US6984866B1 - Flip chip optical semiconductor on a PCB - Google Patents

Flip chip optical semiconductor on a PCB Download PDF

Info

Publication number
US6984866B1
US6984866B1 US10/391,283 US39128303A US6984866B1 US 6984866 B1 US6984866 B1 US 6984866B1 US 39128303 A US39128303 A US 39128303A US 6984866 B1 US6984866 B1 US 6984866B1
Authority
US
United States
Prior art keywords
pcb
opening
optical semiconductor
flip chip
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/391,283
Inventor
Shahram Mostafazadeh
Joseph O. Smith
Matthew D. Penry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Semiconductor Corp
Original Assignee
National Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Semiconductor Corp filed Critical National Semiconductor Corp
Priority to US10/391,283 priority Critical patent/US6984866B1/en
Assigned to NATIONAL SEMICONDUCTOR CORPORATION reassignment NATIONAL SEMICONDUCTOR CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOSTAFAZADEH, SHAHRAM, PENRY, MATTHEW D., SMITH, JOSEPH O.
Application granted granted Critical
Publication of US6984866B1 publication Critical patent/US6984866B1/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias

Definitions

  • the present invention relates generally to optical semiconductors more specifically to mounting optical semiconductors on printed circuit boards.
  • CCDs charge-coupled devices
  • CMOS imagers are specially made integrated circuits that respond to light.
  • CCDs are used to capture image data in devices such as telescopes, bar code readers, digital still and video cameras and scanners.
  • Packaging assemblies are often costly aspect of optical semiconductor chips.
  • the imagining area of an optical semiconductor chip must be generally remain unobstructed, which often requires expensive or intricate packaging designs.
  • FIG. 1 A cross-sectional view of a typical ShellOP package is shown by way of example in FIG. 1 .
  • IC package 100 is an optically active device based on the ShellOP packaging design.
  • the packaging process employs standard wafer processing techniques such as grinding, photolithography, etching, metal deposition, plating, and dicing. Unlike many packaging methods, the Shellcase process requires no lead frames, or wire bonding.
  • the optical package comprises semiconductor bulk 105 , which is held in placed in between a top glass plate 110 and a lower glass plate 115 by epoxy 120 and 125 , respectively.
  • Inverted external leads 130 are electrically connected to die terminals 135 by trace contacts 140 at junctions 145 .
  • Junction 145 is sometimes referred to as a T-junction, and contact 140 as a T-junction contact.
  • External leads 130 are coated with a protective solder-mask 150 .
  • Solder-mask 150 is a dielectric material that electrically isolates leads 130 from external contact, and protects the lead surface against corrosion.
  • Contacts 155 are attached to the bottom end of leads 130 , and are suitable for printed circuit board (PCB) mounting by known methods. Contacts 155 may be formed by known methods such as solder-balls or plating, and may be suitably shaped for PCB mounting.
  • ShellOP and other existing packaging processes have proven to be useful, they are costly to implement.
  • Other well-known packages are cheaper, but have not been used because the assemblies result in an obstructed imaging area.
  • a flip chip optical semiconductor is cheaper to make, they would typically result in the imaging area being face-down and obstructed by the PCB.
  • a semiconductor device includes a PCB, a optical semiconductor, underfill material and a barrier.
  • the PCB a substrate adapted to receive the optical semiconductor, has an opening that extends from the top of the PCB to the bottom of the PCB.
  • the optical semiconductor is attached to the PCB such that the optical semiconductor's imaging area is facing the opening and substantially unobstructed by the PCB.
  • the underfill material is dispensed in between the optical semiconductor and the PCB.
  • the barrier is located in between the optical semiconductor and the PCB, such that the barrier surrounds the opening in the top of the PCB and is adapted to prevent the underfill material from entering the opening.
  • a semiconductor device is constructed by first providing a PCB that has an opening that extends from the top of the PCB to the bottom of the PCB. Then a barrier is dispensed around the opening on the top of the PCB. Afterwards, a flip chip optical semiconductor can be coupled to the top of the PCB such that the flip chip optical semiconductor covers the opening. Then underfill material can be dispensed in between the flip chip optical semiconductor and the PCB, whereby the barrier prevents the underfill material from going into the opening. Finally, a transparent cover can be attached to the bottom of the PCB.
  • FIG. 1 is a cross sectional view of a prior art ShellOP package
  • FIG. 2A is a plan view of a PCB with two openings
  • FIG. 2B is a cross sectional view of the PCB illustrated in FIG. 2A ;
  • FIG. 3A is a plan view of the PCB of FIG. 2 with barriers surrounding the two openings;
  • FIG. 3B is a cross sectional view of the PCB illustrated in FIG. 3A ;
  • FIG. 4A is a plan view of two flip chips attached to the PCB of FIG. 3 ;
  • FIG. 4B is a cross sectional view of the assembly illustrated in FIG. 4A ;
  • FIG. 5A is a plan view of the assembly of FIG. 4 with underfill material
  • FIG. 5B is a cross sectional view of the assembly illustrated in FIG. 5A ;
  • FIG. 6A is a plan view of the assembly of FIG. 5 with opaque protective layers and transparent covers;
  • FIG. 6B is a cross sectional view of the assembly illustrated in FIG. 6A .
  • the present invention allows a flip chip assembly to be used with an optical semiconductor device.
  • the optical semiconductor flip chip is positioned over a hole in a PCB such that the imaging area of the optical semiconductor flip chip faces the hole.
  • the hole allows the imaging area to be unobstructed by the PCB. Underfill material can be prevented from going into the hole by erecting a barrier on top of the PCB that surrounds the hole.
  • FIG. 2A is a diagrammatic plan view of an exemplary printed circuit board (PCB) 205 that can be used in the present invention.
  • FIG. 2B is a diagrammatic cross sectional view of the PCB 205 .
  • a PCB is a substrate on which chips and other electronic components are placed, interacting with each other through traces.
  • the PCB 205 can be of any suitable material including fiberglass-resin laminate such as standard FR4, ceramic, or flex tape.
  • the PCB 205 has two openings 210 and 215 that will eventually be used to allow an optical semiconductor to have an unobstructed imaging area.
  • the openings 210 and 215 can be of any shape, but will typically be of the same shape as the optical semiconductors' imaging portions. It should be readily appreciated that the number of optical devices will depend upon the particular requirements of the final device. Some PCBs might only have a single optical semiconductor and other PCBs might have many more optical semiconductors.
  • the PCB 205 additionally has two rows of landing pads 220 , 225 , 230 and 235 per opening 210 and 215 .
  • Landing pads are the sites that are used to connect the optical semiconductors with the rest of the system via traces 240 . Although two rows of landing pads 220 , 225 , 230 and 235 are shown, the number and placement of landing pads will depend upon the specifications of the optical semiconductors.
  • FIG. 3A is a diagrammatic plan view and FIG. 3B is a diagrammatic cross sectional view of the PCB 205 after barriers 305 and 310 have been deposited around the openings 210 and 215 .
  • the barriers 305 and 310 are preferably a B-stageable thermosetting resin.
  • B-stageable thermosetting resins have three stages: A-stage, B-stage and C-stage.
  • the A-stage is the condition of low molecular weight of a condensation resin polymer during which the resin is readily soluble and fusible.
  • the B-stage is the condition of a partially cured resin polymer when it is more viscous, with higher molecular weight than in the A-stage, being incompletely soluble but plastic and heat fusible.
  • the C-stage is the condition of a resin polymer when it is completely polymerized (in the solid state), with maximum molecular weight, being insoluble and infusible.
  • barriers 305 and 310 Working with the barriers 305 and 310 while they are still somewhat pliable are preferred because they allow a larger tolerance in the heights of the barriers 305 and 310 than would be necessary if the barriers 305 and 310 were rigid. A large tolerance is desirable to compensate for settling that may occur after optical semiconductors are electrically coupled to their respective landing pads 220 , 225 , 230 and 235 .
  • the barriers can be made of rigid material, or even formed as part of the PCB 205 .
  • FIG. 4A is a diagrammatic plan view and FIG. 4B is a diagrammatic cross sectional view of two flip chip imaging dice 405 and 410 that are electrically coupled to the PCB 205 via conductive bumps 415 and 420 .
  • a flip chip assembly is generally defined as the direct electrical connection of face-down (“flipped”) electronic components onto substrates, such as PCBs, by means of conductive bumps on bond pads.
  • Common conductive bumps include solder bumps, plated bumps, stud bumps and adhesive bumps.
  • the conductive bumps 415 and 420 can serve several functions in the flip chip assembly.
  • the conductive bumps 415 and 420 provide the electrically conductive path from the flip chip imaging dice 405 and 410 to the PCB 205 .
  • the conductive bumps 415 and 420 can also provide thermally conductive paths to carry heat from the dice 405 and 410 to the PCB 205 .
  • the conductive bumps 415 and 420 also provide part of the mechanical mounting of the dice 415 and 420 to the PCB 205 .
  • FIG. 5A is a diagrammatic plan view and FIG. 5B is a diagrammatic cross sectional view of the PCB 205 after underfill material 505 and 510 has been applied.
  • the underfill material 505 and 510 is typically a non-conductive adhesive joining the entire surface of the flip chip imaging dice 405 and 410 to the PCB 205 .
  • the underfill 505 and 510 protects the conductive bumps 415 and 420 from moisture or other environmental hazards, and provides additional mechanical strength to the assembly. Additionally, the underfill material 505 and 510 helps compensates for any thermal expansion differences between the flip chip imaging dice 405 and 410 and the PCB 205 .
  • the underfill material 505 and 510 mechanically “locks together” the flip chip imaging dice 405 and 410 and the PCB 205 , attempting to prevent the differences in thermal expansion from breaking or damaging the electrical connection of the conductive bumps 415 and 420 .
  • the underfill material 505 and 510 may be dispensed in any suitable manner.
  • the underfill material 505 and 510 may be needle-dispensed along the edges of each of the flip chip imaging dice 405 and 410 .
  • the underfill material 505 and 510 is drawn into the under-chip space by capillary action. However, because of the barriers 305 and 310 , the underfill material 505 and 510 does not flow into the openings 210 and 215 .
  • the barriers 305 and 310 are capable of preventing the underfill material 505 and 510 from passing into the openings 210 and 215 even if the barriers 305 and 310 do not extend all the way from the top of the PCB 205 to the bottom of the flip chip imaging dice 405 and 410 . This is because the viscosity of the underfill material 505 and 510 , is too high to flow into small spaces via capillary action, which is typically the only mechanism that causes the underfill 505 and 510 material to flow. Therefore, the heights of the barriers 305 and 310 do not need to be equal to the spacing between the flip chip imaging dice 405 and 410 and the PCB 205 .
  • the entire assembly is cured to form a permanent bond. If a B-stageable thermosetting resin were used to form the barriers 305 and 310 , the curing process could additionally cure the barriers 305 and 310 at the same time the underfill material 505 and 510 was cured.
  • FIG. 6A is a diagrammatic plan view and FIG. 6B is a diagrammatic cross sectional view of the PCB 205 after opaque protective layers 605 and 610 have been applied to the back surfaces of the flip chip imaging dice 405 and 410 and transparent covers 615 and 620 have been attached to the PCB 205 .
  • Imaging chips are typically very susceptible to photo-generated carriers when the surfaces of the imaging chips are exposed to light. In order to prevent photo-generated carriers from interfering with the normal operation of the chips, an opaque cover can be placed on the exposed surfaces of the chips.
  • the opaque protective layers 605 and 610 can be placed on the flip chip imaging dice 405 and 410 at any point in the fabrication process, even during wafer processing.
  • U.S. Pat. Nos. 6,352,881 and 6,023,094 both of which are incorporated by reference in their entireties for all purposes, disclose methods of applying an opaque protective layer to the top surface and/or bottom surface of the flip chip die during wafer processing.
  • the transparent covers 615 and 620 will typically be applied after the underfill material 505 and 510 has been cured, unless a system is in place to prevent condensation on the transparent covers 615 and 620 during heating.
  • the transparent covers 615 and 620 can be glass or transparent plastic, and can be attached to the PCB 205 via a standard epoxy. Once attached, they protect the imaging portion of the flip chip imaging dice 405 and 410 .
  • the barriers might be constructed on the chips and not the PCB.
  • the opening might be filled with a transparent material. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Semiconductor devices and methods for making semiconductor devices. The present invention allows a flip chip assembly to be used with an optical semiconductor device. The optical semiconductor flip chip is positioned over a hole in a PCB such that the imaging area of the optical semiconductor flip chip faces the hole. The hole allows the imaging area to be unobstructed by the PCB. Underfill material can be prevented from going into the hole by erecting a barrier on top of the PCB that surrounds the hole.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to optical semiconductors more specifically to mounting optical semiconductors on printed circuit boards.
2. Description of the Related Art
There are a wide variety of digital imaging devices that are currently commercially available. The imagers used in these devices typically take the form of an integrated circuit having a charge-coupled devices (CCD) and/or CMOS imagers. CCDs and CMOS imagers are specially made integrated circuits that respond to light. CCDs are used to capture image data in devices such as telescopes, bar code readers, digital still and video cameras and scanners.
Packaging assemblies are often costly aspect of optical semiconductor chips. The imagining area of an optical semiconductor chip must be generally remain unobstructed, which often requires expensive or intricate packaging designs.
One wafer level packaging approach that has been used in packaging integrated circuits having optical components is the chip-scale “ShellOP” type packaging technology developed by Shellcase Ltd. of Israel. A cross-sectional view of a typical ShellOP package is shown by way of example in FIG. 1. As seen therein, IC package 100 is an optically active device based on the ShellOP packaging design. The packaging process employs standard wafer processing techniques such as grinding, photolithography, etching, metal deposition, plating, and dicing. Unlike many packaging methods, the Shellcase process requires no lead frames, or wire bonding. The optical package comprises semiconductor bulk 105, which is held in placed in between a top glass plate 110 and a lower glass plate 115 by epoxy 120 and 125, respectively. Inverted external leads 130 are electrically connected to die terminals 135 by trace contacts 140 at junctions 145. Junction 145 is sometimes referred to as a T-junction, and contact 140 as a T-junction contact. External leads 130 are coated with a protective solder-mask 150. Solder-mask 150 is a dielectric material that electrically isolates leads 130 from external contact, and protects the lead surface against corrosion. Contacts 155 are attached to the bottom end of leads 130, and are suitable for printed circuit board (PCB) mounting by known methods. Contacts 155 may be formed by known methods such as solder-balls or plating, and may be suitably shaped for PCB mounting.
Although the ShellOP and other existing packaging processes have proven to be useful, they are costly to implement. Other well-known packages are cheaper, but have not been used because the assemblies result in an obstructed imaging area. For example, although a flip chip optical semiconductor is cheaper to make, they would typically result in the imaging area being face-down and obstructed by the PCB.
SUMMARY OF THE INVENTION
The present invention provides semiconductor devices and methods for making semiconductor devices. In one embodiment, a semiconductor device includes a PCB, a optical semiconductor, underfill material and a barrier. The PCB, a substrate adapted to receive the optical semiconductor, has an opening that extends from the top of the PCB to the bottom of the PCB. The optical semiconductor is attached to the PCB such that the optical semiconductor's imaging area is facing the opening and substantially unobstructed by the PCB. The underfill material is dispensed in between the optical semiconductor and the PCB. The barrier is located in between the optical semiconductor and the PCB, such that the barrier surrounds the opening in the top of the PCB and is adapted to prevent the underfill material from entering the opening.
In another embodiment, a semiconductor device is constructed by first providing a PCB that has an opening that extends from the top of the PCB to the bottom of the PCB. Then a barrier is dispensed around the opening on the top of the PCB. Afterwards, a flip chip optical semiconductor can be coupled to the top of the PCB such that the flip chip optical semiconductor covers the opening. Then underfill material can be dispensed in between the flip chip optical semiconductor and the PCB, whereby the barrier prevents the underfill material from going into the opening. Finally, a transparent cover can be attached to the bottom of the PCB.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a cross sectional view of a prior art ShellOP package;
FIG. 2A is a plan view of a PCB with two openings;
FIG. 2B is a cross sectional view of the PCB illustrated in FIG. 2A;
FIG. 3A is a plan view of the PCB of FIG. 2 with barriers surrounding the two openings;
FIG. 3B is a cross sectional view of the PCB illustrated in FIG. 3A;
FIG. 4A is a plan view of two flip chips attached to the PCB of FIG. 3;
FIG. 4B is a cross sectional view of the assembly illustrated in FIG. 4A;
FIG. 5A is a plan view of the assembly of FIG. 4 with underfill material;
FIG. 5B is a cross sectional view of the assembly illustrated in FIG. 5A;
FIG. 6A is a plan view of the assembly of FIG. 5 with opaque protective layers and transparent covers; and
FIG. 6B is a cross sectional view of the assembly illustrated in FIG. 6A.
It is to be understood that, in the drawings, like reference numerals designate like structural elements. Also, it is understood that the depictions in the figures are not necessarily to scale.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the present invention.
The present invention allows a flip chip assembly to be used with an optical semiconductor device. The optical semiconductor flip chip is positioned over a hole in a PCB such that the imaging area of the optical semiconductor flip chip faces the hole. The hole allows the imaging area to be unobstructed by the PCB. Underfill material can be prevented from going into the hole by erecting a barrier on top of the PCB that surrounds the hole.
FIG. 2A is a diagrammatic plan view of an exemplary printed circuit board (PCB) 205 that can be used in the present invention. FIG. 2B is a diagrammatic cross sectional view of the PCB 205. A PCB is a substrate on which chips and other electronic components are placed, interacting with each other through traces. The PCB 205 can be of any suitable material including fiberglass-resin laminate such as standard FR4, ceramic, or flex tape. The PCB 205 has two openings 210 and 215 that will eventually be used to allow an optical semiconductor to have an unobstructed imaging area. The openings 210 and 215 can be of any shape, but will typically be of the same shape as the optical semiconductors' imaging portions. It should be readily appreciated that the number of optical devices will depend upon the particular requirements of the final device. Some PCBs might only have a single optical semiconductor and other PCBs might have many more optical semiconductors.
The PCB 205 additionally has two rows of landing pads 220, 225, 230 and 235 per opening 210 and 215. Landing pads are the sites that are used to connect the optical semiconductors with the rest of the system via traces 240. Although two rows of landing pads 220, 225, 230 and 235 are shown, the number and placement of landing pads will depend upon the specifications of the optical semiconductors.
FIG. 3A is a diagrammatic plan view and FIG. 3B is a diagrammatic cross sectional view of the PCB 205 after barriers 305 and 310 have been deposited around the openings 210 and 215. The barriers 305 and 310 are preferably a B-stageable thermosetting resin.
B-stageable thermosetting resins have three stages: A-stage, B-stage and C-stage. The A-stage is the condition of low molecular weight of a condensation resin polymer during which the resin is readily soluble and fusible. The B-stage is the condition of a partially cured resin polymer when it is more viscous, with higher molecular weight than in the A-stage, being incompletely soluble but plastic and heat fusible. The C-stage is the condition of a resin polymer when it is completely polymerized (in the solid state), with maximum molecular weight, being insoluble and infusible.
Working with the barriers 305 and 310 while they are still somewhat pliable are preferred because they allow a larger tolerance in the heights of the barriers 305 and 310 than would be necessary if the barriers 305 and 310 were rigid. A large tolerance is desirable to compensate for settling that may occur after optical semiconductors are electrically coupled to their respective landing pads 220, 225, 230 and 235.
It should, however, be appreciated that precise controls of certain parameters will permit accurate prediction of settling and allow the final height requirement of the barriers 305 and 310 to be accurately known. In processes where the final height requirements of the barriers 305 and 310 are known, the barriers can be made of rigid material, or even formed as part of the PCB 205.
FIG. 4A is a diagrammatic plan view and FIG. 4B is a diagrammatic cross sectional view of two flip chip imaging dice 405 and 410 that are electrically coupled to the PCB 205 via conductive bumps 415 and 420. A flip chip assembly is generally defined as the direct electrical connection of face-down (“flipped”) electronic components onto substrates, such as PCBs, by means of conductive bumps on bond pads.
Common conductive bumps include solder bumps, plated bumps, stud bumps and adhesive bumps. The conductive bumps 415 and 420 can serve several functions in the flip chip assembly. The conductive bumps 415 and 420 provide the electrically conductive path from the flip chip imaging dice 405 and 410 to the PCB 205. The conductive bumps 415 and 420 can also provide thermally conductive paths to carry heat from the dice 405 and 410 to the PCB 205. In addition, the conductive bumps 415 and 420 also provide part of the mechanical mounting of the dice 415 and 420 to the PCB 205.
FIG. 5A is a diagrammatic plan view and FIG. 5B is a diagrammatic cross sectional view of the PCB 205 after underfill material 505 and 510 has been applied. The underfill material 505 and 510 is typically a non-conductive adhesive joining the entire surface of the flip chip imaging dice 405 and 410 to the PCB 205. The underfill 505 and 510 protects the conductive bumps 415 and 420 from moisture or other environmental hazards, and provides additional mechanical strength to the assembly. Additionally, the underfill material 505 and 510 helps compensates for any thermal expansion differences between the flip chip imaging dice 405 and 410 and the PCB 205. The underfill material 505 and 510 mechanically “locks together” the flip chip imaging dice 405 and 410 and the PCB 205, attempting to prevent the differences in thermal expansion from breaking or damaging the electrical connection of the conductive bumps 415 and 420.
The underfill material 505 and 510 may be dispensed in any suitable manner. By way of example, the underfill material 505 and 510 may be needle-dispensed along the edges of each of the flip chip imaging dice 405 and 410. The underfill material 505 and 510 is drawn into the under-chip space by capillary action. However, because of the barriers 305 and 310, the underfill material 505 and 510 does not flow into the openings 210 and 215. It should be appreciated that the barriers 305 and 310 are capable of preventing the underfill material 505 and 510 from passing into the openings 210 and 215 even if the barriers 305 and 310 do not extend all the way from the top of the PCB 205 to the bottom of the flip chip imaging dice 405 and 410. This is because the viscosity of the underfill material 505 and 510, is too high to flow into small spaces via capillary action, which is typically the only mechanism that causes the underfill 505 and 510 material to flow. Therefore, the heights of the barriers 305 and 310 do not need to be equal to the spacing between the flip chip imaging dice 405 and 410 and the PCB 205.
Once the underfill material 505 and 510 is in place, the entire assembly is cured to form a permanent bond. If a B-stageable thermosetting resin were used to form the barriers 305 and 310, the curing process could additionally cure the barriers 305 and 310 at the same time the underfill material 505 and 510 was cured.
FIG. 6A is a diagrammatic plan view and FIG. 6B is a diagrammatic cross sectional view of the PCB 205 after opaque protective layers 605 and 610 have been applied to the back surfaces of the flip chip imaging dice 405 and 410 and transparent covers 615 and 620 have been attached to the PCB 205. Imaging chips are typically very susceptible to photo-generated carriers when the surfaces of the imaging chips are exposed to light. In order to prevent photo-generated carriers from interfering with the normal operation of the chips, an opaque cover can be placed on the exposed surfaces of the chips. It will be appreciated by those skilled in the art that the opaque protective layers 605 and 610 can be placed on the flip chip imaging dice 405 and 410 at any point in the fabrication process, even during wafer processing. For example, U.S. Pat. Nos. 6,352,881 and 6,023,094, both of which are incorporated by reference in their entireties for all purposes, disclose methods of applying an opaque protective layer to the top surface and/or bottom surface of the flip chip die during wafer processing.
However, the transparent covers 615 and 620 will typically be applied after the underfill material 505 and 510 has been cured, unless a system is in place to prevent condensation on the transparent covers 615 and 620 during heating. The transparent covers 615 and 620 can be glass or transparent plastic, and can be attached to the PCB 205 via a standard epoxy. Once attached, they protect the imaging portion of the flip chip imaging dice 405 and 410.
Although illustrative embodiments and applications of this invention are shown and described herein, many variations and modifications are possible which remain within the concept, scope, and spirit of the invention, and these variations would become clear to those of ordinary skill in the art. For example, the barriers might be constructed on the chips and not the PCB. Additionally, instead of using a transparent cover, the opening might be filled with a transparent material. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (14)

1. A semiconductor device comprising:
an optical semiconductor leaving an imaging area;
a PCB having a top, a bottom, and an opening that extends from the top of the PCB to the bottom of the PCB, the optical semiconductor being mounted directly on the top surface of the PCB using one or more electrical contacts formed between the optical semiconductor and the top surface of the PCB, the optical semiconductor being mounted such that the imaging area is facing the opening and substantially unobstructed by the PCB;
an underfill material that is dispensed in between the optical semiconductor and the PCB; and
a B-stageable thermosetting resin barrier in between the optical semiconductor and the PCB, such that the barrier surrounds the opening in the top of the PCB and is adapted to prevent the underfill material from entering the opening.
2. The semiconductor device of claim 1, further comprising a transparent cover that is attached to the bottom of the PCB such that the transparent cover entirely covers the bottom of the opening.
3. The semiconductor device of claim 1, wherein the thermosetting resin is an epoxy.
4. The semiconductor device of claim 3 wherein the epoxy is deposited on the PCB in its B-stage.
5. The semiconductor device of claim 1 wherein the barrier is a rigid material.
6. The semiconductor device of claim 5 wherein the barrier is formed as part of the PCB.
7. The semiconductor device of 1 wherein the optical semiconductor is a flip chip.
8. The semiconductor device of claim 1 wherein the PCB is a flex tape substrate.
9. The semiconductor device of claim 1 wherein there is a gap between the barrier and the optical semiconductor.
10. A method for constructing semiconductor devices comprising:
providing a PCB having a top, a bottom, and an opening that extends from the top of the PCB to the bottom of the PCB;
mounting a flip chip optical semiconductor directly onto the top surface of the PCB using one or more contacts formed between the top surface of the PCB and the flip chip optical semiconductor; and
forming a barrier around the opening on the top of the PCB, the barrier comprising a B-stageable thermosetting resin.
11. The method of claim 10, further comprising:
positioning the flip chip optical semiconductor on the top of the PCB such that optical circuitry on the flip chip optical semiconductor is exposed through the opening of the PCB.
12. The method of claim 11, further comprising,
dispensing underfill material in between the flip chip optical semiconductor and the PCB, whereby the barrier prevents the underfill material from going into the opening.
13. The method of claim 12, further comprising:
attaching a transparent cover over the opening on the bottom of the PCB.
14. A semiconductor device comprising:
a PCB having, a top, a bottom, and an opening that extends from the top of the PCB to the bottom of the PCB;
a flip chip having optical circuitry mounted directly on the top surface of the PCB such that the optical circuitry on the flip chip is exposed through the opening in the PCB; and
a barrier adapted to prevent underfill material from entering the opening when the chip is coupled the PCB, the barrier comprising a B-stageable thermosetting resin.
US10/391,283 2003-03-17 2003-03-17 Flip chip optical semiconductor on a PCB Expired - Lifetime US6984866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/391,283 US6984866B1 (en) 2003-03-17 2003-03-17 Flip chip optical semiconductor on a PCB

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/391,283 US6984866B1 (en) 2003-03-17 2003-03-17 Flip chip optical semiconductor on a PCB

Publications (1)

Publication Number Publication Date
US6984866B1 true US6984866B1 (en) 2006-01-10

Family

ID=35517804

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/391,283 Expired - Lifetime US6984866B1 (en) 2003-03-17 2003-03-17 Flip chip optical semiconductor on a PCB

Country Status (1)

Country Link
US (1) US6984866B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050236708A1 (en) * 2004-04-27 2005-10-27 Farnworth Warren M Microelectronic imaging devices and methods of packaging microelectronic imaging devices
US20070018324A1 (en) * 2005-07-22 2007-01-25 Kwon Yong-Hwan Wafer-level-chip-scale package and method of fabrication
US20070090504A1 (en) * 2005-09-14 2007-04-26 Po-Hung Chen Optical sensor chip package
GB2444294A (en) * 2006-08-25 2008-06-04 Primax Electronics Ltd Method for assembling a camera module
US20090279275A1 (en) * 2008-05-09 2009-11-12 Stephen Peter Ayotte Method of attaching an integrated circuit chip to a module
US7883937B1 (en) * 2007-04-30 2011-02-08 Altera Corporation Electronic package and method of forming the same
CN102074534B (en) * 2009-11-24 2013-05-29 上海长丰智能卡有限公司 Micro PCB radio frequency module and packaging method thereof
US20130279136A1 (en) * 2012-04-20 2013-10-24 Seiko Epson Corporation Electronic device and electronic apparatus
US20140011315A1 (en) * 2008-03-07 2014-01-09 Stats Chippac, Ltd. Optical Semiconductor Device Having Pre-Molded Leadframe with Window and Method Therefor
CN103715109A (en) * 2012-10-04 2014-04-09 德州仪器公司 Packaged IC having printed dielectric adhesive on die pad
US20150001729A1 (en) * 2013-06-27 2015-01-01 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Trench and Disposing Semiconductor Die Over Substrate to Control Outward Flow of Underfill Material
CN110462443A (en) * 2017-01-10 2019-11-15 牛津仪器技术公司 Semiconductor radiation detector
US20230005829A1 (en) * 2021-06-30 2023-01-05 SK Hynix Inc. Semiconductor package and package substrate including vent hole

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760440A (en) * 1983-10-31 1988-07-26 General Electric Company Package for solid state image sensors
JPH0884278A (en) * 1994-09-12 1996-03-26 Olympus Optical Co Ltd Solid-state image pickup device
US5867368A (en) * 1997-09-09 1999-02-02 Amkor Technology, Inc. Mounting for a semiconductor integrated circuit device
US6040612A (en) * 1997-02-07 2000-03-21 Fuji Photo Optical Co., Ltd. Image pickup apparatus for endoscope having reduced diameter
US6396116B1 (en) * 2000-02-25 2002-05-28 Agilent Technologies, Inc. Integrated circuit packaging for optical sensor devices
US6413474B1 (en) * 1998-11-17 2002-07-02 Micronas Gmbh Measuring device
US6518656B1 (en) * 1999-10-19 2003-02-11 Sony Corporation Reduced thickness optical image pickup device with improved sealing and method of making same
US6566745B1 (en) * 1999-03-29 2003-05-20 Imec Vzw Image sensor ball grid array package and the fabrication thereof
US6765236B2 (en) * 2000-12-26 2004-07-20 Seiko Epson Corporation Optical device and method for manufacturing the same, and electronic apparatus
US6787869B1 (en) * 1999-11-04 2004-09-07 Stmicroelectronics S.A. Optical semiconductor housing and method for making same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760440A (en) * 1983-10-31 1988-07-26 General Electric Company Package for solid state image sensors
JPH0884278A (en) * 1994-09-12 1996-03-26 Olympus Optical Co Ltd Solid-state image pickup device
US6040612A (en) * 1997-02-07 2000-03-21 Fuji Photo Optical Co., Ltd. Image pickup apparatus for endoscope having reduced diameter
US5867368A (en) * 1997-09-09 1999-02-02 Amkor Technology, Inc. Mounting for a semiconductor integrated circuit device
US6413474B1 (en) * 1998-11-17 2002-07-02 Micronas Gmbh Measuring device
US6566745B1 (en) * 1999-03-29 2003-05-20 Imec Vzw Image sensor ball grid array package and the fabrication thereof
US6518656B1 (en) * 1999-10-19 2003-02-11 Sony Corporation Reduced thickness optical image pickup device with improved sealing and method of making same
US6787869B1 (en) * 1999-11-04 2004-09-07 Stmicroelectronics S.A. Optical semiconductor housing and method for making same
US6396116B1 (en) * 2000-02-25 2002-05-28 Agilent Technologies, Inc. Integrated circuit packaging for optical sensor devices
US6765236B2 (en) * 2000-12-26 2004-07-20 Seiko Epson Corporation Optical device and method for manufacturing the same, and electronic apparatus

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"An Innovative Approach to Wafer-Level MEMS packaging," downloaded from: http://solidstate.articles.printthis.clickability.com on Nov. 19, 2002, 4 pages.
"Dual Inline Package," downloaded from http://www.tpub.com/neets/book14/57g.htm, on Nov. 15, 2002, 5 pages.
"Packaging Techniques," downloaded from: http://www.tpub.com/neets/book14/57f.htm on Nov. 15, 2002.
"ShellBGA Process Flow," Shellcase Wafer Level Packaging, Nov. 2001, 12 pages.
"ShellOP Process Flow," Shellcase Wafer Level Packaging, Oct. 2001, 9 pages.
"ShellOP," downloaded from http://www.shellcase.com/pages/products.asp on Nov. 19, 2002, 3 pages.
Definitions of "charge coupled device" (CCD) found on the Internet through GOOGLE (four sheets). *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050236708A1 (en) * 2004-04-27 2005-10-27 Farnworth Warren M Microelectronic imaging devices and methods of packaging microelectronic imaging devices
US7632713B2 (en) * 2004-04-27 2009-12-15 Aptina Imaging Corporation Methods of packaging microelectronic imaging devices
US7569423B2 (en) 2005-07-22 2009-08-04 Samsung Electronics Co., Ltd. Wafer-level-chip-scale package and method of fabrication
US20070018324A1 (en) * 2005-07-22 2007-01-25 Kwon Yong-Hwan Wafer-level-chip-scale package and method of fabrication
US20080242000A1 (en) * 2005-07-22 2008-10-02 Samsung Electronics Co., Ltd. Wafer-level-chip-scale package and method of fabrication
US20070090504A1 (en) * 2005-09-14 2007-04-26 Po-Hung Chen Optical sensor chip package
US7405456B2 (en) * 2005-09-14 2008-07-29 Sigurd Microelectronics Corp. Optical sensor chip package
GB2444294A (en) * 2006-08-25 2008-06-04 Primax Electronics Ltd Method for assembling a camera module
GB2444294B (en) * 2006-08-25 2008-11-05 Primax Electronics Ltd Camera module and assembling process thereof
US7883937B1 (en) * 2007-04-30 2011-02-08 Altera Corporation Electronic package and method of forming the same
US20140011315A1 (en) * 2008-03-07 2014-01-09 Stats Chippac, Ltd. Optical Semiconductor Device Having Pre-Molded Leadframe with Window and Method Therefor
US9397236B2 (en) * 2008-03-07 2016-07-19 STATS ChipPAC Pte. Ltd. Optical semiconductor device having pre-molded leadframe with window and method therefor
US20090279275A1 (en) * 2008-05-09 2009-11-12 Stephen Peter Ayotte Method of attaching an integrated circuit chip to a module
CN102074534B (en) * 2009-11-24 2013-05-29 上海长丰智能卡有限公司 Micro PCB radio frequency module and packaging method thereof
US20130279136A1 (en) * 2012-04-20 2013-10-24 Seiko Epson Corporation Electronic device and electronic apparatus
JP2013225591A (en) * 2012-04-20 2013-10-31 Seiko Epson Corp Electronic device and electronic apparatus
US9123881B2 (en) * 2012-04-20 2015-09-01 Seiko Epson Corporation Electronic device and electronic apparatus
CN103378285A (en) * 2012-04-20 2013-10-30 精工爱普生株式会社 Electronic device and electronic apparatus
CN103715109A (en) * 2012-10-04 2014-04-09 德州仪器公司 Packaged IC having printed dielectric adhesive on die pad
US20140327123A1 (en) * 2012-10-04 2014-11-06 Texas Instruments Incorporated Packaged ic having printed dielectric adhesive on die pad
CN103715109B (en) * 2012-10-04 2018-11-09 德州仪器公司 There is the encapsulation IC of printing dielectric adhesive in die pad
US20150001729A1 (en) * 2013-06-27 2015-01-01 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Trench and Disposing Semiconductor Die Over Substrate to Control Outward Flow of Underfill Material
US9627229B2 (en) * 2013-06-27 2017-04-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming trench and disposing semiconductor die over substrate to control outward flow of underfill material
CN110462443A (en) * 2017-01-10 2019-11-15 牛津仪器技术公司 Semiconductor radiation detector
CN110462443B (en) * 2017-01-10 2023-05-16 牛津仪器技术公司 Semiconductor radiation detector
US20230005829A1 (en) * 2021-06-30 2023-01-05 SK Hynix Inc. Semiconductor package and package substrate including vent hole
US11682614B2 (en) * 2021-06-30 2023-06-20 SK Hynix Inc. Semiconductor package and package substrate including vent hole

Similar Documents

Publication Publication Date Title
CN109196646B (en) Image sensor semiconductor package and related methods
US6084308A (en) Chip-on-chip integrated circuit package and method for making the same
KR0182073B1 (en) Method of manufacturing semiconductor chip scale semiconductor package
US8232633B2 (en) Image sensor package with dual substrates and the method of the same
KR100839976B1 (en) Method of making camera module in wafer level
US6734557B2 (en) Semiconductor device
US8704350B2 (en) Stacked wafer level package and method of manufacturing the same
US8883563B1 (en) Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US20050258502A1 (en) Chip package, image sensor module including chip package, and manufacturing method thereof
US20020011668A1 (en) Electronic package with bonded structure and method of making
US20090008729A1 (en) Image sensor package utilizing a removable protection film and method of making the same
US20080191333A1 (en) Image sensor package with die receiving opening and method of the same
US20080191335A1 (en) Cmos image sensor chip scale package with die receiving opening and method of the same
US20080083980A1 (en) Cmos image sensor chip scale package with die receiving through-hole and method of the same
US20060016973A1 (en) Multi-chip image sensor package module
US6984866B1 (en) Flip chip optical semiconductor on a PCB
WO2015153295A1 (en) Batch process fabrication of package-on-package microelectronic assemblies
US8138027B2 (en) Optical semiconductor device having pre-molded leadframe with window and method therefor
US20050051859A1 (en) Look down image sensor package
US9034696B2 (en) Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
EP0623242A4 (en) Backplane grounding for flip-chip integrated circuit.
US11996424B2 (en) Controllable gap height for an image sensor package
US9023691B2 (en) Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
KR100838352B1 (en) Carrying structure of electronic components
JP3291289B2 (en) Electronic component manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOSTAFAZADEH, SHAHRAM;SMITH, JOSEPH O.;PENRY, MATTHEW D.;REEL/FRAME:013890/0684

Effective date: 20030313

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12