US6740734B1 - Bacterial receptor structures - Google Patents
Bacterial receptor structures Download PDFInfo
- Publication number
- US6740734B1 US6740734B1 US09/568,051 US56805100A US6740734B1 US 6740734 B1 US6740734 B1 US 6740734B1 US 56805100 A US56805100 A US 56805100A US 6740734 B1 US6740734 B1 US 6740734B1
- Authority
- US
- United States
- Prior art keywords
- receptor
- protein
- bacterial
- ala
- bacterial receptor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/315—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/305—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
- C07K14/31—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the present invention relates to new bacterial receptor structures originating from natural bacterial receptor structures which have been modified in regard to amino acid residues involved in the original interaction function, whereby said original interaction function has been substantially inhibited and replaced by a modified interaction function directed to a desired interaction partner.
- Fc receptors from Gram-positive bacterial pathogens have been isolated and characterized in detail as will be shown below. Most well-characterized are the Fc receptors, named after the capability of binding to the constant Fc part of IgG. Based on binding experiments to IgG from various mammalian sources, and subclasses thereof, Fc receptors have been divided into six types I-VI.
- SPA binds IgG from most mammalian species, including man. Of the four subclasses of human IgG, SPA binds to IgG1, and IgG4 but shows very weak or no interaction with IgG3 [Eliasson, M. et al, 1989 J.Biol.Chem. 9:4323-4327]. This pseudoimmune reaction has been used for more than 20 years for the purification and detection of antibodies in diagnostic, research and therapeutic applications.
- the structure for a complex between human Fc [IgG1] and a single domain [B] of SPA has been determined by X-ray crystallography at a resolution of 2.8 ⁇ [Deisenhofer, J. et al 1981 Biochemistry 20:2361-2370].
- the B domain can be viewed as a compact structure consisting of three anti-parallel ⁇ -helices connected with loops.
- Fc binding which is of both electrostatic and hydrophobic nature, only side chains of residues from helices 1 and 2 are involved, whilst the third helix is not participating in the binding.
- a synthetic IgG-binding domain [Z] [Nilsson, B.
- Streptococcal strains of serological groups C and G display a binding repertoire for mammalian IgGs, including human IgG3, which is even broader than for the type I receptor.
- the name protein G was suggested for this type III receptor from group G streptococci.
- Olsson and co-workers reported on the cloning and sequencing of the gene from the serological group G streptococci [G148] [Guss, B. et al, 1987 EMBO J. 5:1567-1575; Olsson, A. et al, 1987 Eur.J.Biochem. 168:319-324].
- SPG In analogy with SPA is SPG a repetitively arranged molecule, comprising an IgG-binding region of three homologous domains [C1,C2,C3], spaced by smaller D-regions (FIG. 2 A).
- SPG displays a different binding spectra for immunoglobulins from different species and subclasses thereof.
- the IgG binding domains of protein G are now widely used as an immunological tool, i.e. in the affinity purification of monoclonal antibodies. Production of subfragments constructed by DNA-technology, have shown that an individual C-region is sufficient for full IgG-binding.
- the structure for a complex between the Cl-domain from SPG and human Fc was determined with X-ray crystallography (FIG.
- SPG serum albumin binding protein
- the binding strength is species dependent, and among the tested samples, SPG binds strongest to serum albumin from rat, man and mouse.
- Production and binding studies of subfragments of SPG shows that the two binding activities are structurally separated and that the serum albumin binding function is located at the repetitive A-B region [Nygren et al 1990 Eur.J.Biochem. 193:143-148]. This region has been used for several biotechnological purposes. Recombinant proteins have been produced as fusions to the region which enables the purification by affinity chromatography, where human serum albumin most frequently has been used as immobilized ligand.
- Proteins found to be proteolytically sensitive have been produced as “dual affinity fusions” in which they are flanked by two different affinity tails derived from SPA and SPG, respectively. Purification schemes employing both the N- and C-terminal are thus possible which ensures the recovery of an intact target protein [Hammarberg et al 1989 Proc.Natl.Acad.Sciences USA 86:4367-4371].
- the strong and specific binding to serum albumin has also been used for the in vivo stabilization of therapeutic proteins.
- the receptor is carried in the circulation (macaque apes) with a half-life which is close to the half-life for serum albumin itself.
- mice with the for HIV/AIDS therapy interesting, but rapidly cleared T-cell receptor CD4 showed that it was substantially stabilized when fused to the serum albumin binding region, when compared with an unfused control protein [Nygren et al 1991 Vaccines 91 Cold Spring Harbor Press 363-368].
- the slow clearance can probably be explained by the complex formation with serum albumin which circumvents elimination by the liver and excretion in the kidney.
- SPG is regarded to be trivalent with regard to binding to serum albumin. Similar to the monovalent IgG-binding domains Z and C1 B2A3 is relatively small and shows high solubility and stability and is therefore a suitable candidate for modification.
- the present invention has for its main purpose to provide new bacterial receptor structures by modifying natural bacterial receptors in regard to their original interaction functions to result in new structures having modified interaction functions.
- Another object of the invention is to provide artificial bacterial receptor structures which are stable and more resistant to various conditions, such as increased temperatures.
- Yet another object of the invention is to provide artificial bacterial receptor structures, the interaction functions of which have been modified to direct same to other desired interaction partners.
- novel proteins obtainable by mutagenesis of surface-exposed amino acids of domains of natural bacterial receptors said proteins being obtained without substantial loss of basic structure and stability of said natural bacterial receptors.
- Said proteins have preferably been selected from a protein library embodying a repertoire of said novel proteins.
- at least one amino acid residue involved in the interaction function of the original bacterial receptor has been made subject to substitution by another amino acid residue so as to result in substantial loss of the original interaction capacity with a modified interaction capacity being created, said substitution being made without substantial loss of basic structure and stability of the original bacterial receptor.
- said bacterial structures originate from Gram-positive bacteria.
- Gram-positive bacteria there may be mentioned Staphylococcus aureus, Streptococcus pyogenes [group A], Streptococcus group C,G,L, bovine group G streptococci, Streptococcus zooepidemicus [group C], Streptococcus zooepidemicus S212, Streptococcus pyogenes [group A], streptococci groups A,C,G, Peptostreptococcus magnus, Streptococcus agalactiae [group B].
- thermophilic bacteria evolved to persist in environments of elevated temperatures.
- Receptors from species like e.g. Bacillus stearothermophilus, Thermus aquaticus, Thermococcus litoralis and Pyrococcus have the potential of being naturally exceptionally stable, thus suitable for providing structural frameworks for protein engineering according to the invention.
- bacterial receptors originating from Fc[IgG]receptor type I, type II, type III, type IV, type V and type VI, fibronectin receptor, M protein, plasmin receptor, collagen receptor, fibrinogen receptor or protein L [K light chains], protein H [human IgG], protein B [human IgA,A1], protein Arp [human IgA].
- Particularly preferred bacterial receptors originate from the Fc[IgG]receptor type I of staphylococcal protein A or the serum albumin receptor of streptococcal protein G.
- the substitution involving amino acid residues taking part in the interaction function of the original bacterial receptor does not involve more than about 50% of the amino acid residues of the original bacterial receptor. It is particularly preferred that not more than about 25% of the amino acid residues of the original bacterial receptor are made subject to substitution.
- substitution thereof involves not more than substantially all of the amino acid residues taking part in the interaction function of the original bacterial receptor.
- the bacterial receptor according to the present invention is comprised of not more than about 100 amino acid residues. It is known from scientific reports that proteins of a relatively small size are fairly resistant to increased temperatures and also to low pH and certain chemicals. For details concerning temperature resistance c.f. the article by Alexander et al. in Biochemistry 1992, 31, pp 3597-3603.
- interaction partners are IGF-I, IGF-II, hGH, Factor VIII, insulin and apolipoprotein and their respective receptors as interaction partners.
- affinity resins or analytical tools to facilitate the isolation of correctly folded molecules can be produced.
- the present invention is applicable to a variety of natural bacterial receptors the following illustration of the invention more in detail will be directed to the use of the IgG-binding domains Z, C1 and B2A3.
- the concept of the present invention residing in the use of artificial bacterial receptors based on the natural structures of naturally occurring bacterial receptors is associated with several advantages.
- the invention makes it possible to use robust and stable, highly soluble and secretion competent receptors. This is in contrast to previous techniques based on the use of polyclonals and monoclonals, such as for diagnostic purposes, which are not very stable in connection with storage, varying conditions, such as varying temperatures etc.
- the invention makes it possible to modify natural bacterial receptors to obtain desired interaction capacities for specific purposes.
- phage display of proteins By recombinant DNA techniques, single phage particles can be prepared which on their surface carries a protein fused to a phage-coat protein. By panning from a large pool of phages bearing different proteins, or variants of a specific protein, specific phage clones can be sorted out, which displays a certain binding characteristic [WO92/20791 to Winter et al].
- the phage particle contains packed DNA encoding the phage protein components, a coupling between the specific variant of the displayed protein and the corresponding genetic information is obtained.
- the phage display technique can be used for selection of both small peptides as well as more complicated proteins such as antibodies, receptors and hormones.
- intracellular systems have been developed in which the library of proteins are fused to a repressor protein with affinity for a specific plasmid-borne operator region resulting in a coupling between the specific protein variant and the plasmid that encoded it.
- the present invention describes the construction of novel proteins based on the mutagenesis of surface exposed amino acids of domains derived from bacterial receptors.
- These artificial bacterial receptors can be selected for different applications using a phage display system.
- the benefits from using bacterial receptors as structural frameworks are several. They have evolved to express a binding function without disturbing the overall structure. They are naturally highly soluble, robust to unphysiological conditions, such as pH and heat, folding efficient and are in addition secretion competent.
- the invention finds use in several different areas.
- the bacterial receptors SPA and SPG have been widely used in antibody technology for detection and purification of antibodies from e.g. hybridoma supernatants and ascites fluids. However, not all antibodies are recognized by these receptors, depending on species and subclass. For the smaller subfragments of antibodies (FIG. 4 ), SPA and SPG show a limited binding, and efficient tools for general purification schemes are lacking. However, from a repertoire of mutant receptors including SPA and SPG, forms displaying a broader affinity for antibodies and subfragments thereof can potentially be selected.
- the complex structural organization of antibodies has a number of consequences for their use in different applications as well for the production of recombinant derivatives.
- the arrangement of subunits connected by disulphide bonds can lead to a leakage of released heavy and light chains from columns.
- the requirement of successful docking of the two subunits contributing to the antigen binding site makes the production in bacteria of small subfragments with a low association difficult.
- the folding of the antibody is dependent on the formation of intra- and inter chain disulphidebonds, which are not able to form in the intracellular environment of bacterial cells.
- High-level intracellular expression systems for recombinant antibodies leads to the formation of inclusion bodies, which have to be renatured to obtain biological activity.
- the CDR regions forming the antigen binding part of an antibody forms a total surface available for the antigen of approximately 800 ⁇ 2 , with typical 10-20 residues from the antibody involved in the binding.
- the binding surface of about 600 ⁇ 2 is of the same order of magnitude as between an antibody and its antigen.
- SPA structure [Z] As a starting point for such “artificial antibodies” or artificial bacterial receptors.
- a large number of proteins have been produced as fusions to SPA, where one has utilized the unique properties of the fusion partner in expression, refolding and purification.
- the Z domain has been found to be extremely soluble, stable against proteases, easy to produce in large amounts and foldable to a correct structure also intracellularly in Escherichia coli (no cysteins).
- Immunoglobulins (Ig:s) are substantially tetramers built up from so called ⁇ -sheet structures which stabilize the orientation of the antigen-binding loops which in turn consist of continuous peptide sequences.
- the target protein When producing recombinant proteins the purification of the product is frequently a major problem.
- affinity tail By expressing the target protein as a fusion to a so called affinity tail the hybrid product can effectively and selectively be recovered from the cell lysate or in certain cases from the culture medium by passage through a column containing an immobilized ligand.
- gene fusion systems have been described which are based on the interaction of a certain protein with a ligand. For industrial applications it is often desirable to clean effectively the columns between the runs to satisfy purity requirements by authorities.
- the relatively harsh conditions NaOH, acids, heat
- organic or physical matrices for example in ion exchange chromatography and gel filtration, can normally not be used.
- the use of new ligands based on stable structures originating from bacterial receptors are of great importance.
- the Z domain from SPA is an excellent example since said domain can be subjected to such difficult conditions as a pH of 1 or heating to 80° C. without denaturing non-reversibly (see Example 2 below).
- interesting protein products can be selected for use immobilized on a solid phase for affinity chromatography. These protein ligands are resistant to effective purification conditions and are therefore useful repetitively on a large scale.
- the high solubility of the said domain enables the use of increased solubility of proteins in either refolding from inclusion bodies or in so called reshuffling of disulphide bridges.
- new forms can be selected having improved properties to facilitate and even make refolding of recombinant proteins possible (cis-acting chaperones).
- the present invention provides means for producing and selecting proteins with novel functions. According to the invention this is achieved by extensive mutation of defined residues of stable domains of bacterial receptors. Due to the novel functions of the artificial bacterial receptors, these can be used as specific binders for therapeutic, diagnostic, biotechnology or in research.
- FIG. 1 A. Schematic representation of staphylococcal protein A showing the signal peptide (S), five IgG-binding regions [E-D-A-B-C], followed by cell wall anchoring region [X-M].
- FIG. 2. A. Schematic representation of streptococcal protein G from the strain G148 showing the signal peptide (Ss), region E (E), the repetitive serum albumin binding A-B region, the spacer region (S), followed by the IgG binding domains C1 through C3, spaced by the D regions and finally the cell wall anchoring region W.
- Ss signal peptide
- E region E
- S repetitive serum albumin binding A-B region
- S spacer region
- IgG binding domains C1 through C3 spaced by the D regions and finally the cell wall anchoring region W.
- FIG. 3 Schematic representation of the three helix bundle structure of the 58 residue SPA analogue Z. Indicated are some of the side chains proposed to be involved in the binding to Fc with the exception of F30, which stabilizes the helix-helix packing.
- FIG. 4 IgG antibody structure, showing the different subfragments Fab,Fd,Fc and the scFv composed of the VH and VL connected by a short (ca 15 aa) linker.
- FIG. 5 A. General concept for the gene assembly strategy used for the generation of the Z gene libraries. For the construction of the library of acid Z derivatives, only resides 9, 11, 14, 27 and 35 were altered using the degenerated oligonucleotides ACID-1, ACID-2.
- the PCR primers used for the amplification of the assembled library were ZLIB-3 (PCR primer 5′) and ZLIB-5 (PCR primer 3′).
- PCR products from the amplification of the assembled library encoding 46 of the 58 residues of the Z-domain can be cloned into phagemid DNA harboring the remaining C-terminal part of Z.
- This gene is fused in frame with the gene for protein III of the M13 family of E. coli bacteriophages. This enables the display on the phage surface of the repertoire of acid Z-variants.
- FIG. 6 Oligonucleotides used for the construction of Z-libraries (SEQ ID NOs:1-13). For the library of acid Z-variants described in Example 2, only oligonucleotides ZLIB-1, 2, 3, 4, 5, LONGBRIDGE, ACID-1, and ACID-2 were used (SEQ ID NOs:1-5 and 8-10, respectively).
- FIG. 7 DNA sequences of clones derived from the acid Z protein library (top—SEQ ID NO:14; bottom—SEQ ID NO:15). Bold figures indicate amino acid positions in the Z-domain. For clarity the positions of the restriction sites Acc I and Nhe I are shown.
- FIG. 8 Result from analysis of the temperature stability of an individual Z domain at pH 2.9. The content of ⁇ -helicity in the sample was monitored by measuring the ellipticity at s222 nm during a temperature scan.
- FIG. 9 Phagemid vector pKN1.
- the library PCR products encoding the variegated helices 1 and 2 (both the acid and the extensive library) was subcloned into the phagemid vector, pKN1, containing the gene for residues 44-58 of the wild type Z domain (essentially helix 3), followed by the gene for a 46 residues serum albumin binding region (ABP) derived from streptococcal protein G linked in frame with a truncated version of the M13 phage coat protein 3 gene.
- the phagemid contains the origin of replication derived from plasmid pBR322 as well as the intergenic region (fl ori) required for packing into the phage particles.
- FIG. 10 SDS-PAGE. HSA-affinity purified proteins from the periplasm of Escherichia coli cells producing the wild type Z domain and two different acid Z-variants as ABP fusion proteins encoded from their respective phagemid vectors were analyzed by SDS/PAGE.
- M molecular weight marker; lane 1, wild type Z domain; lane 2, clone 10; lane 3, clone 12.
- FIG. 11 CD-data. Overlay plot of CD spectra obtained for the wild type Z domain and two variants of the Z-protein library. The signals of the proteins were obtained after subtraction of the CD signal contribution of the ABP tail, present during the analysis.
- FIG. 12 Ion exchange chromatography.
- the two acid Z-variant proteins no. 10 and no. 12 together with the wild type Z-domain (produced as ABP fusion proteins) were each subjected to analysis at pH 5.5, employing an anion exchange chromatography column. Elution of the proteins from the column was obtained by a NaCl gradient. Top: acid Z-variant no. 12; middle, acid Z-variant no. 10; bottom, Z (wild type). Note that the wild type Z protein was not retarded on the column at this pH.
- FIG. 13 Z-domain structure.
- the structure of helices one and two are from the co-crystal structure between domain B of SPA and Fc (Deisenhofer, (1981) Biochemistry, 20, 2361-2370).
- the third helix was built based on the secondary structure assignments from NMR spectroscopy (Gouda et al., (1992) Biochemistry, 31, 9665-9672).
- Non-hydrogen atoms of side-chains of residues that were mutated in the construction of the combinatorial library are displayed as ball-and-stick models.
- the display was generated by the program MOLSCRIPT (Kraulis (1991) J.Appl.Cryst., 24, 946-950).
- FIGS. 14A-14B Amino acid sequences. Result from DNA-sequencing of 31 randomly chosen Z-variants from the library. The residues subjected to the mutagenesis are boxed. Horizontal lines indicate nucleotide identity with the wild type Z sequence listed at the top (SEQ ID NO:16). Indicated are the clones that were expressed and characterized as fusion proteins to the ABP-tail (amino acids 1-31 are SEQ ID NOs:17-47, respectively).
- FIG. 15 Aminoacid distribution. Result from the statistical analysis of the deduced amino acids at the mutated positions. In total, 13 residues from 31 clones (403 codons) were included in the calculation. The ratios between observed and expected frequencies are shown for all 20 amino acids as well for the only termination signal (TAG) included in the NNG/T degeneracy profile.
- TAG termination signal
- FIG. 16 SDS-PAGE analysis. HSA-affinity purified proteins from the periplasm of E. coli cells producing the wild type Z domain and four different Z-variants as ABP fusion proteins encoded from their respective phagemid vectors were analyzed by SDS/PAGE. Lanes 1-5: Reduced conditions. Lanes 6 and 7: Non-reduced conditions. Lane 1, wild type Z domain; lane 2, clone 16; lane 3, clone 21; lane 4, clone 22; lane 5, clone 24; M, molecular weight marker; lane 6, clone 16 and lane 7, clone 22.
- FIG. 17 CD-data. Overlay plot of CD spectra obtained for the wild type Z domain and four variants of the ⁇ -helical protein surface library. The signals of the variants were obtained after subtraction of the CD signal contribution of the ABP tail, present during the analysis.
- FIG. 18 Biosensor assay. An overlay plot of sensorgrams obtained from the BIA-coreTM analysis of the wild type Z domain and four different variants (no. 16,21,22,24; FIG. 4) fused to the ABP tail. The IgG-binding activities of the different proteins were analyzed using a sensor chip coated with approx. 5000 RU human polyclonal IgG and injections of 45 ⁇ l pulses at 2 ⁇ l/min of 1500 nM solutions of the different proteins. Note that the differences in plateau values of signals during the injections of the variants no. 16,21,22 and 24 is due to divergent dilutions into the driving buffer.
- the oligonucleotides (FIG. 6) were purchased from Scandinavian Gene Synthesis (Sweden), and phosphorylated where indicated according to [Maniatis et al (1988) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press].
- ZLIB-1 was biotinylated in the 5′-end enabling immobilization on paramagnetic beads M-280 Streptavidin purchased from Dynal A/S (Norway). Washing/binding buffer was 1 M NaCl, 10 mM Tris-HCl, pH 7.5, 1 mM EDTA (ethylenediamine tetraacetic acid).
- the annealing/ligation buffer was 30 mM Tris-HCl, pH 7.5, 10 mM MgCl 2 , 0.2 mM ATP, 1 mM 1.4 dithiothreitol (DTT).
- DNA ligase were from Boehringer Mannheim, Germany.
- 10 ⁇ PCR buffer contained 20 mM MgCl 2 , 2 mM dNTPs, 100 mM Tris-HCl, pH 8.3, 50 mM KCl, 1% Tween 20.
- Taq DNA polymerase was from Cetus Inc., USA.
- the thermal cycler was a Perkin-Elmer 9600. For the temperature/stability scanning a J-720 spectropolarimeter (JASCO, Japan) was used.
- Escherichia coli strain RR1 ⁇ M15 [Rüther, U. (1982) Nucl.Acids Res. 10:5765-5772] prepared for competence [Maniatis et al (1988) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press] was used as host for the transformation. Agar plates contained 100 ⁇ g/ml of ampicillin.
- the synthetic 58 residue SPA analogue Z (Nilsson et al. 1987, A synthetic IgG-binding domain based on staphylococcal protein A, Protein Eng. 1:107-113) was subjected to a mutagenesis approach to construct new variants with an altered pI, in order to produce fusion partners for recombinant proteins to be purified by ion-exchange chromatography.
- the PCR mix (50 ⁇ l) contained one pmole each of PCR primers ZLIB-3 and ZLIB-5, 5 ⁇ l each of the ligation mix, 10 ⁇ PCR buffer and 10 ⁇ CHASE, 1 unit of Taq polymerase and sterile water to 50 ⁇ l.
- the temperature cycling programme was: 96° C., 1 min, 60° C., 1 min and 72° C., 2 min, repeated for 35 cycles.
- Analysis by 1% agarose gel electrophoresis showed a band of the expected size of 179 bp, showing the feasibility of the assembly concept.
- the 179 bp band from the PCR of the Z(Acid)-library was cut out from the gel and purified (GenecleanTM, Bio 101, Inc.
- the temperature stability of the Z conformation was determined by following the ellipticity at 222 m by circular dichroism (CD) spectroscopy through a temperature scan. This wavelength is used to monitor the presence of ⁇ -helicity of Z [Cedergren et al. 1993 Prot. Eng. 6:441-448].
- the experiment was performed at a rather low pH (approximately 2.9) in order to destabilize the molecule since the mid-point of temperature denaturation (Tm) is ⁇ 95° C. at neutral pH (data not shown), which is outside the range that can be determined by a complete scan through the transition under normal atmospheric pressure.
- the experiment shows (FIG. 4) that the Tm (as defined by the inflexion point of the temperature scan) of the Z domain is as high as 71° C. at pH 2.9. This demonstrates the extreme temperature stability of the ⁇ -helices of the Z molecule.
- the experiment was performed in a J-720 spectro-polarimeter (JASCO, Japan) and the temperature was controlled by circulating water through the cuvette holder from a NESLAB water bath. The temperature was monitored in the cuvette through a micro sensor device (JASCO, Japan).
- the buffer was 50 mM acetic acid, pH 2.9.
- the protein was domain Z [Cedergren et al 1993 Prot. Eng. 6:441-448] at a protein concentration of 50 ⁇ g/mL and the cuvette cell path length was 1 cm.
- the temperature scan speed in the experiment was 50° C./h.
- Two protein variants derived from the acid Z-library were expressed in Escherichia coli , purified and characterized using SDS-PAGE, circular dichroism and ion exchange chromatography.
- the PCR products from a solid phase gene assembly were restricted with 45 U Esp 3I (Labassco AB, Sweden) and 50 U Nhe I (Pharmacia, Sweden) in 200 ⁇ l buffer (33 mM Tris-acetate, pH 7.9, 10 mM Mg-acetate, 66 mM potassium-acetate, 0.5 mM DTT and 0.1 mg/ml BSA). The mix was overlaid with mineral oil and incubated at 37° C. over night.
- the restricted fragments (approximately 5 ⁇ g) were purified by phenol/chloroform/isoamylalcohol extraction followed by additional washing with chloroform and later ethanol precipitated before ligation at 15° C. over night to Mlu I-Nhe I cleaved pKN1 vector (1 ⁇ g) (see below) using 13.5 Weiss units of T4 DNA ligase.
- the ligation mixture was heat-treated at 70° C. for 20 min, extracted with phenol/chloroform/isoamylalcohol followed by washing with chloroform, ethanol precipitated and redissolved in 20 ⁇ l of sterile water.
- the phagemid vector pKN1(FIG. 9) was constructed in several steps as follows.
- a double stranded linker encoding the invariant residues 44-58 of the Z-domain was formed from oligonucleotides ZLIB-6 and ZLIB-7 and cloned as a Mlu I-Xho I fragment into phagemid pKP986 (A kind gift from Dr. Lars Abrahmsén, Pharmacia BioScience Center, Sweden), resulting in pKN.
- Plasmid pKP986 encodes the E. coli Omp A leader peptide followed by residues 249-406 of fd filamentous phage coat protein 3 (Lowman et al.
- a gene fragment encoding a monovalent serum albumin binding region derived from streptococcal protein G was amplified by PCR from the plasmid pB2T (Eliasson et al., Molecular Immunol., 28, 1055-1061), using primers ABP-1 and ABP-2 (which contain Xho I and Sal I recognition sites, respectively) and cloned into Xho I restricted plasmid pKN, yielding pKN1.
- This phagemid vector thus encodes for the Omp A signal peptide, the third helix of the wild type Z domain followed by a 46 residue albumin binding protein (ABP) linked to residues 249-406 of fd phage protein III and is adapted for insertion of Esp 3I/Nhe I-digested PCR products encoding variegated helices one and two of the Z domain.
- ABC albumin binding protein
- the solid-phase DNA sequencing of the PCR products was performed employing the FITC labeled sequencing primers NOKA-3 (for the immobilized strand) and ABP-2 (for the eluted strand) on a robotic workstation (BiomekTM 1000, Beckman Instruments, Fullerton, Calif.) and an Automated Laser Fluorescent (A.L.F.) DNA SequencerTM (Pharmacia Biotech, Sweden) as described by Hultman and coworkers (Hultman et al., (1989) Nucleic acids Research, 17, 4937-4946).
- the periplasmic content from the cells was subjected to affinity chromatography on HSA-Sepharose as described by Nygren and coworkers (Nygren et al., (1988) J. Mol. Recognit., 1, 69-74) and analyzed by SDS/PAGE on a homogeneous 12% slab gel (BioRad Inc., USA), which was stained with Coomassie Brilliant Blue R-250.
- SDS-PAGE analysis FIG. 10
- the two Z-variants, no. 10 and 12 contain four and three introduced acid aminoacids, respectively, compared to the native Z domain.
- the proteins Z (wild type) and the acid variants no. 10 and no. 12 were each (5 ⁇ g) dissolved in 300 ⁇ l of 20 mM Piperazine buffer (pH 5.5) and separately applied at 100 ⁇ l/min on a MonoQ, PC 1.6/5 column (Pharmacia, Sweden).
- the series of experiments performed on the two acid Z-variant proteins shows that the expression behaviour, proteolytic stability and secondary structure content of the variants were unchanged when compared to the native Z-domain. Furthermore, a novel functions were introduced into the two Z-variants by the substitution of surface located positions with acid amino acids.
- the two acid variants can be used e.g. as fusion partners to facilitate purification of recombinant proteins by ion exchange chromatography at low pH. Thus, it is showed that among the members of the acid Z-library, variants with novel functions can be isolated.
- a library of Z-variants was assembled using a solid-phase gene assembly strategy (see example 1). Most of the amino acid residues suggested to take part in the binding to Fc (Deisenhofer, (1981) Biochemistry, 20, 2361-2370) were found to be on the molecule surface (Q9, Q10, N11, F13, Y14, L17, N28, Q32 and K35), and therefore included in the mutagenesis. In addition, based on their surfacial location, other residues (H18, E24, E25 and R27) were also decided to be included. In total, 13 residues in the Z scaffold where thus chosen for simultaneous and random mutagenesis. A set of oligonucleotides (FIG.
- Oligonucleotide ZLIB-1 was synthesized with a 5′ biotin group to enable robust anchoring onto streptavidin-coated paramagnetic beads used as solid support during the gene assembly.
- This ZLIB-1 oligonucleotide, together with its complementary sequence (ZLIB-2) encodes residues 1-8 of the Z domain, preceded by the first six residues of region E of protein A which were included to facilitate the E. coli secretion of the Z variants (Abrahmsén et al., (1986) EMBO J., 4, 3901-3906).
- the oligonucleotides DEGEN-1 and DEGEN-2 (Table I) encode the two mutated helices of the Z domain, respectively, normally involved in Fc-binding.
- the assembly was continued by the addition and ligation of a preformed construct, obtained after ligation of equimolar amounts of oligonucleotides DEGEN-1 and DEGEN-2, facilitated by the bridging oligonucleotide BRIDGE (FIG. 6 ).
- oligonucleotides ZLIB-4 and ZLIB-5 were added to the beads for ligation. This fragment encodes the second loop and the first six residues of the unaltered third helix of the Z domain.
- oligonucleotides ZLIB-3 and ZLIB-5 containing the recognition sequences for the endonucleases Esp 3I and Nhe I respectively, were used as primers for PCR amplification of the assembled constructs using one tenth of the bead-immobilized ssDNA as template (theoretically corresponding to 2 ⁇ 109 protein variants).
- oligonucleotides ZLIB-2, BRIDGE and ZLIB-5 were first eluted with alkali. The resulting PCR product was analysed by agarose gel electrophoresis and found to be homogenous and of the expected size, 179 bp.
- the PCR product was subcloned into the pKN1 phagemid vector containing the gene for residues 44-58 of the wild type Z domain in frame with a truncated version of the fd phage coat protein 3 gene for surface display on phage particles upon helper phage superinfection of phagemid transformed E. coli cells (Lowman et al., (1991) Biochemistry, 30, 10832-10844) (FIG. 9 ).
- the phagemid vector contains an interspaced in-frame cassette encoding a 5 kDa (46 aa) serum albumin binding region (denoted ABP) derived from streptococcal protein G (Nygren et al., (1988) J.
- the serum albumin binding activity can potentially be used for pre-selection of phage particles carrying recombinant molecules, prior to the panning for Z variants with new binding functions, to decrease the background originating from unspecifically bound non-recombinant phage particles.
- Soluble proteins from the periplasm of IPTG-induced cultures were subjected to HSA-affinity chromatography employing the ABP-tail for general and efficient recovery (Nygren et al., (1988) J. Mol. Recognit., 1, 69-74). For all proteins appr. 1.5-2.5 mg/L culture could be recovered, indicating similar production and secretion efficiencies for the variants and the wild type domain.
- the results from a SDS-PAGE analysis (FIG. 16) of purified proteins suggest that the four Z variants analyzed are stably expressed in E. coli .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
TABLE 1 |
Amino acid substitutions for selected clones in |
the acid Z-librarya. |
Encoded amino acid at position no. |
Clone no. | 9 | 11 | 14 | 27 | 35 | |
w.t | Gln | Asn | | Arg | Lys | |
10 | Glu | Asp |
| Ala | Glu | |
12 | Glu | Asp | Asp | Ala | Glu | |
aLetters in bold face indicate acid aminoacids |
Claims (38)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/568,051 US6740734B1 (en) | 1994-01-14 | 2000-05-10 | Bacterial receptor structures |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9400088A SE9400088D0 (en) | 1994-01-14 | 1994-01-14 | Bacterial receptor structures |
SE9400088 | 1994-01-14 | ||
US09/082,468 US6534628B1 (en) | 1994-01-14 | 1998-05-21 | Bacterial receptor structures |
US09/568,051 US6740734B1 (en) | 1994-01-14 | 2000-05-10 | Bacterial receptor structures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/082,468 Division US6534628B1 (en) | 1994-01-14 | 1998-05-21 | Bacterial receptor structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US6740734B1 true US6740734B1 (en) | 2004-05-25 |
Family
ID=32314180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/568,051 Expired - Fee Related US6740734B1 (en) | 1994-01-14 | 2000-05-10 | Bacterial receptor structures |
Country Status (1)
Country | Link |
---|---|
US (1) | US6740734B1 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085430A2 (en) | 2004-03-02 | 2005-09-15 | Compound Therapeutics, Inc. | Adzymes and uses thereof |
US20060121519A1 (en) * | 2003-07-24 | 2006-06-08 | Affisink Biotechnology Ltd. | Compositions and methods for purifying and crystallizing molecules of interest |
US20060216353A1 (en) * | 2005-03-23 | 2006-09-28 | Elan Pharma International Limited | Nanoparticulate corticosteroid and antihistamine formulations |
US20070183971A1 (en) * | 2004-08-30 | 2007-08-09 | Biotest Ag | Immunoconjugates targeting syndecan-1 expressing cells and use thereof |
US20080176278A1 (en) * | 2006-12-08 | 2008-07-24 | General Electric Company | Two helix binders |
EP1992692A1 (en) * | 2006-02-21 | 2008-11-19 | Protenova Co., Ltd. | Immunoglobulin affinity ligand |
WO2009000099A2 (en) | 2007-06-25 | 2008-12-31 | Esbatech Ag | Methods of modifying antibodies, and modified antibodies with improved functional properties |
US20090028848A1 (en) * | 2007-06-25 | 2009-01-29 | Esbatech Ag | Sequence based engineering and optimization of single chain antibodies |
US20090169570A1 (en) * | 2007-12-26 | 2009-07-02 | Benjamin Daelken | Methods and agents for improving targeting of cd138 expressing tumor cells |
US20090175863A1 (en) * | 2007-12-26 | 2009-07-09 | Elmar Kraus | Agents targeting cd138 and uses thereof |
US20090181038A1 (en) * | 2007-12-26 | 2009-07-16 | Gregor Schulz | Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates |
US20090232810A1 (en) * | 2007-12-26 | 2009-09-17 | Elmar Kraus | Immunoconjugates targeting cd138 and uses thereof |
US20100048413A1 (en) * | 2006-05-26 | 2010-02-25 | Arcus Vickery L | Ob fold domains |
US20100137150A1 (en) * | 2007-03-12 | 2010-06-03 | Esbatech Ag | Sequence Based Engineering and Optimization of Single Chain Antibodies |
US20100286366A1 (en) * | 2007-12-21 | 2010-11-11 | Abrahmsen Lars | Polypeptide libraries with a predetermined scaffold |
US20110021424A1 (en) * | 2007-12-19 | 2011-01-27 | Malin Lindborg | Polypeptide derived from protein a and able to bind pdgf |
US7956165B2 (en) | 2003-07-24 | 2011-06-07 | Affisink Biotechnology Ltd. | Compositions and methods for purifying and crystallizing molecules of interest |
US20110213013A1 (en) * | 2008-08-19 | 2011-09-01 | Nektar Therapeutics | Complexes of Small-Interfering Nucleic Acids |
WO2012006635A1 (en) | 2010-07-09 | 2012-01-12 | Biogen Idec Hemophilia Inc. | Processable single chain molecules and polypeptides made using same |
WO2012166555A1 (en) | 2011-05-27 | 2012-12-06 | Nektar Therapeutics | Water - soluble polymer - linked binding moiety and drug compounds |
WO2013083817A1 (en) | 2011-12-08 | 2013-06-13 | Biotest Ag | Uses of immunoconjugates targeting cd138 |
WO2013106577A2 (en) | 2012-01-10 | 2013-07-18 | Biogen Idec Ma Inc. | Enhancement of transport of therapeutic molecules across the blood brain barrier |
WO2013175276A1 (en) | 2012-05-23 | 2013-11-28 | Argen-X B.V | Il-6 binding molecules |
US8708948B2 (en) | 2005-06-29 | 2014-04-29 | Advanced Cardiovascular Systems, Inc. | Intracoronary device and method of use thereof |
US9040661B2 (en) | 2010-12-21 | 2015-05-26 | Jsr Corporation | Support for affinity chromatography and method for isolating immunoglobulin |
US9051375B2 (en) * | 2010-12-21 | 2015-06-09 | The University Of Western Ontario | Alkali-resistant variants of protein A and their use in affinity chromatography |
US9504755B2 (en) | 2008-08-11 | 2016-11-29 | Nektar Therapeutics | Multi-arm polymeric alkanoate conjugates |
US9556265B2 (en) | 2008-06-25 | 2017-01-31 | Esbatech, An Alcon Biomedical Research Unit Llc | Solubility optimization of immunobinders |
US10098865B2 (en) | 2010-12-22 | 2018-10-16 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of taxane-based compounds |
WO2020198074A1 (en) | 2019-03-22 | 2020-10-01 | Reflexion Pharmaceuticals, Inc. | D-peptidic compounds for vegf |
WO2020198075A2 (en) | 2019-03-22 | 2020-10-01 | Reflexion Pharmaceuticals, Inc. | Multivalent d-peptidic compounds for target proteins |
US10894087B2 (en) | 2010-12-22 | 2021-01-19 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of cabazitaxel-based compounds |
US11168125B2 (en) | 2003-05-06 | 2021-11-09 | Bioverativ Therapeutics Inc. | Immunoglobulin chimeric monomer-dimer hybrids |
US11642398B2 (en) | 2013-03-15 | 2023-05-09 | Bioverativ Therapeutics Inc. | Factor IX polypeptide formulations |
WO2023201339A1 (en) | 2022-04-15 | 2023-10-19 | Kyverna Therapeutics, Inc. | Methods and compositions for treating autoimmune disease |
WO2023217904A1 (en) | 2022-05-10 | 2023-11-16 | Institut National de la Santé et de la Recherche Médicale | Syncitin-1 fusion proteins and uses thereof for cargo delivery into target cells |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4879213A (en) | 1986-12-05 | 1989-11-07 | Scripps Clinic And Research Foundation | Synthetic polypeptides and antibodies related to Epstein-Barr virus early antigen-diffuse |
US4954618A (en) | 1986-02-14 | 1990-09-04 | Genex Corporation | Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G |
US5084559A (en) | 1987-03-27 | 1992-01-28 | Repligen Corporation | Protein a domain mutants |
WO1992020805A1 (en) * | 1991-05-13 | 1992-11-26 | Pierre Fabre Medicament | Recombinant dna coding for signal peptide, selective interacting polypeptide and membrane anchoring sequence |
US5229492A (en) | 1986-02-14 | 1993-07-20 | Pharmacia Lkb Biotechnology Ab | Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G |
US5312901A (en) | 1986-02-14 | 1994-05-17 | Pharmacia Lkb Biotechnology Ab | Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G |
WO1995019374A1 (en) * | 1994-01-14 | 1995-07-20 | Pharmacia Ab | Bacterial receptor structures |
US5684146A (en) * | 1994-03-30 | 1997-11-04 | Takara Shuzo Co., Ltd. | DNA coding for variable region to human influenza A type virus |
US5783415A (en) | 1991-03-29 | 1998-07-21 | Genentech, Inc. | Method of producing an IL-8 receptor polypeptide |
US6013763A (en) * | 1996-06-04 | 2000-01-11 | Genentech, Inc. | Peptide variants of protein A |
US6025166A (en) | 1994-03-18 | 2000-02-15 | Genentech, Inc. | Human trk receptors and neurotrophic factor inhibitors |
US6602977B1 (en) * | 1999-04-19 | 2003-08-05 | Biovitrum Ab | Receptor structures |
-
2000
- 2000-05-10 US US09/568,051 patent/US6740734B1/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5312901A (en) | 1986-02-14 | 1994-05-17 | Pharmacia Lkb Biotechnology Ab | Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G |
US4954618A (en) | 1986-02-14 | 1990-09-04 | Genex Corporation | Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G |
US5229492A (en) | 1986-02-14 | 1993-07-20 | Pharmacia Lkb Biotechnology Ab | Cloned streptococcal genes encoding protein G and their use to construct recombinant microorganisms to produce protein G |
US4879213A (en) | 1986-12-05 | 1989-11-07 | Scripps Clinic And Research Foundation | Synthetic polypeptides and antibodies related to Epstein-Barr virus early antigen-diffuse |
US5084559A (en) | 1987-03-27 | 1992-01-28 | Repligen Corporation | Protein a domain mutants |
US5783415A (en) | 1991-03-29 | 1998-07-21 | Genentech, Inc. | Method of producing an IL-8 receptor polypeptide |
WO1992020805A1 (en) * | 1991-05-13 | 1992-11-26 | Pierre Fabre Medicament | Recombinant dna coding for signal peptide, selective interacting polypeptide and membrane anchoring sequence |
WO1995019374A1 (en) * | 1994-01-14 | 1995-07-20 | Pharmacia Ab | Bacterial receptor structures |
US5831012A (en) | 1994-01-14 | 1998-11-03 | Pharmacia & Upjohn Aktiebolag | Bacterial receptor structures |
US6534628B1 (en) * | 1994-01-14 | 2003-03-18 | Biovitrum Ab | Bacterial receptor structures |
US6025166A (en) | 1994-03-18 | 2000-02-15 | Genentech, Inc. | Human trk receptors and neurotrophic factor inhibitors |
US6027927A (en) | 1994-03-18 | 2000-02-22 | Genentech, Inc. | Human trk receptors and neurotrophic factor inhibitors |
US5684146A (en) * | 1994-03-30 | 1997-11-04 | Takara Shuzo Co., Ltd. | DNA coding for variable region to human influenza A type virus |
US6013763A (en) * | 1996-06-04 | 2000-01-11 | Genentech, Inc. | Peptide variants of protein A |
US6197927B1 (en) * | 1996-06-04 | 2001-03-06 | Genentech Inc. | Peptide variants of protein A |
US6602977B1 (en) * | 1999-04-19 | 2003-08-05 | Biovitrum Ab | Receptor structures |
Non-Patent Citations (10)
Title |
---|
Brigido et al, J. Basic Microbiology, 1991, 31/5:337-345.* * |
Cedergren et al., "Mutuational Analysis of the Interaction Between Staphylococcal Protein A and Human IgG1," Protein Engineering 6(4):441-448 (1993). |
Eliasson et al., "chimeric IgG-Binding Receptors Engineered From Staphylococcal Protein A and Staphylococcal Protein G," The Journal of Biological Chemistry 263(9):4323-4327 (Mar. 25, 1988). |
Finck-Barbancon et al, FEMS Microbiology Letters, 1992, 91:1-8.* * |
Gouda et al, Biochemistry, 1992, 31:9665-9672.* * |
Nord et al. Protein Engineering 8(6):601-608 (1995). |
Nord et al., Nature Biotechnology 15(8):772-777 (Aug. 1997). |
Shuttleworth et al, Gene, 1987, 58:283-295.* * |
Sjodahl, Eur. J. Biochem., 1977, 78:471-490.* * |
Uhlen et al, J. Biol. Chem., 1984, 259/3:1695-1702.* * |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11168125B2 (en) | 2003-05-06 | 2021-11-09 | Bioverativ Therapeutics Inc. | Immunoglobulin chimeric monomer-dimer hybrids |
US20060121519A1 (en) * | 2003-07-24 | 2006-06-08 | Affisink Biotechnology Ltd. | Compositions and methods for purifying and crystallizing molecules of interest |
US7956165B2 (en) | 2003-07-24 | 2011-06-07 | Affisink Biotechnology Ltd. | Compositions and methods for purifying and crystallizing molecules of interest |
WO2005085430A2 (en) | 2004-03-02 | 2005-09-15 | Compound Therapeutics, Inc. | Adzymes and uses thereof |
US20070183971A1 (en) * | 2004-08-30 | 2007-08-09 | Biotest Ag | Immunoconjugates targeting syndecan-1 expressing cells and use thereof |
US8840898B2 (en) | 2004-08-30 | 2014-09-23 | Biotest Ag | Immunoconjugates targeting syndecan-1 expressing cells and use thereof |
US20060216353A1 (en) * | 2005-03-23 | 2006-09-28 | Elan Pharma International Limited | Nanoparticulate corticosteroid and antihistamine formulations |
US8708948B2 (en) | 2005-06-29 | 2014-04-29 | Advanced Cardiovascular Systems, Inc. | Intracoronary device and method of use thereof |
US8674073B2 (en) * | 2006-02-21 | 2014-03-18 | Protenova Co., Ltd. | Immunoglobulin affinity ligand |
US20100286373A1 (en) * | 2006-02-21 | 2010-11-11 | Protenova Co., Ltd. | Immunoglobulin affinity ligand |
EP1992692A1 (en) * | 2006-02-21 | 2008-11-19 | Protenova Co., Ltd. | Immunoglobulin affinity ligand |
EP1992692A4 (en) * | 2006-02-21 | 2009-12-30 | Protenova Co Ltd | Immunoglobulin affinity ligand |
US20100048413A1 (en) * | 2006-05-26 | 2010-02-25 | Arcus Vickery L | Ob fold domains |
US9181543B2 (en) | 2006-05-26 | 2015-11-10 | Obodies Limited | OB fold domains |
US8318456B2 (en) | 2006-12-08 | 2012-11-27 | General Electric Company | Two helix binders |
US20080176278A1 (en) * | 2006-12-08 | 2008-07-24 | General Electric Company | Two helix binders |
US8198043B2 (en) * | 2006-12-08 | 2012-06-12 | General Electric Company | Two helix binders |
US9938336B2 (en) | 2007-03-12 | 2018-04-10 | Esbatech, An Alcon Biomedical Research Unit Llc | Sequence based engineering and optimization of single chain antibodies |
US20100137150A1 (en) * | 2007-03-12 | 2010-06-03 | Esbatech Ag | Sequence Based Engineering and Optimization of Single Chain Antibodies |
US8280711B2 (en) | 2007-03-12 | 2012-10-02 | ESBATech, an Alcon Biomedical Research Unit, LLC. | Sequence based engineering and optimization of single chain antibodies |
US20090028848A1 (en) * | 2007-06-25 | 2009-01-29 | Esbatech Ag | Sequence based engineering and optimization of single chain antibodies |
WO2009000099A2 (en) | 2007-06-25 | 2008-12-31 | Esbatech Ag | Methods of modifying antibodies, and modified antibodies with improved functional properties |
US9908945B2 (en) | 2007-06-25 | 2018-03-06 | Esbatech, An Alcon Biomedical Research Unit Llc | Sequence based engineering and optimization of single chain antibodies |
US20090074780A1 (en) * | 2007-06-25 | 2009-03-19 | David Urech | Methods of modifying antibodies, and modified antibodies with improved functional properties |
US9187535B2 (en) | 2007-12-19 | 2015-11-17 | Affibody Ab | Polypeptide derived from protein A and able to bind PDGF |
US20110021424A1 (en) * | 2007-12-19 | 2011-01-27 | Malin Lindborg | Polypeptide derived from protein a and able to bind pdgf |
US9469670B2 (en) | 2007-12-21 | 2016-10-18 | Affibody Ab | Polypeptide libraries with a predetermined scaffold |
US20100286366A1 (en) * | 2007-12-21 | 2010-11-11 | Abrahmsen Lars | Polypeptide libraries with a predetermined scaffold |
US10556933B2 (en) | 2007-12-21 | 2020-02-11 | Affibody Ab | Polypeptide libraries with a predetermined scaffold |
US20090175863A1 (en) * | 2007-12-26 | 2009-07-09 | Elmar Kraus | Agents targeting cd138 and uses thereof |
US20090181038A1 (en) * | 2007-12-26 | 2009-07-16 | Gregor Schulz | Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates |
US9446146B2 (en) | 2007-12-26 | 2016-09-20 | Biotest Ag | Methods and agents for improving targeting of CD138 expressing tumor cells |
US9387261B2 (en) | 2007-12-26 | 2016-07-12 | Biotest Ag | Immunoconjugates targeting CD138 and uses thereof |
US20090169570A1 (en) * | 2007-12-26 | 2009-07-02 | Benjamin Daelken | Methods and agents for improving targeting of cd138 expressing tumor cells |
EP2801584A1 (en) | 2007-12-26 | 2014-11-12 | Biotest AG | Agents targeting CD138 and uses thereof |
US9011864B2 (en) | 2007-12-26 | 2015-04-21 | Biotest Ag | Method of decreasing cytotoxic side-effects and improving efficacy of immunoconjugates |
US20090232810A1 (en) * | 2007-12-26 | 2009-09-17 | Elmar Kraus | Immunoconjugates targeting cd138 and uses thereof |
US9221914B2 (en) | 2007-12-26 | 2015-12-29 | Biotest Ag | Agents targeting CD138 and uses thereof |
US10221237B2 (en) | 2008-06-25 | 2019-03-05 | Esbatech, An Alcon Biomedical Research Unit Llc | Solubility optimization of immunobinders |
US11046757B2 (en) | 2008-06-25 | 2021-06-29 | Novartis Ag | Solubility optimization of immunobinders |
EP3241843A1 (en) | 2008-06-25 | 2017-11-08 | ESBATech, an Alcon Biomedical Research Unit LLC | Solubility optimization of immunobinders |
US9556265B2 (en) | 2008-06-25 | 2017-01-31 | Esbatech, An Alcon Biomedical Research Unit Llc | Solubility optimization of immunobinders |
US9504755B2 (en) | 2008-08-11 | 2016-11-29 | Nektar Therapeutics | Multi-arm polymeric alkanoate conjugates |
US10039737B2 (en) | 2008-08-11 | 2018-08-07 | Nektar Therapeutics | Multi-arm polymeric alkanoate conjugates |
US11672776B2 (en) | 2008-08-11 | 2023-06-13 | Nektar Therapeutics | Multi-arm polymeric alkanoate conjugates |
US9433684B2 (en) | 2008-08-19 | 2016-09-06 | Nektar Therapeutics | Conjugates of small-interfering nucleic acids |
US20110213013A1 (en) * | 2008-08-19 | 2011-09-01 | Nektar Therapeutics | Complexes of Small-Interfering Nucleic Acids |
US9089610B2 (en) | 2008-08-19 | 2015-07-28 | Nektar Therapeutics | Complexes of small-interfering nucleic acids |
US10968442B2 (en) | 2010-07-09 | 2021-04-06 | Bioverativ Therapeutics Inc. | Chimeric clotting factors |
US10927362B2 (en) | 2010-07-09 | 2021-02-23 | Bioverativ Therapeutics Inc. | Processable single chain molecules and polypeptides made using same |
US9856468B2 (en) | 2010-07-09 | 2018-01-02 | Bioverativ Therapeutics Inc. | Processable single chain molecules and polypeptides made using same |
WO2012006635A1 (en) | 2010-07-09 | 2012-01-12 | Biogen Idec Hemophilia Inc. | Processable single chain molecules and polypeptides made using same |
EP3560962A1 (en) | 2010-07-09 | 2019-10-30 | Bioverativ Therapeutics Inc. | Processable single chain molecules and polypeptides made using same |
US9040661B2 (en) | 2010-12-21 | 2015-05-26 | Jsr Corporation | Support for affinity chromatography and method for isolating immunoglobulin |
US9051375B2 (en) * | 2010-12-21 | 2015-06-09 | The University Of Western Ontario | Alkali-resistant variants of protein A and their use in affinity chromatography |
US10894087B2 (en) | 2010-12-22 | 2021-01-19 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of cabazitaxel-based compounds |
US10098865B2 (en) | 2010-12-22 | 2018-10-16 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of taxane-based compounds |
US11813241B2 (en) | 2010-12-22 | 2023-11-14 | Nektar Therapeutics | Multi-arm polymeric prodrug conjugates of taxane-based compounds |
WO2012166555A1 (en) | 2011-05-27 | 2012-12-06 | Nektar Therapeutics | Water - soluble polymer - linked binding moiety and drug compounds |
US10117932B2 (en) | 2011-12-08 | 2018-11-06 | Biotest Ag | Uses of immunoconjugates targeting CD138 |
WO2013083817A1 (en) | 2011-12-08 | 2013-06-13 | Biotest Ag | Uses of immunoconjugates targeting cd138 |
WO2013106577A2 (en) | 2012-01-10 | 2013-07-18 | Biogen Idec Ma Inc. | Enhancement of transport of therapeutic molecules across the blood brain barrier |
US11827701B2 (en) | 2012-05-23 | 2023-11-28 | argenx BV | IL-6 binding molecules |
WO2013175427A1 (en) | 2012-05-23 | 2013-11-28 | Argen-X B.V. | Il-6 binding molecules |
WO2013175276A1 (en) | 2012-05-23 | 2013-11-28 | Argen-X B.V | Il-6 binding molecules |
US11117959B2 (en) | 2012-05-23 | 2021-09-14 | Argenx Bvba | IL-6 binding molecules |
US10183995B2 (en) | 2012-05-23 | 2019-01-22 | Argen-X N.V. | IL-6 binding molecules |
US11642398B2 (en) | 2013-03-15 | 2023-05-09 | Bioverativ Therapeutics Inc. | Factor IX polypeptide formulations |
WO2020198075A2 (en) | 2019-03-22 | 2020-10-01 | Reflexion Pharmaceuticals, Inc. | Multivalent d-peptidic compounds for target proteins |
WO2020198074A1 (en) | 2019-03-22 | 2020-10-01 | Reflexion Pharmaceuticals, Inc. | D-peptidic compounds for vegf |
WO2023201339A1 (en) | 2022-04-15 | 2023-10-19 | Kyverna Therapeutics, Inc. | Methods and compositions for treating autoimmune disease |
WO2023217904A1 (en) | 2022-05-10 | 2023-11-16 | Institut National de la Santé et de la Recherche Médicale | Syncitin-1 fusion proteins and uses thereof for cargo delivery into target cells |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6740734B1 (en) | Bacterial receptor structures | |
US6534628B1 (en) | Bacterial receptor structures | |
Nord et al. | A combinatorial library of an α-helical bacterial receptor domain | |
CN101704879B (en) | Novel immunoglobulin-binding proteins with improved specificity | |
US8883692B2 (en) | Method for cell surface displaying of target proteins using Bacillus anthracis exosporium | |
EP0656941B1 (en) | Methods for producing members of specific binding pairs | |
JP3043407B2 (en) | Complete synthetic affinity reagent | |
Jones et al. | Current trends in molecular recognition and bioseparation | |
EP2288617B1 (en) | Polypeptide | |
Gräslund et al. | A novel affinity gene fusion system allowing protein A-based recovery of non-immunoglobulin gene products | |
Djojonegoro et al. | Bacteriophage surface display of an immunoglobulin–binding domain of Staphylococcus aureus protein A | |
US20060030007A1 (en) | Peptides for metal ion affinity chromatography | |
Derouiche et al. | Binding of colicins A and E1 to purified ToIA domains | |
Ståhl et al. | Strategies for gene fusions | |
CN107043421B (en) | Single-domain heavy-chain antibody of anti-c-Myc label | |
CN106831991B (en) | Nano antibody of anti-c-Myc label | |
CN106946990B (en) | Nano antibody aiming at c-Myc label | |
CN106831993B (en) | Single-domain heavy chain antibody for specifically recognizing c-Myc label | |
CN106946991B (en) | Nano antibody capable of specifically binding c-Myc label | |
CN106831992B (en) | Nanobodies against c-Myc tags | |
CN106905430B (en) | Single-domain heavy chain antibody aiming at c-Myc label | |
CN106946992B (en) | Single domain heavy chain antibody against c-Myc tag | |
CN107011442B (en) | Nano antibody for specifically recognizing c-Myc label | |
CN114591407A (en) | Alkali-resistant protein A variants and uses thereof | |
JP2001037481A (en) | Gene conding for variable region of anti-chrysanthemic acid monoclonal antibody |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOVITRUM AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHARMACIA AB;REEL/FRAME:013199/0034 Effective date: 20020802 |
|
AS | Assignment |
Owner name: AFFIBODY AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOVITRUM AB;REEL/FRAME:017663/0011 Effective date: 20060208 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: AFFIBODY BIOTECHNOLOGY AB,SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AFFIBODY AB;REEL/FRAME:018961/0824 Effective date: 20061218 Owner name: AFFIBODY BIOTECHNOLOGY AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AFFIBODY AB;REEL/FRAME:018961/0824 Effective date: 20061218 |
|
AS | Assignment |
Owner name: AFFIBODY AB,SWEDEN Free format text: CHANGE OF NAME;ASSIGNOR:AFFIBODY BIOTECHNOLOGY AB;REEL/FRAME:018989/0492 Effective date: 20070129 Owner name: AFFIBODY AB, SWEDEN Free format text: CHANGE OF NAME;ASSIGNOR:AFFIBODY BIOTECHNOLOGY AB;REEL/FRAME:018989/0492 Effective date: 20070129 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20160525 |