US6781232B2 - Sample preparation apparatus and method - Google Patents

Sample preparation apparatus and method Download PDF

Info

Publication number
US6781232B2
US6781232B2 US10/633,829 US63382903A US6781232B2 US 6781232 B2 US6781232 B2 US 6781232B2 US 63382903 A US63382903 A US 63382903A US 6781232 B2 US6781232 B2 US 6781232B2
Authority
US
United States
Prior art keywords
tool
semiconductor device
axis
die
adjustable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/633,829
Other versions
US20040029340A1 (en
Inventor
Joseph I. Rubin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ultra Tec Manufacturing Inc
Original Assignee
Ultra Tec Manufacturing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25423952&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6781232(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
US case filed in California Central District Court litigation https://portal.unifiedpatents.com/litigation/California%20Central%20District%20Court/case/8%3A08-cv-00160 Source: District Court Jurisdiction: California Central District Court "Unified Patents Litigation Data" by Unified Patents is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ultra Tec Manufacturing Inc filed Critical Ultra Tec Manufacturing Inc
Priority to US10/633,829 priority Critical patent/US6781232B2/en
Assigned to ULTRA TEC MANUFACTURING, INC. reassignment ULTRA TEC MANUFACTURING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RUBIN, JOSEPH I.
Publication of US20040029340A1 publication Critical patent/US20040029340A1/en
Application granted granted Critical
Publication of US6781232B2 publication Critical patent/US6781232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention is directed to an apparatus and method for preparing semiconductor devices for analysis and more specifically pertains to the creation of transparent inspection windows in chips to permit examination of their circuitry while fully functional.
  • Semiconductor devices are typically encapsulated in resin or ceramic which serves to protect the device and to positively fix in position the conductor leads that extend therefrom.
  • the resin or ceramic capsule serves as a hermetically sealed barrier that has high mechanical strength and is substantially impervious to most chemicals. In order to conduct construction analysis and failure analysis it is absolutely essential for such encapsulation, or at least a portion of such encapsulation, to be removed. Moreover, it is necessary for the integrity and full functionality of the chip to be maintained despite such decapsulation.
  • an image emission microscope may be employed to localize defects in integrated circuits.
  • the utility of the emission microscope is based on the principle of recombinant radiation. In excess current drawing conditions such as occur during semiconductor failure modes, electrons and holes in silicon, recombine and relax, giving off a photon of light which is readily detectable by specialized intensified CCD sensors. Such emissions are non-isotropic and therefore radiate toward the front as well as the back of the die.
  • the predominant value of the technique is rapid detection and failure localization to the junction level of a single transistor in integrated circuits which may include up to 4,000,000 or more transistors.
  • Infrared and thermal techniques have also been developed for the purpose of inspecting chips and identifying failures. Common to all such visualization techniques is the fact that the silicon in the chip acts as a filter for such radiation, and must therefore be thinned in order for a sufficient degree of transparency to be achieved. Gaining access to the silicon die for the purpose of thinning further requires that the plastic encapsulation be removed.
  • Ion milling techniques employing a focused ion beam have also been used with some success but are very slow and only capable of milling out a very tightly defined small area which requires detailed knowledge of the failure site. Such equipment is extremely expensive and requires the work to be performed under a high vacuum.
  • Conventional milling techniques are effective for removing the packaging material but attempts to thin the die typically leads to chipping, gouging and cracking. Even at lower speeds, with the die supported by molding compound, the die tends to shatter.
  • Modification of conventional milling techniques to substantially increase torque and rotational speeds (40,000 to 60,000 rpm) has been found effective to address the problem of breakage but the heat generated by such approach is substantial and requires the use of complex and bulky cooling equipment to prevent damage. Additionally, the extremely high precision with which the position of the cutting tool must be controlled requires the reliance on expensive CNC capability.
  • the apparatus and method of the present invention provides an improved approach for thinning selected portions of semiconductor devices so as to render them transparent to infra-red light and thereby enable failure analysis to be carried out using emission microscopy (photon and thermal) as well as infra-red microscopy.
  • the present invention provides for the thinning of an isolated portion or of portions of the backside of packaged devices so as to preserve wiring external to the die intact.
  • the apparatus and method can also effectively be used to gain access to the front side of certain devices including circuit delayering.
  • the thinning may be accomplished in packaged semiconductor devices as well as of single dies (or small groups of dies) and of specific areas on multi-chip modules.
  • the present invention provides for the controlled grinding and polishing of the targeted areas so as to remove a very precise amount of material in a minimal amount of time while at the same time minimizing the generation of heat. Elements of polishing and milling techniques are combined to prevent the semiconductor device from being heat damaged without the need for complex cooling equipment to thereby greatly reduce cost and complexity. Moreover, the invention provides a degree of precision and reproducibility in the formation of an access window in a semiconductor device that had not previously been available.
  • the invention provides for the oscillation of the semiconductor device in the X-Y plane while a sequence of rotating tools are applied against the device along.
  • the tools are rotated about the Z axis and float along such axis to engage the workpiece under a selectable constant force.
  • the configurations of the tools are selected as a function of the composition of the particular material of the semiconductor device that is to be removed.
  • the force with which a selected tool is brought to bear against the surface of the material device remains constant and a broad range of forces is available for selection.
  • Those tools that are applied under a relatively light constant force have a radial surface with which material is removed while the tools that are rotated at relatively high constant force have a circumferential surface with which material is removed.
  • the apparatus of the present invention allows the force that is applied to be quickly and easily adjusted and allows the speed of rotation to be adjusted. Additionally, the apparatus includes an oscillating table component to which the semiconductor device is positively affixed. The amplitude of the oscillations is adjustable. The tilt of the table is also adjustable about both the X direction and Y direction, to compensate for common angular error in the assembly operation so as to maintain the planar relationship between the working surface of the tool and the workpiece.
  • a device identical to the sample may be cross-sectioned in order to ascertain the identity, position and thicknesses of its various components.
  • the appropriate tool and mode of operation can then be selected in order to remove the various layers without damaging the device or tools in as quick and as efficient manner as possible.
  • the packaging material and substrate material is removed with the use of diamond polishing tools wherein the face of the rotating tools serve to remove material. Removal of certain intervening layers, such as the copper paddle material, requires a switch to a milling tool with which material is removed by its circumferential surface. The tilt of the table is adjusted when an interface between two layers is reached.
  • FIG. 1 is a schematic illustration of the apparatus of the present invention
  • FIG. 2 is a greatly enlarged, partially cut-away view of a semiconductor device
  • FIG. 3 is a greatly enlarged, cross-sectional view taken along lines 3 — 3 of FIG. 2;
  • FIG. 4 is a greatly enlarged perspective view of sample prepared in accordance with the present invention.
  • the apparatus and method of the present invention provide for the preparation of semiconductor devices for construction or failure analysis which may employ any of a number of visualization techniques.
  • the Figures generally illustrate the apparatus of the present invention with which the method may be practiced.
  • FIG. 1 is a schematic representation of the sample preparation apparatus 12 of the present invention.
  • the apparatus includes a tilt table 14 for supporting a semiconductor device 16 and for oscillating the supported sample in the X and Y directions.
  • Clamps 18 are attachable to the table for positively fixing the sample in position.
  • Two drive motors are disposed in the base element 20 of the apparatus and serve to oscillate the table as is well known in the art. Both the speed and the amplitude of the oscillations in the X and Y directions are independently adjustable via controller 22 .
  • the oscillations in both directions are run in a criss-cross pattern. A pattern ratio of 7.5:1 assures an overlap of successive passes while a return delay at each end of the X excursion provides for straight 90 degree sides.
  • the workpiece is merely turned by 90 degrees.
  • a tool 24 held in a chuck 26 is rotated at an adjustable speed by the head element 28 which is movable in the Z direction.
  • the speed of rotation is adjustable via input from controller 22 .
  • the head element is free to float in the Z direction wherein the force of gravity serves to exert a constant force on the tool 24 against the sample 16 .
  • Additional weight 34 can be added to the head in order to selectively adjust the force exerted by the tool on the sample.
  • the downward movement of the floating head is ultimately limited by a stop element 36 which is adjustably positionable along the vertical support column 32 .
  • the tilt table 14 includes a mechanism as is well known in the art for allowing the actual support surface 38 to be tilted in two dimensions.
  • top surface 38 may include a pivot 40 , aligned with the X axis, in combination with an adjustment screw 42 that allows the clearance between one end of the table a surface and a surface there below to be adjusted in addition to a second pivot 44 , aligned with the Y direction, and a second adjustment screw 46 that allows the clearance with the surface there below to be adjusted.
  • FIG. 2 is a greatly enlarged, partial cutaway view of a semiconductor device 48 .
  • the particular device that is shown includes a die 50 that is encapsulated within a plastic package 52 .
  • the silicon die includes a frontside 54 and a back side 56 wherein leads 58 extend from the circuitry (not visible) formed in the front side of the die through the encapsulation to the exterior of the device.
  • Semiconductor devices vary greatly in terms of their internal structure including, but not limited to, the composition and number of different encapsulation layers, the size, orientation and thickness of the die, the position, orientation and configuration of the leadframe, etc.
  • FIG. 3 is a greatly enlarged cross-sectional view of a semiconductor device as is shown in FIG. 2 .
  • the encaspsulation 52 is shown as including two layers 58 , 60 of different materials while a layer of copper 62 extends between the encapsulation 52 and the backside 56 of the die 50 .
  • the semi-conductor device to be analyzed by the method and with the apparatus of the present invention may be devoid of encapsulation.
  • the method of the present invention initially calls for the cross-sectioning of a sample similar to the sample to be subject to functional analysis in order to allow the position, dimensions and orientation of the die to be ascertained as well the composition and dimensions of the various layers of the device. This subsequently allows the proper selection of the type of tool, mode of operation, speeds and loads to be made for the various depths of operation.
  • the sample 16 is first clamped 18 or otherwise affixed, double-sided tape being adequate for most packages, to the support table 14 such that the backside is extending upwardly.
  • the sample is positioned such that sweep center of the table is aligned with the approximate center of the area of interest of the internal circuitry within the device.
  • the amplitudes of oscillation both in the X direction as well as the Y direction are subsequently selected such that an area that corresponds to the entire area of interest is processed. Once the X and Y parameters are set, no further alteration thereof will be required throughout the entire procedure.
  • a diamond tool 24 In order to grind through most encapsulation materials a diamond tool 24 is selected wherein the tool has an abrasive surface formed on its distal radial surface.
  • a typical speed of rotation not to exceed about 6000 rpm, merely requires the addition of a drop or two of water to ensure adequate cooling.
  • the head element 28 of the apparatus, and consequently the tool, is free to float along the Z axis and gradually grind down the surface of the workpiece material.
  • the force with which the tool engages the sample is determined as is appropriate for the composition of the encapsulation material, the grit size of the selected too, the diameter of the tool and the speed of rotation, wherein weight 34 is added to the head element as necessary.
  • Removal of the encapsulation may be accomplished in steps wherein the stop 36 is reset after a measurement is taken to ensure that the grinding tool will not impinge on the underlying copper layer.
  • Running a diamond tool into copper would of course foul the tool and render it ineffective for future use.
  • any tilt will be readily become apparent as an area of copper less than the area defined by the X and Y amplitudes will become visible. Adjustment of the tilt screws 42 , 46 will then be necessary in order to establish parallelism and complete the removal of the encapsulation.
  • Subsequent removal of a copper layer will require the use of a milling tool, configured for removing material by contact with its circumferential surface rather than with its distal radial surface. Additionally a maximum amount of weight 34 will be applied to the head whereby the head will in effect be locked against the stop 36 positioned at a preselected depth within the copper layer. Drops of oil rather than water are used during the milling operation to ensure adequate cooling. The copper material will be removed along the set depth rather than down to the set depth as per the previous step. Removal of the copper layer may again be accomplished in steps wherein a preselected portion of the total depth of the copper is removed and its removal confirmed 25-50 um at a time.
  • Removal to within about 125 um is achieved with the use of a tool having a distal radial surface of xylem and an abrasive paste. Addition of a few drops of mineral oil may be necessary in order to ensure proper removal of the silicon material.
  • the xylem tipped tool in combination with finer and finer grit abrasive paste may be used as well as tools with a leather or polyurethane surface.
  • Various polishing agents may be used including colloidal silica.
  • the sample is ready for testing.
  • the backside of the semiconductor device 48 will have a window 64 formed therein having a base 66 which consists of the thinned backside of the silicon die through which the circuitry formed on the front side of the die is visualizable using any of various visualization techniques well known in the art.
  • the leads 58 are inserted into an appropriate socket or otherwise energized and the functions of the semiconductor may be analyzed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

A apparatus and method for forming windows in semiconductor devices to enable visualization of the circuitry therein while electrically intact. The device is affixed to a table that is oscillated in the X and Y directions while a succession of rotating tools are brought to bear against the surface of the device in the Z direction under a constant force. The force is adjustable so as to allow the tool to float on the surface of the workpiece.

Description

This is a divisional of application Ser. No. 09/907,354, filed Jul. 17, 2001, now U.S. Pat. No. 6,630,369.
BACKGROUND OF THE INVENTION
The present invention is directed to an apparatus and method for preparing semiconductor devices for analysis and more specifically pertains to the creation of transparent inspection windows in chips to permit examination of their circuitry while fully functional.
Semiconductor devices are typically encapsulated in resin or ceramic which serves to protect the device and to positively fix in position the conductor leads that extend therefrom. The resin or ceramic capsule serves as a hermetically sealed barrier that has high mechanical strength and is substantially impervious to most chemicals. In order to conduct construction analysis and failure analysis it is absolutely essential for such encapsulation, or at least a portion of such encapsulation, to be removed. Moreover, it is necessary for the integrity and full functionality of the chip to be maintained despite such decapsulation.
Various techniques have been developed for use in evaluating the structure and functions of a semiconductor chip. For example, an image emission microscope may be employed to localize defects in integrated circuits. The utility of the emission microscope is based on the principle of recombinant radiation. In excess current drawing conditions such as occur during semiconductor failure modes, electrons and holes in silicon, recombine and relax, giving off a photon of light which is readily detectable by specialized intensified CCD sensors. Such emissions are non-isotropic and therefore radiate toward the front as well as the back of the die. The predominant value of the technique is rapid detection and failure localization to the junction level of a single transistor in integrated circuits which may include up to 4,000,000 or more transistors. Infrared and thermal techniques have also been developed for the purpose of inspecting chips and identifying failures. Common to all such visualization techniques is the fact that the silicon in the chip acts as a filter for such radiation, and must therefore be thinned in order for a sufficient degree of transparency to be achieved. Gaining access to the silicon die for the purpose of thinning further requires that the plastic encapsulation be removed.
Various decapsulation (or depacking) techniques have been developed in order to gain access to the underlying chip along with techniques with which the thickness of the silicon die can then be reduced. Heretofore used approaches are however all subject to various shortcomings. Planar lapping with diamond slurries allows the requisite thinning to be achieved but because the entire device is lapped, the leads must be bent out of the way and once the lead frame becomes thinned, the leads cannot be bent back to their original configuration without breakage. This in turn precludes socket testing which poses a considerable hardship especially when high lead count devices are involved. Additionally, because the entire wafer must be thinned to the desired depth, the structural integrity of the device becomes severely compromised which renders the subsequent handling and testing of the device difficult. Reagent thinning is possible, but only hydrofluoric acid is capable of effectively dissolving the silicon and hydrofluoric acid is extremely hazardous. Dimpling techniques have also been employed wherein a slow speed grinding wheel extending from a weighted head is spun against the workpiece which is also being slowly spun. This results in a bowl shaped cut known as a dimple having a flat area surrounded by a radiused edge. The inspection area is therefore limited as the regions outside the flatspot abruptly lose contrast due to increasing silicon thickness. Radiused edges cannot be avoided using this technique and larger flat spots can only be achieved by boring successively larger “test holes.” The technique is extremely time consuming and can take hours to cut through the packaging material and silicon. Ion milling techniques employing a focused ion beam have also been used with some success but are very slow and only capable of milling out a very tightly defined small area which requires detailed knowledge of the failure site. Such equipment is extremely expensive and requires the work to be performed under a high vacuum. Conventional milling techniques are effective for removing the packaging material but attempts to thin the die typically leads to chipping, gouging and cracking. Even at lower speeds, with the die supported by molding compound, the die tends to shatter. Modification of conventional milling techniques to substantially increase torque and rotational speeds (40,000 to 60,000 rpm) has been found effective to address the problem of breakage but the heat generated by such approach is substantial and requires the use of complex and bulky cooling equipment to prevent damage. Additionally, the extremely high precision with which the position of the cutting tool must be controlled requires the reliance on expensive CNC capability.
An improved approach is therefore needed with which access to the circuitry in packaged microchips can be gained relatively quickly and easily using relatively simple and inexpensive machinery.
SUMMARY OF THE INVENTION
The apparatus and method of the present invention provides an improved approach for thinning selected portions of semiconductor devices so as to render them transparent to infra-red light and thereby enable failure analysis to be carried out using emission microscopy (photon and thermal) as well as infra-red microscopy. The present invention provides for the thinning of an isolated portion or of portions of the backside of packaged devices so as to preserve wiring external to the die intact. The apparatus and method can also effectively be used to gain access to the front side of certain devices including circuit delayering. The thinning may be accomplished in packaged semiconductor devices as well as of single dies (or small groups of dies) and of specific areas on multi-chip modules.
The present invention provides for the controlled grinding and polishing of the targeted areas so as to remove a very precise amount of material in a minimal amount of time while at the same time minimizing the generation of heat. Elements of polishing and milling techniques are combined to prevent the semiconductor device from being heat damaged without the need for complex cooling equipment to thereby greatly reduce cost and complexity. Moreover, the invention provides a degree of precision and reproducibility in the formation of an access window in a semiconductor device that had not previously been available.
The invention provides for the oscillation of the semiconductor device in the X-Y plane while a sequence of rotating tools are applied against the device along. The tools are rotated about the Z axis and float along such axis to engage the workpiece under a selectable constant force. The configurations of the tools are selected as a function of the composition of the particular material of the semiconductor device that is to be removed. The force with which a selected tool is brought to bear against the surface of the material device remains constant and a broad range of forces is available for selection. Those tools that are applied under a relatively light constant force have a radial surface with which material is removed while the tools that are rotated at relatively high constant force have a circumferential surface with which material is removed. The apparatus of the present invention allows the force that is applied to be quickly and easily adjusted and allows the speed of rotation to be adjusted. Additionally, the apparatus includes an oscillating table component to which the semiconductor device is positively affixed. The amplitude of the oscillations is adjustable. The tilt of the table is also adjustable about both the X direction and Y direction, to compensate for common angular error in the assembly operation so as to maintain the planar relationship between the working surface of the tool and the workpiece.
Prior to the actual removal of material from a semiconductor device, a device identical to the sample may be cross-sectioned in order to ascertain the identity, position and thicknesses of its various components. The appropriate tool and mode of operation can then be selected in order to remove the various layers without damaging the device or tools in as quick and as efficient manner as possible. The packaging material and substrate material is removed with the use of diamond polishing tools wherein the face of the rotating tools serve to remove material. Removal of certain intervening layers, such as the copper paddle material, requires a switch to a milling tool with which material is removed by its circumferential surface. The tilt of the table is adjusted when an interface between two layers is reached. Any divergence from a perpendicular orientation of the device with respect to the Z axis will be apparent as an area less than the total area defined by the X and Y oscillation will be revealed when the interface is first broached. The tilt of the table must then be adjusted such that a more even incursion into the successive layer is achieved. Final polishing is achieved with the use of a succession of various polishing tools in conjunction with abrasive pastes and extender fluids.
These and other features and advantages of the present invention will become apparent from the following detailed description of a preferred embodiment which, taken in conjunction with the accompanying drawings, illustrates by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of the apparatus of the present invention;
FIG. 2 is a greatly enlarged, partially cut-away view of a semiconductor device;
FIG. 3 is a greatly enlarged, cross-sectional view taken along lines 33 of FIG. 2; and
FIG. 4 is a greatly enlarged perspective view of sample prepared in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The apparatus and method of the present invention provide for the preparation of semiconductor devices for construction or failure analysis which may employ any of a number of visualization techniques. The Figures generally illustrate the apparatus of the present invention with which the method may be practiced.
FIG. 1 is a schematic representation of the sample preparation apparatus 12 of the present invention. The apparatus includes a tilt table 14 for supporting a semiconductor device 16 and for oscillating the supported sample in the X and Y directions. Clamps 18 are attachable to the table for positively fixing the sample in position. Two drive motors are disposed in the base element 20 of the apparatus and serve to oscillate the table as is well known in the art. Both the speed and the amplitude of the oscillations in the X and Y directions are independently adjustable via controller 22. The oscillations in both directions are run in a criss-cross pattern. A pattern ratio of 7.5:1 assures an overlap of successive passes while a return delay at each end of the X excursion provides for straight 90 degree sides. In the event that the die dimension corresponds to a multiple of 7.5, the workpiece is merely turned by 90 degrees. A tool 24 held in a chuck 26 is rotated at an adjustable speed by the head element 28 which is movable in the Z direction. The speed of rotation is adjustable via input from controller 22. The head element is free to float in the Z direction wherein the force of gravity serves to exert a constant force on the tool 24 against the sample 16. Additional weight 34 can be added to the head in order to selectively adjust the force exerted by the tool on the sample. The downward movement of the floating head is ultimately limited by a stop element 36 which is adjustably positionable along the vertical support column 32. The tilt table 14 includes a mechanism as is well known in the art for allowing the actual support surface 38 to be tilted in two dimensions. For example, top surface 38 may include a pivot 40, aligned with the X axis, in combination with an adjustment screw 42 that allows the clearance between one end of the table a surface and a surface there below to be adjusted in addition to a second pivot 44, aligned with the Y direction, and a second adjustment screw 46 that allows the clearance with the surface there below to be adjusted.
FIG. 2 is a greatly enlarged, partial cutaway view of a semiconductor device 48. The particular device that is shown includes a die 50 that is encapsulated within a plastic package 52. The silicon die includes a frontside 54 and a back side 56 wherein leads 58 extend from the circuitry (not visible) formed in the front side of the die through the encapsulation to the exterior of the device. Semiconductor devices vary greatly in terms of their internal structure including, but not limited to, the composition and number of different encapsulation layers, the size, orientation and thickness of the die, the position, orientation and configuration of the leadframe, etc. FIG. 3 is a greatly enlarged cross-sectional view of a semiconductor device as is shown in FIG. 2. The encaspsulation 52 is shown as including two layers 58, 60 of different materials while a layer of copper 62 extends between the encapsulation 52 and the backside 56 of the die 50. Alternatively, the semi-conductor device to be analyzed by the method and with the apparatus of the present invention may be devoid of encapsulation.
The method of the present invention initially calls for the cross-sectioning of a sample similar to the sample to be subject to functional analysis in order to allow the position, dimensions and orientation of the die to be ascertained as well the composition and dimensions of the various layers of the device. This subsequently allows the proper selection of the type of tool, mode of operation, speeds and loads to be made for the various depths of operation.
For accessing the backside 56 of a semiconductor device 48, the sample 16 is first clamped 18 or otherwise affixed, double-sided tape being adequate for most packages, to the support table 14 such that the backside is extending upwardly. The sample is positioned such that sweep center of the table is aligned with the approximate center of the area of interest of the internal circuitry within the device. The amplitudes of oscillation both in the X direction as well as the Y direction are subsequently selected such that an area that corresponds to the entire area of interest is processed. Once the X and Y parameters are set, no further alteration thereof will be required throughout the entire procedure. In order to grind through most encapsulation materials a diamond tool 24 is selected wherein the tool has an abrasive surface formed on its distal radial surface. A typical speed of rotation, not to exceed about 6000 rpm, merely requires the addition of a drop or two of water to ensure adequate cooling. The head element 28 of the apparatus, and consequently the tool, is free to float along the Z axis and gradually grind down the surface of the workpiece material. The force with which the tool engages the sample is determined as is appropriate for the composition of the encapsulation material, the grit size of the selected too, the diameter of the tool and the speed of rotation, wherein weight 34 is added to the head element as necessary. Removal of the encapsulation may be accomplished in steps wherein the stop 36 is reset after a measurement is taken to ensure that the grinding tool will not impinge on the underlying copper layer. Running a diamond tool into copper would of course foul the tool and render it ineffective for future use. As the copper layer becomes exposed, any tilt will be readily become apparent as an area of copper less than the area defined by the X and Y amplitudes will become visible. Adjustment of the tilt screws 42, 46 will then be necessary in order to establish parallelism and complete the removal of the encapsulation.
Subsequent removal of a copper layer will require the use of a milling tool, configured for removing material by contact with its circumferential surface rather than with its distal radial surface. Additionally a maximum amount of weight 34 will be applied to the head whereby the head will in effect be locked against the stop 36 positioned at a preselected depth within the copper layer. Drops of oil rather than water are used during the milling operation to ensure adequate cooling. The copper material will be removed along the set depth rather than down to the set depth as per the previous step. Removal of the copper layer may again be accomplished in steps wherein a preselected portion of the total depth of the copper is removed and its removal confirmed 25-50 um at a time.
Once the copper paddle has been removed and the silicon die has been reached, it is again necessary to fit a diamond tool wherein the abrasive surface is formed on its distal radial surface and the force with which the tool is brought to bear against the workpiece is adjusted, by the removal of an appropriate amount of weight, such that the tool floats on the surface of the workpiece. Setting of the appropriate speed of rotation of the tool, force on the tool and the speed of oscillation of the table along with the addition of a few drops of water will ensure that the silicon will be removed without damaging the die. Removal should again be accomplished in sets, wherein the stop 36 is readjusted after each depth measurement until a depth to within about 150 to 175 um of the front side is achieved. Removal to within about 125 um is achieved with the use of a tool having a distal radial surface of xylem and an abrasive paste. Addition of a few drops of mineral oil may be necessary in order to ensure proper removal of the silicon material.
Once a depth of about 125 um of the frontside of the die is achieved, it is necessary to polish the ground away surface to a high luster. The xylem tipped tool in combination with finer and finer grit abrasive paste may be used as well as tools with a leather or polyurethane surface. Various polishing agents may be used including colloidal silica.
Once the target depth has been reached and a satisfactory surface smoothness has been achieved, the sample is ready for testing. As is shown in FIG. 4, the backside of the semiconductor device 48 will have a window 64 formed therein having a base 66 which consists of the thinned backside of the silicon die through which the circuitry formed on the front side of the die is visualizable using any of various visualization techniques well known in the art. The leads 58 are inserted into an appropriate socket or otherwise energized and the functions of the semiconductor may be analyzed.
While a particular form of the invention has been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. The large variation in the construction of semiconductor devices require the details of the method to be tailored accordingly. The selection of the appropriate tools, oscillation rates, head preload, abrasive media, cooling media and removal rate to achieve the quickest removal without damaging the device is best determined by experimenting with a similar samples. Accordingly, it is not intended that the invention be limited except by the appended claims.

Claims (5)

What is claimed is:
1. An apparatus for removing a selected portion of a semiconductor device so as to enable visualization of said device while its circuitry is electrically intact, comprising:
a table for supporting a semiconductor device, said table being oscillatable in an X and a Y direction to define a plane and at preselected amplitudes in said X and Y directions;
a floating head for rotating a chuck about a Z axis while applying a constant force along said Z axis, wherein said Z axis is perpendicular to said plane; and
a tool having an axial surface configured for removing portions of said semiconductor device.
2. The apparatus of claim 1, wherein said amount of constant force that is applied along the Z axis is adjustable.
3. The apparatus of claim 2, further comprising an adjustable stop to prevent said constant force from being applied beyond a preselected position along said Z axis.
4. The apparatus of claim 1, wherein said amplitudes in said X and Y directions are adjustable.
5. The apparatus of claim 1, wherein said table is tiltable about said X and Y directions.
US10/633,829 2001-07-17 2003-08-04 Sample preparation apparatus and method Expired - Lifetime US6781232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/633,829 US6781232B2 (en) 2001-07-17 2003-08-04 Sample preparation apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/907,354 US6630369B2 (en) 2001-07-17 2001-07-17 Sample preparation apparatus and method
US10/633,829 US6781232B2 (en) 2001-07-17 2003-08-04 Sample preparation apparatus and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/907,354 Division US6630369B2 (en) 2001-07-17 2001-07-17 Sample preparation apparatus and method

Publications (2)

Publication Number Publication Date
US20040029340A1 US20040029340A1 (en) 2004-02-12
US6781232B2 true US6781232B2 (en) 2004-08-24

Family

ID=25423952

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/907,354 Expired - Lifetime US6630369B2 (en) 2001-07-17 2001-07-17 Sample preparation apparatus and method
US10/633,829 Expired - Lifetime US6781232B2 (en) 2001-07-17 2003-08-04 Sample preparation apparatus and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/907,354 Expired - Lifetime US6630369B2 (en) 2001-07-17 2001-07-17 Sample preparation apparatus and method

Country Status (1)

Country Link
US (2) US6630369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018898A1 (en) * 2003-07-24 2005-01-27 White Jerry L. Method and apparatus for performing failure analysis with fluorescence inks

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7174627B2 (en) * 2001-01-26 2007-02-13 Irvine Sensors Corporation Method of fabricating known good dies from packaged integrated circuits
US20030221313A1 (en) * 2001-01-26 2003-12-04 Gann Keith D. Method for making stacked integrated circuits (ICs) using prepackaged parts
US20020100600A1 (en) * 2001-01-26 2002-08-01 Albert Douglas M. Stackable microcircuit layer formed from a plastic encapsulated microcircuit and method of making the same
US6921719B2 (en) * 2002-10-31 2005-07-26 Strasbaugh, A California Corporation Method of preparing whole semiconductor wafer for analysis
US7008825B1 (en) * 2003-05-27 2006-03-07 Amkor Technology, Inc. Leadframe strip having enhanced testability
US9735066B2 (en) 2014-01-30 2017-08-15 Fei Company Surface delayering with a programmed manipulator
EP2952872A1 (en) * 2014-06-02 2015-12-09 Fei Company Surface delayering with a programmed manipulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155068A (en) 1989-08-31 1992-10-13 Sharp Kabushiki Kaisha Method for manufacturing an IC module for an IC card whereby an IC device and surrounding encapsulant are thinned by material removal
US5242862A (en) 1990-02-14 1993-09-07 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
US5355755A (en) * 1992-06-04 1994-10-18 Fujitsu Limited Circuit board trimming apparatus and method
US5424254A (en) * 1994-02-22 1995-06-13 International Business Machines Corporation Process for recovering bare semiconductor chips from plastic packaged modules by thermal shock
US5698474A (en) 1996-02-26 1997-12-16 Hypervision, Inc. High speed diamond-based machining of silicon semiconductor die in wafer and packaged form for backside emission microscope detection
US6368886B1 (en) * 2000-09-15 2002-04-09 The Charles Stark Draper Laboratory, Inc. Method of recovering encapsulated die

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155068A (en) 1989-08-31 1992-10-13 Sharp Kabushiki Kaisha Method for manufacturing an IC module for an IC card whereby an IC device and surrounding encapsulant are thinned by material removal
US5242862A (en) 1990-02-14 1993-09-07 Nippondenso Co., Ltd. Semiconductor device and method of manufacturing same
US5355755A (en) * 1992-06-04 1994-10-18 Fujitsu Limited Circuit board trimming apparatus and method
US5424254A (en) * 1994-02-22 1995-06-13 International Business Machines Corporation Process for recovering bare semiconductor chips from plastic packaged modules by thermal shock
US5698474A (en) 1996-02-26 1997-12-16 Hypervision, Inc. High speed diamond-based machining of silicon semiconductor die in wafer and packaged form for backside emission microscope detection
US6368886B1 (en) * 2000-09-15 2002-04-09 The Charles Stark Draper Laboratory, Inc. Method of recovering encapsulated die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018898A1 (en) * 2003-07-24 2005-01-27 White Jerry L. Method and apparatus for performing failure analysis with fluorescence inks
US7444012B2 (en) * 2003-07-24 2008-10-28 Freescale Semiconductor, Inc. Method and apparatus for performing failure analysis with fluorescence inks

Also Published As

Publication number Publication date
US20030017649A1 (en) 2003-01-23
US20040029340A1 (en) 2004-02-12
US6630369B2 (en) 2003-10-07

Similar Documents

Publication Publication Date Title
US5698474A (en) High speed diamond-based machining of silicon semiconductor die in wafer and packaged form for backside emission microscope detection
US6672947B2 (en) Method for global die thinning and polishing of flip-chip packaged integrated circuits
US20070155131A1 (en) Method of singulating a microelectronic wafer
KR20180018353A (en) METHOD FOR PRODUCING SiC WAFER
US6781232B2 (en) Sample preparation apparatus and method
Romano et al. A fast preparation technique for high-quality plan view and cross-section TEM specimens of semiconducting materials
WO2022104622A1 (en) Method for processing semiconductor wafers
JP2017112226A (en) Processing method of multilayer substrate
KR102240785B1 (en) Method of manufacturing device chip package
US6448801B2 (en) Method and device for supporting flip chip circuitry in analysis
JP2019038044A (en) Grinding method
KR20240003720A (en) Processing method and processing apparatus of device wafer
US6139403A (en) Method and device for positioning and accessing a die under analysis
JP2002246339A (en) Manufacturing method of semiconductor device
JP2003322599A (en) Method of preparing sample for scanning probe microscope
Herfurth et al. Reliable backside IC preparation down to STI level using Chemical Mechanical Polishing (CMP) with highly selective slurry
KR20030043233A (en) Apparatus for grinding specimen
Chew et al. Novel backside sample preparation processes for advanced CMOS integrated circuits failure analysis
KR102550583B1 (en) Processing and checking methods by auto alignment after loading substrate
US20230066601A1 (en) Method of processing monocrystalline silicon wafer
Ngo Die Exposure
JPH08316176A (en) Dicing apparatus
Haddock et al. Cross-Section Analysis
JP2001313273A (en) Method and apparatus for mechanically processing semiconductor as well as method for manufacturing semiconductor device
Marquez et al. New Approach—Sample Preparation Techniques for Plastic Small Outline Package (Frontside and Backside)

Legal Events

Date Code Title Description
AS Assignment

Owner name: ULTRA TEC MANUFACTURING, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUBIN, JOSEPH I.;REEL/FRAME:014375/0780

Effective date: 20010913

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

FPAY Fee payment

Year of fee payment: 12