates to a joint between joint faces of two components and method for producing an adhesive matrix on a joint face.
- the present invention particularly relates to a joint between joint faces on which a matrix is applied with an adhesive system which first exhibits its effect of joining the joint faces when the components are joined.
- the application of the adhesive may also occur at a separate time from the joining of the components, e.g. during the industrial production of the component.
- Components are generally understood to be workpieces which are, in the course of their further processing, to be combined with other workpieces into a whole.
- the workpieces to be joined with one another may be of uniform dimension and nature and may be made of the same materials, but may also be basically different in all possible areas.
- the present invention particularly, but not exclusively, relates to components of which at least one component is made of a cellulose-containing material.
- Gluing offers many advantages over fasteners which act purely mechanically.
- the planar jointing of the components allows good transmission of forces from one component to another.
- a closed joint may be implemented which, for example, prevents the penetration of foreign materials such as dust, water, and the like during the assembly phase and in the course of use.
- a joint may be produced by gluing which does not show any jointing means externally and therefore is not optically recognizable. This is of great importance above all for floor coverings and for furniture.
- the adhesive is to issue out along the entire length of the joint after joining of the tongue and groove joint, in order to achieve complete sealing of the adhesive joint.
- the excess adhesive must then be removed, which is costly, in order to achieve a visually perfect result.
- a floor or wall covering is known from the related art of DE 297 03 962 U1, in which the joint faces are implemented as tongue and groove profiles coated with a contact adhesive.
- This adhesive may already be applied at the factory, so that upon joining of the components along the joint faces, an adhesive joint arises.
- a contact adhesive is an adhesive which is applied as a solution on the joint faces to be glued and which is joined together under the greatest possible pressure after the solvent has largely evaporated, i.e. when the adhesive films are apparently dry.
- the assembled adhesive films then essentially form an adhesive layer having high strength, with the residual solvent evaporating.
- the adhesive effect is based in this case on the physically acting adhesion forces.
- the permanently present latent adhesive effect due to the adhesive forces is problematic in the contact adhesives used in the related art. Since unilaterally acting contact adhesives lead to an adhesive effect upon pressing against any desired object, the components pre-treated in this way must be protected from pressing against any other objects before they are joined with other components. This is also particularly true for laying the components on packaging material
- the present invention is therefore based on the technical problem of, on one hand, not dispensing with the advantages of an adhesive joint in comparison to mechanical joining systems, but simultaneously not increasing the outlay by customers and the outlay for handling the components.
- a joint between two components comprising a matrix, located on at least one joint face, having an encapsulated reactive adhesive system.
- the present invention may particularly be used with any desired components. Two separate applications are given for exemplary purposes, without, however, restricting the invention to them.
- the components may be panels of floor coverings, such as parquet and laminate floor coverings, and of wall or ceiling coverings, which are mechanically connected with one another to provide a flat covering.
- the components may be furniture parts from which a piece of furniture is to be assembled. This case may particularly involve jointing of components made of different materials.
- components made of wood and/or a wooden material may be jointed with metallic or plastic mountings or with screws. If the mountings or screws are jointed with the components made of wood or a wooden material, a mutual fixing of the components with one another occurs, which allows a long-lasting, strong joint of the furniture parts with one another.
- the components may be of identical or different materials.
- the type of the respective material is not important, and plastics, metals, and natural materials may be used.
- At least one component is at least partially made of a cellulose-containing material in this case, for example of a material made at least partially of annual plants such as grass or straw, which is preferably compressed and/or provided with a binder.
- the material may preferably also be made at least partially of a lignocellulose-containing material, such as wood or a wooden material.
- reaction adhesives are adhesives which harden and set via chemical reactions, for example polyreactions or cross-linking of two or more adhesive components which may be triggered by heat, added hardener, or other components and/or by radiation.
- the adhesive joints resulting from this are very strong and durable.
- the materials participating in the reaction are, on one hand, the adhesive components themselves, which are part of the hardened adhesive layer after completion of the chemical reaction. These adhesive components also include the hardener.
- the materials are reaction accelerator and/or co-initiators. Co-initiator is understood to mean a component which only causes the hardener and/or accelerator to display its effect upon the presence of specific conditions, e.g. temperature, pH value, radiation energy, or moisture.
- reaction adhesive systems based on isocyanate, on epoxy, or on unsaturated systems are suitable, as are sulfidic systems, adhesives based on siloxane, and acid hardening systems. In principle, however, all systems may be used which require at least two components for the chemical hardening reaction. Hardening reactions may be achieved by free-radical generators such as peroxide, azo compounds, redox systems, radiation (UV and visible light), or by acidifiers. Single component adhesive systems are also possible. The hardening then occurs in combination with moisture, as in, for example, single component isocyanate systems.
- the reaction adhesive system is further implemented as encapsulated according to the present invention, with at least one of the materials participating in the chemical reaction being applied in encapsulated form, i.e. in capsules.
- an adhesive component, a hardener, an accelerator, and/or a co-initiator may be contained in the capsules.
- Encapsulation is understood to mean the enveloping of a material droplet. Multiple capsules obtained in this way are dispersed in a matrix. The envelopment of the capsules must, for one thing, be implemented in such a way that, on one hand, the material contained therein survives the application process and the storage until joining of the parts without undesired change and, in addition, it is compatible with the matrix. On the other hand, an activation of the hardening reaction in the course of joining must be possible. This is achieved in that the capsule envelopes are broken open, with the now exposed material of the adhesive system being partially or completely located on the joint surface and entering into a chemical reaction with at least one material and/or adhesive component of the reactive adhesive system and/or accelerating or initiating the chemical reaction. Only in this way is the gluing of the two components caused as a consequence of assembly.
- the capsules may be broken open, for example, by the effect of mechanical forces, for example by pressure or friction.
- mechanical forces for example by pressure or friction.
- all other techniques which cause breaking open of the capsules are suitable.
- the breaking open of the capsules may be performed by the use of auxiliary means, such as by the application of a liquid which dissolves the capsule, such as water, by spraying, painting, rolling, or similar means, by the effect of ultrasound energy, high frequency energy, thermal energy, e.g. infrared radiation, or the effect of UV radiation.
- the reactive adhesive system itself may comprise one single component, which reacts with water as the second component, or also two or more components and/or materials. Parts of the matrix or the entire matrix itself may also be components and/or materials of the adhesive system.
- a reactive adhesive system made of multiple components may be performed in such a way that on one joint surface, one component is applied as an encapsulated system, and the other component is placed in an analogous way on the other joint surface.
- the capsules are caused to break open in one of the ways previously described, which causes the two components to come into contact with one another and mix. Rapid hardening of the adhesive is the result.
- the matrix in which the capsules are dispersed primarily has the task of anchoring the capsules on the surface of the joint faces so lastingly that they remain there until the instant of assembly of the components.
- the matrix comprises either an adhesive, particularly a melt adhesive, or a wax or resin.
- the matrix may also assume further tasks, such as sealing of the joint surface, particularly as protection against the penetration of moisture, hardening of the joint face, or the function of a jointing agent, if the encapsulated adhesive components have adhesion problems with the joint surface.
- the matrix may, however, also itself be at least partially made of a material of the adhesive system.
- the capsules contain the material(s) which lead to the material of the adhesive system contained in the matrix being brought into chemical reaction jointly with this material, with subsequent hardening.
- the encapsulated adhesive system may be applied either to only one joint face or to both joint faces. Application on only one side is less cumbersome if only one of the two components is accessible for prior processing.
- the advantages of gluing the panels over mechanical locking systems is that a closed surface is obtained which prevents the penetration of water very well.
- the advantage of mechanical locking is rapid installation.
- a preferred embodiment of the present invention thus allows the advantages to be combined, without increasing the outlay for handling before assembly of the components.
- cold glue a closed, seam-free surface is obtained, and, on the other hand, rapid installation is possible as in mechanically locked installation systems.
- the problem described above is also solved by a component with at least one joint face in which the previously described features are implemented in the form of a matrix, located on at least one joint face, having an encapsulated reactive adhesive system.
- the problem described above is also solved by a method for producing a matrix having multiple capsules containing at least one material of the reactive adhesive system on a joint face of a component.
- At least one matrix layer is applied, with the aid of an application system, which at least partially has matrix material and at least partially has capsules and in which the matrix layer obtained in this way is at least partially fixed.
- an application system which at least partially has matrix material and at least partially has capsules and in which the matrix layer obtained in this way is at least partially fixed.
- a matrix film suitable for the implementation of a reactive encapsulated adhesive system is thus applied onto the joint face(s).
- Fixing is to be understood in this case to mean that the matrix film has a consistency and that this consistency is dimensionally stable and largely inherent in regard to adhesion to packaging and other surfaces. This is particularly performed if the following processing steps require it, e.g. packaging, intermediate storage, etc.
- the application technique must in addition be tailored to, for example, the planar or spherical shape of the joint face which is to be equipped with capsules.
- the capsules are dispersed in the matrix material before application.
- at least one matrix layer made of matrix material is then applied to at least one part of the joint face, which then receives an essentially uniform distribution of the capsules.
- the matrix layer obtained in this way is at least partially fixed.
- At least one matrix layer made of matrix material is applied to at least one part of the joint face with the aid of the application system. Particular care does not have to be taken in this case for extremely low application of force due to failure of the capsules.
- the not yet completely fixed, particularly still damp matrix layer has slightly adhesive properties.
- the capsules, which are preferably provided as a fine powder, are applied to this layer in a second step. Subsequently, the matrix layer obtained in this way is at least partially fixed.
- the matrix material at least partially comprises a dissolved adhesive which is at least partially fixed after the application by drying.
- the drying may be performed in this case with known drying technologies, e.g. hot air, infrared drying, high frequency, or microwaves.
- At least one matrix layer made of capsules at least partially enveloped by matrix material, which is subsequently at least partially fixed is applied with the aid of the application system.
- the matrix material particularly at least partially comprises a melt adhesive, which is at least partially melted after the application by heating and is subsequently fixed again by cooling.
- the application of the adhesive system may be performed, depending on the viscosity and stability of the capsules relative to the effect of external forces, with typical application systems such as spraying, painting, rolling, puttying, scattering, and the like.
- Suctioning off capsules applied in too great a quantity, which have not found sufficient anchoring in the matrix, may be advantageous.
- the capsules suctioned off may be fed back to the reservoir of capsules.
- Multiple applications of capsules which contain identical materials and/or other materials of the adhesive system is also possible.
- a further matrix layer may be performed as previously described. In this way, a better anchoring of the capsules on the surface is achieved.
- This layer may, for example, be identical with the matrix components of the first layer or may also be composed of other materials.
- a subsequent fixing, as it was previously described, may also be performed.
- a multilayer construction of matrix and capsules is also possible.
- FIG. 1 shows a first exemplary embodiment of components having joint faces for a joint according to the present invention, with the components being positioned at a distance from one another,
- FIG. 2 shows the exemplary embodiment illustrated in FIG. 1 after assembly of the components
- FIGS. 3 a–d show various details in III in FIG. 1 , which represent various embodiments of the joint matrix
- FIGS. 4 , 5 show a second exemplary embodiment of components having joint faces for a joint according to the present invention
- FIGS. 6–8 show a third exemplary embodiment of components having joint faces for a joint according to the present invention
- FIGS. 9–11 show illustrations to clarify the tests performed to determine the strength of the joint according to the present invention.
- FIGS. 1 and 2 show a joint according to the present invention between two components 2 and 4 .
- Both components 2 and 4 have joint faces 6 and 8 which correspond with one another at least in sections, which press against one another in the jointed state.
- joint face 6 is implemented with a groove 10
- joint face 8 is implemented with a tongue 12 as a tongue and groove profile, however, no restriction of the present invention is to be understood from this.
- the joint according to the present invention may also be used on joint faces of any desired shape, i.e. also flush joint faces.
- a matrix 14 or 16 respectively is located on sections of both joint faces 6 and 8 .
- a first section 14 a of matrix 14 runs in component 2 from the upper edge of joint face 6 to upper side 10 a of groove 10
- other section 14 b of matrix 14 extends from lower side 10 b of groove 10 to the lower edge of joint face 6 .
- a first section 16 a of matrix 16 runs from the upper edge of joint face 8 to upper side 12 a of tongue 12
- a second section 16 b of matrix 16 extends from lower side 12 b of tongue 12 to the upper edge of joint face 8 .
- FIGS. 3 a to 3 d The detail indicated with III in FIG. 1 is illustrated enlarged in FIGS. 3 a to 3 d for various embodiments of the matrix.
- FIGS. 3 a to 3 d show multiple capsules 18 which are positioned distributed in matrix 14 .
- a material of a reaction adhesive system is contained in capsules 18 . Since the capsules 18 in the situation shown in FIG. 1 are largely closed, the material remains isolated within matrix 14 , so that the chemical reaction with the at least one further material of the reaction adhesive system is avoided. A stable state, even over a long period of time, is thus maintained, so that the application of the matrix may also occur at the factory, with the assembly of components 2 and 4 only occurring at a later time.
- capsules 18 are opened under the effect of force by pressure and friction, in order to at least partially release the adhesive.
- capsules 18 may also at least partially release the material under the effect of external energy, particularly high frequency energy, ultrasound energy, thermal energy, light energy, or UV energy.
- capsules 18 may at least partially release the material under the effect of a liquid, particularly water.
- Matrices 14 and 16 are made of an adhesive, resin, or wax in order to ensure sufficient fixing and stabilization of capsules 18 , which are positioned distributed. In addition, matrices 14 and 16 effect a seal of joint faces 6 and 8 , particularly against the penetration of moisture before and after the joining of components 2 and 4 .
- FIGS. 3 a to 3 d Various embodiments of matrix 14 on a part of joint face 6 are illustrated in FIGS. 3 a to 3 d.
- FIG. 3 a shows a matrix in which capsules 18 are positioned distributed essentially homogenously. This structure is achieved above all during production in that before the production of matrix 14 , the capsules are already positioned distributed in the material to be applied and matrix 14 may therefore be applied in one work cycle to joint face 6 .
- FIG. 3 b shows an embodiment of matrix 14 in which capsules 18 are positioned essentially in the upper section of matrix 14 .
- This arrangement is achieved during production particularly in that first the material of matrix 14 is applied to joint face 6 and capsules 18 are subsequently applied to matrix 14 , which is not yet fixed. During the subsequent drying of matrix 14 , the capsules are fixed in their distribution in the uppermost layer of matrix 14 , so that the distribution shown in FIG. 3 b results.
- FIG. 3 c shows a structure of matrix 14 in which capsules 18 are positioned essentially centrally within the overall matrix layer.
- matrix layers 14 ′ and 14 ′′ are provided without capsules 18 contained therein.
- This structure is obtained, for example, in that capsules 18 , as described in connection with FIG. 3 b , are applied on first matrix layer 14 ′, which is subsequently also covered with further matrix layer 14 ′′.
- Two matrix layers 14 ′ and 14 ′′ may contain identical or different materials of the reacted adhesive system.
- FIG. 3 d shows a structure of matrix 14 in which a layer of capsules 18 is positioned in each of the upper and lower sections of matrix 14 . This may be produced by a combination of the previous method steps.
- the reaction adhesive comprises at least two components, with capsules 18 containing a first component of the reaction adhesive.
- the second component comprises water.
- the joint according to the present invention it is sufficient in this case for the joint according to the present invention that before the assembly of the components, one or both joint faces 6 and/or 8 is moistened or wetted with water.
- the chemical reaction necessary for hardening of the reaction adhesive occurs.
- the structure of matrix 14 illustrated in FIG. 3 b is preferably selected for this purpose, so that the adhesive components released from capsules 18 come in contact with the water as directly as possible.
- matrix 14 and/or 16 at least partially has a second component of the reaction adhesive, so that the chemical reaction may also occur directly within matrix 14 and/or 16 .
- capsules 18 and/or matrix 14 may have at least one further component or one further material of a reaction adhesive, which is necessary for the chemical reaction.
- the structure of matrix 14 illustrated in FIG. 3 a is suitable above all, since even before the occurrence of the external effect, a homogenous distribution of capsules 18 exists.
- a matrix 14 with a structure as shown in FIG. 3 c may also be used.
- capsules 18 ′, 18 ′′ having different components and/or materials of the reaction adhesive system may be provided.
- different capsules 18 ′, 18 ′′ release their respective components and/or materials under the external effect, so that the chemical reaction occurs within matrix 14 and/or 16 .
- the structure of matrix 14 shown in FIG. 3 d is particularly suitable for this type of the adhesive system.
- Capsules 18 ′ and 18 ′′ may also be positioned uniformly distributed in matrix 14 , as is shown in FIG. 3 a by way of comparison.
- both joint faces 6 and 8 are provided with matrix 14 and/or 16 containing capsules 18 .
- joint face 6 is provided with the matrix 14 .
- joint face 8 is first covered with matrix 14 during the assembly, and a solid joint is implemented by the contact with matrix 14 .
- joint face 6 is provided with a matrix 14 having first capsules 18 ′ and other joint face 8 is provided with a matrix 16 having second capsules 18 ′′, with first capsules 18 ′ containing a first component and second capsules 18 ′′ containing a second component of a reaction adhesive comprising at least two components.
- the structure illustrated in FIG. 3 b is used as a preferred structure of matrices 14 and 16 in this case, in order that the different capsules 18 ′ and 18 ′′ may come directly into contact with one another during assembly and the chemical reaction may occur as rapidly as possible.
- FIGS. 4 and 5 show still a further aspect of the present invention. Since matrix 14 is applied to the surface of joint face 6 , the surface is correspondingly bulked up by its thickness, for example in the range of a few tens of millimeters. In order to ensure a good fit between two components 2 and 4 , particularly in the region of joint edges 24 and 26 , a depression 28 is provided in the region of the upper outer vertical section of joint face 6 for application of matrix 14 . Applied matrix 14 then projects only slightly in front of joint edge 14 to the right in FIG. 4 , so that after the assembly of two components 2 and 4 , joint edges 24 and 26 fit against one another and form an essentially sealed joint. Therefore, matrix 14 is also not drawn up to the uppermost end of joint edge 24 . Simultaneously, matrix 14 is subjected to a mechanical pressure by the application to joint face 8 , which triggers the chemical reaction in the way described.
- FIGS. 6 to 8 show a known profile of a tongue and groove joint for two panels 101 and 102 of a floor covering, which may be coupled with one another by means of a mechanical lock.
- the profile may be described in more detail as follows.
- FIG. 6 shows a first panel 101 , in whose outer edge 103 a groove 134 is incorporated.
- edge 103 has multiple surfaces 111 to 119 slanted at different angles to surface 105 , whose course may be seen in FIG. 6 .
- FIG. 7 shows a second panel 2 [sic], which has a tongue 132 at an edge 104 , which is preferably implemented as integral with panel 102 .
- Edge 104 has multiple surfaces 121 to 129 at different angles to surface 109 , whose course may be seen in FIG. 7 and which are aligned essentially parallel to corresponding surfaces 111 to 119 .
- FIG. 8 shows both panels 101 and 102 in the state in which they are mechanically connected with one another.
- tongue 132 of panel 102 is engaged with upper lip 130 and lower lip 131 of groove 134 of panel 101 .
- Both panel 101 and panel 102 may be provided around their periphery either with the profile shown in FIG. 6 or with the profile shown in FIG. 7 , so that multiple panels 101 and 102 may be connected with one another into a planar arrangement.
- panels 101 and 102 each have a profile as shown in FIG. 6 on one lengthwise side and one transverse side and a profile as shown in FIG. 7 on the other sides.
- FIGS. 7 and 8 shows that joint face 8 of panel 102 is provided with a matrix 16 which covers a predetermined section of joint face 8 .
- the section of joint face 16 [sic] covered with matrix 16 is provided with a peripheral depression in the way already described above, so that after the application of matrix 16 , it projects only slightly above the actual locking profile.
- FIG. 8 shows both panels 101 and 102 in the locked state, with reacted adhesive layer 22 effecting a stability of the joint in addition to the mechanical lock.
- horizontally running surfaces 122 and 124 , and/or also 123 of the locking profile are preferably provided with matrix 16 . Since precisely these surfaces rub against the corresponding surfaces during the assembly of panels 101 and 102 , it is reliably ensured that capsules 18 burst and/or are otherwise mechanically damaged.
- the binder application was between 250 and 300 g/m 2 wet weight.
- An encapsulated adhesive system was applied at approximately 300 g/m2 wet weight onto 6 mm thick strips made of beechwood ( fagus silvatica ).
- the adhesive system corresponded to the properties of a peroxide-hardened methacrylate system.
- Encapsulated adhesive system 2.75 kN breaking load
- the breaking load of the encapsulated adhesive system is comparable with that of cold glue, although in this case no optimization for a wooden surface is present yet.
- Example 2 comprises gluing of panels of a laminate floor corresponding to FIGS. 1 , 2 , 4 , and 5 .
- Typical panels made of a carrier plate, which comprises a high density fiber plate (HDF), with a conventional tongue and groove profile were painted with an encapsulated system as in example 1.
- HDF high density fiber plate
- the panels of series 1 and 2 were pushed together approximately 15 minutes before the test and, in the pushed-together state, lightly moved back and forth a few millimeters several times in the direction of the joint.
- a tensile strength of approximately 1 kN is a standard value for the tensile strength.
- the samples of series 1 and 2 achieved this value, the control sample was well under this.
- the setting time of 5 hours is in no way sufficient—one may clearly recognize here the advantage of the encapsulated system for the installation of floor panels.
- Particle board strips and oaken strips ( quercus rubra ), each 5 cm wide and 10 cm long, were coated in the center on an area of 5 ⁇ 5 cm 2 with a binder from example 1. After drying with a hot air dryer, the samples were stored for several days.
- the test was performed perpendicular to the adhesive joint.
- the average value from 7 tests was 1.05 N/mm 2 —sometimes chips were torn off from the cover layer of the particle board.
- Example 5 describes the jointing of PVC floor plates. Two plates of a thickness of 1.8 mm were each beveled on one side at an angle of 20° diametrically opposed to the other plate, this is also referred to as scarf joining. The two beveled faces were painted with the adhesive from example 1, dried in a known way, and stored for several days.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Forests & Forestry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Joining Of Building Structures In Genera (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Floor Finish (AREA)
- Finishing Walls (AREA)
Abstract
Description
Series 1: | 1.04 kN/5 cm | ||
Series 2: | 1.24 kN/5 cm | ||
Control sample: | 0.36 kN/5 cm | ||
Iron: | 1.82 kN breaking load | ||
Aluminum: | 1.54 kN breaking load | ||
Laminate material: | 2.38 kN breaking load | ||
Claims (21)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01102155A EP1229181B1 (en) | 2001-02-02 | 2001-02-02 | Building component and method to produce such a building component |
EP01102155.7 | 2001-02-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020189747A1 US20020189747A1 (en) | 2002-12-19 |
US7037024B2 true US7037024B2 (en) | 2006-05-02 |
Family
ID=8176352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/061,963 Expired - Lifetime US7037024B2 (en) | 2001-02-02 | 2002-02-01 | Joint between joint faces of two components |
Country Status (8)
Country | Link |
---|---|
US (1) | US7037024B2 (en) |
EP (1) | EP1229181B1 (en) |
JP (1) | JP2004518044A (en) |
AT (1) | ATE307941T1 (en) |
DE (1) | DE50107823D1 (en) |
DK (1) | DK1229181T3 (en) |
ES (1) | ES2252094T3 (en) |
WO (1) | WO2002063114A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050133154A1 (en) * | 2003-12-18 | 2005-06-23 | Palo Alto Research Center Incorporated | Method of sealing an array of cell microstructures using microencapsulated adhesive |
US20060165940A1 (en) * | 2002-12-09 | 2006-07-27 | Pergo (Europe) Ab | Process for sealing of a joint |
US20060272262A1 (en) * | 2003-03-07 | 2006-12-07 | Peter Pomberger | Covering panel |
US20080168729A1 (en) * | 2006-10-18 | 2008-07-17 | Pfleiderer Schweiz Ag | Transitions having disparate surfaces |
US20100242393A1 (en) * | 2009-03-27 | 2010-09-30 | Sven Kornfalt | Joint cover assembly and kit comprising this joint cover assembly as well as installation method thereof |
US20110146177A1 (en) * | 2008-09-09 | 2011-06-23 | Akzenta Paneele + Profile Gmbh | Floor panel with a plastic backing |
US20120121322A1 (en) * | 2010-11-15 | 2012-05-17 | Minelli Fred L | Butyl-free freezer panel joints |
US20130125496A1 (en) * | 2010-01-04 | 2013-05-23 | V & M Deutschland Gmbh | Connection arrangement from hollow steel sections which are subject to axial pressure |
US8539731B2 (en) | 2005-05-23 | 2013-09-24 | Pergo (Europe) Ab | Transition molding and installation methods therefor |
US8793954B2 (en) | 2001-11-08 | 2014-08-05 | Pergo (Europe) Ab | Transition molding |
US20150145386A1 (en) * | 2013-11-22 | 2015-05-28 | Hon Hai Precision Industry Co., Ltd. | Housing for an electronic device |
US9440257B2 (en) | 2002-12-02 | 2016-09-13 | Kronotec Ag | Method of coating an element with glue |
US11739522B1 (en) * | 2017-09-20 | 2023-08-29 | Louisiana-Pacific Corp. | Integrated joint sealing system |
US12000329B2 (en) | 2018-12-17 | 2024-06-04 | Aston Martin Lagonda Limited | Assemblies for engines |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7150134B2 (en) | 1994-10-24 | 2006-12-19 | Pergo (Europe) Ab | Floor strip |
US6898911B2 (en) | 1997-04-25 | 2005-05-31 | Pergo (Europe) Ab | Floor strip |
SE9500810D0 (en) | 1995-03-07 | 1995-03-07 | Perstorp Flooring Ab | Floor tile |
US7131242B2 (en) | 1995-03-07 | 2006-11-07 | Pergo (Europe) Ab | Flooring panel or wall panel and use thereof |
US7992358B2 (en) | 1998-02-04 | 2011-08-09 | Pergo AG | Guiding means at a joint |
BE1012141A6 (en) * | 1998-07-24 | 2000-05-02 | Unilin Beheer Bv | FLOOR COVERING, FLOOR PANEL THEREFOR AND METHOD for the realization of such floor panel. |
SE514645C2 (en) | 1998-10-06 | 2001-03-26 | Perstorp Flooring Ab | Floor covering material comprising disc-shaped floor elements intended to be joined by separate joint profiles |
SE518184C2 (en) | 2000-03-31 | 2002-09-03 | Perstorp Flooring Ab | Floor covering material comprising disc-shaped floor elements which are joined together by means of interconnecting means |
AT411374B (en) * | 2000-06-06 | 2003-12-29 | Kaindl M | COATING, COVERING OR THE LIKE, PANELS FOR ITS EDUCATION AND METHOD AND DEVICE FOR PRODUCING THE PANELS |
US6823638B2 (en) | 2001-06-27 | 2004-11-30 | Pergo (Europe) Ab | High friction joint, and interlocking joints for forming a generally planar surface, and method of assembling the same |
US6936644B2 (en) | 2002-10-16 | 2005-08-30 | Cookson Electronics, Inc. | Releasable microcapsule and adhesive curing system using the same |
WO2004079129A1 (en) | 2003-03-07 | 2004-09-16 | Akzo Nobel Coatings International B.V. | Interlocking unit |
JP4506203B2 (en) * | 2004-02-27 | 2010-07-21 | 株式会社デンソー | Joint structure of resin member, laser welding method, and resin casing of electric equipment |
DE102004037802B4 (en) | 2004-08-03 | 2010-12-23 | E.F.P. Floor Products Fussböden GmbH | Panel, cover with at least two panels and manufacturing process of a panel |
ATE535660T1 (en) | 2004-10-22 | 2011-12-15 | Vaelinge Innovation Ab | METHOD FOR INSTALLING A MECHANICAL LOCKING SYSTEM ON FLOOR PANELS |
US7841144B2 (en) | 2005-03-30 | 2010-11-30 | Valinge Innovation Ab | Mechanical locking system for panels and method of installing same |
US8061104B2 (en) | 2005-05-20 | 2011-11-22 | Valinge Innovation Ab | Mechanical locking system for floor panels |
CA2556469A1 (en) * | 2005-08-18 | 2007-02-18 | Master Brand Cabinets, Inc. | Method of forming a cabinet assembly |
US20100224307A1 (en) * | 2005-10-03 | 2010-09-09 | Building Materials Investment Corporation | Fiberglass Splicing Method |
SE533410C2 (en) | 2006-07-11 | 2010-09-14 | Vaelinge Innovation Ab | Floor panels with mechanical locking systems with a flexible and slidable tongue as well as heavy therefore |
US20080092480A1 (en) * | 2006-10-24 | 2008-04-24 | Mullis Stanley | Wall-mounted ornamental architectural members and mounting method |
US11725394B2 (en) | 2006-11-15 | 2023-08-15 | Välinge Innovation AB | Mechanical locking of floor panels with vertical folding |
US8689512B2 (en) | 2006-11-15 | 2014-04-08 | Valinge Innovation Ab | Mechanical locking of floor panels with vertical folding |
SE531111C2 (en) | 2006-12-08 | 2008-12-23 | Vaelinge Innovation Ab | Mechanical locking of floor panels |
US20100236171A1 (en) * | 2009-03-18 | 2010-09-23 | Liu David C | Preinstalled glue system for floor |
BE1018728A3 (en) * | 2009-04-22 | 2011-07-05 | Flooring Ind Ltd Sarl | FLOOR PANEL. |
DE102010004717A1 (en) | 2010-01-15 | 2011-07-21 | Pergo (Europe) Ab | Set of panels comprising retaining profiles with a separate clip and method for introducing the clip |
CN104831904B (en) | 2010-05-10 | 2017-05-24 | 佩尔戈(欧洲)股份公司 | Set of panels |
US9725912B2 (en) * | 2011-07-11 | 2017-08-08 | Ceraloc Innovation Ab | Mechanical locking system for floor panels |
US20130025964A1 (en) * | 2011-07-27 | 2013-01-31 | Armstrong World Industries, Inc. | Sound reducing tongue and groove member sound reducing fabrication process and sound reducing blend |
US8857126B2 (en) | 2011-08-15 | 2014-10-14 | Valinge Flooring Technology Ab | Mechanical locking system for floor panels |
DE102012111368A1 (en) * | 2012-11-23 | 2014-05-28 | Tilo Gmbh | Method for manufacturing floor covering made from plastics material panels, involves portion-wise coating of the edge profiles with bonding agent, where edge profiles are provided with locking units |
WO2014148963A1 (en) * | 2013-03-22 | 2014-09-25 | Saab Ab | A method for joining a first composite structure to at least a second structure and a mechanical and/or electrical joint |
KR20140123735A (en) * | 2013-04-15 | 2014-10-23 | 삼성디스플레이 주식회사 | Adhesive having adhesive capsule and organic light emitting display device comprising adhesive layer formed by the adhesive |
ES2936868T3 (en) | 2013-06-27 | 2023-03-22 | Vaelinge Innovation Ab | Building panel with a mechanical locking system |
EA033977B1 (en) | 2014-11-27 | 2019-12-16 | Велинге Инновейшн Аб | Mechanical locking system for floor panels |
US9394697B2 (en) * | 2014-12-10 | 2016-07-19 | Afi Licensing Llc | Flooring system |
CN104533051A (en) * | 2014-12-30 | 2015-04-22 | 广州厚邦木业制造有限公司 | Multi-ply solid wood parquet floor with anti-cracking surface skin and production process of multi-ply solid wood parquet floor |
PT3075923T (en) | 2015-03-30 | 2017-11-15 | SWISS KRONO Tec AG | Composite wood board with tongue and groove, and use of the same |
SE1751254A1 (en) * | 2017-10-10 | 2019-04-11 | Manick Intellectual Property Ab | Method and apparatus for manufacturing wooden products |
US20190234079A1 (en) * | 2017-10-31 | 2019-08-01 | Louisiana-Pacific Corporation | Self-adhering joints for wood substrate flooring |
WO2020145862A1 (en) | 2019-01-10 | 2020-07-16 | Välinge Innovation AB | Set of panels that can be vertically unlocked, a method and a device therefore |
CN110005674B (en) * | 2019-04-24 | 2024-04-26 | 浙江三星新材股份有限公司 | Automatic lamination assembly line of refrigerator glass door |
US20210079273A1 (en) * | 2019-09-13 | 2021-03-18 | Certainteed Gypsum, Inc. | Joint support including encapsulated adhesive |
WO2021064258A1 (en) | 2019-09-30 | 2021-04-08 | Rodriguez Portillo Constancio | Modular system for building furniture using aluminium profiles |
WO2021092571A1 (en) * | 2019-11-08 | 2021-05-14 | Certainteed Gypsum, Inc. | Pressure sensitive adhesive joint support |
CN111677730B (en) * | 2020-06-17 | 2021-10-01 | 中山市中泰龙办公用品有限公司 | Gluing system for crossed half-tenon connecting structure for assembling solid wood furniture |
CN112609866B (en) * | 2020-12-19 | 2022-01-21 | 台州学院 | Assembled prefabricated building wall and installation method thereof |
DE102023106839A1 (en) | 2023-03-20 | 2024-09-26 | Schaeffler Technologies AG & Co. KG | Sealing arrangement for wheel bearing unit, wheel bearing unit, use of an activatable coating and method for sealing a seal seat in a wheel bearing unit |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3639137A (en) * | 1969-10-09 | 1972-02-01 | Ncr Co | Metal fastening coated with pressure-activatable encapsulated sealant system |
US3657379A (en) * | 1970-07-02 | 1972-04-18 | Ncr Co | Intercrossing resin/curing agent adhesive systems |
US3656270A (en) * | 1970-02-18 | 1972-04-18 | United State Steel Corp | Structural member |
US3938467A (en) * | 1974-01-17 | 1976-02-17 | Radowicz Richard D | End jointed beam and laminated beam adhesive application system and head for use therein |
US4242390A (en) * | 1977-03-03 | 1980-12-30 | Ab Wicanders Korkfabriker | Floor tile |
US4279340A (en) * | 1978-12-29 | 1981-07-21 | Hilti Aktiengesellschaft | Two-component adhesive cartridge |
GB2133374A (en) | 1983-01-14 | 1984-07-25 | Kureha Chemical Ind Co Ltd | Adhesive-containing microcapsules |
FR2675078A1 (en) | 1991-04-12 | 1992-10-16 | Gricourt Jean | Multilayer plastic or elastomeric product, method of assembling this product and plastic structure obtained |
DE4324743A1 (en) | 1993-07-23 | 1995-01-26 | Hoffmann Gmbh | Method for joining wooden components by means of dowels and dowels for this method |
US5482583A (en) * | 1991-04-13 | 1996-01-09 | Ihle; Clausdieter | Process and agent for anchoring securing elements in drill holes |
DE29703962U1 (en) | 1997-03-05 | 1997-04-24 | Witex AG, 32832 Augustdorf | Element for producing a floor or wall surface covering, in particular laminate panel |
US6004417A (en) * | 1995-12-08 | 1999-12-21 | The Lamson & Sessions Co. | Method for coupling conduits using microencapsulatable solvent adhesive composition |
-
2001
- 2001-02-02 DK DK01102155T patent/DK1229181T3/en active
- 2001-02-02 ES ES01102155T patent/ES2252094T3/en not_active Expired - Lifetime
- 2001-02-02 DE DE50107823T patent/DE50107823D1/en not_active Expired - Lifetime
- 2001-02-02 AT AT01102155T patent/ATE307941T1/en active
- 2001-02-02 EP EP01102155A patent/EP1229181B1/en not_active Expired - Lifetime
-
2002
- 2002-02-01 WO PCT/EP2002/001054 patent/WO2002063114A1/en active Application Filing
- 2002-02-01 JP JP2002562837A patent/JP2004518044A/en active Pending
- 2002-02-01 US US10/061,963 patent/US7037024B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3639137A (en) * | 1969-10-09 | 1972-02-01 | Ncr Co | Metal fastening coated with pressure-activatable encapsulated sealant system |
US3656270A (en) * | 1970-02-18 | 1972-04-18 | United State Steel Corp | Structural member |
US3657379A (en) * | 1970-07-02 | 1972-04-18 | Ncr Co | Intercrossing resin/curing agent adhesive systems |
US3938467A (en) * | 1974-01-17 | 1976-02-17 | Radowicz Richard D | End jointed beam and laminated beam adhesive application system and head for use therein |
US4242390A (en) * | 1977-03-03 | 1980-12-30 | Ab Wicanders Korkfabriker | Floor tile |
US4279340A (en) * | 1978-12-29 | 1981-07-21 | Hilti Aktiengesellschaft | Two-component adhesive cartridge |
GB2133374A (en) | 1983-01-14 | 1984-07-25 | Kureha Chemical Ind Co Ltd | Adhesive-containing microcapsules |
FR2675078A1 (en) | 1991-04-12 | 1992-10-16 | Gricourt Jean | Multilayer plastic or elastomeric product, method of assembling this product and plastic structure obtained |
US5482583A (en) * | 1991-04-13 | 1996-01-09 | Ihle; Clausdieter | Process and agent for anchoring securing elements in drill holes |
DE4324743A1 (en) | 1993-07-23 | 1995-01-26 | Hoffmann Gmbh | Method for joining wooden components by means of dowels and dowels for this method |
US6004417A (en) * | 1995-12-08 | 1999-12-21 | The Lamson & Sessions Co. | Method for coupling conduits using microencapsulatable solvent adhesive composition |
DE29703962U1 (en) | 1997-03-05 | 1997-04-24 | Witex AG, 32832 Augustdorf | Element for producing a floor or wall surface covering, in particular laminate panel |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8793954B2 (en) | 2001-11-08 | 2014-08-05 | Pergo (Europe) Ab | Transition molding |
US10661531B2 (en) | 2002-12-02 | 2020-05-26 | SWISS KRONO Tec AG | Method of coating an element with glue |
US9440257B2 (en) | 2002-12-02 | 2016-09-13 | Kronotec Ag | Method of coating an element with glue |
US7517427B2 (en) * | 2002-12-09 | 2009-04-14 | Pergo (Europe) Ab | Process for sealing of a joint |
US20060165940A1 (en) * | 2002-12-09 | 2006-07-27 | Pergo (Europe) Ab | Process for sealing of a joint |
US9103128B2 (en) * | 2003-03-07 | 2015-08-11 | M. Kaindl | Covering panel |
US20060272262A1 (en) * | 2003-03-07 | 2006-12-07 | Peter Pomberger | Covering panel |
US20070286986A1 (en) * | 2003-12-18 | 2007-12-13 | Palo Alto Research Center Incorporated | Method of sealing an array of cell microstructures using microencapsulated adhesive |
US7583430B2 (en) | 2003-12-18 | 2009-09-01 | Palo Alto Research Center Incorporated | Method of sealing an array of cell microstructures using microencapsulated adhesive |
US7279064B2 (en) * | 2003-12-18 | 2007-10-09 | Palo Alto Research Center, Incorporated | Method of sealing an array of cell microstructures using microencapsulated adhesive |
US20050133154A1 (en) * | 2003-12-18 | 2005-06-23 | Palo Alto Research Center Incorporated | Method of sealing an array of cell microstructures using microencapsulated adhesive |
US8539731B2 (en) | 2005-05-23 | 2013-09-24 | Pergo (Europe) Ab | Transition molding and installation methods therefor |
US8484919B2 (en) | 2006-10-18 | 2013-07-16 | Pergo (Europe) Ab | Transitions having disparate surfaces |
US20080168729A1 (en) * | 2006-10-18 | 2008-07-17 | Pfleiderer Schweiz Ag | Transitions having disparate surfaces |
US8726604B2 (en) * | 2008-09-09 | 2014-05-20 | Akzenta Paneele + Profile Gmbh | Floor panel with a plastic backing |
US20110146177A1 (en) * | 2008-09-09 | 2011-06-23 | Akzenta Paneele + Profile Gmbh | Floor panel with a plastic backing |
US8528285B2 (en) | 2009-03-27 | 2013-09-10 | Pergo (Europe) Ab | Joint cover assembly and kit comprising this joint cover assembly as well as installation method thereof |
US20100242393A1 (en) * | 2009-03-27 | 2010-09-30 | Sven Kornfalt | Joint cover assembly and kit comprising this joint cover assembly as well as installation method thereof |
US20130125496A1 (en) * | 2010-01-04 | 2013-05-23 | V & M Deutschland Gmbh | Connection arrangement from hollow steel sections which are subject to axial pressure |
US9187900B2 (en) * | 2010-01-04 | 2015-11-17 | V & M Deutschland Gmbh | Connection arrangement from hollow steel sections which are subject to axial pressure |
US20120121322A1 (en) * | 2010-11-15 | 2012-05-17 | Minelli Fred L | Butyl-free freezer panel joints |
US20150145386A1 (en) * | 2013-11-22 | 2015-05-28 | Hon Hai Precision Industry Co., Ltd. | Housing for an electronic device |
US11739522B1 (en) * | 2017-09-20 | 2023-08-29 | Louisiana-Pacific Corp. | Integrated joint sealing system |
US12000329B2 (en) | 2018-12-17 | 2024-06-04 | Aston Martin Lagonda Limited | Assemblies for engines |
Also Published As
Publication number | Publication date |
---|---|
DE50107823D1 (en) | 2005-12-01 |
DK1229181T3 (en) | 2006-02-20 |
WO2002063114A1 (en) | 2002-08-15 |
EP1229181A1 (en) | 2002-08-07 |
ATE307941T1 (en) | 2005-11-15 |
JP2004518044A (en) | 2004-06-17 |
ES2252094T3 (en) | 2006-05-16 |
US20020189747A1 (en) | 2002-12-19 |
EP1229181B1 (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7037024B2 (en) | Joint between joint faces of two components | |
US10661531B2 (en) | Method of coating an element with glue | |
US7897005B2 (en) | Flooring panels | |
CA2597784C (en) | Flooring sheet and modular flooring system | |
US20150314564A1 (en) | Laminated magnesium cement wood fiber construction materials | |
US20130305641A1 (en) | Composite building panel | |
MXPA04007056A (en) | Bonded interlocking flooring and a method of manufacturing same. | |
CA2941625A1 (en) | Building products with fire-resistant claddings | |
DE102005044462A1 (en) | Bonding of two components exhibiting bonding surfaces, comprises arranging adhesive matrix on one of the bonding surfaces, and capsules in the adhesive matrix comprising amorphous and unbranched polymeric material | |
EP1229182B1 (en) | Connection between the joining surfaces of two floor covering panels | |
US20040018332A1 (en) | Remoistenable pre-applied adhesive | |
US7726085B2 (en) | Systems for attaching wood products | |
CA2551475C (en) | Systems for attaching wood products | |
RU2383699C2 (en) | Method for manufacturing of panel for floor, ceiling or wall | |
KR20150020940A (en) | Method for manufacturing partion panel for building and partion panel therefrom | |
DE2318268A1 (en) | Adhesive bonding process - with hardenable glue, using resin and hardener | |
KR101663636B1 (en) | Method of manufacturing waterproof panel for building and waterproof panel therefrom | |
EP2397288A1 (en) | A method for joining at least two elements | |
CA1038148A (en) | Method of manufacturing skin stressed building elements | |
NL2021100B1 (en) | Panel suitable for constructing a waterproof floor or wall covering, method for producing a panel | |
CA2526042C (en) | A method for bonding surfaces wherein the adhesive is partially dried prior to joining | |
JP2022071268A (en) | Decorative board | |
DE3003010A1 (en) | Wood floor, wall and ceiling coating - to form joint-sealing, bonding layer, further coated with net and second film-forming layer | |
JPH0465559B2 (en) | ||
ITTO940545A1 (en) | PROCEDURE FOR THREE-DIMENSIONAL COATING OF WOOD PANELS. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FRITZ EGGER GMBY & CO., AUSTRIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEINWENDER, MARTIN;REEL/FRAME:013003/0293 Effective date: 20020418 |
|
AS | Assignment |
Owner name: ST. PAUL VENTURE CAPITAL VI, LLC, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNOR:PROQUENT SYSTEMS CORPORATION;REEL/FRAME:015357/0285 Effective date: 20041104 Owner name: ARGO II: THE WIRELESS-INTERNET FUND LIMITED PARTNE Free format text: SECURITY INTEREST;ASSIGNOR:PROQUENT SYSTEMS CORPORATION;REEL/FRAME:015357/0285 Effective date: 20041104 Owner name: NOKIA VENTURE PARTNERS II, L.P., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:PROQUENT SYSTEMS CORPORATION;REEL/FRAME:015357/0285 Effective date: 20041104 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |