US6820105B2 - Accelerated montgomery exponentiation using plural multipliers - Google Patents

Accelerated montgomery exponentiation using plural multipliers Download PDF

Info

Publication number
US6820105B2
US6820105B2 US09849853 US84985301A US6820105B2 US 6820105 B2 US6820105 B2 US 6820105B2 US 09849853 US09849853 US 09849853 US 84985301 A US84985301 A US 84985301A US 6820105 B2 US6820105 B2 US 6820105B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
multiplier
scalar
output
register
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09849853
Other versions
US20020010730A1 (en )
Inventor
David M. Blaker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NBMK ENCRYPTION TECHNOLOGIES Inc
Original Assignee
CyberGuard Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/38Concurrent instruction execution, e.g. pipeline, look ahead
    • G06F9/3877Concurrent instruction execution, e.g. pipeline, look ahead using a slave processor, e.g. coprocessor
    • G06F9/3879Concurrent instruction execution, e.g. pipeline, look ahead using a slave processor, e.g. coprocessor for non-native instruction execution, e.g. executing a command; for Java instruction set
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/10Protecting distributed programs or content, e.g. vending or licensing of copyrighted material
    • G06F21/12Protecting executable software
    • G06F21/121Restricting unauthorised execution of programs
    • G06F21/123Restricting unauthorised execution of programs by using dedicated hardware, e.g. dongles, smart cards, cryptographic processors, global positioning systems [GPS] devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/70Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
    • G06F21/71Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information
    • G06F21/72Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure computing or processing of information in cryptographic circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/72Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
    • G06F7/728Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic using Montgomery reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0877Generation of secret information including derivation or calculation of cryptographic keys or passwords using additional device, e.g. trusted platform module [TPM], smartcard, USB or hardware security module [HSM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/12Details relating to cryptographic hardware or logic circuitry
    • H04L2209/125Parallelization or pipelining, e.g. for accelerating processing of cryptographic operations

Abstract

Montgomery exponentiators and methods modulo exponentiate a generator (g) to a power of an exponent (e). The Montgomery exponentiators and methods include a first multiplier that is configured to repeatedly square a residue of the generator, to produce a series of first multiplier output values at a first multiplier output. A second multiplier is configured to multiply selected ones of the series of first multiplier output values that correspond to a bit of the exponent that is binary one, by a partial result, to produce a series of second multiplier output values at a second multiplier output. By providing two multipliers that are serially coupled as described above, Montgomery exponentiation can be accelerated.

Description

CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application Ser. No. 60/203,409, filed May 11, 2000, entitled Cryptographic Acceleration Methods and Apparatus, the disclosure of which is hereby incorporated herein in its entirety as if set forth fully herein.

FIELD OF THE INVENTION

This invention relates to exponentiation circuits and methods, and more particularly to Montgomery exponentiation circuits and methods.

BACKGROUND OF THE INVENTION

Montgomery multiplication is widely used to perform modular multiplication. Modular multiplication is widely used in encryption/decryption, authentication, key distribution and many other applications. Montgomery multiplication also may be used for the basis for Montgomery exponentiation, which also is widely used in the above-described and other applications.

Montgomery multiplication and exponentiation are described in U.S. Pat. No. 6,185,596 to Hadad et al. entitled Apparatus & Method for Modular Multiplication & Exponentiation Based on Montgomery Multiplication; U.S. Pat. No. 6,061,706 to Gai et al. entitled Systolic Linear-Array Modular Multiplier with Pipeline Processing Elements; U.S. Pat. No. 6,085,210 to Buer entitled High-Speed Modular Exponentiator and Multiplier; U.S. Pat. No. 5,513,133 to Cressel et al. entitled Compact Microelectronic Device for Performing Modular Multiplication and Exponentiation Over Large Numbers; and European Patent Application 0 656 709 A2 to Yamamoto et al. entitled Encryption Device and Apparatus for Encryption/Decryption Based on the Montgomery Method Using Efficient Modular Multiplication. Montgomery multiplication and exponentiation also are described in publications by Gutub et al. entitled An Expandable Montgomery Modular Multiplication Processor, Eleventh International Conference on Microelectronics, Nov. 22-24, 1999, pp. 173-176; Tenca et al. entitled A Scalable Architecture for Montgomery Multiplication, First International Workshop, Cryptographic Hardware and Embedded Systems, Lecture Notes on Computer Science, Vol. 1717, 1999, pp. 94-108; and Freking et al. entitled Montgomery Modular Multiplication and Exponentiation in the Residue Number System, Conference Record of the Thirty-Third Asilomar Conference Signals, Systems, and Computers, Vol. 2, 1999, pp. 1312-1316. The disclosure of all of these references is hereby incorporated herein in their entirety as if set forth fully herein.

Montgomery exponentiation often is used with large numbers. Accordingly, it may be desirable to accelerate Montgomery exponentiation so that rapid encryption/decryption, authentication, key management and/or other applications may be provided.

SUMMARY OF THE INVENTION

Embodiments of the invention provide Montgomery exponentiators and methods that modulo exponentiate a generator (g) to a power of an exponent (e). Embodiments of Montgomery exponentiators and methods include a first multiplier that is configured to repeatedly square a residue of the generator, to produce a series of first multiplier output values at a first multiplier output. A second multiplier is configured to multiply selected ones of the series of first multiplier output values that correspond to a bit of the exponent that is a predetermined binary value, such as binary one, by a partial result, to produce a series of second multiplier output values at a second multiplier output. By providing two multipliers that are serially coupled as described above, Montgomery exponentiation can be accelerated.

Montgomery exponentiators and methods according to other embodiments of the invention include a first register that is coupled to the second multiplier output, and is configured to serially store the series of second multiplier output values, to thereby provide the partial result. A second register is coupled to the first multiplier output, and is configured to serially store the series of first multiplier output values, and to serially provide the series of first multiplier values to the first and second multipliers. In yet other embodiments, the first register is configured to be initialized to the first binary value, and the second register is further configured to be initialized to the residue of the generator.

Montgomery exponentiators and methods according to other embodiments of the present invention include a first multiplier that is configured to be responsive to a residue of the generator and that includes a first multiplier output. A second multiplier is configured to be responsive to the first multiplier output, and includes a second multiplier output. In other embodiments, a first register is coupled to the second multiplier output, and the second multiplier output is also responsive to the first register. A second register is coupled to the first multiplier output, and the first multiplier is further responsive to the second register. The second multiplier is responsive to the first multiplier output via the second register. In still other embodiments, a controller also is provided that is configured to cause the first multiplier to square contents of the second register, and to cause the second multiplier to multiply the contents of the second register by contents of the first register if a selected bit of the exponent is a predetermined binary value, such as binary one, and to refrain from multiplying the contents of the second register by the contents of the first register if the selected bit of the exponent is not the predetermined binary value.

In any of the above-described embodiments, conventional Montgomery multipliers may be used for the first and second multipliers. However, according to other embodiments of the invention, embodiments of Montgomery multipliers may be used that can provide accelerated Montgomery multiplication using plural multipliers. These embodiments of the invention use Montgomery multipliers and methods that modular multiply a residue multiplicand by a residue multiplier to obtain a residue product. Embodiments of Montgomery multipliers and methods include a scalar multiplier, a first vector multiplier and a second vector multiplier. A controller is configured to control the scalar multiplier, the first vector multiplier and the second vector multiplier, to overlap scalar multiplies using a selected digit of the multiplier and vector multiplies using a modulus and the multiplicand. It will be understood that as used herein, digit refers to a number place in any base number system, including decimal, hexidecimal and binary. The latency of Montgomery multiplication thereby can be reduced to nearly the latency of a single scalar multiplication.

The Montgomery multipliers and methods according to other embodiments of the invention include a scalar multiplier that is configured to multiply a least significant digit of the multiplicand by a first selected digit of the multiplier, to produce a scalar multiplier output. A first vector multiplier is configured to multiply the scalar multiplier output by a modulus, to produce a first vector multiplier output. A second vector multiplier is configured to multiply a second selected digit of the multiplier by the multiplicand, to produce a second vector multiplier output. An accumulator is configured to add the first vector multiplier output and the second vector multiplier output, to produce a product output. The first selected digit of the multiplier preferably is a next more significant digit of the multiplier, relative to the first selected digit of the multiplier.

In other embodiments of the invention, the scalar multiplier is further configured to multiply the least significant digit of the multiplicand by the first selected digit of the multiplier and by one over (i.e., divided by) a negative of a least significant digit of the modulus, to produce the scalar multiplier output. In yet other embodiments, a first multiplexer also may be provided that is configured to multiplex the least significant digit of the multiplicand and one over the negative of the least significant digit of the modulus into the scalar multiplier.

In still other embodiments of the invention, a first feedback path is configured to feed the scalar multiplier output back into the scalar multiplier. A second feedback path is configured to feed the product output into the scalar multiplier. A summer is configured to sum the scalar multiplier output and the product output from the respective first and second feedback paths and to provide the sum of the scalar multiplier output and the product output to the scalar multiplier. A second multiplexer also is provided that is configured to multiplex the first selected digit of the multiplier and the sum of the scalar multiplier output and the product output into the scalar multiplier. A first register is coupled between the scalar multiplier output and the first vector multiplier and a second register is coupled between the product output and the second feedback path. Accordingly, latency in Montgomery multiplication can be reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of Montgomery multipliers and methods according to embodiments of the present invention.

FIG. 2 is a flowchart illustrating operations for performing Montgomery multiplication according to embodiments of the present invention.

FIG. 3 is a timing diagram that illustrates timing of operations for performing Montgomery multiplication according to embodiments of the present invention.

FIGS. 4-14 are diagrams of an example of embodiments of the present invention.

FIG. 15 is a block diagram of Montgomery exponentiators and methods according to embodiments of the present invention.

FIG. 16 is a flowchart illustrating operations for performing Montgomery exponentiation according to embodiments of the present invention.

FIG. 17 is a timing diagram that illustrates timing of operations for performing Montgomery exponentiation according to embodiments of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.

The present Detailed Description will first begin with a description of Montgomery multipliers and methods that can be used to perform Montgomery exponentiation and methods, according to embodiments of the invention. It will be understood, however, that conventional Montgomery multipliers and methods also may be used. The present Detailed Description then will describe Montgomery exponentiators and methods according to embodiments of the present invention. Finally, an example will provide detailed structural and functional descriptions of a Public Key Engine (PKE) that includes accelerated Montgomery exponentiation and multiplication according to embodiments of the invention.

Montgomery Multiplication

The Montgomery multiplication algorithm described below is Algorithm 14.36 in Menezes et al., Handbook of Applied Cryptography, CRC Press, Inc., 1997, p. 602, the disclosure of which is hereby incorporated herein in its entirety as if set forth fully herein. In embodiments of the invention, the algorithm operates on digits of the numbers.

Each number is divided into n digits of WORD_SIZE length. The inputs are a modulus m, a multiplier x, and a multiplicand y, each of which is an R residue modulo m, R=2 n*WORD SIZE, and m′=−m[0]−1mod 2WORD SIZE. The algorithm is:

a=0
for i from 0 to n−1 do {
u[i]=((a[0]+x[i]*y[0])*m1)mod 2WORDSIZE;
a=(a+x[i]*y+u[i]*m)/2WORDSIZE,
}
if a≧m{
a=a−m;
}
return (a);

Embodiments of the present invention can simultaneously use three multipliers to accelerate Montgomery multiplication. Embodiments of the present invention may stem from recognitions that the calculation of u[i] in the Montgomery algorithm, i.e., u[i]=((a[0]+x[i]*y[0])*m′)mod 2WORD SIZE, involves two scalar multiplies, whereas the calculation of a in the Montgomery algorithm, i.e., a=(a+x[i]*y+u[i]*m)/2WORD SIZE, involves two vector multiplies. Moreover, the results of the scalar multiplication are used in order to perform one of the vector multiplications. Embodiments of the invention can allow the vector multiplication at the end of each loop iteration to overlap with the scalar multiplications at the beginning of the next loop iteration. Accordingly, embodiments of the invention can exploit parallelism of the Montgomery multiplication algorithm, and can execute the scalar multiplication with reduced, and preferably minimum, latency, and increased, and preferably maximum, possible throughput, which may be limited mainly by the multipliers.

Referring now to FIG. 1, Montgomery multipliers and methods according to embodiments of the invention are illustrated. These embodiments preferably are embodied in one or more integrated circuit chips. As shown in FIG. 1, embodiments of Montgomery multipliers and methods 100 include a scalar multiplier 110, denoted in FIG. 1 by x5, that is configured to multiply a least significant digit y[0] of the multiplicand y by a first selected digit x[0] of the multiplier x, to produce a scalar multiplier output 112. A first vector multiplier 120, denoted in FIG. 1 by xv1, is configured to multiply the scalar multiplier output 112 by a modulus m[j], to produce a first vector multiplier output 122. A second vector multiplier 130, denoted in FIG. 1 by xv2, is configured to multiply a second selected digit x[i] of the multiplier x by the multiplicand y[j], to produce a second vector multiplier output 132. The second selected digit preferably is a next more significant digit of the multiplier x, relative to the first selected digit. An accumulator 140, is configured to add the first vector multiplier output 122 and the second vector multiplier output 132, to produce a product output, denoted in FIG. 1 by [j−1].

Still referring to FIG. 1, in other embodiments, the scalar multiplier 110 is further configured to multiply the least significant digit y[0] of the multiplicand y, by the first selected digit x[0] of the multiplier x, and by 1 over a negative of a first digit of the modulus mod 2WORD SIZE, denoted in FIG. 1 as −m[0]−1, to produce the scalar multiplier output 112. More particularly, a first multiplexer 160 is configured to multiplex the least significant digit y[0] of the multiplicand y, and 1 over a negative of a first digit of the modulus, −m[0]−1, into the scalar multiplier 110.

Still referring to FIG. 1, in other embodiments, a first feedback path 114 is configured to feed the scalar multiplier output 112 back into the scalar multiplier 110. A second feedback path 144 is configured to feed the product output a[0] back into the scalar multiplier 110. The first and second feedback paths 114 and 144, respectively, are configured to be applied to a summer 150, such that the summer 150 is configured to sum the scalar multiplier output 112 and the product output a[0] from the respective first and second feedback paths 114 and 144, and to provide the sum 152 of the scalar multiplier output 112 and the product output a[0] to the scalar multiplier 110.

Still referring to FIG. 1, in yet other embodiments, a second multiplexer 170 may be provided that is configured to multiplex the first selected digit x[i−1] of the multiplier x, and the sum 152 of the scalar multiplier output 112 and the product output a[j−1], into the scalar multiplier 110. In other embodiments, a first register 180, denoted by R1 in FIG. 1, is coupled between the scalar multiplier output 112 and the first vector multiplier 120. A second register 182, denoted by R2 in FIG. 1, is coupled between the accumulator 140 and the second feedback path 144. Finally, in still other embodiments, a controller 190 is provided that outputs a plurality of control signals C that are configured to control the first multiplexer 160, the second multiplexer 170, the scalar multiplier 110, the first and second vector multipliers 120 and 130, and/or the first and second registers 180 and 182, as shown in FIG. 1. It will be understood that the controller also may be used to control the accumulator 140 and the summer 150, and also may be used to control the inputs to the multiplexers 160 and/or 170 and/or the multipliers 110, 120 and/or 130. It also will be understood that the input signals, such as the multiplier x and the multiplicand y also may be provided to the controller 190 and distributed by the controller in a manner shown in FIG. 1.

In general, the controller 190 is configured to control the scalar multiplier 110, by the first vector multiplier 120, and the second vector multiplier 130, to overlap scalar multiplies using a selected digit of the multiplier, and vector multiplies using a modulus and the multiplicand, to thereby allow latency of Montgomery multiplication to be reduced to the latency of a single scalar multiplication. It will be understood by those having skill in the art that the controller 190 may be embodied as special purpose computer(s), general purpose computer(s) running a stored program(s), logic gates, application-specific integrated circuit(s), programmable logic controller(s), state machine(s), combinations thereof and/or other controller configurations well known to those having skill in the art.

FIG. 2 is a flowchart that illustrates operations for performing Montgomery multiplication according to embodiments of the present invention. These operations may be performed by the controller 190 of FIG. 1. FIG. 3 is a timing diagram illustrating timing of operations over a series of cycles, according to embodiments of the invention.

Referring now to FIGS. 1, 2 and 3, the least significant digit y[0] of the multiplicand y, the least significant digit x[0]of the multiplier x, and −m[0]−1, are loaded, for example, into the multiplexers 160 and 170 of FIG. 1, as shown at Block 210. The loading may be accomplished during time intervals 0, 1 and 2 of FIG. 3. It will be understood that the loading sequence may be changed, and intervals 3 and 4, during which no loading occurs, may be reduced or eliminated.

Then, referring to Block 212, a first scalar multiplier output 112, designated u[0], is computed by multiplying x[0]*y[0] using the first and second multiplexers 160 and 170, and the scalar multiplier 110. In FIG. 3, this multiplication is shown as occurring in time slot 5, with the results m[0] being produced in time slot 8. The first scalar multiplier output u[0] may be stored in the first register 180. At this point, there is no previous partial result, so u[0]=u[0]*(−m[0]−1). This is a second scalar multiply, as shown in Block 212.

Then, referring to Block 214, the next most significant digit of the multiplier x[1] is loaded into the scalar multiplier 110, and x[0] is pipelined into the vector multiplier 120 via register 180, as shown at time slots 7 and 8 of FIG. 3. The vector multipliers 120 and 130, begin to multiply the modulus m by u[0], and also to multiply x[1] by y, as shown at Block 216 of FIG. 2 and at time slots 8-15 of FIG. 3. The results are accumulated at Block 218, and stored in the second register 182.

When the vector multipliers 120 and 130 and the accumulator 140 produce the first digit of the product a[0], at time slot 13 of FIG. 3, it is loaded, via the second feedback path 144, into the scalar multiplier 110 using the summer 150 and the second multiplexer 170, as shown at Block 222 of FIG. 2. The scalar multiplier 110 then begins to multiply x[1] by y[0] and add a[0] using the multiplexer 160, the multiplexer 170 and the summer 150, as shown at time slot 13. The result u[1] is produced at the output 112 of the scalar multiplier 110 in time slot 17 of FIG. 3 and at Block 224 of FIG. 2. Again, there is a second scalar multiply.

At Block 224, each digit of the multiplicand y is multiplied by the multiplier u and added to the previous partial result, producing a partial result having n+1 digits. The most significant n digits may be stored, for example, as n+1 digits plus an overflow bit, where the overflow bit may be stored in a register in the datapath. The least significant digit of each partial result is fed back to the scalar multiplier 110 for the next result via the second feedback path 144, so that this need not add any delay or latency to the result. Only the least significant digit may need an extra multiplier latency to fill the pipeline, as was shown in time slots 0-5 of FIG. 3. At the end of the multiplication of Block 224, m may be subtracted from the result. This subtraction also may be folded into the last loop of iteration. If the result is negative, m may be added back. Otherwise, operations may continue. The result may be copied to a register.

Then, referring to Block 226, as long as i is less than n, the index values for x, y and u are incremented by 1 at Block 228, and operations again proceed to Block 214, as shown in time slots 16 and 17 of FIG. 3. Thus, in one clock cycle after the end of a loop, x[i+2] for the next loop is loaded into the scalar multiplier 110, and simultaneously x[i+1] and u[i+1] are loaded into the vector multipliers 120 and 130. Since all of the multipliers may have the same latency, as long as twice the latency through the scalar multiplier 110 is less than or equal to the number of digits in the multiplicand y, the latency of the scalar multiplier 110 may only appear before the first vector multiply (time slots 0-5 of FIG. 3) and may be hidden thereafter. If not, then the performance may only square linearly, rather than as the square, for “small” numbers.

The total execution time for performing Montgomery multiplication according to embodiments of the invention that are illustrated in FIGS. 1-3 may be calculated as follows:

16+

3*(5+CEILING(len[m]/64)−1))+

1.5*len[exponent]*

{12+(CEILING(len[m]/64)*(CEILING((len[m])/64+1)+(5+(CEILING(len[m]/64)−1)};

where len denotes length. Accordingly, the latency of a single Montgomery multiplication can be reduced to nearly the latency of a single scalar multiplication.

The scalar multiplier 110 performs two successive scalar multiplies for each digit of the multiplier. This latency may remain, because the first output u[0], of the scalar multiplier 110, is generated before the two vector multipliers 120 and 130 can start iterating over the multiplicand digits (y[j]) and the multiplier digits (x[i]). After u[0], the scalar multiplier 110 starts the calculations for the second multiplier digit in parallel with the completion of the vector multiplications for the first multiplier digit. For numbers with as many digits as the depth of the scalar multiplier 110, there need be no additional latency. For smaller numbers, there may be some added latency because of the scalar multiplier pipeline, but this additional latency still can be less than without the overlapped multiplications.

Montgomery Exponentiation

The algorithm as described below is Algorithm 14.94 in Menezes et al., Handbook of Applied Cryptography, CRC Press, Inc., 1997, p.620, the disclosure of which is hereby incorporated herein by reference in its entirety as if set forth fully herein.

INPUT: m=(ml−1 . . . m0)b, R=b1, m′=−m−1 mod b, e=(et . . . e0)2 with et=1, and an integer x, 1≦x<m.

OUTPUT: xe mod m.

1. {tilde over (x)}←Mont(x, R2 mod m), A←R mod m. (R mod m and R2 mod m may be provided as inputs.)

2. For i from t down to 0 do the following:

2.1 A←Mont(A, A).

2.2 If ei=1 then A←Mont(A, {tilde over (x)}).

3. A←Mont(A, 1).

4. Return(A).

The algorithm described above can use a single Montgomery multiplier efficiently. For zero exponent bits, it skips ahead to the next lower exponent bit. The number of multiplies may be |exponent|+HammingWeight(exponent), where |exponent| is the number of significant bits in the exponent. Thus, the number of multiplies generally is 1.5 times the number of bits in the exponent, not including any zeroes above the most-significant non-zero bit, assuming the Hamming weight of the exponent is 0.5, which is a reasonable assumption for large random numbers that generally are used in cryptographic algorithms.

Embodiments of the invention may stem from recognition that if a user is willing to accept some inefficiency, the throughput of the exponentiation can be improved, for example by 50%, by duplicating the Montgomery multiplication datapath and reversing the order of the exponentiation. Thus, according to embodiments of the invention, first and second Montgomery multipliers are provided. The first Montgomery multiplier is loaded (initialized) with gR mod m, and performs |exponent|−1 squaring operations. The output of each squaring operation is loaded into the second Montgomery multiplier. The second multiplier is preloaded (initialized) with 1, which is the partial result, and gR mod m, which is the first multiplier output. If the least-significant bit of the exponent is binary one, the second multiplier multiplies gR mod m by one and writes the new partial result. If not, the second multiplier is idle for the first bit and would refrain from performing the multiply.

At the end of the first multiplication, the first multiplier loads its output (g2R mod m), into the multiplier register of the second multiplier. These operations repeat for each bit of the exponent. There can be |exponent| multiplication cycles, rather than |exponent|+HammingWeight(exponent) multiplication cycles.

It will be understood that an inefficiency may arise from the fact that the second multiplier does not perform a multiply when the exponent bit is zero. However, the latency of an individual operation can be reduced, for example by 33% on average, and there need be no duplication of a bit number cache or of control logic, including the host interface. Since the two multipliers are running in parallel with identical word lengths, the control logic may only be somewhat more complex, for example about 1.2-1.4 times as complex, on average.

Referring now to FIG. 15, Montgomery exponentiators and methods according to embodiments of the invention are illustrated. These embodiments preferably are embodied in one or more integrated circuit chips. As shown in FIG. 15, embodiments of Montgomery exponentiators and methods 300 can be used to modulo exponentiate a generator (g) to a power of an exponent (e), to obtain a result, i.e, r=ge mod m. These embodiments of Montgomery exponentiators and methods 100 include a first multiplier 310 that is configured to repeatedly square a residue of the generator (gR mod m), to produce a series of first multiplier output values at a first multiplier output 314. Stated differently, the first multiplier 310 produces a series of first multiplier output values (g2R mod m), (g4R mod m), (g8R mod m), at the first multiplier output 314. A second multiplier 320 is configured to multiply selected ones of the series of first multiplier output values that correspond to a bit of the exponent that is a predetermined binary value, such as binary one, by a partial result 324, to produce a series of second multiplier output values at a second multiplier output 322. It will be understood that the first and second multipliers 310 and 320 can be conventional multipliers, such as conventional Montgomery multipliers. However, preferably, the first and second multipliers 310 and 320 each comprises embodiments of Montgomery multipliers that were described above in connection with FIGS. 1-3.

Still referring to FIG. 15, in other embodiments, a first register, also referred to as an A register, 330, is coupled to the second multiplier output 322. The first register 330 is configured to serially store the series of second multiplier output values from the second multiplier output 320, to thereby provide the partial result 324 to the second multiplier 320. A second register, also referred to as a B register, 340, is coupled to the first multiplier output 314, and is configured to serially store the series of first multiplier output values and to serially provide the series of first multiplier values to first and second inputs 312 and 316, respectively, of the first multiplier 310. In embodiments of the invention, the first register 330 is further configured to be initialized to the first binary value, preferably binary one. The second register 340 is further configured to be initialized to the residue of the generator, i.e. gR mod m.

Still referring to FIG. 15, in still other embodiments, a controller 350 is provided that outputs a plurality of control signals C, that are configured to control the first and second multipliers 310 and 320, and the first and second registers 330 and 340. It also will be understood that the input signals, such as the generator g and the exponent e also may be provided to the controller 350 in a manner shown in FIG. 15. Other input signals also may be provided. Finally, it will be understood by those having skill in the art that the controller 350 may be embodied as special purpose computer(s), general purpose computer(s) running a stored program(s), logic gates, application-specific integrated circuit(s), programmable logic controller(s), state machine(s), combinations thereof and/or other controller configurations well known to those having skill in the art.

In general, in embodiments of the invention, the controller 350 is configured to cause the first multiplier 310 to square the contents of the second register 340. The controller 350 also is configured to cause the second multiplier 320 to multiply the contents of the second register 340 by contents of the first register 330, if a corresponding bit of the exponent e is a predetermined binary value, such as binary one, and to refrain from multiplying the contents of the second register 340 by the contents of the first register 330, if the corresponding bit of the exponent is not the predetermined binary value.

FIG. 16 is a flowchart that illustrates operations for performing Montgomery exponentiation according to embodiments of the present invention. These operations may be performed by the controller 350 of FIG. 15. FIG. 17 is a timing diagram illustrating timing of operations over a series of time periods, according to embodiments of the invention. In FIG. 20, the example given is computing r=g10010110 mod m, so that e=10010110 or 150 decimal.

Referring now to FIGS. 15, 16 and 17, initializing is performed at Block 410 by storing binary one in the A register 330 and storing gR mod m in the B register 340, as shown at time interval 0 of FIG. 17. An exponent index is initialized to the Least Significant Bit (LSB).

Then, in the next time interval 1 of FIG. 17, a test is made at Block 430 as to whether the exponent bit corresponding to the exponent index is 1. Since in time interval 1 the exponent bit is 0, the second multiplier 320 is not active. Rather, at Block 420, the contents of the B register 340 is squared and stored back in the B register 340 at Block 420. The exponent index is incremented by 1 at Block 450. Thus, at the end of the first time interval, binary 1 remains in the A register 330 and g2R mod m is stored in the B register 340.

At Block 460, a test is made as to whether the exponent index is less than the Most Significant Bit (MSB). Since at the end of time interval 1 the exponent index is less than the MSB, operations loop back to Block 430.

Referring again to Block 430, during time interval 2, the exponent bit is binary 1, so that at Block 420, the contents of the A register 330 is multiplied by the contents of the B register 340 in the second multiplier 320, and stored in the A register 330. Thus, at the end of time interval 2, the contents of the A register 330 is g2 mod m. Then, at Block 420, the contents of the B register 340 is again squared in the first multiplier 310 and again stored in the B register 340, so that at the end of the second time interval the contents of the B register is g4R mod m. It also will be understood that the operations of Blocks 420 and 440 also may be performed in parallel during a time interval. The exponent index is again incremented at Block 450. Since at the end of the second time interval the exponent index is not greater than the most significant bit (Block 460), operations again loop back to Block 430.

As operations continue to proceed, the B register 340 will continue to accumulate intermediate exponentiation results, and the A register 330 will continue to accumulate intermediate results of Montgomery multiplication. When all of the bits of the exponent have been processed at Block 460, the output of the second multiplier 322 and/or the A register 330 will contain the result r.

Accordingly, embodiments of the invention as described in FIGS. 15-17, can first scan the exponent from most to least significant bit, to find the index of the most significant non-zero bit. If no non-zero bit is found, the exponent is zero, and the device returns 1 as the result. If a non-zero bit is found at index most_significant_bit, embodiments of the invention perform the exponentiation according to the following algorithm:

A= 1;
B = gR mod m;
most_significant_bit = 0
for i from (|exponent| − 1) down to 0 do { // |exponent| is the number of
//significant bits in the
exponent
if !found_exp_msb_flag {
if exponent[i] {
most_significant_bit = i;
found_exp_msb_flag = 1;
}
}
}
if (found_exp_msb_flag) { //the exponent is non-zero,
therefore return A,
// which is 1
for i from 0 up to most_significant_bit // in parallel
// Montgomery multiplier A
if exponent[i] {
A = montgomery_multiplication(A, B);
// multiply A times the generator
}
// Montgomery multiplier B
B = montgomery_multiplication(B,B); // square B
}
}
return (A).

The number of multiplies that is performed according to embodiments of FIGS. 15-17 generally is |exponent|. Thus, the number of multiplies generally is the number of bits in the exponent, not including any zeroes above the most-significant non-zero bit.

Embodiments of the present invention can use two Montgomery multipliers to speed up both RSA private key operations using the Chinese Remainder Theorem and also can use the two Montgomery multipliers to perform exponentiations modulo a prime number, where the Chinese Remainder Theorem does not apply. Embodiments of the present invention can perform RSA private key operations by performing each exponentiation modulo p and q in a separate multiplier, as described above. The algorithm for the RSA private key operation is described below:

p—Secret prime number, used during key generation. Also used for private key operations if using Chinese Remainder Theorem method. Size equals half the size of n. Note that p is less than q.

q—Secret prime number, used during key generation. Also used for private key operations if using Chinese Remainder Theorem method. Size equals half the size of n. Note that p is less than q.

d—Private key. d=e{circumflex over ( )}−1 mod ((p−1)(q−1)). The size of d is limited by the maximum operand size for modular arithmetic operations.

dp—Precomputed for speed. dp=d mod ((p−1) mod p).

dq—Precomputed for speed. dq=d mod ((q—1) mod q).

n—Public key. The product of the two secret prime numbers, p and q. The size of d is limited by the maximum operand size for modular arithmetic operations.

pInv—Derived value used for Chinese Remainder Theorem method. pInv=p{circumflex over ( )}−1 mod q

cp—The additive inverse of the multiplicative inverse of the least-significant digit of p, mod 2128. This is an input to the exponentiation function.

cq—The additive inverse of the multiplicative inverse of the least-significant digit of q, mod 2128. This is an input to the exponentiation function.

A sequence of operations for RSA private key computation may reuse some of the operands to save storage space:

First Public Key engine. Each Montgomery multiplier actually may be part of a complete modular arithmetic unit:

o1=i mod p

o1=o1*R mod p (mod p)

dp=o1{circumflex over ( )}A dp (mod p)

Second Public Key engine, in parallel with the first (also may duplicate storage):

o2=i mod q

o2=o2*R mod q (mod q)

dq=o2{circumflex over ( )}dq(mod q)

First Public Key engine, after both engines finish the first set of parallel computations:

o=(dq−dp) mod q

o=(o*pInv) mod q

o=(o*p) mod n

o=(o+dp) mod n

Since exponentiation followed by modulus are the most computationally intensive parts of the algorithm, this can reduce the execution time effectively in half.

Embodiments of the invention can perform other exponentiations by controlling the first multiplier 310 to constantly square the generator 312, while the second multiplier 320 multiplies the partial result 324 by the output of the first multiplier 314 for those powers of 2 corresponding to a 1 in the exponent expressed as a binary number. The number of multiplies that are performed can be the number of bits in the exponent, not including any zeroes above the most-significant non-zero bit, regardless of the Hamming weight of the exponent.

EXAMPLE

The following Example provides a detailed structural and functional description of a Public Key Engine (PKE) that includes accelerated Montgomery exponentiation and multiplication according to embodiments of the invention. This Example is illustrative and shall not be construed as limiting.

The Public Key Engine (PKE) calculates functions of large numbers modulo another large number. Moduli up to 2MAX LENGTH−1 are supported, where MAX_LENGTH=4,096 for the present Example. Large numbers are partitioned into digits of WORD_SIZE bits each, where WORD_SIZE=128 for the present Example. The length of large numbers are always given in number of digits. The PKE supports the following functions: Mod: r=a mod m; R Mod: r=R mod m, where R is defined as 2WORD SIZE*len[m], and is internally generated by the PKE; Addition: r=a+b mod m; Subtraction: r=a−b mod m; Additive Inverse: r=−a mod m; Multiplication: r=a*b mod m; Multiplicative inverse: r=a−1 mod m; and Exponentiation: r=ge mod m. Exponentiation uses Montgomery's algorithm. Inputs are: a=g*R mod m, b=e, c=−m[0]−1 mod 2WORD SIZE, and m. Note that m must be odd, else c does not exist.

Table 1 below lists restrictions on a, b, m and r for all functions.

TABLE 1
Restrictions on (a, b, m, r) for all functions
m 1 ≦ len[m] ≦ 32
offset[m] + len[m] ≦ 256
mMSD ≠ 0
a 1 ≦ len[a] ≦ 32
offset[a] + len[a] ≦ 256
b 1 ≦ len[b] ≦ 32
offset[b] + len[b] ≦ 256
r offset[r] + len[m] ≦ 256; len[r]≡len[m]

Table 2 below gives additional restrictions on operands a and b for each function. Note that for functions in which operands a or b may contain fewer digits than m, these operands will be automatically left-padded with “0” digits by the hardware (but the padding digits will not actually be written to the Cache).

TABLE 2
Error flags that
Additional Additional could be set
Function restriction(s) on a restriction(s) on b (see Table 6)
Mod none n/a 1, 2
R Mod n/a n/a 1, 2
Addition len(a) <= len(m) len(b) <= len(m) 1, 2, 3, 4
a < m b < m
Subtraction len(a) <= len(m) len(b) <= len(m) 1, 2, 3, 4
a < m b < m
Additive Inverse len(a) <= len(m) n/a 1, 2, 3
a < m
Multiplication len(a) <= len(m) len(b) <= len(m) 1, 2, 3, 4
a < m b < m
Multiplicative len(a) <= len(m) n/a 1, 2, 3, 6, 7
Inverse a < m
gcd(a, m) = 1
Exponentiation len(a) = len(m) none 1, 2, 3
a < m

The PKE includes a 4Kbyte Big Number Cache. The Cache is organized as 256 words by WORD_SIZE bits. It is a load/store architecture, i.e., each arithmetic instruction only operates on the contents of the Big Number Cache. The PKE also includes working storage (tempA and tempB, which are not programmer visible) so that the result (r) can reuse the memory from one of its input operands.

The PKE also includes a 32-byte command block, which is used to specify which function to execute. This block of eight 32-bit registers is loaded with the opcode and pointers to operands for a particular function. FIG. 4 is a block diagram that illustrates connection of the PKE to a public key host interface. The PKE I/O signatures are presented in Table 3 below. This table provides signal names, directions and brief descriptions.

TABLE 3
Signal Name Type Description
clk Input Clock signal.
rst n Input Active low asynchron-
ous reset signal.
pke_data_in_i[WORD_SIZE-1:0] Input Input data bus.
pke_addr_i[7.0] Input Address bus.
pke_cache_wr_i Input Cache write.
pke_cache_rd_i Input Cache read.
pke_cmd_wr_i Input Command write.
pke_cmd_rd_i Input Command read.
pke_go_i Input Go signal.
pke_data_out_o[WORD_SIZE-1:0] Output Output data bus.
pke_busy_o Output Busy signal.
pke_err_o[7:0] Output Error flags.

The five command signals are the pke_cache_rd/wr_i, pke_cmd_rd/wr_i, and pke_go_i pins. As a safety precaution against initiating erroneous commands, at most one of these pins can be active at any given time, otherwise no operation is initiated.

Reads or writes to the programmer-visible storage arrays (i.e. the Big Number Cache or the Command Block Registers) are accomplished by setting up a valid address (and data for a write) and pulsing one of the pke_cache/cmd_rd/wr_i signals. Both reads and writes are fully pipelined for burst operation. Read data on pke_data_out_o is held indefinitely until the next read command. The command registers are addressed by pke_addr_i[2:0], and the upper bits (i.e. pke_addr_i[7:3]) must be 0 for a command register access to occur. Table 4 below lists the read latencies.

TABLE 4
Read Latency Read Latency
assuming Host assuming Host
Array clock = PKE clock clock = ½ PKE clock
Big Number Cache 5 2
Command Block Registers 2 1

The Command Block Registers are loaded with a command opcode and parameter pointers and lengths. Note that since the PKE data bus is much wider than 32 bits, the PKE data bus is big-endian, the Command Block Registers are read or written on the upper 32 bits [127:96] of the PKE data bus. Table 5 below shows the format of the Command Block Registers.

TABLE 5
Reg Fields
0 Opcode Reserved [27:0]
[31:28]
1 Reserved [31:8] r offset [7:0]
2 Reserved [31:22] m length [21:16] Reserved [15:8] m offset [7:0]
3 Reserved [31:22] a length [21:16] Reserved [15:8] a offset [7:0]
4 Reserved [31:22] b length [21:16] Reserved [15:8] b offset [7:0]
5 Reserved [31:8] c offset [7:0]
6 Reserved [31:0]
7 Reserved [31:0]

Once a command opcode and the associated parameter information have been loaded into the Command Block Registers, the pke_go_i signal can be asserted as early as the next clock cycle following a Command Block or Cache write. The PKE will respond by asserting the pke_busy_o signal until the command has completed, at which point the pke_busy_o signal will go low (provided pke_go_i has already returned low; otherwise pke_busy_o waits for pke_go_i to be de-asserted). A number of Error flags (pke_err_o) can be examined after the de-assertion of pke_busy_o to determine if the function was executed successfully. Table 6 lists the error codes.

TABLE 6
Error
Flag Description
0 Illegal opcode.
1 Invalid ‘r’ parameter.
2 Invalid ‘m’ parameter.
3 Invalid ‘a’ parameter.
4 Invalid ‘b’ parameter.
5 Mult. inv. parameters are not relatively prime (i.e., gcd(a, m) ≠ 1).
6 Mult. Inv. watchdog timer expired (should never happen).
7 <Reserved - read as 0>

FIG. 5 is a top level block diagram of the PKE. As shown, there are four storage arrays in the PKE: a Big Number Cache, a Command Block, a tempA register and a tempB register.

The Big Number Cache (256 words by WORD_SIZE bits) is the only programmer visible memory in the PKE. The programmer accesses its contents by appending load and/or store command blocks to the command queue. Data is stored big-endian, meaning the more-significant words are at lower addresses.

The Command Block (8 words by 32 bits) resides in the Controller. It holds the opcode and parameters for one command. It is programmer visible.

The tempA (128 words by WORD_SIZE bits) register is the only working store used for all operations except exponentiation and multiplicative inverse. For multiplication, the result may need to be padded with an extra word before the modulo step. For exponentiation, tempA stores the intermediate result of a Montgomery multiplication, and tempB stores the intermediate exponentiation result, and g*R mod m. For multiplicative inverse, tempA stores u and D, and tempB stores v and B. Data is stored little-endian, meaning the more-significant words are at higher addresses. This array is not programmer visible.

The tempB (128 words by WORD_SIZE bits) register is a working store that is only used for exponentiation and multiplicative inverse. Data is stored little-endian, meaning the more-significant words are at higher addresses. This array is not programmer visible.

Table 7 shows the data sources for various registers in the datapath.

TABLE 7
data sources cache creg tempA areg tempB breg
m′ X
m X
x X′ X†
y X′ X†
temp X
acc_S X X
acc_C X X
′multiplication
†exponentiation

FIG. 6 is a high level block diagram of the Public Key Datapath block of FIG. 5. FIG. 7 is a block diagram of the scalar multiplier of FIG. 6. FIG. 8 is a block diagram of the vector multiplier (um) of FIG. 6. FIG. 9 is a block diagram of the vector multiplier (xy) of FIG. 6. FIGS. 10 and 11 are block diagrams of the accumulator of FIG. 6. Note that in FIG. 10, creg (m) is delayed 4 clocks which is one clock more than the multiplier latency. This aligns m with the output from the last multiplier digit. FIG. 12 is a diagram of a zero flag circuit that can produce the zero signal of FIG. 10.

FIG. 13 is a diagram of the tempA register of FIG. 6. FIG. 14 is a diagram of the tempB register of FIG. 6. In FIG. 13, it will be noted that a purpose of delaying areg by two clock cycles is to simplify the control logic by matching the latency of (dp+acc). Also, in FIG. 14, it will be noted that a purpose of delaying breg by two clock cycles is to simplify the control logic by matching the latency of (dp+acc).

The operations that may be performed by the PKE of the Example, now will be described in detail. The operations are all defined with a parameter WORD_SIZE. The operations definitions are independent of the value of this parameter.

Mod

Mod (modulo) loads a into tempA. If (len[a]>len[m])&&((len[a] mod WORD_SIZE)>(len[m] mod WORD_SIZE)), tempA is padded with one additional word of zeroes so that the msb of m is more significant than the msb of tempA. This implies that tempA must be at least (MAX_LENGTH_WORD_SIZE)+1 words long. This is done so that the non-restoring division algorithm does not overflow.

If len[a]=len[m], m is subtracted from tempA. If the result is negative, add back m and return the result to r. Else return the result to r. There are 4 operations. Each operation takes 5+(CEILING(len[m]/WORD_SIZE)−1) cycles to complete (5 is the latency from issuing the read command to completing the write command for the results of the operation on that word). Assume 16 clock cycles to read the command, and that new commands are read while the previous instruction is being executed. Therefore the execution time is: 16+4*[5+(CEILING(len[m]/WORD_SIZE)−1)] clock cycles.

If len[a]>len[m], m is subtracted from tempA followed by WORD_SIZE*CEILING((len[a]−len[m])/WORD_SIZE) non-restoring division steps. Each step includes either a subtraction or an addition, depending on the sign of the previous result. Each of these operations takes 5+(CEILING(len[m]/WORD_SIZE)−1) cycles to complete. Finally, if the sign of the remainder is negative, m is added back to tempA and returned to r. Else return the remainder in tempA to r. Therefore, the execution time is: 16+(5+CEILING(len[a]/WORD_SIZE))+(WORD_SIZE*CEILING((len[a]−len[m])/WORD_SIZE)+3)*(5+(CEILING(len[m]/WORD_SIZE)−1)).

R Mod m

R is defined as 2WORD SIZE*len[m], and is internally generated by the Public Key Processor. The processor first loads −m into tempA, sets base, then calls modular reduction (R mod m=(R−m) mod m, which is bit smaller, and therefore fits within the maximum word width of MAX_LENGTH bits, even for len[m]=MAX_LENGTH bits). If (len[m] mod WORD_SIZE) !=0, tempA is padded with one additional word of zeroes so that the msb of m is more significant than the msb of tempA, and base=1. This is done so that the non-restoring division algorithm doesn't overflow. Else base=0.

If (len[m] mod WORD_SIZE)=0, m is subtracted from tempA. If the result is negative, add back m and return the result to r. Else return the result to r. There are 4 operations. Each operation takes 5+(CEILING(len[m]/WORD_SIZE)−1) cycles to complete (5 is the latency from issuing the read command to completing the write command for the results of the operation on that word). Assume 16 clock cycles to read the command, and that new commands are read while the previous instruction is being executed. Therefore the execution time is: 16+4*[5+(CEILING(len[m]/WORD_SIZE)−1)] clock cycles.

If (len[m] mod WORD_SIZE) !=0, there is one word of numerator (tempA) to be shifted into the partial remainder. Therefore there are WORD_SIZE non-restoring division steps. Each step includes either a subtraction or an addition, depending on the sign of the previous result. Each of these operations takes 5+(CEILING(len[m]/WORD_SIZE)−1) cycles to complete. Finally, if the sign of the remainder is negative, m is added back to tempA and returned to r. Else return the remainder in tempA to r. Therefore the execution time is: 16+(WORD_SIZE+4)*(5+(CEILING(len[m]/WORD_SIZE)−1))+1.

Addition

Addition loads a into tempA. Then b is added to tempA. TempA now equals a+b. Then subtract m from tempA. These operations include one extra word beyond the length of m to include a possible carry-out from a+b. If the result is negative, add back m and return the result to r. Else return the result to r. There are 5 operations. Each operation takes 5+(CEILING(len[m]/WORD_SIZE)) cycles to complete (5 is the latency from issuing the read command to completing the write command for the results of the operation on that word). Assume 16 clock cycles to read the command, and that new commands are read while the previous instruction is being executed. Therefore the execution time is: 16+5[5+(CEILING(len[m]/WORD_SIZE))] clock cycles.

Subtraction

Subtraction loads a into tempA, then subtracts b from tempA while setting the sign, tempA=a−b. If the result is negative, add back m and return the a−b+m to r. Else return a−b to r. There are 4 operations. Each operation takes 5+(CEILING(len[m]/WORD_SIZE)−1) cycles to complete (5 is the latency from issuing the read command to completing the write command for the results of the operation on that word). Assume 16 clock cycles to read the command, and that new commands are read while the previous instruction is being executed. Therefore the execution time is: 16+4[5+(CEILING(len[m]/WORD_SIZE)−1)] clock cycles.

Additive Inverse

Additive inverse negates a and loads it into tempA. If −a is negative, add m to tempA; else a=0, which is its own additive inverse, so don't add m to tempA. Return the result to r, r=−a mod m. There are 3 operations. Each operation takes 5+(CEILING(m_length/WORD_SIZE)−1) clock cycles to complete (5 is the latency from issuing the read command to completing the write command for the results of the operation on that word). Assume 16 clock cycles to read the command, and that new commands are read while the previous instruction is being executed. Therefore the execution time is (worst-case): 16+3[5+(CEILING(len[m]/WORD_SIZE)−1)] clock cycles.

Multiplication

Multiplication multiplies a*b into tempA, and then performs tempA mod m and returns the result. If CEILING((len[a]+len[b])/WORD_SIZE)<CEILING(len[m]/WORD_SIZE), zero-pad tempA up to CEILING(len[m]/WORD_SIZE). If ((len[a]+len[b])>len[m])&&(((len[a]+len[b]) mod WORD_SIZE)>(len[m] mod WORD_SIZE)), tempA is padded with one additional word of zeroes so that the msb of m is more significant than the msb of tempA (this is so that the non-restoring division algorithm does not overflow). This implies that temp must be at least (2*MAX_LENGTH/WORD_SIZE)+1 words long base=ceiling((a_len+b_len−m_len)÷WORD_SIZE). This is the offset of the lsw of m from tempA[0] that aligns the msw of m with the msw of temp.

The performance of the modulo function is described above, so here only the multiplication is described. Since a and b are both in the cache, and the cache only has one read port, only one digit from each word is read at a time. b is the multiplier, and a is the multiplicand. Each digit of b, starting from the lsw, is multiplied times all of a and stored in tempA. Each partial product is 1 digit longer than a. After the first partial product is stored, each successive partial product is added to the next partial product shifted up one digit. There are CEILING(len[b]/WORD_SIZE) multiplier digits, and each partial product takes 5+CEILING(len[a]/WORD_SIZE)+1 cycles to complete. Therefore the execution time for the multiplication step is CEILING(len[b])/WORD_SIZE)*(5+CEILING(len[a]/WORD_SIZE)+1) clock cycles. The execution time for the entire operation, including the modulus, is found by adding this value to the time for the modulus, where len[a′]=len[a]+len[b]. Therefore the total execution time is (assuming len[a]+len[b]>len[m]), which is the worst-case: 16+CEILING(len[b]/WORD_SIZE)*(5+CEILING(len[a]/WORD_SIZE)+1)+WORD_SIZE*(CEILING((len[a]+len[b]−len[m])/WORD_SIZE)+2)*(5+(CEILING(len[m]/WORD_SIZE)−1)).

The size of the output of each digit and of the output of each loop should be known, in order to allocate adequate storage. Consider the multiplication of the first digit of the multiplier times the first digit of the multiplicand. In this case, the previous partial product=0. Therefore this partial result is: =(2WORD SIZE−1)*(2WORD SIZE−1)=22*WORD SIZE−2WORD SIZE+1+20.

As the least-significant digit of this partial result is shifted out, and the remaining bits of this partial result are accumulated with the products of subsequent multiplicand digits, each following partial result is: =(22*WORD SIZE−2WORD SIZE+1+20)+(2WORD SIZE−21)=22*WORD SIZE−2WORD SIZE20.

For subsequent multiplier digits previous partial product=0. Therefore, the partial result of a subsequent multiplier digit and the first multiplicand digit is: =(22*WORD SIZE−2WORD SIZE+1+20)+(2WORD SIZE−20)=22*WORD SIZE−2WORD SIZE.

As the least-significant digit of this result is shifted out, and the remaining bits of this partial result are accumulated with the products of subsequent multiplicand digits, each following partial result is: =(22*WORD SIZE−2WORD SIZE)+(2WORD SIZE−20)=22*WORD SIZE−22*WORD SIZE−20.

Therefore, the product of each multiplier and multiplicand digit accumulated with previous digits is 2 digits long. Each partial product is 1 digit longer than the multiplicand, and the length of the result is the sum of the digits in the multiplier and the multiplicand.

Multiplicative Inverse

Multiplicative inverse loads u=m and D=1 into tempA and v=a and B=0 into tempB. This takes 4*(5+CEILING(len[m]/128)−1)+2 clock cycles to complete. 5 clock cycles is the latency from issuing the read command to completing the write command for the results of the operation on that word. There are CEILING(len[m]/128) words in u and v but CEILING(len[m]/128)+1 words in B and D. There is a guard word added to the top of B and D to avoid overflow in the intermediate results. The algorithm uses in the worst case 4*(len[m]+1) outer loop iterations, where each inner loop uses 5 operations. The first two operations take 2*(6+CEILING(len[m]/128) cycles. For these first two operations, the result is stored >>1, which adds one extra clock cycle to the latency. The other three operations take 3*(5+(CEILING(len[m]/128)−1))+1 cycles to complete. Finally, there are four operations to convert D to the output. These take 4*(5+(CEILING(len[m]/128)−1))+1 cycles to complete. Assume 16 clock cycles to read the command, and that new commands are read while the previous instruction is being executed. Therefore the execution time is: 16+8*(5+(CEILING(len[m]/128)−1))+3+4*(len[m]+1)*(2*[6+CEILING(len[m]/128)]+3*[5+(CEILING(len[m]/128)−1)]+1) clock cycles.

Exponentiation

Exponentiation first copies g*R mod m into tempB twice, then performs Montgomery exponentiation. This uses len[exponent]+HammingWeight[exponent] Montgomery multiplies, where len[exponent] is the number of significant bits in the exponent. For random numbers, this can be very close to 1.5*len[exponent]. The Montgomery multiplication algorithm is implemented according to the above-cited Menezes et al. reference. Each digit of the multiplier is multiplied times the multiplicand and added to the previous partial result, producing an n+1 digit partial result. The top n digits are stored (actually an n+1 digit+1 bit result: the overflow bit is stored in a register in the datapath). The least significant digit of each partial result is fed back to the scalar multiplier for the next result via a sneak path, so this need not add any delay or latency to the result. However, the first digit uses an extra multiplier latency to fill the pipeline. At the end of each multiplication, subtract m from the result (this subtraction is folded into the last loop iteration). If the result is negative add back m, else continue. Finally, copy the result to r. Therefore, the total execution time is: 16+3*(5+(CEILING(len[m]/128)−1))+1.5*len[exponent]*{12+(CEILING(len[m]/128)*(CEILING((len[m])/128)+1)+(5+(CEILING(len[m]128)−1)}.

The Montgomery exponentiation algorithm is according to the above-cited Menezes, et al. reference, and modified to eliminate extraneous multiplies. The Montgomery multiplication algorithm is also according to the above-cited Menezes et al. reference. This is a highly parallel version of the Montgomery algorithm. The hardware is designed to exploit the parallelism of this algorithm. It executes the inner loop with minimum latency and the maximum possible throughput, which may be limited mainly by the multipliers. The algorithm operates on digits of the numbers. Each number is divided into n digits of WORD_SIZE length. The inputs are the modulus m, a multiplier x and a multiplicand y, each of which is mod m, R=2n*WORD SIZE, and m′=−m[0]−1 mod 2WORD SIZE.

A= 0;
for i from 0 to n − 1 do {
u[i] = ((A[0] + x[i] * y[0]) * m′) mod 2WORDSIZE;
for j from 0 to n − 1 do
A′[j] = (A[j] + x[i] * y[j] + u[i] * m[j])/2WORDSIZE;
}
if A = m {
A = A − m;
}
return (A);

The vector multiplication in the second step of the loop is performed one digit of the multiplicand at a time. The size of the output of each digit and of the output of each loop should be known to allocate adequate storage. Consider the multiplication of the first digit of the multiplier times the first digit of the multiplicand. In this case, A=0. Therefore this partial result is: =21*(2WORD SIZE −1)*(2WORD SIZE−1)=22*WORD SIZE+1−2WORD SIZE+2+21.

As the least-significant digit of this partial result is shifted out, and the remaining bits of this partial result are accumulated with the products of subsequent multiplicand digits, each following partial result is: =(22*WORD SIZE+1−2WORD SIZE+2+21)+(2WORD SIZE+1−22)=22*WORD SIZE+1−2WORD SIZE+1−21.

Therefore, each the result of each digit multiplication is 2*WORD_SIZE+1 bits long, and the result of the first step of the loop before the division by 2WORD SIZE is (n+1)*WORD_SIZE+1 bits long. For subsequent multiplier digits A=0. Therefore, the partial result of a subsequent multiplier digit and the first multiplicand digit is: =(22*WORD SIZE+1−2WORD SIZE+2+21)+(2 WORD SIZE−20)=22*WORD SIZE+1−2WORD SIZE+1−2WORD SIZE+20.

As the least-significant digit of this result is shifted out, and the remaining bits of this partial result are accumulated with the products of subsequent multiplicand digits, each following partial result is: =(22*WORD SIZE+1−2WORD SIZE+1−2WORD SIZE+20)+(2WORD SIZE+1−21−20)=22*WORD SIZE−21.

This result is consistent with the final step of the Montgomery multiplication algorithm. If the size of the result were any larger, than A−m could not equal xyR−1 mod m. It allows saving only n+1 digits per multiplier digit, rather than n+2, by using a single register and small amount of logic to save the overflow bit from each loop iteration. That bit is added to the most-significant product of the next multiplier digit. This fact also can be used while folding the comparison of A with m into the last loop iteration. Since a positive number is being subtracted from another positive number, the sign=0{circumflex over ( )}1{circumflex over ( )}carry out of the most-significant bit. This result indicates which is the most-significant bit.

The hardware implementation overlaps the vector multiplication at the end of leach loop iteration with the scalar multiplies at the beginning of the next. First, y[0] is loaded. Then, x[0] is loaded, and u[0]=x[0]*y[0]. At this point, there is no previous partial result, so u[0]=u[0]*m′. In the next clock cycle, x[1] is loaded into the scalar multiplier and x[0] is pipelined into the vector multiplier while u[i] is loaded into the vector multiplier. When the vector multiplier produces the first digit of the result, it is loaded into the scalar multiplier to produce u[1]=u[1]*a[0]. Since all of the multipliers should have the same latency, as long as the latency through the scalar multiplier times two is ≦ the number of digits in the multiplicand, the latency of the scalar multiplier need only appear before the first vector multiply, and can be hidden thereafter. If not, then the performance may only square linearly, rather than as the square, for “small” numbers.

task montgomery_multiplication( );

/* Do the Montgomery multiplication, including the test and correction for A=m. base points to the multiplier, either gR mod m or A, the intermediate exponentiation result. The multiplicand is always A. If the base register points to gR mod m, the operation is a multiplication, and if the base register points to A, the operation is a squaring. */

endtask // montgomery_multiplication

In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (43)

What is claimed is:
1. A Montgomery exponentiator that modulo exponentiates a generator to a power of an exponent, the Montgomery exponentiator comprising:
a first multiplier that is configured to repeatedly square a residue of the generator to produce a series of first multiplier output values at a first multiplier output; and
a second multiplier that is configured to multiply selected ones of the series of first multiplier output values that correspond to a bit of the exponent that is a predetermined binary value, by a partial result, to produce a series of second multiplier output values at a second multiplier output.
2. A Montgomery exponentiator according to claim 1 further comprising:
a first register that is coupled to the second multiplier output, and is configured to serially store the series of second multiplier output values to thereby provide the partial result; and
a second register that is coupled to the first multiplier output, and is configured to serially store the series of first multiplier output values and to serially provide the series of first multiplier values to the first and second multipliers.
3. A Montgomery exponentiator according to claim 2 wherein the first register is further configured to be initialized to the first binary value and wherein the second register is further configured to be initialized to the residue of the generator.
4. A Montgomery exponentiator according to claim 1 wherein each of the first and second multipliers comprises a Montgomery multiplier that modulo multiplies a residue multiplicand by a residue multiplier to obtain a residue product, each Montgomery multiplier comprising:
a scalar multiplier that is configured to multiply a least significant digit of the multiplicand by a first selected digit of the multiplier to produce a scalar multiplier output;
a first vector multiplier that is configured to multiply the scalar multiplier output by a modulus to produce a first vector multiplier output;
a second vector multiplier that is configured to multiply a second selected digit of the multiplier by the multiplicand to produce a second vector multiplier output; and
an accumulator that is configured to add the first vector multiplier output and the second vector multiplier output to produce a product output.
5. A Montgomery exponentiator according to claim 4 wherein the scalar multiplier is further configured to multiply the least significant digit of the multiplicand by the first selected digit of the multiplier and by one over a negative of a least significant digit of the modulus to produce the scalar multiplier output.
6. A Montgomery exponentiator according to claim 5 further comprising a first multiplexer that is configured to multiplex the least significant digit of the multiplicand and one over the negative of the least significant digit of the modulus into the scalar multiplier.
7. A Montgomery exponentiator according to claim 4 further comprising a first feedback path that is configured to feed the scalar multiplier output back into the scalar multiplier.
8. A Montgomery exponentiator according to claim 4 further comprising a second feedback path that is configured to feed the product output back into the scalar multiplier.
9. A Montgomery exponentiator according to claim 7 further comprising a second feedback path that is configured to feed the product output back into the scalar multiplier.
10. A Montgomery exponentiator according to claim 4 wherein the first selected digit of the multiplier is different from the second selected digit of the multiplier.
11. A Montgomery exponentiator that modulo exponentiates a generator to a power of an exponent, the Montgomery exponentiator comprising:
a first multiplier that is configured to be responsive to a residue of the generator and that includes a first multiplier output;
a second multiplier that is configured to be responsive to the first multiplier output and that includes a second multiplier output;
a first register that is coupled to the second multiplier output, the second multiplier further being responsive to the first register; and
a second register that is coupled to the first multiplier output, the first multiplier further being responsive to the second register and the second multiplier being responsive to the first multiplier output via the second register.
12. A Montgomery exponentiator according to claim 11 further comprising:
a controller that is configured to cause the first multiplier to square contents of the second register and to cause the second multiplier to multiply the contents of the second register by contents of the first register if a selected bit of the exponent is a predetermined binary value and to refrain from multiplying the contents of the second register by the contents of the first register if the selected bit of the exponent is not the predetermined binary value.
13. A Montgomery exponentiator according to claim 12 wherein the first register is configured to be initialized to the first binary value and wherein the second register is configured to be initialized to the residue of the generator.
14. A Montgomery exponentiator according to claim 12 wherein each of the first and second multipliers comprises a Montgomery multiplier that modulo multiplies a residue multiplicand by a residue multiplier to obtain a residue product, each Montgomery multiplier comprising:
a scalar multiplier;
a first vector multiplier;
a second vector multiplier; and
wherein the controller is configured to control the scalar multiplier, the first vector multiplier and the second vector multiplier to overlap scalar multiplies using a selected digit of the multiplier and vector multiplies using a modulus and the multiplicand.
15. A Montgomery exponentiator according to claim 14 wherein the controller is further configured to control the scalar multiplier to perform a scalar multiply using a least significant digit of the multiplier prior to controlling the vector multipliers to perform the vector multiplies using the modulus and the multiplicand.
16. A Montgomery exponentiator according to claim 14 wherein the controller is further configured to control the scalar multiplier to multiply a least significant digit of the multiplicand by a first selected digit of the multiplier to produce a scalar multiplier output, to control the first vector multiplier to multiply the scalar multiplier output by the modulus to produce a first vector multiplier output and to control the second vector multiplier to multiply a second selected digit of the multiplier by the multiplicand to produce a second vector multiplier output.
17. A Montgomery exponentiator according to claim 16 the controller is further configured to control the scalar multiplier to multiply the least significant digit of the multiplicand by the first selected digit of the multiplier by and one over a negative of a least significant digit of a modulus to produce the scalar multiplier output.
18. A Montgomery exponentiator according to claim 17 wherein the controller is further configured to multiplex the least significant digit of the multiplicand and one over the negative of the least significant digit of the modulus into the scalar multiplier.
19. A Montgomery exponentiation method that modulo exponentiates a generator to a power of an exponent, the Montgomery exponentiation method comprising:
repeatedly squaring a residue of the generator in a first multiplier, to produce a series of first multiplier output values; and
multiplying selected ones of the series of first multiplier output values that correspond to a bit of the exponent that is a predetermined binary value, by a partial result in a second multiplier, to produce a series of second multiplier output values.
20. A method according to claim 19 further comprising:
serially storing the series of second multiplier output values to thereby provide the partial result; and
serially storing the series of first multiplier output values and providing the serially stored series of first multiplier values to the first and second multipliers.
21. A method according to claim 19 wherein each of the first and second multipliers performs a Montgomery multiplication method that modulo multiplies a residue multiplicand by a residue multiplier to obtain a residue product, each Montgomery multiplication method comprising:
multiplying a least significant digit of the multiplicand by a first selected digit of the multiplier in a scalar multiplier to produce a scalar multiplier output;
multiplying the scalar multiplier output by a modulus in a first vector multiplier to produce a first vector multiplier output;
multiplying a second selected digit of the multiplier by the multiplicand in a second vector multiplier to produce a second vector multiplier output; and
adding the first vector multiplier output and the second vector multiplier output to produce a product output.
22. A method according to claim 21 further comprising multiplying the least significant digit of the multiplicand by the first selected digit of the multiplier and by one over a negative of a least significant digit of the modulus in the scalar multiplier to produce the scalar multiplier output.
23. A method according to claim 22 further comprising multiplexing the least significant digit of the multiplicand and one over the negative of the least significant digit of the modulus into the scalar multiplier.
24. A method according to claim 21 further comprising feeding the scalar multiplier output back into the scalar multiplier.
25. A method according to claim 24 further comprising feeding the product output back into the scalar multiplier.
26. A method according to claim 21 further comprising feeding the product output back into the scalar multiplier.
27. A Montgomery exponentiation method that modulo exponentiates a generator to a power of an exponent using a first multiplier that is configured to be responsive to a residue of the generator and that includes a first multiplier output, a second multiplier that is configured to be responsive to the first multiplier output and that includes a second multiplier output, a first register that is coupled to the second multiplier output, the second multiplier further being responsive to the first register, and a second register that is coupled to the first multiplier output, the first multiplier further being responsive to the second register and the second multiplier being responsive to the first multiplier output via the second register, the Montgomery exponentiation method comprising:
controlling the first multiplier to square contents of the second register;
controlling the second multiplier to multiply the contents of the second register by contents of the first register if a selected bit of the exponent is a predetermined binary value and to refrain from multiplying the contents of the second register by the contents of the first register if the selected bit of the exponent is not the predetermined binary value.
28. A method according to claim 27 further comprising:
initializing the first register to the first binary value; and
initializing the second register to the residue of the generator.
29. A method according to claim 27 wherein each of the first and second multipliers performs a Montgomery multiplication method that modulo multiplies a residue multiplicand by a residue multiplier to obtain a residue product, each Montgomery multiplication method using a scalar multiplier, a first vector multiplier, and a second vector multiplier, the Montgomery multiplication method comprising:
controlling the scalar multiplier, the first vector multiplier and the second vector multiplier to overlap scalar multiplies using a selected digit of the multiplier and vector multiplies using a modulus and the multiplicand.
30. A method according to claim 29 further comprising controlling the scalar multiplier to perform a scalar multiply using a least significant digit of the multiplier prior to controlling the vector multipliers to perform the vector multiplies using the modulus and the multiplicand.
31. A method according to claim 29 wherein the controlling comprises:
controlling the scalar multiplier to multiply a least significant digit of the multiplicand by a first selected digit of the multiplier to produce a scalar multiplier output;
controlling the first vector multiplier to multiply the scalar multiplier output by the modulus to produce a first vector multiplier output; and
controlling the second vector multiplier to multiply a second selected digit of the multiplier by the multiplicand to produce a second vector multiplier output.
32. A method according to claim 31 further comprising controlling the scalar multiplier to multiply the least significant digit of the multiplicand by the first selected digit of the multiplier and by one over a negative of a least significant digit of a modulus to produce the scalar multiplier output.
33. A method according to claim 32 further comprising multiplexing the least significant digit of the multiplicand and one over the negative of the least significant digit of the modulus into the scalar multiplier.
34. A public key engine that calculates functions of large numbers modulo another large number, the public key engine comprising:
a Montgomery exponentiator that modulo exponentiates a generator to a power of an exponent, the Montgomery exponentiator comprising:
a first multiplier that is configured to be responsive to a residue of the generator and that includes a first multiplier output;
a second multiplier that is configured to be responsive to the first multiplier output and that includes a second multiplier output;
a first register that is coupled to the second multiplier output, the second multiplier further being responsive to the first register; and
a second register that is coupled to the first multiplier output, the first multiplier further being responsive to the second register, and the second multiplier being responsive to the first multiplier output via the second register.
35. A public key engine according to claim 34 wherein the Montgomery exponentiator further comprises:
a controller that is configured to cause the first multiplier to square contents of the second register and to cause the second multiplier to multiply the contents of the second register by contents of the first register if a selected bit of the exponent is a predetermined binary value and to refrain from multiplying the contents of the second register by the contents of the first register if the selected bit of the exponent is not the predetermined binary value.
36. A public key engine according to claim 35 wherein the first register is configured to be initialized to the first binary value and wherein the second register is configured to be initialized to the residue of the generator.
37. A public key engine according to claim 35 wherein each of the first and second multipliers comprises a Montgomery multiplier that modulo multiplies a residue multiplicand by a residue multiplier to obtain a residue product, each Montgomery multiplier comprising:
a scalar multiplier;
a first vector multiplier;
a second vector multiplier; and
wherein the controller is configured to control the scalar multiplier, the first vector multiplier and the second vector multiplier to overlap scalar multiplies using a selected digit of the multiplier and vector multiplies using a modulus and the multiplicand.
38. A public key engine according to claim 37 wherein the controller is further configured to control the scalar multiplier to perform a scalar multiply using a least significant digit of the multiplier prior to controlling the vector multipliers to perform the vector multiplies using the modulus and the multiplicand.
39. A public key engine according to claim 37 wherein the controller is further configured to control the scalar multiplier to multiply a least significant digit of the multiplicand by a first selected digit of the multiplier to produce a scalar multiplier output, to control the first vector multiplier to multiply the scalar multiplier output by the modulus to produce a first vector multiplier output and to control the second vector multiplier to multiply a second selected digit of the multiplier by the multiplicand to produce a second vector multiplier output.
40. A public key engine according to claim 39 the controller is further configured to control the scalar multiplier to multiply the least significant digit of the multiplicand by the first selected digit of the multiplier by and one over a negative of a least significant digit of a modulus to produce the scalar multiplier output.
41. A public key engine according to claim 40 wherein the controller is further configured to multiplex the least significant digit of the multiplicand and one over the negative of the least significant digit of the modulus into the scalar multiplier.
42. A public key engine according to claim 34 further comprising a modulo function generator.
43. A public key engine according to claim 34 further comprising a Chinese Remainder Theorem computer that is configured to use the first multiplier and the second multiplier.
US09849853 2000-05-11 2001-05-04 Accelerated montgomery exponentiation using plural multipliers Expired - Fee Related US6820105B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US20340900 true 2000-05-11 2000-05-11
US09849853 US6820105B2 (en) 2000-05-11 2001-05-04 Accelerated montgomery exponentiation using plural multipliers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09849853 US6820105B2 (en) 2000-05-11 2001-05-04 Accelerated montgomery exponentiation using plural multipliers

Publications (2)

Publication Number Publication Date
US20020010730A1 true US20020010730A1 (en) 2002-01-24
US6820105B2 true US6820105B2 (en) 2004-11-16

Family

ID=22753864

Family Applications (4)

Application Number Title Priority Date Filing Date
US09849853 Expired - Fee Related US6820105B2 (en) 2000-05-11 2001-05-04 Accelerated montgomery exponentiation using plural multipliers
US09849667 Expired - Fee Related US6691143B2 (en) 2000-05-11 2001-05-04 Accelerated montgomery multiplication using plural multipliers
US09852937 Abandoned US20020004904A1 (en) 2000-05-11 2001-05-10 Cryptographic data processing systems, computer program products, and methods of operating same in which multiple cryptographic execution units execute commands from a host processor in parallel
US09852562 Abandoned US20010042210A1 (en) 2000-05-11 2001-05-10 Cryptographic data processing systems, computer program products, and methods of operating same in which a system memory is used to transfer information between a host processor and an adjunct processor

Family Applications After (3)

Application Number Title Priority Date Filing Date
US09849667 Expired - Fee Related US6691143B2 (en) 2000-05-11 2001-05-04 Accelerated montgomery multiplication using plural multipliers
US09852937 Abandoned US20020004904A1 (en) 2000-05-11 2001-05-10 Cryptographic data processing systems, computer program products, and methods of operating same in which multiple cryptographic execution units execute commands from a host processor in parallel
US09852562 Abandoned US20010042210A1 (en) 2000-05-11 2001-05-10 Cryptographic data processing systems, computer program products, and methods of operating same in which a system memory is used to transfer information between a host processor and an adjunct processor

Country Status (3)

Country Link
US (4) US6820105B2 (en)
EP (1) EP1405170A2 (en)
WO (2) WO2001093012A3 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030033340A1 (en) * 2001-05-31 2003-02-13 Kazuo Asami Power-residue calculating unit concurrently referring to data for concurrent reference
US20030163760A1 (en) * 2002-02-22 2003-08-28 Takashi Watanabe Information processing method
US20030206629A1 (en) * 2002-05-01 2003-11-06 Sun Microsystems, Inc. Hardware accelerator for elliptic curve cryptography
US20040064274A1 (en) * 2002-09-30 2004-04-01 Renesas Technology Corp. Residue calculating unit immune to power analysis
US20040264693A1 (en) * 2003-06-30 2004-12-30 Sun Microsystems, Inc. Method and apparatus for implementing processor instructions for accelerating public-key cryptography
US20050157872A1 (en) * 2003-11-12 2005-07-21 Takatoshi Ono RSA public key generation apparatus, RSA decryption apparatus, and RSA signature apparatus
US20050226409A1 (en) * 2004-04-05 2005-10-13 Advanced Micro Devices, Inc Method of improving operational speed of encryption engine
US20060117079A1 (en) * 2004-12-01 2006-06-01 Huashih Lin Galois field computation
US7240204B1 (en) * 2000-03-31 2007-07-03 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Scalable and unified multiplication methods and apparatus
US20070174495A1 (en) * 2006-01-12 2007-07-26 Mediatek Inc. Embedded system
US20090234866A1 (en) * 2008-03-17 2009-09-17 Paul Caprioli Floating Point Unit and Cryptographic Unit Having a Shared Multiplier Tree
US20110087895A1 (en) * 2009-10-08 2011-04-14 Olson Christopher H Apparatus and method for local operand bypassing for cryptographic instructions

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600131B1 (en) * 1999-07-08 2009-10-06 Broadcom Corporation Distributed processing in a cryptography acceleration chip
US6820105B2 (en) * 2000-05-11 2004-11-16 Cyberguard Corporation Accelerated montgomery exponentiation using plural multipliers
JP3785044B2 (en) * 2001-01-22 2006-06-14 株式会社東芝 Modular exponentiation calculation apparatus, modular exponentiation calculation method and a recording medium
US7400668B2 (en) * 2001-03-22 2008-07-15 Qst Holdings, Llc Method and system for implementing a system acquisition function for use with a communication device
US6836839B2 (en) * 2001-03-22 2004-12-28 Quicksilver Technology, Inc. Adaptive integrated circuitry with heterogeneous and reconfigurable matrices of diverse and adaptive computational units having fixed, application specific computational elements
US7489779B2 (en) * 2001-03-22 2009-02-10 Qstholdings, Llc Hardware implementation of the secure hash standard
US7752419B1 (en) 2001-03-22 2010-07-06 Qst Holdings, Llc Method and system for managing hardware resources to implement system functions using an adaptive computing architecture
US7962716B2 (en) 2001-03-22 2011-06-14 Qst Holdings, Inc. Adaptive integrated circuitry with heterogeneous and reconfigurable matrices of diverse and adaptive computational units having fixed, application specific computational elements
US6577678B2 (en) 2001-05-08 2003-06-10 Quicksilver Technology Method and system for reconfigurable channel coding
US7194088B2 (en) * 2001-06-08 2007-03-20 Corrent Corporation Method and system for a full-adder post processor for modulo arithmetic
US7240203B2 (en) * 2001-07-24 2007-07-03 Cavium Networks, Inc. Method and apparatus for establishing secure sessions
US20030072037A1 (en) * 2001-08-31 2003-04-17 Hamilton Jon W. System and method for imprinting a digital image with an identifier using black metamers
US8117450B2 (en) * 2001-10-11 2012-02-14 Hewlett-Packard Development Company, L.P. System and method for secure data transmission
DE10151129B4 (en) * 2001-10-17 2004-07-29 Infineon Technologies Ag Method and apparatus for calculating a result of an exponentiation in a cryptography circuit
US7046635B2 (en) * 2001-11-28 2006-05-16 Quicksilver Technology, Inc. System for authorizing functionality in adaptable hardware devices
US8412915B2 (en) 2001-11-30 2013-04-02 Altera Corporation Apparatus, system and method for configuration of adaptive integrated circuitry having heterogeneous computational elements
US6986021B2 (en) 2001-11-30 2006-01-10 Quick Silver Technology, Inc. Apparatus, method, system and executable module for configuration and operation of adaptive integrated circuitry having fixed, application specific computational elements
US7602740B2 (en) * 2001-12-10 2009-10-13 Qst Holdings, Inc. System for adapting device standards after manufacture
US7215701B2 (en) 2001-12-12 2007-05-08 Sharad Sambhwani Low I/O bandwidth method and system for implementing detection and identification of scrambling codes
US7088825B2 (en) * 2001-12-12 2006-08-08 Quicksilver Technology, Inc. Low I/O bandwidth method and system for implementing detection and identification of scrambling codes
US7231508B2 (en) * 2001-12-13 2007-06-12 Quicksilver Technologies Configurable finite state machine for operation of microinstruction providing execution enable control value
GB0130255D0 (en) * 2001-12-18 2002-02-06 Automatic Parallel Designs Ltd Logic circuits for performing modular multiplication and exponentiation
US7403981B2 (en) 2002-01-04 2008-07-22 Quicksilver Technology, Inc. Apparatus and method for adaptive multimedia reception and transmission in communication environments
US7260217B1 (en) * 2002-03-01 2007-08-21 Cavium Networks, Inc. Speculative execution for data ciphering operations
US7305567B1 (en) 2002-03-01 2007-12-04 Cavium Networks, In. Decoupled architecture for data ciphering operations
US7653710B2 (en) 2002-06-25 2010-01-26 Qst Holdings, Llc. Hardware task manager
US8108656B2 (en) 2002-08-29 2012-01-31 Qst Holdings, Llc Task definition for specifying resource requirements
US7937591B1 (en) 2002-10-25 2011-05-03 Qst Holdings, Llc Method and system for providing a device which can be adapted on an ongoing basis
US7249242B2 (en) * 2002-10-28 2007-07-24 Nvidia Corporation Input pipeline registers for a node in an adaptive computing engine
US8276135B2 (en) 2002-11-07 2012-09-25 Qst Holdings Llc Profiling of software and circuit designs utilizing data operation analyses
US7225301B2 (en) 2002-11-22 2007-05-29 Quicksilver Technologies External memory controller node
US7568110B2 (en) * 2002-12-18 2009-07-28 Broadcom Corporation Cryptography accelerator interface decoupling from cryptography processing cores
US7191341B2 (en) * 2002-12-18 2007-03-13 Broadcom Corporation Methods and apparatus for ordering data in a cryptography accelerator
US7434043B2 (en) * 2002-12-18 2008-10-07 Broadcom Corporation Cryptography accelerator data routing unit
US20040123123A1 (en) * 2002-12-18 2004-06-24 Buer Mark L. Methods and apparatus for accessing security association information in a cryptography accelerator
US20040123120A1 (en) * 2002-12-18 2004-06-24 Broadcom Corporation Cryptography accelerator input interface data handling
US7260595B2 (en) * 2002-12-23 2007-08-21 Arithmatica Limited Logic circuit and method for carry and sum generation and method of designing such a logic circuit
US20040230813A1 (en) * 2003-05-12 2004-11-18 International Business Machines Corporation Cryptographic coprocessor on a general purpose microprocessor
US7660984B1 (en) 2003-05-13 2010-02-09 Quicksilver Technology Method and system for achieving individualized protected space in an operating system
US7328414B1 (en) * 2003-05-13 2008-02-05 Qst Holdings, Llc Method and system for creating and programming an adaptive computing engine
GB0314557D0 (en) * 2003-06-21 2003-07-30 Koninkl Philips Electronics Nv Improved reduction calculations
US7609297B2 (en) * 2003-06-25 2009-10-27 Qst Holdings, Inc. Configurable hardware based digital imaging apparatus
US7200837B2 (en) * 2003-08-21 2007-04-03 Qst Holdings, Llc System, method and software for static and dynamic programming and configuration of an adaptive computing architecture
US7543158B2 (en) * 2004-03-23 2009-06-02 Texas Instruments Incorporated Hybrid cryptographic accelerator and method of operation thereof
US20050257026A1 (en) * 2004-05-03 2005-11-17 Meeker Woodrow L Bit serial processing element for a SIMD array processor
US7519644B2 (en) * 2004-05-27 2009-04-14 King Fahd University Of Petroleum And Minerals Finite field serial-serial multiplication/reduction structure and method
US20060026601A1 (en) * 2004-07-29 2006-02-02 Solt David G Jr Executing commands on a plurality of processes
US7496753B2 (en) 2004-09-02 2009-02-24 International Business Machines Corporation Data encryption interface for reducing encrypt latency impact on standard traffic
US20060136717A1 (en) 2004-12-20 2006-06-22 Mark Buer System and method for authentication via a proximate device
US8295484B2 (en) * 2004-12-21 2012-10-23 Broadcom Corporation System and method for securing data from a remote input device
US8364965B2 (en) * 2006-03-15 2013-01-29 Apple Inc. Optimized integrity verification procedures
US7817799B2 (en) * 2006-09-07 2010-10-19 International Business Machines Corporation Maintaining encryption key integrity
US20080126753A1 (en) * 2006-09-25 2008-05-29 Mediatek Inc. Embedded system and operating method thereof
US8135960B2 (en) * 2007-10-30 2012-03-13 International Business Machines Corporation Multiprocessor electronic circuit including a plurality of processors and electronic data processing system
US20090183161A1 (en) * 2008-01-16 2009-07-16 Pasi Kolinummi Co-processor for stream data processing
US20100011047A1 (en) * 2008-07-09 2010-01-14 Viasat, Inc. Hardware-Based Cryptographic Accelerator
US8560814B2 (en) 2010-05-04 2013-10-15 Oracle International Corporation Thread fairness on a multi-threaded processor with multi-cycle cryptographic operations
US8583902B2 (en) 2010-05-07 2013-11-12 Oracle International Corporation Instruction support for performing montgomery multiplication
CN103765493B (en) * 2011-09-06 2017-10-24 英特尔公司 The method and apparatus of a digital computer-implemented square
US8799343B2 (en) * 2011-09-22 2014-08-05 Intel Corporation Modular exponentiation with partitioned and scattered storage of Montgomery Multiplication results
US8856479B2 (en) 2012-04-20 2014-10-07 International Business Machines Corporation Implementing storage adapter performance optimization with hardware operations completion coalescence
US9355068B2 (en) 2012-06-29 2016-05-31 Intel Corporation Vector multiplication with operand base system conversion and re-conversion
KR101538424B1 (en) * 2012-10-30 2015-07-22 주식회사 케이티 Terminal for payment and local network monitoring
US9455907B1 (en) 2012-11-29 2016-09-27 Marvell Israel (M.I.S.L) Ltd. Multithreaded parallel packet processing in network devices
US9542193B2 (en) 2012-12-28 2017-01-10 Intel Corporation Memory address collision detection of ordered parallel threads with bloom filters
US9361116B2 (en) * 2012-12-28 2016-06-07 Intel Corporation Apparatus and method for low-latency invocation of accelerators
US9417873B2 (en) 2012-12-28 2016-08-16 Intel Corporation Apparatus and method for a hybrid latency-throughput processor
GB2511843B (en) * 2013-03-15 2015-05-13 Eisergy Ltd A power factor correction circuit
JP6102649B2 (en) * 2013-09-13 2017-03-29 株式会社ソシオネクスト The method of the arithmetic circuit and the arithmetic circuit
CN106537863A (en) 2013-10-17 2017-03-22 马维尔国际贸易有限公司 Processing concurrency in a network device
US9531531B2 (en) * 2015-05-06 2016-12-27 Qualcomm Incorporated Methods and devices for fixed execution flow multiplier recoding and scalar multiplication
EP3094039A1 (en) * 2015-05-13 2016-11-16 Gemalto Sa Method for optimizing the execution of a function which generates at least one key within an integrated circuit device
US10020932B2 (en) * 2015-11-13 2018-07-10 Nxp B.V. Split-and-merge approach to protect against DFA attacks

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434585B1 (en) *
EP0531158A2 (en) 1991-09-05 1993-03-10 Canon Kabushiki Kaisha Method of and apparatus for encryption and decryption of communication data
US5274707A (en) 1991-12-06 1993-12-28 Roger Schlafly Modular exponentiation and reduction device and method
EP0601907A2 (en) 1992-11-30 1994-06-15 FORTRESS U&amp;T Ltd. A compact microelectronic device for performing modular multiplication and exponentiation over large numbers
US5329623A (en) 1992-06-17 1994-07-12 The Trustees Of The University Of Pennsylvania Apparatus for providing cryptographic support in a network
EP0656709A2 (en) 1993-11-30 1995-06-07 Canon Kabushiki Kaisha Encryption device and apparatus for encryption/decryption based on the Montgomery method using efficient modular multiplication
US5961626A (en) 1997-10-10 1999-10-05 Motorola, Inc. Method and processing interface for transferring data between host systems and a packetized processing system
US5987131A (en) 1997-08-18 1999-11-16 Picturetel Corporation Cryptographic key exchange using pre-computation
US6061706A (en) 1997-10-10 2000-05-09 United Microelectronics Corp. Systolic linear-array modular multiplier with pipeline processing elements
US6081895A (en) 1997-10-10 2000-06-27 Motorola, Inc. Method and system for managing data unit processing
US6085210A (en) 1998-01-22 2000-07-04 Philips Semiconductor, Inc. High-speed modular exponentiator and multiplier
US6185596B1 (en) 1997-05-04 2001-02-06 Fortress U&T Ltd. Apparatus & method for modular multiplication & exponentiation based on Montgomery multiplication
US6209016B1 (en) 1996-10-31 2001-03-27 Atmel Research Co-processor for performing modular multiplication
US6219789B1 (en) 1995-07-20 2001-04-17 Dallas Semiconductor Corporation Microprocessor with coprocessing capabilities for secure transactions and quick clearing capabilities
US6240436B1 (en) * 1998-03-30 2001-05-29 Rainbow Technologies, Inc. High speed montgomery value calculation
US20010010077A1 (en) * 1998-03-30 2001-07-26 Mcgregor Matthew Scott Computationally efficient modular multiplication method and apparatus
US20020120658A1 (en) 2000-12-19 2002-08-29 International Business Machines Corporation Hardware implementation for modular multiplication using a plurality of almost entirely identical processor elements
US6691143B2 (en) * 2000-05-11 2004-02-10 Cyberguard Corporation Accelerated montgomery multiplication using plural multipliers

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763242A (en) * 1985-10-23 1988-08-09 Hewlett-Packard Company Computer providing flexible processor extension, flexible instruction set extension, and implicit emulation for upward software compatibility
US5706489A (en) * 1995-10-18 1998-01-06 International Business Machines Corporation Method for a CPU to utilize a parallel instruction execution processing facility for assisting in the processing of the accessed data
US5844986A (en) * 1996-09-30 1998-12-01 Intel Corporation Secure BIOS
US6075546A (en) * 1997-11-10 2000-06-13 Silicon Grahphics, Inc. Packetized command interface to graphics processor
US6029170A (en) * 1997-11-25 2000-02-22 International Business Machines Corporation Hybrid tree array data structure and method
US6567911B1 (en) * 1999-12-06 2003-05-20 Adaptec, Inc. Method of conserving memory resources during execution of system BIOS

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434585B1 (en) *
EP0531158A2 (en) 1991-09-05 1993-03-10 Canon Kabushiki Kaisha Method of and apparatus for encryption and decryption of communication data
US5274707A (en) 1991-12-06 1993-12-28 Roger Schlafly Modular exponentiation and reduction device and method
US5329623A (en) 1992-06-17 1994-07-12 The Trustees Of The University Of Pennsylvania Apparatus for providing cryptographic support in a network
EP0601907A2 (en) 1992-11-30 1994-06-15 FORTRESS U&amp;T Ltd. A compact microelectronic device for performing modular multiplication and exponentiation over large numbers
US5513133A (en) 1992-11-30 1996-04-30 Fortress U&T Ltd. Compact microelectronic device for performing modular multiplication and exponentiation over large numbers
US5742530A (en) * 1992-11-30 1998-04-21 Fortress U&T Ltd. Compact microelectronic device for performing modular multiplication and exponentiation over large numbers
EP0656709A2 (en) 1993-11-30 1995-06-07 Canon Kabushiki Kaisha Encryption device and apparatus for encryption/decryption based on the Montgomery method using efficient modular multiplication
US6219789B1 (en) 1995-07-20 2001-04-17 Dallas Semiconductor Corporation Microprocessor with coprocessing capabilities for secure transactions and quick clearing capabilities
US6209016B1 (en) 1996-10-31 2001-03-27 Atmel Research Co-processor for performing modular multiplication
US6185596B1 (en) 1997-05-04 2001-02-06 Fortress U&T Ltd. Apparatus & method for modular multiplication & exponentiation based on Montgomery multiplication
US5987131A (en) 1997-08-18 1999-11-16 Picturetel Corporation Cryptographic key exchange using pre-computation
US6081895A (en) 1997-10-10 2000-06-27 Motorola, Inc. Method and system for managing data unit processing
US5961626A (en) 1997-10-10 1999-10-05 Motorola, Inc. Method and processing interface for transferring data between host systems and a packetized processing system
US6061706A (en) 1997-10-10 2000-05-09 United Microelectronics Corp. Systolic linear-array modular multiplier with pipeline processing elements
US6085210A (en) 1998-01-22 2000-07-04 Philips Semiconductor, Inc. High-speed modular exponentiator and multiplier
US6240436B1 (en) * 1998-03-30 2001-05-29 Rainbow Technologies, Inc. High speed montgomery value calculation
US20010010077A1 (en) * 1998-03-30 2001-07-26 Mcgregor Matthew Scott Computationally efficient modular multiplication method and apparatus
US6434585B2 (en) * 1998-03-30 2002-08-13 Rainbow Technologies, Inc. Computationally efficient modular multiplication method and apparatus
US6691143B2 (en) * 2000-05-11 2004-02-10 Cyberguard Corporation Accelerated montgomery multiplication using plural multipliers
US20020120658A1 (en) 2000-12-19 2002-08-29 International Business Machines Corporation Hardware implementation for modular multiplication using a plurality of almost entirely identical processor elements

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
Eldridge et al., Hardware Implementation of Montgomery's Modular Multiplication Algorithm, IEEE Transactions on Computers, vol. 42, No. 6, Jun. 1993, pp. 693-699.
FastMap Integrated Circuit. Rainbow Technologies Internet Security Group. Oct. 1, 1998.
Freking et al. entitled Montgomery Modular Multiplication and Exponentiation in the Residue Number System, Conference Record of the Thirty-Third Asilomar Conference Signals, Systems, and Computers, vol. 2, 1999, pp. 1312-1316.
Gutub et al. entitled An Expandable Montgomery Modular Multiplication Processor, Eleventh International Conference on Microelectronics, Nov. 22-24, 1999, pp. 173-176.
Hifn 6500 Public Key Processor. http://www.hifn.com/products/6500html, printed Apr. 29, 2001.
International Search Report, PCT/US01/14561, Feb. 27, 2002.
International Search Report, PCT/US01/14616, Feb. 27, 2002.
Kent et al. Security Architecture for the Internet Protocol. Nov. 1998, pp. 1-66.
Koc et al., Analyzing and Comparing Montgomery Multiplication Algorithms, IEEE Micro, vol. 16, No. 1, Jun. 1, 1996, pp. 26-33.
Menezes et al., Chapter 14, Efficient Implementation, Handbook of Applied Cryptography, CRC Press, Inc., 1997, p. 591-634.
NetOctave Announces SSL and IPSec Security Accelerator Boards. News Release, Sep. 11, 2001.
Next-generation Applications Need IPSec Security: NetOctave IPSec Solutions. Brochure, Mar., 2001.
Next-generation Applications Need SSL Security: NetOctave SSL Solutions. Brochure, Mar., 2001.
Preuss, Lisa. "Rainbow Technologies Announces OEM Availability of FastMap High Performance Public Key Integrated Circuit Processor," News Release. Atlanta, GA, Oct. 21, 1998.
SafeNet: OEM Solutions. www.safenet-inc.com/technology/chips/Chip2141.asp, printed Apr. 29, 2001.
Sauerbrey, A Modular Exponentiation Unit Based on Systolic Arrays, Advances in Cryptology-Auscrypt. Gold Coast, Queensland, Dec. 13-16, 1992, Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, vol. Conf. 3, Dec. 13, 1992, pp. 505-516.
Suchmann, David. Electronic Products: Novel Approach to Chip Design Improves SSL Encryption. Sep. 3, 2001.
Tenca et al. entitled A Scalable Architecture for Montgomery Multiplication, First International Workshop, Cryptographic Hardware and Embedded Systems, Lecture Notes on Computer Science, vol. 1717, 1999, pp. 94-108.
Tiountchik, Systolic Modular Exponentiation Via Montgomery Algorithm, Electronics Letters, vol. 34, No. 9, Apr. 30, 1998, pp. 874-875.

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240204B1 (en) * 2000-03-31 2007-07-03 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Scalable and unified multiplication methods and apparatus
US20030033340A1 (en) * 2001-05-31 2003-02-13 Kazuo Asami Power-residue calculating unit concurrently referring to data for concurrent reference
US20030163760A1 (en) * 2002-02-22 2003-08-28 Takashi Watanabe Information processing method
US20030206629A1 (en) * 2002-05-01 2003-11-06 Sun Microsystems, Inc. Hardware accelerator for elliptic curve cryptography
US7508936B2 (en) 2002-05-01 2009-03-24 Sun Microsystems, Inc. Hardware accelerator for elliptic curve cryptography
US7171437B2 (en) * 2002-09-30 2007-01-30 Renesas Technology Corp. Residue calculating unit immune to power analysis
US20040064274A1 (en) * 2002-09-30 2004-04-01 Renesas Technology Corp. Residue calculating unit immune to power analysis
US8194855B2 (en) * 2003-06-30 2012-06-05 Oracle America, Inc. Method and apparatus for implementing processor instructions for accelerating public-key cryptography
US20040264693A1 (en) * 2003-06-30 2004-12-30 Sun Microsystems, Inc. Method and apparatus for implementing processor instructions for accelerating public-key cryptography
US20050157872A1 (en) * 2003-11-12 2005-07-21 Takatoshi Ono RSA public key generation apparatus, RSA decryption apparatus, and RSA signature apparatus
US20050226409A1 (en) * 2004-04-05 2005-10-13 Advanced Micro Devices, Inc Method of improving operational speed of encryption engine
US8526601B2 (en) * 2004-04-05 2013-09-03 Advanced Micro Devices, Inc. Method of improving operational speed of encryption engine
US20060117079A1 (en) * 2004-12-01 2006-06-01 Huashih Lin Galois field computation
US7668895B2 (en) * 2004-12-01 2010-02-23 Integrated System Solution Corp. Galois field computation
US7480744B2 (en) 2006-01-12 2009-01-20 Mediatek, Inc. Method and apparatus for one time programming
CN100476719C (en) 2006-01-12 2009-04-08 联发科技股份有限公司 Cryptography system and related elliptic curve operation method
US20070180165A1 (en) * 2006-01-12 2007-08-02 Mediatek Inc. Method and apparatus for one time programming
US7602655B2 (en) 2006-01-12 2009-10-13 Mediatek Inc. Embedded system
US20070174495A1 (en) * 2006-01-12 2007-07-26 Mediatek Inc. Embedded system
US20090234866A1 (en) * 2008-03-17 2009-09-17 Paul Caprioli Floating Point Unit and Cryptographic Unit Having a Shared Multiplier Tree
US20110087895A1 (en) * 2009-10-08 2011-04-14 Olson Christopher H Apparatus and method for local operand bypassing for cryptographic instructions
US8356185B2 (en) 2009-10-08 2013-01-15 Oracle America, Inc. Apparatus and method for local operand bypassing for cryptographic instructions

Also Published As

Publication number Publication date Type
US20020010730A1 (en) 2002-01-24 application
EP1405170A2 (en) 2004-04-07 application
US20020004904A1 (en) 2002-01-10 application
WO2001093012A2 (en) 2001-12-06 application
US20010042210A1 (en) 2001-11-15 application
WO2001088692A3 (en) 2002-04-18 application
US20020013799A1 (en) 2002-01-31 application
WO2001093012A3 (en) 2002-04-25 application
WO2001088692A2 (en) 2001-11-22 application
US6691143B2 (en) 2004-02-10 grant

Similar Documents

Publication Publication Date Title
Satoh et al. A scalable dual-field elliptic curve cryptographic processor
Walter Systolic modular multiplication
Bailey et al. Optimal extension fields for fast arithmetic in public-key algorithms
US4905178A (en) Fast shifter method and structure
Tenca et al. A scalable architecture for montgomery nultiplication
US4901267A (en) Floating point circuit with configurable number of multiplier cycles and variable divide cycle ratio
US6611856B1 (en) Processing multiply-accumulate operations in a single cycle
Yang et al. A new RSA cryptosystem hardware design based on Montgomery's algorithm
US6230179B1 (en) Finite field multiplier with intrinsic modular reduction
US6366936B1 (en) Pipelined fast fourier transform (FFT) processor having convergent block floating point (CBFP) algorithm
US5764554A (en) Method for the implementation of modular reduction according to the Montgomery method
US20030140077A1 (en) Logic circuits for performing modular multiplication and exponentiation
US6209016B1 (en) Co-processor for performing modular multiplication
US20030031316A1 (en) Method and system for a full-adder post processor for modulo arithmetic
US20030123656A1 (en) Elliptic curve cryptosystem apparatus, storage medium storing elliptic curve cryptosystem program, and elliptic curve cryptosystem arithmetic method
US6009450A (en) Finite field inverse circuit
US5793659A (en) Method of modular reduction and modular reduction circuit
US6327605B2 (en) Data processor and data processing system
US20060190518A1 (en) Binary polynomial multiplier
Blum et al. Montgomery modular exponentiation on reconfigurable hardware
US20040122887A1 (en) Efficient multiplication of small matrices using SIMD registers
Tenca et al. High-radix design of a scalable modular multiplier
Savaš et al. A scalable and unified multiplier architecture for finite fields GF (p) and GF (2 m)
US5133069A (en) Technique for placement of pipelining stages in multi-stage datapath elements with an automated circuit design system
Chung et al. Fast implementation of elliptic curve defined over GF (p m) on CalmRISC with MAC2424 coprocessor

Legal Events

Date Code Title Description
AS Assignment

Owner name: NETOCTAVE, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CELOTEK CORPORATION;REEL/FRAME:011785/0146

Effective date: 20000809

Owner name: NETOCTAVE, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLAKER, DAVID M.;REEL/FRAME:011785/0304

Effective date: 20010504

AS Assignment

Owner name: INTERSOUTH PARTNERS V, L.P. AS AGENT FOR THE SUCUR

Free format text: SECURITY INTEREST;ASSIGNOR:NETOCTAVE, INC.;REEL/FRAME:013268/0282

Effective date: 20020827

AS Assignment

Owner name: CYBERGUARD CORPORATION, FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NETOCTAVE, INC.;REEL/FRAME:013495/0063

Effective date: 20030304

AS Assignment

Owner name: NBMK ENCRYPTION TECHNOLOGIES, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYBERGUARD CORPORATION;REEL/FRAME:017596/0264

Effective date: 20060421

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20081116