US6687130B2 - Integrated wedge lock and elastic member - Google Patents
Integrated wedge lock and elastic member Download PDFInfo
- Publication number
- US6687130B2 US6687130B2 US09/948,674 US94867401A US6687130B2 US 6687130 B2 US6687130 B2 US 6687130B2 US 94867401 A US94867401 A US 94867401A US 6687130 B2 US6687130 B2 US 6687130B2
- Authority
- US
- United States
- Prior art keywords
- wedge
- processing device
- wedge lock
- optical processing
- segments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000012545 processing Methods 0.000 claims description 50
- 230000003287 optical effect Effects 0.000 claims description 34
- 229920001971 elastomer Polymers 0.000 claims description 21
- 239000000806 elastomer Substances 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 15
- 230000017525 heat dissipation Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001347 Stellite Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1401—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means
- H05K7/1402—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards
- H05K7/1404—Mounting supporting structure in casing or on frame or rack comprising clamping or extracting means for securing or extracting printed circuit boards by edge clamping, e.g. wedges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1434—Housings for electronics exposed to high gravitational force; Cylindrical housings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1438—Back panels or connecting means therefor; Terminals; Coding means to avoid wrong insertion
- H05K7/1439—Back panel mother boards
- H05K7/1442—Back panel mother boards with a radial structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20436—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
- H05K7/20445—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
Definitions
- the present invention relates generally to retainers and, more particularly, to systems and methods for integrating an elastic mechanism with a retainer.
- Network devices commonly include non-compliant retainers, such as wedge locks, that lock circuit boards or other devices into position.
- non-compliant retainers such as wedge locks
- the devices When network devices are placed into an underwater (or high pressure) environment, the devices may be subject to stresses and strains that tend to alter their shape and size. The forces applied to the non-compliant retainers within these network devices as a result of the increased pressure may cause the non-compliant retainers to deform, thereby detracting from their effectiveness.
- Systems and methods consistent with the present invention address this and other needs by combining the features of a wedge lock or retainer for processing modules with an elastic mechanism, such as a coil spring, elastomer, integral spring element, or linear wave spring, in order to provide both locking and compliance between components.
- an elastic mechanism such as a coil spring, elastomer, integral spring element, or linear wave spring
- an optical processing device includes a frame, at least one processing module that amplifies an optical signal received by the optical processing device, and a retainer that is positioned between the processing module and the frame.
- the retainer includes a rail, a wedge lock configured to attach to the rail and expand in a first direction, and an elastic mechanism attached to the wedge lock and configured to deflect forces applied to the wedge lock in one of the first direction and a second direction opposite to the first direction.
- a retainer in another implementation consistent with the present invention, includes a non-compliant member and a compliant member.
- the non-compliant member is configured to expand in a first direction.
- the compliant member attaches to the non-compliant member and is configured to deflect forces applied to the non-compliant member in the first direction or a second direction opposite to the first direction.
- a method of manufacturing a deflectable wedge lock includes providing a wedge lock that includes a group of wedge lock segments and attaching one or more elastic mechanisms to the wedge lock to reduce forces applied to the wedge lock.
- a retainer in a further implementation consistent with the present invention, includes a rail and a group of wedge segments configured to attach to the rail and expand in a first direction. At least one of the wedge segments includes an integrated spring element.
- a method of manufacturing a deflectable wedge lock includes providing a rail and mounting a group of wedge lock segments onto the rail. At least one of the wedge lock segments includes an integrated spring element configured to deflect forces applied to the deflectable wedge lock.
- FIG. 1 illustrates an exemplary system in which systems and methods consistent with the present invention may be implemented
- FIG. 2 illustrates an exemplary configuration of the line unit of FIG. 1
- FIG. 3 illustrates an exemplary cross sectional view of a deflectable wedge lock in an implementation consistent with the present invention
- FIG. 4 illustrates an exemplary configuration of the deflectable wedge lock of FIG. 3 in greater detail
- FIG. 5 illustrates the deflectable wedge lock of FIG. 3 in an assembled, uncompressed state
- FIG. 6 illustrates the deflectable wedge lock of FIG. 3 in an assembled, compressed state
- FIG. 7 illustrates an exemplary configuration of the deflectable wedge lock in another implementation consistent with the present invention.
- FIG. 8 illustrates the deflectable wedge lock of FIG. 7 in a compressed state
- FIG. 9 illustrates an exemplary configuration of the deflectable wedge lock in yet another implementation consistent with the present invention.
- FIG. 10 illustrates the deflectable wedge lock of FIG. 9 in a compressed state
- FIG. 11 illustrates an exemplary configuration of the deflectable wedge lock in a further implementation consistent with the present invention
- FIG. 12 illustrates the deflectable wedge lock of FIG. 11 in a compressed state
- FIG. 13 illustrates an exemplary configuration of the deflectable wedge lock in yet a further implementation consistent with the present invention.
- FIG. 14 illustrates the deflectable wedge lock of FIG. 13 in a compressed state.
- Implementations consistent with the present invention provide a deflectable wedge lock design.
- the deflectable wedge lock design is configured by associating a coil spring, elastomeric material, integral spring element, or a linear wave spring with a wedge lock in order to provide both locking and compliance between segments retained by the deflectable wedge lock.
- Such a configuration is particularly attractive to devices that are mounted within a structure that is known to deflect during use, such as within a pressure vessel.
- FIG. 1 illustrates an exemplary system 100 in which systems and methods consistent with the present invention may be implemented.
- system 100 includes two land communication portions that are interconnected via an underwater communication portion.
- the land portions may include land networks 110 and land terminals 120 .
- the underwater portion may include line units 130 and an underwater network 140 .
- Two land networks 110 , land terminals 120 , and line units 130 are illustrated for simplicity. It will be appreciated that a typical system may include more or fewer devices and networks than are illustrated in FIG. 1 .
- Line units 130 are sometimes referred to as “repeaters.”
- the land network 110 may include one or more networks, such as the Internet, an intranet, a wide area network (WAN), a local area network (LAN), or another type of network.
- Land terminals 120 include devices that convert signals received from the land network 110 into optical signals for transmission to the line unit 130 , and vice versa.
- the land terminals 120 may connect to the land network 110 via wired, wireless, or optical connections. In an implementation consistent with the present invention, the land terminals 120 connect to the line units 130 via an optical connection.
- the land terminals 120 may include, for example, long reach transmitters/receivers that convert signals into an optical format for long haul transmission and convert underwater optical signals back into a format for transmission to the land network 110 .
- the land terminals 110 may also include wave division multiplexers and optical conditioning units that multiplex and amplify optical signals prior to transmitting these signals to line units 130 , and line current equipment that provides power to the line units 130 and underwater network 140 .
- the underwater network 140 may include groups of line units and/or other devices capable of routing and amplifying optical signals in an underwater environment.
- the line units 130 include devices capable of receiving optical signals and transmitting these signals to other line units 130 via the underwater network 140 .
- FIG. 2 illustrates an exemplary configuration of the line unit 130 of FIG. 1 .
- the line unit 130 may include an outer case 210 , an insulating layer 220 , groups of processing modules 230 - 234 , and deflectable wedge locks 240 .
- a typical line unit 130 may include other devices (not shown) that aid in the reception, processing, or transmission of optical signals.
- FIG. 2 portrays line unit 130 as having three processing modules, those skilled in the art will appreciate that the present invention is applicable to line units (or other devices) having any number of processing modules (i.e., four, or more or less than three) that are secured to a frame.
- the outer case 210 holds the electronic circuits needed for receiving and transmitting optical signals to other line units 130 and land terminals 120 .
- the outer case 210 provides the electronic circuits with a pressure or watertight environment.
- the outer case 210 may be of a hollow cylindrical shape. Alternative configurations are also possible.
- the outer case 210 may be fabricated of a high strength material, such as beryllium copper, titanium, nickel-based alloys, stellite, or the like. In an underwater or undersea environment, such a material should be chosen that provides good heat transfer characteristics for dissipating heat from inside the line unit 130 to the surrounding water.
- a high strength material such as beryllium copper, titanium, nickel-based alloys, stellite, or the like. In an underwater or undersea environment, such a material should be chosen that provides good heat transfer characteristics for dissipating heat from inside the line unit 130 to the surrounding water.
- the insulation layer 220 electrically isolates the electronic circuits and circuit mountings within the line unit 130 from the outer case 210 .
- the insulator 220 may be applied uniformly to the inside of the outer case 210 to a thickness to withstand expected high voltage within the line unit 130 , but limited from any excessive thickness to maximize heat transfer through the insulator 220 .
- the processing modules 230 - 234 may include electronic circuits for receiving, processing, and transmitting optical signals and circuit mountings.
- the circuit mountings act as a heat sink for the electronic circuits and as a heat conduit to the insulation layer 220 .
- the circuit mountings may be fabricated out of a high conductivity material, such as aluminum.
- the contoured, or curved, surfaces of the processing modules 230 - 234 may be shaped to fit snugly against the inside, or exposed, side of the layer of insulation 220 .
- the processing modules 230 - 234 may be positioned so that free space exists between adjacent ones of them, allowing them to be free of stress when the line unit 130 is in a high pressure location (e.g., at sea bottom).
- the deflectable wedge locks 240 ensure separation between the processing modules 230 - 234 and ensure that the processing modules 230 - 234 and layer of insulation 220 remain in intimate contact, regardless of whether the line unit 130 expands or contracts as a result of changes in pressure. Keeping the processing modules 230 - 234 in intimate contact with the insulator 220 assures good thermal conductivity.
- FIG. 3 illustrates an exemplary cross sectional view of a deflectable wedge lock 300 in an implementation consistent with the present invention.
- the deflectable wedge lock 300 includes a rail 310 , a wedge lock 320 , a coil spring 330 , and a fastener 340 .
- the rail 310 allows for mounting of the wedge lock 320 .
- the length and composition of the rail 310 may be selected so as to ensure that the deflectable wedge lock 300 is capable of performing the functions described above.
- the length of the rail 310 may be approximately equal to the length of the line unit 130 .
- the rail 310 may be configured to have a “T” bar-like cross-section along its length. Such a configuration allows the rail 310 to retain the wedge lock 320 once the wedge lock 320 is in place.
- Other configurations may alternatively be used (e.g., two deflectable wedge locks each extending along approximately half the length of a processing module).
- the rail 310 may be securely mounted to the processing module 230 via screws, adhesives, rivets, or the like. Alternatively, the rail 310 may be securely mounted to a frame of the line unit 130 .
- the wedge lock 320 may include several wedge lock segments. These segments may be of such a configuration as to allow the wedge lock 320 to be slid over the rail 310 and expand and contract in a well-known manner.
- the wedge lock 320 may be composed of aluminum or other similar types of heat conductive materials.
- the coil spring 330 may be positioned between the wedge lock 320 and the fastener 340 .
- the coil spring 330 allows the wedge lock 320 to retain its locking position despite deformations to the line unit 130 caused, for example, by changes in pressure (or other external forces).
- the coil spring 330 may be sized to provide the amount of force needed to constrain the wedge segments, while also providing the necessary tension needed to accommodate deformations in the line unit 130 .
- the ability to provide compliance comes from the amount of travel provided by the coil spring.
- Coil spring 330 may, for example, have an amount of travel (i.e., the difference between the free height and fully compressed height of the coil spring) of more than 0.1 or 0.2 inches and possibly as much or more than 0.5 inches.
- the fastener 340 may be a screw or other similar type of fastening device capable of applying pressure to the wedge lock 320 in order to compress the various wedge segments together and expand the wedge lock 320 to the desired height.
- FIG. 4 illustrates an exemplary configuration of the deflectable wedge lock 300 of FIG. 3 in greater detail.
- the deflectable wedge lock 300 includes a rail 310 , wedge lock segments 410 - 450 , a coil spring 330 , washers 460 , and a fastener 340 .
- the rail 310 , coil spring 330 , and fastener 340 may be similar to those described above with respect to FIG. 3 .
- the wedge lock 320 may include five wedge segments 410 - 450 .
- the wedge segments 410 - 450 may be configured to slide onto and mate with the rail 310 in a way that precludes the wedge segments 410 - 450 from becoming easily misaligned. In other words, the wedge segments 410 - 450 should not be able to rotate about the rail 310 , or be removed from the rail 310 except by sliding them off an end of the rail 310 .
- the wedge segments 410 - 450 may include ramped ends that allow the overall height of the wedge lock 320 to be adjusted once the segments 410 - 450 are positioned on the rail 310 .
- the number of wedge segments, and the length of each wedge segment may be varied in accordance with the type or size of deflectable wedge lock desired.
- the washers 460 may include any conventional type of washers.
- the deflectable wedge lock 300 may be assembled in the following manner.
- the rail 310 may be attached to the processing module 230 (or other appropriate surface, such as a frame of the line unit 130 ).
- the rail 310 may include a group of attachment holes 480 that allow the rail 310 to be mounted to the processing module 230 via screws, rivets, and the like.
- the rail 310 may be mounted to the processing module 230 through the use of adhesives.
- the end wedge segment 410 may be attached to the rail 310 via an attachment pin 415 or other similar type of mechanism.
- the end wedge segment 410 serves to retain the other wedge segments 420 - 450 on the rail 310 .
- the end wedge segment 410 may be attached to the rail 310 prior to or after the rail 310 has been mounted to the processing module 230 .
- the other wedge segments 420 - 440 and end wedge segment 450 may be slid onto the rail 310 .
- the end wedge segment 450 may be configured with an unramped front end that allows the fastener 340 to apply pressure equally through the washers 460 and coil spring 330 to the wedge lock 320 .
- the coil spring 330 , washers 460 , and fastener 340 should be locked in place so as to prohibit loosening during use. This may be accomplished, for example, through the use of a mechanical locking device or a thread-locking adhesive.
- the number of washers 460 illustrated in FIG. 4 is provided for simplicity.
- the deflectable wedge lock 300 may include more or fewer washers than illustrated in FIG. 4 .
- the washers 460 may be positioned differently than illustrated in FIG. 4 .
- a washer 460 may be positioned between the coil spring 330 and the end wedge segment 450 .
- FIG. 5 illustrates the deflectable wedge lock 300 of FIG. 3 in an assembled, uncompressed state. As illustrated, when the deflectable wedge lock 300 is in an uncompressed state, a gap may exist between the deflectable wedge lock 300 and the processing module 234 . By tightening the fastener 340 , the deflectable wedge lock 300 expands to fill the gap, as illustrated in FIG. 6 .
- the deflectable wedge lock 300 may retain its compressed state (e.g., as illustrated in FIG. 6) by deflecting the forces applied by the external pressure to the coil spring 330 .
- Such a configuration is contrary to conventional wedge locks, which are inflexible once placed into a compressed state.
- FIG. 7 illustrates an exemplary configuration of the deflectable wedge lock 700 in another implementation consistent with the present invention.
- the deflectable wedge lock 700 is configured in a manner similar to that described above with respect to FIGS. 3-6, except that the coil spring 330 is replaced with an elastomer 710 .
- the elastomer 710 may include rubber or any other solid material having elastic properties similar to that of natural rubber, but, preferably, will be a material that will retain its level of elasticity over time.
- the elastomer 710 allows the wedge lock 320 to retain its locking position despite deformations to the line unit 130 caused, for example, by changes in pressure (or other external forces). Similar to the coil spring 330 , the elastomer 710 may be incorporated with the existing wedge lock hardware used to cause the wedge lock to expand.
- the elastomer 710 may be sized to provide the amount of force needed to constrain the wedge segments, while also providing the necessary tension needed to accommodate deformations in the line unit 130 .
- a gap exists between the deflectable wedge lock 700 and the processing module 234 .
- the deflectable wedge lock 700 expands to fill the gap, as illustrated in FIG. 8 .
- FIG. 9 illustrates an exemplary configuration of the deflectable wedge lock 900 in yet another implementation consistent with the present invention.
- the deflectable wedge lock 900 is configured in a manner similar to that described above with respect to FIGS. 3-6. In this exemplary implementation, however, the coil spring 330 is eliminated and an elastomer 910 is positioned between the wedge segments 410 - 450 and the processing module 234 .
- the elastomer 910 may include rubber or any other solid material having elastic properties similar to that of natural rubber, while retaining its reactive force over time.
- the elastomer 910 allows the wedge lock to retain its locking position despite deformations to the line unit 130 caused, for example, by changes in pressure (or other external forces).
- the elastomer 910 may be attached to the wedge segments 410 - 450 via adhesives, epoxies, or other mechanisms based on the specific material used for the elastomer 910 .
- a separate elastomer may be attached to each of the wedge segments 410 - 450 or to some subset of the wedge segments 410 - 450 .
- FIG. 10 illustrates the deflectable wedge lock 900 in a compressed state. Once in the compressed state, any external forces applied to the deflectable wedge lock 900 may be absorbed by the elastomer 910 .
- FIG. 11 illustrates an exemplary configuration of the deflectable wedge lock 1100 in a further implementation consistent with the present invention.
- the deflectable wedge lock 1100 is configured in a manner similar to that described above with respect to FIGS. 9 and 10. In this exemplary implementation, however, the elastomer 910 is replaced with a linear wave spring 1110 .
- the linear wave spring 1110 may include any type of conventional linear wave spring that allows the wedge lock to retain its locking position despite deformations to the line unit 130 . As shown, linear wave spring 1110 includes a single wave; however, those skilled in the art will appreciate that linear spring 1110 could include two or more waves.
- the linear wave spring 1110 may include slots along its length that allow the linear wave spring 1110 to be attached to the wedge segments 410 - 450 . For such a configuration, one or more of the wedge segments 410 - 450 may include tabs, fasteners, screws, or other mechanisms that extend up from the wedge segments 410 - 450 through the linear wave spring 1110 .
- the linear wave spring attachment mechanism should be capable of constraining the linear wave spring 1110 while allowing it to expand longitudinally.
- a separate linear wave spring may be attached to each of the wedge segments 410 - 450 or some subset of the wedge segments 410 - 450 .
- FIG. 12 illustrates the deflectable wedge lock 1100 in a compressed state. Once in the compressed state, any external forces applied to the deflectable wedge lock 1100 may be absorbed by the linear wave spring 1110 .
- FIG. 13 illustrates an exemplary configuration of the deflectable wedge lock 1300 in yet a further implementation consistent with the present invention.
- a spring element is integrated into the wedge lock segments.
- wedge segments 420 and 440 of FIG. 4 have been replaced with wedge segments 1310 and 1330 having one or more spring elements integrated therein.
- the integrated spring elements may be composed of any type of material that is strong enough to allow the wedge lock 1300 to retain its locking position, yet flexible enough to deflect external forces applied to the wedge lock 1300 in the expandable direction. These external forces may, for example, be the result of changes in pressure that causes the line unit 130 to deform.
- FIG. 14 illustrates the deflectable wedge lock 1300 in a compressed state. Once in the compressed state, any external forces applied to the deflectable wedge lock 1300 may be absorbed by the wedge lock's integrated spring elements.
- Systems and methods, consistent with the present invention provide locking and compliance between processing modules in an underwater device.
- An elastic mechanism is associated with a wedge lock in order to deflect deformations and stresses applied to the underwater device as a result of changes in external pressure.
- the deflectable wedge lock has been described as being associated with a coil spring, elastomer, integrated spring element, or linear wave spring, a combination of these devices or other elastic mechanisms, such as other types of springs, may alternatively be used.
- the wedge lock could be associated with an adhesive or epoxy mixture that is cured in and/or around the wedge lock.
- the insulating layer could attach to the wedge lock and serve as the elastic mechanism.
- deflectable wedge lock could alternatively be implemented in ground-based, space, or aerospace environments.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Springs (AREA)
- Connection Of Plates (AREA)
Abstract
Description
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/948,674 US6687130B2 (en) | 2001-09-10 | 2001-09-10 | Integrated wedge lock and elastic member |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/948,674 US6687130B2 (en) | 2001-09-10 | 2001-09-10 | Integrated wedge lock and elastic member |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030048618A1 US20030048618A1 (en) | 2003-03-13 |
| US6687130B2 true US6687130B2 (en) | 2004-02-03 |
Family
ID=25488124
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/948,674 Expired - Lifetime US6687130B2 (en) | 2001-09-10 | 2001-09-10 | Integrated wedge lock and elastic member |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US6687130B2 (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7031167B1 (en) * | 2004-11-24 | 2006-04-18 | Elta Systems Ltd. | Wedgelock for electronic circuit card module |
| US20060081283A1 (en) * | 2004-09-30 | 2006-04-20 | Ma Oliver J | Bases and braces for support poles, such as poles for pavilions and umbrellas |
| US20070249211A1 (en) * | 2006-04-19 | 2007-10-25 | Corrado Joseph P | Method and apparatus for achieving rigid attachments for computer components |
| US20110058336A1 (en) * | 2009-09-10 | 2011-03-10 | Honeywell International Inc. | Thermal bridge extensions for a module-chassis interface |
| US20110176867A1 (en) * | 2010-01-20 | 2011-07-21 | Mosier David W | Wedge Based Circuit Board Retainer |
| WO2012058926A1 (en) * | 2010-11-04 | 2012-05-10 | 聚信科技有限公司 | Thermal conductive pad |
| US20140318148A1 (en) * | 2013-04-30 | 2014-10-30 | Rolls-Royce Deutschland Ltd & Co Kg | Burner seal for gas-turbine combustion chamber head and heat shield |
| US8967903B1 (en) * | 2012-06-20 | 2015-03-03 | General Micro Systems, Inc. | Locking displaceable frame |
| US20160242322A1 (en) * | 2015-02-16 | 2016-08-18 | National Tsing Hua University | Quick Detachable Thermal Connector |
| CN106028758A (en) * | 2016-07-13 | 2016-10-12 | 西安电子工程研究所 | Low-thermal resistance heat radiating cold plate with wedge-shaped block sliding contact stroke |
| CN106304744A (en) * | 2016-10-07 | 2017-01-04 | 南京艾科美热能科技有限公司 | A kind of locking strip |
| US9658000B2 (en) | 2012-02-15 | 2017-05-23 | Abaco Systems, Inc. | Flexible metallic heat connector |
| US9678079B2 (en) | 2012-10-08 | 2017-06-13 | General Electric Company | Microfluidic LAL-reactive substances testing method and apparatus |
| US9839116B2 (en) | 2013-04-29 | 2017-12-05 | Abaco Systems, Inc. | Circuit card assembly with thermal energy removal |
| US10034403B1 (en) * | 2017-03-09 | 2018-07-24 | Advanced Cooling Technologies, Inc. | Card retainer device |
| US20180287702A1 (en) * | 2017-03-31 | 2018-10-04 | Nexans | Fiber optic extender |
| US10182509B1 (en) | 2017-12-20 | 2019-01-15 | Simon Industries, Inc. | Wedge clamp for circuit board |
| US10488167B2 (en) * | 2017-01-30 | 2019-11-26 | Raytheon Company | Wedge-based heat switch using temperature activated phase transition material |
| US11395429B2 (en) | 2019-01-14 | 2022-07-19 | Simon Industries, Inc. | Wedge clamp for circuit board |
| US20230349649A1 (en) * | 2022-04-27 | 2023-11-02 | Eagle Technology, Llc | Sealing retainer to be coupled between chassis and electronic module and associated method |
| US11895806B2 (en) | 2022-04-27 | 2024-02-06 | Eagle Technology, Llc | Electronic assembly having sealing retainer coupling an electronic module and associated method |
| US12225679B2 (en) | 2022-05-06 | 2025-02-11 | Eagle Technology, Llc | Electronic assembly having sealing retainer coupling an electronic module and associated method |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7505251B2 (en) * | 2005-10-28 | 2009-03-17 | International Business Machines Corporation | Actuation mechanism for mating electronic card interconnect systems |
| DE202008017509U1 (en) * | 2008-11-04 | 2009-10-15 | Neuhaus, Peter | Camera Housings |
| CN201696908U (en) * | 2010-04-09 | 2011-01-05 | 李冰 | Novel modeling light device |
| FR2977448B1 (en) * | 2011-07-01 | 2016-10-28 | Airbus Operations Sas | CORNER CLAMPING DEVICE, IN PARTICULAR FOR REMOVING AN ELECTRONIC CARD IN A SLIDER |
| US9167714B2 (en) | 2013-04-22 | 2015-10-20 | Raytheon Company | Reverse wedgelock device |
| US9655269B2 (en) * | 2015-05-12 | 2017-05-16 | Honeywell International Inc. | Support system for printed board assemblies |
| US9844161B2 (en) * | 2015-05-27 | 2017-12-12 | Pentair Technical Products, Inc. | Retainer for electronic modules |
| US10129996B2 (en) * | 2016-03-02 | 2018-11-13 | Creare Llc | High-pressure card locks for maximizing heat transfer from electronics cards to card cages |
| US10020641B1 (en) * | 2016-12-22 | 2018-07-10 | Hamilton Sundstrand Corporation | Resistance-limited electrical interconnects |
| US11343944B2 (en) * | 2017-12-01 | 2022-05-24 | Raytheon Company | Deep-water submersible system |
| US10631427B1 (en) * | 2018-12-26 | 2020-04-21 | Dell Products L.P. | Systems and methods for retaining information handling resource card |
| US11715857B2 (en) | 2020-07-20 | 2023-08-01 | Aqua Satellite, Inc. | Methods and systems for protecting components of deep water pressure vessels |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4528615A (en) | 1983-05-13 | 1985-07-09 | At&T Bell Laboratories | Repeater housing and circuit mounting structure |
| US4819713A (en) | 1987-04-23 | 1989-04-11 | Calmark Corporation | Retainer for electronic modules |
| US5224016A (en) | 1990-05-31 | 1993-06-29 | Calmark Corporation | Retainer for electronic modules |
| US5642219A (en) | 1995-07-27 | 1997-06-24 | Fujitsu Limited | Optical repeater |
| US5809820A (en) | 1997-05-27 | 1998-09-22 | Nissan Screw Co., Ltd. | Spring washer and method for making the same |
-
2001
- 2001-09-10 US US09/948,674 patent/US6687130B2/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4528615A (en) | 1983-05-13 | 1985-07-09 | At&T Bell Laboratories | Repeater housing and circuit mounting structure |
| US4819713A (en) | 1987-04-23 | 1989-04-11 | Calmark Corporation | Retainer for electronic modules |
| US5224016A (en) | 1990-05-31 | 1993-06-29 | Calmark Corporation | Retainer for electronic modules |
| US5642219A (en) | 1995-07-27 | 1997-06-24 | Fujitsu Limited | Optical repeater |
| US5809820A (en) | 1997-05-27 | 1998-09-22 | Nissan Screw Co., Ltd. | Spring washer and method for making the same |
Non-Patent Citations (1)
| Title |
|---|
| AT&T Technical Journal: A Journal of the AT&T Companies, vol. 74, No. 1, Jan./Feb. 1995, 106 pages. |
Cited By (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8025071B2 (en) | 2004-09-30 | 2011-09-27 | Oliver Joen-An Ma | Bases and braces for support poles, such as poles for pavilions and umbrellas |
| US20060081283A1 (en) * | 2004-09-30 | 2006-04-20 | Ma Oliver J | Bases and braces for support poles, such as poles for pavilions and umbrellas |
| US7628164B2 (en) | 2004-09-30 | 2009-12-08 | Joen-An Ma Oliver | Bases and braces for support poles, such as poles for pavilions and umbrellas |
| US20100147344A1 (en) * | 2004-09-30 | 2010-06-17 | Oliver Joen-An Ma | Bases and braces for support poles, such as poles for pavilions and umbrellas |
| US7031167B1 (en) * | 2004-11-24 | 2006-04-18 | Elta Systems Ltd. | Wedgelock for electronic circuit card module |
| US20070249211A1 (en) * | 2006-04-19 | 2007-10-25 | Corrado Joseph P | Method and apparatus for achieving rigid attachments for computer components |
| US7646609B2 (en) * | 2006-04-19 | 2010-01-12 | International Business Machines Corporation | Method and apparatus for achieving rigid attachments for computer components |
| US20110058336A1 (en) * | 2009-09-10 | 2011-03-10 | Honeywell International Inc. | Thermal bridge extensions for a module-chassis interface |
| US8223497B2 (en) | 2009-09-10 | 2012-07-17 | Honeywell International Inc. | Thermal bridge extensions for a module-chassis interface |
| US20110176867A1 (en) * | 2010-01-20 | 2011-07-21 | Mosier David W | Wedge Based Circuit Board Retainer |
| US8456846B2 (en) * | 2010-01-20 | 2013-06-04 | Wavetherm Corporation | Wedge based circuit board retainer |
| WO2012058926A1 (en) * | 2010-11-04 | 2012-05-10 | 聚信科技有限公司 | Thermal conductive pad |
| US9658000B2 (en) | 2012-02-15 | 2017-05-23 | Abaco Systems, Inc. | Flexible metallic heat connector |
| US8967903B1 (en) * | 2012-06-20 | 2015-03-03 | General Micro Systems, Inc. | Locking displaceable frame |
| US9678079B2 (en) | 2012-10-08 | 2017-06-13 | General Electric Company | Microfluidic LAL-reactive substances testing method and apparatus |
| US11422133B2 (en) | 2012-10-08 | 2022-08-23 | Bl Technologies, Inc. | Centripetal microfluidic platform for LAL reactive substances testing |
| US10451622B2 (en) | 2012-10-08 | 2019-10-22 | Bl Technologies, Inc. | Centripetal microfluidic platform for LAL reactive substances testing |
| US10352934B2 (en) | 2012-10-08 | 2019-07-16 | General Electric Company | Preloaded test substrates for testing LAL-reactive substances, methods of use, and methods of making |
| US10302642B2 (en) | 2012-10-08 | 2019-05-28 | General Electric Company | Sensitive and rapid method for detection of low levels of LAL-reactive substances |
| US9880166B2 (en) | 2012-10-08 | 2018-01-30 | General Electric Company | Sensitive and rapid method for detection of low levels of LAL-reactive substances |
| US9839116B2 (en) | 2013-04-29 | 2017-12-05 | Abaco Systems, Inc. | Circuit card assembly with thermal energy removal |
| US10041415B2 (en) * | 2013-04-30 | 2018-08-07 | Rolls-Royce Deutschland Ltd & Co Kg | Burner seal for gas-turbine combustion chamber head and heat shield |
| US20140318148A1 (en) * | 2013-04-30 | 2014-10-30 | Rolls-Royce Deutschland Ltd & Co Kg | Burner seal for gas-turbine combustion chamber head and heat shield |
| US9681584B2 (en) * | 2015-02-16 | 2017-06-13 | National Tsing Hua University | Quick detachable thermal connector |
| US20160242322A1 (en) * | 2015-02-16 | 2016-08-18 | National Tsing Hua University | Quick Detachable Thermal Connector |
| CN106028758A (en) * | 2016-07-13 | 2016-10-12 | 西安电子工程研究所 | Low-thermal resistance heat radiating cold plate with wedge-shaped block sliding contact stroke |
| CN106304744A (en) * | 2016-10-07 | 2017-01-04 | 南京艾科美热能科技有限公司 | A kind of locking strip |
| US10488167B2 (en) * | 2017-01-30 | 2019-11-26 | Raytheon Company | Wedge-based heat switch using temperature activated phase transition material |
| US10034403B1 (en) * | 2017-03-09 | 2018-07-24 | Advanced Cooling Technologies, Inc. | Card retainer device |
| US10797797B2 (en) * | 2017-03-31 | 2020-10-06 | Nexans | Fiber optic extender |
| US20180287702A1 (en) * | 2017-03-31 | 2018-10-04 | Nexans | Fiber optic extender |
| US10182509B1 (en) | 2017-12-20 | 2019-01-15 | Simon Industries, Inc. | Wedge clamp for circuit board |
| US11395429B2 (en) | 2019-01-14 | 2022-07-19 | Simon Industries, Inc. | Wedge clamp for circuit board |
| US20230349649A1 (en) * | 2022-04-27 | 2023-11-02 | Eagle Technology, Llc | Sealing retainer to be coupled between chassis and electronic module and associated method |
| US11895806B2 (en) | 2022-04-27 | 2024-02-06 | Eagle Technology, Llc | Electronic assembly having sealing retainer coupling an electronic module and associated method |
| US12066257B2 (en) * | 2022-04-27 | 2024-08-20 | Eagle Technology, Llc | Sealing retainer to be coupled between chassis and electronic module and associated method |
| US12225679B2 (en) | 2022-05-06 | 2025-02-11 | Eagle Technology, Llc | Electronic assembly having sealing retainer coupling an electronic module and associated method |
Also Published As
| Publication number | Publication date |
|---|---|
| US20030048618A1 (en) | 2003-03-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6687130B2 (en) | Integrated wedge lock and elastic member | |
| US6707670B2 (en) | Systems and methods for mounting devices | |
| TWI464982B (en) | A busbar connector | |
| US7272002B2 (en) | Auxiliary cooling methods and systems for electrical device housings | |
| US8223497B2 (en) | Thermal bridge extensions for a module-chassis interface | |
| US20020054481A1 (en) | Mechanical housing | |
| US10827650B2 (en) | Submarine optical repeater with high voltage isolation | |
| KR20010020214A (en) | Antenna System | |
| US6094115A (en) | Control impedance RF pin for extending compressible button interconnect contact distance | |
| WO2011056333A1 (en) | Thermoelectric generator assembly and system | |
| WO2015148778A1 (en) | Thermal management | |
| JPH02129869A (en) | Electric connector-assembly | |
| US10998605B2 (en) | Connecting unit for connecting to first and second interfaces, where the connecting unit comprises an internal conductor disposed within a housing formed by half-shell construction | |
| EP1471813A2 (en) | Wedgelock system | |
| CA2448950A1 (en) | Coaxial heat sink connector | |
| JPH07297025A (en) | Oxide superconducting current lead device | |
| WO2021030072A1 (en) | Electronic module for motherboard | |
| US20130074899A1 (en) | Apparatus for thermoelectric generation of electrical energy | |
| US12213285B2 (en) | Conduction cooled chassis | |
| AU2021357702B2 (en) | System and method for high voltage isolation with thermal conductivity | |
| DE69635128T2 (en) | Stabilization and isolation of a hybrid image plane matrix | |
| US5372356A (en) | Load mounting system having precompressed elastomeric support elements for tensile and compressive loadings | |
| US20090070984A1 (en) | Method and device for mechanical coupling | |
| US20240235084A9 (en) | Contact assembly for an electrical plug-in connector having a heat capacity element arranged on a contact element | |
| US20170093004A1 (en) | High-frequency cavity resonator filter with diametrically-opposed heat transfer legs |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DORSAL NETWORKS, INC., MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ADAMS, ROBERT M. SR.;POHL, BRENT R.;REEL/FRAME:012160/0343;SIGNING DATES FROM 20010907 TO 20010910 |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: CORVIS CORPORATION, MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADAMS, SR., ROBERT M.;REEL/FRAME:014799/0075 Effective date: 20030507 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: DORSAL NETWORKS, LLC, COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:DORSAL NETWORKS, INC.;REEL/FRAME:020261/0434 Effective date: 20041221 |
|
| AS | Assignment |
Owner name: LEVEL 3 COMMUNICATIONS, LLC, COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DORSAL NETWORKS, LLC;REEL/FRAME:023574/0515 Effective date: 20091124 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: OPTIC153 LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEVEL 3 COMMUNICATIONS, LLC;REEL/FRAME:056469/0773 Effective date: 20170411 |