US6754318B2 - Configurable multi-port modem to achieve a high bit rate in a DSL system - Google Patents
Configurable multi-port modem to achieve a high bit rate in a DSL system Download PDFInfo
- Publication number
- US6754318B2 US6754318B2 US10/200,991 US20099102A US6754318B2 US 6754318 B2 US6754318 B2 US 6754318B2 US 20099102 A US20099102 A US 20099102A US 6754318 B2 US6754318 B2 US 6754318B2
- Authority
- US
- United States
- Prior art keywords
- data
- couple
- modem
- frequency band
- hybrids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
Definitions
- This invention relates generally to communication systems and more particularly to digital subscriber line (DSL) based communication systems.
- DSL digital subscriber line
- Communication systems are known to enable a plurality of communication devices to communicate among themselves and with communication devices in other communication systems.
- Such communication devices which may be computers, modems, facsimile machines, printers, personal digital assistants, et cetera, communicate voice, text, and/or video data.
- Such communication systems support the communication of data in accordance with one or more communication standards.
- communication standards there are a large number of communication standards for the communication of data and such standards vary from country to country.
- DSL digital subscriber line
- the communication device includes a DSL modem.
- the location of the communication device with its associated DSL modem is referred to as the customer premises.
- the DSL modem at the customer premises is typically coupled via a twisted pair to a DSL modem at a central office.
- FIG. 1 illustrates an example of a DSL modem at the customer premise (CPE) coupled to a DSL modem at the central office (CO).
- CPE customer premise
- CO central office
- the coupling is achieved via a twisted pair, which supports one DSL channel, and is one of a plurality of twisted pairs in a cable binder, or bundle of wires.
- the frequency allocation of the DSL channel is illustrated in FIG. 2 .
- the DSL channel includes 4 frequency bands (band 1 through band 4 ).
- Each band may be allocated for upstream transmission (i.e., from the CPE to the CO) or downstream transmission (i.e., from the CO to the CPE).
- bands 1 and 3 may be used for upstream transmissions while bands 2 and 4 are used for downstream transmissions.
- the width (i.e., frequency) and height (i.e., power) of each band may vary and are typically defined by one or more standards.
- various DSL standards prescribe a frequency, or spectral, plan that define the transmit frequencies (i.e., start frequency and width) and associated powers (i.e., height) for each band. This is done primarily to minimize near-end-cross-talk between twisted pairs within a cable binder by having each twisted pair within a cable binder using the same frequency plan.
- the CO modem and CPE modem of FIG. 1 each include two transmitters and two receivers.
- each modem includes a hybrid, which performs a 2-wire to 4-wire conversion, a summer, and a splitting multiplexer and a reconstruction multiplexer.
- the 1 st transmitter of the CPE modem transmits the data in band 1
- the 2 nd transmitter of the CPE modem transmits the data associated with band 3 .
- the transmitters in the CO modem transmit the data in band 2 and data in band 4 , respectively.
- the receivers in the CPE modem receive the data in band 2 and band 4 , respectively.
- the receivers in the CO modem receive the data in band 1 and band 3 , respectively.
- bands 1 and 3 may be used for downstream transmissions and bands 2 and 4 may be used for upstream transmissions.
- the splitting multiplexers in the CO modem and CPE modem split the incoming transmit data between the respective transmitters.
- the reconstructing multiplexers reconstruct the data received from the respective receivers into a serial data stream.
- the CPE modem and CO modem are capable of transceiving data at a relatively high bit rate (e.g., greater than 5 Mbps).
- bit rate e.g., greater than 5 Mbps.
- the shorter the twisted pair the less cable loss and the less cross-talk the twisted pair, or loop, exhibits.
- the cable loss and cross-talk increase as the length of the loop increases.
- the upper frequency bands e.g., band 3 and band 4
- CPE modems coupled to the central office via shorter loops typically have higher bit rates than CPE modems coupled to the central office via longer loops. This creates a discontinuity in quality of service since some users have a higher bit rate than others.
- An embodiment of a configurable multi-port modem includes a plurality of hybrids, a plurality of receivers, a plurality of transmitters, and a switching module.
- Each of the plurality of hybrids is operably coupled to provide 2 to 4 wire coupling for a corresponding one of a plurality of twisted pairs that are coupled to the configurable multi-port modem.
- the configurable multi-port modem includes the plurality of hybrids to coupled to these multiple lines, or twisted pairs.
- Each of the plurality of receivers is operably coupled to convert inbound DSL signals into inbound data.
- Each of the plurality of transmitters is operably coupled to convert outbound data into outbound DSL signals.
- the switching module is operable to couple at least one of the plurality of hybrids to at least one of the plurality of receivers and to at least one of the plurality of transmitters based on a configuration control signal. For example, when the loop is relatively short, a single twisted pair may be utilized to carry the DSL communication. In this instance, the plurality of receivers and plurality of transmitters would be coupled to a single hybrid, where each receiver and transmitter processing a different frequency band.
- additional lines, or twisted pairs may be used. As such, if two lines are being used, two hybrids are used and the plurality of receivers and transmitters, via the switching module, are configured to process one frequency band of one of the twisted pairs.
- a configurable multi-port modem includes a plurality of input/output modules, a plurality of transceivers, a plurality of hybrids, 1 st switching module, and 2 nd switching module.
- the 1 st switching module is operable to couple at least one of the plurality of input/output modules to at least one of the plurality of transceivers based on a configuration control signal.
- the 2 nd switching module is operable to couple at least one of the plurality of transceivers (i.e., transmitter/receiver) to at least one of the plurality of hybrids based on the configuration control signal.
- the configurable multi-port modem may be configured to utilize the multiple twisted pairs to support multiple DSL communications. As the loop length increases, and the corresponding number of frequency bands per twisted pair decreases, the configurable multi-port modem can be configured to support a single DSL communication over the multiple twisted pairs using the same number of transceivers.
- any embodiment of a configurable multi-port modem in accordance with the present invention more uniformed quality of service can be provided to customers regardless of loop length while maintaining adherence to frequency plans of various standards.
- FIG. 1 is a schematic block diagram of prior art DSL modems
- FIG. 2 is a graphical representation of frequency band allocations of a DSL channel in accordance with one or more DSL communication standards
- FIG. 3 is a schematic block diagram of a DSL system in accordance with the present invention.
- FIG. 4 is a schematic block diagram of a configurable modem in accordance with the present invention.
- FIG. 5 is a graphical representation of an example of frequency band usage in the DSL system of FIG. 3;
- FIG. 6 is a graphical representation of a 2 nd example of frequency band usage in the DSL system of FIG. 3;
- FIG. 7 is a graphical representation of a 3 rd example of frequency band usage in the DSL system of FIG. 3;
- FIG. 8 is a schematic block diagram of an alternate configurable modem in accordance with the present invention.
- FIG. 9 is a logic diagram of a method for configuring a multi-port DSL modem in accordance with the present invention.
- FIG. 3 is a schematic block diagram of a DSL system 10 that includes a plurality of configurable modems 20 - 26 at various customer premises (CPE 1 -CPE 4 ) and a central office (CO).
- the central office includes a plurality of configurable modems 12 - 18 .
- Each configurable modem 12 - 18 of the central office is coupled via a plurality of twisted pairs with a configurable modem 20 - 26 at one of the customer premises CPE 1 -CPE 4 .
- the twisted pairs between the central office and the customer premises may be in one or more bundles of twisted pairs, or cable binders and may include two or more twisted pairs.
- Each of the configurable modems 20 - 26 at the customer premises CPE 1 -CPE 4 communicates DSL signals 28 - 34 with a corresponding configurable modem 12 - 18 within the central office.
- configurable modem 20 processes user data 1 to communicate DSL signals 28 with configurable modem 12 .
- configurable modem 22 processes user data 2 to communicate DLS signals 30 with configurable modem 16 .
- Configurable modem 24 processes user 3 data to communicate DSL signals 32 with configurable modem 14 .
- Configurable modem 26 processes user 4 data to communicate DSL signals 34 with configurable modem 18 .
- the distance between the central office and each of the customer premises may range from a few hundred feet to several kilofeet. Accordingly, the customer premises that are closer to the central office have a shorter DSL loop than customer premises that are further away.
- the configurable modems 12 - 26 the same high bit rate of service may be provided to each customer premises regardless of the loop length. To achieve this, the configurable modems 20 may be implemented as shown in FIG. 4 and/or in FIG. 8 .
- FIG. 4 is a schematic block diagram of a configurable modem 12 - 26 that includes multiplexers 40 and 42 , a plurality of transmitters 44 - 48 , a plurality of receivers 50 - 54 , a switching module 56 , and a plurality of hybrids 58 - 64 .
- Each of the plurality of hybrids is coupled to a corresponding one of twisted pairs 66 - 70 .
- the hybrids 58 - 64 perform a 2-wire to 4-wire conversion. As shown, the 2-wire connection is to the twisted pair and the 4-wire connection is to the switching module 56 .
- the switching module 56 couples one or more of the transmitters and receivers to individual hybrids based on a configuration control signal 72 .
- a configuration control signal 72 For example, if the loop length is very short, all frequency bands of a DSL channel that includes multiple frequency bands are usable. As such, a single twisted pair may be used to support a DSL communication and provide a high bit rate.
- hybrid 58 via twisted pair 70 may support the DSL channel having multiple frequency bands (e.g., six frequency bands).
- the switching module 56 couples each of the transmitters 44 - 48 to hybrid 58 and also couples each of the receivers 50 - 54 to the hybrid 58 . With this configuration, each transmitter and each receive is allocated a frequency band.
- FIG. 5 illustrates one possible allocation of the frequency bands.
- bands 1 , 3 , and 5 are allocated for upstream communications and bands 2 , 4 , and 6 are allocated for down stream communications.
- transmitter 44 may be allocated to process frequency band 1 ;
- transmitter 46 may be allocated to process frequency band 3 ;
- transmitter 48 may be allocated to process frequency band 5 .
- receiver 52 may be allocated to process frequency band 2 ;
- receiver 50 may be allocated to process frequency band 4 ;
- receiver 54 may be allocated to process frequency band 6 .
- twisted pairs 66 and 68 are unused.
- the configuration control signal 72 may instruct the switching module 56 to use a pair of hybrids.
- This example is illustrated in FIG. 6 where the high frequency bands of twisted pair 70 are unusable due to the loop loss and/or cross-talk of twisted pair 70 .
- twisted pairs 68 and 70 are used to support a DSL communication.
- the switching module 56 based on the configuration control signal 72 would couple transmitters 44 and 46 to hybrid 58 and couple transmitter 48 to hybrid 60 .
- the switching module 56 would couple receivers 50 and 52 to hybrid 58 and receiver 54 to hybrid 60 .
- the allocation of transmitter and receiver for upstream and downstream communications would vary. For example, if the modem were at a customer premise site, the transmitters 44 and 46 would be allocated to bands 1 and 3 of twisted pair 70 . Receivers 50 and 52 would be allocated band 2 and band 4 of twisted pair 70 . Transmitter 48 , which is coupled to hybrid 60 , would be allocated band 1 of twisted pair 68 and receiver 54 would be allocated band 2 of twisted pair 68 .
- the configuration control signal 72 causes switching module 56 to use each of the hybrid 58 - 64 .
- FIG. 7 Such an example is illustrated in FIG. 7 where each of the twisted pair 66 - 70 is used, but only bands 1 and 2 of the respective twisted pairs are used.
- transmitter 44 and receiver 50 would be coupled to hybrid 58 and allocated bands 1 and 2 of twisted pair 70 , respectively.
- Transmitter 46 and receiver 52 would be coupled to hybrid 60 and allocated bands 1 and 2 of twisted pair 68 , respectively.
- Transmitter 48 and receiver 54 would be coupled to hybrid 64 and allocated bands 1 and 2 of twisted pair 66 , respectively.
- the bit rate supported by the configurable modem 12 - 26 can maintain a high rate by utilizing one or more twisted pairs as illustrated in examples 1-3 depicted in FIGS. 5-7.
- more or less twisted pairs, hybrids, transmitters and receivers may be included in a configurable modem to achieve higher bit rates or lower bit rates than the bit rates achievable with the 3 sets illustrated in FIG. 4 and corresponding examples of FIGS. 5-7.
- the configurable modem 12 - 26 also includes a splitting multiplexer 40 , or demultiplexer, that splits outbound data 74 amongst the plurality of transmitters 44 - 48 .
- the configurable modem 12 - 26 also includes a multiplexer 42 that combines the received data via receivers 50 - 52 and reconstructs a serial inbound data 72 .
- the generation of the configuration control signal 72 will be described in greater detail with reference to FIGS. 8 and 9.
- the switching module 56 may be implemented using jumper wires, switches, or other manual coupling means.
- the configurable control signal 72 is implicit in the coupling of the jumper wires and/or the configuring of the switches.
- the number of bands supported by a DSL channel may be more or less than the six discussed with reference to FIGS. 4-7. For example, in one embodiment, four bands may be used.
- FIG. 8 is a schematic block diagram of an alternate embodiment of the configurable modem 12 - 26 .
- the configurable modem includes combining multiplexer 86 , splitting multiplexer 88 , splitting multiplexer 40 , combining multiplexer 42 , a plurality of transmitters 44 - 48 , a plurality of receivers 50 - 54 , a transmit switch module 80 , a receive switch module 82 , a plurality of hybrids 58 - 64 , and a control module 84 .
- the control module 84 which may be included in the modem of FIG. 4, includes a processing module 90 and memory 92 to generate the configuration control signal 72 .
- the processing module 90 may be a single processing device or a plurality of processing devices.
- Such a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions.
- the memory 92 may be a single memory device or a plurality of memory devices.
- Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, and/or any device that stores digital information.
- the processing module 90 implements one or more of its functions via a state machine, analog circuitry, digital circuitry, and/or logic circuitry
- the memory storing the corresponding operational instructions is embedded with the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
- the memory 92 stores, and the processing module 90 executes, operational instructions corresponding to at least some of the steps and/or functions illustrated in FIGS. 8 and 9.
- the functionality of multiplexers 40 and 42 , transmitters 44 - 48 , receivers 50 - 54 and hybrids 58 - 64 operate as previously discussed with reference to FIG. 4 .
- the transmitter switching module 80 and receiver switching module 82 provide selective coupling between hybrids 58 - 64 and transmitters 44 - 48 and receivers 50 - 54 , respectively.
- the transmit switching module 80 and receiver switching module 82 may be a plurality of transistors, switches or combinations thereof that provide selective coupling between the transmitters 44 - 48 and hybrids 58 - 64 and receivers 50 - 54 , respectively.
- the configurable modem may support multiple connections (three are shown, but more or less may be supported).
- a connection is a data communication by an in-office or in-home device that includes a configurable DSL modem with a configurable DSL modem at the central office. Accordingly, if the loop length between the DSL modem at the customer premises and central office is short, three connections may be supported.
- each hybrid is coupled to a single receiver and a single transmitter or a set of receivers and a set of transmitters depending on the desired bit rate. Accordingly, to achieve the highest bit rate possible, each hybrid would be coupled to multiple receivers and transmitters to process multiple bands of the DSL channel.
- the modem may include up to nine transmitters and nine receivers to support the highest bit rate possible for each of three connections.
- the configurable modem 12 - 26 may be reconfigured to support 1 or 2 connections.
- the configurable modem 12 - 26 functions similarly to the modem of FIG. 4 and the corresponding example illustrated in FIG. 7 .
- the transmitters 44 and 46 and receivers 50 and 52 may be allocated to one of the two connections and transmitter 48 and receiver 54 may be allocated to the other of the two connections.
- the control module 84 determines the appropriate configuration and generates the configuration control signal 72 based thereon.
- the configuration control signal may be determined by measurements at the CPE and the switching module implemented via jumper wires and/or switches.
- FIG. 9 is a logic diagram of a method for configuring a multi-port DSL modem in accordance with the present invention.
- the process begins at Step 100 where a desired data bit rate for a connection is determined.
- the data bit rate may range from a few hundred kilobits per second to tens of megabits per second.
- the process then proceeds to Step 102 where data capacity for frequency bands of a DSL channel supporting the connection are determined. Such a determination may be based on determining the loop length of the connection and based on the loop length establishing the data capacity.
- loop length For a detailed discussion on determining loop length, refer to co-pending patent application entitled ADJUSTMENT OF TRANSMIT POWER BASED ON AN ESTIMATED ELECTRICAL LENGTH OF A LOOP, having a provisional filing date of May 31, 2002 and an attorney docket number of BP 2394.
- loop loss increases as does cross-talk.
- signal to noise ratio may be used to determine the data bit rate.
- Step 104 a number of twisted pairs to support the connection is determined based on the desired data bit rate and the data capacity for the frequency bands. This was graphically illustrated and described with reference to FIGS. 5-7.
- the process then proceeds to Step 106 where at least one transceiver (i.e., transmitter/receiver) is allocated to a frequency band pair (band 1 for upstream, band 2 for downstream) for each number of twisted pairs. Such an allocation may be done as graphically illustrated and described with reference to FIGS. 5-7.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Telephonic Communication Services (AREA)
- Communication Control (AREA)
Abstract
Description
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/200,991 US6754318B2 (en) | 2002-07-23 | 2002-07-23 | Configurable multi-port modem to achieve a high bit rate in a DSL system |
US10/842,612 US6985565B2 (en) | 2002-07-23 | 2004-05-10 | Configurable DSL modem for high bit rates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/200,991 US6754318B2 (en) | 2002-07-23 | 2002-07-23 | Configurable multi-port modem to achieve a high bit rate in a DSL system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/842,612 Continuation US6985565B2 (en) | 2002-07-23 | 2004-05-10 | Configurable DSL modem for high bit rates |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040017902A1 US20040017902A1 (en) | 2004-01-29 |
US6754318B2 true US6754318B2 (en) | 2004-06-22 |
Family
ID=30769588
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/200,991 Expired - Lifetime US6754318B2 (en) | 2002-07-23 | 2002-07-23 | Configurable multi-port modem to achieve a high bit rate in a DSL system |
US10/842,612 Expired - Lifetime US6985565B2 (en) | 2002-07-23 | 2004-05-10 | Configurable DSL modem for high bit rates |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/842,612 Expired - Lifetime US6985565B2 (en) | 2002-07-23 | 2004-05-10 | Configurable DSL modem for high bit rates |
Country Status (1)
Country | Link |
---|---|
US (2) | US6754318B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030101243A1 (en) * | 2001-11-27 | 2003-05-29 | Donahue David B. | System and method for automatic confuguration of a bi-directional IP communication device |
US20040208298A1 (en) * | 2002-07-23 | 2004-10-21 | Vladimir Oksman | Configurable DSL modem for high bit rates |
US20060056305A1 (en) * | 2004-09-16 | 2006-03-16 | Vladimir Oksman | Adaptive communication systems and methods |
US20070153835A1 (en) * | 2006-01-01 | 2007-07-05 | Texas Instruments Incorporated | Providing High Data Rates in DSL Systems Connected by Multiple Pairs of Wires |
US20080059611A1 (en) * | 2006-09-01 | 2008-03-06 | Kiji Takahiro | Network Device Allowing Easy Setup and Computer Program Therefor |
US7346158B1 (en) * | 2002-10-25 | 2008-03-18 | At&T Bls Intellectual Property, Inc. | Method and system for wiring a digital subscriber line circuit |
US20080165950A1 (en) * | 2007-01-10 | 2008-07-10 | Ko-Jen Chang | Switchable transmission device for VDSL CO/CPE circuit |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6426961B1 (en) * | 1998-09-02 | 2002-07-30 | Bellsouth Intellectual Property Corporation | Method and system for selection of mode of operation of a service in light of use of another service in an ADSL system |
TWI450597B (en) * | 2007-12-28 | 2014-08-21 | Asustek Comp Inc | Switch device for switching different type signals |
CN102090026A (en) * | 2008-06-09 | 2011-06-08 | 创世纪技术系统公司 | Bonded interconnection of local networks |
US10637993B1 (en) * | 2016-09-26 | 2020-04-28 | Aquantia Corp. | High-bandwidth home network over phone line |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010040917A1 (en) * | 2000-01-28 | 2001-11-15 | Kumar Dasari Jagadish | High impedance state for digital subscriber line transceivers on copper twisted pairs |
US20020010779A1 (en) * | 2000-05-23 | 2002-01-24 | Heller Peter N. | Multimode multicarrier modem system and method of communication over the same |
US20030074480A1 (en) * | 2001-10-11 | 2003-04-17 | Kelliher Timothy L. | Method and system for oversubscribing a pool of modems |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5901205A (en) * | 1996-12-23 | 1999-05-04 | Paradyne Corporation | Adaptive voice and data bandwidth management system for multiple-line digital subscriber loop data communications |
US6507608B1 (en) * | 2000-02-23 | 2003-01-14 | 2Wire, Inc. | Multi-line ADSL modulation |
US6754318B2 (en) * | 2002-07-23 | 2004-06-22 | Broadcom | Configurable multi-port modem to achieve a high bit rate in a DSL system |
-
2002
- 2002-07-23 US US10/200,991 patent/US6754318B2/en not_active Expired - Lifetime
-
2004
- 2004-05-10 US US10/842,612 patent/US6985565B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010040917A1 (en) * | 2000-01-28 | 2001-11-15 | Kumar Dasari Jagadish | High impedance state for digital subscriber line transceivers on copper twisted pairs |
US20020010779A1 (en) * | 2000-05-23 | 2002-01-24 | Heller Peter N. | Multimode multicarrier modem system and method of communication over the same |
US20030074480A1 (en) * | 2001-10-11 | 2003-04-17 | Kelliher Timothy L. | Method and system for oversubscribing a pool of modems |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7313606B2 (en) * | 2001-11-27 | 2007-12-25 | The Directv Group, Inc. | System and method for automatic configuration of a bi-directional IP communication device |
US20030101243A1 (en) * | 2001-11-27 | 2003-05-29 | Donahue David B. | System and method for automatic confuguration of a bi-directional IP communication device |
US20040208298A1 (en) * | 2002-07-23 | 2004-10-21 | Vladimir Oksman | Configurable DSL modem for high bit rates |
US6985565B2 (en) * | 2002-07-23 | 2006-01-10 | Broadcom, Corp. | Configurable DSL modem for high bit rates |
US7346158B1 (en) * | 2002-10-25 | 2008-03-18 | At&T Bls Intellectual Property, Inc. | Method and system for wiring a digital subscriber line circuit |
US20060056305A1 (en) * | 2004-09-16 | 2006-03-16 | Vladimir Oksman | Adaptive communication systems and methods |
US7630489B2 (en) | 2004-09-16 | 2009-12-08 | Infineon Technologies Ag | Adaptive communication systems and methods |
US8064592B2 (en) | 2004-09-16 | 2011-11-22 | Lantiq Deutschland Gmbh | Adaptive communication systems and methods |
WO2007079464A2 (en) * | 2006-01-01 | 2007-07-12 | Texas Instruments Incorporated | Providing high data rates in dsl systems connected by multiple pairs of wires |
US20070153835A1 (en) * | 2006-01-01 | 2007-07-05 | Texas Instruments Incorporated | Providing High Data Rates in DSL Systems Connected by Multiple Pairs of Wires |
WO2007079464A3 (en) * | 2006-01-01 | 2008-01-03 | Texas Instruments Inc | Providing high data rates in dsl systems connected by multiple pairs of wires |
US20080059611A1 (en) * | 2006-09-01 | 2008-03-06 | Kiji Takahiro | Network Device Allowing Easy Setup and Computer Program Therefor |
US7805504B2 (en) * | 2006-09-01 | 2010-09-28 | Silex Technology, Inc. | Network device allowing easy setup and computer program therefor |
US20080165950A1 (en) * | 2007-01-10 | 2008-07-10 | Ko-Jen Chang | Switchable transmission device for VDSL CO/CPE circuit |
Also Published As
Publication number | Publication date |
---|---|
US20040208298A1 (en) | 2004-10-21 |
US20040017902A1 (en) | 2004-01-29 |
US6985565B2 (en) | 2006-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1954586B (en) | High speed multiple loop DSL system | |
US5408260A (en) | Customer premises ADSL signal distribution arrangement | |
EP2232841B1 (en) | Dsl method having variable upload/download bit rate and application-specific dynamic profile switching | |
US6970905B2 (en) | Point to multi-point communications system | |
CN101652933B (en) | Arrangements in a digital subscriber line system | |
US7535866B2 (en) | Deployment processes for new technology systems | |
US7596211B2 (en) | Multi-pair broadband transmission system | |
US6754318B2 (en) | Configurable multi-port modem to achieve a high bit rate in a DSL system | |
KR20010023363A (en) | Apparatus and method for concurrent voice and data transmission | |
US6721419B1 (en) | Method and system for selecting a frequency for communication within a premises network | |
US9386163B2 (en) | Method and arrangement in a digital subscriber line system | |
JP2000512443A (en) | Time division duplex multi-carrier transmission | |
US6262972B1 (en) | Digital multitone communication trunk | |
CN1874341B (en) | Implementation method for binding service transmission line | |
JP3685756B2 (en) | Method for transmitting transmission data using a subscriber modem | |
US8665932B2 (en) | Low complexity technique for digital subscriber line (DSL) power control | |
CN102165724B (en) | A kind of methods, devices and systems reducing subscriber's line crosstalk | |
EP1611767B1 (en) | A method in a transceiver for allocating transmission capacity between the two directions of transmission in wire line data communication | |
US20150372783A1 (en) | Methods and apparatuses for employing a sub-band approach towards doubling transmission bandwidth for dmt systems | |
CN108768571B (en) | Method and device for frequency division multiplexing transmission of G.fast signal, VDSL2 signal and voice signal in copper wire | |
US8228944B1 (en) | Communication system and method for linking a communication network to a customer facility | |
MXPA00001976A (en) | Apparatus and method for concurrent voice and data transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKSMAN, VLADIMIR;RAHAMIM, RAPHAEL;REEL/FRAME:013134/0737;SIGNING DATES FROM 20020703 TO 20020705 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:037806/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BROADCOM CORPORATION;REEL/FRAME:041706/0001 Effective date: 20170120 |
|
AS | Assignment |
Owner name: BROADCOM CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041712/0001 Effective date: 20170119 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047196/0097 Effective date: 20180509 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 047196 FRAME: 0097. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:048555/0510 Effective date: 20180905 |