US6900685B2 - Tunable delay circuit - Google Patents

Tunable delay circuit Download PDF

Info

Publication number
US6900685B2
US6900685B2 US10/147,645 US14764502A US6900685B2 US 6900685 B2 US6900685 B2 US 6900685B2 US 14764502 A US14764502 A US 14764502A US 6900685 B2 US6900685 B2 US 6900685B2
Authority
US
United States
Prior art keywords
signal
transistors
node
pair
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/147,645
Other versions
US20030214338A1 (en
Inventor
Paul A. Silvestri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Round Rock Research LLC
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US10/147,645 priority Critical patent/US6900685B2/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILVESTRI, PAUL A.
Publication of US20030214338A1 publication Critical patent/US20030214338A1/en
Priority to US11/003,098 priority patent/US7142032B2/en
Application granted granted Critical
Publication of US6900685B2 publication Critical patent/US6900685B2/en
Assigned to ROUND ROCK RESEARCH, LLC reassignment ROUND ROCK RESEARCH, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICRON TECHNOLOGY, INC.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/26Time-delay networks
    • H03H11/265Time-delay networks with adjustable delay
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0816Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the controlled phase shifter and the frequency- or phase-detection arrangement being connected to a common input
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00078Fixed delay
    • H03K2005/0013Avoiding variations of delay due to power supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00078Fixed delay
    • H03K2005/00136Avoiding asymmetry of delay for leading or trailing edge; Avoiding variations of delay due to threshold
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00078Fixed delay
    • H03K2005/00143Avoiding variations of delay due to temperature

Definitions

  • the present invention relates generally to signal processing, and in particular, to delay circuits.
  • Delay circuits delay an input signal to generate an output signal which is a delayed version of the input signal. Most delay circuits have a specified delay between the input and output signals. In some applications, some delay circuits cause the actual delay between the input and output signals to be different from the specified delay because of changes in operating conditions such as operating voltage and temperature. Therefore, some of these delay circuits are unsuitable for some applications when the operating condition changes.
  • Embodiments of the invention provide a delay circuit that can be configured to adjust a delay between an input signal and an output signal.
  • the delay circuit has a comparator connected to a reference generator.
  • the comparator includes a first stage for receiving an input signal, and a second stage connected to the first stage for receiving a reference signal to output an output signal.
  • the input and output signals have a delay which is based on a signal relationship between the input and reference signals.
  • the reference generator includes a plurality of configurable devices configured to vary the reference signal to adjust the delay between the input and output signals.
  • a method in another aspect, includes receiving an input signal and a reference signal. The method also includes producing an output signal. The input and output signals have a delay. Further, the method includes varying the reference signal to adjust the delay.
  • FIG. 1 shows a delay circuit according to an embodiment of the invention.
  • FIG. 2 shows an example of a signal relationship between input and output signals of the delay circuit of FIG. 1 .
  • FIG. 3 shows a delay circuit according to another embodiment of the invention.
  • FIGS. 4-6 show examples of signal relationships of signals of the delay circuit of FIG. 3 .
  • FIG. 7 shows a delay circuit according to another embodiment of the invention.
  • FIG. 8 shows a signal relationship of the delay circuit of FIG. 7 .
  • FIG. 9 shows a reference generator according to an embodiment of the invention.
  • FIG. 10 shows a delay circuit according to another embodiment of the invention.
  • FIG. 11 shows an example of a signal relationship among the signals of the delay circuit of FIG. 10 .
  • FIG. 12 shows a delay system according to an embodiment of the invention.
  • FIG. 13 shows an example of a signal relationship among some signals of the delay system of FIG. 12 .
  • FIG. 14 shows an example of a signal relationship between an input signal and an output signal of the delay system of FIG. 12 .
  • FIG. 1 shows a delay circuit according to an embodiment of the invention.
  • Delay circuit 100 includes a comparator 102 and a reference generator 104 .
  • Comparator 102 has an input node 106 and an output node 108 .
  • Node 106 receives an input signal IN.
  • Node 108 outputs an output signal OUT.
  • Reference generator 104 has an output connected to node 110 to provide a reference signal REF.
  • Both comparator 102 and reference generator 104 connect to a supply node 111 to receive a supply voltage, Vcc.
  • Comparator 102 compares the IN and REF signals and outputs the OUT signal as a delayed version of the IN signal.
  • FIG. 2 shows an example of a signal relationship among the REF, IN and OUT signals.
  • the IN signal has a rising edge 206 and a falling edge 207 .
  • the OUT signal has a rising edge 208 and a falling edge 209 .
  • Edge 206 is delayed from edge 208 a time delay (or a delay) indicated by D 1 .
  • Edge 207 is delayed from edge 209 a time delay indicated by D 2 .
  • reference generator 104 is configured to adjust D 1 to change the signal relationship (or the delay) between the IN and OUT signals.
  • reference generator 104 is configured in one configuration to decrease D 1 based on one condition of voltage and temperature.
  • reference generator 104 is configured in another configuration based on another condition of voltage and temperature to increase D 1 .
  • reference generator 104 is configured such that at certain condition of temperature, D 1 is decreased when Vcc is at a first value, and increased when Vcc is at a second value. In other embodiments, reference generator 104 is configured such that at certain condition of temperature, D 1 is decreased when the first value of Vcc is lower than the second value of Vcc. In some other embodiments, reference generator 104 is configured such that at certain condition of temperature, D 1 is decreased when the first value of Vcc is higher than the second value of Vcc.
  • Reference generator 104 is configured to vary the REF signal to adjust D 1 to change the signal relationship between the IN and OUT signals.
  • the voltage level (or signal level) of the REF is varied to adjust D 1 .
  • the voltage level of the REF signal is decreased to decrease D 1 and increased to increase D 1 .
  • the voltage level of the REF signal is increased to decrease D 1 and decreased to increase D 1 .
  • reference generator 104 is configured to adjust D 2 in a similar manner as that of the configuration for adjusting D 1 as described above.
  • FIG. 3 shows a delay circuit according to an embodiment of the invention.
  • Delay circuit 300 includes a comparator 302 , and a reference generator 304 .
  • Comparator 302 represents comparator 102 (FIG. 1 ).
  • Reference generator 304 represents reference generator 104 (FIG. 1 ).
  • Comparator 302 includes a first stage 320 , a second stage 322 , a pullup device 324 , and a pulldown device 326 .
  • First and second stages 320 and 322 connect in parallel with each other and in between a pullup node 328 and a pulldown node 330 .
  • Pullup device 324 connects between node 328 and a supply node 333 .
  • Pulldown device 326 connects between node 330 and another supply node 344 . Both pullup device 324 and pulldown device 326 connect to first stage 320 at node 336 .
  • First stage 320 has an input node 306 to receive an input signal IN.
  • Second stage 322 has an input node connected to a comparator reference node 310 to receive a reference input signal REF.
  • Second stage 322 also has an output node 308 to produce an output signal OUT.
  • the IN, OUT, and REF signals are similar in both FIG. 1 and FIG. 3 .
  • Reference generator 304 includes a plurality of configurable devices 352 . 0 through 352 .X ( 352 . 0 - 352 .X).
  • configurable devices 352 . 0 - 352 .X include fuse devices.
  • configurable devices 352 . 0 - 352 .X include fuseable devices such as electrical fuse and laser fuse.
  • configurable devices 352 . 0 - 352 .X include transistors having metal options.
  • configurable devices 352 . 0 - 352 .X include a combination of fusable devices, and transistors having metal options.
  • Configurable devices 352 . 0 - 352 .X are configured to vary the REF signal to adjust the signal relationship between the IN and OUT signals.
  • Pullup device 324 , first stage 320 , and pulldown device 326 form a first current path 341 between supply nodes 333 and 344 .
  • Pullup device 324 , second stage 322 , and pulldown device 326 form a second current path 342 between supply nodes 333 and 344 .
  • the amount of current flowing in each of the current paths 341 and 342 depends on the IN and REF signals.
  • the signal level of the OUT signal depends on the difference in the IN and REF signals. For example, when the IN signal is lower than the REF signal, the OUT signal has a low signal level. When the IN signal is higher than the REF signal, the OUT signal has a high signal level.
  • FIG. 4 shows an example of the signal relationship among the IN, OUT, and REF signals of FIG. 3 .
  • FIG. 4 shows an example when the IN signal is lower than the REF signal, the OUT signal has a low signal level, and when the IN signal is higher than the REF signal, the OUT signal has a high signal level.
  • the IN signal before time T 0 , the IN signal has signal level that is lower than signal level (Vref) of the REF signal, and the OUT signal has a low signal level.
  • Vref signal level of the IN signal
  • the OUT signal has a high signal level.
  • the low signal level and the high signal level correspond to logic 0 and logic 1 in digital circuits.
  • D 4 indicates the delay between rising edges of the IN and OUT signals.
  • D 4 can be adjusted by varying the REF signal based on certain temperature and the voltage level of node 333 (FIG. 3 ).
  • configurable devices 352 . 0 - 352 .X of reference generator 304 are configured such that the REF signal is decreased to decrease D 4 and such that the REF signal is increased to increase D 4 .
  • configurable devices 352 . 0 - 352 .X are configured such that the REF signal is increased to decrease D 4 and such that the REF signal is decreased to increase D 4 .
  • FIG. 4 also shows DL 4 to indicate a delay between falling edges of the IN and OUT signals.
  • DL 4 can also be adjusted by varying the REF signal based on certain temperature and the voltage level of node 333 (FIG. 3 ).
  • FIG. 5 and FIG. 6 show examples of a signal relationship among the IN, OUT, and REF signals when the REF signal of FIG. 4 is varied.
  • T 0 in all FIGS. 4-6 is chosen as a reference time and FIG. 4 is chosen as a reference starting point.
  • D 4 , D 5 , and D 6 are delays between the IN and OUT signals.
  • varying the signal level of the REF signal from Vref to VrefA decreases the delay between the IN and OUT signals to D 5 , which is relatively smaller than D 4 .
  • varying the REF signal from Vref to VrefA changes the signal relationship between the IN and OUT signals.
  • FIG. 5 shows examples of a signal relationship among the IN, OUT, and REF signals when the REF signal of FIG. 4 is varied.
  • varying the signal level of the REF signal from Vref to VrefB increases the delay between the IN and OUT signals becomes D 6 .
  • varying the REF signal from Vref to VrefB changes the signal relationship between the IN and OUT signals.
  • Vref, VrefA, and VrefB are drawn to illustrate various signal levels; they do not represent absolute values.
  • VrefA is lower than Vref.
  • VrefA is higher than Vref.
  • VrefB is lower than Vref.
  • VrefB is higher than Vref.
  • FIG. 7 shows a delay circuit according to another embodiment of the invention.
  • Delay circuit 700 includes a comparator 702 and a reference generator 704 .
  • Comparator 702 represents comparator 102 ( FIG. 1 ) and comparator 302 (FIG. 3 ).
  • Reference generator 704 represents reference generator 104 ( FIG. 1 ) and reference generator 304 (FIG. 3 ).
  • Comparator 702 includes transistor 721 , 723 , 724 , 725 , 726 , and 727 .
  • Transistors 721 and 723 form a transistor pair 720 which forms an input stage corresponding to first stage 320 (FIG. 3 ).
  • Transistors 725 and 727 form a transistor pair 722 which forms an input stage corresponding to second stage 322 (FIG. 3 ).
  • Transistor 724 forms a pullup device corresponding to pullup device 324 (FIG. 3 ).
  • Transistor 726 forms a pulldown device corresponding to pulldown device 326 (FIG. 3 ).
  • Transistors 721 and 723 have a common gate connected to node 706 to receive the IN signal, and a common drain connected to node 736 .
  • Transistors 725 and 727 have a common gate connected to a comparator reference node 710 , and a common drain connected to node 708 to generate the OUT signal.
  • Transistor 724 has a source connected to node 733 , a drain connected to node 728 , and a gate connected to node 736 .
  • Transistor 726 has a source connected to node 744 , a drain connected to node 730 , and a gate connected to node 736 .
  • Reference generator 704 includes transistors 751 , 752 , 753 , 754 , 755 ( 751 - 755 ), and configurable elements 761 , 762 , 763 , 764 , 765 , 766 , 767 , 768 , 769 , and 770 ( 761 - 770 ).
  • Transistors 751 - 755 connect in series between supply nodes 733 and 744 .
  • Transistors 751 - 755 and configurable elements 761 - 770 form a plurality of configurable devices corresponding to configurable devices 352 . 0 - 352 .X (FIG. 3 ).
  • Transistors 751 and 752 form a plurality of configurable load transistors connected between nodes 733 and 710 .
  • Transistors 751 and 752 form a plurality of configurable output transistors connected between nodes 710 and 744 .
  • Each of the configurable elements 761 - 770 is located between a drain and source, or between a gate and source of each of the transistors 751 - 755 , or between the gates of two transistors.
  • Each of the configurable elements 761 - 770 can be configured to connect (close) or to disconnect (open) the drain and source, or the gate and source of each of the transistors 751 - 755 , or the gates of two transistors.
  • each of the transistors 751 - 755 has a configurable drain-to-source connection, or a configurable gate-to-source connection, or both configurable drain-to-source and configurable gate-to-source connections.
  • transistors 751 - 755 also have configurable gate-to-gate connections.
  • configurable element 763 is located between the drain and source of transistor 753 ; configurable element 764 is located between the gates of transistors 753 and 754 ; and configurable element 766 is located between the gate and drain of transistor 754 .
  • Drain and source of a transistor are used interchangeably in this specification.
  • Transistors 751 - 755 and configurable elements 761 - 770 are configured as one of many different possible configurations. In the configuration shown in FIG. 7 , configurable elements 761 , 766 , 769 , and 770 are in a “closed” (connected or shorted) position, and configurable elements 762 , 763 , 764 , 765 , and 767 are in an “opened” (disconnected) position. This configuration gives one signal level for the REF signal. In other embodiments, transistors 751 - 755 and configurable elements 761 - 770 can be configured in other configurations by choosing other “closed” and “opened” combinations of configurable elements 761 - 770 to obtain other signal levels for the REF signal.
  • Configurable elements 761 - 770 represent any configurable elements known to those skilled in the art.
  • configurable elements 761 - 770 can be metal options which can be configured by different opened and closed combinations.
  • configurable elements 761 - 770 can be fuses which can be configured by blowing the fuses using any known method.
  • configurable elements 761 - 770 can be anti-fuses which can be configured by programming the anti-fuses devices using any known method.
  • Other types of configurable elements can be used in alternative embodiments of the present invention.
  • Transistors 721 , 724 , 725 , 751 , and 752 are p-channel metal oxide semiconductor field effect transistors (PMOSFET), also referred to as “PFET” or “PMOS”.
  • Transistors 723 , 726 , 727 , 753 , 754 , and 755 are n-channel metal oxide semiconductor field effect transistors (NMOSFET) also referred to as “NFET” or “NMOS”.
  • NMOSFET n-channel metal oxide semiconductor field effect transistors
  • transistors 721 , 724 , 725 , 751 , and 752 can be NMOS transistors and transistors 723 , 726 , 727 , 753 , 754 , and 755 can be PMOS transistors.
  • BJTs bipolar junction transistors
  • JFETs junction field effect transistors
  • the signal level of the OUT signal depends on the signal relationship between the IN and REF signals.
  • the voltage level at node 708 is low.
  • the voltage level at node 708 is high.
  • FIG. 8 shows a signal relationship of the delay circuit of FIG. 7 .
  • D 8 indicates a delay between the IN and OUT signals. This delay can be adjusted by varying the REF signal of FIG. 7 .
  • the REF signal can be varied by configuring transistors 751 - 755 and configurable elements 761 - 770 in different ways. For example, to increase the signal level of the REF signal, configurable 767 would be closed and configurable element 769 would be opened. With that configuration, an additional voltage drop exists between the source and drain of transistor 755 , thereby increasing the voltage level at node 710 and also the signal level of the REF signal.
  • configurable element 766 would be opened and configurable element 768 would be closed.
  • the voltage drop between the source and drain of transistor 754 disappears, thereby decreasing the voltage level at node 710 and also the signal level of the REF signal.
  • FIG. 9 shows a reference generator according to an embodiment of the invention.
  • Reference generator 904 can be used as an embodiment for reference generators 104 (FIG. 1 ), 304 (FIG. 3 ), or 704 (FIG. 7 ).
  • Reference generator 904 includes load transistors 920 , and 922 , a bias transistor 924 , an output transistor 926 , and a reference output node 910 .
  • Transistors 920 and 924 form a bias stage 921 .
  • Transistor 922 and 926 form an output stage 923 .
  • Each of the transistors 920 and 922 is a diode-connected transistor.
  • a diode-connected transistor has a gate connected to a drain such that the gate-to-source voltage and the drain-to-source voltage are equal.
  • Transistor 920 has a source connected to a supply node 933 , and a gate and a drain connected together at node 928 .
  • Transistor 922 has a source connected to node 933 , and a gate and a drain connected together at an output node 910 .
  • Transistor 924 has a drain connected to node 928 , a source connected to a supply node 944 , and a gate connected to node 933 .
  • Transistor 926 has a gate connected to node 928 , a source connected to node 944 , and a drain connected to node 910 .
  • Each of the transistors 920 , 922 , 924 , and 926 has a channel width (W), a channel length (L), and a channel width to channel length (W/L) ratio.
  • W 920 /L 920 , W 922 /L 922 , W 924 /L 924 , and W 926 /L 926 indicate the channel width to channel length ratios of transistors 920 , 922 , 924 , and 926 , respectively.
  • Reference generator 904 generates a reference signal REF on node 910 .
  • the REF signal can be varied by configuring (or selecting) the W and the L of each of the transistors 920 , 922 , 924 , and 926 , or each of the W 920 /L 920 , W 922 /L 922 , W 924 /L 924 .
  • transistors 920 , 922 , 924 , and 926 are configured in a first configuration such that reference generator 904 outputs the REF signal having a first signal level.
  • transistors 920 , 922 , 924 , and 926 are configured in a second configuration such that reference generator 904 outputs the REF signal having a second signal level.
  • other configurations of transistors 920 , 922 , 924 , and 926 generate other reference signals having other values unequal to the first value or the second value.
  • FIG. 10 shows a delay circuit according to another embodiment of the invention.
  • Delay circuit 1000 includes a comparator 1002 and a reference generator 1004 .
  • Comparator 1002 represents comparator 102 (FIG. 1 ).
  • comparator 1002 includes embodiments of comparator 302 ( FIG. 3 ) and comparator 702 (FIG. 7 ).
  • Comparator 1002 includes an input node 1006 to receive an input signal IN, and an output node to output an output signal OUT.
  • Reference generator 1004 includes a plurality of selectable level generators 1004 . 0 through 1004 .N ( 1004 . 0 - 1004 .N) and a multiplexor (MUX) 1012 (or selector 1012 ).
  • Signal level generators 1004 . 0 - 1004 .N and MUX 1012 connect together via nodes 1011 . 0 through 1011 .N ( 1011 . 0 - 1011 .N).
  • Each of the selectable level generators 1004 . 0 - 1004 .N includes a selectable output node connected to one of nodes 1011 . 0 - 1011 .N to provide one of selectable signals REF. 0 through REF.N (REF. 0 -REF.N).
  • selectable level generator 1004 . 0 includes a selectable output node connected to node 1011 . 0 to provide the REF. 0 signal
  • selectable level generator 1004 .N includes a selectable output node connected to node 1011 .N to provide the REF.N signal.
  • each of the selectable signals REF. 0 -REF.N has a different signal level.
  • each of the selectable level generators 1004 . 0 - 1004 .N includes embodiments of reference generator 704 ( FIG. 7 ) or embodiments of reference-generator 904 (FIG. 9 ).
  • each of the selectable level generators 1004 . 0 - 1004 .N is configured in a different configuration to output a different selectable output signal. Therefore, in some of these embodiments, a selectable output signal of one selectable level generator is unequal to a selectable output signal of another selectable level generator.
  • MUX 1012 includes a plurality of input nodes connected to nodes 1011 . 0 - 1011 .N to receive the REF. 0 -REF.N signals.
  • MUX 1012 has an output connected to node 1010 to provide a reference signal REF.
  • MUX 1012 also has a plurality of select nodes 1013 . 0 through 1013 .M ( 1013 . 0 - 1013 .M) to receive a plurality of select signals S 0 through SM (S 0 -SM).
  • S 0 -SM select signals S 0 through SM
  • FIG. 11 shows an example of a signal relationship among the IN, OUT, REF signals of the delay circuit 1000 of FIG. 10 .
  • D 11 indicates the delay between the IN and OUT signals.
  • D 11 can be adjusted to change the signal relationship between the IN and OUT signals by varying the REF signal.
  • the REF signal can be varied to adjust D 11 by selecting different combinations of the S 0 -SM signals.
  • D 11 depends on the REF signal which is one of the REF. 0 -REF.N signals selected by a combination of the S 0 -SM signals. Since the REF. 0 -REF.N signals have different signal levels, a different combination of the S 0 -SM signals can be selected to select a different one of the REF. 0 -REF.N signals to be the REF signal to adjust D 11 .
  • each of the selectable level generators 1004 . 0 - 1004 .N includes embodiments of reference generator 704 (FIG. 7 ). In other embodiments, each of the selectable level generators 1004 . 0 - 1004 .N includes embodiments of reference generator 904 (FIG. 9 ).
  • FIG. 12 shows a delay system according to an embodiment of the invention.
  • Delay system 1200 includes an input buffer 1202 , a delay line 1203 , an output buffer 1206 , a controller 1208 , an ouput model circuit 1210 , an input model circuit 1211 , and a delay circuit 1204 .
  • Input buffer 1202 , delay line 1203 , and output buffer 1206 form a forward path 1215 .
  • Ouput model circuit 1210 , input model circuit 1211 , and delay circuit 1204 form a feedback path 1217 .
  • Delay system 1200 also includes an input node 1230 to receive an input signal XCLK.
  • the XCLK signal passes through forward path 1215 and becomes an output signal CLKDLL at output node 1233 .
  • the CLKDLL signal is a delayed version of the XCLK signal.
  • the XCLK and the CLKDLL signal are synchronized.
  • the CLKIN is a delayed version of the XCLK signal and is delayed by a delay DL 1 of input buffer 1202 .
  • the CLKOUT is a delayed version of the CLKIN signal and is delayed by a delay of delay line 1203 .
  • CLKDLL signal is a delayed version of the CLKOUT signal and is delayed by a delay DL 2 of output buffer 1206 .
  • Feedback path 1217 receives the CLKOUT signal and provides a feedback signal CLKFB.
  • the CLKFB signal is the CLKOUT signal delayed by a delay DL 3 .
  • input model circuit 1211 and input buffer 1202 have identical construction. In other embodiments, input model circuit 1211 and input buffer 1202 have equal delays.
  • output model circuit 1210 and output buffer 1206 have identical construction. In other embodiments, output model circuit 1210 and output buffer 1206 have equal delays.
  • Delay circuit 1204 includes an input connected to input model 1211 to receive an input signal IN and output connected to controller 1208 to provide an output signal OUT.
  • the IN signal is a delayed version of the CLKOUT signal.
  • the OUT signal is the same as the CLKFB signal.
  • Delay circuit 1204 also includes a plurality of select nodes 1213 . 0 through 1213 .M ( 1213 . 0 - 1213 .M) to receive a plurality of select signals S 0 -SM.
  • Delay circuit 1204 represents embodiments of a delay circuit corresponding to delay circuit 1000 (FIG. 10 ).
  • the IN and OUT signals are similar in both FIG. 12 and FIG. 10 .
  • Select node 1213 is a delay circuit corresponding to delay circuit 1000 (FIG. 10 ).
  • delay circuit 1204 adjusts a signal relationship between the IN and OUT signals to keep the XCLK and CLKDLL signals synchronized by selecting a combination of the S 0 -SM signals.
  • delay line 1203 includes a plurality of delay cells connected in series. Each delay cell can delay a signal for a predetermined amount of time. The amount of delay applied to the CLKIN signal varies according to the number of delay cells selected.
  • controller 1208 includes a phase detector that detects and compares a difference between the edges of two signals. In FIG. 12 , controller 1208 compares the CLKIN and CLKFB signals. When the CLKIN and CLKFB signals are not synchronized, controller 1208 performs a shifting operation to adjust the amount of delay applied to the CLKIN signal by delay line 1203 . When the CLKIN and CLKFB signals are synchronized, controller 1208 stops the shifting operation and puts delay system 1200 in a locked position.
  • the XCLK and CLKDLL signals are synchronized within a predetermined lock window (or a predetermined delay). In some embodiments, the predetermined lock window is less than or equal to the delay of one delay cell.
  • FIG. 13 shows an example of the XCLK and CLKDLL signals when they are synchronized while delay system 1200 is in the locked position.
  • DW indicates the predetermined lock window.
  • the XCLK and CLKDLL signals may be out of the predetermined lock window because of changes in operating conditions such as process, voltage, and temperature.
  • FIG. 14 shows an example of a signal relationship between the XCLK and CLKDLL signals being out of the predetermined lock window when delay system 1200 is in the locked position.
  • DW 1 indicates a delay between the XCLK and CLKDLL when delay system 1200 is in a locked position.
  • DW 1 is relatively greater than DW.
  • DW 1 can be adjusted so that the XCLK and CLKDLL are synchronized within DW by selecting a combination of the S 0 -SM.
  • delay circuit 1204 adjusts the OUT signal. Since the OUT signal is the CLKFB signal, adjusting the OUT signal also adjusts the signal relationship between the CLKIN and CLKOUT signals.
  • signal relationship between the CLKIN and CLKOUT signals is adjusted, signal relationship between the XCLK and CLKDLL signals is also adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Pulse Circuits (AREA)

Abstract

A delay circuit delays an input signal to produce an output signal. The input and output signals have a delay which is based on a signal relationship between the input signal and a reference signal. The delay circuit includes configurable devices to vary the reference signal to adjust the delay between the input and output signals.

Description

FIELD OF THE INVENTION
The present invention relates generally to signal processing, and in particular, to delay circuits.
BACKGROUND OF THE INVENTION
Delay circuits delay an input signal to generate an output signal which is a delayed version of the input signal. Most delay circuits have a specified delay between the input and output signals. In some applications, some delay circuits cause the actual delay between the input and output signals to be different from the specified delay because of changes in operating conditions such as operating voltage and temperature. Therefore, some of these delay circuits are unsuitable for some applications when the operating condition changes.
For these and other reasons stated below, and which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need for an improved delay circuit.
SUMMARY OF THE INVENTION
Embodiments of the invention provide a delay circuit that can be configured to adjust a delay between an input signal and an output signal.
In one aspect, the delay circuit has a comparator connected to a reference generator. The comparator includes a first stage for receiving an input signal, and a second stage connected to the first stage for receiving a reference signal to output an output signal. The input and output signals have a delay which is based on a signal relationship between the input and reference signals. The reference generator includes a plurality of configurable devices configured to vary the reference signal to adjust the delay between the input and output signals.
In another aspect, a method includes receiving an input signal and a reference signal. The method also includes producing an output signal. The input and output signals have a delay. Further, the method includes varying the reference signal to adjust the delay.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a delay circuit according to an embodiment of the invention.
FIG. 2 shows an example of a signal relationship between input and output signals of the delay circuit of FIG. 1.
FIG. 3 shows a delay circuit according to another embodiment of the invention.
FIGS. 4-6 show examples of signal relationships of signals of the delay circuit of FIG. 3.
FIG. 7 shows a delay circuit according to another embodiment of the invention.
FIG. 8 shows a signal relationship of the delay circuit of FIG. 7.
FIG. 9 shows a reference generator according to an embodiment of the invention.
FIG. 10 shows a delay circuit according to another embodiment of the invention.
FIG. 11 shows an example of a signal relationship among the signals of the delay circuit of FIG. 10.
FIG. 12 shows a delay system according to an embodiment of the invention.
FIG. 13 shows an example of a signal relationship among some signals of the delay system of FIG. 12.
FIG. 14 shows an example of a signal relationship between an input signal and an output signal of the delay system of FIG. 12.
DESCRIPTION OF EMBODIMENTS
The following description and the drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice it. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Examples merely typify possible variations. Portions and features of some embodiments may be included in or substituted for those of others. The scope of the invention encompasses the full ambit of the claims and all available equivalents.
FIG. 1 shows a delay circuit according to an embodiment of the invention. Delay circuit 100 includes a comparator 102 and a reference generator 104. Comparator 102 has an input node 106 and an output node 108. Node 106 receives an input signal IN. Node 108 outputs an output signal OUT. Reference generator 104 has an output connected to node 110 to provide a reference signal REF. Both comparator 102 and reference generator 104 connect to a supply node 111 to receive a supply voltage, Vcc. Comparator 102 compares the IN and REF signals and outputs the OUT signal as a delayed version of the IN signal.
FIG. 2 shows an example of a signal relationship among the REF, IN and OUT signals. In FIG. 2, the IN signal has a rising edge 206 and a falling edge 207. The OUT signal has a rising edge 208 and a falling edge 209. Edge 206 is delayed from edge 208 a time delay (or a delay) indicated by D1. Edge 207 is delayed from edge 209 a time delay indicated by D2. In some embodiments, reference generator 104 is configured to adjust D1 to change the signal relationship (or the delay) between the IN and OUT signals. For example, in some embodiments, reference generator 104 is configured in one configuration to decrease D1 based on one condition of voltage and temperature. As another example, reference generator 104 is configured in another configuration based on another condition of voltage and temperature to increase D1.
In some embodiments, reference generator 104 is configured such that at certain condition of temperature, D1 is decreased when Vcc is at a first value, and increased when Vcc is at a second value. In other embodiments, reference generator 104 is configured such that at certain condition of temperature, D1 is decreased when the first value of Vcc is lower than the second value of Vcc. In some other embodiments, reference generator 104 is configured such that at certain condition of temperature, D1 is decreased when the first value of Vcc is higher than the second value of Vcc.
Reference generator 104 is configured to vary the REF signal to adjust D1 to change the signal relationship between the IN and OUT signals. In some embodiments, the voltage level (or signal level) of the REF is varied to adjust D1. For example, in some embodiments, the voltage level of the REF signal is decreased to decrease D1 and increased to increase D1. As another example, in other embodiments, the voltage level of the REF signal is increased to decrease D1 and decreased to increase D1.
In some embodiments, reference generator 104 is configured to adjust D2 in a similar manner as that of the configuration for adjusting D1 as described above.
FIG. 3 shows a delay circuit according to an embodiment of the invention. Delay circuit 300 includes a comparator 302, and a reference generator 304. Comparator 302 represents comparator 102 (FIG. 1). Reference generator 304 represents reference generator 104 (FIG. 1).
Comparator 302 includes a first stage 320, a second stage 322, a pullup device 324, and a pulldown device 326. First and second stages 320 and 322 connect in parallel with each other and in between a pullup node 328 and a pulldown node 330. Pullup device 324 connects between node 328 and a supply node 333. Pulldown device 326 connects between node 330 and another supply node 344. Both pullup device 324 and pulldown device 326 connect to first stage 320 at node 336.
First stage 320 has an input node 306 to receive an input signal IN. Second stage 322 has an input node connected to a comparator reference node 310 to receive a reference input signal REF. Second stage 322 also has an output node 308 to produce an output signal OUT. The IN, OUT, and REF signals are similar in both FIG. 1 and FIG. 3.
Reference generator 304 includes a plurality of configurable devices 352.0 through 352.X (352.0-352.X). In some embodiments, configurable devices 352.0-352.X include fuse devices. In other embodiments, configurable devices 352.0-352.X include fuseable devices such as electrical fuse and laser fuse. In some other embodiments, configurable devices 352.0-352.X include transistors having metal options. Further, in alternative embodiments, configurable devices 352.0-352.X include a combination of fusable devices, and transistors having metal options. Configurable devices 352.0-352.X are configured to vary the REF signal to adjust the signal relationship between the IN and OUT signals.
Pullup device 324, first stage 320, and pulldown device 326 form a first current path 341 between supply nodes 333 and 344. Pullup device 324, second stage 322, and pulldown device 326 form a second current path 342 between supply nodes 333 and 344. The amount of current flowing in each of the current paths 341 and 342 depends on the IN and REF signals. The signal level of the OUT signal depends on the difference in the IN and REF signals. For example, when the IN signal is lower than the REF signal, the OUT signal has a low signal level. When the IN signal is higher than the REF signal, the OUT signal has a high signal level.
FIG. 4 shows an example of the signal relationship among the IN, OUT, and REF signals of FIG. 3. FIG. 4 shows an example when the IN signal is lower than the REF signal, the OUT signal has a low signal level, and when the IN signal is higher than the REF signal, the OUT signal has a high signal level. As shown in FIG. 4, before time T0, the IN signal has signal level that is lower than signal level (Vref) of the REF signal, and the OUT signal has a low signal level. After time T0, the signal level of the IN signal is higher than signal level of the REF signal, and the OUT signal has a high signal level. In some embodiments, the low signal level and the high signal level correspond to logic 0 and logic 1 in digital circuits.
In FIG. 4, D4 indicates the delay between rising edges of the IN and OUT signals. D4 can be adjusted by varying the REF signal based on certain temperature and the voltage level of node 333 (FIG. 3). In some embodiments, configurable devices 352.0-352.X of reference generator 304 are configured such that the REF signal is decreased to decrease D4 and such that the REF signal is increased to increase D4. In other embodiments, configurable devices 352.0-352.X are configured such that the REF signal is increased to decrease D4 and such that the REF signal is decreased to increase D4.
FIG. 4 also shows DL4 to indicate a delay between falling edges of the IN and OUT signals. DL4 can also be adjusted by varying the REF signal based on certain temperature and the voltage level of node 333 (FIG. 3).
FIG. 5 and FIG. 6 show examples of a signal relationship among the IN, OUT, and REF signals when the REF signal of FIG. 4 is varied. For comparison purposes, T0 in all FIGS. 4-6 is chosen as a reference time and FIG. 4 is chosen as a reference starting point. In FIGS. 4-6, D4, D5, and D6 are delays between the IN and OUT signals. In FIG. 5, varying the signal level of the REF signal from Vref to VrefA decreases the delay between the IN and OUT signals to D5, which is relatively smaller than D4. Thus, varying the REF signal from Vref to VrefA changes the signal relationship between the IN and OUT signals. In FIG. 6, varying the signal level of the REF signal from Vref to VrefB increases the delay between the IN and OUT signals becomes D6. Thus, varying the REF signal from Vref to VrefB changes the signal relationship between the IN and OUT signals.
In FIGS. 4-6, Vref, VrefA, and VrefB are drawn to illustrate various signal levels; they do not represent absolute values. In some embodiments, VrefA is lower than Vref. In other embodiments, VrefA is higher than Vref. In some embodiments, VrefB is lower than Vref. In other embodiments, VrefB is higher than Vref.
FIG. 7 shows a delay circuit according to another embodiment of the invention. Delay circuit 700 includes a comparator 702 and a reference generator 704. Comparator 702 represents comparator 102 (FIG. 1) and comparator 302 (FIG. 3). Reference generator 704 represents reference generator 104 (FIG. 1) and reference generator 304 (FIG. 3).
Comparator 702 includes transistor 721, 723, 724, 725, 726, and 727. Transistors 721 and 723 form a transistor pair 720 which forms an input stage corresponding to first stage 320 (FIG. 3). Transistors 725 and 727 form a transistor pair 722 which forms an input stage corresponding to second stage 322 (FIG. 3). Transistor 724 forms a pullup device corresponding to pullup device 324 (FIG. 3). Transistor 726 forms a pulldown device corresponding to pulldown device 326 (FIG. 3).
Transistors 721 and 723 have a common gate connected to node 706 to receive the IN signal, and a common drain connected to node 736. Transistors 725 and 727 have a common gate connected to a comparator reference node 710, and a common drain connected to node 708 to generate the OUT signal. Transistor 724 has a source connected to node 733, a drain connected to node 728, and a gate connected to node 736. Transistor 726 has a source connected to node 744, a drain connected to node 730, and a gate connected to node 736.
Reference generator 704 includes transistors 751, 752, 753, 754, 755 (751-755), and configurable elements 761, 762, 763, 764, 765, 766, 767, 768, 769, and 770 (761-770). Transistors 751-755 connect in series between supply nodes 733 and 744. Transistors 751-755 and configurable elements 761-770 form a plurality of configurable devices corresponding to configurable devices 352.0-352.X (FIG. 3).
Transistors 751 and 752 form a plurality of configurable load transistors connected between nodes 733 and 710. Transistors 751 and 752 form a plurality of configurable output transistors connected between nodes 710 and 744.
Each of the configurable elements 761-770 is located between a drain and source, or between a gate and source of each of the transistors 751-755, or between the gates of two transistors. Each of the configurable elements 761-770 can be configured to connect (close) or to disconnect (open) the drain and source, or the gate and source of each of the transistors 751-755, or the gates of two transistors. Thus, each of the transistors 751-755 has a configurable drain-to-source connection, or a configurable gate-to-source connection, or both configurable drain-to-source and configurable gate-to-source connections. And transistors 751-755 also have configurable gate-to-gate connections. For example, configurable element 763 is located between the drain and source of transistor 753; configurable element 764 is located between the gates of transistors 753 and 754; and configurable element 766 is located between the gate and drain of transistor 754. Drain and source of a transistor are used interchangeably in this specification.
Transistors 751-755 and configurable elements 761-770 are configured as one of many different possible configurations. In the configuration shown in FIG. 7, configurable elements 761, 766, 769, and 770 are in a “closed” (connected or shorted) position, and configurable elements 762, 763, 764, 765, and 767 are in an “opened” (disconnected) position. This configuration gives one signal level for the REF signal. In other embodiments, transistors 751-755 and configurable elements 761-770 can be configured in other configurations by choosing other “closed” and “opened” combinations of configurable elements 761-770 to obtain other signal levels for the REF signal.
Configurable elements 761-770 represent any configurable elements known to those skilled in the art. For example, configurable elements 761-770 can be metal options which can be configured by different opened and closed combinations. In other embodiments, configurable elements 761-770 can be fuses which can be configured by blowing the fuses using any known method. In some other embodiments, configurable elements 761-770 can be anti-fuses which can be configured by programming the anti-fuses devices using any known method. Other types of configurable elements can be used in alternative embodiments of the present invention.
Transistors 721, 724, 725, 751, and 752 are p-channel metal oxide semiconductor field effect transistors (PMOSFET), also referred to as “PFET” or “PMOS”. Transistors 723, 726, 727, 753, 754, and 755 are n-channel metal oxide semiconductor field effect transistors (NMOSFET) also referred to as “NFET” or “NMOS”. In other embodiments, the types of transistors can be reversed. For example, transistors 721, 724, 725, 751, and 752 can be NMOS transistors and transistors 723, 726, 727, 753, 754, and 755 can be PMOS transistors.
Other types of transistors can also be used in place of the NMOS and PMOS transistors of FIG. 7. For example, embodiments exist that use bipolar junction transistors (BJTs) and junction field effect transistors (JFETs.) One of ordinary skill in the art will understand that many other types of transistors and other elements can be used in alternative embodiments of the present invention.
In FIG. 7, the signal level of the OUT signal depends on the signal relationship between the IN and REF signals. When the IN signal is lower than the REF signal, the voltage level at node 708 is low. When the IN signal is higher than the REF signal, the voltage level at node 708 is high.
FIG. 8 shows a signal relationship of the delay circuit of FIG. 7. In FIG. 8, D8 indicates a delay between the IN and OUT signals. This delay can be adjusted by varying the REF signal of FIG. 7. In FIG. 7, the REF signal can be varied by configuring transistors 751-755 and configurable elements 761-770 in different ways. For example, to increase the signal level of the REF signal, configurable 767 would be closed and configurable element 769 would be opened. With that configuration, an additional voltage drop exists between the source and drain of transistor 755, thereby increasing the voltage level at node 710 and also the signal level of the REF signal. As another example, to decrease the signal level of the REF signal, configurable element 766 would be opened and configurable element 768 would be closed. In this example, the voltage drop between the source and drain of transistor 754 disappears, thereby decreasing the voltage level at node 710 and also the signal level of the REF signal.
FIG. 9 shows a reference generator according to an embodiment of the invention. Reference generator 904 can be used as an embodiment for reference generators 104 (FIG. 1), 304 (FIG. 3), or 704 (FIG. 7). Reference generator 904 includes load transistors 920, and 922, a bias transistor 924, an output transistor 926, and a reference output node 910. Transistors 920 and 924 form a bias stage 921. Transistor 922 and 926 form an output stage 923. Each of the transistors 920 and 922 is a diode-connected transistor. A diode-connected transistor has a gate connected to a drain such that the gate-to-source voltage and the drain-to-source voltage are equal.
Transistor 920 has a source connected to a supply node 933, and a gate and a drain connected together at node 928. Transistor 922 has a source connected to node 933, and a gate and a drain connected together at an output node 910. Transistor 924 has a drain connected to node 928, a source connected to a supply node 944, and a gate connected to node 933. Transistor 926 has a gate connected to node 928, a source connected to node 944, and a drain connected to node 910.
Each of the transistors 920, 922, 924, and 926 has a channel width (W), a channel length (L), and a channel width to channel length (W/L) ratio. In FIG. 9, W920/L920, W922/L922, W924/L924, and W926/L926 indicate the channel width to channel length ratios of transistors 920, 922, 924, and 926, respectively.
Reference generator 904 generates a reference signal REF on node 910. The REF signal can be varied by configuring (or selecting) the W and the L of each of the transistors 920, 922, 924, and 926, or each of the W920/L920, W922/L922, W924/L924. For example, in some embodiments, transistors 920, 922, 924, and 926 are configured in a first configuration such that reference generator 904 outputs the REF signal having a first signal level. As another example, in other embodiments, transistors 920, 922, 924, and 926 are configured in a second configuration such that reference generator 904 outputs the REF signal having a second signal level. In some other embodiments, other configurations of transistors 920, 922, 924, and 926 generate other reference signals having other values unequal to the first value or the second value.
FIG. 10 shows a delay circuit according to another embodiment of the invention. Delay circuit 1000 includes a comparator 1002 and a reference generator 1004. Comparator 1002 represents comparator 102 (FIG. 1). In some embodiments, comparator 1002 includes embodiments of comparator 302 (FIG. 3) and comparator 702 (FIG. 7). Comparator 1002 includes an input node 1006 to receive an input signal IN, and an output node to output an output signal OUT.
Reference generator 1004 includes a plurality of selectable level generators 1004.0 through 1004.N (1004.0-1004.N) and a multiplexor (MUX) 1012 (or selector 1012). Signal level generators 1004.0-1004.N and MUX 1012 connect together via nodes 1011.0 through 1011.N (1011.0-1011.N).
Each of the selectable level generators 1004.0-1004.N includes a selectable output node connected to one of nodes 1011.0-1011.N to provide one of selectable signals REF.0 through REF.N (REF.0-REF.N). For example, selectable level generator 1004.0 includes a selectable output node connected to node 1011.0 to provide the REF.0 signal; selectable level generator 1004.N includes a selectable output node connected to node 1011.N to provide the REF.N signal.
In some embodiments, each of the selectable signals REF.0-REF.N has a different signal level. In some embodiments, each of the selectable level generators 1004.0-1004.N includes embodiments of reference generator 704 (FIG. 7) or embodiments of reference-generator 904 (FIG. 9). In some of these embodiments, each of the selectable level generators 1004.0-1004.N is configured in a different configuration to output a different selectable output signal. Therefore, in some of these embodiments, a selectable output signal of one selectable level generator is unequal to a selectable output signal of another selectable level generator.
MUX 1012 includes a plurality of input nodes connected to nodes 1011.0-1011.N to receive the REF.0-REF.N signals. MUX 1012 has an output connected to node 1010 to provide a reference signal REF. MUX 1012 also has a plurality of select nodes 1013.0 through 1013.M (1013.0-1013.M) to receive a plurality of select signals S0 through SM (S0-SM). A combination of the S0-SM signals selects one of the REF.0-REF.N signals as the REF signal.
FIG. 11 shows an example of a signal relationship among the IN, OUT, REF signals of the delay circuit 1000 of FIG. 10. In FIG. 11, D11 indicates the delay between the IN and OUT signals. D11 can be adjusted to change the signal relationship between the IN and OUT signals by varying the REF signal.
In FIG. 10, the REF signal can be varied to adjust D11 by selecting different combinations of the S0-SM signals. D11 depends on the REF signal which is one of the REF.0-REF.N signals selected by a combination of the S0-SM signals. Since the REF.0-REF.N signals have different signal levels, a different combination of the S0-SM signals can be selected to select a different one of the REF.0-REF.N signals to be the REF signal to adjust D11.
In some embodiments, each of the selectable level generators 1004.0-1004.N includes embodiments of reference generator 704 (FIG. 7). In other embodiments, each of the selectable level generators 1004.0-1004.N includes embodiments of reference generator 904 (FIG. 9).
FIG. 12 shows a delay system according to an embodiment of the invention. Delay system 1200 includes an input buffer 1202, a delay line 1203, an output buffer 1206, a controller 1208, an ouput model circuit 1210, an input model circuit 1211, and a delay circuit 1204. Input buffer 1202, delay line 1203, and output buffer 1206 form a forward path 1215. Ouput model circuit 1210, input model circuit 1211, and delay circuit 1204 form a feedback path 1217.
Delay system 1200 also includes an input node 1230 to receive an input signal XCLK. The XCLK signal passes through forward path 1215 and becomes an output signal CLKDLL at output node 1233. The CLKDLL signal is a delayed version of the XCLK signal. In some embodiments, the XCLK and the CLKDLL signal are synchronized.
Two other signals exist on forward path 1215, a delayed input signal CLKIN signal at node 1221 and a delayed signal CLKOUT at node 1223. The CLKIN is a delayed version of the XCLK signal and is delayed by a delay DL1 of input buffer 1202. The CLKOUT is a delayed version of the CLKIN signal and is delayed by a delay of delay line 1203. Further, CLKDLL signal is a delayed version of the CLKOUT signal and is delayed by a delay DL2 of output buffer 1206.
Feedback path 1217 receives the CLKOUT signal and provides a feedback signal CLKFB. The CLKFB signal is the CLKOUT signal delayed by a delay DL3. In some embodiments, input model circuit 1211 and input buffer 1202 have identical construction. In other embodiments, input model circuit 1211 and input buffer 1202 have equal delays. In some embodiments, output model circuit 1210 and output buffer 1206 have identical construction. In other embodiments, output model circuit 1210 and output buffer 1206 have equal delays. In FIG. 12, the combination of ouput model circuit 1210, input model circuit 1211, and delay circuit 1204 is constructed to be a model of the combination of input buffer 1202 and output buffer 1206 such that DL3=DL1+DL2.
Delay circuit 1204 includes an input connected to input model 1211 to receive an input signal IN and output connected to controller 1208 to provide an output signal OUT. The IN signal is a delayed version of the CLKOUT signal. The OUT signal is the same as the CLKFB signal. Delay circuit 1204 also includes a plurality of select nodes 1213.0 through 1213.M (1213.0-1213.M) to receive a plurality of select signals S0-SM. Delay circuit 1204 represents embodiments of a delay circuit corresponding to delay circuit 1000 (FIG. 10). The IN and OUT signals are similar in both FIG. 12 and FIG. 10. Select node 1213.0-1213.M are similar to select nodes 1013.0-1013.M (FIG. 10). The S0-SM signals are similar in both FIG. 12 and FIG. 10. In some embodiments, delay circuit 1204 adjusts a signal relationship between the IN and OUT signals to keep the XCLK and CLKDLL signals synchronized by selecting a combination of the S0-SM signals.
In some embodiments, delay line 1203 includes a plurality of delay cells connected in series. Each delay cell can delay a signal for a predetermined amount of time. The amount of delay applied to the CLKIN signal varies according to the number of delay cells selected.
In some embodiments, controller 1208 includes a phase detector that detects and compares a difference between the edges of two signals. In FIG. 12, controller 1208 compares the CLKIN and CLKFB signals. When the CLKIN and CLKFB signals are not synchronized, controller 1208 performs a shifting operation to adjust the amount of delay applied to the CLKIN signal by delay line 1203. When the CLKIN and CLKFB signals are synchronized, controller 1208 stops the shifting operation and puts delay system 1200 in a locked position. When the CLKIN and the CLKFB signals are synchronized during the locked position, the XCLK and CLKDLL signals are also synchronized because feedback path 1217 is a model of input buffer 1202 and output buffer 1206 in which DL3=DL1+DL2. In some embodiments, the XCLK and CLKDLL signals are synchronized within a predetermined lock window (or a predetermined delay). In some embodiments, the predetermined lock window is less than or equal to the delay of one delay cell.
FIG. 13 shows an example of the XCLK and CLKDLL signals when they are synchronized while delay system 1200 is in the locked position. DW indicates the predetermined lock window.
In some cases, when delay system 1200 is in the locked position, the XCLK and CLKDLL signals may be out of the predetermined lock window because of changes in operating conditions such as process, voltage, and temperature.
FIG. 14 shows an example of a signal relationship between the XCLK and CLKDLL signals being out of the predetermined lock window when delay system 1200 is in the locked position. DW1 indicates a delay between the XCLK and CLKDLL when delay system 1200 is in a locked position. DW1 is relatively greater than DW. In this example, DW1 can be adjusted so that the XCLK and CLKDLL are synchronized within DW by selecting a combination of the S0-SM. When a proper combination of the S0-SM signals is selected, delay circuit 1204 adjusts the OUT signal. Since the OUT signal is the CLKFB signal, adjusting the OUT signal also adjusts the signal relationship between the CLKIN and CLKOUT signals. When the signal relationship between the CLKIN and CLKOUT signals is adjusted, signal relationship between the XCLK and CLKDLL signals is also adjusted.

Claims (25)

1. A circuit comprising:
a comparator including:
a first stage for receiving an input signal; and
a second stage connected to the first stage for receiving a reference signal to output an output signal delayed by an amount of time based on a signal relationship between the input and reference signals; and
a reference generator connected to the comparator, the reference generator including a plurality of configurable transistors to vary the reference signal to adjust a delay between the input and output signals, wherein at least one of the configurable transistors includes a configurable gate-to-drain connection.
2. A circuit comprising:
a comparator including:
a first stage for receiving an input signal; and
a second stage connected to the first stage for receiving a reference signal to output an output signal delayed by an amount of time based on a signal relationship between the input and reference signals; and
a pullup device connected between a first supply node and a pullup node common to the first and second stages; and
a reference generator connected to the comparator, the reference generator including a plurality of configurable devices to vary the reference signal to adjust a delay between the input and output signals.
3. The circuit of claim 2, wherein the comparator further includes:
a pulldown device connected between a second supply node and a pulldown node common to the first and second stages.
4. A circuit comprising:
a comparator including:
a first stage for receiving an input signal; and
a second stage connected to the first stage for receiving a reference signal to output an output signal delayed by an amount of time based on a signal relationship between the input and reference signals; and
a reference generator connected to the comparator, the reference generator including a plurality of configurable devices to vary the reference signal to adjust a delay between the input and output signals, wherein the configurable devices include transistors having configurable drain-to-source connections.
5. The circuit of claim 4, wherein the transistors having configurable drain-to-source connections include configurable gate-to-source connections.
6. The circuit of claim 5, wherein the transistors having configurable drain-to-source connections includes configurable gate-to-gate to connections.
7. A circuit comprising:
a comparator including a comparator reference node to receive a reference signal, an input node to receive an input signal, and an output node to output an output signal; and
a reference generator including:
a plurality of selectable level generators, each of the selectable level generators including a plurality of configurable devices configured in a different configuration to output a selectable signal; and
a multiplexer connected between the selectable level generators and the comparator reference node for selecting the selectable signal from selectable level generators to adjust a delay between the input and output signals.
8. The circuit of claim 7, wherein the comparator further includes:
a first pair of transistors including a first common gate for receiving the input signal; and
a second pair of transistors connected to the first pair of transistors, the second pair of transistors including a second common gate for receiving the selectable signal and including a common drain for outputting the output signal.
9. The circuit of claim 8, wherein the selectable level generators further include a plurality of configurable devices connected to the comparator reference node.
10. The circuit of claim 9, wherein each of the selectable level generators further includes:
a load transistor connected between the selectable output node and a first supply node; and
an output transistor connected between the selectable output node and a second supply node.
11. A method of processing a signal, the method comprising:
receiving an input signal;
receiving a reference signal;
producing an output signal having a delay in comparison to the input signal; and
varying the reference signal to adjust the delay, wherein varying includes configuring a plurality of transistors to adjust the delay, and wherein at least one of the transistors includes a configurable drain-to-source connection.
12. The method of claim 11, wherein producing an output signal includes comparing the input signal and the reference signal.
13. A method of processing a signal, the method comprising:
receiving an input signal;
receiving a reference signal;
producing an output signal having a delay in comparison to the input signal, wherein producing includes comparing the input signal and the reference signal; and
varying the reference signal to adjust the delay, wherein varying includes configuring a plurality of transistors to adjust the delay, and wherein configuring a plurality of transistors includes configuring a drain-to-source connection of at least one of the plurality of transistors.
14. A circuit comprising:
a first pair of transistors having a common gate for receiving an input signal; a first source, a second source, and a common drain;
a second pair of transistors having a first source, a second source, a common gate for receiving a reference signal, and a common drain for outputting an output signal;
a pullup device connected to the common drain of the first pair of transistors, to the first sources of the first and second pairs of transistors, and to a first supply node;
a pulldown device connected to the common drain of the first pair of transistors, to the second sources of the first and seconds pair of transistors, and to a second supply node; and
a reference generator including a plurality of configurable devices connected to the common gate of the second pair of transistors for providing a reference signal.
15. The circuit of claim 14, wherein the pullup device includes a transistor having a gate connected to the common drain of the first pair of transistors, a drain connected to the first source of the second pair of transistors, and a source connected to the first supply node.
16. The circuit of claim 14, wherein the pulldown device includes a transistor having a gate connected to the common drain of the first pair of transistors, a source connected to the second sources of the first and second pairs of transistors, and a source connected to the second supply node.
17. The circuit of claim 14, wherein the plurality of configurable devices includes a number of transistors connected between the first and second supply nodes.
18. The circuit of claim 17, wherein at least one of the number of transistors includes a configurable drain-to-source connection.
19. The circuit of claim 17, wherein at least one of the number of transistors includes a configurable gate-to-source connection.
20. The circuit of claim 17, wherein at least one of the number of transistors includes a configurable gate-to-gate connection.
21. A circuit comprising:
a first pair of transistors having a common gate for receiving an input signal; a first source, a second source, and a common drain;
a second pair of transistors having a first source, a second source, a common gate for receiving a reference signal, and a common drain for outputting an output signal;
a pullup device connected to the common drain of the first pair of transistors, to the first sources of the first and second pairs of transistors, and to a first supply node;
a pulldown device connected to the common drain of the first pair of transistors, to the second sources of the first and seconds pair of transistors, and to a second supply node; and
a reference generator including a bias stage with a bias node for providing a bias signal, and an output stage connect to the bias node and the common gate of the second pair of transistors for providing a reference signal based on the bias signal.
22. The circuit of claim 21, wherein the pullup device includes a transistor having a gate connected to the common drain of the first pair of transistors, a drain connected to the first source of the second pair of transistors, and a source connected to the first supply node.
23. The circuit of claim 22, wherein the pulldown device includes a transistor having a gate connected to the common drain of the first pair of transistors, a source connected to the second sources of the first and second pairs of transistors, and a source connected to the second supply node.
24. The circuit of claim 21, wherein the bias stage includes:
a first transistor connected between the first supply node and the bias node; and
a second transistor connected between the bias node and the second supply node.
25. The circuit of claim 24, wherein the output stage includes:
a first transistor connected between the first supply node and the common gate of the second pair of transistors; and
a second transistor connected between the common gate of the second pair of transistors and the second supply node.
US10/147,645 2002-05-16 2002-05-16 Tunable delay circuit Expired - Fee Related US6900685B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/147,645 US6900685B2 (en) 2002-05-16 2002-05-16 Tunable delay circuit
US11/003,098 US7142032B2 (en) 2002-05-16 2004-12-03 Tunable delay circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/147,645 US6900685B2 (en) 2002-05-16 2002-05-16 Tunable delay circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/003,098 Division US7142032B2 (en) 2002-05-16 2004-12-03 Tunable delay circuit

Publications (2)

Publication Number Publication Date
US20030214338A1 US20030214338A1 (en) 2003-11-20
US6900685B2 true US6900685B2 (en) 2005-05-31

Family

ID=29419064

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/147,645 Expired - Fee Related US6900685B2 (en) 2002-05-16 2002-05-16 Tunable delay circuit
US11/003,098 Expired - Fee Related US7142032B2 (en) 2002-05-16 2004-12-03 Tunable delay circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/003,098 Expired - Fee Related US7142032B2 (en) 2002-05-16 2004-12-03 Tunable delay circuit

Country Status (1)

Country Link
US (2) US6900685B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050083092A1 (en) * 2002-05-16 2005-04-21 Micron Technology, Inc. Tunable delay circuit
US20050099216A1 (en) * 2003-09-30 2005-05-12 Dyer Kenneth C. Adaptive per-pair skew compensation method for extended reach differential transmission
US20060007759A1 (en) * 2004-07-08 2006-01-12 Micron Technology, Inc. Alignment of memory read data and clocking
US20060082403A1 (en) * 2004-10-18 2006-04-20 Kiyoshi Kase Circuit and method for interpolative delay
US20070024331A1 (en) * 2005-07-29 2007-02-01 Feng Lin Bias generator with feedback control
US7269524B1 (en) * 2006-06-30 2007-09-11 Inapac Technology, Inc. Delay lock loop delay adjusting method and apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801070B2 (en) * 2002-05-16 2004-10-05 Micron Technology, Inc. Measure-controlled circuit with frequency control
US7319728B2 (en) * 2002-05-16 2008-01-15 Micron Technology, Inc. Delay locked loop with frequency control
US6839301B2 (en) * 2003-04-28 2005-01-04 Micron Technology, Inc. Method and apparatus for improving stability and lock time for synchronous circuits
US7161391B2 (en) * 2004-12-03 2007-01-09 Micron Technology Skew tolerant high-speed digital phase detector
US7471130B2 (en) * 2005-05-19 2008-12-30 Micron Technology, Inc. Graduated delay line for increased clock skew correction circuit operating range
KR100712993B1 (en) * 2005-06-24 2007-05-02 주식회사 하이닉스반도체 Feedback signal generator in delay locked loop
GB2598722A (en) * 2020-09-03 2022-03-16 Micromass Ltd Analytical instrument circuitry
US11329639B1 (en) * 2021-03-25 2022-05-10 Qualcomm Incorporated Delay cell for quadrature clock generation with insensitivity to PVT variation and equal rising/falling edges

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831423A (en) * 1996-02-29 1998-11-03 Harris Corporation Phase meter and method of providing a voltage indicative of a phase difference
US6191624B1 (en) * 1998-10-23 2001-02-20 Nippon Telegraph And Telephone Corporation Voltage comparator
US6201424B1 (en) 1997-08-29 2001-03-13 Micron Technology, Inc. Synchronous clock generator including a delay-locked loop signal loss detector
US6385129B1 (en) 2001-08-30 2002-05-07 Micron Technology, Inc. Delay locked loop monitor test mode
US6498528B2 (en) * 2000-02-08 2002-12-24 Matsushita Electric Industrial Co., Ltd. Reference voltage generation circuit
US6539490B1 (en) 1999-08-30 2003-03-25 Micron Technology, Inc. Clock distribution without clock delay or skew
US6661717B1 (en) 2002-05-30 2003-12-09 Micron Technology, Inc. Dynamically centered setup-time and hold-time window
US6680874B1 (en) 2002-08-29 2004-01-20 Micron Technology, Inc. Delay lock loop circuit useful in a synchronous system and associated methods

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897714A (en) 1994-09-29 1996-04-12 Toshiba Corp Clock signal generating circuit
US5946244A (en) 1997-03-05 1999-08-31 Micron Technology, Inc. Delay-locked loop with binary-coupled capacitor
US6104225A (en) * 1997-04-21 2000-08-15 Fujitsu Limited Semiconductor device using complementary clock and signal input state detection circuit used for the same
CA2204089C (en) * 1997-04-30 2001-08-07 Mosaid Technologies Incorporated Digital delay locked loop
US6108793A (en) 1997-07-18 2000-08-22 Fujitsu Limited Semiconductor device having timing-stabilization circuit and method of testing such semiconductor device
JPH11177399A (en) 1997-12-15 1999-07-02 Mitsubishi Electric Corp Clock delay circuit, oscillation circuit using the same, phase locked loop and clock generation circuit
US6085345A (en) 1997-12-24 2000-07-04 Intel Corporation Timing control for input/output testability
US6002281A (en) 1998-02-20 1999-12-14 Intel Corporation Delay locked loop
US6269451B1 (en) 1998-02-27 2001-07-31 Micron Technology, Inc. Method and apparatus for adjusting data timing by delaying clock signal
US6191632B1 (en) * 1998-07-24 2001-02-20 Matsushita Electric Industrial Co., Ltd. Clock generation circuit and semiconductor integrated circuit
KR100319607B1 (en) 1999-02-25 2002-01-09 김영환 Analog dll circuit
US6421801B1 (en) 1999-06-08 2002-07-16 Intel Corporation Testing IO timing in a delay locked system using separate transmit and receive loops
US6636093B1 (en) * 2000-07-14 2003-10-21 Micron Technology, Inc. Compensation for a delay locked loop
JP3807593B2 (en) 2000-07-24 2006-08-09 株式会社ルネサステクノロジ Clock generation circuit, control method, and semiconductor memory device
US6333893B1 (en) 2000-08-21 2001-12-25 Micron Technology, Inc. Method and apparatus for crossing clock domain boundaries
US6456130B1 (en) 2001-01-11 2002-09-24 Infineon Technologies Ag Delay lock loop and update method with limited drift and improved power savings
US6492852B2 (en) 2001-03-30 2002-12-10 International Business Machines Corporation Pre-divider architecture for low power in a digital delay locked loop
US6476594B1 (en) * 2001-05-31 2002-11-05 Lsi Logic Corporation Method and apparatus for testing high frequency delay locked loops
US6605969B2 (en) * 2001-10-09 2003-08-12 Micron Technology, Inc. Method and circuit for adjusting the timing of ouput data based on an operational mode of output drivers
US6759911B2 (en) * 2001-11-19 2004-07-06 Mcron Technology, Inc. Delay-locked loop circuit and method using a ring oscillator and counter-based delay
US6774687B2 (en) 2002-03-11 2004-08-10 Micron Technology, Inc. Method and apparatus for characterizing a delay locked loop
US7319728B2 (en) 2002-05-16 2008-01-15 Micron Technology, Inc. Delay locked loop with frequency control
US6900685B2 (en) 2002-05-16 2005-05-31 Micron Technology Tunable delay circuit
US6876594B2 (en) 2002-12-26 2005-04-05 Texas Instruments Incorporated Integrated circuit with programmable fuse array
US6836166B2 (en) * 2003-01-08 2004-12-28 Micron Technology, Inc. Method and system for delay control in synchronization circuits

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831423A (en) * 1996-02-29 1998-11-03 Harris Corporation Phase meter and method of providing a voltage indicative of a phase difference
US6201424B1 (en) 1997-08-29 2001-03-13 Micron Technology, Inc. Synchronous clock generator including a delay-locked loop signal loss detector
US6191624B1 (en) * 1998-10-23 2001-02-20 Nippon Telegraph And Telephone Corporation Voltage comparator
US6539490B1 (en) 1999-08-30 2003-03-25 Micron Technology, Inc. Clock distribution without clock delay or skew
US6498528B2 (en) * 2000-02-08 2002-12-24 Matsushita Electric Industrial Co., Ltd. Reference voltage generation circuit
US6385129B1 (en) 2001-08-30 2002-05-07 Micron Technology, Inc. Delay locked loop monitor test mode
US6661717B1 (en) 2002-05-30 2003-12-09 Micron Technology, Inc. Dynamically centered setup-time and hold-time window
US6680874B1 (en) 2002-08-29 2004-01-20 Micron Technology, Inc. Delay lock loop circuit useful in a synchronous system and associated methods

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7142032B2 (en) 2002-05-16 2006-11-28 Silvestri Paul A Tunable delay circuit
US20050083092A1 (en) * 2002-05-16 2005-04-21 Micron Technology, Inc. Tunable delay circuit
US20050099216A1 (en) * 2003-09-30 2005-05-12 Dyer Kenneth C. Adaptive per-pair skew compensation method for extended reach differential transmission
US7085337B2 (en) * 2003-09-30 2006-08-01 Keyeye Communications Adaptive per-pair skew compensation method for extended reach differential transmission
US7184329B2 (en) 2004-07-08 2007-02-27 Micron Technology, Inc. Alignment of memory read data and clocking
US20060007759A1 (en) * 2004-07-08 2006-01-12 Micron Technology, Inc. Alignment of memory read data and clocking
US20060082403A1 (en) * 2004-10-18 2006-04-20 Kiyoshi Kase Circuit and method for interpolative delay
WO2006044111A3 (en) * 2004-10-18 2006-08-17 Freescale Semiconductor Inc Circuit and method for interpolative delay
US7116147B2 (en) * 2004-10-18 2006-10-03 Freescale Semiconductor, Inc. Circuit and method for interpolative delay
US20070024331A1 (en) * 2005-07-29 2007-02-01 Feng Lin Bias generator with feedback control
US7282972B2 (en) 2005-07-29 2007-10-16 Micron Technology, Inc. Bias generator with feedback control
US20080042739A1 (en) * 2005-07-29 2008-02-21 Micron Technology, Inc Bias generator with feedback control
US7449939B2 (en) 2005-07-29 2008-11-11 Micron Technology, Inc. Bias generator with feedback control
US7269524B1 (en) * 2006-06-30 2007-09-11 Inapac Technology, Inc. Delay lock loop delay adjusting method and apparatus
US20100228514A1 (en) * 2006-06-30 2010-09-09 Rambus Inc. Delay lock loop delay adjusting method and apparatus
US7991572B2 (en) 2006-06-30 2011-08-02 Rambus Inc. Delay lock loop delay adjusting method and apparatus

Also Published As

Publication number Publication date
US7142032B2 (en) 2006-11-28
US20050083092A1 (en) 2005-04-21
US20030214338A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
USRE49018E1 (en) Charge pump for PLL/DLL
US6900685B2 (en) Tunable delay circuit
US6486716B1 (en) Phase compensation circuit
US6388521B1 (en) MOS differential amplifier with offset compensation
US8867685B2 (en) Delay-locked loop with dynamically biased charge pump
US20050093594A1 (en) Delay locked loop phase blender circuit
US9331702B2 (en) Apparatuses and methods for compensating for power supply sensitivities of a circuit in a clock path
US20120086488A1 (en) Differential amplifiers, clock generator circuits, delay lines and methods
CA2686701A1 (en) A buffer comprising a voltage level shifting circuit
US20040051576A1 (en) Delay generator
US20080315929A1 (en) Automatic duty cycle correction circuit with programmable duty cycle target
JP2011130162A (en) Semiconductor device
US6531914B2 (en) Internal voltage generation circuit
US8466728B2 (en) Enhanced delay matching buffer circuit
US6265859B1 (en) Current mirroring circuitry and method
US6229382B1 (en) MOS semiconductor integrated circuit having a current mirror
US7279949B2 (en) Programmable delay element
US7263117B2 (en) Dual control analog delay element and related delay method
US10833662B2 (en) Delay cell and delay line having the same
US7965120B2 (en) Digitally controlled CML buffer
US7541854B2 (en) Delay apparatus of synchronizing circuit having improved jitter characteristic and method of controlling the same
KR100299906B1 (en) Interpolating circuit
US7064595B2 (en) Differential input receiver
US6567317B2 (en) Controlling output current rambus DRAM
KR20030021429A (en) Phase splitter circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVESTRI, PAUL A.;REEL/FRAME:012892/0979

Effective date: 20020502

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223

Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416

Effective date: 20091223

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170531