US6769746B2 - Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track - Google Patents

Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track Download PDF

Info

Publication number
US6769746B2
US6769746B2 US10/193,387 US19338702A US6769746B2 US 6769746 B2 US6769746 B2 US 6769746B2 US 19338702 A US19338702 A US 19338702A US 6769746 B2 US6769746 B2 US 6769746B2
Authority
US
United States
Prior art keywords
track
cured
polyurethane
rubber
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/193,387
Other versions
US20030094854A1 (en
Inventor
Michael Brendan Rodgers
Bina Patel Botts
Ram Murthy Krishnan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veyance Technologies Inc
Original Assignee
Goodyear Tire and Rubber Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodyear Tire and Rubber Co filed Critical Goodyear Tire and Rubber Co
Priority to US10/193,387 priority Critical patent/US6769746B2/en
Publication of US20030094854A1 publication Critical patent/US20030094854A1/en
Assigned to GOODYEAR TIRE & RUBBER COMPANY, THE reassignment GOODYEAR TIRE & RUBBER COMPANY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOTTS, BINA PATEL, KRISHNAN, RAM MURTHY, RODGERS, MICHAEL BRENDAN
Application granted granted Critical
Publication of US6769746B2 publication Critical patent/US6769746B2/en
Assigned to VEYANCE TECHNOLOGIES, INC. reassignment VEYANCE TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THE GOODYEAR TIRE & RUBBER COMPANY
Assigned to JPMORGAN CHASE BANK, N.A. reassignment JPMORGAN CHASE BANK, N.A. SECURITY AGREEMENT Assignors: VEYANCE TECHNOLOGIES, INC.
Assigned to LEHMAN COMMERCIAL PAPER INC., AS COLLATERAL AGENT reassignment LEHMAN COMMERCIAL PAPER INC., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: VEYANCE TECHNOLOGIES, INC.
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/24Tracks of continuously flexible type, e.g. rubber belts
    • B62D55/244Moulded in one piece, with either smooth surfaces or surfaces having projections, e.g. incorporating reinforcing elements

Definitions

  • the invention relates to a two part endless vehicular rubber track comprised of a polyurethane based tread component and a rubber carcass component.
  • the tread component may be comprised of a sulfur curable polyurethane or blend of sulfur curable polyurethane and sulfur curable elastomer.
  • the invention includes a vehicle containing such track.
  • Endless rubber tractor tracks are increasingly being used for propelling various vehicles over the ground such as, for example, various tractors and other agricultural vehicles including, for example, combines and spreaders, as well as various earth moving machines.
  • such track is conventionally positioned over at least two wheels, normally a drive wheel for engaging an inner surface of the track and driving the track and at least one driven wheel to control the path of the track as it moves to propel the associated vehicle.
  • the outer surface of the peripheral tread configuration of the track typically contains a plurality of raised lugs designed for engaging the ground and assisting the propelling of the associated vehicle such as, for example, a tractor over an agricultural ground.
  • the tread of such rubber tracks provide a considerably wider footprint than conventional pneumatic tires and are, thereby, more adaptable to agricultural fields in that they offer better flotation and less soil compaction than rubber tires, which may result in better crop yield.
  • use of rubber tracks instead of pneumatic tires may permit a farmer to get out into a field earlier in the planting season and plant crops sooner in point of time and may permit a harvesting of a crop on a more timely basis as compared to conventional pneumatic rubber tire equipped agricultural vehicles.
  • Such use and advantages of rubber tractor tracks are well known to those having skill in such art.
  • Such rubber tracks are conventionally in a form of an endless rubber belt composed of a rubber carcass reinforced with continuous steel cables molded into the carcass rubber composition itself to add dimensional stability for the track and an integral outer rubber tread with raised lugs for ground-contacting purposes.
  • Polyurethane treads have sometimes been suggested for rubber tires.
  • Such polyurethanes are typically a reaction product of a polyisocyanate (e.g. diisocyanate) and one or more polymeric polyols such as for example polyether polyols and/or polyester polyols.
  • a polyisocyanate e.g. diisocyanate
  • polymeric polyols such as for example polyether polyols and/or polyester polyols.
  • rubber tires, pneumatic and solid have been heretofore been proposed having a rubber carcass bonded to a polyurethane tread.
  • U.S. Pat. Nos. 4,669,517 and 4,095,637 see U.S. Pat. Nos. 4,669,517 and 4,095,637.
  • Sulfur curable polyurethanes have been proposed as a reaction product of a polyisocyanate (e.g. diisocyanate) and polymeric polyols which contain a degree of unsaturation, particularly carbon-to-carbon double bond unsaturation.
  • a polyisocyanate e.g. diisocyanate
  • polymeric polyols which contain a degree of unsaturation, particularly carbon-to-carbon double bond unsaturation.
  • the polymeric polyol may be a trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyol having a degree of unsaturation which may also include a polytetramethylene ether glycol.
  • Sulfur curable millable thermoplastic polyurethanes may also be used alone or as a blend with sulfur curable diene-based elastomers as a product of relatively equivalent amounts of polymeric polyol (e.g. polyester and/or polyether polyols) and a polyisocyanate (e.g. a diisocyanate such as for example MDI) which, in adding certain unsaturated carbon-to-carbon double bonds, usually in the polymeric polyol component of the polyurethane.
  • polymeric polyol e.g. polyester and/or polyether polyols
  • a polyisocyanate e.g. a diisocyanate such as for example MDI
  • Representative examples are, for example, polyether polyurethane rubber such as Millathane E34® and polyester polyurethane such as Millathane 76® from TSE Industries of Rheim Chemie, a Bayer Company.
  • Sulfur vulcanizable polyurethanes such as a product of a polyisocyanate (e.g. diisocyanate) and a liquid diene prepolymer and particularly a functional liquid diene prepolymer, which may be described in U.S. Pat. No. 4,104,265.
  • a polyisocyanate e.g. diisocyanate
  • a liquid diene prepolymer e.g. diisocyanate
  • a functional liquid diene prepolymer e.g. 4,104,265.
  • the purpose of this invention relates to a vehicular track comprised of two parts, namely a polyurethane based tread component designed to be ground-contacting (ground-engaging particularly for a farm implement) namely a tread component containing spaced apart lugs and an underlying rubber carcass component for supporting the tread component.
  • said track tread portion may be a polyurethane tread chemically bonded and/or physically interlocked to a rubber carcass.
  • such a rubber track with a polyurethane tread configured with extended lugs which is non-pneumatic, not intended for extensive highway use, intended for slow speed operation with minimal internal heat buildup within the polyurethane tread and where traction of the tread over the ground is primarily derived from its extended ground-engaging lugs rather than being primarily derived from the polyurethane composition itself has merit.
  • cured and “vulcanized” if used are used interchangeably.
  • vulcanized if used are used interchangeably.
  • the term “phr” relates to parts by weight of a material per 100 parts by weight of rubber.
  • rubber and “elastomer” are used interchangeably unless otherwise noted.
  • an endless rubber track designed to encompass at least one drive wheel and at least one driven wheel of an associated vehicle
  • said track is a two part track comprised of a polyurethane based outer tread component having an outer surface and an opposing inner surface and an underlying rubber carcass component having an inner surface and an opposing outer surface, wherein said tread outer surface is configured with raised, spaced apart lugs designed to be ground engaging, wherein said tread inner surface is chemically bonded to and/or physically interlocked with, said carcass inner surface and wherein said carcass outer surface is designed to engage at least one of said drive wheels and/or driven wheels of said vehicle.
  • said polyurethane tread is chemically bonded to said underlying rubber carcass by an adhesive layer positioned between said tread inner surface and said carcass inner surface to bond said polyurethane tread and said rubber carcass together.
  • said diene-based rubber for said polyurethane tread blend can be, for example, a elastomeric polymer of isoprene and/or 1,3-butadiene and/or elastomeric copolymer of styrene with isoprene and/or 1,3-butadiene.
  • Such rubbers are, for example, cis 1,4-polyisoprene cis 1,4-butadiene, styrene/butadiene copolymers isoprene/butadiene copolymers, styrene/isoprene copolymers and styrene/isoprene/butadiene terpolymer.
  • sulfur curable polyurethanes are preferred which can be simple blended with typical rubber compounding ingredients (e.g. sulfur, etc) in an internal mixer in a manner similar to diene-based rubber compositions.
  • Sulfur curable polyurethanes can be of many forms which usually contain carbon-to-carbon double bonds therein to facilitate the sulfur curing thereof. Usually such double bonds are contained in the polyol component of the polyurethane.
  • diisocyanates might be used for the preparation of the polyurethane, sometimes diisocyanates which are considered to be non-discoloring might be desired, particularly where a colored track tread is desired (particularly if the desired color is other than a black color)
  • isocyanates are, for example, methylene bis(4-phenylisocyanate) or MDI, 4,4′-diphenylmethane diisocyanate or TODI, trimethyl hexamethylene diisocyanate or TMDI, and hexamethylene diisocyanate or H 12 MDI.
  • polyurethane may be desired to add a degree of trifunctionality to the polyurethane to improve various physical properties. This might be done, for example, by use of polymeric polyols with various degrees of difunctionality and trifunctionality.
  • polymeric polyols may be used for the polyurethane such as, for example polyester polyols, polyether polyols, polybutadiene polyols as well as functional liquid diene prepolymers (for example, see U.S. Pat. No. 4,104,265 which is incorporated herein in its entirety for its polyurethane preparation teaching)
  • the polyurethane for the tread component of the track may be comprised of a sulfur curable polyurethane which may be processed in a manner similar or the same as a sulfur curable elastomer, namely by mixing the sulfur curable polyurethane in an internal rubber mixer together with sulfur and other rubber compounding ingredients such as, for example reinforcing fillers such as, for example carbon black and precipitated silica.
  • sulfur curable polyurethane may be blended with one or more sulfur curable diene-based elastomers to enhance the physical properties of the polyurethane based tread of the track.
  • the polyurethane tread component of the two part track may be pre-formed by molding and curing a shaped tread having raised, spaced-apart lugs on its outer surface following affixed it to an at least partially pre-cured rubber carcass by chemically bonding and/or physically interlocking the sulfur cured polyurethane-based tread to the cured rubber carcass and curing the resulting assembly.
  • chemical bonding may be accomplished, for example by interposing an adhesive layer between said tread and carcass and/or by chemically treating said tread and/or said carcass.
  • Such physical interlocking may be accomplished, for example, by providing lugs and/or grooves in the surface of the rubber carcass and opposing grooves and/or lugs in the complementary surface of the tread. Accordingly, a combination of chemical bonding and physical interlocking may be used.
  • the polyurethane tread component of the two part track may be formed directly onto the surface of said track rubber carcass component by casting a liquid polyurethane reaction mixture onto the a pre-cured carcass rubber surface and curing the polyurethane reaction mixture.
  • the resultant polyurethane tread may be affixed to the surface of the tread rubber carcass by the aforesaid chemical bonding and/or physical interlocking of associated lugs and grooves.
  • said polyurethane tread component may be a sheet of a pre-formed polyurethane, particularly a sulfur curable polyurethane, which may have raised lugs on its outer surface, wherein said polyurethane sheet is chemically bonded (e.g. via an adhesive layer on its inner surface) and/or physically bonded (via lugs and/or grooves on its inner surface) to a pre-cured rubber carcass component of said track.
  • said polyurethane tread component may be applied as a sheet of a sulfur curable polyurethane to the surface a pre-cured rubber carcass component and the polyurethane sheet cured thereon in a suitable mold to impart a raised lug configuration on the outer surface of said polyurethane tread component designed to be ground-engaging.
  • the inner surface of said polyurethane tread component may be physically interlocked with the outer surface of said track rubber carcass component by forming lugs and/or grooves on the inner surface of said polyurethane tread with corresponding, or complimentary, grooves and/or lugs on the outer surface of said track rubber carcass component which correspond to the inner surface of said polyurethane tread.
  • a suitable mold such as for example, molding or by spin casting a liquid polyurethane reaction mixture in a suitable mold
  • curing the polyurethane mixture to form the tread and applying the tread to a track rubber carcass or by casting the polyurethane reaction mixture directly onto the surface, which may be pre-coated with an adhesive, of the track rubber carcass and curing the polyurethane to from the polyurethane tread.
  • a composite of a polyurethane tread bonded to a surface of a cured rubber track carcass may comprise, for example:
  • said liquid polyurethane reaction mixture may be applied to said cured rubber track surface, which may be an adhesive coated surface, for example, by
  • polyurethanes are conventionally prepared by a reaction of:
  • polyisocyanate e.g. diisocyanate
  • curative e.g. trimethanol propane, or TMP.
  • Such polymeric polyols may be, for example polyether polyols and/or polyester polyols or a polycaprolactam polyol. Such polymeric polyols are well known to those having skill in the preparation of polyurethanes.
  • FIG. 1 which depicts a perspective view of a two part an endless rubber track composed of a tread component and a carcass component fitted to a vehicle with a drive wheel and a driven wheel,
  • FIG. 2 and FIG. 3 depict a longitudinal cross-sectional views of such track
  • FIG. 4 and FIG. 5 are enlarged views of a portion of the two part track FIG. 1 depicting an alternative interface between the tread portion and carcass portion of said track.
  • a two part track ( 1 ) having a rubber carcass component ( 6 ) and polyurethane based tread component ( 2 ), configured with raised spaced apart lugs designed to be ground-engaging ( 3 ) alternately also containing grooves ( 4 ) between said raised lugs ( 3 ).
  • intermeshing lugs ( 2 A) and/or ( 2 C) on the inner surface of the polyurethane tread component ( 2 ) and complimentary grooves ( 2 B) and or ( 2 D) in the surface of the rubber carcass component ( 2 ).
  • interfacial raised lugs ( 2 A) are depicted in a relatively square configuration and the interfacial lugs ( 2 B) are depicted in a relatively rectangular configuration in order to inhibit slippage between said polyurethane tread component ( 2 ) and rubber carcass component ( 6 ) as longitudinal and/or transverse forces are experienced as the track ( 1 ) is operationally driven over the ground.
  • Raised lugs ( 5 ) positioned on the outer surface of the rubber carcass component ( 6 ) of the two part track ( 1 ) are also shown which can be engaged by an appropriate drive wheel of the vehicle to drive the two part track ( 1 ).
  • the two part track ( 1 ) can be driven by a friction wheel.
  • the two part track ( 1 ) itself may be composed of the circumferential polyurethane-based tread component ( 2 ) which may be a sulfur cured polyurethane composition, on a sulfur cured diene-based rubber carcass component ( 6 ) wherein the rubber carcass component ( 6 ) itself which contains a cord or fabric (e.g. steel or glass fiber reinforced plastic) belt reinforcement ( 7 ) for dimensional stability.
  • the circumferential polyurethane-based tread component ( 2 ) which may be a sulfur cured polyurethane composition
  • a sulfur cured diene-based rubber carcass component ( 6 ) wherein the rubber carcass component ( 6 ) itself which contains a cord or fabric (e.g. steel or glass fiber reinforced plastic) belt reinforcement ( 7 ) for dimensional stability.
  • a cord or fabric e.g. steel or glass fiber reinforced plastic
  • the track has a relatively thin cross-section not supported by pneumatic air pressure as would be experienced by a pneumatic tire. Further, the track inherently presents a large footprint on the ground whereas a toroidal pneumatic tire presents a relatively small footprint.
  • the track tread presents special problems and challenges as it propels a vehicle over what is usually a relatively harsh environment comprising a ground which may contain various agricultural chemicals as well as crop stubble which can abrade away or even puncture the surface the track tread.
  • the two part track of this invention can present a special utility in that, when the tread component wears it can be replaced and greatly extends the useful life of the carcass component and thereby renews life of the two part track itself, albeit with a new tread component.
  • tread component is simply physically interlocked with the carcass component in that the tread can be simply removed from the carcass and a new tread component fitted to the existing carcass component.
  • the tread component may be ground away to the surface of the inner surface of the carcass component, a new adhesive layer applied to the resulting inner surface of the carcass component, and a new tread component applied thereto to form a new two part track assembly.
  • said adhesive layer where original or secondarily applied after the tread component is abraded away, may be colored with a color other than black, so that it becomes an indicator to indicate excessive wear of the tread component, or more significantly, as an indicator to indicate the limit of buffing (abrading) away of the tread component to expose the inner surface of the carcass component.
  • the two part track may be thereby retreaded.
  • a two-part vehicular track with a tread component of a polyurethane composition with its extended, spaced apart lugs designed to be ground engaging is a novel, adaptable, approach to such a vehicular track environment, particularly where it has the support and backing of a rubber carcass.
  • a unique advantage of a polyurethane composition for said tread component is that it may be readily colored with a colorant, particularly with a colored pigment of a color other than black, to provide a two part track with a customized tread color.
  • a two part vehicular track of a rubber carcass/tread component construction particularly for a tread component of polyurethane composition, where (1) the tread component contains spaced apart raised lugs designed to be ground engaging on its circumferential outer surface combined with (2) said tread being chemically bonded to and/or physically interlocked with a surface of said track rubber carcass component is novel, inventive and a departure from past practice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The invention relates to a two part endless vehicular rubber track comprised of a polyurethane based tread component and a rubber carcass component. In one aspect, the tread component may be comprised of a sulfur curable polyurethane or blend of sulfur curable polyurethane and sulfur curable elastomer. The invention includes a vehicle containing such track.

Description

The Applicants hereby incorporate by reference prior U.S. Provisional Application Serial No. 60/311,773, filed on Aug. 10, 2001.
FIELD OF THE INVENTION
The invention relates to a two part endless vehicular rubber track comprised of a polyurethane based tread component and a rubber carcass component. In one aspect, the tread component may be comprised of a sulfur curable polyurethane or blend of sulfur curable polyurethane and sulfur curable elastomer. The invention includes a vehicle containing such track.
BACKGROUND OF THE INVENTION
Endless rubber tractor tracks are increasingly being used for propelling various vehicles over the ground such as, for example, various tractors and other agricultural vehicles including, for example, combines and spreaders, as well as various earth moving machines.
In particular, such track is conventionally positioned over at least two wheels, normally a drive wheel for engaging an inner surface of the track and driving the track and at least one driven wheel to control the path of the track as it moves to propel the associated vehicle. The outer surface of the peripheral tread configuration of the track typically contains a plurality of raised lugs designed for engaging the ground and assisting the propelling of the associated vehicle such as, for example, a tractor over an agricultural ground.
In practice, the tread of such rubber tracks provide a considerably wider footprint than conventional pneumatic tires and are, thereby, more adaptable to agricultural fields in that they offer better flotation and less soil compaction than rubber tires, which may result in better crop yield. In addition, use of rubber tracks instead of pneumatic tires may permit a farmer to get out into a field earlier in the planting season and plant crops sooner in point of time and may permit a harvesting of a crop on a more timely basis as compared to conventional pneumatic rubber tire equipped agricultural vehicles. Such use and advantages of rubber tractor tracks are well known to those having skill in such art.
Such rubber tracks are conventionally in a form of an endless rubber belt composed of a rubber carcass reinforced with continuous steel cables molded into the carcass rubber composition itself to add dimensional stability for the track and an integral outer rubber tread with raised lugs for ground-contacting purposes.
Polyurethane treads have sometimes been suggested for rubber tires. Such polyurethanes are typically a reaction product of a polyisocyanate (e.g. diisocyanate) and one or more polymeric polyols such as for example polyether polyols and/or polyester polyols. For example, rubber tires, pneumatic and solid, have been heretofore been proposed having a rubber carcass bonded to a polyurethane tread. For example, see U.S. Pat. Nos. 4,669,517 and 4,095,637.
Sulfur curable polyurethanes have been proposed as a reaction product of a polyisocyanate (e.g. diisocyanate) and polymeric polyols which contain a degree of unsaturation, particularly carbon-to-carbon double bond unsaturation. Such polyisocyanate may be, for example, a methylene bis(4-phenylisocyanate), or MDI, and the polymeric polyol may be a trifunctional active hydrogen compound-initiated polyoxyalkylene polyether polyol having a degree of unsaturation which may also include a polytetramethylene ether glycol. (For example see U.S. Pat. No. 6,255,431 where a trifunctional agent is used with a polyol with an imparted unsaturation is used to promote physical properties of the polyurethane).
Sulfur curable millable thermoplastic polyurethanes may also be used alone or as a blend with sulfur curable diene-based elastomers as a product of relatively equivalent amounts of polymeric polyol (e.g. polyester and/or polyether polyols) and a polyisocyanate (e.g. a diisocyanate such as for example MDI) which, in adding certain unsaturated carbon-to-carbon double bonds, usually in the polymeric polyol component of the polyurethane. Representative examples are, for example, polyether polyurethane rubber such as Millathane E34® and polyester polyurethane such as Millathane 76® from TSE Industries of Rheim Chemie, a Bayer Company.
Sulfur vulcanizable polyurethanes such as a product of a polyisocyanate (e.g. diisocyanate) and a liquid diene prepolymer and particularly a functional liquid diene prepolymer, which may be described in U.S. Pat. No. 4,104,265.
The purpose of this invention relates to a vehicular track comprised of two parts, namely a polyurethane based tread component designed to be ground-contacting (ground-engaging particularly for a farm implement) namely a tread component containing spaced apart lugs and an underlying rubber carcass component for supporting the tread component. For this invention, said track tread portion may be a polyurethane tread chemically bonded and/or physically interlocked to a rubber carcass.
It is contemplated that such a rubber track with a polyurethane tread configured with extended lugs, which is non-pneumatic, not intended for extensive highway use, intended for slow speed operation with minimal internal heat buildup within the polyurethane tread and where traction of the tread over the ground is primarily derived from its extended ground-engaging lugs rather than being primarily derived from the polyurethane composition itself has merit.
Most all of such above properties are not normally experienced by pneumatic passenger tires so that application of a polyurethane tread to the rubber carcass of a vehicular track is believed to be unique.
In the description of this invention the terms “cured” and “vulcanized” if used are used interchangeably. The term “phr” relates to parts by weight of a material per 100 parts by weight of rubber. The terms “rubber” and “elastomer” are used interchangeably unless otherwise noted.
SUMMARY AND PRACTICE OF THE INVENTION
In accordance with this invention, an endless rubber track designed to encompass at least one drive wheel and at least one driven wheel of an associated vehicle is provided wherein said track is a two part track comprised of a polyurethane based outer tread component having an outer surface and an opposing inner surface and an underlying rubber carcass component having an inner surface and an opposing outer surface, wherein said tread outer surface is configured with raised, spaced apart lugs designed to be ground engaging, wherein said tread inner surface is chemically bonded to and/or physically interlocked with, said carcass inner surface and wherein said carcass outer surface is designed to engage at least one of said drive wheels and/or driven wheels of said vehicle.
In one aspect of the invention, said polyurethane tread is chemically bonded to said underlying rubber carcass by an adhesive layer positioned between said tread inner surface and said carcass inner surface to bond said polyurethane tread and said rubber carcass together.
In practice, said diene-based rubber for said polyurethane tread blend can be, for example, a elastomeric polymer of isoprene and/or 1,3-butadiene and/or elastomeric copolymer of styrene with isoprene and/or 1,3-butadiene.
Representative examples of such rubbers are, for example, cis 1,4-polyisoprene cis 1,4-butadiene, styrene/butadiene copolymers isoprene/butadiene copolymers, styrene/isoprene copolymers and styrene/isoprene/butadiene terpolymer.
While various polyurethanes may be used, whether prepared by a one shot process or, preferably, by a pre-polymer process, sulfur curable polyurethanes are preferred which can be simple blended with typical rubber compounding ingredients (e.g. sulfur, etc) in an internal mixer in a manner similar to diene-based rubber compositions.
Sulfur curable polyurethanes can be of many forms which usually contain carbon-to-carbon double bonds therein to facilitate the sulfur curing thereof. Usually such double bonds are contained in the polyol component of the polyurethane.
While various diisocyanates might be used for the preparation of the polyurethane, sometimes diisocyanates which are considered to be non-discoloring might be desired, particularly where a colored track tread is desired (particularly if the desired color is other than a black color)
Representative of various isocyanates (e.g. diisocyanates) are, for example, methylene bis(4-phenylisocyanate) or MDI, 4,4′-diphenylmethane diisocyanate or TODI, trimethyl hexamethylene diisocyanate or TMDI, and hexamethylene diisocyanate or H12MDI.
It may be desired to add a degree of trifunctionality to the polyurethane to improve various physical properties. This might be done, for example, by use of polymeric polyols with various degrees of difunctionality and trifunctionality.
Various polymeric polyols may be used for the polyurethane such as, for example polyester polyols, polyether polyols, polybutadiene polyols as well as functional liquid diene prepolymers (for example, see U.S. Pat. No. 4,104,265 which is incorporated herein in its entirety for its polyurethane preparation teaching)
The polyurethane for the tread component of the track may be comprised of a sulfur curable polyurethane which may be processed in a manner similar or the same as a sulfur curable elastomer, namely by mixing the sulfur curable polyurethane in an internal rubber mixer together with sulfur and other rubber compounding ingredients such as, for example reinforcing fillers such as, for example carbon black and precipitated silica. In practice, as hereinbefore discussed, such sulfur curable polyurethane may be blended with one or more sulfur curable diene-based elastomers to enhance the physical properties of the polyurethane based tread of the track.
It is to be appreciated that the polyurethane tread component of the two part track may be pre-formed by molding and curing a shaped tread having raised, spaced-apart lugs on its outer surface following affixed it to an at least partially pre-cured rubber carcass by chemically bonding and/or physically interlocking the sulfur cured polyurethane-based tread to the cured rubber carcass and curing the resulting assembly. Such chemical bonding may be accomplished, for example by interposing an adhesive layer between said tread and carcass and/or by chemically treating said tread and/or said carcass. Such physical interlocking may be accomplished, for example, by providing lugs and/or grooves in the surface of the rubber carcass and opposing grooves and/or lugs in the complementary surface of the tread. Accordingly, a combination of chemical bonding and physical interlocking may be used.
Alternatively, the polyurethane tread component of the two part track, particularly a sulfur curable polyurethane, may be formed directly onto the surface of said track rubber carcass component by casting a liquid polyurethane reaction mixture onto the a pre-cured carcass rubber surface and curing the polyurethane reaction mixture. The resultant polyurethane tread may be affixed to the surface of the tread rubber carcass by the aforesaid chemical bonding and/or physical interlocking of associated lugs and grooves.
Alternatively, said polyurethane tread component may be a sheet of a pre-formed polyurethane, particularly a sulfur curable polyurethane, which may have raised lugs on its outer surface, wherein said polyurethane sheet is chemically bonded (e.g. via an adhesive layer on its inner surface) and/or physically bonded (via lugs and/or grooves on its inner surface) to a pre-cured rubber carcass component of said track.
Alternatively, said polyurethane tread component may be applied as a sheet of a sulfur curable polyurethane to the surface a pre-cured rubber carcass component and the polyurethane sheet cured thereon in a suitable mold to impart a raised lug configuration on the outer surface of said polyurethane tread component designed to be ground-engaging.
In practice, for example, the inner surface of said polyurethane tread component may be physically interlocked with the outer surface of said track rubber carcass component by forming lugs and/or grooves on the inner surface of said polyurethane tread with corresponding, or complimentary, grooves and/or lugs on the outer surface of said track rubber carcass component which correspond to the inner surface of said polyurethane tread. This may be accomplished by first forming the polyurethane in a suitable mold such as for example, molding or by spin casting a liquid polyurethane reaction mixture in a suitable mold, curing the polyurethane mixture to form the tread, and applying the tread to a track rubber carcass or by casting the polyurethane reaction mixture directly onto the surface, which may be pre-coated with an adhesive, of the track rubber carcass and curing the polyurethane to from the polyurethane tread.
For an example of preparation of a polyurethane tread chemically bonded to a cured rubber tire carcass see U.S. Pat. No. 4,669,517 reference which is incorporated herein in its entirety.
For example, a composite of a polyurethane tread bonded to a surface of a cured rubber track carcass may comprise, for example:
(A) cleaning a surface of a cured rubber track carcass, said rubber having been prepared by sulfur curing a rubber composition containing from about 2 to about 10, alternately about 8 to about 12, phr of at least one hydroxyl terminated diene polyol selected from polybutadiene polyol and polyisoprene polyol, where said polyol is characterized by being liquid at 30° C., by having a hydroxyl functionality of about 1.5 to about 3, alternately about 2 to about 2.5, and a molecular weight (number average) in a range of about 2000 to about 4000, alternately about 2500 to about 3200; and where said rubber contains from zero to about 25, alternately about 20, phr of rubber processing oil;
(B) applying at least one coating to said cleaned rubber surface as a dispersion of cyanuric acid in a volatile organic diluent followed by drying the resultant coat to remove said diluent;
(C) applying at least one additional coating to said cyanuric acid coat as a solution comprising a phenol formaldehyde resole resin in a volatile organic solvent followed by drying the resultant additional coat(s) to remove the solvent;
(D) applying a pre-formed polyurethane tread or applying a liquid polyurethane reaction mixture to said coated rubber track surface; and
(E) allowing said pre-formed polyurethane tread to adhesively bond to said rubber carcass or curing said polyurethane reaction mixture to form a composite of polyurethane tread chemically bonded to the cured rubber track carcass.
In practice, for example, said liquid polyurethane reaction mixture may be applied to said cured rubber track surface, which may be an adhesive coated surface, for example, by
(1) flowing the liquid mixture onto a suitable mold cavity which contains the said rubber track carcass and/or
(2) spin casting said liquid polyurethane reaction mixture onto the surface of the said rubber track by
(a) spinning the cured rubber track around a liquid polyurethane ejecting means and/or
(b) spinning a liquid polyurethane ejecting means around the cured rubber track.
It is to be appreciated that polyurethanes are conventionally prepared by a reaction of:
(A) polymeric polyol;
(B) polyisocyanate (e.g. diisocyanate); and, optionally
(C) curative (e.g. trimethanol propane, or TMP).
There are many variations of such reaction, depending largely upon the choice of reactants and additives. Such polymeric polyols may be, for example polyether polyols and/or polyester polyols or a polycaprolactam polyol. Such polymeric polyols are well known to those having skill in the preparation of polyurethanes.
For a further understanding of this invention, the accompanying drawings are referred to in
FIG. 1 which depicts a perspective view of a two part an endless rubber track composed of a tread component and a carcass component fitted to a vehicle with a drive wheel and a driven wheel,
FIG. 2 and FIG. 3 depict a longitudinal cross-sectional views of such track,
FIG. 4 and FIG. 5 are enlarged views of a portion of the two part track FIG. 1 depicting an alternative interface between the tread portion and carcass portion of said track.
In the drawings, a two part track (1) is provided having a rubber carcass component (6) and polyurethane based tread component (2), configured with raised spaced apart lugs designed to be ground-engaging (3) alternately also containing grooves (4) between said raised lugs (3). The polyurethane tread component (2), for example a sulfur curable or sulfur cured polyurethane, is affixed to the surface of the rubber carcass component (6) by bonding the polyurethane tread component and rubber carcass components together with an interfacial adhesive cement (6A) therebetween and, moreover, is physically interlocked with said rubber carcass component (6) by intermeshing lugs (2A) and/or (2C) on the inner surface of the polyurethane tread component (2) and complimentary grooves (2B) and or (2D) in the surface of the rubber carcass component (2). The interfacial raised lugs (2A) are depicted in a relatively square configuration and the interfacial lugs (2B) are depicted in a relatively rectangular configuration in order to inhibit slippage between said polyurethane tread component (2) and rubber carcass component (6) as longitudinal and/or transverse forces are experienced as the track (1) is operationally driven over the ground.
Raised lugs (5) positioned on the outer surface of the rubber carcass component (6) of the two part track (1) are also shown which can be engaged by an appropriate drive wheel of the vehicle to drive the two part track (1). Alternatively, the two part track (1) can be driven by a friction wheel.
The two part track (1) itself may be composed of the circumferential polyurethane-based tread component (2) which may be a sulfur cured polyurethane composition, on a sulfur cured diene-based rubber carcass component (6) wherein the rubber carcass component (6) itself which contains a cord or fabric (e.g. steel or glass fiber reinforced plastic) belt reinforcement (7) for dimensional stability.
It is to be appreciated that use of the tread component of the two part track in an agricultural operation presents problems not normally experienced by a toroidially-shaped pneumatic tire. In one aspect, the track has a relatively thin cross-section not supported by pneumatic air pressure as would be experienced by a pneumatic tire. Further, the track inherently presents a large footprint on the ground whereas a toroidal pneumatic tire presents a relatively small footprint.
Indeed, the track tread presents special problems and challenges as it propels a vehicle over what is usually a relatively harsh environment comprising a ground which may contain various agricultural chemicals as well as crop stubble which can abrade away or even puncture the surface the track tread.
Accordingly, the two part track of this invention can present a special utility in that, when the tread component wears it can be replaced and greatly extends the useful life of the carcass component and thereby renews life of the two part track itself, albeit with a new tread component.
It is contemplated that such advantage may be realized where the tread component is simply physically interlocked with the carcass component in that the tread can be simply removed from the carcass and a new tread component fitted to the existing carcass component.
Alternatively, where an adhesive layer is positioned as an interface between the inner surface of the tread component and the inner surface of the carcass component, the tread component may be ground away to the surface of the inner surface of the carcass component, a new adhesive layer applied to the resulting inner surface of the carcass component, and a new tread component applied thereto to form a new two part track assembly. Uniquely, said adhesive layer, where original or secondarily applied after the tread component is abraded away, may be colored with a color other than black, so that it becomes an indicator to indicate excessive wear of the tread component, or more significantly, as an indicator to indicate the limit of buffing (abrading) away of the tread component to expose the inner surface of the carcass component. In essence, the two part track may be thereby retreaded.
Accordingly, in one aspect of the invention, it is contemplated that a two-part vehicular track with a tread component of a polyurethane composition with its extended, spaced apart lugs designed to be ground engaging is a novel, adaptable, approach to such a vehicular track environment, particularly where it has the support and backing of a rubber carcass. A unique advantage of a polyurethane composition for said tread component is that it may be readily colored with a colorant, particularly with a colored pigment of a color other than black, to provide a two part track with a customized tread color.
It is considered herein that a two part vehicular track of a rubber carcass/tread component construction, particularly for a tread component of polyurethane composition, where (1) the tread component contains spaced apart raised lugs designed to be ground engaging on its circumferential outer surface combined with (2) said tread being chemically bonded to and/or physically interlocked with a surface of said track rubber carcass component is novel, inventive and a departure from past practice.
The following Example is presented in order to illustrate the invention and is intended to be only exemplary. The parts and percentages are by weight unless otherwise indicated.
EXAMPLE I
TABLE 1
Polyurethane Preparation (Formulations)
Compound Sample A B C D E F
Ethylene glycol adipate/diphenyl 0 0 0 0 0 1200
methane-4,4′-diisocyanate
prepolymer (NC) 6.6%)
Polyethylene (1870) glycol adipate 0 0 0 0 935 0
Polypropylene glycol 1040 2290.7 520 520 0 0
Polypropylene glycol 0 4558.6 800 0 0 0
Diethylene glycol adipate 0 0 0 1000 0 0
Diethylene glycol phthalate 0 0 300 0 0 0
80/20 2,6-; 2,4-toulene diisocyanate 0 1618 0 0 191.4 0
mixture
Diphenylmethane-l,4′-diisocyanate 625 0 545 504 0 0
Trimethylol propane 0 0 0 0 0 4.3
2,6-Ditertiary butyl pracresol 10 68 15 15 0 0
Stannous octoate solution (10% 0.1 0 0 0 0 0.13
solution in 1000 mw ethylene glycol
adipate or polypropylene glycol)
4,4′-methylene bis orthochloroaniline 0 0 0 0 129.5 0
Hydroxyethyl hydroquinone 0 0 0 0 0 165.72
1,3-Propane diole 108.9 0 0 0 0 0
Sodium chloride complex of 4,4′- 0 1785.6 409.8 378.8 0 0
methylene dianiline in dioctyl
phthalate
TABLE 2
OH/Amine and OH/Isocyanate Group Ratios
Example Value A B C D E F
OH/NCO ratio (estimate) 2.5 2.05 2.08 2.01 2.2 3.4
OH/amine group level 0.95 0.85 0.85 0.85 0.85 0.91
Prepolymer temperature 104 91 93 93 105 105
Curative temperature 93 38 35 35 110 120
Curing temperature 121 121 121 121 110 121
Pot life (minutes) 4 3.5 2 to 3 2 to 3 2.5 4 to 5
TABLE 3
Physical Properties
Compound Data A B C D E F
Shore A hardness  87  86  93  90 87 94
Shore D hardness  30 30  37  35 0 44
Modulus
25° C., 100% 1130 670 1180 1050 914 1590
25° C., 300% 2480 1170 1670 1550 1804 2360
25° C., 500%   0 1970 2120 2100 4827 3250
Ultimate tensile (psi) 3050 2020 2890 3175 5400 4130
Ultimate elongation  376 510  660  635 508 600
30% Compression (hysteresis)  12 32.7  27  28 19.3 24
(% loss)
Compression set (%) ASTM D-935  45  39.8 16.8  22 23.2 26.2
Method B
Crescent tear (ASTM D-624)  375 323 503  500 464 746
Die C (lb/in)
30% Compression load deflection 1000 800 1825 1408 1110 2040
(lbs/in. sup. 2)
Goodrich flex life (modified)    15+ 5    15+    15+ 42.5 5
ASTM-D623 with time (min)
435 psi load
Heat rise (° F.) at 38° C.  145 174 164  159 176 169
Softening Point (° C.)  178 209 200  210 214 216
Melting point (° C.)  188 279 280  280 251 222
Tire Test (15″ × 5″ × 11¼″ Tire)
Resiliometer results load at 6600 6600 5500 7700 6600 6600
failure (lbs)
Time (hours)  32 31.7 35.6    78.5 38.5 57
EXAMPLE II
TABLE 4
Millable Polyester Polyurethane
Millathane 76 Blended with Polyisoprene in a Model Compound
Compound Samples G H
Polyisoprene 100 75
Millathane 76 25
Carbon black (N121) 49 49
Wax 1.5 1.5
6PPD 2.5 2.5
TMQ 1 1
Stearic acid 2 2
Zinc oxide 4 4
TBBS 0.8 0.8
Sulfur 1 1
PVI 0.2 0.2
Rheometer
T-25 8.87 6.78
T-90 12.32 11.05
Minimum torque 2.91 2.81
Maximum torque 14.36 16.4
Cure rate index (CRI) 28.98 23.42
Tensile strength (MPa) 23.15 17.93
Ultimate Elongation 569 542
300% modulus 8.49 8.72
Peel adhesion 40.6 49.4
Peel adhesion, aged 5 days @ 100° C. 22.84 36.44
Shore A hardness (23° C.) 60 67
Zwick rebound (100° C.) 91 52
Penetration energy needle Penetration/mm 3.22 4.1
0 to 20 mm (n)
Dynamic Modulus
E′ (MPa), 0° C. 24.8 27.5
E″ 2.87 4.23
Tan delta 0.116 0.154
TABLE 5
Millable Polyester Polyurethane
Millathane 76 Blended with Emulsion SBR in a Model Compound
Compound Samples I J
SBR 1502 100 75
Millathane 76 0 25
Carbon black (N121) + C24 49 49
Wax 1.5 1.5
6PPD 2.5 2.5
TMQ 1 1
Stearic acid 2 2
Zinc oxide 4 4
TBBS 0.8 0.8
Sulfur 1 1
PVI 0.2 0.2
Rheometer
T-25 15.48 13.05
T-90 26.48 20.91
Minimum torque 2.51 2.8
Maximum torque 13.11 14.6
Tensile strength (MPa) 19.17 18.6
Ultimate Elongation 658 484
300% modulus 6.69 10.89
Shore A hardness (23° C.) 70.6 73.3
Zwick rebound (100° C.) 46 47
Fatigue to failure (×100) 1343 1400
Penetration energy needle Penetration/mm 4.95 5.68
0 to 20 mm (n)
Dynamic Modulus
E′ (MPa), 0° C. 44.9 82.7
E″ 7.18 117.6
Tan delta 0.16 0.213
While certain representative embodiments and details have been shown or illustrated for the purpose of illustrating the invention, it will be apparent to those skilled in this art that various changes and modifications may be made therein without departing from the spirit or scope of the invention.

Claims (11)

What is claimed is:
1. An endless rubber track designed to encompass at least one drive wheel and at least one driven wheel of an associated vehicle is provided wherein said track is a two part track comprised of a pre-cured polyurethane based outer tread component having an outer surface and an opposing inner surface and a pre-cured underlying rubber carcass component having an inner surface and an opposing outer surface, wherein said pre-cured tread outer surface is configured with raised, spaced apart lugs designed to be ground engaging, wherein said pre-cured tread inner surface is physically interlocked with said carcass inner surface and wherein said carcass outer surface is designed to engage at least one of said drive wheels and/or driven wheels of said vehicle;
wherein said physical interlocking of said pre-cured tread inner surface with said pre-cured carcass inner surface is accomplished by providing:
(A) lugs in the inner surface of the pre-cured rubber carcass and opposing grooves in the complementary inner surface of the pre-cured polyurethane tread, and/or
(B) grooves in the inner surface of the pre-cured rubber carcass and opposing lugs in the complementary inner surface of the pre-cured polyurethane tread.
2. The track of claim 1 wherein said rubber carcass component contains a plurality of lugs in its outer surface which are designed to engage and/or to be guided by one or more of said vehicular drive and/or driven wheels.
3. The track of claim 1 wherein said pre-cured polyurethane tread is a pre-cured sulfur curable polyurethane which contains carbon-to-carbon double bonds therein.
4. The track of claim 1 wherein said pre-cured polyurethane tread is a pre-cured blend of sulfur curable polyurethane and sulfur curable diene-based rubber.
5. The track of claim 4 wherein said diene-based rubber for said polyurethane tread pre-cured blend is selected from at least one of polymers of isoprene and/or 1,3-butadiene and copolymers of styrene with isoprene and/or 1,3-butadiene.
6. The track of claim 5 wherein said rubber is selected from at least one of cis 1,4-polyisoprene cis 1, 4-polybutudiene, styrene/butadiene copolymers isoprene/butadiene copolymers, styrene/isoprene copolymers and styrene/isoprene/butadiene terpolymer.
7. The track of claim 4 wherein said pre-cured polyurethane is a pre-cured blend of a sulfur curable polyurethane and rubber compounding ingredients including sulfur.
8. The track of claim 1 wherein said pre-cured polyurethane is prepared by a reaction of diisocyanate, polymeric polyol and curative, wherein said diisocyanate is selected from methylene bis(4-phenylisocyanate) or MDI, 4,4′-diphenylmethane diisocyanate or TODI, trimethyl hexamethylene diisocyanate or TMDI, or hexamethylene diisocyanate or H12MDI.
9. The track of claim 8 wherein said pre-cured polyurethane contains a trifunctional polymeric polyol.
10. The track of claim 1 wherein said pre-cured polyurethane is prepared by a reaction of diisocyanate, polymeric polyol and curative, wherein said polymeric polyol is selected from at least one of polyester polyols, polyether polyols, polybutadiene polyols, polycaprolactam, and functional liquid diene prepolymers.
11. The track of claim 8 wherein said polyol is selected from at least one of polyester polyols, polyether polyols, polybutadiene polyols, polycaprolactam, and functional liquid diene prepolymers.
US10/193,387 2001-08-10 2002-07-11 Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track Expired - Fee Related US6769746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/193,387 US6769746B2 (en) 2001-08-10 2002-07-11 Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31177301P 2001-08-10 2001-08-10
US10/193,387 US6769746B2 (en) 2001-08-10 2002-07-11 Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track

Publications (2)

Publication Number Publication Date
US20030094854A1 US20030094854A1 (en) 2003-05-22
US6769746B2 true US6769746B2 (en) 2004-08-03

Family

ID=23208396

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/193,387 Expired - Fee Related US6769746B2 (en) 2001-08-10 2002-07-11 Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track

Country Status (5)

Country Link
US (1) US6769746B2 (en)
EP (1) EP1283151B1 (en)
BR (1) BR0202975A (en)
CA (1) CA2390209A1 (en)
DE (1) DE60207944T2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118813A1 (en) * 2001-11-30 2003-06-26 Takayuki Hattori Paper-feeding roller and method of manufacturing paper-feeding roller
US20040084120A1 (en) * 2001-11-30 2004-05-06 Jesse Arnold Tire with marked layers
US20070182220A1 (en) * 2005-02-22 2007-08-09 Walkinshaw Nathan R Folding Chair Cot For Use With Emergency Vehicles
US20080174176A1 (en) * 2007-01-16 2008-07-24 Polaris Industries Inc. Light weight track for a snowmobile
US20090256418A1 (en) * 2005-11-24 2009-10-15 Bridgestone Corporation Coreless rubber crawler
US20120160150A1 (en) * 2010-06-29 2012-06-28 Robert Handfield Slide Bar for a Track System
US20150034458A1 (en) * 2013-08-02 2015-02-05 Veyance Technologies, Inc. Conveyor belt
US9067631B1 (en) 2010-12-14 2015-06-30 Camoplast Solideal Inc. Endless track for traction of a vehicle
US9180737B2 (en) 2013-04-18 2015-11-10 Caterpillar Inc. Molded tire having different tread material
US9334001B2 (en) 2010-12-14 2016-05-10 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
US9511805B2 (en) 2009-12-11 2016-12-06 Camso Inc. Endless track for propelling a vehicle, with edge-cutting resistance
US9540182B2 (en) * 2015-06-09 2017-01-10 Hwaseung Exwill Co., Ltd. Abrasion-detection type conveyor belt and manufacturing method thereof
US10166732B2 (en) 2013-06-15 2019-01-01 Camso Inc. Annular ring and non-pneumatic tire
US20190071535A1 (en) * 2016-03-21 2019-03-07 Basf Se Crosslinked polyurethane
US10272959B2 (en) 2010-06-30 2019-04-30 Camso Inc. Track assembly for an off-road vehicle
US10783723B2 (en) 2015-06-29 2020-09-22 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US10933877B2 (en) 2010-12-14 2021-03-02 Camso Inc. Track drive mode management system and methods
US10953696B2 (en) 2015-02-04 2021-03-23 Camso Inc Non-pneumatic tire and other annular devices
US11046377B2 (en) 2015-03-04 2021-06-29 Camso Inc. Track system for traction of a vehicle
US11179969B2 (en) 2017-06-15 2021-11-23 Camso Inc. Wheel comprising a non-pneumatic tire
US11648716B2 (en) * 2016-12-07 2023-05-16 Ecovacs Robotics Co., Ltd. Surface cleaning robot and process for manufacturing track thereof
US11835955B2 (en) 2017-12-08 2023-12-05 Camso Inc. Systems and methods for monitoring off-road vehicles
US11999419B2 (en) 2015-12-16 2024-06-04 Camso Inc. Track system for traction of a vehicle
US12090795B2 (en) 2018-08-30 2024-09-17 Camso Inc. Systems and methods for monitoring vehicles with tires

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050211351A1 (en) * 2004-03-24 2005-09-29 Majumdar Ramendra N Tire with detectable carcass cushion layer and use thereof to facilitate tire carcass retreading
SK288887B6 (en) * 2015-11-18 2021-08-25 Adroc Tech S.R.O. Traction belt of vehicle
KR101670680B1 (en) * 2016-05-03 2016-10-31 티알벨트랙 주식회사 Crawler with wear indicator
US11738813B2 (en) 2016-11-01 2023-08-29 Loc Performance Products, Llc Urethane hybrid agricultural vehicle track
US10589809B2 (en) * 2016-11-01 2020-03-17 Contitech Transportbandsysteme Gmbh Urethane hybrid agricultural vehicle track
US10099734B2 (en) * 2016-11-01 2018-10-16 Contitech Transportbandsysteme Gmbh Urethane hybrid agricultural vehicle track
DE102016225423A1 (en) * 2016-12-19 2018-06-21 Contitech Transportbandsysteme Gmbh Caterpillar, in particular rubber crawler
US11932329B2 (en) 2016-12-20 2024-03-19 Camso Inc. Track system for traction of a vehicle
CN109517361B (en) * 2017-09-20 2021-12-03 科沃斯机器人股份有限公司 TPU blend and application thereof
US10046818B1 (en) 2017-11-28 2018-08-14 Contitech Transportbandsysteme Gmbh Rubber track wheel path reinforcement
US11066113B2 (en) * 2018-05-10 2021-07-20 Contitech Transportbandsysteme Gmbh Galvanized wire ply for rubber track

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480339A (en) * 1968-02-01 1969-11-25 Goodyear Tire & Rubber Belt track for vehicles
US4095637A (en) * 1975-06-09 1978-06-20 The Goodyear Tire & Rubber Company Solid polyurethane tire/wheel assembly
US4104265A (en) * 1975-01-30 1978-08-01 Compagnie Generale Des Etablissements Michelin Vulcanization process for preparation of polyurethane tires
JPS55140662A (en) 1979-04-20 1980-11-04 Bridgestone Corp Highly durable endless tracked vehicle belt
US4669517A (en) * 1984-03-07 1987-06-02 The Goodyear Tire & Rubber Company Polyurethane bonded to cured rubber containing a diene polyol
GB2229410A (en) 1989-03-18 1990-09-26 Fukuyama Rubber Ind Rubber crawler tracks with urethane inserts
JPH05170148A (en) 1991-12-18 1993-07-09 Ohtsu Tire & Rubber Co Ltd :The Urethane rubber crawler and manufacture thereof
JPH06166389A (en) 1992-08-17 1994-06-14 Fukuyama Rubber Kogyo Kk Manufacture of highly elastic rubber crawler and manufacturing device
US6255431B1 (en) * 1996-07-10 2001-07-03 Basf Corporation Compositions of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation
US6273163B1 (en) 1998-10-22 2001-08-14 The Goodyear Tire & Rubber Company Tire with tread of rubber composition prepared with reinforcing fillers which include starch/plasticizer composite
US6296329B1 (en) * 1999-05-12 2001-10-02 The Goodyear Tire & Rubber Company Endless rubber track and vehicle containing such track
US6352320B1 (en) * 2000-06-19 2002-03-05 The Goodyear Tire & Rubber Company Directional annular elastic track
US6554377B2 (en) * 2001-07-19 2003-04-29 The Goodyear Tire & Rubber Company Rubber track and improved method and method for producing the track

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480339A (en) * 1968-02-01 1969-11-25 Goodyear Tire & Rubber Belt track for vehicles
US4104265A (en) * 1975-01-30 1978-08-01 Compagnie Generale Des Etablissements Michelin Vulcanization process for preparation of polyurethane tires
US4095637A (en) * 1975-06-09 1978-06-20 The Goodyear Tire & Rubber Company Solid polyurethane tire/wheel assembly
JPS55140662A (en) 1979-04-20 1980-11-04 Bridgestone Corp Highly durable endless tracked vehicle belt
US4669517A (en) * 1984-03-07 1987-06-02 The Goodyear Tire & Rubber Company Polyurethane bonded to cured rubber containing a diene polyol
GB2229410A (en) 1989-03-18 1990-09-26 Fukuyama Rubber Ind Rubber crawler tracks with urethane inserts
JPH05170148A (en) 1991-12-18 1993-07-09 Ohtsu Tire & Rubber Co Ltd :The Urethane rubber crawler and manufacture thereof
JPH06166389A (en) 1992-08-17 1994-06-14 Fukuyama Rubber Kogyo Kk Manufacture of highly elastic rubber crawler and manufacturing device
US6255431B1 (en) * 1996-07-10 2001-07-03 Basf Corporation Compositions of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation
US6273163B1 (en) 1998-10-22 2001-08-14 The Goodyear Tire & Rubber Company Tire with tread of rubber composition prepared with reinforcing fillers which include starch/plasticizer composite
US6296329B1 (en) * 1999-05-12 2001-10-02 The Goodyear Tire & Rubber Company Endless rubber track and vehicle containing such track
US6352320B1 (en) * 2000-06-19 2002-03-05 The Goodyear Tire & Rubber Company Directional annular elastic track
US6554377B2 (en) * 2001-07-19 2003-04-29 The Goodyear Tire & Rubber Company Rubber track and improved method and method for producing the track

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Millathane 76(R), A Millable Urethane Elastomer" brochure by TSE Industries, 5260 113<th >Avenue North, Clearwater, Florida 34620, a RheinChemie Corporation.
"Millathane 76®, A Millable Urethane Elastomer" brochure by TSE Industries, 5260 113th Avenue North, Clearwater, Florida 34620, a RheinChemie Corporation.
"Millathane E34(R), A High Performance Polyether Polyurethane Rubber" information sheet by TSE Industries, 5260 113<th >Avenue North, Clearwater, Florida 34620, a RheinChemie Corporation.
"Millathane E34®, A High Performance Polyether Polyurethane Rubber" information sheet by TSE Industries, 5260 113th Avenue North, Clearwater, Florida 34620, a RheinChemie Corporation.
"Millathane HT(R), A High Temperature Resistant Polyurethane" brochure by TSE Industries, 5260 113<th >Avenue North, Clearwater, Florida 34620, a RheinChemie Corporation.
"Millathane HT®, A High Temperature Resistant Polyurethane" brochure by TSE Industries, 5260 113th Avenue North, Clearwater, Florida 34620, a RheinChemie Corporation.
U.S. 2003/0080618 A1, Krishnan et al, May 1, 2003, entire document.* *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084120A1 (en) * 2001-11-30 2004-05-06 Jesse Arnold Tire with marked layers
US20030118813A1 (en) * 2001-11-30 2003-06-26 Takayuki Hattori Paper-feeding roller and method of manufacturing paper-feeding roller
US20070182220A1 (en) * 2005-02-22 2007-08-09 Walkinshaw Nathan R Folding Chair Cot For Use With Emergency Vehicles
US7967398B2 (en) * 2005-11-24 2011-06-28 Bridgestone Corporation Coreless rubber crawler
US20090256418A1 (en) * 2005-11-24 2009-10-15 Bridgestone Corporation Coreless rubber crawler
US20110109153A1 (en) * 2007-01-16 2011-05-12 Polaris Industries Inc. Light weight track for a snowmobile
US7866766B2 (en) * 2007-01-16 2011-01-11 Polaris Industries Inc. Light weight track for a snowmobile
US20080174176A1 (en) * 2007-01-16 2008-07-24 Polaris Industries Inc. Light weight track for a snowmobile
US9511805B2 (en) 2009-12-11 2016-12-06 Camso Inc. Endless track for propelling a vehicle, with edge-cutting resistance
US9199694B2 (en) * 2010-06-29 2015-12-01 Kimpex Inc. Slide bar for a track system
US20120160150A1 (en) * 2010-06-29 2012-06-28 Robert Handfield Slide Bar for a Track System
US10272959B2 (en) 2010-06-30 2019-04-30 Camso Inc. Track assembly for an off-road vehicle
US11186330B2 (en) 2010-06-30 2021-11-30 Camso Inc. Track assembly for an off-road vehicle
US9878750B2 (en) 2010-12-14 2018-01-30 Camso Inc. Endless track for traction of a vehicle
US9334001B2 (en) 2010-12-14 2016-05-10 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
US9162718B2 (en) 2010-12-14 2015-10-20 Camso Inc. Endless track for traction of a vehicle
US10933877B2 (en) 2010-12-14 2021-03-02 Camso Inc. Track drive mode management system and methods
US10730572B1 (en) 2010-12-14 2020-08-04 Camso Inc. Endless track for traction of a vehicle
US10077089B1 (en) 2010-12-14 2018-09-18 Camso Inc. Endless track for traction of a vehicle
US9067631B1 (en) 2010-12-14 2015-06-30 Camoplast Solideal Inc. Endless track for traction of a vehicle
US10843750B2 (en) 2010-12-14 2020-11-24 Camso Inc. Endless track for traction of a vehicle
US12049267B2 (en) 2010-12-14 2024-07-30 Camso Inc. Endless track for traction of a vehicle
US10328982B2 (en) 2010-12-14 2019-06-25 Camso Inc. Drive sprocket, drive lug configuration and track drive arrangement for an endless track vehicle
US9180737B2 (en) 2013-04-18 2015-11-10 Caterpillar Inc. Molded tire having different tread material
US10166732B2 (en) 2013-06-15 2019-01-01 Camso Inc. Annular ring and non-pneumatic tire
US11014316B2 (en) 2013-06-15 2021-05-25 Camso Inc. Annular ring and non-pneumatic tire
US20150034458A1 (en) * 2013-08-02 2015-02-05 Veyance Technologies, Inc. Conveyor belt
US9637312B2 (en) * 2013-08-02 2017-05-02 Veyance Technologies, Inc. Conveyor belt
US10953696B2 (en) 2015-02-04 2021-03-23 Camso Inc Non-pneumatic tire and other annular devices
US11897558B2 (en) 2015-03-04 2024-02-13 Camso Inc. Track system for traction of a vehicle
US11046377B2 (en) 2015-03-04 2021-06-29 Camso Inc. Track system for traction of a vehicle
US11167810B2 (en) 2015-03-04 2021-11-09 Camso Inc. Track system for traction of a vehicle
US9540182B2 (en) * 2015-06-09 2017-01-10 Hwaseung Exwill Co., Ltd. Abrasion-detection type conveyor belt and manufacturing method thereof
US10783723B2 (en) 2015-06-29 2020-09-22 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US12008846B2 (en) 2015-06-29 2024-06-11 Camso Inc. Systems and methods for monitoring a track system for traction of a vehicle
US11999419B2 (en) 2015-12-16 2024-06-04 Camso Inc. Track system for traction of a vehicle
US20190071535A1 (en) * 2016-03-21 2019-03-07 Basf Se Crosslinked polyurethane
US11648716B2 (en) * 2016-12-07 2023-05-16 Ecovacs Robotics Co., Ltd. Surface cleaning robot and process for manufacturing track thereof
US11179969B2 (en) 2017-06-15 2021-11-23 Camso Inc. Wheel comprising a non-pneumatic tire
US11835955B2 (en) 2017-12-08 2023-12-05 Camso Inc. Systems and methods for monitoring off-road vehicles
US12090795B2 (en) 2018-08-30 2024-09-17 Camso Inc. Systems and methods for monitoring vehicles with tires

Also Published As

Publication number Publication date
US20030094854A1 (en) 2003-05-22
BR0202975A (en) 2003-05-27
EP1283151A3 (en) 2003-04-16
CA2390209A1 (en) 2003-02-10
EP1283151B1 (en) 2005-12-14
DE60207944T2 (en) 2006-08-17
EP1283151A2 (en) 2003-02-12
DE60207944D1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
US6769746B2 (en) Endless two part rubber track comprised of polyurethane based tread component and rubber carcass component and vehicle containing such track
US20080029215A1 (en) Adhesive System For The Direct Bonding Of A Cured Polyurethane To Crude Rubber
US6296329B1 (en) Endless rubber track and vehicle containing such track
US7231948B2 (en) Non-pneumatic tire
US8034267B2 (en) Composite solid tire and method of producing same
US20190263177A1 (en) Non-pneumatic elastomeric tire with crossed spoke sidewalls
US3656360A (en) Polyurethane belts
US9180737B2 (en) Molded tire having different tread material
US20080045643A1 (en) High Modulus Rubber Compositions and Articles
US3968198A (en) Method for improving the adhering ability of vulcanized rubber surfaces
EP1052165B1 (en) Endless rubber track and vehicle containing such track
KR101222693B1 (en) Urethan solid tire and method for manufacturing thereof
US3803281A (en) Method of preparing polyurethane belts
US3897386A (en) Tire treads
US4774142A (en) Multi-layer or laminated compound body, in particular vehicle tire, and process and coupling mass for its production
EP1197515A1 (en) Endless rubber track having guide lugs with guide lug support layer, and vehicle containing such track
JP7076299B2 (en) Non-pneumatic tires
CN113727834B (en) Bonding rubber and plastic surfaces during injection molding
GB2264502A (en) A method of adhering cured rubber to uncured or cured urethane and the resulting product
US20240083126A1 (en) Composite structure assembly and non-pneumatic tire production
US20240116314A1 (en) Composite structure assembly and npt production
JPS58401A (en) Filled tire
JP2007237903A (en) Run-flat tire supporter and manufacturing method thereof
Popović et al. Researching the pneumatic tires based on polyurethane as an alternative for conventional radial tires

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOODYEAR TIRE & RUBBER COMPANY, THE, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RODGERS, MICHAEL BRENDAN;BOTTS, BINA PATEL;KRISHNAN, RAM MURTHY;REEL/FRAME:014444/0607

Effective date: 20020301

AS Assignment

Owner name: VEYANCE TECHNOLOGIES, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE GOODYEAR TIRE & RUBBER COMPANY;REEL/FRAME:019690/0178

Effective date: 20070731

Owner name: VEYANCE TECHNOLOGIES, INC.,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE GOODYEAR TIRE & RUBBER COMPANY;REEL/FRAME:019690/0178

Effective date: 20070731

AS Assignment

Owner name: LEHMAN COMMERCIAL PAPER INC., AS COLLATERAL AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNOR:VEYANCE TECHNOLOGIES, INC.;REEL/FRAME:020035/0484

Effective date: 20070731

Owner name: JPMORGAN CHASE BANK, N.A., TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:VEYANCE TECHNOLOGIES, INC.;REEL/FRAME:020035/0550

Effective date: 20070731

Owner name: JPMORGAN CHASE BANK, N.A.,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:VEYANCE TECHNOLOGIES, INC.;REEL/FRAME:020035/0550

Effective date: 20070731

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120803