US6673545B2 - Prostate cancer markers - Google Patents

Prostate cancer markers Download PDF

Info

Publication number
US6673545B2
US6673545B2 US09/919,172 US91917201A US6673545B2 US 6673545 B2 US6673545 B2 US 6673545B2 US 91917201 A US91917201 A US 91917201A US 6673545 B2 US6673545 B2 US 6673545B2
Authority
US
United States
Prior art keywords
protein
cdnas
cdna
human
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/919,172
Other versions
US20020119463A1 (en
Inventor
Mary Faris
Christopher M. Turner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Corp
Original Assignee
Incyte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Corp filed Critical Incyte Corp
Priority to US09/919,172 priority Critical patent/US6673545B2/en
Assigned to INCYTE GENOMICS, INC. reassignment INCYTE GENOMICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FARIS, MARY, TURNER, CHRISTOPHER M.
Publication of US20020119463A1 publication Critical patent/US20020119463A1/en
Application granted granted Critical
Priority to US10/752,986 priority patent/US20040253609A1/en
Publication of US6673545B2 publication Critical patent/US6673545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57434Specifically defined cancers of prostate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a composition comprising a plurality of cDNAs which are differentially expressed in prostate cancer and which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of prostate cancer.
  • array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
  • arrays are employed to detect the expression of a specific gene or its variants.
  • arrays provide a platform for examining which genes are tissue specific, carrying out housekeeping functions, parts of a signaling cascade, or specifically related to a particular genetic predisposition, condition, disease, or disorder.
  • gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease.
  • both the levels and sequences expressed in tissues from subjects with prostate cancer may be compared with the levels and sequences expressed in normal tissue.
  • Prostate cancer is a common malignancy in men over the age of 50, and the incidence increases with age. In the U.S., there are approximately 132,000 newly diagnosed cases of prostate cancer and more than 33,000 deaths from the disorder each year.
  • cancer cells arise in the prostate, they are stimulated by testosterone to a more rapid growth. Thus, removal of the testes can indirectly reduce both rapid growth and metastasis of the cancer.
  • prostatic cancers Over 95 percent of prostatic cancers are adenocarcinomas which originate in the prostatic acini. The remaining 5 percent are divided between squamous cell and transitional cell carcinomas, both of which arise in the prostatic ducts or other parts of the prostate gland.
  • prostate cancer develops through a multistage progression ultimately resulting in an aggressive, metastatic phenotype.
  • the initial step in tumor progression involves the hyperproliferation of normal luminal and/or basal epithelial cells that become hyperplastic and evolve into early-stage tumors.
  • the early-stage tumors are localized in the prostate but eventually may metastasize, particularly to the bone, brain or lung. About 80% of these tumors remain responsive to androgen treatment, an important hormone controlling the growth of prostate epithelial cells.
  • cancer growth becomes androgen-independent and there is currently no known treatment for this condition.
  • PSA prostate specific antigen
  • PSA is a tissue-specific serine protease almost exclusively produced by prostatic epithelial cells.
  • the quantity of PSA correlates with the number and volume of the prostatic epithelial cells, and consequently, the levels of PSA are an excellent indicator of abnormal prostate growth.
  • Men with prostate cancer exhibit an early linear increase in PSA levels followed by an exponential increase prior to diagnosis.
  • PSA levels are also influenced by factors such as inflammation, androgen and other growth factors, some scientists maintain that changes in PSA levels are not useful in detecting individual cases of prostate cancer.
  • EGF Epidermal Growth Factor
  • FGF Fibroblast Growth Factor
  • TGF ⁇ Tumor Growth Factor alpha
  • TGF- ⁇ family of growth factors are generally expressed at increased levels in human cancers and the high expression levels in many cases correlates with advanced stages of malignancy and poor survival (Gold L I (1999) Crit Rev Oncog 10:303-360).
  • LNCap androgen-dependent stage of prostate cancer
  • PC3 and DU-145 the androgen-independent, hormone refractory stage of the disease
  • the present invention provides for a composition comprising a plurality of cDNAs for use in detecting changes in expression of genes encoding proteins that are associated with prostate cancer.
  • a composition can be employed for the diagnosis, prognosis or treatment of prostate cancer and related disorders correlated with differential gene expression.
  • the present invention satisfies a need in the art in that it provides a set of differentially expressed genes which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of a subject with prostate cancer.
  • the present invention provides a composition comprising a plurality of cDNAs and their complements which are differentially expressed in prostate adenocarcinomas and which are selected from SEQ ID NOs:1-1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101 as presented in the Sequence Listing.
  • each cDNA is differentially regulated in metastatic versus non-metastatic tissue samples, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75; in another embodiment, each cDNA is differentially regulated at all stages of the disease, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101.
  • the composition is immobilized on a substrate. In another aspect, the composition is used to diagnose the presence and stage of prostate cancer in a subject.
  • the invention also provides proteins encoded by the cDNAs and which are selected from SEQ ID NOs:4, 7, 9, 16, 20, 22, 29, 31, 33, 37, 39, 41, 46, 51, 54, 57, 66, 69, 74, 77, 87, 91, 98 as presented in the Sequence Listing.
  • the invention also provides a high throughput method to detect differential expression of one or more of the cDNAs of the composition.
  • the method comprises hybridizing the substrate comprising the composition with the nucleic acids of a sample, thereby forming one or more hybridization complexes, detecting the hybridization complexes, and comparing the hybridization complexes with those of a standard, wherein differences in the size and signal intensity of each hybridization complex indicates differential expression of nucleic acids in the sample.
  • the sample is from a subject with prostate cancer and differential expression determines an early, mid, and late stage of the disorder.
  • the invention further provides a high throughput method of screening a library or a plurality of molecules or compounds to identify a ligand.
  • the method comprises combining the substrate comprising the composition with a library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand.
  • the library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, transcription factors, repressors, and other regulatory proteins.
  • the invention still further provides an isolated cDNA encoding the protein comprising the amino acid sequence of SEQ ID NO:37.
  • the invention also provides an isolated cDNA comprising SEQ ID NO:36 as presented in the Sequence Listing.
  • the invention also provides a vector comprising the cDNA, a host cell comprising the vector, and a method for producing a protein comprising culturing the host cell under conditions for the expression of a protein and recovering the protein from the host cell culture.
  • the invention additionally provides a method for purifying a ligand, the method comprising combining a cDNA of the invention with a sample under conditions which allow specific binding, recovering the bound cDNA, and separating the cDNA from the ligand, thereby obtaining purified ligand.
  • the present invention provides a purified protein encoded and produced by a cDNA of the invention.
  • the invention also provides a high-throughput method for using a protein to screen a library or a plurality of molecules or compounds to identify a ligand.
  • the method comprises combining the protein or a portion thereof with the library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand which specifically binds the protein.
  • a library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, proteins, agonists, antagonists, antibodies or their fragments, immunoglobulins, inhibitors, drug compounds, and pharmaceutical agents.
  • the invention further provides for using a protein to purify a ligand.
  • the method comprises combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and separating the protein from the ligand, thereby obtaining purified ligand.
  • the invention still further provides a pharmaceutical composition comprising the protein.
  • the invention yet still further provides a method for using the protein to produce an antibody. The method comprises immunizing an animal with the protein or an antigenically-effective epitope under conditions to elicit an antibody response, isolating animal antibodies, and screening the isolated antibodies with the protein to identify an antibody which specifically binds the protein.
  • the invention yet still further provides a method for using the protein to purify antibodies which bind specifically to the protein.
  • Sequence Listing is a compilation of cDNAs obtained by sequencing and extension of clone inserts. Each sequence is identified by a sequence identification number (SEQ ID NO) and by the template number (TEMPLATE ID) from which it was obtained.
  • Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma.
  • Column 1 shows the Clone ID of each sequence represented on a microarray.
  • Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression.
  • Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma.
  • Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate.
  • Column 1 shows the Clone ID of each sequence represented on a microarray.
  • Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression.
  • Table 3 shows the region within a gene template of each cDNA encompassed by a clone identified in Tables 1 and 2.
  • Columns 1 and 2 show the SEQ ID NO: and Template ID, respectively.
  • Column 3 shows the Clone ID and columns 4 and 5 show the first residue (Start) and last residue (Stop) encompassed by the clone on the template.
  • Table 4 lists the functional annotation of the cDNAs of the present invention.
  • Columns 1 and 2 show the SEQ ID NO and Template ID, respectively.
  • Columns 3, 4, and 5 show the GenBank hit (GI Number), probability score (E-value), and functional annotation, respectivly, as determined by BLAST analysis (version 1.4 using default parameters; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) of the cDNA against GenBank (release 117; National Center for Biotechnology Information (NCBI), Bethesda Md.).
  • Table 5 shows Pfam annotations of the cDNAs of the present invention.
  • Columns 1 and 2 show the SEQ ID NO and Template ID, respectively.
  • Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for the segment of the cDNA identified by Pfam analysis.
  • Columns 6, 7, and 8 show the PFAM Hit, PFAM Annotation, and E-value, respectively, corresponding to the polypeptide domain of the protein or encoded by the cDNA segment.
  • Table 6 shows signal peptide and transmembrane regions predicted within the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for a segment of the cDNA, and column 6 identifies the polypeptide encoded by the segment as either a signal peptide (SP) or transmembrane (TM) domain.
  • SP signal peptide
  • TM transmembrane
  • Array refers to an ordered arrangement of at least two cDNAs on a substrate. At least one of the cDNAs represents a control or standard sequence, and the other, a cDNA of diagnostic interest. The arrangement of from about two to about 40,000 cDNAs on the substrate assures that the size and signal intensity of each labeled hybridization complex formed between a cDNA and a sample nucleic acid is individually distinguishable.
  • nucleic acid molecule of the Sequence Listing refers to a cDNA which is completely complementary over the full length of the sequence and which will hybridize to the nucleic acid molecule under conditions of high stringency.
  • composition comprises at least two sequences selected from the Sequence Listing.
  • cDNA refers to a chain of nucleotides, an isolated polynucleotide, nucleic acid molecule, or any fragment or complement thereof. It may have originated recombinantly or synthetically, be double-stranded or single-stranded, coding and/or noncoding, an exon with or without an intron from a genomic DNA molecule, and purified or combined with carbohydrate, lipids, protein or inorganic elements or substances.
  • the cDNA is from about 4000 to about 5000 nucleotides.
  • cDNA encoding a protein refers to a nucleic acid sequence that closely aligns with sequences which encode conserved regions, motifs or domains that were identified by employing analyses well known in the art. These analyses include BLAST (Basic Local Alignment Search Tool; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) which provides identity within the conserved region. Brenner et al.
  • “Derivative” refers to a cDNA or a protein that has been subjected to a chemical modification. Derivatization of a cDNA can involve substitution of a nontraditional base such as queosine or of an analog such as hypoxanthine. These substitutions are well known in the art. Derivatization of a protein involves the replacement of a hydrogen by an acetyl, acyl, alkyl, amino, formyl, or morpholino group. Derivative molecules retain the biological activities of the naturally occurring molecules but may confer advantages such as longer lifespan or enhanced activity.
  • “Differential expression” refers to an increased, upregulated or present, or decreased, downregulated or absent, gene expression as detected by the absence, presence, or at least two-fold changes in the amount of transcribed messenger RNA or translated protein in a sample.
  • disorder refers to conditions, diseases or syndromes associated with prostate cancer.
  • Fragments refers to a chain of consecutive nucleotides from about 200 to about 700 base pairs in length. Fragments may be used in PCR or hybridization technologies to identify related nucleic acid molecules and in binding assays to screen for a ligand. Nucleic acids and their ligands identified in this manner are useful as therapeutics to regulate replication, transcription or translation.
  • a “hybridization complex” is formed between a cDNA and a nucleic acid of a sample when the purines of one molecule hydrogen bond with the pyrimidines of the complementary molecule, e.g., 5′-A-G-T-C-3′ base pairs with 3′-T-C-A-G-5′.
  • the degree of complementarity and the use of nucleotide analogs affect the efficiency and stringency of hybridization reactions.
  • Ligand refers to any agent, molecule, or compound which will bind specifically to a complementary site on a cDNA molecule or polynucleotide, or to an epitope or a protein. Such ligands stabilize or modulate the activity of polynucleotides or proteins and may be composed of inorganic or organic substances including nucleic acids, proteins, carbohydrates, fats, and lipids.
  • Oligomer refers a single stranded molecule from about 18 to about 60 nucleotides in length which may be used in hybridization or amplification technologies or in regulation of replication, transcription or translation. Substantially equivalent terms are amplimer, primer, and oligomer.
  • “Portion” refers to any part of a protein used for any purpose; but especially, to an epitope for the screening of ligands or for the production of antibodies.
  • Post-translational modification of a protein can involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and the like. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cellular location, cell type, pH, enzymatic milieu, and the like.
  • Probe refers to a cDNA that hybridizes to at least one nucleic acid molecule in a sample. Where targets are single stranded, probes are complementary single strands. Probes can be labeled with reporter molecules for use in hybridization reactions including Southern, northern, in situ, dot blot, array, and like technologies or in screening assays.
  • Protein refers to a polypeptide or any portion thereof.
  • a “portion” of a protein retains at least one biological or antigenic characteristic of a native protein.
  • An “oligopeptide” is an amino acid sequence from about five residues to about 15 residues that is used as part of a fusion protein to produce an antibody.
  • “Purified” refers to any molecule or compound that is separated from its natural environment and is from about 60% free to about 90% free from other components with which it is naturally associated.
  • sample is used in its broadest sense as containing nucleic acids, proteins, antibodies, and the like.
  • a sample may comprise a bodily fluid; the soluble fraction of a cell preparation, or an aliquot of media in which cells were grown; a chromosome, an organelle, or membrane isolated or extracted from a cell; genomic DNA, RNA, or cDNA in solution or bound to a substrate; a cell; a tissue; a tissue print; a fingerprint, buccal cells, skin, or hair; and the like.
  • Specific binding refers to a special and precise interaction between two molecules which is dependent upon their structure, particularly their molecular side groups. For example, the intercalation of a regulatory protein into the major groove of a DNA molecule, the hydrogen bonding along the backbone between two single stranded nucleic acids, or the binding between an epitope of a protein and an agonist, antagonist, or antibody.
  • Similarity refers to the quantification (usually percentage) of nucleotide or residue matches between at least two sequences aligned using a standardized algorithm such as Smith-Waterman alignment (Smith and Waterman (1981) J Mol Biol 147:195-197) or BLAST2 (Altschul et al. (1997) Nucleic Acids Res 25:3389-3402).
  • BLAST2 may be used in a standardized and reproducible way to insert gaps in one of the sequences in order to optimize alignment and to achieve a more meaningful comparison between them.
  • Substrate refers to any rigid or semi-rigid support to which cDNAs or proteins are bound and includes membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, capillaries or other tubing, plates, polymers, and microparticles with a variety of surface forms including wells, trenches, pins, channels and pores.
  • “Variant” refers to molecules that are recognized variations of a cDNA or a protein encoded by the cDNA. Splice variants may be determined by BLAST score, wherein the score is at least 100, and most preferably at least 400. Allelic variants have a high percent identity to the cDNAs and may differ by about three bases per hundred bases. “Single nucleotide polymorphism” (SNP) refers to a change in a single base as a result of a substitution, insertion or deletion. The change may be conservative (purine for purine) or non-conservative (purine to pyrimidine) and may or may not result in a change in an encoded amino acid.
  • SNP single nucleotide polymorphism
  • the present invention provides for a composition
  • a composition comprising a plurality of cDNAs or their complements, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101, which may be used on a substrate to diagnose, to stage, to treat or to monitor the progression or treatment of prostate cancer.
  • These cDNAs represent known and novel genes differentially expressed in cells from non-metastatic and metastatic prostate tumors.
  • composition may be used in its entirety or in part, as subsets of cDNAs differentially regulated between non-metastatic and metastatic prostate cancer, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, or of cDNAs differentially regulated at all stages of prostate cancer, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101.
  • SEQ ID NOs:24, 36, 47, 60, 82, 88, 89, 92, 93, and 95 represent novel cDNAs associated with prostate cancer.
  • novel cDNAs were identified solely by their differential expression, it is not essential to know a priori the name, structure, or function of the gene or it's encoded protein. The usefulness of the novel cDNAs exist in their immediate value as diagnostics for prostate cancer.
  • Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma.
  • Column 1 shows the Clone ID of each sequence represented on a microarray.
  • Columns 2-6 show the differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 of the absolute expression in normal prostate tissue ⁇ the absolute expression in prostate adenocarcinoma. Negative values represent an increase in expression.
  • Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma. All of the cDNAs in Table 1 show significant differential regulation in metastatic cancer relative to non-metastatic cancer. Further, expression profiles between the metastatic cancer lines show a high degree of correlation (>0.48), as do the expression profiles between the non-metastatic lines (0.64). However, the expression profiles between the metastatic and non-metastatic lines show significantly less correlation ( ⁇ 0.3
  • Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate.
  • Column 1 shows the Clone ID of each sequence represented on a microarray.
  • Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue ⁇ adenocarcinoma). Negative values represent an increase in expression.
  • the expression profile for the cDNAs identified in Table 2 show high correlation between all tumor lines (>0.5).
  • SEQ ID NO:36 is a novel sequence differentially regulated between metastatic and non-metastatic prostate tumors.
  • SEQ ID NO:36 encodes SEQ ID NO:37 which is 193 amino acids in length.
  • the cDNAs of the invention define a differential expression pattern against which to compare the expression pattern of biopsied and/or in vitro treated tissues.
  • differential expression of the cDNAs can be evaluated by methods including, but not limited to, differential display by spatial immobilization or by gel electrophoresis, genome mismatch scanning, representational discriminate analysis, clustering, transcript imaging and array technologies. These methods may be used alone or in combination.
  • the composition may be arranged on a substrate and hybridized with tumor tissues from subjects to identify those sequences which are differentially expressed in both prostate cancer and tumors derived from other tissues. This allows identification of those sequences of highest diagnostic and potential therapeutic value.
  • an additional set of cDNAs such as cDNAs encoding signaling molecules, are arranged on the substrate with the composition. Such combinations may be useful in the elucidation of pathways which are affected in a particular cancer or to identify new, coexpressed, candidate, therapeutic molecules.
  • the composition can be used for large scale genetic or gene expression analysis of a large number of novel, nucleic acid molecules.
  • samples are prepared by methods well known in the art and are from mammalian cells or tissues which are in a certain stage of development; have been treated with a known molecule or compound, such as a cytokine, growth factor, a drug, and the like; or have been extracted or biopsied from a mammal with a known or unknown condition, disorder, or disease before or after treatment.
  • the sample nucleic acid molecules are hybridized to the composition for the purpose of defining a novel gene profile associated with that developmental stage, treatment, or disorder.
  • cDNAs can be prepared by a variety of synthetic or enzymatic methods well known in the art. cDNAs can be synthesized, in whole or in part, using chemical methods well known in the art (Caruthers et al. (1980) Nucleic Acids Symp. Ser. (7):215-233). Alternatively, cDNAs can be produced enzymatically or recombinantly, by in vitro or in vivo transcription.
  • Nucleotide analogs can be incorporated into cDNAs by methods well known in the art. The only requirement is that the incorporated analog must base pair with native purines or pyrimidines. For example, 2,6-diaminopurine can substitute for adenine and form stronger bonds with thymidine than those between adenine and thymidine. A weaker pair is formed when hypoxanthine is substituted for guanine and base pairs with cytosine. Additionally, cDNAs can include nucleotides that have been derivatized chemically or enzymatically.
  • cDNAs can be synthesized on a substrate. Synthesis on the surface of a substrate may be accomplished using a chemical coupling procedure and a piezoelectric printing apparatus as described by Baldeschweiler et al. (PCT publication WO95/251116). Alternatively, the cDNAs can be synthesized on a substrate surface using a self-addressable electronic device that controls when reagents are added as described by Heller et al. (U.S. Pat. No. 5,605,662). cDNAs can be synthesized directly on a substrate by sequentially dispensing reagents for their synthesis on the substrate surface or by dispensing preformed DNA fragments to the substrate surface.
  • Typical dispensers include a micropipette delivering solution to the substrate with a robotic system to control the position of the micropipette with respect to the substrate. There can be a multiplicity of dispensers so that reagents can be delivered to the reaction regions efficiently.
  • cDNAs can be immobilized on a substrate by covalent means such as by chemical bonding procedures or UV irradiation.
  • a cDNA is bound to a glass surface which has been modified to contain epoxide or aldehyde groups.
  • a cDNA is placed on a polylysine coated surface and UV cross-linked to it as described by Shalon et al. (WO95/35505).
  • a cDNA is actively transported from a solution to a given position on a substrate by electrical means (Heller, supra). cDNAs do not have to be directly bound to the substrate, but rather can be bound to the substrate through a linker group.
  • the linker groups are typically about 6 to 50 atoms long to provide exposure of the attached cDNA.
  • Preferred linker groups include ethylene glycol oligomers, diamines, diacids and the like.
  • Reactive groups on the substrate surface react with a terminal group of the linker to bind the linker to the substrate. The other terminus of the linker is then bound to the cDNA.
  • polynucleotides, plasmids or cells can be arranged on a filter. In the latter case, cells are lysed, proteins and cellular components degraded, and the DNA is coupled to the filter by UV cross-linking.
  • the cDNAs may be used for a variety of purposes.
  • the composition of the invention may be used on an array.
  • the array in turn, can be used in high-throughput methods for detecting a related polynucleotide in a sample, screening a plurality of molecules or compounds to identify a ligand, diagnosing prostate cancer, or inhibiting or inactivating a therapeutically relevant gene related to the cDNA.
  • the cDNAs of the invention are employed on a microarray, the cDNAs are arranged in an ordered fashion so that each cDNA is present at a specified location. Because the cDNAs are at specified locations on the substrate, the hybridization patterns and intensities, which together create a unique expression profile, can be interpreted in terms of expression levels of particular genes and can be correlated with a particular metabolic process, condition, disorder, disease, stage of disease, or treatment.
  • the cDNAs or fragments or complements thereof may be used in various hybridization technologies.
  • the cDNAs may be labeled using a variety of reporter molecules by either PCR, recombinant, or enzymatic techniques.
  • a commercially available vector containing the cDNA is transcribed in the presence of an appropriate polymerase, such as T7 or SP6 polymerase, and at least one labeled nucleotide.
  • an appropriate polymerase such as T7 or SP6 polymerase
  • kits are available for labeling and cleanup of such cDNAs. Radioactive (Amersham Pharmacia Biotech (APB), Piscataway N.J.), fluorescent (Operon Technologies, Alameda Calif.), and chemiluminescent labeling (Promega, Madison Wis.) are well known in the art.
  • a cDNA may represent the complete coding region of an mRNA or be designed or derived from unique regions of the mRNA or genomic molecule, an intron, a 3′ untranslated region, or from a conserved motif.
  • the cDNA is at least 18 contiguous nucleotides in length and is usually single stranded.
  • Such a cDNA may be used under hybridization conditions that allow binding only to an identical sequence, a naturally occurring molecule encoding the same protein, or an allelic variant. Discovery of related human and mammalian sequences may also be accomplished using a pool of degenerate cDNAs and appropriate hybridization conditions.
  • a cDNA for use in Southern or northern hybridizations may be from about 400 to about 6000 nucleotides long. Such cDNAs have high binding specificity in solution-based or substrate-based hybridizations.
  • An oligonucleotide, a fragment of the cDNA may be used to detect a polynucleotide in a sample
  • the stringency of hybridization is determined by G+C content of the cDNA, salt concentration, and temperature. In particular, stringency is increased by reducing the concentration of salt or raising the hybridization temperature. In solutions used for some membrane based hybridizations, addition of an organic solvent such as formamide allows the reaction to occur at a lower temperature.
  • Hybridization may be performed with buffers, such as 5 ⁇ saline sodium citrate (SSC) with 1% sodium dodecyl sulfate (SDS) at 60° C., that permit the formation of a hybridization complex between nucleic acid sequences that contain some mismatches. Subsequent washes are performed with buffers such as 0.2 ⁇ SSC with 0.1% SDS at either 45° C.
  • formamide may be added to the hybridization solution to reduce the temperature at which hybridization is performed. Background signals may be reduced by the use of detergents such as Sarkosyl or Triton X-100 (Sigma Aldrich, St. Louis Mo.) and a blocking agent such as denatured salmon sperm DNA. Selection of components and conditions for hybridization are well known to those skilled in the art and are reviewed in Ausubel et al. (1997, Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., Units 2.8-2.11, 3.18-3.19 and 4-64.9).
  • Dot-blot, slot-blot, low density and high density arrays are prepared and analyzed using methods known in the art.
  • cDNAs from about 18 consecutive nucleotides to about 5000 consecutive nucleotides in length are contemplated by the invention and used in array technologies.
  • the preferred number of cDNAs on an array is at least about 100,000, a more preferred number is at least about 40,000, an even more preferred number is at least about 10,000, and a most preferred number is at least about 600 to about 800.
  • the array may be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and SNPs.
  • Such information may be used to determine gene function; to understand the genetic basis of a disorder; to diagnose a disorder; and to develop and monitor the activities of therapeutic agents being used to control or cure a disorder.
  • a cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand which specifically binds the cDNA.
  • Ligands may be DNA molecules, RNA molecules, peptide nucleic acid molecules, peptides, proteins such as transcription factors, promoters, enhancers, repressors, and other proteins that regulate replication, transcription, or translation of the polynucleotide in the biological system.
  • the assay involves combining the cDNA or a fragment thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound cDNA to identify at least one ligand that specifically binds the cDNA.
  • the cDNA may be incubated with a library of isolated and purified molecules or compounds and binding activity determined by methods such as a gel-retardation assay (U.S. Pat. No. 6,010,849) or a reticulocyte lysate transcriptional assay.
  • the cDNA may be incubated with nuclear extracts from biopsied and/or cultured cells and tissues. Specific binding between the cDNA and a molecule or compound in the nuclear extract is initially determined by gel shift assay. Protein binding may be confirmed by raising antibodies against the protein and adding the antibodies to the gel-retardation assay where specific binding will cause a supershift in the assay.
  • the cDNA may be used to purify a molecule or compound using affinity chromatography methods well known in the art.
  • the cDNA is chemically reacted with cyanogen bromide groups on a polymeric resin or gel. Then a sample is passed over and reacts with or binds to the cDNA. The molecule or compound which is bound to the cDNA may be released from the cDNA by increasing the salt concentration of the flow-through medium and collected.
  • the cDNA may be used to purify a ligand from a sample.
  • a method for using a cDNA to purify a ligand would involve combining the cDNA or a fragment thereof with a sample under conditions to allow specific binding, recovering the bound cDNA, and using an appropriate agent to separate the cDNA from the purified ligand.
  • the full length cDNAs or fragment thereof may be used to produce purified proteins using recombinant DNA technologies described herein and taught in Ausubel et al. (supra; Units 16.1-16.62).
  • One of the advantages of producing proteins by these procedures is the ability to obtain highly-enriched sources of the proteins thereby simplifying purification procedures.
  • the proteins may contain amino acid substitutions, deletions or insertions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. Such substitutions may be conservative in nature when the substituted residue has structural or chemical properties similar to the original residue (e.g., replacement of leucine with isoleucine or valine) or they may be nonconservative when the replacement residue is radically different (e.g., a glycine replaced by a tryptophan).
  • Expression of a particular cDNA may be accomplished by cloning the cDNA into a vector and transforming this vector into a host cell.
  • the cloning vector used for the construction of cDNA libraries in the LIFESEQ databases may also be used for expression.
  • Such vectors usually contain a promoter and a polylinker useful for cloning, priming, and transcription.
  • An exemplary vector may also contain the promoter for ⁇ -galactosidase, an amino-terminal methionine and the subsequent seven amino acid residues of ⁇ -galactosidase.
  • the vector may be transformed into competent E. coli cells.
  • IPTG isopropylthiogalactoside
  • the cDNA may be shuttled into other vectors known to be useful for expression of protein in specific hosts. Oligonucleotides containing cloning sites and fragments of DNA sufficient to hybridize to stretches at both ends of the cDNA may be chemically synthesized by standard methods. These primers may then be used to amplify the desired fragments by PCR. The fragments may be digested with appropriate restriction enzymes under standard conditions and isolated using gel electrophoresis. Alternatively, similar fragments are produced by digestion of the cDNA with appropriate restriction enzymes and filled in with chemically synthesized oligonucleotides. Fragments of the coding sequence from more than one gene may be ligated together and expressed.
  • a chimeric protein may be expressed that includes one or more additional purification-facilitating domains.
  • additional purification-facilitating domains include, but are not limited to, metal-chelating domains that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex, Seattle Wash.).
  • the inclusion of a cleavable-linker sequence such as ENTEROKINASEMAX (Invitrogen, San Diego Calif.) between the protein and the purification domain may also be used to recover the protein.
  • Suitable host cells may include, but are not limited to, mammalian cells such as Chinese Hamster Ovary (CHO) and human 293 cells, insect cells such as Sf9 cells, plant cells such as Nicotiana tabacum, yeast cells such as Saccharomyces cerevisiae, and bacteria such as E. coli.
  • a useful vector may also include an origin of replication and one or two selectable markers to allow selection in bacteria as well as in a transformed eukaryotic host.
  • Vectors for use in eukaryotic host cells may require the addition of 3′ poly(A) tail if the cDNA lacks poly(A).
  • the vector may contain promoters or enhancers that increase gene expression.
  • Many promoters are known and used in the art. Most promoters are host specific and exemplary promoters includes SV40 promoters for CHO cells; T7 promoters for bacterial hosts; viral promoters and enhancers for plant cells; and PGH promoters for yeast.
  • Adenoviral vectors with the rous sarcoma virus enhancer or retroviral vectors with long terminal repeat promoters may be used to drive protein expression in mammalian cell lines. Once homogeneous cultures of recombinant cells are obtained, large quantities of secreted soluble protein may be recovered from the conditioned medium and analyzed using chromatographic methods well known in the art.
  • An alternative method for the production of large amounts of secreted protein involves the transformation of mammalian embryos and the recovery of the recombinant protein from milk produced by transgenic cows, goats, sheep, and the like.
  • proteins or portions thereof may be produced manually, using solid-phase techniques (Stewart et al. (1969) Solid - Phase Peptide Synthesis, W H Freeman, San Francisco Calif.; Merrifield (1963) J Am Chem Soc 5:2149-2154), or using machines such as the ABI 431A peptide synthesizer (Applied Biosystems, Foster City Calif.). Proteins produced by any of the above methods may be used as pharmaceutical compositions to treat disorders associated with null or inadequate expression of the genomic sequence.
  • a protein or a portion thereof encoded by the cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand with specific binding affinity or to purify a molecule or compound from a sample.
  • the protein or portion thereof employed in such screening may be free in solution, affixed to an abiotic or biotic substrate, or located intracellularly.
  • viable or fixed prokaryotic host cells that are stably transformed with recombinant nucleic acids that have expressed and positioned a protein on their cell surface can be used in screening assays. The cells are screened against a library or a plurality of ligands and the specificity of binding or formation of complexes between the expressed protein and the ligand may be measured.
  • the ligands may be DNA, RNA, or PNA molecules, agonists, antagonists, antibodies, immunoglobulins, inhibitors, peptides, pharmaceutical agents, proteins, drugs, or any other test molecule or compound that specifically binds the protein.
  • An exemplary assay involves combining the mammalian protein or a portion thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound protein to identify at least one ligand that specifically binds the protein.
  • This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding the protein specifically compete with a test compound capable of binding to the protein or oligopeptide or fragment thereof.
  • One method for high throughput screening using very small assay volumes and very small amounts of test compound is described in U.S. Pat. No. 5,876,946. Molecules or compounds identified by screening may be used in a model system to evaluate their toxicity, diagnostic, or therapeutic potential.
  • the protein may be used to purify a ligand from a sample.
  • a method for using a protein to purify a ligand would involve combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and using an appropriate chaotropic agent to separate the protein from the purified ligand.
  • a protein encoded by a cDNA of the invention may be used to produce specific antibodies.
  • Antibodies may be produced using an oligopeptide or a portion of the protein with inherent immunological activity. Methods for producing antibodies include: 1) injecting an animal, usually goats, rabbits, or mice, with the protein, or an antigenically-effective portion or an oligopeptide thereof, to induce an immune response; 2) engineering hybridomas to produce monoclonal antibodies; 3) inducing in vivo production in the lymphocyte population; or 4) screening libraries of recombinant immunoglobulins. Recombinant immunoglobulins may be produced as taught in U.S. Pat. No. 4,816,567.
  • Antibodies produced using the proteins of the invention are useful for the diagnosis of prepathologic disorders as well as the diagnosis of chronic or acute diseases characterized by abnormalities in the expression, amount, or distribution of the protein.
  • a variety of protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies specific for proteins are well known in the art. Immunoassays typically involve the formation of complexes between a protein and its specific binding molecule or compound and the measurement of complex formation.
  • Immunoassays may employ a two-site, monoclonal-based assay that utilizes monoclonal antibodies reactive to two noninterfering epitopes on a specific protein or a competitive binding assay (Pound (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).
  • Immunoassay procedures may be used to quantify expression of the protein in cell cultures, in subjects with a particular disorder or in model animal systems under various conditions. Increased or decreased production of proteins as monitored by immunoassay may contribute to knowledge of the cellular activities associated with developmental pathways, engineered conditions or diseases, or treatment efficacy.
  • the quantity of a given protein in a given tissue may be determined by performing immunoassays on freeze-thawed detergent extracts of biological samples and comparing the slope of the binding curves to binding curves generated by purified protein.
  • reporter molecules and conjugation techniques are known by those skilled in the art and may be used in various cDNA, polynucleotide, protein, peptide or antibody assays. Synthesis of labeled molecules may be achieved using commercial kits for incorporation of a labeled nucleotide such as 32 P-dCTP, Cy3-dCTP or Cy5-dCTP or amino acid such as 35 S-methionine. Polynucleotides, cDNAs, proteins, or antibodies may be directly labeled with a reporter molecule by chemical conjugation to amines, thiols and other groups present in the molecules using reagents such as BIODIPY or FITC (Molecular Probes, Eugene Oreg.).
  • reagents such as BIODIPY or FITC (Molecular Probes, Eugene Oreg.).
  • the proteins and antibodies may be labeled for purposes of assay by joining them, either covalently or noncovalently, with a reporter molecule that provides for a detectable signal.
  • a reporter molecule that provides for a detectable signal.
  • a wide variety of labels and conjugation techniques are known and have been reported in the scientific and patent literature including, but not limited to U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
  • the cDNAs, or fragments thereof, may be used to detect and quantify differential gene expression; absence, presence, or excess expression of mRNAs; or to monitor mRNA levels during therapeutic intervention in subjects with prostate-related disorders including prostate cancer. These cDNAs can also be utilized as markers of treatment efficacy against prostate cancer over a period ranging from several days to months.
  • the diagnostic assay may use hybridization or amplification technology to compare gene expression in a biological sample from a patient to standard samples in order to detect altered gene expression. Qualitative or quantitative methods for this comparison are well known in the art.
  • the cDNA may be labeled by standard methods and added to a biological sample from a patient under conditions for hybridization complex formation. After an incubation period, the sample is washed and the amount of label (or signal) associated with hybridization complexes is quantified and compared with a standard value. If the amount of label in the patient sample is significantly altered in comparison to the standard value, then the presence of the associated condition, disease or disorder is indicated.
  • a normal or standard expression profile is established. This may be accomplished by combining a biological sample taken from normal subjects, either animal or human, with a probe under conditions for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained using normal subjects with values from an experiment in which a known amount of a substantially purified target sequence is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a particular condition, disease, or disorder. Deviation from standard values toward those associated with a particular condition is used to diagnose that condition.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies and in clinical trial or to monitor the treatment of an individual patient. Once the presence of a condition is established and a treatment protocol is initiated, diagnostic assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in a normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • a gene expression profile comprises a plurality of cDNAs and a plurality of detectable hybridization complexes, wherein each complex is formed by hybridization of one or more probes to one or more complementary sequences in a sample.
  • the cDNA composition of the invention is used as elements on a microarray to analyze gene expression profiles.
  • the microarray is used to monitor the progression of prostate cancer.
  • researchers can assess and catalog the differences in gene expression between healthy and diseased tissues or cells.
  • the invention can be used to formulate a prognosis and to design a treatment regimen.
  • the invention can also be used to monitor the efficacy of treatment.
  • the microarray is employed to improve the treatment regimen.
  • a dosage is established that causes a change in genetic expression patterns indicative of successful treatment. Expression patterns associated with the onset of undesirable side effects are avoided. This approach may be more sensitive and rapid than waiting for the patient to show inadequate improvement, or to manifest side effects, before altering the course of treatment.
  • animal models which mimic a human disease can be used to characterize expression profiles associated with a particular condition, disorder or disease; or treatment of the condition, disorder or disease. Novel treatment regimens may be tested in these animal models using microarrays to establish and then follow expression profiles over time.
  • microarrays may be used with cell cultures or tissues removed from animal models to rapidly screen large numbers of candidate drug molecules, looking for ones that produce an expression profile similar to those of known therapeutic drugs, with the expectation that molecules with the same expression profile will likely have similar therapeutic effects.
  • the invention provides the means to rapidly determine the molecular mode of action of a drug.
  • Antibodies directed against epitopes on a protein encoded by a cDNA of the invention may be used in assays to quantify the amount of protein found in a particular human cell. Such assays include methods utilizing the antibody and a label to detect expression level under normal or disease conditions.
  • the antibodies may be used with or without modification, and labeled by joining them, either covalently or noncovalently, with a labeling moiety.
  • Protocols for detecting and measuring protein expression using either polyclonal or monoclonal antibodies are well known in the art. Examples include ELISA, RIA, and fluorescent activated cell sorting (FACS). Such immunoassays typically involve the formation of complexes between the protein and its specific antibody and the measurement of such complexes. These and other assays are described in Pound (supra).
  • the method may employ a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes, or a competitive binding assay. (See, e.g., Coligan et al. (1997) Current Protocols in Immunology, Wiley-Interscience, New York N.Y.; Pound, supra)
  • cDNAs and fragments thereof can be used in gene therapy.
  • cDNAs can be delivered ex vivo to target cells, such as cells of bone marrow. Once stable integration and transcription and or translation are confirmed, the bone marrow may be reintroduced into the subject. Expression of the protein encoded by the cDNA may correct a cancer associated with mutation of a normal sequence, reduction or loss of an endogenous target protein, or overepression of an endogenous or mutant protein.
  • cDNAs may be delivered in vivo using vectors such as retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and bacterial plasmids.
  • Non-viral methods of gene delivery include cationic liposomes, polylysine conjugates, artificial viral envelopes, and direct injection of DNA (Anderson (1998) Nature 392:25-30; Dachs et al. (1997) Oncol Res 9:313-325; Chu et al. (1998) J Mol Med 76(34):184-192; Weiss et al. (1999) Cell Mol Life Sci 55(3):334-358; Agrawal (1996) Antisense Therapeutics, Humana Press, Totowa N.J.; and August et al. (1997) Gene Therapy ( Advances in Pharmacology, Vol. 40), Academic Press, San Diego Calif.).
  • expression of a particular protein can be regulated through the specific binding of a fragment of a cDNA to a genomic sequence or an mRNA which encodes the protein or directs its transcription or translation.
  • the cDNA can be modified or derivatized to any RNA-like or DNA-like material including peptide nucleic acids, branched nucleic acids, and the like.
  • Molecules which regulate the activity of the cDNA or encoded protein are useful as therapeutics for prostate cancer.
  • Such molecules include agonists which increase the expression or activity of the polynucleotide or encoded protein, respectively; or antagonists which decrease expression or activity of the polynucleotide or encoded protein, respectively.
  • an antibody which specifically binds the protein may be used directly as an antagonist or indirectly as a delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express the protein.
  • any of the proteins, or their ligands, or complementary nucleic acid sequences may be administered as pharmaceutical compositions or in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to affect the treatment or prevention of the conditions and disorders associated with an immune response. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • the therapeutic agents may be combined with pharmaceutically-acceptable carriers including excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration used by doctors and pharmacists may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).
  • Animal models may be used as bioassays where they exhibit a phenotypic response similar to that of humans and where exposure conditions are relevant to human exposures. Mammals are the most common models, and most infectious agent, cancer, drug, and toxicity studies are performed on rodents such as rats or mice because of low cost, availability, lifespan, reproductive potential, and abundant reference literature. Inbred and outbred rodent strains provide a convenient model for investigation of the physiological consequences of underexpression or overexpression of genes of interest and for the development of methods for diagnosis and treatment of diseases. A mammal inbred to overexpress a particular gene (for example, secreted in milk) may also serve as a convenient source of the protein expressed by that gene.
  • Transgenic rodents that overexpress or underexpress a gene of interest may be inbred and used to model human diseases or to test therapeutic or toxic agents.
  • the introduced gene may be activated at a specific time in a specific tissue type during fetal or postnatal development. Expression of the transgene is monitored by analysis of phenotype, of tissue-specific mRNA expression, or of serum and tissue protein levels in transgenic animals before, during, and after challenge with experimental drug therapies.
  • Embryonic (ES) stem cells isolated from rodent embryos retain the potential to form embryonic tissues.
  • ES cells such as the mouse 129/SvJ cell line are placed in a blastocyst from the C57BL/6 mouse strain, they resume normal development and contribute to tissues of the live-born animal.
  • ES cells are preferred for use in the creation of experimental knockout and knockin animals.
  • the method for this process is well known in the art and the steps are: the cDNA is introduced into a vector, the vector is transformed into ES cells, transformed cells are identified and microinjected into mouse cell blastocysts, blastocysts are surgically transferred to pseudopregnant dams.
  • the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • a region of a gene is enzymatically modified to include a non-natural intervening sequence such as the neomycin phosphotransferase gene (neo; Capecchi (1989) Science 244:1288-1292).
  • the modified gene is transformed into cultured ES cells and integrates into the endogenous genome by homologous recombination.
  • the inserted sequence disrupts transcription and translation of the endogenous gene.
  • ES cells can be used to create knockin humanized animals or transgenic animal models of human diseases.
  • knockin technology a region of a human gene is injected into animal ES cells, and the human sequence integrates into the animal cell genome.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on the progression and treatment of the analogous human condition.
  • cDNAs As described herein, the uses of the cDNAs, provided in the Sequence Listing of this application, and their encoded proteins are exemplary of known techniques and are not intended to reflect any limitation on their use in any technique that would be known to the person of average skill in the art.
  • the cDNAs provided in this application may be used in molecular biology techniques that have not yet been developed, provided the new techniques rely on properties of nucleotide sequences that are currently known to the person of ordinary skill in the art, e.g., the triplet genetic code, specific base pair interactions, and the like.
  • reference to a method may include combining more than one method for obtaining or assembling full length cDNA sequences that will be known to those skilled in the art.
  • RNA was purchased from Clontech Laboratories (Palo Alto Calif.) or isolated from various tissues. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL reagent (Life Technologies, Rockville Md.). The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated with either isopropanol or ethanol and sodium acetate, or by other routine methods.
  • poly(A) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (Qiagen, Valencia Calif.), or an OLIGOTEX mRNA purification kit (Qiagen).
  • poly(A) RNA was isolated directly from tissue lysates using other kits, including the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).
  • RNA was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies) using the recommended procedures or similar methods known in the art. (See Ausubel, supra, Units 5.1 through 6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (APB) or preparative agarose gel electrophoresis.
  • cDNAs were ligated into compatible restriction enzyme sites of the polylinker of the PBLUESCRIPT phagemid (Stratagene), PSPORT1 plasmid (Life Technologies), or PINCY plasmid (Incyte Pharmaceuticals).
  • Recombinant plasmids were transformed into XL1-BLUE, XL1-BLUEMRF, or SOLR competent E. coli cells (Stratagene) or DH5 ⁇ , DH10B, or ELECTROMAX DH10B competent E. coli cells (Life Technologies).
  • libraries were superinfected with a 5 ⁇ excess of the helper phage, M13K07, according to the method of Vieira et al. (1987, Methods Enzymol. 153:3-11) and normalized or subtracted using a methodology adapted from Soares (1994, Proc Natl Acad Sci 91:9228-9232), Swaroop et al. (1991, Nucl Acids Res 19:1954), and Bonaldo et al. (1996, Genome Research 6:791-806).
  • the modified Soares normalization procedure was utilized to reduce the repetitive cloning of highly expressed high abundance cDNAs while maintaining the overall sequence complexity of the library. Modification included significantly longer hybridization times which allowed for increased gene discovery rates by biasing the normalized libraries toward those infrequently expressed low-abundance cDNAs which are poorly represented in a standard transcript image (Soares et al., supra).
  • Plasmids were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using one of the following: the Magic or WIZARD MINIPREPS DNA purification system (Promega); the AGTC MINIPREP purification kit (Edge BioSystems, Gaithersburg Md.); the QIAWELL 8, QIAWELL 8 Plus, or QIAWELL 8 Ultra plasmid purification systems, or the REAL PREP 96 plasmid purification kit (QIAGEN, Valencia Calif.). Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.
  • the Magic or WIZARD MINIPREPS DNA purification system Promega
  • AGTC MINIPREP purification kit Edge BioSystems, Gaithersburg Md.
  • QIAWELL 8, QIAWELL 8 Plus, or QIAWELL 8 Ultra plasmid purification systems or
  • plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao (1994) Anal Biochem 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
  • cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 thermal cycler (Applied Biosystems) or the DNA ENGINE thermal cycler (MJ Research, Watertown Mass.) in conjunction with the HYDRA microdispenser (Robbins Scientific, Sunnyvale Calif.) or the MICROLAB 2200 system (Hamilton, Reno Nev.).
  • cDNA sequencing reactions were prepared using reagents provided by APB or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE cycle sequencing kit (Applied Biosystems).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled cDNAs were carried out using the MEGABACE 1000 DNA sequencing system (APB); the ABI PRISM 373 or 377 sequencing systems (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, supra, Unit 7.7).
  • Nucleic acid sequences were extended using the cDNA clones and oligonucleotide primers.
  • One primer was synthesized to initiate 5′ extension of the known fragment, and the other, to initiate 3′ extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
  • Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. Preferred libraries are ones that have been size-selected to include larger cDNAs. Also, random primed libraries are preferred because they will contain more sequences with the 5′ and upstream regions of genes. A randomly primed library is particularly useful if an oligo d(T) library does not yield a full-length cDNA.
  • PCR was performed in 96-well plates using the DNA ENGINE thermal cycler (MJ Research).
  • the reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH 4 ) 2 SO 4 , and ⁇ -mercaptoethanol, Taq DNA polymerase (APB), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B (Incyte Pharmaceuticals): Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
  • the parameters for primer pair T7 and SK+ were as follows: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 57° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
  • the concentration of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN reagent (0.25% reagent in 1 ⁇ TE, v/v; Molecular Probes) and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.) and allowing the DNA to bind to the reagent.
  • the plate was scanned in a FLUOROSKAN II (Labsystems Oy) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.
  • the extended nucleic acids were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC18 vector (APB).
  • CviJI cholera virus endonuclease Molecular Biology Research, Madison Wis.
  • AGARACE enzyme Promega
  • Extended clones were religated using T4 DNA ligase (New England Biolabs, Beverly Mass.) into pUC18 vector (APB), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transformed into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2 ⁇ carbenicillin liquid media.
  • the cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (APB) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified using PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions described above.
  • Bins were compared against each other, and those having local similarity of at least 82% were combined and reassembled. Reassembled bins having templates of insufficient overlap (less than 95% local identity) were re-split. Assembled templates were also subjected to analysis by STITCHER/EXON MAPPER algorithms which analyzed the probabilities of the presence of splice variants, alternatively spliced exons, splice junctions, differential expression of alternative spliced genes across tissue types, disease states, and the like. These resulting bins were subjected to several rounds of the above assembly procedures to generate the template sequences found in the LIFESEQ GOLD database (Incyte Genomics).
  • the assembled templates were annotated using the following procedure. Template sequences were analyzed using BLASTn (vers. 2.0, NCBI) versus GBpri (GenBank vers. 116). “Hits” were defined as an exact match having from 95% local identity over 200 base pairs through 100% local identity over 100 base pairs, or a homolog match having an E-value equal to or greater than 1 ⁇ 10 ⁇ 8 . (The “E-value” quantifies the statistical probability that a match between two sequences occurred by chance). The hits were subjected to frameshift FASTx versus GENPEPT (GenBank version 109). In this analysis, a homolog match was defined as having an E-value of 1 ⁇ 10 ⁇ 8 . The assembly method used above was described in U.S. Ser. No. 09/276,534, filed Mar. 25, 1999, and the LIFESEQ GOLD user manual (Incyte Genomics).
  • Template sequences were subjected to motif, BLAST, Hidden Markov Model (HMM; Pearson and Lipman (1988) Proc Natl Acad Sci 85:2444-2448; Smith and Waterman (1981) J Mol Biol 147:195-197), and functional analyses, and categorized in protein hierarchies using methods described in U.S. Ser. No. 08/812,290, filed Mar. 6, 1997; U.S. Ser. No. 08/947,845, filed Oct. 9, 1997; U.S. Pat. No. 5,953,727; and U.S. Ser. No. 09/034,807, filed Mar. 4, 1998. Template sequences may be further queried against public databases such as the GenBank rodent, mammalian, vertebrate, eukaryote, prokaryote, and human EST databases.
  • Incyte clones represent template sequences derived from the LIFESEQ GOLD assembled human sequence database (Incyte Genomics). In cases where more than one clone was available for a particular template, the 5′-most clone in the template was used on the microarray.
  • the HUMAN GENOME GEM series 1-3 microarrays (Incyte Pharmaceuticals) contain 28,626 array elements which represent 10,068 annotated clusters and 18,558 unannotated clusters. Tables 1 and 2 show the GenBank annotations for SEQ ID NOs:1-x of this invention as produced by BLAST analysis.
  • cDNAs were amplified from bacterial cells using primers complementary to vector sequences flanking the cDNA insert. Thirty cycles of PCR increased the initial quantity of cDNAs from 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified cDNAs were then purified using SEPHACRYL-400 columns (APB). Purified cDNAs were immobilized on polymer-coated glass slides. Glass microscope slides (Corning, Corning N.Y.) were cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
  • Microarrays were UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene), and then washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites were blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (Tropix, Bedford Mass.) for 30 minutes at 60° C. followed by washes in 0.2% SDS and distilled water as before.
  • STRATALINKER UV-crosslinker Stratagene
  • PZ-HPV-7 was derived from epithelial cells cultured from normal tissue from the peripheral zone of the prostate.
  • CA-HPV-10 was derived from cells from a prostatic adenocarcinoma of Gleason Grade 4/4. Both PZ cells were transformed by transfection with human papillomavirus (HPV)-18, and express keratins 5 and 8 and the early region 6 oncoprotein of HPV.
  • PZ-HPV-7 and CA-HPV-10 are negative for prostate specific antigen (PSA).
  • DU-145 is a prostate carcinoma cell line isolated from a 69 year-old man with widespread metastatic disease.
  • DU-145 was isolated from a brain metastasis and has no detectable hormone sensitivity. Further, DU-145 is negative for PSA: PC-3 is a prostate adenocarcinoma cell line isolated from a 62 year-old male with grade IV prostate adenocarcinoma metastasized to the bone. PC-3 cells exhibit low acid phosphatase and testosterone-5-alpha reductase activities; LNCaP is a prostate carcinoma cell line isolated from a lymph node biopsy of a 50 year-old male with metastatic prostate carcinoma. LNCaP cells are responsive to 5-alpha-dihydrotestosterone and express androgen receptors.
  • PrEC a primary prostate epithelial cell line isolated from a normal donor, was obtained from Cambrex Bioscience Inc. (Walkersville Md.) and cultured in media according to the manufacturer's protocols.
  • Cells were harvested when cultures were approximately 70% confluent and lysed in 1 ml of TRIZOL reagent (5 ⁇ 10 6 cells/ml; Life Technologies). The lysates were vortexed thoroughly and incubated at room temperature for 2-3 minutes and extracted with 0.5 ml chloroform. The extract was mixed, incubated at room temperature for 5 minutes, and centrifuged at 15,000 rpm for 15 minutes at 4° C. The aqueous layer was collected and an equal volume of isopropanol was added. Samples were mixed, incubated at room temperature for 10 minutes, and centrifuged at 15,000 rpm for 20 minutes at 4° C.
  • RNA pellet was washed with 1 ml of 70% ethanol, centrifuged at 15,000 rpm at 4° C., and resuspended in RNase-free water. The concentration of the RNA was determined by measuring the optical density at 260 nm.
  • Poly(A) RNA was prepared using an OLIGOTEX mRNA kit (QIAGEN) with the following modifications: OLIGOTEX beads were washed in tubes instead of on spin columns, resuspended in elution buffer, and then loaded onto spin columns to recover mRNA. To obtain maximum yield, the mRNA was eluted twice.
  • Each poly(A) RNA sample was reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-d(T) primer (21 mer), 1 ⁇ first strand buffer, 0.03 units/ul RNase inhibitor, 500 uM dATP, 500 uM dGTP, 500 uM dTTP, 40 uM dCTP, and 40 uM either dCTP-Cy3 or dCTP-Cy5 (APB).
  • the reverse transcription reaction was performed in a 25 ml volume containing 200 ng poly(A) RNA using the GEMBRIGHT kit (Incyte Pharmaceuticals).
  • control poly(A) RNAs (YCFR06, YCFR45, YCFR67, YCFR85, YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were synthesized by in vitro transcription from non-coding yeast genomic DNA (W. Lei, unpublished).
  • control mRNAs (YCFR06, YCFR45, YCFR67, and YCFR85) at 0.002 ng, 0.02 ng, 0.2 ng, and 2 ng were diluted into reverse transcription reaction at ratios of 1:100,000, 1:10,000, 1:1000, 1:100 (w/w) to sample mRNA, respectively.
  • control mRNAs (YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were diluted into reverse transcription reaction at ratios of 1:3, 3:1, 1:10, 10:1, 1:25, 25:1 (w/w) to sample mRNA. Reactions were incubated at 37° C. for 2 hr, treated with 2.5 ml of 0.5M sodium hydroxide, and incubated for 20 minutes at 85° C. to the stop the reaction and degrade the RNA.
  • cDNAs were purified using two successive CHROMA SPIN 30 gel filtration spin columns (Clontech). Cy3- and Cy5-labeled reaction samples were combined as follows: Aliquots of Cy3-labeled PrEC cDNA were individually mixed with Cy5 labeled cDNA from PZ-HPV-7, CA-HPV-10, DU-145, PC-3, and LNCaP cells. The mixtures were ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol, dried to completion using a SpeedVAC system (Savant Instruments, Holbrook N.Y.), and resuspended in 14 ⁇ l 5 ⁇ SSC/0.2% SDS.
  • a SpeedVAC system Savant Instruments, Holbrook N.Y.
  • Hybridization reactions contained 9 ⁇ l of sample mixture containing 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5 ⁇ SSC, 0.2% SDS hybridization buffer. The mixture was heated to 65° C. for 5 minutes and was aliquoted onto the microarray surface and covered with an 1.8 cm 2 coverslip. The microarrays were transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber was kept at 100% humidity internally by the addition of 140 ⁇ l of 5 ⁇ SSC in a corner of the chamber. The chamber containing the microarrays was incubated for about 6.5 hours at 60° C. The microarrays were washed for 10 min at 45° C. in low stringency wash buffer (1 ⁇ SSC, 0.1% SDS), three times for 10 minutes each at 45° C. in high stringency wash buffer (0.1 ⁇ SSC), and dried.
  • Reporter-labeled hybridization complexes were detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Santa Clara Calif.) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser light was focused on the microarray using a 20 ⁇ microscope objective (Nikon, Melville N.Y.).
  • the slide containing the microarray was placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective.
  • the 1.8 cm ⁇ 1.8 cm microarray used in the present example was scanned with a resolution of 20 micrometers.
  • the mixed gas multiline laser excited the two fluorophores sequentially. Emitted light was split, based on wavelength, into two photomultiplier tube detectors (PMT R1477; Hamamatsu Photonics Systems, Bridgewater N.J.) corresponding to the two fluorophores. Appropriate filters positioned between the microarray and the photomultiplier tubes were used to filter the signals. The emission maxima of the fluorophores used were 565 nm for Cy3 and 650 nm for Cy5. Each microarray was typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus was capable of recording the spectra from both fluorophores simultaneously.
  • the sensitivity of the scans was calibrated using the signal intensity generated by a cDNA control species.
  • Samples of the calibrating cDNA were separately labeled with the two fluorophores and identical amounts of each were added to the hybridization mixture.
  • a specific location on the microarray contained a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
  • the output of the photomultiplier tube was digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Norwood, Mass.) installed in an IBM-compatible PC computer.
  • the digitized data were displayed as an image where the signal intensity was mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data was also analyzed quantitatively. Where two different fluorophores were excited and measured simultaneously, the data were first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
  • a grid was superimposed over the fluorescence signal image such that the signal from each spot was centered in each element of the grid.
  • the fluorescence signal within each element was then integrated to obtain a numerical value corresponding to the average intensity of the signal.
  • the software used for signal analysis was the GEMTOOLS gene expression analysis program (Incyte Pharmaceuticals). Significance was defined as signal to background ratio exceeding 2 ⁇ and area hybridization exceeding 40%.
  • Array elements that exhibited at least 2.5-fold change in expression at one or more time points, a signal intensity over 250 units, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40% were identified as differentially expressed using the GEMTOOLS program (Incyte Genomics). Differential expression values were converted to log base 2 scale. Differential expression values were then compared between the cell lines to identify genes which discriminated between normal and cancerous and between non-metastatic and metastatic cancer. The student's t-test and Pearson correlation statistics were used to distinguish significant differences between the groups. The resulting cDNAs are shown in Tables 1 and 2. The cDNAs are identified by their Clone ID.
  • Table 3 shows the sequence overlap between the clones identified in Tables 1 and 2 and gene templates. Columns 1-3 show the SEQ ID NO:, Template ID, and Clone ID, respectively. Columns 4 and 5 show the start and stop nucleotides for the clone on the template. Table 4 shows a GenBank homolog and description associated with at least a fragment of each Template ID. The descriptions were obtained using the sequences of the Sequence Listing and BLAST analysis.
  • SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75 are highly correlated with metastatic prostate cancer cells PC-3, LNCaP, and DU-145, and SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101 are differentially expressed at significant levels in all of the prostate cancer cell lines.
  • hybridization technologies utilize a variety of substrates such as nylon membranes, capillary tubes, etc.
  • Arranging cDNAs on polymer coated slides is described in Example V; sample cDNA preparation and hybridization and analysis using polymer coated slides is described in examples VI and VII, respectively.
  • cDNAs are applied to a membrane substrate by one of the following methods.
  • a mixture of cDNAs is fractionated by gel electrophoresis and transferred to a nylon membrane by capillary transfer.
  • the cDNAs are individually ligated to a vector and inserted into bacterial host cells to form a library.
  • the cDNAs are then arranged on a substrate by one of the following methods.
  • bacterial cells containing individual clones are robotically picked and arranged on a nylon membrane.
  • the membrane is placed on LB agar containing selective agent (carbenicillin, kanamycin, ampicillin, or chloramphenicol depending on the vector used) and incubated at 37° C. for 16 hr.
  • the membrane is removed from the agar and consecutively placed colony side up in 10% SDS, denaturing solution (1.5 M NaCl, 0.5 M NaOH ), neutralizing solution (1.5 M NaCl, 1 M Tris, pH 8.0), and twice in 2 ⁇ SSC for 10 min each.
  • the membrane is then UV irradiated in a STRATALINKER UV-crosslinker (Stratagene).
  • cDNAs are amplified from bacterial vectors by thirty cycles of PCR using primers complementary to vector sequences flanking the insert. PCR amplification increases a starting concentration of 1-2 ng nucleic acid to a final quantity greater than 5 ⁇ g.
  • Amplified nucleic acids from about 400 bp to about 5000 bp in length are purified using SEPHACRYL400 beads (APB). Purified nucleic acids are arranged on a nylon membrane manually or using a dot/slot blotting manifold and suction device and are immobilized by denaturation, neutralization, and UV irradiation as described above.
  • Hybridization probes derived from cDNAs of the Sequence Listing are employed for screening cDNAs, mRNAs, or genomic DNA in membrane-based hybridizations. Probes are prepared by diluting the cDNAs to a concentration of 40-50 ng in 45 ⁇ l TE buffer, denaturing by heating to 100° C. for five min and briefly centrifuging. The denatured cDNA is then added to a REDIPRIME tube (APB), gently mixed until blue color is evenly distributed, and briefly centrifuged. Five microliters of [ 32 P]dCTP is added to the tube, and the contents are incubated at 37° C. for 10 min.
  • APB REDIPRIME tube
  • the labeling reaction is stopped by adding 5 ⁇ l of 0.2M EDTA, and probe is purified from unincorporated nucleotides using a PROBEQUANT G-50 microcolumn (APB).
  • the purified probe is heated to 100° C. for five min and then snap cooled for two min on ice.
  • Membranes are pre-hybridized in hybridization solution containing 1% Sarkosyl and 1 ⁇ high phosphate buffer (0.5 M NaCl, 0.1 M Na 2 HPO 4 , 5 mM EDTA, pH 7) at 55° C. for two hr.
  • the probe diluted in 15 ml fresh hybridization solution, is then added to the membrane.
  • the membrane is hybridized with the probe at 55° C. for 16 hr.
  • the membrane is washed for 15 min at 25° C. in 1 mM Tris (pH 8.0), 1% Sarkosyl, and four times for 15 min each at 25° C. in 1 mM Tris (pH 8.0).
  • XOMAT-AR film Eastman Kodak, Rochester N.Y.
  • XOMAT-AR film Eastman Kodak, Rochester N.Y.
  • Clones were blasted against the LIFESEQ Gold 5.1 database (Incyte Genomics) and an Incyte template and its sequence variants were chosen for each clone.
  • the template and variant sequences were blasted against GenBank database to acquire annotation.
  • the nucleotide sequences were translated into amino acid sequence which was blasted against the GenPept and other protein databases to acquire annotation and characterization, i.e., structural motifs.
  • Percent sequence identity can be determined electronically for two or more amino acid or nucleic acid sequences using the MEGALIGN program (DNASTAR). The percent identity between two amino acid sequences is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no homology between the two amino acid sequences are not included in determining percentage identity.
  • Sequences with conserved protein motifs may be searched using the BLOCKS search program.
  • This program analyses sequence information contained in the Swiss-Prot and PROSITE databases and is useful for determining the classification of uncharacterized proteins translated from genomic or cDNA sequences (Bairoch et al.(supra); Attwood et al. (supra).
  • PROSITE database is a useful source for identifying functional or structural domains that are not detected using motifs due to extreme sequence divergence. Using weight matrices, these domains are calibrated against the SWISS-PROT database to obtain a measure of the chance distribution of the matches.
  • the PRINTS database can be searched using the BLIMPS search program to obtain protein family “fingerprints”.
  • the PRINTS database complements the PROSITE database by exploiting groups of conserved motifs within sequence alignments to build characteristic signatures of different protein families.
  • cDNA is subcloned into a vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into bacterial hosts, such as BL21(DE3). Antibiotic resistant bacteria express the protein upon induction with IPTG.
  • Expression in eukaryotic cells is achieved by infecting Spodoptera frugiperda (Sf9) insect cells with recombinant baculovirus, Autographica californica nuclear polyhedrosis virus.
  • the polyhedrin gene of baculovirus is replaced with the cDNA by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of transcription.
  • the protein is synthesized as a fusion protein with glutathione-S-transferase (GST; APB) or a similar alternative such as FLAG.
  • GST glutathione-S-transferase
  • the fusion protein is purified on immobilized glutathione under conditions that maintain protein activity and antigenicity.
  • the GST moiety is proteolytically cleaved from the protein with thrombin.
  • a fusion protein with FLAG, an 8-amino acid peptide is purified using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak, Rochester N.Y.).
  • a denatured protein from a reverse phase HPLC separation is obtained in quantities up to 75 mg.
  • This denatured protein is used to immunize mice or rabbits following standard protocols. About 100 ⁇ g is used to immunize a mouse, while up to 1 mg is used to immunize a rabbit.
  • the denatured protein is radioiodinated and incubated with murine B-cell hybridomas to screen for monoclonal antibodies. About 20 mg of protein is sufficient for labeling and screening several thousand clones.
  • amino acid sequence translated from a cDNA of the invention is analyzed using PROTEAN software (DNASTAR) to determine regions of high antigenicity, essentially antigenically-effective epitopes of the protein.
  • the optimal sequences for immunization are usually at the C-terminus, the N-terminus, and those intervening, hydrophilic regions of the protein that are likely to be exposed to the external environment when the protein is in its natural conformation.
  • oligopeptides about 15 residues in length are synthesized using an ABI 431 peptide synthesizer (Applied Biosystems) using Fmoc-chemistry and then coupled to keyhole limpet hemocyanin (KLH; Sigma Aldrich) by reaction with M-maleimidobenzoyl-N-hydroxysuccinimide ester. If necessary, a cysteine may be introduced at the N-terminus of the peptide to permit coupling to KLH.
  • Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity by binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated goat anti-rabbit IgG.
  • Hybridomas are prepared and screened using standard techniques. Hybridomas of interest are detected by screening with radioiodinated protein to identify those fusions producing a monoclonal antibody specific for the protein.
  • wells of 96 well plates FAST, Becton-Dickinson, Palo Alto Calif.
  • affinity-purified, specific rabbit-anti-mouse (or suitable anti-species Ig) antibodies at 10 mg/ml.
  • the coated wells are blocked with 1% BSA and washed and exposed to supernatants from hybridomas. After incubation, the wells are exposed to radiolabeled protein at 1 mg/ml. Clones producing antibodies bind a quantity of labeled protein that is detectable above background.
  • Such clones are expanded and subjected to 2 cycles of cloning at 1 cell/3 wells.
  • Cloned hybridomas are injected into pristane-treated mice to produce ascites, and monoclonal antibody is purified from the ascitic fluid by affinity chromatography on protein A (APB).
  • Monoclonal antibodies with affinities of at least 10 8 M ⁇ 1 , preferably 10 9 to 10 10 M ⁇ 1 or stronger, are made by procedures well known in the art.
  • Naturally occurring or recombinant protein is substantially purified by immunoaffinity chromatography using antibodies specific for the protein.
  • An immunoaffinity column is constructed by covalently coupling the antibody to CNBr-activated SEPHAROSE resin (APB). Media containing the protein is passed over the immunoaffinity column, and the column is washed using high ionic strength buffers in the presence of detergent to allow preferential absorbance of the protein. After coupling, the protein is eluted from the column using a buffer of pH 2-3 or a high concentration of urea or thiocyanate ion to disrupt antibody/protein binding, and the protein is collected.
  • APB CNBr-activated SEPHAROSE resin
  • the cDNA or fragments thereof and the protein or portions thereof are labeled with 32 P-dCTP, Cy3-dCTP, Cy5-dCTP (APB), or BIODIPY or FITC (Molecular Probes), respectively.
  • Candidate molecules or compounds previously arranged on a substrate are incubated in the presence of labeled nucleic or amino acid. After incubation under conditions for either a cDNA or a protein, the substrate is washed, and any position on the substrate retaining label, which indicates specific binding or complex formation, is assayed. The binding molecule is identified by its arrayed position on the substrate. Data obtained using different concentrations of the nucleic acid or protein are used to calculate affinity between the labeled nucleic acid or protein and the bound molecule. High throughput screening using very small assay volumes and very small amounts of test compound is fully described in Burbaum et al. U.S. Pat. No. 5,876,946.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a composition comprising a plurality of cDNAs which are differentially expressed in prostate cancer and which may be used in their entirety or in part as to diagnose, to stage to treat or to monitor the treatment of a subject with prostate cancer.

Description

This application claims the benefit of Provisional Application No. 60/222,469, filed Jul. 28, 2000.
FIELD OF THE INVENTION
The present invention relates to a composition comprising a plurality of cDNAs which are differentially expressed in prostate cancer and which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of prostate cancer.
BACKGROUND OF THE INVENTION
Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for examining which genes are tissue specific, carrying out housekeeping functions, parts of a signaling cascade, or specifically related to a particular genetic predisposition, condition, disease, or disorder.
The potential application of gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease. For example, both the levels and sequences expressed in tissues from subjects with prostate cancer may be compared with the levels and sequences expressed in normal tissue.
Prostate cancer is a common malignancy in men over the age of 50, and the incidence increases with age. In the U.S., there are approximately 132,000 newly diagnosed cases of prostate cancer and more than 33,000 deaths from the disorder each year.
Once cancer cells arise in the prostate, they are stimulated by testosterone to a more rapid growth. Thus, removal of the testes can indirectly reduce both rapid growth and metastasis of the cancer. Over 95 percent of prostatic cancers are adenocarcinomas which originate in the prostatic acini. The remaining 5 percent are divided between squamous cell and transitional cell carcinomas, both of which arise in the prostatic ducts or other parts of the prostate gland.
As with most cancers, prostate cancer develops through a multistage progression ultimately resulting in an aggressive, metastatic phenotype. The initial step in tumor progression involves the hyperproliferation of normal luminal and/or basal epithelial cells that become hyperplastic and evolve into early-stage tumors. The early-stage tumors are localized in the prostate but eventually may metastasize, particularly to the bone, brain or lung. About 80% of these tumors remain responsive to androgen treatment, an important hormone controlling the growth of prostate epithelial cells. However, in its most advanced state, cancer growth becomes androgen-independent and there is currently no known treatment for this condition.
A primary diagnostic marker for prostate cancer is prostate specific antigen (PSA). PSA is a tissue-specific serine protease almost exclusively produced by prostatic epithelial cells. The quantity of PSA correlates with the number and volume of the prostatic epithelial cells, and consequently, the levels of PSA are an excellent indicator of abnormal prostate growth. Men with prostate cancer exhibit an early linear increase in PSA levels followed by an exponential increase prior to diagnosis. However, since PSA levels are also influenced by factors such as inflammation, androgen and other growth factors, some scientists maintain that changes in PSA levels are not useful in detecting individual cases of prostate cancer.
Current areas of cancer research provide additional prospects for markers as well as potential therapeutic targets for prostate cancer. Several growth factors have been shown to play a critical role in tumor development, growth, and progression. The growth factors Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Tumor Growth Factor alpha (TGFα) are important in the growth of normal as well as hyperproliferative prostate epithelial cells, particularly at early stages of tumor development and progression, and affect signaling pathways in these cells in various ways (Lin J et al. (1999) Cancer Res. 59:2891-2897; Putz T et al. (1999) Cancer Res 59:227-233). The TGF-β family of growth factors are generally expressed at increased levels in human cancers and the high expression levels in many cases correlates with advanced stages of malignancy and poor survival (Gold L I (1999) Crit Rev Oncog 10:303-360). Finally, there are human cell lines representing both the androgen-dependent stage of prostate cancer (LNCap) as well as the androgen-independent, hormone refractory stage of the disease PC3 and DU-145) that have proved useful in studying gene expression patterns associated with the progression of prostate cancer, and the effects of cell treatments on these expressed genes (Chung T D (1999) Prostate 15:199-207).
The present invention provides for a composition comprising a plurality of cDNAs for use in detecting changes in expression of genes encoding proteins that are associated with prostate cancer. Such a composition can be employed for the diagnosis, prognosis or treatment of prostate cancer and related disorders correlated with differential gene expression. The present invention satisfies a need in the art in that it provides a set of differentially expressed genes which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of a subject with prostate cancer.
SUMMARY
The present invention provides a composition comprising a plurality of cDNAs and their complements which are differentially expressed in prostate adenocarcinomas and which are selected from SEQ ID NOs:1-1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101 as presented in the Sequence Listing. In one embodiment, each cDNA is differentially regulated in metastatic versus non-metastatic tissue samples, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75; in another embodiment, each cDNA is differentially regulated at all stages of the disease, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101. In one aspect, the composition is immobilized on a substrate. In another aspect, the composition is used to diagnose the presence and stage of prostate cancer in a subject. The invention also provides proteins encoded by the cDNAs and which are selected from SEQ ID NOs:4, 7, 9, 16, 20, 22, 29, 31, 33, 37, 39, 41, 46, 51, 54, 57, 66, 69, 74, 77, 87, 91, 98 as presented in the Sequence Listing.
The invention also provides a high throughput method to detect differential expression of one or more of the cDNAs of the composition. The method comprises hybridizing the substrate comprising the composition with the nucleic acids of a sample, thereby forming one or more hybridization complexes, detecting the hybridization complexes, and comparing the hybridization complexes with those of a standard, wherein differences in the size and signal intensity of each hybridization complex indicates differential expression of nucleic acids in the sample. In one aspect, the sample is from a subject with prostate cancer and differential expression determines an early, mid, and late stage of the disorder.
The invention further provides a high throughput method of screening a library or a plurality of molecules or compounds to identify a ligand. The method comprises combining the substrate comprising the composition with a library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand. The library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, transcription factors, repressors, and other regulatory proteins.
The invention still further provides an isolated cDNA encoding the protein comprising the amino acid sequence of SEQ ID NO:37. The invention also provides an isolated cDNA comprising SEQ ID NO:36 as presented in the Sequence Listing. The invention also provides a vector comprising the cDNA, a host cell comprising the vector, and a method for producing a protein comprising culturing the host cell under conditions for the expression of a protein and recovering the protein from the host cell culture. The invention additionally provides a method for purifying a ligand, the method comprising combining a cDNA of the invention with a sample under conditions which allow specific binding, recovering the bound cDNA, and separating the cDNA from the ligand, thereby obtaining purified ligand.
The present invention provides a purified protein encoded and produced by a cDNA of the invention. The invention also provides a high-throughput method for using a protein to screen a library or a plurality of molecules or compounds to identify a ligand. The method comprises combining the protein or a portion thereof with the library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand which specifically binds the protein. A library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, proteins, agonists, antagonists, antibodies or their fragments, immunoglobulins, inhibitors, drug compounds, and pharmaceutical agents. The invention further provides for using a protein to purify a ligand. The method comprises combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and separating the protein from the ligand, thereby obtaining purified ligand. The invention still further provides a pharmaceutical composition comprising the protein. The invention yet still further provides a method for using the protein to produce an antibody. The method comprises immunizing an animal with the protein or an antigenically-effective epitope under conditions to elicit an antibody response, isolating animal antibodies, and screening the isolated antibodies with the protein to identify an antibody which specifically binds the protein. The invention yet still further provides a method for using the protein to purify antibodies which bind specifically to the protein.
DESCRIPTION OF THE SEQUENCE LISTING AND TABLES
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The Sequence Listing is a compilation of cDNAs obtained by sequencing and extension of clone inserts. Each sequence is identified by a sequence identification number (SEQ ID NO) and by the template number (TEMPLATE ID) from which it was obtained.
Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression. Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma.
Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression.
Table 3 shows the region within a gene template of each cDNA encompassed by a clone identified in Tables 1 and 2. Columns 1 and 2 show the SEQ ID NO: and Template ID, respectively. Column 3 shows the Clone ID and columns 4 and 5 show the first residue (Start) and last residue (Stop) encompassed by the clone on the template.
Table 4 lists the functional annotation of the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the GenBank hit (GI Number), probability score (E-value), and functional annotation, respectivly, as determined by BLAST analysis (version 1.4 using default parameters; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) of the cDNA against GenBank (release 117; National Center for Biotechnology Information (NCBI), Bethesda Md.).
Table 5 shows Pfam annotations of the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for the segment of the cDNA identified by Pfam analysis. Columns 6, 7, and 8 show the PFAM Hit, PFAM Annotation, and E-value, respectively, corresponding to the polypeptide domain of the protein or encoded by the cDNA segment.
Table 6 shows signal peptide and transmembrane regions predicted within the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for a segment of the cDNA, and column 6 identifies the polypeptide encoded by the segment as either a signal peptide (SP) or transmembrane (TM) domain.
DESCRIPTION OF THE INVENTION
Definitions
“Array” refers to an ordered arrangement of at least two cDNAs on a substrate. At least one of the cDNAs represents a control or standard sequence, and the other, a cDNA of diagnostic interest. The arrangement of from about two to about 40,000 cDNAs on the substrate assures that the size and signal intensity of each labeled hybridization complex formed between a cDNA and a sample nucleic acid is individually distinguishable.
The “complement” of a nucleic acid molecule of the Sequence Listing refers to a cDNA which is completely complementary over the full length of the sequence and which will hybridize to the nucleic acid molecule under conditions of high stringency.
A “composition” comprises at least two sequences selected from the Sequence Listing. “cDNA” refers to a chain of nucleotides, an isolated polynucleotide, nucleic acid molecule, or any fragment or complement thereof. It may have originated recombinantly or synthetically, be double-stranded or single-stranded, coding and/or noncoding, an exon with or without an intron from a genomic DNA molecule, and purified or combined with carbohydrate, lipids, protein or inorganic elements or substances. Preferably, the cDNA is from about 4000 to about 5000 nucleotides.
The phrase “cDNA encoding a protein” refers to a nucleic acid sequence that closely aligns with sequences which encode conserved regions, motifs or domains that were identified by employing analyses well known in the art. These analyses include BLAST (Basic Local Alignment Search Tool; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) which provides identity within the conserved region. Brenner et al. (1998; Proc Natl Acad Sci 95:6073-6078) who analyzed BLAST for its ability to identify structural homologs by sequence identity found 30% identity is a reliable threshold for sequence alignments of at least 150 residues and 40% is a reasonable threshold for alignments of at least 70 residues (Brenner et al., page 6076, column 2).
“Derivative” refers to a cDNA or a protein that has been subjected to a chemical modification. Derivatization of a cDNA can involve substitution of a nontraditional base such as queosine or of an analog such as hypoxanthine. These substitutions are well known in the art. Derivatization of a protein involves the replacement of a hydrogen by an acetyl, acyl, alkyl, amino, formyl, or morpholino group. Derivative molecules retain the biological activities of the naturally occurring molecules but may confer advantages such as longer lifespan or enhanced activity.
“Differential expression” refers to an increased, upregulated or present, or decreased, downregulated or absent, gene expression as detected by the absence, presence, or at least two-fold changes in the amount of transcribed messenger RNA or translated protein in a sample.
“Disorder” refers to conditions, diseases or syndromes associated with prostate cancer.
“Fragment” refers to a chain of consecutive nucleotides from about 200 to about 700 base pairs in length. Fragments may be used in PCR or hybridization technologies to identify related nucleic acid molecules and in binding assays to screen for a ligand. Nucleic acids and their ligands identified in this manner are useful as therapeutics to regulate replication, transcription or translation.
A “hybridization complex” is formed between a cDNA and a nucleic acid of a sample when the purines of one molecule hydrogen bond with the pyrimidines of the complementary molecule, e.g., 5′-A-G-T-C-3′ base pairs with 3′-T-C-A-G-5′. The degree of complementarity and the use of nucleotide analogs affect the efficiency and stringency of hybridization reactions.
“Ligand” refers to any agent, molecule, or compound which will bind specifically to a complementary site on a cDNA molecule or polynucleotide, or to an epitope or a protein. Such ligands stabilize or modulate the activity of polynucleotides or proteins and may be composed of inorganic or organic substances including nucleic acids, proteins, carbohydrates, fats, and lipids.
“Oligonucleotide” refers a single stranded molecule from about 18 to about 60 nucleotides in length which may be used in hybridization or amplification technologies or in regulation of replication, transcription or translation. Substantially equivalent terms are amplimer, primer, and oligomer.
“Portion” refers to any part of a protein used for any purpose; but especially, to an epitope for the screening of ligands or for the production of antibodies.
“Post-translational modification” of a protein can involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and the like. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cellular location, cell type, pH, enzymatic milieu, and the like.
“Probe” refers to a cDNA that hybridizes to at least one nucleic acid molecule in a sample. Where targets are single stranded, probes are complementary single strands. Probes can be labeled with reporter molecules for use in hybridization reactions including Southern, northern, in situ, dot blot, array, and like technologies or in screening assays.
“Protein” refers to a polypeptide or any portion thereof. A “portion” of a protein retains at least one biological or antigenic characteristic of a native protein. An “oligopeptide” is an amino acid sequence from about five residues to about 15 residues that is used as part of a fusion protein to produce an antibody.
“Purified” refers to any molecule or compound that is separated from its natural environment and is from about 60% free to about 90% free from other components with which it is naturally associated.
“Sample” is used in its broadest sense as containing nucleic acids, proteins, antibodies, and the like. A sample may comprise a bodily fluid; the soluble fraction of a cell preparation, or an aliquot of media in which cells were grown; a chromosome, an organelle, or membrane isolated or extracted from a cell; genomic DNA, RNA, or cDNA in solution or bound to a substrate; a cell; a tissue; a tissue print; a fingerprint, buccal cells, skin, or hair; and the like.
“Specific binding” refers to a special and precise interaction between two molecules which is dependent upon their structure, particularly their molecular side groups. For example, the intercalation of a regulatory protein into the major groove of a DNA molecule, the hydrogen bonding along the backbone between two single stranded nucleic acids, or the binding between an epitope of a protein and an agonist, antagonist, or antibody.
“Similarity” as applied to sequences, refers to the quantification (usually percentage) of nucleotide or residue matches between at least two sequences aligned using a standardized algorithm such as Smith-Waterman alignment (Smith and Waterman (1981) J Mol Biol 147:195-197) or BLAST2 (Altschul et al. (1997) Nucleic Acids Res 25:3389-3402). BLAST2 may be used in a standardized and reproducible way to insert gaps in one of the sequences in order to optimize alignment and to achieve a more meaningful comparison between them.
“Substrate” refers to any rigid or semi-rigid support to which cDNAs or proteins are bound and includes membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, capillaries or other tubing, plates, polymers, and microparticles with a variety of surface forms including wells, trenches, pins, channels and pores.
“Variant” refers to molecules that are recognized variations of a cDNA or a protein encoded by the cDNA. Splice variants may be determined by BLAST score, wherein the score is at least 100, and most preferably at least 400. Allelic variants have a high percent identity to the cDNAs and may differ by about three bases per hundred bases. “Single nucleotide polymorphism” (SNP) refers to a change in a single base as a result of a substitution, insertion or deletion. The change may be conservative (purine for purine) or non-conservative (purine to pyrimidine) and may or may not result in a change in an encoded amino acid.
The Invention
The present invention provides for a composition comprising a plurality of cDNAs or their complements, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101, which may be used on a substrate to diagnose, to stage, to treat or to monitor the progression or treatment of prostate cancer. These cDNAs represent known and novel genes differentially expressed in cells from non-metastatic and metastatic prostate tumors. The composition may be used in its entirety or in part, as subsets of cDNAs differentially regulated between non-metastatic and metastatic prostate cancer, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, or of cDNAs differentially regulated at all stages of prostate cancer, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101. SEQ ID NOs:24, 36, 47, 60, 82, 88, 89, 92, 93, and 95 represent novel cDNAs associated with prostate cancer. Since the novel cDNAs were identified solely by their differential expression, it is not essential to know a priori the name, structure, or function of the gene or it's encoded protein. The usefulness of the novel cDNAs exist in their immediate value as diagnostics for prostate cancer.
Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show the differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 of the absolute expression in normal prostate tissue÷the absolute expression in prostate adenocarcinoma. Negative values represent an increase in expression. Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma. All of the cDNAs in Table 1 show significant differential regulation in metastatic cancer relative to non-metastatic cancer. Further, expression profiles between the metastatic cancer lines show a high degree of correlation (>0.48), as do the expression profiles between the non-metastatic lines (0.64). However, the expression profiles between the metastatic and non-metastatic lines show significantly less correlation (<0.3).
Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue÷adenocarcinoma). Negative values represent an increase in expression. The expression profile for the cDNAs identified in Table 2 show high correlation between all tumor lines (>0.5).
SEQ ID NO:36 is a novel sequence differentially regulated between metastatic and non-metastatic prostate tumors. SEQ ID NO:36 encodes SEQ ID NO:37 which is 193 amino acids in length.
The cDNAs of the invention define a differential expression pattern against which to compare the expression pattern of biopsied and/or in vitro treated tissues. Experimentally, differential expression of the cDNAs can be evaluated by methods including, but not limited to, differential display by spatial immobilization or by gel electrophoresis, genome mismatch scanning, representational discriminate analysis, clustering, transcript imaging and array technologies. These methods may be used alone or in combination.
The composition may be arranged on a substrate and hybridized with tumor tissues from subjects to identify those sequences which are differentially expressed in both prostate cancer and tumors derived from other tissues. This allows identification of those sequences of highest diagnostic and potential therapeutic value. In one embodiment, an additional set of cDNAs, such as cDNAs encoding signaling molecules, are arranged on the substrate with the composition. Such combinations may be useful in the elucidation of pathways which are affected in a particular cancer or to identify new, coexpressed, candidate, therapeutic molecules.
In another embodiment, the composition can be used for large scale genetic or gene expression analysis of a large number of novel, nucleic acid molecules. These samples are prepared by methods well known in the art and are from mammalian cells or tissues which are in a certain stage of development; have been treated with a known molecule or compound, such as a cytokine, growth factor, a drug, and the like; or have been extracted or biopsied from a mammal with a known or unknown condition, disorder, or disease before or after treatment. The sample nucleic acid molecules are hybridized to the composition for the purpose of defining a novel gene profile associated with that developmental stage, treatment, or disorder.
cDNAs and Their Uses
cDNAs can be prepared by a variety of synthetic or enzymatic methods well known in the art. cDNAs can be synthesized, in whole or in part, using chemical methods well known in the art (Caruthers et al. (1980) Nucleic Acids Symp. Ser. (7):215-233). Alternatively, cDNAs can be produced enzymatically or recombinantly, by in vitro or in vivo transcription.
Nucleotide analogs can be incorporated into cDNAs by methods well known in the art. The only requirement is that the incorporated analog must base pair with native purines or pyrimidines. For example, 2,6-diaminopurine can substitute for adenine and form stronger bonds with thymidine than those between adenine and thymidine. A weaker pair is formed when hypoxanthine is substituted for guanine and base pairs with cytosine. Additionally, cDNAs can include nucleotides that have been derivatized chemically or enzymatically.
cDNAs can be synthesized on a substrate. Synthesis on the surface of a substrate may be accomplished using a chemical coupling procedure and a piezoelectric printing apparatus as described by Baldeschweiler et al. (PCT publication WO95/251116). Alternatively, the cDNAs can be synthesized on a substrate surface using a self-addressable electronic device that controls when reagents are added as described by Heller et al. (U.S. Pat. No. 5,605,662). cDNAs can be synthesized directly on a substrate by sequentially dispensing reagents for their synthesis on the substrate surface or by dispensing preformed DNA fragments to the substrate surface. Typical dispensers include a micropipette delivering solution to the substrate with a robotic system to control the position of the micropipette with respect to the substrate. There can be a multiplicity of dispensers so that reagents can be delivered to the reaction regions efficiently.
cDNAs can be immobilized on a substrate by covalent means such as by chemical bonding procedures or UV irradiation. In one method, a cDNA is bound to a glass surface which has been modified to contain epoxide or aldehyde groups. In another method, a cDNA is placed on a polylysine coated surface and UV cross-linked to it as described by Shalon et al. (WO95/35505). In yet another method, a cDNA is actively transported from a solution to a given position on a substrate by electrical means (Heller, supra). cDNAs do not have to be directly bound to the substrate, but rather can be bound to the substrate through a linker group. The linker groups are typically about 6 to 50 atoms long to provide exposure of the attached cDNA. Preferred linker groups include ethylene glycol oligomers, diamines, diacids and the like. Reactive groups on the substrate surface react with a terminal group of the linker to bind the linker to the substrate. The other terminus of the linker is then bound to the cDNA. Alternatively, polynucleotides, plasmids or cells can be arranged on a filter. In the latter case, cells are lysed, proteins and cellular components degraded, and the DNA is coupled to the filter by UV cross-linking.
The cDNAs may be used for a variety of purposes. For example, the composition of the invention may be used on an array. The array, in turn, can be used in high-throughput methods for detecting a related polynucleotide in a sample, screening a plurality of molecules or compounds to identify a ligand, diagnosing prostate cancer, or inhibiting or inactivating a therapeutically relevant gene related to the cDNA.
When the cDNAs of the invention are employed on a microarray, the cDNAs are arranged in an ordered fashion so that each cDNA is present at a specified location. Because the cDNAs are at specified locations on the substrate, the hybridization patterns and intensities, which together create a unique expression profile, can be interpreted in terms of expression levels of particular genes and can be correlated with a particular metabolic process, condition, disorder, disease, stage of disease, or treatment.
Hybridization
The cDNAs or fragments or complements thereof may be used in various hybridization technologies. The cDNAs may be labeled using a variety of reporter molecules by either PCR, recombinant, or enzymatic techniques. For example, a commercially available vector containing the cDNA is transcribed in the presence of an appropriate polymerase, such as T7 or SP6 polymerase, and at least one labeled nucleotide. Commercial kits are available for labeling and cleanup of such cDNAs. Radioactive (Amersham Pharmacia Biotech (APB), Piscataway N.J.), fluorescent (Operon Technologies, Alameda Calif.), and chemiluminescent labeling (Promega, Madison Wis.) are well known in the art.
A cDNA may represent the complete coding region of an mRNA or be designed or derived from unique regions of the mRNA or genomic molecule, an intron, a 3′ untranslated region, or from a conserved motif. The cDNA is at least 18 contiguous nucleotides in length and is usually single stranded. Such a cDNA may be used under hybridization conditions that allow binding only to an identical sequence, a naturally occurring molecule encoding the same protein, or an allelic variant. Discovery of related human and mammalian sequences may also be accomplished using a pool of degenerate cDNAs and appropriate hybridization conditions. Generally, a cDNA for use in Southern or northern hybridizations may be from about 400 to about 6000 nucleotides long. Such cDNAs have high binding specificity in solution-based or substrate-based hybridizations. An oligonucleotide, a fragment of the cDNA, may be used to detect a polynucleotide in a sample using PCR.
The stringency of hybridization is determined by G+C content of the cDNA, salt concentration, and temperature. In particular, stringency is increased by reducing the concentration of salt or raising the hybridization temperature. In solutions used for some membrane based hybridizations, addition of an organic solvent such as formamide allows the reaction to occur at a lower temperature. Hybridization may be performed with buffers, such as 5×saline sodium citrate (SSC) with 1% sodium dodecyl sulfate (SDS) at 60° C., that permit the formation of a hybridization complex between nucleic acid sequences that contain some mismatches. Subsequent washes are performed with buffers such as 0.2×SSC with 0.1% SDS at either 45° C. (medium stringency) or 65°-68° C. (high stringency). At high stringency, hybridization complexes will remain stable only where the nucleic acid molecules are completely complementary. In some membrane-based hybridizations, preferably 35% or most preferably 50%, formamide may be added to the hybridization solution to reduce the temperature at which hybridization is performed. Background signals may be reduced by the use of detergents such as Sarkosyl or Triton X-100 (Sigma Aldrich, St. Louis Mo.) and a blocking agent such as denatured salmon sperm DNA. Selection of components and conditions for hybridization are well known to those skilled in the art and are reviewed in Ausubel et al. (1997, Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., Units 2.8-2.11, 3.18-3.19 and 4-64.9).
Dot-blot, slot-blot, low density and high density arrays are prepared and analyzed using methods known in the art. cDNAs from about 18 consecutive nucleotides to about 5000 consecutive nucleotides in length are contemplated by the invention and used in array technologies. The preferred number of cDNAs on an array is at least about 100,000, a more preferred number is at least about 40,000, an even more preferred number is at least about 10,000, and a most preferred number is at least about 600 to about 800. The array may be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and SNPs. Such information may be used to determine gene function; to understand the genetic basis of a disorder; to diagnose a disorder; and to develop and monitor the activities of therapeutic agents being used to control or cure a disorder. (See, e.g., U.S. Pat. No. 5,474,796; WO95/11995; WO95/35505; U.S. Pat. No. 5,605,662; and U.S. Pat. No. 5,958,342.)
Screening and Purification Assays
A cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand which specifically binds the cDNA. Ligands may be DNA molecules, RNA molecules, peptide nucleic acid molecules, peptides, proteins such as transcription factors, promoters, enhancers, repressors, and other proteins that regulate replication, transcription, or translation of the polynucleotide in the biological system. The assay involves combining the cDNA or a fragment thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound cDNA to identify at least one ligand that specifically binds the cDNA.
In one embodiment, the cDNA may be incubated with a library of isolated and purified molecules or compounds and binding activity determined by methods such as a gel-retardation assay (U.S. Pat. No. 6,010,849) or a reticulocyte lysate transcriptional assay. In another embodiment, the cDNA may be incubated with nuclear extracts from biopsied and/or cultured cells and tissues. Specific binding between the cDNA and a molecule or compound in the nuclear extract is initially determined by gel shift assay. Protein binding may be confirmed by raising antibodies against the protein and adding the antibodies to the gel-retardation assay where specific binding will cause a supershift in the assay.
In another embodiment, the cDNA may be used to purify a molecule or compound using affinity chromatography methods well known in the art. In one embodiment, the cDNA is chemically reacted with cyanogen bromide groups on a polymeric resin or gel. Then a sample is passed over and reacts with or binds to the cDNA. The molecule or compound which is bound to the cDNA may be released from the cDNA by increasing the salt concentration of the flow-through medium and collected.
The cDNA may be used to purify a ligand from a sample. A method for using a cDNA to purify a ligand would involve combining the cDNA or a fragment thereof with a sample under conditions to allow specific binding, recovering the bound cDNA, and using an appropriate agent to separate the cDNA from the purified ligand.
Protein Production and Uses
The full length cDNAs or fragment thereof may be used to produce purified proteins using recombinant DNA technologies described herein and taught in Ausubel et al. (supra; Units 16.1-16.62). One of the advantages of producing proteins by these procedures is the ability to obtain highly-enriched sources of the proteins thereby simplifying purification procedures.
The proteins may contain amino acid substitutions, deletions or insertions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. Such substitutions may be conservative in nature when the substituted residue has structural or chemical properties similar to the original residue (e.g., replacement of leucine with isoleucine or valine) or they may be nonconservative when the replacement residue is radically different (e.g., a glycine replaced by a tryptophan). Computer programs included in LASERGENE software (DNASTAR, Madison Wis.), MACVECTOR software (Genetics Computer Group, Madison Wis.) and RasMol software (www.umass.edu/microbio/rasmol) may be used to help determine which and how many amino acid residues in a particular portion of the protein may be substituted, inserted, or deleted without abolishing biological or immunological activity.
Expression of Encoded Proteins
Expression of a particular cDNA may be accomplished by cloning the cDNA into a vector and transforming this vector into a host cell, The cloning vector used for the construction of cDNA libraries in the LIFESEQ databases may also be used for expression. Such vectors usually contain a promoter and a polylinker useful for cloning, priming, and transcription. An exemplary vector may also contain the promoter for β-galactosidase, an amino-terminal methionine and the subsequent seven amino acid residues of β-galactosidase. The vector may be transformed into competent E. coli cells. Induction of the isolated bacterial strain with isopropylthiogalactoside (IPTG) using standard methods will produce a fusion protein that contains an N terminal methionine, the first seven residues of β-galactosidase, about 15 residues of linker, and the protein encoded by the cDNA.
The cDNA may be shuttled into other vectors known to be useful for expression of protein in specific hosts. Oligonucleotides containing cloning sites and fragments of DNA sufficient to hybridize to stretches at both ends of the cDNA may be chemically synthesized by standard methods. These primers may then be used to amplify the desired fragments by PCR. The fragments may be digested with appropriate restriction enzymes under standard conditions and isolated using gel electrophoresis. Alternatively, similar fragments are produced by digestion of the cDNA with appropriate restriction enzymes and filled in with chemically synthesized oligonucleotides. Fragments of the coding sequence from more than one gene may be ligated together and expressed.
Signal sequences that dictate secretion of soluble proteins are particularly desirable as component parts of a recombinant sequence. For example, a chimeric protein may be expressed that includes one or more additional purification-facilitating domains. Such domains include, but are not limited to, metal-chelating domains that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex, Seattle Wash.). The inclusion of a cleavable-linker sequence such as ENTEROKINASEMAX (Invitrogen, San Diego Calif.) between the protein and the purification domain may also be used to recover the protein.
Suitable host cells may include, but are not limited to, mammalian cells such as Chinese Hamster Ovary (CHO) and human 293 cells, insect cells such as Sf9 cells, plant cells such as Nicotiana tabacum, yeast cells such as Saccharomyces cerevisiae, and bacteria such as E. coli. For each of these cell systems, a useful vector may also include an origin of replication and one or two selectable markers to allow selection in bacteria as well as in a transformed eukaryotic host. Vectors for use in eukaryotic host cells may require the addition of 3′ poly(A) tail if the cDNA lacks poly(A).
Additionally, the vector may contain promoters or enhancers that increase gene expression. Many promoters are known and used in the art. Most promoters are host specific and exemplary promoters includes SV40 promoters for CHO cells; T7 promoters for bacterial hosts; viral promoters and enhancers for plant cells; and PGH promoters for yeast. Adenoviral vectors with the rous sarcoma virus enhancer or retroviral vectors with long terminal repeat promoters may be used to drive protein expression in mammalian cell lines. Once homogeneous cultures of recombinant cells are obtained, large quantities of secreted soluble protein may be recovered from the conditioned medium and analyzed using chromatographic methods well known in the art. An alternative method for the production of large amounts of secreted protein involves the transformation of mammalian embryos and the recovery of the recombinant protein from milk produced by transgenic cows, goats, sheep, and the like.
In addition to recombinant production, proteins or portions thereof may be produced manually, using solid-phase techniques (Stewart et al. (1969) Solid-Phase Peptide Synthesis, W H Freeman, San Francisco Calif.; Merrifield (1963) J Am Chem Soc 5:2149-2154), or using machines such as the ABI 431A peptide synthesizer (Applied Biosystems, Foster City Calif.). Proteins produced by any of the above methods may be used as pharmaceutical compositions to treat disorders associated with null or inadequate expression of the genomic sequence.
Screening and Purification Assays
A protein or a portion thereof encoded by the cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand with specific binding affinity or to purify a molecule or compound from a sample. The protein or portion thereof employed in such screening may be free in solution, affixed to an abiotic or biotic substrate, or located intracellularly. For example, viable or fixed prokaryotic host cells that are stably transformed with recombinant nucleic acids that have expressed and positioned a protein on their cell surface can be used in screening assays. The cells are screened against a library or a plurality of ligands and the specificity of binding or formation of complexes between the expressed protein and the ligand may be measured. The ligands may be DNA, RNA, or PNA molecules, agonists, antagonists, antibodies, immunoglobulins, inhibitors, peptides, pharmaceutical agents, proteins, drugs, or any other test molecule or compound that specifically binds the protein. An exemplary assay involves combining the mammalian protein or a portion thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound protein to identify at least one ligand that specifically binds the protein.
This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding the protein specifically compete with a test compound capable of binding to the protein or oligopeptide or fragment thereof. One method for high throughput screening using very small assay volumes and very small amounts of test compound is described in U.S. Pat. No. 5,876,946. Molecules or compounds identified by screening may be used in a model system to evaluate their toxicity, diagnostic, or therapeutic potential.
The protein may be used to purify a ligand from a sample. A method for using a protein to purify a ligand would involve combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and using an appropriate chaotropic agent to separate the protein from the purified ligand.
Production of Antibodies
A protein encoded by a cDNA of the invention may be used to produce specific antibodies. Antibodies may be produced using an oligopeptide or a portion of the protein with inherent immunological activity. Methods for producing antibodies include: 1) injecting an animal, usually goats, rabbits, or mice, with the protein, or an antigenically-effective portion or an oligopeptide thereof, to induce an immune response; 2) engineering hybridomas to produce monoclonal antibodies; 3) inducing in vivo production in the lymphocyte population; or 4) screening libraries of recombinant immunoglobulins. Recombinant immunoglobulins may be produced as taught in U.S. Pat. No. 4,816,567.
Antibodies produced using the proteins of the invention are useful for the diagnosis of prepathologic disorders as well as the diagnosis of chronic or acute diseases characterized by abnormalities in the expression, amount, or distribution of the protein. A variety of protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies specific for proteins are well known in the art. Immunoassays typically involve the formation of complexes between a protein and its specific binding molecule or compound and the measurement of complex formation. Immunoassays may employ a two-site, monoclonal-based assay that utilizes monoclonal antibodies reactive to two noninterfering epitopes on a specific protein or a competitive binding assay (Pound (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).
Immunoassay procedures may be used to quantify expression of the protein in cell cultures, in subjects with a particular disorder or in model animal systems under various conditions. Increased or decreased production of proteins as monitored by immunoassay may contribute to knowledge of the cellular activities associated with developmental pathways, engineered conditions or diseases, or treatment efficacy. The quantity of a given protein in a given tissue may be determined by performing immunoassays on freeze-thawed detergent extracts of biological samples and comparing the slope of the binding curves to binding curves generated by purified protein.
Labeling of Molecules for Assay
A wide variety of reporter molecules and conjugation techniques are known by those skilled in the art and may be used in various cDNA, polynucleotide, protein, peptide or antibody assays. Synthesis of labeled molecules may be achieved using commercial kits for incorporation of a labeled nucleotide such as 32P-dCTP, Cy3-dCTP or Cy5-dCTP or amino acid such as 35S-methionine. Polynucleotides, cDNAs, proteins, or antibodies may be directly labeled with a reporter molecule by chemical conjugation to amines, thiols and other groups present in the molecules using reagents such as BIODIPY or FITC (Molecular Probes, Eugene Oreg.).
The proteins and antibodies may be labeled for purposes of assay by joining them, either covalently or noncovalently, with a reporter molecule that provides for a detectable signal. A wide variety of labels and conjugation techniques are known and have been reported in the scientific and patent literature including, but not limited to U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
Diagnostics
The cDNAs, or fragments thereof, may be used to detect and quantify differential gene expression; absence, presence, or excess expression of mRNAs; or to monitor mRNA levels during therapeutic intervention in subjects with prostate-related disorders including prostate cancer. These cDNAs can also be utilized as markers of treatment efficacy against prostate cancer over a period ranging from several days to months. The diagnostic assay may use hybridization or amplification technology to compare gene expression in a biological sample from a patient to standard samples in order to detect altered gene expression. Qualitative or quantitative methods for this comparison are well known in the art.
For example, the cDNA may be labeled by standard methods and added to a biological sample from a patient under conditions for hybridization complex formation. After an incubation period, the sample is washed and the amount of label (or signal) associated with hybridization complexes is quantified and compared with a standard value. If the amount of label in the patient sample is significantly altered in comparison to the standard value, then the presence of the associated condition, disease or disorder is indicated.
In order to provide a basis for the diagnosis of a condition, disease or disorder associated with gene expression, a normal or standard expression profile is established. This may be accomplished by combining a biological sample taken from normal subjects, either animal or human, with a probe under conditions for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained using normal subjects with values from an experiment in which a known amount of a substantially purified target sequence is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a particular condition, disease, or disorder. Deviation from standard values toward those associated with a particular condition is used to diagnose that condition.
Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies and in clinical trial or to monitor the treatment of an individual patient. Once the presence of a condition is established and a treatment protocol is initiated, diagnostic assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in a normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
Gene Expression Profiles
A gene expression profile comprises a plurality of cDNAs and a plurality of detectable hybridization complexes, wherein each complex is formed by hybridization of one or more probes to one or more complementary sequences in a sample. The cDNA composition of the invention is used as elements on a microarray to analyze gene expression profiles. In one embodiment, the microarray is used to monitor the progression of prostate cancer. Researchers can assess and catalog the differences in gene expression between healthy and diseased tissues or cells. By analyzing changes in patterns of gene expression, prostate cancer can be diagnosed at earlier stages before the patient is symptomatic. The invention can be used to formulate a prognosis and to design a treatment regimen. The invention can also be used to monitor the efficacy of treatment. For treatments with known side effects, the microarray is employed to improve the treatment regimen. A dosage is established that causes a change in genetic expression patterns indicative of successful treatment. Expression patterns associated with the onset of undesirable side effects are avoided. This approach may be more sensitive and rapid than waiting for the patient to show inadequate improvement, or to manifest side effects, before altering the course of treatment.
In another embodiment, animal models which mimic a human disease can be used to characterize expression profiles associated with a particular condition, disorder or disease; or treatment of the condition, disorder or disease. Novel treatment regimens may be tested in these animal models using microarrays to establish and then follow expression profiles over time. In addition, microarrays may be used with cell cultures or tissues removed from animal models to rapidly screen large numbers of candidate drug molecules, looking for ones that produce an expression profile similar to those of known therapeutic drugs, with the expectation that molecules with the same expression profile will likely have similar therapeutic effects. Thus, the invention provides the means to rapidly determine the molecular mode of action of a drug.
Assays Using Antibodies
Antibodies directed against epitopes on a protein encoded by a cDNA of the invention may be used in assays to quantify the amount of protein found in a particular human cell. Such assays include methods utilizing the antibody and a label to detect expression level under normal or disease conditions. The antibodies may be used with or without modification, and labeled by joining them, either covalently or noncovalently, with a labeling moiety.
Protocols for detecting and measuring protein expression using either polyclonal or monoclonal antibodies are well known in the art. Examples include ELISA, RIA, and fluorescent activated cell sorting (FACS). Such immunoassays typically involve the formation of complexes between the protein and its specific antibody and the measurement of such complexes. These and other assays are described in Pound (supra). The method may employ a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes, or a competitive binding assay. (See, e.g., Coligan et al. (1997) Current Protocols in Immunology, Wiley-Interscience, New York N.Y.; Pound, supra)
Therapeutics
The cDNAs and fragments thereof can be used in gene therapy. cDNAs can be delivered ex vivo to target cells, such as cells of bone marrow. Once stable integration and transcription and or translation are confirmed, the bone marrow may be reintroduced into the subject. Expression of the protein encoded by the cDNA may correct a cancer associated with mutation of a normal sequence, reduction or loss of an endogenous target protein, or overepression of an endogenous or mutant protein. Alternatively, cDNAs may be delivered in vivo using vectors such as retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and bacterial plasmids. Non-viral methods of gene delivery include cationic liposomes, polylysine conjugates, artificial viral envelopes, and direct injection of DNA (Anderson (1998) Nature 392:25-30; Dachs et al. (1997) Oncol Res 9:313-325; Chu et al. (1998) J Mol Med 76(34):184-192; Weiss et al. (1999) Cell Mol Life Sci 55(3):334-358; Agrawal (1996) Antisense Therapeutics, Humana Press, Totowa N.J.; and August et al. (1997) Gene Therapy (Advances in Pharmacology, Vol. 40), Academic Press, San Diego Calif.).
In addition, expression of a particular protein can be regulated through the specific binding of a fragment of a cDNA to a genomic sequence or an mRNA which encodes the protein or directs its transcription or translation. The cDNA can be modified or derivatized to any RNA-like or DNA-like material including peptide nucleic acids, branched nucleic acids, and the like. These sequences can be produced biologically by transforming an appropriate host cell with a vector containing the sequence of interest.
Molecules which regulate the activity of the cDNA or encoded protein are useful as therapeutics for prostate cancer. Such molecules include agonists which increase the expression or activity of the polynucleotide or encoded protein, respectively; or antagonists which decrease expression or activity of the polynucleotide or encoded protein, respectively. In one aspect, an antibody which specifically binds the protein may be used directly as an antagonist or indirectly as a delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express the protein.
Additionally, any of the proteins, or their ligands, or complementary nucleic acid sequences may be administered as pharmaceutical compositions or in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to affect the treatment or prevention of the conditions and disorders associated with an immune response. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects. Further, the therapeutic agents may be combined with pharmaceutically-acceptable carriers including excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration used by doctors and pharmacists may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).
Model Systems
Animal models may be used as bioassays where they exhibit a phenotypic response similar to that of humans and where exposure conditions are relevant to human exposures. Mammals are the most common models, and most infectious agent, cancer, drug, and toxicity studies are performed on rodents such as rats or mice because of low cost, availability, lifespan, reproductive potential, and abundant reference literature. Inbred and outbred rodent strains provide a convenient model for investigation of the physiological consequences of underexpression or overexpression of genes of interest and for the development of methods for diagnosis and treatment of diseases. A mammal inbred to overexpress a particular gene (for example, secreted in milk) may also serve as a convenient source of the protein expressed by that gene.
Transgenic Animal Models
Transgenic rodents that overexpress or underexpress a gene of interest may be inbred and used to model human diseases or to test therapeutic or toxic agents. (See, e.g., U.S. Pat. No. 5,175,383 and U.S. Pat. No. 5,767,337.) In some cases, the introduced gene may be activated at a specific time in a specific tissue type during fetal or postnatal development. Expression of the transgene is monitored by analysis of phenotype, of tissue-specific mRNA expression, or of serum and tissue protein levels in transgenic animals before, during, and after challenge with experimental drug therapies.
Embryonic Stem Cells
Embryonic (ES) stem cells isolated from rodent embryos retain the potential to form embryonic tissues. When ES cells such as the mouse 129/SvJ cell line are placed in a blastocyst from the C57BL/6 mouse strain, they resume normal development and contribute to tissues of the live-born animal. ES cells are preferred for use in the creation of experimental knockout and knockin animals. The method for this process is well known in the art and the steps are: the cDNA is introduced into a vector, the vector is transformed into ES cells, transformed cells are identified and microinjected into mouse cell blastocysts, blastocysts are surgically transferred to pseudopregnant dams. The resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
Knockout Analysis
In gene knockout analysis, a region of a gene is enzymatically modified to include a non-natural intervening sequence such as the neomycin phosphotransferase gene (neo; Capecchi (1989) Science 244:1288-1292). The modified gene is transformed into cultured ES cells and integrates into the endogenous genome by homologous recombination. The inserted sequence disrupts transcription and translation of the endogenous gene.
Knockin Analysis
ES cells can be used to create knockin humanized animals or transgenic animal models of human diseases. With knockin technology, a region of a human gene is injected into animal ES cells, and the human sequence integrates into the animal cell genome. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on the progression and treatment of the analogous human condition.
As described herein, the uses of the cDNAs, provided in the Sequence Listing of this application, and their encoded proteins are exemplary of known techniques and are not intended to reflect any limitation on their use in any technique that would be known to the person of average skill in the art. Furthermore, the cDNAs provided in this application may be used in molecular biology techniques that have not yet been developed, provided the new techniques rely on properties of nucleotide sequences that are currently known to the person of ordinary skill in the art, e.g., the triplet genetic code, specific base pair interactions, and the like. Likewise, reference to a method may include combining more than one method for obtaining or assembling full length cDNA sequences that will be known to those skilled in the art. It is also to be understood that this invention is not limited to the particular methodology, protocols, and reagents described, as these may vary. It is also understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention.
EXAMPLES
I Construction of cDNA Libraries
RNA was purchased from Clontech Laboratories (Palo Alto Calif.) or isolated from various tissues. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL reagent (Life Technologies, Rockville Md.). The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated with either isopropanol or ethanol and sodium acetate, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In most cases, RNA was treated with DNase. For most libraries, poly(A) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (Qiagen, Valencia Calif.), or an OLIGOTEX mRNA purification kit (Qiagen). Alternatively, poly(A) RNA was isolated directly from tissue lysates using other kits, including the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).
In some cases, Stratagene (La Jolla Calif.) was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies) using the recommended procedures or similar methods known in the art. (See Ausubel, supra, Units 5.1 through 6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (APB) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of the PBLUESCRIPT phagemid (Stratagene), PSPORT1 plasmid (Life Technologies), or PINCY plasmid (Incyte Pharmaceuticals). Recombinant plasmids were transformed into XL1-BLUE, XL1-BLUEMRF, or SOLR competent E. coli cells (Stratagene) or DH5α, DH10B, or ELECTROMAX DH10B competent E. coli cells (Life Technologies).
In some cases, libraries were superinfected with a 5×excess of the helper phage, M13K07, according to the method of Vieira et al. (1987, Methods Enzymol. 153:3-11) and normalized or subtracted using a methodology adapted from Soares (1994, Proc Natl Acad Sci 91:9228-9232), Swaroop et al. (1991, Nucl Acids Res 19:1954), and Bonaldo et al. (1996, Genome Research 6:791-806). The modified Soares normalization procedure was utilized to reduce the repetitive cloning of highly expressed high abundance cDNAs while maintaining the overall sequence complexity of the library. Modification included significantly longer hybridization times which allowed for increased gene discovery rates by biasing the normalized libraries toward those infrequently expressed low-abundance cDNAs which are poorly represented in a standard transcript image (Soares et al., supra).
II Isolation and Sequencing of cDNA Clones
Plasmids were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using one of the following: the Magic or WIZARD MINIPREPS DNA purification system (Promega); the AGTC MINIPREP purification kit (Edge BioSystems, Gaithersburg Md.); the QIAWELL 8, QIAWELL 8 Plus, or QIAWELL 8 Ultra plasmid purification systems, or the REAL PREP 96 plasmid purification kit (QIAGEN, Valencia Calif.). Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao (1994) Anal Biochem 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 thermal cycler (Applied Biosystems) or the DNA ENGINE thermal cycler (MJ Research, Watertown Mass.) in conjunction with the HYDRA microdispenser (Robbins Scientific, Sunnyvale Calif.) or the MICROLAB 2200 system (Hamilton, Reno Nev.). cDNA sequencing reactions were prepared using reagents provided by APB or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE cycle sequencing kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled cDNAs were carried out using the MEGABACE 1000 DNA sequencing system (APB); the ABI PRISM 373 or 377 sequencing systems (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, supra, Unit 7.7).
III Extension of cDNA Sequences
Nucleic acid sequences were extended using the cDNA clones and oligonucleotide primers. One primer was synthesized to initiate 5′ extension of the known fragment, and the other, to initiate 3′ extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. Preferred libraries are ones that have been size-selected to include larger cDNAs. Also, random primed libraries are preferred because they will contain more sequences with the 5′ and upstream regions of genes. A randomly primed library is particularly useful if an oligo d(T) library does not yield a full-length cDNA.
High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the DNA ENGINE thermal cycler (MJ Research). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)2SO4, and β-mercaptoethanol, Taq DNA polymerase (APB), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B (Incyte Pharmaceuticals): Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C. In the alternative, the parameters for primer pair T7 and SK+ (Stratagene) were as follows: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 57° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN reagent (0.25% reagent in 1×TE, v/v; Molecular Probes) and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.) and allowing the DNA to bind to the reagent. The plate was scanned in a FLUOROSKAN II (Labsystems Oy) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.
The extended nucleic acids were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC18 vector (APB). For shotgun sequencing, the digested nucleic acids were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with AGARACE enzyme (Promega). Extended clones were religated using T4 DNA ligase (New England Biolabs, Beverly Mass.) into pUC18 vector (APB), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transformed into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2×carbenicillin liquid media.
The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (APB) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified using PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions described above. Samples were diluted with 20% dimethylsulfoxide (DMSO; 1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT cycle sequencing kit (APB) or the ABI PRISM BIGDYE terminator cycle sequencing kit (Applied Biosystems).
IV Assembly and Analysis of Sequences
Component nucleotide sequences from chromatograms were subjected to PHRED analysis (Phil Green, University of Washington, Seattle Wash.) and assigned a quality score. The sequences having at least a required quality score were subject to various pre-processing algorithms to eliminate low quality 3′ ends, vector and linker sequences, polyA tails, Alu repeats, mitochondrial and ribosomal sequences, bacterial contamination sequences, and sequences smaller than 50 base pairs. Sequences were screened using the BLOCK 2 program (Incyte Genomics), a motif analysis program based on sequence information contained in the SWISS-PROT and PROSITE databases (Bairoch et al. (1997) Nucleic Acids Res 25:217-221; Attwood et al. (1997) J Chem Inf Comput Sci 37:417-424).
Processed sequences were subjected to assembly procedures in which the sequences were assigned to bins, one sequence per bin. Sequences in each bin were assembled to produce consensus sequences, templates. Subsequent new sequences were added to existing bins using BLAST (Altschul (supra); Altschul et al. (supra); Karlin et al. (1988) Proc Natl Acad Sci 85:841-845), BLASTn (vers.1.4, WashU), and CROSSMATCH software (Phil Green, supra). Candidate pairs were identified as all BLAST hits having a quality score greater than or equal to 150. Alignments of at least 82% local identity were accepted into the bin. The component sequences from each bin were assembled using PHRAP (Phil Green, supra). Bins with several overlapping component sequences were assembled using DEEP PHRAP (Phil Green, supra).
Bins were compared against each other, and those having local similarity of at least 82% were combined and reassembled. Reassembled bins having templates of insufficient overlap (less than 95% local identity) were re-split. Assembled templates were also subjected to analysis by STITCHER/EXON MAPPER algorithms which analyzed the probabilities of the presence of splice variants, alternatively spliced exons, splice junctions, differential expression of alternative spliced genes across tissue types, disease states, and the like. These resulting bins were subjected to several rounds of the above assembly procedures to generate the template sequences found in the LIFESEQ GOLD database (Incyte Genomics).
The assembled templates were annotated using the following procedure. Template sequences were analyzed using BLASTn (vers. 2.0, NCBI) versus GBpri (GenBank vers. 116). “Hits” were defined as an exact match having from 95% local identity over 200 base pairs through 100% local identity over 100 base pairs, or a homolog match having an E-value equal to or greater than 1×10−8. (The “E-value” quantifies the statistical probability that a match between two sequences occurred by chance). The hits were subjected to frameshift FASTx versus GENPEPT (GenBank version 109). In this analysis, a homolog match was defined as having an E-value of 1×10−8. The assembly method used above was described in U.S. Ser. No. 09/276,534, filed Mar. 25, 1999, and the LIFESEQ GOLD user manual (Incyte Genomics).
Following assembly, template sequences were subjected to motif, BLAST, Hidden Markov Model (HMM; Pearson and Lipman (1988) Proc Natl Acad Sci 85:2444-2448; Smith and Waterman (1981) J Mol Biol 147:195-197), and functional analyses, and categorized in protein hierarchies using methods described in U.S. Ser. No. 08/812,290, filed Mar. 6, 1997; U.S. Ser. No. 08/947,845, filed Oct. 9, 1997; U.S. Pat. No. 5,953,727; and U.S. Ser. No. 09/034,807, filed Mar. 4, 1998. Template sequences may be further queried against public databases such as the GenBank rodent, mammalian, vertebrate, eukaryote, prokaryote, and human EST databases.
V Selection of Sequences, Microarray Preparation and Use
Incyte clones represent template sequences derived from the LIFESEQ GOLD assembled human sequence database (Incyte Genomics). In cases where more than one clone was available for a particular template, the 5′-most clone in the template was used on the microarray. The HUMAN GENOME GEM series 1-3 microarrays (Incyte Pharmaceuticals) contain 28,626 array elements which represent 10,068 annotated clusters and 18,558 unannotated clusters. Tables 1 and 2 show the GenBank annotations for SEQ ID NOs:1-x of this invention as produced by BLAST analysis.
To construct microarrays, cDNAs were amplified from bacterial cells using primers complementary to vector sequences flanking the cDNA insert. Thirty cycles of PCR increased the initial quantity of cDNAs from 1-2 ng to a final quantity greater than 5 μg. Amplified cDNAs were then purified using SEPHACRYL-400 columns (APB). Purified cDNAs were immobilized on polymer-coated glass slides. Glass microscope slides (Corning, Corning N.Y.) were cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides were etched in 4% hydrofluoric acid (VWR Scientific Products, West Chester Pa.), washed thoroughly in distilled water, and coated with 0.05% aminopropyl silane (Sigma Aldrich) in 95% ethanol. Coated slides were cured in a 110° C. oven. cDNAs were applied to the coated glass substrate using a procedure described in U.S. Pat. No. 5,807,522. One microliter of the cDNA at an average concentration of 100 ng/ul was loaded into the open capillary printing element by a high-speed robotic apparatus which then deposited about 5 nl of cDNA per slide.
Microarrays were UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene), and then washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites were blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (Tropix, Bedford Mass.) for 30 minutes at 60° C. followed by washes in 0.2% SDS and distilled water as before.
VI Preparation of Samples
The following cell lines were obtained from American Type Culture Collection (Manassus Va.) and cultured in media according to the manufacturer's protocols: PZ-HPV-7 was derived from epithelial cells cultured from normal tissue from the peripheral zone of the prostate. CA-HPV-10 was derived from cells from a prostatic adenocarcinoma of Gleason Grade 4/4. Both PZ cells were transformed by transfection with human papillomavirus (HPV)-18, and express keratins 5 and 8 and the early region 6 oncoprotein of HPV. PZ-HPV-7 and CA-HPV-10 are negative for prostate specific antigen (PSA). DU-145 is a prostate carcinoma cell line isolated from a 69 year-old man with widespread metastatic disease. DU-145 was isolated from a brain metastasis and has no detectable hormone sensitivity. Further, DU-145 is negative for PSA: PC-3 is a prostate adenocarcinoma cell line isolated from a 62 year-old male with grade IV prostate adenocarcinoma metastasized to the bone. PC-3 cells exhibit low acid phosphatase and testosterone-5-alpha reductase activities; LNCaP is a prostate carcinoma cell line isolated from a lymph node biopsy of a 50 year-old male with metastatic prostate carcinoma. LNCaP cells are responsive to 5-alpha-dihydrotestosterone and express androgen receptors.
PrEC, a primary prostate epithelial cell line isolated from a normal donor, was obtained from Cambrex Bioscience Inc. (Walkersville Md.) and cultured in media according to the manufacturer's protocols.
All cultures were maintained at 37° C. and 5% CO2 for 3-5 passages.
Isolation and Labeling of Sample cDNAs
Cells were harvested when cultures were approximately 70% confluent and lysed in 1 ml of TRIZOL reagent (5×106 cells/ml; Life Technologies). The lysates were vortexed thoroughly and incubated at room temperature for 2-3 minutes and extracted with 0.5 ml chloroform. The extract was mixed, incubated at room temperature for 5 minutes, and centrifuged at 15,000 rpm for 15 minutes at 4° C. The aqueous layer was collected and an equal volume of isopropanol was added. Samples were mixed, incubated at room temperature for 10 minutes, and centrifuged at 15,000 rpm for 20 minutes at 4° C. The supernatant was removed and the RNA pellet was washed with 1 ml of 70% ethanol, centrifuged at 15,000 rpm at 4° C., and resuspended in RNase-free water. The concentration of the RNA was determined by measuring the optical density at 260 nm.
Poly(A) RNA was prepared using an OLIGOTEX mRNA kit (QIAGEN) with the following modifications: OLIGOTEX beads were washed in tubes instead of on spin columns, resuspended in elution buffer, and then loaded onto spin columns to recover mRNA. To obtain maximum yield, the mRNA was eluted twice.
Each poly(A) RNA sample was reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-d(T) primer (21 mer), 1×first strand buffer, 0.03 units/ul RNase inhibitor, 500 uM dATP, 500 uM dGTP, 500 uM dTTP, 40 uM dCTP, and 40 uM either dCTP-Cy3 or dCTP-Cy5 (APB). The reverse transcription reaction was performed in a 25 ml volume containing 200 ng poly(A) RNA using the GEMBRIGHT kit (Incyte Pharmaceuticals). Specific control poly(A) RNAs (YCFR06, YCFR45, YCFR67, YCFR85, YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were synthesized by in vitro transcription from non-coding yeast genomic DNA (W. Lei, unpublished). As quantitative controls, control mRNAs (YCFR06, YCFR45, YCFR67, and YCFR85) at 0.002 ng, 0.02 ng, 0.2 ng, and 2 ng were diluted into reverse transcription reaction at ratios of 1:100,000, 1:10,000, 1:1000, 1:100 (w/w) to sample mRNA, respectively. To sample differential expression patterns, control mRNAs (YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were diluted into reverse transcription reaction at ratios of 1:3, 3:1, 1:10, 10:1, 1:25, 25:1 (w/w) to sample mRNA. Reactions were incubated at 37° C. for 2 hr, treated with 2.5 ml of 0.5M sodium hydroxide, and incubated for 20 minutes at 85° C. to the stop the reaction and degrade the RNA.
cDNAs were purified using two successive CHROMA SPIN 30 gel filtration spin columns (Clontech). Cy3- and Cy5-labeled reaction samples were combined as follows: Aliquots of Cy3-labeled PrEC cDNA were individually mixed with Cy5 labeled cDNA from PZ-HPV-7, CA-HPV-10, DU-145, PC-3, and LNCaP cells. The mixtures were ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol, dried to completion using a SpeedVAC system (Savant Instruments, Holbrook N.Y.), and resuspended in 14 μl 5×SSC/0.2% SDS.
VII Hybridization and Detection
Hybridization reactions contained 9 μl of sample mixture containing 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5×SSC, 0.2% SDS hybridization buffer. The mixture was heated to 65° C. for 5 minutes and was aliquoted onto the microarray surface and covered with an 1.8 cm2 coverslip. The microarrays were transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber was kept at 100% humidity internally by the addition of 140 μl of 5×SSC in a corner of the chamber. The chamber containing the microarrays was incubated for about 6.5 hours at 60° C. The microarrays were washed for 10 min at 45° C. in low stringency wash buffer (1×SSC, 0.1% SDS), three times for 10 minutes each at 45° C. in high stringency wash buffer (0.1×SSC), and dried.
Reporter-labeled hybridization complexes were detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Santa Clara Calif.) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light was focused on the microarray using a 20×microscope objective (Nikon, Melville N.Y.). The slide containing the microarray was placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm×1.8 cm microarray used in the present example was scanned with a resolution of 20 micrometers.
In two separate scans, the mixed gas multiline laser excited the two fluorophores sequentially. Emitted light was split, based on wavelength, into two photomultiplier tube detectors (PMT R1477; Hamamatsu Photonics Systems, Bridgewater N.J.) corresponding to the two fluorophores. Appropriate filters positioned between the microarray and the photomultiplier tubes were used to filter the signals. The emission maxima of the fluorophores used were 565 nm for Cy3 and 650 nm for Cy5. Each microarray was typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus was capable of recording the spectra from both fluorophores simultaneously.
The sensitivity of the scans was calibrated using the signal intensity generated by a cDNA control species. Samples of the calibrating cDNA were separately labeled with the two fluorophores and identical amounts of each were added to the hybridization mixture. A specific location on the microarray contained a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
The output of the photomultiplier tube was digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Norwood, Mass.) installed in an IBM-compatible PC computer. The digitized data were displayed as an image where the signal intensity was mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data was also analyzed quantitatively. Where two different fluorophores were excited and measured simultaneously, the data were first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
A grid was superimposed over the fluorescence signal image such that the signal from each spot was centered in each element of the grid. The fluorescence signal within each element was then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis was the GEMTOOLS gene expression analysis program (Incyte Pharmaceuticals). Significance was defined as signal to background ratio exceeding 2× and area hybridization exceeding 40%.
VIII Data Analysis and Results
Array elements that exhibited at least 2.5-fold change in expression at one or more time points, a signal intensity over 250 units, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40% were identified as differentially expressed using the GEMTOOLS program (Incyte Genomics). Differential expression values were converted to log base 2 scale. Differential expression values were then compared between the cell lines to identify genes which discriminated between normal and cancerous and between non-metastatic and metastatic cancer. The student's t-test and Pearson correlation statistics were used to distinguish significant differences between the groups. The resulting cDNAs are shown in Tables 1 and 2. The cDNAs are identified by their Clone ID. Table 3 shows the sequence overlap between the clones identified in Tables 1 and 2 and gene templates. Columns 1-3 show the SEQ ID NO:, Template ID, and Clone ID, respectively. Columns 4 and 5 show the start and stop nucleotides for the clone on the template. Table 4 shows a GenBank homolog and description associated with at least a fragment of each Template ID. The descriptions were obtained using the sequences of the Sequence Listing and BLAST analysis. SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75 are highly correlated with metastatic prostate cancer cells PC-3, LNCaP, and DU-145, and SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101 are differentially expressed at significant levels in all of the prostate cancer cell lines.
IX Other Hybridization Technologies and Analyses
Other hybridization technologies utilize a variety of substrates such as nylon membranes, capillary tubes, etc. Arranging cDNAs on polymer coated slides is described in Example V; sample cDNA preparation and hybridization and analysis using polymer coated slides is described in examples VI and VII, respectively.
cDNAs are applied to a membrane substrate by one of the following methods. A mixture of cDNAs is fractionated by gel electrophoresis and transferred to a nylon membrane by capillary transfer. Alternatively, the cDNAs are individually ligated to a vector and inserted into bacterial host cells to form a library. The cDNAs are then arranged on a substrate by one of the following methods. In the first method, bacterial cells containing individual clones are robotically picked and arranged on a nylon membrane. The membrane is placed on LB agar containing selective agent (carbenicillin, kanamycin, ampicillin, or chloramphenicol depending on the vector used) and incubated at 37° C. for 16 hr. The membrane is removed from the agar and consecutively placed colony side up in 10% SDS, denaturing solution (1.5 M NaCl, 0.5 M NaOH ), neutralizing solution (1.5 M NaCl, 1 M Tris, pH 8.0), and twice in 2×SSC for 10 min each. The membrane is then UV irradiated in a STRATALINKER UV-crosslinker (Stratagene).
In the second method, cDNAs are amplified from bacterial vectors by thirty cycles of PCR using primers complementary to vector sequences flanking the insert. PCR amplification increases a starting concentration of 1-2 ng nucleic acid to a final quantity greater than 5 μg. Amplified nucleic acids from about 400 bp to about 5000 bp in length are purified using SEPHACRYL400 beads (APB). Purified nucleic acids are arranged on a nylon membrane manually or using a dot/slot blotting manifold and suction device and are immobilized by denaturation, neutralization, and UV irradiation as described above.
Hybridization probes derived from cDNAs of the Sequence Listing are employed for screening cDNAs, mRNAs, or genomic DNA in membrane-based hybridizations. Probes are prepared by diluting the cDNAs to a concentration of 40-50 ng in 45 μl TE buffer, denaturing by heating to 100° C. for five min and briefly centrifuging. The denatured cDNA is then added to a REDIPRIME tube (APB), gently mixed until blue color is evenly distributed, and briefly centrifuged. Five microliters of [32P]dCTP is added to the tube, and the contents are incubated at 37° C. for 10 min. The labeling reaction is stopped by adding 5 μl of 0.2M EDTA, and probe is purified from unincorporated nucleotides using a PROBEQUANT G-50 microcolumn (APB). The purified probe is heated to 100° C. for five min and then snap cooled for two min on ice.
Membranes are pre-hybridized in hybridization solution containing 1% Sarkosyl and 1×high phosphate buffer (0.5 M NaCl, 0.1 M Na2HPO4, 5 mM EDTA, pH 7) at 55° C. for two hr. The probe, diluted in 15 ml fresh hybridization solution, is then added to the membrane. The membrane is hybridized with the probe at 55° C. for 16 hr. Following hybridization, the membrane is washed for 15 min at 25° C. in 1 mM Tris (pH 8.0), 1% Sarkosyl, and four times for 15 min each at 25° C. in 1 mM Tris (pH 8.0). To detect hybridization complexes, XOMAT-AR film (Eastman Kodak, Rochester N.Y.) is exposed to the membrane overnight at −70° C., developed, and examined.
X Further Characterization of Differentially Expressed cDNAs and Proteins
Clones were blasted against the LIFESEQ Gold 5.1 database (Incyte Genomics) and an Incyte template and its sequence variants were chosen for each clone. The template and variant sequences were blasted against GenBank database to acquire annotation. The nucleotide sequences were translated into amino acid sequence which was blasted against the GenPept and other protein databases to acquire annotation and characterization, i.e., structural motifs.
Percent sequence identity can be determined electronically for two or more amino acid or nucleic acid sequences using the MEGALIGN program (DNASTAR). The percent identity between two amino acid sequences is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no homology between the two amino acid sequences are not included in determining percentage identity.
Sequences with conserved protein motifs may be searched using the BLOCKS search program. This program analyses sequence information contained in the Swiss-Prot and PROSITE databases and is useful for determining the classification of uncharacterized proteins translated from genomic or cDNA sequences (Bairoch et al.(supra); Attwood et al. (supra). PROSITE database is a useful source for identifying functional or structural domains that are not detected using motifs due to extreme sequence divergence. Using weight matrices, these domains are calibrated against the SWISS-PROT database to obtain a measure of the chance distribution of the matches.
The PRINTS database can be searched using the BLIMPS search program to obtain protein family “fingerprints”. The PRINTS database complements the PROSITE database by exploiting groups of conserved motifs within sequence alignments to build characteristic signatures of different protein families. For both BLOCKS and PRINTS analyses, the cutoff scores for local similarity were: >1300=strong, 1000-1300=suggestive; for global similarity were: p<exp-3; and for strength (degree of correlation) were: >1300=strong, 1000-1300=weak.
X Expression of the Encoded Protein
Expression and purification of a protein encoded by a cDNA of the invention is achieved using bacterial or virus-based expression systems. For expression in bacteria, cDNA is subcloned into a vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into bacterial hosts, such as BL21(DE3). Antibiotic resistant bacteria express the protein upon induction with IPTG. Expression in eukaryotic cells is achieved by infecting Spodoptera frugiperda (Sf9) insect cells with recombinant baculovirus, Autographica californica nuclear polyhedrosis virus. The polyhedrin gene of baculovirus is replaced with the cDNA by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of transcription.
For ease of purification, the protein is synthesized as a fusion protein with glutathione-S-transferase (GST; APB) or a similar alternative such as FLAG. The fusion protein is purified on immobilized glutathione under conditions that maintain protein activity and antigenicity. After purification, the GST moiety is proteolytically cleaved from the protein with thrombin. A fusion protein with FLAG, an 8-amino acid peptide, is purified using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak, Rochester N.Y.).
XI Production of Specific Antibodies
A denatured protein from a reverse phase HPLC separation is obtained in quantities up to 75 mg. This denatured protein is used to immunize mice or rabbits following standard protocols. About 100 μg is used to immunize a mouse, while up to 1 mg is used to immunize a rabbit. The denatured protein is radioiodinated and incubated with murine B-cell hybridomas to screen for monoclonal antibodies. About 20 mg of protein is sufficient for labeling and screening several thousand clones.
In another approach, the amino acid sequence translated from a cDNA of the invention is analyzed using PROTEAN software (DNASTAR) to determine regions of high antigenicity, essentially antigenically-effective epitopes of the protein. The optimal sequences for immunization are usually at the C-terminus, the N-terminus, and those intervening, hydrophilic regions of the protein that are likely to be exposed to the external environment when the protein is in its natural conformation. Typically, oligopeptides about 15 residues in length are synthesized using an ABI 431 peptide synthesizer (Applied Biosystems) using Fmoc-chemistry and then coupled to keyhole limpet hemocyanin (KLH; Sigma Aldrich) by reaction with M-maleimidobenzoyl-N-hydroxysuccinimide ester. If necessary, a cysteine may be introduced at the N-terminus of the peptide to permit coupling to KLH. Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity by binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated goat anti-rabbit IgG.
Hybridomas are prepared and screened using standard techniques. Hybridomas of interest are detected by screening with radioiodinated protein to identify those fusions producing a monoclonal antibody specific for the protein. In a typical protocol, wells of 96 well plates (FAST, Becton-Dickinson, Palo Alto Calif.) are coated with affinity-purified, specific rabbit-anti-mouse (or suitable anti-species Ig) antibodies at 10 mg/ml. The coated wells are blocked with 1% BSA and washed and exposed to supernatants from hybridomas. After incubation, the wells are exposed to radiolabeled protein at 1 mg/ml. Clones producing antibodies bind a quantity of labeled protein that is detectable above background.
Such clones are expanded and subjected to 2 cycles of cloning at 1 cell/3 wells. Cloned hybridomas are injected into pristane-treated mice to produce ascites, and monoclonal antibody is purified from the ascitic fluid by affinity chromatography on protein A (APB). Monoclonal antibodies with affinities of at least 108 M−1, preferably 109 to 1010 M−1 or stronger, are made by procedures well known in the art.
XII Purification of Naturally Occurring Protein Using Specific Antibodies
Naturally occurring or recombinant protein is substantially purified by immunoaffinity chromatography using antibodies specific for the protein. An immunoaffinity column is constructed by covalently coupling the antibody to CNBr-activated SEPHAROSE resin (APB). Media containing the protein is passed over the immunoaffinity column, and the column is washed using high ionic strength buffers in the presence of detergent to allow preferential absorbance of the protein. After coupling, the protein is eluted from the column using a buffer of pH 2-3 or a high concentration of urea or thiocyanate ion to disrupt antibody/protein binding, and the protein is collected.
XIII Screening Molecules for Specific Binding with the cDNA or Protein
The cDNA or fragments thereof and the protein or portions thereof are labeled with 32P-dCTP, Cy3-dCTP, Cy5-dCTP (APB), or BIODIPY or FITC (Molecular Probes), respectively. Candidate molecules or compounds previously arranged on a substrate are incubated in the presence of labeled nucleic or amino acid. After incubation under conditions for either a cDNA or a protein, the substrate is washed, and any position on the substrate retaining label, which indicates specific binding or complex formation, is assayed. The binding molecule is identified by its arrayed position on the substrate. Data obtained using different concentrations of the nucleic acid or protein are used to calculate affinity between the labeled nucleic acid or protein and the bound molecule. High throughput screening using very small assay volumes and very small amounts of test compound is fully described in Burbaum et al. U.S. Pat. No. 5,876,946.
All patents and publications mentioned in the specification are incorporated herein by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.
TABLE 1
PrEC, PrEC, PrEC, PrEC, PrEC,
Untx/CA- Untx/PZ- Untx/ Untx/ Untx/
Clone ID HPV-10 HPV-7 DU145 LNCaP PC3 t-test
3184882 −0.26 −0.41 −3.37 −3.80 −3.28 0.0007
3973887 −0.45 −0.47 −1.47 −1.59 −1.59 0.0010
557538 0.15 0.41 −3.61 −3.88 −3.73 0.0029
793403 −0.57 −0.58 −2.84 −2.73 −2.45 0.0031
423513 −0.61 −0.67 −1.72 −1.81 −1.52 0.0036
5497369 −0.53 −0.24 −2.15 −2.62 −1.91 0.0054
3432534 −0.50 −0.61 −2.76 −3.45 −2.72 0.0072
1955573 0.12 −0.07 −1.27 −0.84 −1.32 0.0076
4029118 0.14 0.12 −1.32 −1.43 −1.00 0.0082
2723829 −0.58 −0.41 −1.45 −1.30 −1.17 0.0087
1628341 −0.39 −0.01 −2.07 −2.42 −1.68 0.0087
4513549 0.04 −0.19 −1.34 −1.78 −1.14 0.0091
1967556 −0.27 −0.39 −1.27 −1.80 −1.67 0.0095
2729629 −0.22 0.09 −1.32 −1.92 −1.27 0.0118
2701607 −0.62 −0.59 −2.23 −2.49 −1.88 0.0119
4933404 0.28 0.22 −1.05 −1.50 −0.95 0.0119
3616296 −0.59 −0.45 −1.23 −1.33 −0.97 0.0136
154371 0.08 0.40 −2.54 −2.91 −1.54 0.0154
3774181 −0.59 −0.55 −2.25 −3.28 −2.83 0.0172
1709387 −0.44 −0.74 −2.22 −2.42 −2.12 0.0184
351981 −0.21 −0.22 −1.08 −0.98 −1.41 0.0186
2057510 −0.68 −0.23 −3.49 −3.82 −3.77 0.0192
1324789 −0.38 −0.42 −1.67 −2.32 −1.66 0.0199
3120070 −1.03 −0.70 −2.60 −2.71 −2.40 0.0203
2833609 −0.19 0.07 −0.98 −1.90 −1.55 0.0221
3431481 −0.30 −0.21 −1.65 −2.39 −1.57 0.0222
4557506 −0.40 −0.08 −1.20 −1.81 −1.14 0.0233
1597810 −0.30 −0.55 −1.59 −2.31 −1.46 0.0237
2962788 −1.09 −1.13 −3.13 −4.19 −3.04 0.0240
3120209 −0.79 −0.60 −1.52 −1.74 0.0247
1800609 −0.33 −0.61 −1.68 −1.31 −1.47 0.0247
3384548 0.02 −0.07 −0.89 −1.42 −0.85 0.0250
2056584 −0.18 −0.21 −1.23 −1.81 −1.17 0.0268
3096030 −0.66 −0.85 −2.07 −1.79 0.0291
2505801 −0.01 0.11 −1.21 −1.88 −0.98 0.0300
3658143 0.07 −0.35 −1.64 −1.56 −0.98 0.0306
3384076 −0.25 −0.26 −1.43 −2.13 −1.32 0.0327
2058209 −0.34 −0.01 −1.46 −1.24 −0.80 0.0329
509758 −0.31 −0.39 −2.19 −2.24 −1.30 0.0341
1723319 −0.57 −0.71 −2.41 −3.45 −2.12 0.0343
2198951 −0.24 −0.26 −0.86 −1.32 −0.88 0.0359
4365223 −0.20 −0.15 −1.10 −1.97 −1.35 0.0372
1437565 −0.40 −0.31 −1.19 −1.93 −1.26 0.0381
3837686 0.01 0.27 −0.68 −1.36 −0.57 0.0387
36406 −0.78 −0.05 −2.26 −3.01 −1.93 0.0403
1217764 −0.49 0.18 −2.16 −2.48 −1.21 0.0412
2059420 −0.29 −0.41 −0.80 −1.31 −1.45 0.0425
1805911 −0.22 −0.16 −1.52 −2.32 −1.23 0.0429
461367 0.19 0.18 −1.00 −1.66 −0.71 0.0429
4089868 0.27 0.28 −0.46 −0.92 −1.35 0.0437
1549141 −0.48 −0.80 −1.18 −1.65 −1.58 0.0456
4571104 −0.88 −0.57 −1.69 −1.22 −2.00 0.0464
552594 −0.21 −0.49 −1.27 −1.84 −0.94 0.0475
2834343 −0.11 0.02 −0.94 −2.02 −1.21 0.0493
TABLE 2
PrEC, PrEC, PrEC,
Untx/CA- Untx/PZ- Untx/ PrEC, PrEC,
Clone ID HPV-10 HPV-7 DU145 Untx/LNCaP Untx/PC3
1518310 −1.74 −1.27 −2.60 −2.97 −2.50
2823767 −1.70 −1.92 −1.72 −1.54 −1.34
2241825 −1.66 −1.49 −1.98 −1.55 −1.44
5033671 −1.33 −1.44 −1.53 −2.59 −1.62
44913 −1.30 −1.30 −1.11 −2.21 −2.29
4549259 −1.29 −1.36 −1.35 −1.68 −1.12
319075 −1.29 −1.37 −1.08 −2.26 −2.15
2520894 −1.27 −1.43 −1.50 −1.15 −1.04
4107861 −1.27 −2.03 −2.20 −2.67 −2.13
3172265 −1.67 −1.48 −1.74 −1.86
4402555 −1.43 −1.24 −1.52 −1.11
2495131 −1.40 −1.01 −1.26 −3.32 −0.95
3158828 −1.37 −1.19 −1.59 −1.31
5266015 −1.25 −1.31 −1.56 −1.26
4978708 −1.24 −1.42 −1.20 −1.63 −0.54
3069190 −1.21 −1.33 −1.67 −1.37
64073 −1.15 −1.09 −0.91 −2.04 −2.18
172023  1.01  1.29  2.11  0.98  1.59
3068978 −1.32 −1.13  0.00 −1.94
2060823 −1.08 −1.35 −1.38 −0.93 −0.95
2060823 −1.08 −1.35 −1.38 −0.93 −0.95
TABLE 3
SEQ ID NO: Template ID Clone ID Start Stop
 1 1382961.3 3184882 1080 1401
 2 1382961.5 3184882   1  518
 3 2852561CB1 3973887   1 1934
 5 335942.2  557538  −4  354
 6 2483854CB1  557538  21 1677
 8 1454852CB1  793403  54 1564
10 353005.1  423513   1  309
11 378497.1 5497369   1  176
12 994684.9 3432534 2312 2868
13 995610.1 1955573 2345 2804
14 417119.1 4029118   1  427
15 3615080CB1 2723829  563 4670
17 331749.3 1628341  264  748
18 979243.1 4513549  299 1245
19 3189059CB1 1967556  192 1981
21 1650519CB1 2729629   5 1448
23 474630.4 2701607 1610 2083
24 093496.1 4933404  319  455
25 1231633.4 3616296   7  58
26 988891.1  154371  987 1538
27 988891.15  154371   1  363
28 3774181CB1 3774181  37 7081
30 1709387CB1 1709387  34 1742
32 1709118CB1  351981  45 1437
34 008513.49 2057510 1721 2258
35 047568.1 1324789   1  493
36 3120070CB1 3120070  43 2028
38 1303785CB1 2833609 3251 4766
40 1798379CB1 3431481   3 2711
42 350650.1 4557506   1  663
43 474630.24 1597810  443  809
44 108089.1 2962788   1  295
45 3346307CB1 3120209  13 1756
47 200143.25 1800609  234  679
48 001929.1 3384548  12  432
48 001929.1 3384076  797 1744
49 1088524.8 2056584 1218 1900
50 632664CB1 3096030  67 1181
52 457372.17 2505801  527  824
53 2993696CB1 3658143  17 2556
55 331106.6 2058209 4948 5465
56 1256895CB1  509758  530 3000
58 474630.29 1723319 3978 4495
59 1256295.18 2198951  497 1314
60 444096.1 4365223  632 1383
60 444096.1 1805911   1 1387
61 008942.10 1437565 4357 4498
62 008942.9 1437565 1320 1602
63 1252415.1 3837686 2794 2872
64 1399366.20  36406 5046 5265
65 3732868CB1 1217764   1  961
67 1137894.1 2059420 1947 2552
68 1418671CB1  461367   1 1529
70 464689.64 4089868 4741 5350
71 053959.1 1549141   1  56
72 1384594.1 4571104   1  580
73 021667CB1  552594  778 3348
75 224855.4 2834343 3902 5287
76 1518310CB1 1518310  45 2323
78 098533.1 2823767   1  445
79 410785.1 2241825 4507 4882
80 1089210.1 5033671  34 1152
81 333453.6  44913   1  202
82 365070.1 4549259  123  698
83 365070.3 4549259  393  841
84 413921.2  319075 3140 3637
85 336615.1 2520894 1088 1325
86 2733282CB1 4107861   1 3156
88 399161.1 3172265  473 1121
89 339638.1 4402555   1  687
90 697785CB1 2495131  233  770
92 399785.1 3158828  199  627
93 002455.1 5266015  668 1133
94 1382920.38 4978708  49  565
95 334749.1 3069190  74  634
96 041764.1  64073  319  579
97 2700132CB1  172023  208 10640 
99 211881.1 3068978   1  548
100  409895.2 2060823 1224 1458
101  1422432CB1 2060823   1  860
TABLE 4
SEQ GB
ID NO: Template ID Number E-value Annotation
 1 1382961.3 g186704 0 Human 50 kDa type I
epidermal keratin
gene, complete cds.
 2 1382961.5 g186704 2.00E − 86 Human 50 kDa type I
epidermal keratin
gene, complete cds.
 3 2852561CB1 g5926733 0 Human mRNA for 4F2
heavy chain, complete
cds.
 4 2852561CD1 g5926733 0 Human mRNA for 4F2
heavy chain, complete
cds.
 5 335942.2 g33794 0 Human mRNA for
interleukin-1 precursor
(pre IL-1).
 6 2483854CB1 g33794 0 Human mRNA for
interleukin-1 precursor
(pre IL-1).
 7 2483854CD1 g33794 0 Human mRNA for
interleukin-1 precursor
(pre IL-1).
 8 1454852CB1 g34074 0 Human mRNA for
keratin-related protein.
 9 1454852CD1 g34074 0 Human mRNA for
keratin-related protein.
10 353005.1 g183063 0 Human glia-derived
nexin (GDN) mRNA,
5′ end.
11 378497.1 g2627428 7.00E − 36 Human laminin alpha
3b chain mRNA,
partial cds.
12 994684.9 g186697 0 Human keratin type II
(58 kD) mRNA,
complete cds.
13 995610.1 g34815 0 Human mRNA en-
coding the c-myc
oncogene.
14 417119.1 g33788 0 Human gene for
prointerleukin 1 beta.
15 3615080CB1 g2429078 0 Human mRNA for
Laminin-5 beta3 chain,
complete cds.
16 3615080CD1 g2429078 0 Human mRNA for
Laminin-5 beta3 chain,
complete cds.
17 331749.3 g453368 0 Human maspin
mRNA, complete cds.
18 979243.1 g212752 4.00E − 61 tensin
19 3189059CB1 g3242792 0 Human herpesvirus
entry protein C
(HVEC) mRNA,
complete cds.
20 3189059CD1 g3242792 0 Human herpesvirus
entry protein C
(HVEC) mRNA,
complete cds.
21 1650519CB1 g3483777 0 Human full length
insert cDNA clone
ZD79H11.
22 1650519CD1 g3483777 0 Human full length
insert cDNA clone
ZD79H11.
23 474630.4 g33956 0 Human mRNA for
integrin beta-4 subunit.
24 093496.1 g338320 4.00E − 12 Human osyeonectin
gene, exon 7.
25 1231633.4 g189265 5.00F-87 Human novel gene
mRNA, complete cds.
26 988891.1 g186268 0 Human monocyte
interleukin I (IL-1)
mRNA, complete cds.
27 988891.15 g186268 0 Human monocyte
interleukin I (IL-1)
mRNA, complete cds.
28 3774181CB1 g179522 0 Human bullous
pemphigoid antigen
(BPAG1) mRNA,
complete cds.
29 3774181CD1 g179522 0 Human bullous
pemphigoid antigen
(BPAG1) mRNA,
complete cds.
30 1709387CB1 g34070 0 Human mRNA for
cytokeratin 15.
31 1709387CD1 g34070 0 Human mRNA for
cytokeratin 15.
32 1709118CB1 g178037 0 Human alpha-cardiac
actin gene, exon 6
and 3′ flank.
33 1709118CD1 g178037 0 Human alpha-cardiac
actin gene, exon 6
and 3′ flank.
34 008513.49 g908802 0 Human keratin 6
isoform K6e (KRT6E)
mRNA, complete cds.
35 047568.1 g184056 0 Human histatin 3
(HIS2) gene exons
3-5, complete cds.
36 3120070CB1 g7582391 1.00F-60 p53 apoptosis-
associated target
37 3120070CD1 g7582391 1.00F-60 p53 apoptosis-
associated target
38 1303785CB1 g34387 0 Human mRNA for
lipocortin.
39 1303785CD1 g34387 0 Human mRNA for
lipocortin.
40 1798379CB1 g181401 0 Human epidermal
cytokeratin 2 mRNA,
complete cds.
41 1798379CD1 g181401 0 Human epidermal
cytokeratin 2 mRNA,
complete cds.
42 350650.1 g7020235 0 Human cDNA
FLJ20261 fis, clone
COLF7630.
43 474630.24 g2270919 0 Human beta4-integrin
(ITGB4) gene, exons
31, 32, 33 and 34
44 108089.1 g747615 7.00E − 68 Human laminin S B3
chain (LAMB3) gene,
exons 2-3.
45 3346307CB1 g7020644 0 Human cDNA
FLJ20500 fis, clone
KAT09159.
46 3346307CD1 g7020644 0 Human cDNA
FLJ20500 fis, clone
KAT09159.
47 200143.25 g897916 1.00E − 47 Human 11kd protein
mRNA, complete cds.
48 001929.1 g908779 0 keratin type II
49 1088524.8 g7453533 0 Human hepatic
angiopoietin-related
protein (ANGPTL2)
mRNA, complete cds.
50 632664CB1 g7658294 0 Human transmembrane
protein BRI mRNA,
complete cds.
51 632664CD1 g7658294 0 Human transmembrane
protein BRI mRNA,
complete cds.
52 457372.17 g7959902 0 Human PRO2446
mRNA, complete cds.
53 2993696CB1 g1143491 0 Human mRNA for
BiP protein.
54 2993696CD1 g1143491 0 Human mRNA for
BiP protein.
55 331106.6 g33943 0 Human mRNA for
integrin alpha 6.
56 1256895CB1 g2618612 0 Human mRNA for
prion protein,
complete cds.
57 1256895CD1 g2618612 0 Human mRNA for
prion protein,
complete cds.
58 474630.29 g33910 0 Human mRNA for
integrin beta(4)
subunit.
59 1256295.18 g182939 0 Human growth arrest
and DNA-damage-
inducible protein
(gadd45) mRNA,
complete cds.
60 444096.1 g34073 1.00E − 85 cytokeratin 4
(408 AA)
61 008942.10 g4426639 0 Human L-type amino
acid transporter
subunit LAT1 mRNA,
complete cds.
62 008942.9 g5926731 0 Human mRNA for
L-type amino acid
transporter 1,
complete cds.
63 1252415.1 g178083 0 Human adenylyl
cyclase-associated
protein (CAP) mRNA,
complete cds.
64 1399366.20 g37464 0 Human mRNA for
thrombospondin.
65 3732868CB1 g182852 0 Human GOS2 gene,
5′ flank and cds.
66 3732868CD1 g182852 0 Human GOS2 gene,
5′ flank and cds.
67 1137894.1 g2072389 0 Human zinc finger
transcriptional
regulator (COS24)
gene, complete cds.
68 1418671CB1 g6984179 0 Human pleckstrin 2
mRNA, complete cds.
69 1418671CD1 g6984179 0 Human pleckstrin 2
mRNA, complete cds.
70 464689.64 g7415720 0 Human Sed mRNA for
stearoyl-CoA
desaturase, complete
cds.
71 053959.1 g340012 3.00E − 13 Human tristetraproline
(TTP) mRNA,
complete cds.
72 1384594.1 g7020744 7.00E − 14 Human cDNA
FLJ20557 fis, clone
KAT11869.
73 021667CB1 g6580834 0 Human colon Kruppel-
like factor (CKLF)
mRNA, complete cds.
74 021667CD1 g6580834 0 Human colon Kruppel-
like factor (CKLF)
mRNA, complete cds.
75 224855.4 g1378108 0 Human lymphocyte
specific interferon
regulatory factor/
interferon regulatory
factor 4 (LSIRF/IRF4)
mRNA
76 1518310CB1 g4481752 0 Human connexin 26
(GJB2) mRNA,
complete cds.
77 1518310CD1 g4481752 0 Human connexin 26
(GJB2) mRNA,
complete cds.
78 098533.1 g2898163 4.00E − 52 Human microtubule-
associated protein tau
(tau) gene, exon 0.
79 410785.1 g187133 0 Human liver glucose
transporter-like protein
(GLUT2), complete
cds.
80 1089210.1 g544761 0 chlordecone reductase
{clone HAKRa}
[Human liver, mRNA,
1167 nt].
81 333453.6 g2072424 5.00E − 65 Human non-lens beta
gamma-crystallin like
protein (AIM1)
mRNA, partial cds.
82 365070.1 Incyte Unique
83 365070.3 g3550345 4.00E − 34 cellular repressor of
E1A-stimulated genes
CREG
84 413921.2 g474303 0 Human mRNA for Tec
protein-tyrosine
kinase, complete cds.
85 336615.1 g2072161 0 Human tubby related
protein 1 (TULP1)
mRNA, complete cds.
86 2733282CB1 g4887600 0 Human mRNA for
chloride channel
protein, complete cds.
87 2733282CD1 g4887600 0 Human mRNA for
chloride channel
protein, complete cds.
88 399161.1 g337708 2.00E − 37 Human U1 small
nuclear RNA gene,
clone HSD4, complete
cds.
89 339638.1 Incyte Unique
90 697785CB1 g187109 0 Human 14 kd lectin
mRNA, complete cds.
91 697785CD1 g187109 0 Human 14 kd lectin
mRNA, complete cds.
92 399785.1 Incyte Unique
93 002455.1 g2708709 2.00E − 13 Wiskott-Aldrich
Syndrome protein
homolog
94 1382920.38 g31347 0 Human pseudogene for
apoferritin H
(clone 133)
95 334749.1 Incyte Unique
96 041764.1 g4589563 0 Human mRNA for
KIAA0960 protein,
partial cds.
97 2700132CB1 g415818 0 Human mki67a mRNA
(long type) for antigen
of monoclonal anti-
body Ki-67.
98 2700132CD1 g415818 0 Human mki67a mRNA
(long type) for antigen
of monoclonal anti-
body Ki-67.
99 211881.1 g340088 7.00E − 15 Human small nuclear
rna pseudogene (clone
pul-1) and flanks.
100  409895.2 g36177 0 Human mRNA for
calcium-binding
protein S100P.
101  1422432CB1 g36177 0 Human mRNA for
calcium-binding
protein S100P.
102  1422432CD1 g36177 0 Human mRNA for
calcium-binding
protein S100P.
TABLE 5
SEQ ID NO: Template ID Start Stop Frame PFAM Hit PFAM Annotaion E-value
1 1382961.3 413 1348 forward 2 filament Intermediate filament proteins 2.30E − 184
2 1382961.5 266 1036 forward 2 filament Intermediate filament proteins 1.40E − 114
4 2852561CD1 112 491 alpha-amylase Alpha amylase 1.70E − 04
7 2483854CD1 136 270 interleukin-1 Interleukin-1 5.60E − 68
9 1454852CD1 83 394 filament Intermediate filament proteins 2.50E − 175
10 353005.1 87 242 forward 3 serpin Serpins (serine protease inhibitors) 2.50E − 14
12 994684.9 1870 2601 forward 1 filament Intermediate filament proteins 1.60E − 128
12 994684.9 2628 2729 forward 3 filament Intermediate filament proteins 4.50E − 20
12 994684.9 2534 2644 forward 2 filament Intermediate filament proteins 2.10E − 07
13 995610.1 2235 2393 forward 3 HLH Helix-loop-helix DNA-binding domain 2.40E − 24
13 995610.1 1260 2207 forward 3 Myc_N_term Myc amino-terminal region 2.90E − 166
16 3615080CD1 379 428 laminin_EGF Laminin EGF-like (Domains III and V) 9.50E − 18
16 3615080CD1 26 248 laminin_Nterm Laminin N-terminal (Domain VI) 1.50E − 38
20 3189059CD1 263 319 ig Immunoglobulin domain 2.50E − 06
22 1650519CD1 59 314 7tm_1 7 transmembrane receptor (rhodopsin family) 6.90E − 42
23 474630.4 4737 4991 forward 3 fn3 Fibronectin type III domain 1.80E − 25
23 474630.4 329 1192 forward 2 integrin_B Integrins, beta chain 1.10E − 231
23 474630.4 1179 1571 forward 3 integrin_B Integrins, beta chain 2.80E − 75
25 1231633.4 25 267 forward 1 Ribosomal_L10e Ribosomal L10 7.40E − 24
26 988891.1 538 966 forward 1 interleukin-1 Interleukin-1 2.60E − 86
27 988891.15 133 300 forward 1 interleukin-1 Interleukin-1 2.50E − 25
29 3774181CD1 1953 1997 Plectin_repeat Plectin repeat 1.10E − 19
31 1709387CD1 104 416 filament Intermediate filament proteins 8.90E − 178
33 1709118CD1 3 377 actin Actin 3.90E − 282
34 008513.49 542 1483 forward 2 filament Intermediate filament proteins 7.00E − 170
39 1303785CD1 275 342 annexin Annexin 1.20E − 40
41 1798379CD1 183 496 filament Intermediate filament proteins 8.20E − 159
42 350650.1 5 232 forward 2 filament Intermediate filament proteins 1.10E − 27
48 001929.1 373 1314 forward 1 filament Intermediate filament proteins 1.60E − 119
49 1088524.8 775 1023 forward 1 fibrinogen_C Fibrinogen beta and gamma chains, C-terminal globular 1.80E − 41
domain
49 1088524.8 1175 1399 forward 2 fibrinogen_C Fibrinogen beta and gamma chains, C-terminal globular 2.70E − 19
domain
49 1088524.8 2596 3213 forward 1 ras Ras family 6.50E − 107
54 2993696CD1 30 636 HSP70 Hsp70 protein 0.00E + 00
55 331106.6 1084 1266 forward 1 FG-GAP FG-GAP repeat 3.50E − 17
55 331106.6 3259 3303 forward 1 integrin_A Integrin alpha cytoplasmic region 2.90E − 04
57 1256895CD1 23 253 prion Prion protein 6.30E − 203
58 474630.29 4527 4781 forward 3 fn3 Fibronectin type III domain 1.80E − 25
58 474630.29 264 1520 forward 3 integrin_B Integrins, beta chain 6.3e − 317
60 444096.1 83 565 forward 2 filament Intermediate filament proteins 2.20E − 61
60 444096.1 546 746 forward 3 filament Intermediate filament proteins 2.40E − 29
61 008942.10 207 1514 forward 3 aa_permeases Amino acid permease 2.30E − 06
63 1252415.1 682 2094 forward 1 CAP CAP protein 0.00E + 00
64 1399366.20 2117 2236 forward 2 EGF EGF-like domain 3.00E − 06
64 1399366.20 1484 1636 forward 2 tsp_1 Thrombospondin type 1 domain 1.60E − 24
64 1399366.20 1121 1285 forward 2 vwc von Willebrand factor type C domain 2.50E − 23
67 1137894.1 1145 1234 forward 2 zf-CCCH Zinc finger C-x8-C-x5-C-x3-H type (and similar) 3.80E − 16
69 1418671CD1 139 225 DEP Domain found in Dishevelled, Egl-10, and Pleckstrin 2.00E − 10
69 1418671CD1 248 353 PH PH domain 1.70E − 18
70 464689.64 608 1342 forward 2 Desaturase Fatty acid desaturase 1.20E − 163
72 1384594.1 121 264 forward 1 KRAB KRAB box 4.20E − 04
74 021667CD1 165 189 zf-C2H2 Zinc finger, C2H2 type 1.60E − 06
75 224855.4 175 516 forward 1 IRF Interferon regulatory factor transcription factor 2.60E − 76
77 1518310CD1 1 213 connexin Connexin 5.80E − 163
79 410785.1 72 1451 forward 3 sugar_tr Sugar (and other) transporter 8.10E − 124
79 410785.1 410 1480 forward 2 sugar_tr Sugar (and other) transporter 2.30E − 05
80 1089210.1 61 903 forward 1 aldo_ket_red Aldo/keto reductase family 2.60E − 192
84 413921.2 464 574 forward 2 BTK BTK motif 4.30E − 23
84 413921.2 140 460 forward 2 PH PH domain 2.70E − 16
84 413921.2 1235 1975 forward 2 pkinase Eukaryotic protein kinase domain 8.80E − 72
84 413921.2 866 1117 forward 2 SH2 Src homology domain 2 2.30E − 35
84 413921.2 671 838 forward 2 SH3 SH3 domain 1.30E − 19
85 336615.1 86 874 forward 2 Tub Tub family 3.00E − 195
91 697785CD1 22 126 Gal-bind_lectin Vertebrate galactoside-binding lectins 2.90E − 65
94 1382920.38 253 723 forward 1 ferritin Ferritins 9.80E − 116
98 2700132CD1 27 91 FHA FHA domain 4.30E − 21
100 409895.2 1198 1284 forward 1 efhand EF hand 1.80E − 04
102 1422432CD1 53 81 efhand EF hand 1.80E − 04
102 1422432CD1 4 47 S_100 S-100/ICaBP type calcium binding domain 2.70E − 21
TABLE 6
SEQ ID NO: Template ID Start Stop Frame Domain
1 1382961.3 336 422 forward 3 SP
4 2852561CD1 79 106 SP
5 335942.2 127 213 forward 1 TM
10 353005.1 14 100 forward 2 SP
12 994684.9 101 190 forward 2 SP
12 994684.9 2354 2446 forward 2 SP
13 995610.1 40 117 forward 1 SP
20 3189059CD1 1 30 SP
22 1650519CD1 43 70 TM
23 474630.4 53 133 forward 2 SP
26 988891.1 1300 1377 forward 1 TM
34 008513.49 243 335 forward 3 SP
37 3120070CD1 79 105 TM
37 3120070CD1 1 31 SP
49 1088524.8 1884 2000 forward 3 SP
49 1088524.8 232 321 forward 1 SP
49 1088524.8 1938 2015 forward 3 TM
55 331106.6 857 943 forward 2 SP
58 474630.29 2277 2369 forward 3 SP
58 474630.29 156 236 forward 3 SP
59 1256295.18 1242 1328 forward 3 TM
64 1399366.20 210 299 forward 3 SP
64 1399366.20 3746 3826 forward 2 SP
67 1137894.1 1459 1536 forward 1 SP
75 224855.4 2804 2890 forward 2 SP
75 224855.4 3845 3922 forward 2 TM
79 410785.1 1057 1143 forward 1 SP
79 410785.1 1385 1471 forward 2 TM
79 410785.1 2099 2185 forward 2 TM
79 410785.1 4757 4840 forward 2 TM
79 410785.1 4710 4787 forward 3 TM
83 365070.3 43 135 forward 1 SP
87 2733282CD1 900 926 TM
99 211881.1 651 731 forward 3 TM
                  
#             SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 102
<210> SEQ ID NO 1
<211> LENGTH: 1645
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1382961.3
<400> SEQUENCE: 1
cctttccaat ttacccgagc accttctctt cactcagcca actgctcgct cg
#ctcacctc     60
cctcctctgc accatgacta cctgcagccg ccagttcacc tcctccagct cc
#atgaaggg    120
ctcctgcggc atcgggggcg gcatcggggg cggctccagc cgcatctcct cc
#gtcctggc    180
cggagggtcc tgccgcgccc ccagcaccta cgggggcggc ctgtctgtct ca
#tcctcccg    240
cttctcctct gggggagcct atgggttggg gggcggctat ggcggtggct tc
#agcagcag    300
aaccagcagc tttggtagtg gctttggggg aggatatggt ggtggccttg gt
#gctggctt    360
gggtggtggc tttggtggtg gctttgctgg tggtgatggg cttctggtgg gc
#agtgagaa    420
ggtgaccatg cagaacctca acgaccgcct ggcctcctac ctggacaagg tg
#cgtgctct    480
ggaggaggcc aacgccgacc tggaagtgaa gatccgtgac tggtaccaga gg
#cagcggcc    540
tgctgagatc aaagactaca gtccctactt caagaccatt gaggacctga gg
#aacaagat    600
tctcacagcc acagtggaca atgccaatgt ccttctgcag attgacaatg cc
#cgtctggc    660
cgcggatgac ttccgcacca agtatgagac agagttgaac ctgcgcatga gt
#gtggaagc    720
cgacatcaat ggcctgcgca gggtgctgga cgaactgacc ctggccagag ct
#gacctgga    780
gatgcagatt gagagcctga aggaggagct ggcctacctg aagaagaacc ac
#gaggagga    840
gatgaatgcc ctgagaggcc aggtgggtgg agatgtcaat gtggagatgg ac
#gctgcacc    900
tggcgtggac ctgagccgca ttctgaacga gatgcgtgac cagtatgaga ag
#atggcaga    960
gaagaaccgc aaggatgccg aggaatggtt cttcaccaag acagaggagc tg
#aaccgcga   1020
ggtggccacc aacagcgagc tggtgcagag cggcaagagc gagatctcgg ag
#ctccggcg   1080
caccatgcag aacctggaga ttgagctgca gtcccagctc agcatgaaag ca
#tccctgga   1140
gaacagcctg gaggagacca aaggtcgcta ctgcatgcag ctggcccaga tc
#caggagat   1200
gattggcagc gtggaggagc agctggccca gctccgctgc gagatggagc ag
#cagaacca   1260
ggagtacaag atcctgctgg acgtgaagac gcggctggag caggagatcg cc
#acctaccg   1320
ccgcctgctg gagggcgagg acgcccacct ctcctcctcc cagttctcct ct
#ggatcgca   1380
gtcatccaga gatgtgacct cctccagccg ccaaatccgc accaaggtca tg
#gatgtgca   1440
cgatggcaag gtggtgtcca cccacgagca ggtccttcgc accaagaact ga
#ggctgccc   1500
agccccgctc aggcctagga ggccccccgt gtggacacag atcccactgg aa
#gatcccct   1560
ctcctgccca agcacttcac agctggaccc tgcttcaccc tcaccccctc ct
#ggcaatca   1620
atacagcttc attatctgag ttgca          
#                  
#             1645
<210> SEQ ID NO 2
<211> LENGTH: 1051
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1382961.5
<400> SEQUENCE: 2
agcaaatgcc ttctccctgc atgctccctg caaggcctcc tcgctatctc ca
#cacacctg     60
actcatccca ttttacagga gcagttgatc ccaggaagag cattggagcc tc
#cagcaggg    120
gctgttgggg cctgtctgag gagataggat gcgtcaggca gccccagaca cg
#atcacatt    180
cctctcaaca tgcctgccgg gccgggtatc catcccctgc agcagcaggc tt
#cctctacg    240
tggatgttaa aggcccattc agttcatgga gagctagcag gtgcgtgctc tg
#gaggaggc    300
caacgccgac ctggaagtga agatccgtga ctggtaccag aggcagcggc ct
#gctgagat    360
caaagactac agtccctact tcaagaccat tgaggacctg aggaacaaga tt
#ctcacagc    420
cacagtggac aatgccaatg tccttctgca gattgacaat gcccgtctgg cc
#gcggatga    480
cttccgcacc aagtatgaga cagagttgaa cctgcgcatg agtgtggaag cc
#gaccatca    540
atggcctgcg cagggtgctg gacgaactga cctggccaga gctgacctgg ag
#atgcagat    600
tgagagcctg aaggaggagc tggcctacct gaagaagaac cacgaggagg ag
#atgaatgc    660
cctgagaggc caggtgggtg gagatgtcaa tgtggagatg gacgctgcac ct
#ggcgtgga    720
cctgagccgc attctgaacg agatgcgtga ccagtatgag aagatggcag ag
#aagaaccg    780
caaggatgcc gaggaatggt tcttcaccaa gacagaggag ctgaaccgcg ag
#gtggccac    840
caacagcgag ctggtgcaga gcggcaagag cgagatctcg gagctccggc gc
#accatgca    900
gaacctggag atgattggca gcgtggagga gcagctggcc cagctccgct gc
#gagatgga    960
gcagcagaac caggagtaca agatcctgct ggacgtgaag acgcggctgg ag
#caggagat   1020
cgccacctac cgccgcctgc tggagggcga g        
#                  
#        1051
<210> SEQ ID NO 3
<211> LENGTH: 1930
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2852561CB1
<400> SEQUENCE: 3
ccttaagggg cgggccgggg cggggctccg ctgccccttc ccagaggccg cg
#cctgctgc     60
tgagcagatg cagtagccga aactgcgcgg aggcacagag gccggggaga gc
#gttctggg    120
tccgagggtc caggtagggg ttgagccacc atctgaccgc aagctgcgtc gt
#gtcgccgg    180
ttctgcaggc accatgagcc aggacaccga ggtggatatg aaggaggtgg ag
#ctgaatga    240
gttagagccc gagaagcagc cgatgaacgc ggcgtctggg gcggccatgt cc
#ctggcggg    300
agccgagaag aatggtctgg tgaagatcaa ggtggcggaa gacgaggcgg ag
#gcggcagc    360
cgcggctaag ttcacgggcc tgtccaagga ggagctgctg aaggtggcag gc
#agccccgg    420
ctgggtacgc acccgctggg cactgctgct gctcttctgg ctcggctggc tc
#ggcatgct    480
tgctggtgcc gtggtcataa tcgtgcgagc gccgcgttgt cgcgagctac cg
#gcgcagaa    540
gtggtggcac acgggcgccc tctaccgcat cggcgacctt caggccttcc ag
#ggccacgg    600
cgcgggcaac ctggcgggtc tgaaggggcg tctcgattac ctgagctctc tg
#aaggtgaa    660
gggccttgtg ctgggtccaa ttcacaagaa ccagaaggat gatgtcgctc ag
#actgactt    720
gctgcagatc gaccccaatt ttggctccaa ggaagatttt gacagtctct tg
#caatcggc    780
taaaaaaaag agcatccgtg tcattctgga ccttactccc aactaccggg gt
#gagaactc    840
gtggttctcc actcaggttg acactgtggc caccaaggtg aaggatgctc tg
#gagttttg    900
gctgcaagct ggcgtggatg ggttccaggt tcgggacata gagaatctga ag
#gatgcatc    960
ctcattcttg gctgagtggc aaaatatcac caagggcttc agtgaagaca gg
#ctcttgat   1020
tgcggggact aactcctccg accttcagca gatcctgagc ctactcgaat cc
#aacaaaga   1080
cttgctgttg actagctcat acctgtctga ttctggttct actggggagc at
#acaaaatc   1140
cctagtcaca cagtatttga atgccactgg caatcgctgg tgcagctgga gt
#ttgtctca   1200
ggcaaggctc ctgacttcct tcttgccggc tcaacttctc cgactctacc ag
#ctgatgct   1260
cttcaccctg ccagggaccc ctgttttcag ctacggggat gagattggcc tg
#gatgcagc   1320
tgcccttcct ggacagccta tggaggctcc agtcatgctg tgggatgagt cc
#agcttccc   1380
tgacatccca ggggctgtaa gtgccaacat gactgtgaag ggccagagtg aa
#gaccctgg   1440
ctccctcctt tccttgttcc ggcggctgag tgaccagcgg agtaaggagc gc
#tccctact   1500
gcatggggac ttccacgcgt tctccgctgg gcctggactc ttctcctata tc
#cgccactg   1560
ggaccagaat gagcgttttc tggtagtgct taactttggg gatgtgggcc tc
#tcggctgg   1620
actgcaggcc tccgacctgc ctgccagcgc cagcctgcca gccaaggctg ac
#ctcctgct   1680
cagcacccag ccaggccgtg aggagggctc ccctcttgag ctggaacgcc tg
#aaactgga   1740
gcctcacgaa gggctgctgc tccgcttccc ctacgcggcc tgacttcagc ct
#gacatgga   1800
cccactaccc ttctcctttc cttcccaggc cctttggctt ctgatttttc tc
#ttttttaa   1860
aaacaaacaa acaaactgtt gcagattatg agtgaacccc caaataggtg tt
#tctgcctt   1920
caaataagaa                
#                  
#                  
#      1930
<210> SEQ ID NO 4
<211> LENGTH: 529
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2852561CD1
<400> SEQUENCE: 4
Met Ser Gln Asp Thr Glu Val Asp Met Lys Gl
#u Val Glu Leu Asn
  1               5 
#                 10 
#                 15
Glu Leu Glu Pro Glu Lys Gln Pro Met Asn Al
#a Ala Ser Gly Ala
                 20 
#                 25 
#                 30
Ala Met Ser Leu Ala Gly Ala Glu Lys Asn Gl
#y Leu Val Lys Ile
                 35 
#                 40 
#                 45
Lys Val Ala Glu Asp Glu Ala Glu Ala Ala Al
#a Ala Ala Lys Phe
                 50 
#                 55 
#                 60
Thr Gly Leu Ser Lys Glu Glu Leu Leu Lys Va
#l Ala Gly Ser Pro
                 65 
#                 70 
#                 75
Gly Trp Val Arg Thr Arg Trp Ala Leu Leu Le
#u Leu Phe Trp Leu
                 80 
#                 85 
#                 90
Gly Trp Leu Gly Met Leu Ala Gly Ala Val Va
#l Ile Ile Val Arg
                 95 
#                100 
#                105
Ala Pro Arg Cys Arg Glu Leu Pro Ala Gln Ly
#s Trp Trp His Thr
                110  
#               115  
#               120
Gly Ala Leu Tyr Arg Ile Gly Asp Leu Gln Al
#a Phe Gln Gly His
                125  
#               130  
#               135
Gly Ala Gly Asn Leu Ala Gly Leu Lys Gly Ar
#g Leu Asp Tyr Leu
                140  
#               145  
#               150
Ser Ser Leu Lys Val Lys Gly Leu Val Leu Gl
#y Pro Ile His Lys
                155  
#               160  
#               165
Asn Gln Lys Asp Asp Val Ala Gln Thr Asp Le
#u Leu Gln Ile Asp
                170  
#               175  
#               180
Pro Asn Phe Gly Ser Lys Glu Asp Phe Asp Se
#r Leu Leu Gln Ser
                185  
#               190  
#               195
Ala Lys Lys Lys Ser Ile Arg Val Ile Leu As
#p Leu Thr Pro Asn
                200  
#               205  
#               210
Tyr Arg Gly Glu Asn Ser Trp Phe Ser Thr Gl
#n Val Asp Thr Val
                215  
#               220  
#               225
Ala Thr Lys Val Lys Asp Ala Leu Glu Phe Tr
#p Leu Gln Ala Gly
                230  
#               235  
#               240
Val Asp Gly Phe Gln Val Arg Asp Ile Glu As
#n Leu Lys Asp Ala
                245  
#               250  
#               255
Ser Ser Phe Leu Ala Glu Trp Gln Asn Ile Th
#r Lys Gly Phe Ser
                260  
#               265  
#               270
Glu Asp Arg Leu Leu Ile Ala Gly Thr Asn Se
#r Ser Asp Leu Gln
                275  
#               280  
#               285
Gln Ile Leu Ser Leu Leu Glu Ser Asn Lys As
#p Leu Leu Leu Thr
                290  
#               295  
#               300
Ser Ser Tyr Leu Ser Asp Ser Gly Ser Thr Gl
#y Glu His Thr Lys
                305  
#               310  
#               315
Ser Leu Val Thr Gln Tyr Leu Asn Ala Thr Gl
#y Asn Arg Trp Cys
                320  
#               325  
#               330
Ser Trp Ser Leu Ser Gln Ala Arg Leu Leu Th
#r Ser Phe Leu Pro
                335  
#               340  
#               345
Ala Gln Leu Leu Arg Leu Tyr Gln Leu Met Le
#u Phe Thr Leu Pro
                350  
#               355  
#               360
Gly Thr Pro Val Phe Ser Tyr Gly Asp Glu Il
#e Gly Leu Asp Ala
                365  
#               370  
#               375
Ala Ala Leu Pro Gly Gln Pro Met Glu Ala Pr
#o Val Met Leu Trp
                380  
#               385  
#               390
Asp Glu Ser Ser Phe Pro Asp Ile Pro Gly Al
#a Val Ser Ala Asn
                395  
#               400  
#               405
Met Thr Val Lys Gly Gln Ser Glu Asp Pro Gl
#y Ser Leu Leu Ser
                410  
#               415  
#               420
Leu Phe Arg Arg Leu Ser Asp Gln Arg Ser Ly
#s Glu Arg Ser Leu
                425  
#               430  
#               435
Leu His Gly Asp Phe His Ala Phe Ser Ala Gl
#y Pro Gly Leu Phe
                440  
#               445  
#               450
Ser Tyr Ile Arg His Trp Asp Gln Asn Glu Ar
#g Phe Leu Val Val
                455  
#               460  
#               465
Leu Asn Phe Gly Asp Val Gly Leu Ser Ala Gl
#y Leu Gln Ala Ser
                470  
#               475  
#               480
Asp Leu Pro Ala Ser Ala Ser Leu Pro Ala Ly
#s Ala Asp Leu Leu
                485  
#               490  
#               495
Leu Ser Thr Gln Pro Gly Arg Glu Glu Gly Se
#r Pro Leu Glu Leu
                500  
#               505  
#               510
Glu Arg Leu Lys Leu Glu Pro His Glu Gly Le
#u Leu Leu Arg Phe
                515  
#               520  
#               525
Pro Tyr Ala Ala
<210> SEQ ID NO 5
<211> LENGTH: 664
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 335942.2
<400> SEQUENCE: 5
ccaaaatgga gggaataata cctaagcctt cctgccgcaa cagtttttta tg
#ctaatcag     60
ggaggtcatt ttggtaaaat acttcttgaa gccgagcctc aagatgaagg ca
#aagcacga    120
aatgttattt tttaattatt atttatatat gtatttataa atatatttaa ga
#taattata    180
atatactata tttatgggaa ccccttcatc ctctgagtgt gaccaggcat cc
#tccacaat    240
agcagacagt gttttctggg ataagtaagt ttgatttcat taatacaggg ca
#ttttggtc    300
caagttgtgc ttatcccata gccaggaaac tctgcattct agtacttggg ag
#acctgtaa    360
tcatataata aatgtacatt aattaccttg agccagtaat tggtccgatc tt
#tgactctt    420
ttgccattaa acttacctgg gcattcttgt ttcaattcca cctgcaatca ag
#tcctacaa    480
gctaaaatta gatgaactca actttgacaa ccatgagacc actgttatca aa
#actttctt    540
ttctggaatg taatcaatgt ttcttctagg ttctaaaaat tgtgatcaga cc
#ataatgtt    600
acattattat caacaatagt gattgataga gtgttatcag tcataactaa at
#aaagcttg    660
caac                 
#                  
#                  
#            664
<210> SEQ ID NO 6
<211> LENGTH: 1667
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2483854CB1
<400> SEQUENCE: 6
gtcatttcat tggcgtttga gtcagcaaag aagtcaagat ggccaaagtt cc
#agacatgt     60
ttgaagacct gaagaactgt tacagtgaaa atgaagaaga cagttcctcc at
#tgatcatc    120
tgtctctgaa tcagaaatcc ttctatcatg taagctatgg cccactccat ga
#aggctgca    180
tggatcaatc tgtgtctctg agtatctctg aaacctctaa aacatccaag ct
#taccttca    240
aggagagcat ggtggtagta gcaaccaacg ggaaggttct gaagaagaga cg
#gttgagtt    300
taagccaatc catcactgat gatgacctgg aggccatcgc caatgactca ga
#ggaagaaa    360
tcatcaagcc taggtcagca ccttttagct tcctgagcaa tgtgaaatac aa
#ctttatga    420
ggatcatcaa atacgaattc atcctgaatg acgccctcaa tcaaagtata at
#tcgagcca    480
atgatcagta cctcacggct gctgcattac ataatctgga tgaagcagtg aa
#atttgaca    540
tgggtgctta taagtcatca aaggatgatg ctaaaattac cgtgattcta ag
#aatctcaa    600
aaactcaatt gtatgtgact gcccaagatg aagaccaacc agtgctgctg aa
#ggagatgc    660
ctgagatacc caaaaccatc acaggtagtg agaccaacct cctcttcttc tg
#ggaaactc    720
acggcactaa gaactatttc acatcagttg cccatccaaa cttgtttatt gc
#cacaaagc    780
aagactactg ggtgtgcttg gcaggggggc caccctctat cactgacttt ca
#gatactgg    840
aaaaccaggc gtaggtctgg agtctcactt gtctcacttg tgcagtgttg ac
#agttcata    900
tgtaccatgt acatgaagaa gctaaatcct ttactgttag tcatttgctg ag
#catgtact    960
gagccttgta attctaaatg aatgtttaca ctctttgtaa gagtggaacc aa
#cactaaca   1020
tataatgttg ttatttaaag aacaccctat attttgcata gtaccaatca tt
#ttaattat   1080
tattcttcat aacaatttta ggaggaccag agctactgac tatggctacc aa
#aaagactc   1140
tacccatatt acagatgggc aaattaaggc ataagaaaac taagaaatat gc
#acaatagc   1200
agttgaaaca agaagccaca gacctaggat ttcatgattt catttcaact gt
#ttgccttc   1260
tacttttaag ttgctgatga actcttaatc aaatagcata agtttctggg ac
#ctcagttt   1320
tatcattttc aaaatggagg gaataatacc taagccttcc tgccgcaaca gt
#tttttatg   1380
ctaatcaggg agggcatttt ggtaaaatac ttcttgaagc cgagcctcaa ga
#tgaaggca   1440
aagcacgaaa tgttattttt taattattat ttatatatgt atttataaat at
#atttcaga   1500
taattataat atacctatat tgatgggaac ccttcatcct ctgaggtgtg ac
#cagggcat   1560
cctccacaat tagccgacag tggtttcctg gggataggta aggtttggtt tc
#cattaata   1620
ccagggcatt ttgggtccaa gttgtgctta atcccataag ccaggga   
#              1667
<210> SEQ ID NO 7
<211> LENGTH: 271
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2483854CD1
<400> SEQUENCE: 7
Met Ala Lys Val Pro Asp Met Phe Glu Asp Le
#u Lys Asn Cys Tyr
  1               5 
#                 10 
#                 15
Ser Glu Asn Glu Glu Asp Ser Ser Ser Ile As
#p His Leu Ser Leu
                 20 
#                 25 
#                 30
Asn Gln Lys Ser Phe Tyr His Val Ser Tyr Gl
#y Pro Leu His Glu
                 35 
#                 40 
#                 45
Gly Cys Met Asp Gln Ser Val Ser Leu Ser Il
#e Ser Glu Thr Ser
                 50 
#                 55 
#                 60
Lys Thr Ser Lys Leu Thr Phe Lys Glu Ser Me
#t Val Val Val Ala
                 65 
#                 70 
#                 75
Thr Asn Gly Lys Val Leu Lys Lys Arg Arg Le
#u Ser Leu Ser Gln
                 80 
#                 85 
#                 90
Ser Ile Thr Asp Asp Asp Leu Glu Ala Ile Al
#a Asn Asp Ser Glu
                 95 
#                100 
#                105
Glu Glu Ile Ile Lys Pro Arg Ser Ala Pro Ph
#e Ser Phe Leu Ser
                110  
#               115  
#               120
Asn Val Lys Tyr Asn Phe Met Arg Ile Ile Ly
#s Tyr Glu Phe Ile
                125  
#               130  
#               135
Leu Asn Asp Ala Leu Asn Gln Ser Ile Ile Ar
#g Ala Asn Asp Gln
                140  
#               145  
#               150
Tyr Leu Thr Ala Ala Ala Leu His Asn Leu As
#p Glu Ala Val Lys
                155  
#               160  
#               165
Phe Asp Met Gly Ala Tyr Lys Ser Ser Lys As
#p Asp Ala Lys Ile
                170  
#               175  
#               180
Thr Val Ile Leu Arg Ile Ser Lys Thr Gln Le
#u Tyr Val Thr Ala
                185  
#               190  
#               195
Gln Asp Glu Asp Gln Pro Val Leu Leu Lys Gl
#u Met Pro Glu Ile
                200  
#               205  
#               210
Pro Lys Thr Ile Thr Gly Ser Glu Thr Asn Le
#u Leu Phe Phe Trp
                215  
#               220  
#               225
Glu Thr His Gly Thr Lys Asn Tyr Phe Thr Se
#r Val Ala His Pro
                230  
#               235  
#               240
Asn Leu Phe Ile Ala Thr Lys Gln Asp Tyr Tr
#p Val Cys Leu Ala
                245  
#               250  
#               255
Gly Gly Pro Pro Ser Ile Thr Asp Phe Gln Il
#e Leu Glu Asn Gln
                260  
#               265  
#               270
Ala
<210> SEQ ID NO 8
<211> LENGTH: 1511
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1454852CB1
<400> SEQUENCE: 8
cccctctcct ccccagccct tctcctgtgt gcctgcctcc tgctgccctc ac
#catgacca     60
cctccatccg ccagttcacc tcctccagct ccatcaaggg ctcctccggc ct
#ggggggcg    120
gctcgtcccg cacctcctgc cggctgtctg gcggcctggg tgccggctcc tg
#caggctgg    180
gatctgctgg cggcctgggc agcaccctcg ggggtagcag ctactccagc tg
#ctacagct    240
ttggctctgg tggtggctat ggcagcagct ttgggggtgt tgatgggctg ct
#ggctggag    300
gtgagaaggc caccatgcag aacctcaatg accgcctggc ctcctacctg ga
#caaggtgc    360
gtgccctgga ggaggccaac actgagctgg aggtgaagat ccgtgactgg ta
#ccagaggc    420
aggccccggg gcccgcccgt gactacagcc agtactacag gacaattgag ga
#gctgcaga    480
acaagatcct cacagccacc gtggacaatg ccaacatcct gctacagatt ga
#caatgccc    540
gtctggctgc tgatgacttc cgcaccaagt ttgagacaga gcaggccctg cg
#cctgagtg    600
tggaggccga catcaatggc ctgcgcaggg tgctggatga gctgaccctg gc
#cagagccg    660
acctggagat gcagattgag aacctcaagg aggagctggc ctacctgaag aa
#gaaccacg    720
aggaggagat gaacgccctg cgaggccagg tgggtggtga gatcaatgtg ga
#gatggacg    780
ctgccccagg cgtggacctg agccgcatcc tcaacgagat gcgtgaccag ta
#tgagaaga    840
tggcagagaa gaaccgcaag gatgccgagg attggttctt cagcaagaca ga
#ggaactga    900
accgcgaggt ggccaccaac agtgagctgg tgcagagtgg caagagtgag at
#ctcggagc    960
tccggcgcac catgcaggcc ttggagatag agctgcagtc ccagctcagc at
#gaaagcat   1020
ccctggaggg caacctggcg gagacagaga accgctactg cgtgcagctg tc
#ccagatcc   1080
aggggctgat tggcagcgtg gaggagcagc tggcccagct tcgctgcgag at
#ggagcagc   1140
agaaccagga atacaaaatc ctgctggatg tgaagacgcg gctggagcag ga
#gattgcca   1200
cctaccgccg cctgctggag ggagaggatg cccacctgac tcagtacaag aa
#agaaccgg   1260
tgaccacccg tcaggtgcgt accattgtgg aagaggtcca ggatggcaag gt
#catctcct   1320
cccgcgagca ggtccaccag accacccgct gaggactcag ctaccccggc cg
#gccaccca   1380
ggaggcaggg aggcagccgc cccatctgcc ccacagtctc cggcctctcc ag
#cctcagcc   1440
ccctgcttca gtcccttccc catgcttcct tgcctgatga caataaagct tg
#ttgactca   1500
gctaaaaaaa a               
#                  
#                  
#     1511
<210> SEQ ID NO 9
<211> LENGTH: 432
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1454852CD1
<400> SEQUENCE: 9
Met Thr Thr Ser Ile Arg Gln Phe Thr Ser Se
#r Ser Ser Ile Lys
  1               5 
#                 10 
#                 15
Gly Ser Ser Gly Leu Gly Gly Gly Ser Ser Ar
#g Thr Ser Cys Arg
                 20 
#                 25 
#                 30
Leu Ser Gly Gly Leu Gly Ala Gly Ser Cys Ar
#g Leu Gly Ser Ala
                 35 
#                 40 
#                 45
Gly Gly Leu Gly Ser Thr Leu Gly Gly Ser Se
#r Tyr Ser Ser Cys
                 50 
#                 55 
#                 60
Tyr Ser Phe Gly Ser Gly Gly Gly Tyr Gly Se
#r Ser Phe Gly Gly
                 65 
#                 70 
#                 75
Val Asp Gly Leu Leu Ala Gly Gly Glu Lys Al
#a Thr Met Gln Asn
                 80 
#                 85 
#                 90
Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp Ly
#s Val Arg Ala Leu
                 95 
#                100 
#                105
Glu Glu Ala Asn Thr Glu Leu Glu Val Lys Il
#e Arg Asp Trp Tyr
                110  
#               115  
#               120
Gln Arg Gln Ala Pro Gly Pro Ala Arg Asp Ty
#r Ser Gln Tyr Tyr
                125  
#               130  
#               135
Arg Thr Ile Glu Glu Leu Gln Asn Lys Ile Le
#u Thr Ala Thr Val
                140  
#               145  
#               150
Asp Asn Ala Asn Ile Leu Leu Gln Ile Asp As
#n Ala Arg Leu Ala
                155  
#               160  
#               165
Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Gl
#u Gln Ala Leu Arg
                170  
#               175  
#               180
Leu Ser Val Glu Ala Asp Ile Asn Gly Leu Ar
#g Arg Val Leu Asp
                185  
#               190  
#               195
Glu Leu Thr Leu Ala Arg Ala Asp Leu Glu Me
#t Gln Ile Glu Asn
                200  
#               205  
#               210
Leu Lys Glu Glu Leu Ala Tyr Leu Lys Lys As
#n His Glu Glu Glu
                215  
#               220  
#               225
Met Asn Ala Leu Arg Gly Gln Val Gly Gly Gl
#u Ile Asn Val Glu
                230  
#               235  
#               240
Met Asp Ala Ala Pro Gly Val Asp Leu Ser Ar
#g Ile Leu Asn Glu
                245  
#               250  
#               255
Met Arg Asp Gln Tyr Glu Lys Met Ala Glu Ly
#s Asn Arg Lys Asp
                260  
#               265  
#               270
Ala Glu Asp Trp Phe Phe Ser Lys Thr Glu Gl
#u Leu Asn Arg Glu
                275  
#               280  
#               285
Val Ala Thr Asn Ser Glu Leu Val Gln Ser Gl
#y Lys Ser Glu Ile
                290  
#               295  
#               300
Ser Glu Leu Arg Arg Thr Met Gln Ala Leu Gl
#u Ile Glu Leu Gln
                305  
#               310  
#               315
Ser Gln Leu Ser Met Lys Ala Ser Leu Glu Gl
#y Asn Leu Ala Glu
                320  
#               325  
#               330
Thr Glu Asn Arg Tyr Cys Val Gln Leu Ser Gl
#n Ile Gln Gly Leu
                335  
#               340  
#               345
Ile Gly Ser Val Glu Glu Gln Leu Ala Gln Le
#u Arg Cys Glu Met
                350  
#               355  
#               360
Glu Gln Gln Asn Gln Glu Tyr Lys Ile Leu Le
#u Asp Val Lys Thr
                365  
#               370  
#               375
Arg Leu Glu Gln Glu Ile Ala Thr Tyr Arg Ar
#g Leu Leu Glu Gly
                380  
#               385  
#               390
Glu Asp Ala His Leu Thr Gln Tyr Lys Lys Gl
#u Pro Val Thr Thr
                395  
#               400  
#               405
Arg Gln Val Arg Thr Ile Val Glu Glu Val Gl
#n Asp Gly Lys Val
                410  
#               415  
#               420
Ile Ser Ser Arg Glu Gln Val His Gln Thr Th
#r Arg
                425  
#               430
<210> SEQ ID NO 10
<211> LENGTH: 309
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 353005.1
<221> NAME/KEY: unsure
<222> LOCATION: 6, 10, 18, 24-25, 67, 76, 83
#, 98, 159, 290
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 10
ggtggntggn accatggnac tgtnnatctc cccctcttcc tcttggcctc tg
#tggacggt     60
gcctttncat ctgctnccac ttnaatcctc tgtctctnga ggaactaggc tc
#caacacgg    120
ggatccaggt tttcaatcag attgtgaagt cgaggcctna tgacaacatc gt
#gatctctc    180
cccatgggat tgcgtcggtc ctggggatgc ttcagctggg ggcggacggc ag
#gaccagaa    240
gcagctcgcc atggtgatga gatacggcgt aaatgatatg attgacaatn tg
#ctgtcccc    300
agatcttat                
#                  
#                  
#        309
<210> SEQ ID NO 11
<211> LENGTH: 176
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 378497.1
<221> NAME/KEY: unsure
<222> LOCATION: 18, 30, 35, 39, 44, 52, 87, 
#93, 108, 112, 114, 151,
      166, 168, 170
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 11
gcccaacgtc atcgggcngc agtgcacccn ctgtncaana ggancactac gn
#attcccac     60
gctgcaaccg tgcagctgtg gtcggcncct ttntgaagag atgacggngc an
#tnccggct    120
tcccttcccc gcacggtcag gccccagtgt naggtgtgtg agacanantn ca
#ttca        176
<210> SEQ ID NO 12
<211> LENGTH: 3544
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 994684.9
<400> SEQUENCE: 12
cagcgtcaaa tttgtctcca ccacctcctc ctcccggaag agcttcaaga gc
#taagaacc     60
tgctgcaagt cactgccttc caagtgcagc aacccagccc atggagattg cc
#tcttctag    120
gcagttgctc aagccatgtt ttatcctttt ctggatagca tcatcgctga gg
#tcaaggcc    180
cagtatgagg agattgccaa ccgcagccgg acagaagccg agtcctggta tc
#agaccaag    240
tatgaggagc tgcagcagac agctggccgg catggcgatg acctccgcaa ca
#ccaagcat    300
gagatctctg agatgaaccg gatgatccag aggctgagag ccgagattga ca
#atgtcaag    360
aaacagtgcg ccaatctgca gaacgccatt gcggatgccg agcagcgtgg gg
#agctggcc    420
ctcaaggatg ccaggaacaa gctggccgag ctggaggagg ccctgcagaa gg
#ccaagcag    480
gacatggccc ggctgctgcg tgagtaccag gagctcatga acaccaagct gg
#ccctggac    540
gtggagatcg ccacttaccg caagctgctg gagggcgagg aatgcagact ca
#gtggagaa    600
ggagttggac cagtcaacat ctgtaagtag ctttgaacag acattaacaa cg
#acaataat    660
atgggatata tttagtgcca actcagaatt ctgctgtttc tagatccaaa ct
#tttcccat    720
cccagcatat ggttatttat aataatacac ttagtaagtt gtgggtggtg ga
#ggggaagg    780
acagattggg acaggaagca atgtggctta tgtctcatct cttaaagggt aa
#gccatgca    840
tcctatgctt cttggaccct gtcccctgcc ttgtccctag tacctagctc cc
#cccagtac    900
ctagctcctc ccctcagtac ctagctcccc tcagtaccta gctccctgta gt
#acctagct    960
cccctcagta cctagctcct ctcagtacct agcaccttgc ctcttacact ca
#cccacttt   1020
tttagggacc ttaattaaat gacagttctt ccgggccttg tttgctactc tg
#taaagggg   1080
gtccagtaga gtgctccaac accagcagat caaataaatg ggccatgcag ga
#tcagcctg   1140
gcagatggtc tcactgagtc ctccctcctt tccctgcagc tgttgtcaca ag
#cagtgttt   1200
cctctggata tggcagtggc agtggctatg gcggtggcct cggtggaggt ct
#tggcggcg   1260
gcctcggtgg aggtcttgcc ggaggtagca gtggaagcta ctactccagc ag
#cagtgggg   1320
gtgtcggcct aggtggtggg ctcagtgtgg ggggctctgg cttcagtgca ag
#cagtggcc   1380
gagggctggg ggtgggcttt ggcagtggcg ggggtagcag ctccagcgtc aa
#atttgtct   1440
ccaccacctc ctcctcccgg aagagcttca agagctaaga acctgctgca ag
#tcactgcc   1500
ttccaagtgc agcaacccag cccatggaga ttgcctcttc taggcagagt ca
#gccttgcg   1560
ggtgcttgtg gagtgggtgg ctatggcagc cggagcctct acaacctggg gg
#gctccaag   1620
aggatatcca tcagcactag tggtggcagc ttcaggaacc ggtttggtgc tg
#gtgctgga   1680
ggcggctatg gctttggagg tggtgccggt agtggatttg gtttcggcgg tg
#gagctggt   1740
ggtggctttg ggctcggtgg cggagctggc tttggaggtg gcttcggtgg cc
#ctggcttt   1800
cctgtctgcc ctcctggagg tatccaagag gtcactgtca accagagtct cc
#tgactccc   1860
ctcaacctgc aaatcgaccc cagcatccag agggtgagga ccgaggagcg cg
#agcagatc   1920
aagaccctca acaataagtt tgcctccttc atcgacaagg tgcggttcct gg
#agcagcag   1980
aacaaggttc tggaaacaaa gtggaccctg ctgcaggagc agggcaccaa ga
#ctgtgagg   2040
cagaacctgg agccgttgtt cgagcagtac atcaacaacc tcaggaggca gc
#tggacagc   2100
atcgtggggg aacggggccg cctggactca gagctgagaa acatgcagga cc
#tggtggaa   2160
gacttcaaga acaagtatga ggatgaaatc aacaagcgta ccactgctga ga
#atgagttt   2220
gtgatgctga agaaggatgt agatgctgcc tacatgaaca aggtggagct gg
#aggccaag   2280
gttgatgcac tgatggatga gattaacttc atgaagatgt tctttgatgc gg
#agctgtcc   2340
cagatgcaga cgcatgtctc tgacacctca gtggtcctct ccatggacaa ca
#accgcaac   2400
ctggacctgg atagcatcat cgctgaggtc aaggcccagt atgaggagat tg
#ccaaccgc   2460
agccggaccg aagccgagtc ctggtatcag accaagtatg aggagctgca gc
#agacagct   2520
ggccggcatg gcgatgacct ccgcaacacc aagcatgaga tctctgagat ga
#accggatg   2580
atccagaggc tgagagccga gattgacaat gtcaagaaac agtgcgccaa tc
#tggcagaa   2640
cgccattgcg gatgccgagc agcgtgggga gctggccctc aaggatgcca gg
#aacaagct   2700
ggccgagctg gaggaggccc tgcagaaggc caagcaggac atgggcccgg ct
#gctgcgtg   2760
agtaccagga gctcatgaac accaagctgg ccctggacgt ggagatcgcc ac
#ttaccgca   2820
agctgctgga gggcgaggaa tgcagactca gtggagaagg agttggacca gt
#caacatct   2880
ctgttgtcac aagcagtgtt tcctctggat atggcagtgg cagtggctat gg
#cggtggcc   2940
tcggtggagg tcttggcggc ggcctcggtg gaggtcttgc cggaggtagc ag
#tggaagct   3000
actactccag cagcagtggg ggtgtcggcc taggtggtgg gctcagtgtg gg
#gggctctg   3060
gcttcagtgc aagcagtggc cgagggctgg gggtgggctt tggcagtggc gg
#gggtagca   3120
gctccagcgt caaatttgtc tccaccacct cctcctcccg gaagagcttc aa
#gagctaag   3180
aacctgctgc aagtcactgc cttccaagtg cagcaaccca gcccatggag at
#tgcctctt   3240
ctaggcagtt gctcaagcca tgttttatcc ttttctggag agtagtctag ac
#caagccaa   3300
ttgcagaacc acattctttg gttcccagga gagccccatt cccagcccct gg
#tctcccgt   3360
gccgcagttc tatattctgc ttcaaatcag ccttcaggtt tcccacagca tg
#gcccctgc   3420
tgacacgaga acccaaagtt ttcccaaatc taaatcatca aaacagaatc cc
#caccccaa   3480
tcccaaattt tgttttggtt ctaactacct ccagaatgtg ttcaataaaa tg
#cttttata   3540
ttat                 
#                  
#                  
#           3544
<210> SEQ ID NO 13
<211> LENGTH: 3000
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 995610.1
<400> SEQUENCE: 13
ggagtttatt cataacgcgc tctccaagta tacgtggcaa tgcgttgctg gg
#ttatttta     60
atcattctag gcatcgtttt cctccttatg cctctatcat tcctccctat ct
#acactaac    120
atcccacgct ctgaacgcgc gcccattaat acccttcttt cctccactct cc
#ctgggact    180
cttgatcaaa gcgcggccct ttccccagcc ttagcgaggc gccctgcagc ct
#ggtacgcg    240
cgtggcgtgg cggtgggcgc gcagtgcgtt ctcggtgtgg agggcagctg tt
#ccgcctgc    300
gatgatttat actcacagga caaggatgcg gtttgtcaaa cagtactgct ac
#ggaggagc    360
agcagagaaa gggagagggt ttgagaggga gcaaaagaaa atggtaggcg cg
#cgtagtta    420
attcatgcgg ctctcttact ctgtttacat cctagagcta gagtgctcgg ct
#gcccggct    480
gagtctcctc cccaccttcc ccaccctccc caccctcccc ataagcgccc tc
#ccgggttc    540
ccaaagcaga gggcgtgggg gaaaagaaaa aagatcctct ctcgctaatc tc
#cgcccacc    600
ggccctttat aatgcgaggg tctggacggc tgaggacccc cgagctgtgc tg
#ctcgcggc    660
cgccaccgcc gggccccggc cgtccctggc tcccctcctg cctcgagaag gg
#cagggctt    720
ctcagaggct tggcgggaaa aagaacggag ggagggatcg cgctgagtat aa
#aagccggt    780
tttcggggct ttatctaact cgctgtagta attccagcga gaggcagagg ga
#gcgagcgg    840
gcggccggct agggtggaag agccgggcga gcagagctgc gctgcgggcg tc
#ctgggaag    900
ggagatccgg agcgaatagg gggcttcgcc tctggcccag ccctcccgct ga
#tcccccag    960
ccagcggtcc gcaacccttg ccgcatccac gaaactttgc ccatagcagc gg
#gcgggcac   1020
tttgcactgg aacttacaac acccgagcaa ggacgcgact ctcccgacgc gg
#ggaggcta   1080
ttctgcccat ttggggacac ttccccgccg ctgccaggac ccgcttctct ga
#aaggctct   1140
ccttgcagct gcttagacgc tggatttttt tcgggtagtg gaaaaccagc ag
#cctcccgc   1200
gacgatgccc ctcaacgtta gcttcaccaa caggaactat gacctcgact ac
#gactcggt   1260
gcagccgtat ttctactgcg acgaggagga gaacttctac cagcagcagc ag
#cagagcga   1320
ggctgcagcc cccggcgccc agcgaggata tctggaagaa attcgagctg ct
#gcccaccc   1380
cgcccctgtc ccctagccgc cgctccgggc tctgctcgcc ctcctacgtt gc
#ggtcacac   1440
ccttctccct tcggggagac aacgacggcg gtggcgggag cttctccacg gc
#cgaccagc   1500
tggagatggt gaccgagctg ctgggaggag acatggtgaa ccagagtttc at
#ctgcgacc   1560
cggacgacga gaccttcatc aaaaacatca tcatccagga ctgtatgtgg ag
#cggcttct   1620
cggccgccgc caagctcgtc tcagagaagc tggcctccta ccaggctgcg cg
#caaagaca   1680
gcggcagccc gaaccccgcc cgcggccaca gcgtctgctc cacctccagc tt
#gtacctgc   1740
aggatctgag cgccgccgcc tcagagtgca tcgacccctc ggtggtcttc cc
#ctaccctc   1800
tcaacgacag cagctcgccc aagtcctgcg cctcgcaaga ctccagcgcc tt
#ctctccgt   1860
cctcggattc tctgctctcc tcgacggagt cctccccgca gggcagcccc ga
#gcccctgg   1920
tgctccatga ggagacaccg cccaccacca gcagcgactc tgaggaggaa ca
#agaagatg   1980
aggaagaaat cgatgttgtt tctgtggaaa agaggcaggc tcctggcaaa ag
#gtcagagt   2040
ctggatcacc ttctgctgga ggccacagca aacctcctca cagcccactg gt
#cctcaaga   2100
ggtgccacgt ctccacacat cagcacaact acgcagcgcc tccctccact cg
#gaaggact   2160
atcctgctgc caagagggtc aagttggaca gtgtcagagt cctgagacag at
#cagcaaca   2220
accgaaaatg caccagcccc aggtcctcgg acaccgagga gaatgtcaag ag
#gcgaacac   2280
acaacgtctt ggagcgccag aggaggaacg agctaaaacg gagctttttt gc
#cctgcgtg   2340
accagatccc ggagttggaa aacaatgaaa aggcccccaa ggtagttatc ct
#taaaaaag   2400
ccacagcata catcctgtcc gtccaagcag aggagcaaaa gctcatttct ga
#agaggact   2460
tgttgcggaa acgacgagaa cagttgaaac acaaacttga acagctacgg aa
#ctcttgtg   2520
cgtaaggaaa agtaaggaaa acgattcctt ctaacagaaa tgtcctgagc aa
#tcacctat   2580
gaacttgttt caaatgcatg atcaaatgca acctcacaac cttggctgag tc
#ttgagact   2640
gaaagattta gccataatgt aaactgcctc aaattggact ttgggcataa aa
#gaactttt   2700
ttatgcttac catctttttt ttttctttaa cagatttgta tttaagaatt gt
#ttttaaaa   2760
aattttaaga tttacacaat gtttctctgt aaatattgcc attaaatgta aa
#taacttta   2820
ataaaacgtt tatagcagtt acacagaatt tcaatcctag tatatagtac ct
#agtattat   2880
aggtactata aaccctaatt ttttttattt aagtacattt tgctttttaa ag
#ttgatttt   2940
tttctattgt ttttagaaaa aataaaataa ctggcaaata tatcattgag cc
#aaaaaaaa   3000
<210> SEQ ID NO 14
<211> LENGTH: 427
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 417119.1
<400> SEQUENCE: 14
aaaacaaaga aggctggaaa ccaaagcaat catctcttta gtggaaacta tt
#cttaaaga     60
agatcttgat ggctactgac atttgcaact ccctcactct ttctcagggg cc
#tttcactt    120
acattgtcac cagaggttcg taacctccct gtgggctagt gttatgacca tc
#accatttt    180
acctaagtag ctctgttgct cggccacagt gagcagtaat agacctgaag ct
#ggaaccca    240
tgtctaatag tgtcaggtcc agtgttctta gccaccccac tcccagcttc at
#ccctactg    300
gtgttgtcat cagactttga ccgtatatgc tcaggtgtcc tccaagaaat ca
#aattttgc    360
cacctcgcct tcacgaggcc tgcccttctg gatttatacc taacaacatg tg
#ctccacat    420
ttcagaa                 
#                  
#                  
#         427
<210> SEQ ID NO 15
<211> LENGTH: 4108
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3615080CB1
<400> SEQUENCE: 15
tgccagattc ctgagacccg cctgcggtgg ggctacaccc agccagggag tc
#tccagagg     60
tgaggctgtt gtttaaaaac ctggagccgg gaggggagac ccccacattc aa
#gaggagct    120
ttcaggcgat ctggagaaag aacggcagaa cacacagcaa ggaaaggtcc tt
#tctgggga    180
tcaccccatt ggctgaagat gagaccattc ttcctcttgt gttttgccct gc
#ctggcctc    240
ctgcatgccc aacaagcctg ctcccgtggg gcctgctatc cacctgttgg gg
#acctgctt    300
gttgggagga cccggtttct ccgagcttca tctacctgtg gactgaccaa gc
#ctgagacc    360
tactgcaccc agtatggcga gtggcagatg aaatgctgca agtgtgactc ca
#ggcagcct    420
cacaactact acagtcaccg agtagagaat gtggcttcat cctccggccc ca
#tgcgctgg    480
tggcagtcac agaatgatgt gaaccctgtc tctctgcagc tggacctgga ca
#ggagattc    540
cagcttcaag aagtcatgat ggagttccag gggcccatgc ccgccggcat gc
#tgattgag    600
cgctcctcag acttcggtaa gacctggcga gtgtaccagt acctggctgc cg
#actgcacc    660
tccaccttcc ctcgggtccg ccagggtcgg cctcagagct ggcaggatgt tc
#ggtgccag    720
tccctgcctc agaggcctga tgcacgccta aatgggggga aggtccaact ta
#accttatg    780
gatttagtgt ctgggattcc agcaactcaa agtcaaaaaa ttcaagaggt gg
#gggagatc    840
acaaacttga gagtcaattt caccaggctg gcccctgtgc cccaaagggg ct
#accaccct    900
cccagcgcct actatgctgt gtcccagctc cgtctgcagg ggagctgctt ct
#gtcacggc    960
catgctgatc gctgcgcacc caagcctggg gcctctgcag gcccctccac cg
#ctgtgcag   1020
gtccacgatg tctgtgtctg ccagcacaac actgccggcc caaattgtga gc
#gctgtgca   1080
cccttctaca acaaccggcc ctggagaccg gcggagggcc aggacgccca tg
#aatgccaa   1140
aggtgcgact gcaatgggca ctcagagaca tgtcactttg accccgctgt gt
#ttgccgcc   1200
agccaggggg catatggagg tgtgtgtgac aattgccggg accacaccga ag
#gcaagaac   1260
tgtgagcggt gtcagctgca ctatttccgg aaccggcgcc cgggagcttc ca
#ttcaggag   1320
acctgcatct cctgcgagtg tgatccggat ggggcagtgc caggggctcc ct
#gtgaccca   1380
gtgaccgggc agtgtgtgtg caaggagcat gtgcagggag agcgctgtga cc
#tatgcaag   1440
ccgggcttca ctggactcac ctacgccaac ccgcagggct gccaccgctg tg
#actgcaac   1500
atcctggggt cccggaggga catgccgtgt gacgaggaga gtgggcgctg cc
#tttgtctg   1560
cccaacgtgg tgggtcccaa atgtgaccag tgtgctccct accactggaa gc
#tggccagt   1620
ggccagggct gtgaaccgtg tgcctgcgac ccgcacaact ccctcagccc ac
#agtgcaac   1680
cagttcacag ggcagtgccc ctgtcgggaa ggctttggtg gcctgatgtg ca
#gcgctgca   1740
gccatccgcc agtgtccaga ccggacctat ggagacgtgg ccacaggatg cc
#gagcctgt   1800
gactgtgatt tccggggaac agagggcccg ggctgcgaca aggcatcagg cc
#gctgcctc   1860
tgccgccctg gcttgaccgg gccccgctgt gaccagtgcc agcgaggcta ct
#gcaatcgc   1920
tacccggtgt gcgtggcctg ccacccttgc ttccagacct atgatgcgga cc
#tccgggag   1980
caggccctgc gctttggtag actccgcaat gccaccgcca gcctgtggtc ag
#ggcctggg   2040
ctggaggacc gtggcctggc ctcccggatc ctagatgcaa agagtaagat tg
#agcagatc   2100
cgagcagttc tcagcagccc cgcagtcaca gagcaggagg tggctcaggt gg
#ccagtgcc   2160
atcctctccc tcaggcgaac tctccagggc ctgcagctgg atctgcccct gg
#aggaggag   2220
acgttgtccc ttccgagaga cctggagagt cttgacagaa gcttcaatgg tc
#tccttact   2280
atgtatcaga ggaagaggga gcagtttgaa aaaataagca gtgctgatcc tt
#caggagcc   2340
ttccggatgc tgagcacagc ctacgagcag tcagcccagg ctgctcagca gg
#tctccgac   2400
agctcgcgcc ttttggacca gctcagggac agccggagag aggcagagag gc
#tggtgcgg   2460
caggcgggag gaggaggagg caccggcagc cccaagcttg tggccctgag gc
#tggagatg   2520
tcttcgttgc ctgacctgac acccaccttc aacaagctct gtggcaactc ca
#ggcagatg   2580
gcttgcaccc caatatcatg ccctggtgag ctatgtcccc aagacaatgg ca
#cagcctgt   2640
ggctcccgct gcaggggtgt ccttcccagg gccggtgggg ccttcttgat gg
#cggggcag   2700
gtggctgagc agctgcgggg cttcaatgcc cagctccagc ggaccaggca ga
#tgattagg   2760
gcagccgagg aatctgcctc acagattcaa tccagtgccc agcgcttgga ga
#cccaggtg   2820
agcgccagcc gctcccagat ggaggaagat gtcagacgca cacggctcct aa
#tccagcag   2880
gtccgggact tcctaacaga ccccgacact gatgcagcca ctatccagga gg
#tcagcgag   2940
gccgtgctgg ccctgtggct gcccacagac tcagatactg ttctgcagaa ga
#tgaatgag   3000
atccaggcca ttgcagccag gctccccaac gtggacttgg tgctgtccca ga
#ccaagcag   3060
gacattgcgc gtgcccgccg gttgcaggct gaggctgagg aagccaggag cc
#gagcccat   3120
gcagtggagg gccaggtgga agatgtggtt gggaacctgc ggcaggggac ag
#tggcactg   3180
caggaagctc aggacaccat gcaaggcacc agccgctccc ttcggcttat cc
#aggacagg   3240
gttgctgagg ttcagcaggt actgcggcca gcagaaaagc tggtgacaag ca
#tgaccaag   3300
cagctgggtg acttctggac acggatggag gagctccgcc accaagcccg gc
#agcagggg   3360
gcagaggcag tccaggccca gcagcttgcg gaaggtgcca gcgagcaggc at
#tgagtgcc   3420
caagagggat ttgagagaat aaaacaaaag tatgctgagt tgaaggaccg gt
#tgggtcag   3480
agttccatgc tgggtgagca gggtgcccgg atccagagtg tgaagacaga gg
#cagaggag   3540
ctgtttgggg agaccatgga gatgatggac aggatgaaag acatggagtt gg
#agctgctg   3600
cggggcagcc aggccatcat gctgcgctca gcggacctga caggactgga ga
#agcgtgtg   3660
gagcagatcc gtgaccacat caatgggcgc gtgctctact atgccacctg ca
#agtgatgc   3720
tacagcttcc agcccgttgc cccactcatc tgccgccttt gcttttggtt gg
#gggcagat   3780
tgggttggaa tgctttccat ctccaggaga ctttcatgta gcctaaagta ca
#gcctggac   3840
cacccctggt gtgtagctag taagattacc ctgagctgca gctgagcctg ag
#ccaatggg   3900
acagttacac ttgacagaca aagatggtgg agattggcat gccattgaaa ct
#aagagctc   3960
tcaagtcaag gaagctgggc tgggcagtat cccccgcctt tagttctcca ct
#ggggagga   4020
atcctggacc aagcacaaaa acttaacaaa agtgatgtaa aaatgaaaag cc
#aaataaaa   4080
atctttggaa aagaaaaaaa aaaaaaaa         
#                  
#           4108
<210> SEQ ID NO 16
<211> LENGTH: 1172
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3615080CD1
<400> SEQUENCE: 16
Met Arg Pro Phe Phe Leu Leu Cys Phe Ala Le
#u Pro Gly Leu Leu
  1               5 
#                 10 
#                 15
His Ala Gln Gln Ala Cys Ser Arg Gly Ala Cy
#s Tyr Pro Pro Val
                 20 
#                 25 
#                 30
Gly Asp Leu Leu Val Gly Arg Thr Arg Phe Le
#u Arg Ala Ser Ser
                 35 
#                 40 
#                 45
Thr Cys Gly Leu Thr Lys Pro Glu Thr Tyr Cy
#s Thr Gln Tyr Gly
                 50 
#                 55 
#                 60
Glu Trp Gln Met Lys Cys Cys Lys Cys Asp Se
#r Arg Gln Pro His
                 65 
#                 70 
#                 75
Asn Tyr Tyr Ser His Arg Val Glu Asn Val Al
#a Ser Ser Ser Gly
                 80 
#                 85 
#                 90
Pro Met Arg Trp Trp Gln Ser Gln Asn Asp Va
#l Asn Pro Val Ser
                 95 
#                100 
#                105
Leu Gln Leu Asp Leu Asp Arg Arg Phe Gln Le
#u Gln Glu Val Met
                110  
#               115  
#               120
Met Glu Phe Gln Gly Pro Met Pro Ala Gly Me
#t Leu Ile Glu Arg
                125  
#               130  
#               135
Ser Ser Asp Phe Gly Lys Thr Trp Arg Val Ty
#r Gln Tyr Leu Ala
                140  
#               145  
#               150
Ala Asp Cys Thr Ser Thr Phe Pro Arg Val Ar
#g Gln Gly Arg Pro
                155  
#               160  
#               165
Gln Ser Trp Gln Asp Val Arg Cys Gln Ser Le
#u Pro Gln Arg Pro
                170  
#               175  
#               180
Asp Ala Arg Leu Asn Gly Gly Lys Val Gln Le
#u Asn Leu Met Asp
                185  
#               190  
#               195
Leu Val Ser Gly Ile Pro Ala Thr Gln Ser Gl
#n Lys Ile Gln Glu
                200  
#               205  
#               210
Val Gly Glu Ile Thr Asn Leu Arg Val Asn Ph
#e Thr Arg Leu Ala
                215  
#               220  
#               225
Pro Val Pro Gln Arg Gly Tyr His Pro Pro Se
#r Ala Tyr Tyr Ala
                230  
#               235  
#               240
Val Ser Gln Leu Arg Leu Gln Gly Ser Cys Ph
#e Cys His Gly His
                245  
#               250  
#               255
Ala Asp Arg Cys Ala Pro Lys Pro Gly Ala Se
#r Ala Gly Pro Ser
                260  
#               265  
#               270
Thr Ala Val Gln Val His Asp Val Cys Val Cy
#s Gln His Asn Thr
                275  
#               280  
#               285
Ala Gly Pro Asn Cys Glu Arg Cys Ala Pro Ph
#e Tyr Asn Asn Arg
                290  
#               295  
#               300
Pro Trp Arg Pro Ala Glu Gly Gln Asp Ala Hi
#s Glu Cys Gln Arg
                305  
#               310  
#               315
Cys Asp Cys Asn Gly His Ser Glu Thr Cys Hi
#s Phe Asp Pro Ala
                320  
#               325  
#               330
Val Phe Ala Ala Ser Gln Gly Ala Tyr Gly Gl
#y Val Cys Asp Asn
                335  
#               340  
#               345
Cys Arg Asp His Thr Glu Gly Lys Asn Cys Gl
#u Arg Cys Gln Leu
                350  
#               355  
#               360
His Tyr Phe Arg Asn Arg Arg Pro Gly Ala Se
#r Ile Gln Glu Thr
                365  
#               370  
#               375
Cys Ile Ser Cys Glu Cys Asp Pro Asp Gly Al
#a Val Pro Gly Ala
                380  
#               385  
#               390
Pro Cys Asp Pro Val Thr Gly Gln Cys Val Cy
#s Lys Glu His Val
                395  
#               400  
#               405
Gln Gly Glu Arg Cys Asp Leu Cys Lys Pro Gl
#y Phe Thr Gly Leu
                410  
#               415  
#               420
Thr Tyr Ala Asn Pro Gln Gly Cys His Arg Cy
#s Asp Cys Asn Ile
                425  
#               430  
#               435
Leu Gly Ser Arg Arg Asp Met Pro Cys Asp Gl
#u Glu Ser Gly Arg
                440  
#               445  
#               450
Cys Leu Cys Leu Pro Asn Val Val Gly Pro Ly
#s Cys Asp Gln Cys
                455  
#               460  
#               465
Ala Pro Tyr His Trp Lys Leu Ala Ser Gly Gl
#n Gly Cys Glu Pro
                470  
#               475  
#               480
Cys Ala Cys Asp Pro His Asn Ser Leu Ser Pr
#o Gln Cys Asn Gln
                485  
#               490  
#               495
Phe Thr Gly Gln Cys Pro Cys Arg Glu Gly Ph
#e Gly Gly Leu Met
                500  
#               505  
#               510
Cys Ser Ala Ala Ala Ile Arg Gln Cys Pro As
#p Arg Thr Tyr Gly
                515  
#               520  
#               525
Asp Val Ala Thr Gly Cys Arg Ala Cys Asp Cy
#s Asp Phe Arg Gly
                530  
#               535  
#               540
Thr Glu Gly Pro Gly Cys Asp Lys Ala Ser Gl
#y Arg Cys Leu Cys
                545  
#               550  
#               555
Arg Pro Gly Leu Thr Gly Pro Arg Cys Asp Gl
#n Cys Gln Arg Gly
                560  
#               565  
#               570
Tyr Cys Asn Arg Tyr Pro Val Cys Val Ala Cy
#s His Pro Cys Phe
                575  
#               580  
#               585
Gln Thr Tyr Asp Ala Asp Leu Arg Glu Gln Al
#a Leu Arg Phe Gly
                590  
#               595  
#               600
Arg Leu Arg Asn Ala Thr Ala Ser Leu Trp Se
#r Gly Pro Gly Leu
                605  
#               610  
#               615
Glu Asp Arg Gly Leu Ala Ser Arg Ile Leu As
#p Ala Lys Ser Lys
                620  
#               625  
#               630
Ile Glu Gln Ile Arg Ala Val Leu Ser Ser Pr
#o Ala Val Thr Glu
                635  
#               640  
#               645
Gln Glu Val Ala Gln Val Ala Ser Ala Ile Le
#u Ser Leu Arg Arg
                650  
#               655  
#               660
Thr Leu Gln Gly Leu Gln Leu Asp Leu Pro Le
#u Glu Glu Glu Thr
                665  
#               670  
#               675
Leu Ser Leu Pro Arg Asp Leu Glu Ser Leu As
#p Arg Ser Phe Asn
                680  
#               685  
#               690
Gly Leu Leu Thr Met Tyr Gln Arg Lys Arg Gl
#u Gln Phe Glu Lys
                695  
#               700  
#               705
Ile Ser Ser Ala Asp Pro Ser Gly Ala Phe Ar
#g Met Leu Ser Thr
                710  
#               715  
#               720
Ala Tyr Glu Gln Ser Ala Gln Ala Ala Gln Gl
#n Val Ser Asp Ser
                725  
#               730  
#               735
Ser Arg Leu Leu Asp Gln Leu Arg Asp Ser Ar
#g Arg Glu Ala Glu
                740  
#               745  
#               750
Arg Leu Val Arg Gln Ala Gly Gly Gly Gly Gl
#y Thr Gly Ser Pro
                755  
#               760  
#               765
Lys Leu Val Ala Leu Arg Leu Glu Met Ser Se
#r Leu Pro Asp Leu
                770  
#               775  
#               780
Thr Pro Thr Phe Asn Lys Leu Cys Gly Asn Se
#r Arg Gln Met Ala
                785  
#               790  
#               795
Cys Thr Pro Ile Ser Cys Pro Gly Glu Leu Cy
#s Pro Gln Asp Asn
                800  
#               805  
#               810
Gly Thr Ala Cys Gly Ser Arg Cys Arg Gly Va
#l Leu Pro Arg Ala
                815  
#               820  
#               825
Gly Gly Ala Phe Leu Met Ala Gly Gln Val Al
#a Glu Gln Leu Arg
                830  
#               835  
#               840
Gly Phe Asn Ala Gln Leu Gln Arg Thr Arg Gl
#n Met Ile Arg Ala
                845  
#               850  
#               855
Ala Glu Glu Ser Ala Ser Gln Ile Gln Ser Se
#r Ala Gln Arg Leu
                860  
#               865  
#               870
Glu Thr Gln Val Ser Ala Ser Arg Ser Gln Me
#t Glu Glu Asp Val
                875  
#               880  
#               885
Arg Arg Thr Arg Leu Leu Ile Gln Gln Val Ar
#g Asp Phe Leu Thr
                890  
#               895  
#               900
Asp Pro Asp Thr Asp Ala Ala Thr Ile Gln Gl
#u Val Ser Glu Ala
                905  
#               910  
#               915
Val Leu Ala Leu Trp Leu Pro Thr Asp Ser As
#p Thr Val Leu Gln
                920  
#               925  
#               930
Lys Met Asn Glu Ile Gln Ala Ile Ala Ala Ar
#g Leu Pro Asn Val
                935  
#               940  
#               945
Asp Leu Val Leu Ser Gln Thr Lys Gln Asp Il
#e Ala Arg Ala Arg
                950  
#               955  
#               960
Arg Leu Gln Ala Glu Ala Glu Glu Ala Arg Se
#r Arg Ala His Ala
                965  
#               970  
#               975
Val Glu Gly Gln Val Glu Asp Val Val Gly As
#n Leu Arg Gln Gly
                980  
#               985  
#               990
Thr Val Ala Leu Gln Glu Ala Gln Asp Thr Me
#t Gln Gly Thr Ser
                995  
#              1000   
#             1005
Arg Ser Leu Arg Leu Ile Gln Asp Arg Val Al
#a Glu Val Gln Gln
               1010  
#              1015   
#             1020
Val Leu Arg Pro Ala Glu Lys Leu Val Thr Se
#r Met Thr Lys Gln
               1025  
#              1030   
#             1035
Leu Gly Asp Phe Trp Thr Arg Met Glu Glu Le
#u Arg His Gln Ala
               1040  
#              1045   
#             1050
Arg Gln Gln Gly Ala Glu Ala Val Gln Ala Gl
#n Gln Leu Ala Glu
               1055  
#              1060   
#             1065
Gly Ala Ser Glu Gln Ala Leu Ser Ala Gln Gl
#u Gly Phe Glu Arg
               1070  
#              1075   
#             1080
Ile Lys Gln Lys Tyr Ala Glu Leu Lys Asp Ar
#g Leu Gly Gln Ser
               1085  
#              1090   
#             1095
Ser Met Leu Gly Glu Gln Gly Ala Arg Ile Gl
#n Ser Val Lys Thr
               1100  
#              1105   
#             1110
Glu Ala Glu Glu Leu Phe Gly Glu Thr Met Gl
#u Met Met Asp Arg
               1115  
#              1120   
#             1125
Met Lys Asp Met Glu Leu Glu Leu Leu Arg Gl
#y Ser Gln Ala Ile
               1130  
#              1135   
#             1140
Met Leu Arg Ser Ala Asp Leu Thr Gly Leu Gl
#u Lys Arg Val Glu
               1145  
#              1150   
#             1155
Gln Ile Arg Asp His Ile Asn Gly Arg Val Le
#u Tyr Tyr Ala Thr
               1160  
#              1165   
#             1170
Cys Lys
<210> SEQ ID NO 17
<211> LENGTH: 795
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 331749.3
<400> SEQUENCE: 17
attttacata cactgtatgt tatagaactt catggatcag atctggggca gc
#accctata     60
aatcaccacc ttaatatgct gcaacaaaat gtagaatatt cagacaaaat gg
#atacataa    120
agactaagta gcccataagg ggtcaaattt tgctgccaaa tgcgtatgcc ac
#caacttac    180
aaaaacactt cgttcgcaga gcttttcaga ttgtggaatg ttggataagg aa
#ttatagac    240
ctctagtagc tgaaatgcaa gaccccaaga ggaagttcag atcttaatat aa
#attcactt    300
tcatttttga tagctgtccc atctggtcat ttggttggca ctagactggt gg
#caggggct    360
tctagctgac tcgcacaggg attctcacaa tagccgatat cagaatttgt gt
#tgaaggaa    420
cttgtctctt catctaatat gatagcggga aaaggagagg aaactactgc ct
#ttagaaaa    480
tataagtaaa gtgattaaag tgctcacgtt accttgacac atagtttttc ag
#tctatggg    540
tttagttact ttagatggca agcatgtaac ttatattaat agtaatttgt aa
#agttggtt    600
ggataagcta tccatgttgc aggttcatgg attacttctc tataaaaaat at
#gtatttac    660
caaaaaattt tgtgacattc cttctcccat ctcttccttg acatgcattg ta
#aataggtt    720
cttcttgttc tgagattcaa tattgaattt ctcctatgct attgacaata aa
#atattatt    780
gaactacaaa aaaaa              
#                  
#                  
#   795
<210> SEQ ID NO 18
<211> LENGTH: 2538
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 979243.1
<221> NAME/KEY: unsure
<222> LOCATION: 1479-1784, 1933-2000, 2002
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 18
cgccaggaca tgcagcccac catgaagttc gtgatggaca catctaaata ct
#ggtttaag     60
ccaaacatca cccgagagca agcaatcgag ctgctgagga aggaggagcc ag
#gggctttg    120
tcataaggga cagctcttca taccgaggct ccttcggcct ggccctgaag gt
#gcaggagg    180
ttcccgcgtc tgctcagaat cgaccaggtg aggacagcaa tgacctcatc cg
#acacttcc    240
tcatcgagtc gtctgccaaa ggagtgcatc tcaaaggagc agatgaggag cc
#ctactttg    300
aactgggagg tgcagatggg gcctcggact ctacagacag cccagcctcc tg
#ccagaaga    360
aatctgcggg ctgccacacc ctgtacctga gctcagtgag cgtggagacc ct
#gactggag    420
ccctggccgt gcagaaagcc atctccacca cctttgagag ggacatcctc cc
#cacgccca    480
ccgtggtcca cttcaaagtc acagagcagg gcatcactct gactgatgtc ca
#gaggaagg    540
tgtttttccg gcgccattac ccactcacca ccctccgctt ctgtggtatg ga
#ccctgagc    600
aacggaagtg gcagaagtac tgcaaaccct cctggatctt tgggtttgtg gc
#caagagcc    660
agacagagcc tcaggagaac gtatgccacc tctttgcgga gtatgacatg gt
#ccagccag    720
cctcgcaggt catcggcctg gtgactgctc tgctgcagga cgcagaaagg at
#gtagggga    780
gagactgcct gtgcacctaa ccaacacctc caggggctcg ctaaggagcc cc
#cctccacc    840
ccctgaatgg gtgtggcttg tggccatatt gacagaccaa tctatgggac ta
#gggggatt    900
ggcatcaagt tgacaccctt gaacctgcta tggccttcag cagtcaccat ca
#tccagacc    960
ccccgggcct cagtttcctc aatcatagaa gaagaccaat agacaagatc ag
#ctgttctt   1020
agatgctggt gggcatttga acatgctcct ccatgattct gaagcatgca ca
#cctctgaa   1080
gacccctgca tgaaaataac ctccaaggac cctctgaccc catcgacctg gg
#ccctgccc   1140
acacaacagt ctgagcaaga gacctgcagc ccctgtttcg tggcagacag ca
#ggtgcctg   1200
gcggtgaccc acggggctcc tggcttgcag ctggtgatgg tcaagaactg ac
#tacaaaac   1260
aggaatggat agactctatt tccttccata tctgttcctc tgttcctttt cc
#cactttct   1320
gggtggcttt ttgggtccac ccagccagga tgctgcaggc caagctgggt gt
#ggtattta   1380
gggcagctca gcagggggaa cttgtcccca tggtcagagg agacccagct gt
#cctgcacc   1440
cccttgcaga tgagtatcac cccatctttt ctttccacnn nnnnnnnnnn nn
#nnnnnnnn   1500
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1560
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1620
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1680
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1740
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnccattc ct
#tgataggc   1800
gagtattcca aagctggtat cgtagctgcc ctaatgttgc atattaggcg gc
#gggggcag   1860
agataagggc catctctctg tgattctgcc tcagctcctg tcttgctgag cc
#ctccccca   1920
acccacgctc cannnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1980
nnnnnnnnnn nnnnnnnnnn gnccctctac tgctatgtgg cttcaaccag cc
#tcacagcc   2040
acacggggga agcagagagt caagaatgca aagaggccgc ttccctaaga gg
#cttggagg   2100
agctgggctc tatcccacac ccacccccac cccaccccca cccagcctcc ag
#aagctgga   2160
accatttctc ccgcaggcct gagttcctaa ggaaaccacc ctaccggggt gg
#aagggagg   2220
gtcagggaag aaacccactc ttgctctacg aggagcaagt gcctgccccc tc
#ccagcagc   2280
cagccctgcc aaagttgcat tatctttggc caaggctggg cctgacggtt at
#gatttcag   2340
ccctgggcct gcaggagagg ctgagaccag cccacccagc cagtggtcga gc
#actgcccc   2400
gccgccaaag tctgcagaat gtgagatgag gttctcaagg tcacaggccc ca
#gtcccagc   2460
ctgggggctg gcagaggccc ccatatactc tgctacagct cctatcatga aa
#aataaaat   2520
gtttgtcttt gcaaaaca             
#                  
#                  
#2538
<210> SEQ ID NO 19
<211> LENGTH: 1730
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3189059CB1
<400> SEQUENCE: 19
gcggccgcgc ggtatcccac ccagcccacc ccgccccggc cgacggctga ca
#gctgacct     60
ggatccttcg agcgcccgcc gaccgccagc gatcttccct catcttccgg gc
#tggtttct    120
gctgcgcgag gagcgtgccc tcgccgcccc tctcgccgga cccccggccc cc
#gatggctc    180
ggatggggct tgcgggcgcc gctggacgct ggtggggact cgctctcggc tt
#gaccgcat    240
tcttcctccc aggcgtccac tcccaggtgg tccaggtgaa cgactccatg ta
#tggcttca    300
tcggcacaga cgtggttctg cactgcagct ttgccaaccc gcttcccagc gt
#gaagatca    360
cccaggtcac atggcagaag tccaccaatg gctccaagca gaacgtggcc at
#ctacaacc    420
catccatggg cgtgtccgtg ctggctccct accgcgagcg tgtggaattc ct
#gcggccct    480
ccttcaccga tggcactatc cgcctctccc gcctggagct ggaggatgag gg
#tgtctaca    540
tctgcgagtt tgctaccttc cctacgggca atcgagaaag ccagctcaat ct
#cacggtga    600
tggccaaacc caccaattgg atagagggta cccaggcagt gcttcgagcc aa
#gaaggggc    660
aggatgacaa ggtcctggtg gccacctgca cctcagccaa tgggaagcct cc
#cagtgtgg    720
tatcctggga aactcggtta aaaggtgagg ccagagtacc aggagactcc gg
#aaccccaa    780
tggcaccagt gacggtcatc agccgctacc gcctggtgcc cagcagggaa gc
#ccaccagc    840
agtccttggc ctgcatcgtc aactaccaca tggaccgctt caaggaaagc ct
#cactctca    900
acgtgcagta tgagcctgag gtaaccattg aggggtttga tggcaactgg ta
#cctgcagc    960
ggatggacgt gaagctcacc tgcaaagctg atgctaaccc cccagccact ga
#gtaccact   1020
ggaccacgct aaatggctct ctccccaagg gtgtggaggc ccagaacaga ac
#cctcttct   1080
tcaagggacc catcaactac agcctggcag ggacctacat ctgtgaggcc ac
#caacccca   1140
tcggtacacg ctcaggccag gtggaggtca atatcacaga attcccctac ac
#cccgtctc   1200
ctcccgaaca tgggcggcgc gccgggccgg tgcccacggc catcattggg gg
#cgtggcgg   1260
ggagcatcct gctggtgttg attgtggtcg gcgggatcgt ggtcgccctg cg
#tcggcgcc   1320
ggcacacctt caagggtgac tacagcacca agaagcacgt gtatggcaac gg
#ctacagca   1380
aggcaggcat cccccagcac cacccaccaa tggcacagaa cctgcagtac cc
#cgacgact   1440
cagacgacga gaagaaggcc ggcccactgg gtggaagcag ctatgaggag ga
#ggaggagg   1500
aggaggaggg cggtggaggg ggcgagcgca aggtgggcgg cccccacccc aa
#atatgacg   1560
aggacgccaa gcggccctac ttcaccgtgg atgaggccga ggcccgtcag ga
#cggctacg   1620
gggaccggac tctgggctac cagtacgacc ctgagcagct ggacttggct ga
#gaacatgg   1680
tttctcagaa cgacgggtct ttcatttcca agaaggagtg gtacgtgtag  
#            1730
<210> SEQ ID NO 20
<211> LENGTH: 518
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3189059CD1
<400> SEQUENCE: 20
Met Ala Arg Met Gly Leu Ala Gly Ala Ala Gl
#y Arg Trp Trp Gly
  1               5 
#                 10 
#                 15
Leu Ala Leu Gly Leu Thr Ala Phe Phe Leu Pr
#o Gly Val His Ser
                 20 
#                 25 
#                 30
Gln Val Val Gln Val Asn Asp Ser Met Tyr Gl
#y Phe Ile Gly Thr
                 35 
#                 40 
#                 45
Asp Val Val Leu His Cys Ser Phe Ala Asn Pr
#o Leu Pro Ser Val
                 50 
#                 55 
#                 60
Lys Ile Thr Gln Val Thr Trp Gln Lys Ser Th
#r Asn Gly Ser Lys
                 65 
#                 70 
#                 75
Gln Asn Val Ala Ile Tyr Asn Pro Ser Met Gl
#y Val Ser Val Leu
                 80 
#                 85 
#                 90
Ala Pro Tyr Arg Glu Arg Val Glu Phe Leu Ar
#g Pro Ser Phe Thr
                 95 
#                100 
#                105
Asp Gly Thr Ile Arg Leu Ser Arg Leu Glu Le
#u Glu Asp Glu Gly
                110  
#               115  
#               120
Val Tyr Ile Cys Glu Phe Ala Thr Phe Pro Th
#r Gly Asn Arg Glu
                125  
#               130  
#               135
Ser Gln Leu Asn Leu Thr Val Met Ala Lys Pr
#o Thr Asn Trp Ile
                140  
#               145  
#               150
Glu Gly Thr Gln Ala Val Leu Arg Ala Lys Ly
#s Gly Gln Asp Asp
                155  
#               160  
#               165
Lys Val Leu Val Ala Thr Cys Thr Ser Ala As
#n Gly Lys Pro Pro
                170  
#               175  
#               180
Ser Val Val Ser Trp Glu Thr Arg Leu Lys Gl
#y Glu Ala Arg Val
                185  
#               190  
#               195
Pro Gly Asp Ser Gly Thr Pro Met Ala Pro Va
#l Thr Val Ile Ser
                200  
#               205  
#               210
Arg Tyr Arg Leu Val Pro Ser Arg Glu Ala Hi
#s Gln Gln Ser Leu
                215  
#               220  
#               225
Ala Cys Ile Val Asn Tyr His Met Asp Arg Ph
#e Lys Glu Ser Leu
                230  
#               235  
#               240
Thr Leu Asn Val Gln Tyr Glu Pro Glu Val Th
#r Ile Glu Gly Phe
                245  
#               250  
#               255
Asp Gly Asn Trp Tyr Leu Gln Arg Met Asp Va
#l Lys Leu Thr Cys
                260  
#               265  
#               270
Lys Ala Asp Ala Asn Pro Pro Ala Thr Glu Ty
#r His Trp Thr Thr
                275  
#               280  
#               285
Leu Asn Gly Ser Leu Pro Lys Gly Val Glu Al
#a Gln Asn Arg Thr
                290  
#               295  
#               300
Leu Phe Phe Lys Gly Pro Ile Asn Tyr Ser Le
#u Ala Gly Thr Tyr
                305  
#               310  
#               315
Ile Cys Glu Ala Thr Asn Pro Ile Gly Thr Ar
#g Ser Gly Gln Val
                320  
#               325  
#               330
Glu Val Asn Ile Thr Glu Phe Pro Tyr Thr Pr
#o Ser Pro Pro Glu
                335  
#               340  
#               345
His Gly Arg Arg Ala Gly Pro Val Pro Thr Al
#a Ile Ile Gly Gly
                350  
#               355  
#               360
Val Ala Gly Ser Ile Leu Leu Val Leu Ile Va
#l Val Gly Gly Ile
                365  
#               370  
#               375
Val Val Ala Leu Arg Arg Arg Arg His Thr Ph
#e Lys Gly Asp Tyr
                380  
#               385  
#               390
Ser Thr Lys Lys His Val Tyr Gly Asn Gly Ty
#r Ser Lys Ala Gly
                395  
#               400  
#               405
Ile Pro Gln His His Pro Pro Met Ala Gln As
#n Leu Gln Tyr Pro
                410  
#               415  
#               420
Asp Asp Ser Asp Asp Glu Lys Lys Ala Gly Pr
#o Leu Gly Gly Ser
                425  
#               430  
#               435
Ser Tyr Glu Glu Glu Glu Glu Glu Glu Glu Gl
#y Gly Gly Gly Gly
                440  
#               445  
#               450
Glu Arg Lys Val Gly Gly Pro His Pro Lys Ty
#r Asp Glu Asp Ala
                455  
#               460  
#               465
Lys Arg Pro Tyr Phe Thr Val Asp Glu Ala Gl
#u Ala Arg Gln Asp
                470  
#               475  
#               480
Gly Tyr Gly Asp Arg Thr Leu Gly Tyr Gln Ty
#r Asp Pro Glu Gln
                485  
#               490  
#               495
Leu Asp Leu Ala Glu Asn Met Val Ser Gln As
#n Asp Gly Ser Phe
                500  
#               505  
#               510
Ile Ser Lys Lys Glu Trp Tyr Val
                515
<210> SEQ ID NO 21
<211> LENGTH: 1444
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1650519CB1
<400> SEQUENCE: 21
ggagaatttg aaagggtgcc ccaaaggaca atctctaaag gggtaagggg ga
#tacctacc     60
ttgtctggta ggggagatgt ttcgttttca tgctttacca gaaaatccac tt
#ccctgccg    120
accttagttt caaagcttat tcttaattag agacaagaaa cctgtttcaa ct
#tgaagaca    180
ccgtatgagg tgaatggaca gccagccacc acaatgaaag aaatcaaacc ag
#gaataacc    240
tatgctgaac ccacgcctca atcgtcccca agtgtttcct gacacgcatc tt
#tgcttaca    300
gtgcatcaca actgaagaat ggggttcaac ttgacgcttg caaaattacc aa
#ataacgag    360
ctgcacggcc aagagagtca caattcaggc aacaggagcg acgggccagg aa
#agaacacc    420
acccttcaca atgaatttga cacaattgtc ttgccggtgc tttatctcat ta
#tatttgtg    480
gcaagcatct tgctgaatgg tttagcagtg tggatcttct tccacattag ga
#ataaaacc    540
agcttcatat tctatctcaa aaacatagtg gttgcagacc tcataatgac gc
#tgacattt    600
ccatttcgaa tagtccatga tgcaggattt ggaccttggt acttcaagtt ta
#ttctctgc    660
agatacactt cagttttgtt ttatgcaaac atgtatactt ccatcgtgtt cc
#ttgggctg    720
ataagcattg atcgctatct gaaggtggtc aagccatttg gggactctcg ga
#tgtacagc    780
ataaccttca cgaaggtttt atctgtttgt gtttgggtga tcatggctgt tt
#tgtctttg    840
ccaaacatca tcctgacaaa tggtcagcca acagaggaca atatccatga ct
#gctcaaaa    900
cttaaaagtc ctttgggggt caaatggcat acggcagtca cctatgtgaa ca
#gctgcttg    960
tttgtggccg tgctggtgat tctgatcgga tgttacatag ccatatccag gt
#acatccac   1020
aaatccagca ggcaattcat aagtcagtca agccgaaagc gaaaacataa cc
#agagcatc   1080
agggttgttg tggctgtgta ttttacctgc tttctaccat atcacttgtg ca
#gaatgcct   1140
tctactttta gtcacttaga caggctttta gatgaatctg cacaaaaaat cc
#tatattac   1200
tgcaaagaaa ttacactttt cttgtctgcg tgtaatgttt gcctggatcc aa
#taatttac   1260
tttttcatgt gtaggtcatt ttcaagatgg ctgttcaaaa aatcaaatat ca
#gacccagg   1320
agtgaaagca tcagatcact gcaaagtgtg agaagatcgg aagttcgcat at
#attatgat   1380
tacactgatg tgtaggcctt ttattgtttg ttggaatcga tatgtacaaa gt
#gtaataca   1440
tcag                 
#                  
#                  
#           1444
<210> SEQ ID NO 22
<211> LENGTH: 358
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1650519CD1
<400> SEQUENCE: 22
Met Gly Phe Asn Leu Thr Leu Ala Lys Leu Pr
#o Asn Asn Glu Leu
  1               5 
#                 10 
#                 15
His Gly Gln Glu Ser His Asn Ser Gly Asn Ar
#g Ser Asp Gly Pro
                 20 
#                 25 
#                 30
Gly Lys Asn Thr Thr Leu His Asn Glu Phe As
#p Thr Ile Val Leu
                 35 
#                 40 
#                 45
Pro Val Leu Tyr Leu Ile Ile Phe Val Ala Se
#r Ile Leu Leu Asn
                 50 
#                 55 
#                 60
Gly Leu Ala Val Trp Ile Phe Phe His Ile Ar
#g Asn Lys Thr Ser
                 65 
#                 70 
#                 75
Phe Ile Phe Tyr Leu Lys Asn Ile Val Val Al
#a Asp Leu Ile Met
                 80 
#                 85 
#                 90
Thr Leu Thr Phe Pro Phe Arg Ile Val His As
#p Ala Gly Phe Gly
                 95 
#                100 
#                105
Pro Trp Tyr Phe Lys Phe Ile Leu Cys Arg Ty
#r Thr Ser Val Leu
                110  
#               115  
#               120
Phe Tyr Ala Asn Met Tyr Thr Ser Ile Val Ph
#e Leu Gly Leu Ile
                125  
#               130  
#               135
Ser Ile Asp Arg Tyr Leu Lys Val Val Lys Pr
#o Phe Gly Asp Ser
                140  
#               145  
#               150
Arg Met Tyr Ser Ile Thr Phe Thr Lys Val Le
#u Ser Val Cys Val
                155  
#               160  
#               165
Trp Val Ile Met Ala Val Leu Ser Leu Pro As
#n Ile Ile Leu Thr
                170  
#               175  
#               180
Asn Gly Gln Pro Thr Glu Asp Asn Ile His As
#p Cys Ser Lys Leu
                185  
#               190  
#               195
Lys Ser Pro Leu Gly Val Lys Trp His Thr Al
#a Val Thr Tyr Val
                200  
#               205  
#               210
Asn Ser Cys Leu Phe Val Ala Val Leu Val Il
#e Leu Ile Gly Cys
                215  
#               220  
#               225
Tyr Ile Ala Ile Ser Arg Tyr Ile His Lys Se
#r Ser Arg Gln Phe
                230  
#               235  
#               240
Ile Ser Gln Ser Ser Arg Lys Arg Lys His As
#n Gln Ser Ile Arg
                245  
#               250  
#               255
Val Val Val Ala Val Tyr Phe Thr Cys Phe Le
#u Pro Tyr His Leu
                260  
#               265  
#               270
Cys Arg Met Pro Ser Thr Phe Ser His Leu As
#p Arg Leu Leu Asp
                275  
#               280  
#               285
Glu Ser Ala Gln Lys Ile Leu Tyr Tyr Cys Ly
#s Glu Ile Thr Leu
                290  
#               295  
#               300
Phe Leu Ser Ala Cys Asn Val Cys Leu Asp Pr
#o Ile Ile Tyr Phe
                305  
#               310  
#               315
Phe Met Cys Arg Ser Phe Ser Arg Trp Leu Ph
#e Lys Lys Ser Asn
                320  
#               325  
#               330
Ile Arg Pro Arg Ser Glu Ser Ile Arg Ser Le
#u Gln Ser Val Arg
                335  
#               340  
#               345
Arg Ser Glu Val Arg Ile Tyr Tyr Asp Tyr Th
#r Asp Val
                350  
#               355
<210> SEQ ID NO 23
<211> LENGTH: 5933
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 474630.4
<221> NAME/KEY: unsure
<222> LOCATION: 2373-2407
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 23
caggacgggc gcacagcagc agccgaggct ggccgggaga gggaggaaga gg
#atggcagg     60
gccacgcccc agcccatggg ccaggctgct cctggcagcc ttgatcagcg tc
#agcctctc    120
tgggaccttg gcaactgacc actgcccacc ttcagggctg gaaaacttga gg
#ctccaagc    180
tcttcagcct agagaagctt gagccctgac cacggggcct gagaatagga gc
#gaaggagg    240
ctgtgtctag aggaaagagg agacacccac ccaggactga ggcacccaga gg
#atgcactg    300
aggccccaga gcaaaccgct gcaagaaggc cccagtgaag agctgcacgg ag
#tgtgtccg    360
tgtggataag gactgcgcct actgcacaga cgagatgttc agggaccggc gc
#tgcaacac    420
ccaggcggag ctgctggccg cgggctgcca gcgggagagc atcgtggtca tg
#gagagcag    480
cttccaaatc acagaggaga cccagattga caccaccctg cggcgcagcc ag
#atgtcccc    540
ccaaggcctg cgggtccgtc tgcggcccgg tgaggagcgg cattttgagc tg
#gaggtgtt    600
tgagccactg gagagccccg tggacctgta catcctcatg gacttctcca ac
#tccatgtc    660
cgatgatctg gacaacctca agaagatggg gcagaacctg gctcgggtcc tg
#agccagct    720
caccagcgac tacactattg gatttggcaa gtttgtggac aaagtcagcg tc
#ccgcagac    780
ggacatgagg cctgagaagc tgaaggagcc ttggcccaac agtgaccccc cc
#ttctcctt    840
caagaacgtc atcagcctga cagaagatgt ggatgagttc cggaataaac tg
#cagggaga    900
gcggatctca ggcaacctgg atgctcctga gggcggcttc gatgccatcc tg
#cagacagc    960
tgtgtgcacg agggacattg gctggcgccc ggacagcacc cacctgctgg tc
#ttctccac   1020
cgagtcagcc ttccactatg aggctgatgg cgccaacgtg ctggctggca tc
#atgagccg   1080
caacgatgaa cggtgccacc tggacaccac gggcacctac acccagtaca gg
#acacagga   1140
ctacccgtcg gtgcccaccc tggtgcgcct gctcgccaag cacaacatca tc
#cccatctt   1200
tgcttgtcac caactactcc tatagctact acgagaagct tcacacctat tt
#ccctgtct   1260
cctcactggg ggtgctgcag gaggactcgt ccaacatcgt ggagctgctg ga
#ggaggcct   1320
tcaatcggat ccgctccaac ctggacatcc gggccctaga cagcccccga gg
#ccttcgga   1380
cagaggtcac ctccaagatg ttccagaaga cgaggactgg gtcctttcac at
#ccggcggg   1440
gggaagtggg tatataccag gtgcagctgc gggcccttga gcacgtggat gg
#gacgcacg   1500
tgtgccagct gccggaggac cagaagggca acatccatct gaaaccttcc tt
#ctccgacg   1560
gcctcaagat ggacgcgggc atcatctgtg atgtgtgcac ctgcgagctg ca
#aaaagagg   1620
tgcggtcagc tcgctgcagc ttcaacggag acttcgtgtg cggacagtgt gt
#gtgcagcg   1680
agggctggag tggccagacc tgcaactgct ccaccggctc tctgagtgac at
#tcagccct   1740
gcctgcggga gggcgaggac aagccgtgct ccggccgtgg ggagtgccag tg
#cgggcact   1800
gtgtgtgcta cggcgaaggc cgctacgagg gtcagttctg cgagtatgac aa
#cttccagt   1860
gtccccgcac ttccgggttc ctgtgcaatg accgaggacg ctgctccatg gg
#ccagtgtg   1920
tgtgtgagcc tggttggaca ggcccaagct gtgactgtcc cctcagcaat gc
#cacctgca   1980
tcgacagcaa tgggggcatc tgtaatggac gtggccactg tgagtgtggc cg
#ctgccact   2040
gccaccagca gtcgctctac acggacacca tctgcgagat caactactcg gc
#gatccacc   2100
cgggcctctg cgaggaccta cgctcctgcg tgcagtgcca ggcgtggggc ac
#cggcgaga   2160
agaaggggcg cacgtgtgag gaatgcaact tcaaggtcaa gatggtggac ga
#gcttaaga   2220
gagccgagga ggtggtggtg cgctgctcct tccgggacga ggatgacgac tg
#cacctaca   2280
gctacaccat ggaaggtgac ggcgcccctg ggcccaacag cactgtcctg gt
#gcacaaga   2340
agaaggactg ccctccgggc tccttctggt ggnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   2400
nnnnnnnggc cctgctactg ctgctatgct ggaagtactg tgcctgctgc aa
#ggcctgcc   2460
tggcacttct cccgtgctgc aaccgaggtc acatggtggg ctttaaggaa ga
#ccactaca   2520
tgctgcggga gaacctgatg gcctctgacc acttggacac gcccatgctg cg
#cagcggga   2580
acctcaaggg ccgtgacgtg gtccgctgga aggtcaccaa caacatgcag cg
#gcctggct   2640
ttgccactca tgccgccagc atcaacccca cagagctggt gccctacggg ct
#gtccttgc   2700
gcctggcccg cctttgcacc gagaacctgc tgaagcctga cactcgggag tg
#cgcccagc   2760
tgcgccagga ggtggaggag aacctgaacg aggtctacag gcagatctcc gg
#tgtacaca   2820
agctccagca gaccaagttc cggcagcagc ccaatgccgg gaaaaagcaa ga
#ccacacca   2880
ttgtggacac agtgctgatg gcgccccgct cggccaagcc ggccctgctg aa
#gcttacag   2940
agaagcaggt ggaacagagg gccttccacg acctcaaggt ggcccccggc ta
#ctacaccc   3000
tcactgcaga ccaggacgcc cggggcatgg tggagttcca ggagggcgtg ga
#gctggtgg   3060
acgtacgggt gcccctcttt atccggcctg aggatgacga cgagaagcag ct
#gctggtgg   3120
aggccatcga cgtgcccgca ggcactgcca ccctcggccg ccgcctggta aa
#catcacca   3180
tcatcaagga gcaagccaga gacgtggtgt cctttgagca gcctgagttc tc
#ggtcagcc   3240
gcggggacca ggtggcccgc atccctgtca tccggcgtgt cctggacggc gg
#gaagtccc   3300
aggtctccta ccgcacacag gatggcaccg cgcagggcaa ccgggactac at
#ccccgtgg   3360
agggtgagct gctgttccag cctggggagg cctggaaaga gctgcaggtg aa
#gctcctgg   3420
agctgcaaga agttgactcc ctcctgcggg gccgccaggt ccgccgtttc ca
#cgtccagc   3480
tcagcaaccc taagtttggg gcccacctgg gccagcccca ctccaccacc at
#catcatca   3540
gggacccaga tgaactggac cggagcttca cgagtcagat gttgtcatca ca
#gccacccc   3600
ctcacggcga cctgggcgcc ccgcagaacc ccaatgctaa ggccgctggg tc
#caggaaga   3660
tccatttcaa ctggctgccc ccttctggca agccaatggg gtacagggta aa
#gtactgga   3720
ttcagggtga ctccgaatcc gaagcccacc tgctcgacag caaggtgccc tc
#agtggagc   3780
tcaccaacct gtacccgtat tgcgactatg agatgaaggt gtgcgcctac gg
#ggctcagg   3840
gcgagggacc ctacagctcc ctggtgtcct gccgcaccca ccaggaagtg cc
#cagcgagc   3900
cagggcgtct ggccttcaat gtcgtctcct ccacggtgac ccagctgagc tg
#ggctgagc   3960
cggctgagac caacggtgag atcacagcct acgaggtctg ctatggcctg gt
#caacgatg   4020
acaaccgacc tattgggccc atgaagaaag tgctggttga caaccctaag aa
#ccggatgc   4080
tgcttattga gaaccttcgg gagtcccagc cctaccgcta cacggtgaag gc
#gcgcaacg   4140
gggccggctg ggggcctgag cgggaggcca tcatcaacct ggccacccag cc
#caagaggc   4200
ccatgtccat ccccatcatc cctgacatcc ctatcgtgga cgcccagagc gg
#ggaggact   4260
acgacagctt ccttatgtac agcgatgacg ttctacgctc tccatcgggc ag
#ccagaggc   4320
ccagcgtctc cgatgacact gagcacctgg tgaatggccg gatggacttt gc
#cttcccgg   4380
gcagcaccaa ctccctgcac aggatgacca cgaccagtgc tgctgcctat gg
#cacccacc   4440
tgagcccaca cgtgccccac cgcgtgctaa gcacatcctc caccctcaca cg
#ggactaca   4500
actcactgac ccgctcagaa cactcacact cgaccacact gcccagggac ta
#ctccaccc   4560
tcacctccgt ctcctcccac ggcctccctc ccatctggga acacgggagg ag
#caggcttc   4620
cgctgtcctg ggccctgggg tcccggagtc gggctcagat gaaagggttc cc
#cccttcca   4680
ggggcccacg agactctata atcctggctg ggaggccagc agcgccctcc tg
#gggcccag   4740
actctcgcct gactgctggt gtgcccgaca cgcccacccg cctggtgttc tc
#tgccctgg   4800
ggcccacatc tctcagagtg agctggcagg agccgcggtg cgagcggccg ct
#gcagggct   4860
acagtgtgga gtaccagctg ctgaacggcg gtgagctgca tcggctcaac at
#ccccaacc   4920
ctgcccagac ctcggtggtg gtggaagacc tcctgcccaa ccactcctac gt
#gttccgcg   4980
tgcgggccca gagccaggaa ggctggggcc gagagcgtga gggtgtcatc ac
#cattgaat   5040
cccaggtgca cccgcagagc ccactgtgtc ccctgccagg ctccgccttc ac
#tttgagca   5100
ctcccagtgc cccaggcccg ctggtgttca ctgccctgag cccagactcg ct
#gcagctga   5160
gctgggagcg gccacggagg cccaatgggg atatcgtcgg ctacctggtg ac
#ctgtgaga   5220
tggcccaagg aggagggcca gccaccgcat tccgggtgga tggagacagc cc
#cgagagcc   5280
ggctgaccgt gccgggcctc agcgagaacg tgccctacaa gttcaaggtg ca
#ggccagga   5340
ccactgaggg cttcgggcca gagcgcgagg gcatcatcac catagagtcc ca
#ggatggag   5400
gacccttccc gcagctgggc agccgtgccg ggctcttcca gcacccgctg ca
#aagcgagt   5460
acagcagcat caccaccacc cacaccagcg ccaccgagcc cttcctagtg ga
#tgggccga   5520
ccctgggggc ccagcacctg gaggcaggcg gctccctcac ccggcatgtg ac
#ccaggagt   5580
ttgtgagccg gacactgacc accagcggaa cccttagcac ccacatggac ca
#acagttct   5640
tccaaacttg accgcaccct gccccacccc cgccatgtcc cactaggcgt cc
#tcccgact   5700
cctctcccgg agcctcctca gctactccat ccttgcaccc ctgggggccc ag
#cccacccg   5760
catgcacaga gcaggggcta ggtgtctcct gggaggcatg aagggggcaa gg
#tccgtcct   5820
ctgtgggccc aaacctattt gtaaccaaag agctgggagc agcacaagga cc
#cagccttt   5880
gttctgcact taataaatgg ttttgctact gctaaaaaaa aaaaaaaagc gg
#c          5933
<210> SEQ ID NO 24
<211> LENGTH: 573
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 093496.1
<400> SEQUENCE: 24
aaaagaaaag gaaaagaaaa gtgtggactt ggatgaaatc ttcaggtcca ac
#atttggga     60
ttctaagttc caaagaccag gttggaatca tttctaagaa ggttctggtg gt
#tacacatt    120
cctggagtcc tctactcccc actccctgcc aagctgggcc tgtggataga tg
#tgatccct    180
cagcctccca gcttcaaaca cctgccaatg gttgacgtga acaacatggg ct
#cagtctca    240
gctaggatca cacccaaagc ccagcaccca gtaaggtgca ggagccatcc at
#ttccctga    300
gcagagcaga ttaggctgag gaaagcagca gccatgcctt tgcacaatgc at
#ttctaggg    360
cattcttccc acacataatc tcctctgctc attgtcctgt gaagaaactg tg
#gcctggag    420
aggttgagcc actgtgccaa ggccaccaat gcaggtggta tgtgggtggg tg
#ggggcctg    480
gggtggggag cacggcccag gcagggtctg tgctgaccgc ccttgtgttt gg
#aacctaga    540
catcccccct tgcctggatc tgagctgacc gaa       
#                  
#        573
<210> SEQ ID NO 25
<211> LENGTH: 269
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1231633.4
<400> SEQUENCE: 25
accactgaag atcctggtgt cgccatgggc cgccgccccg cccgttgtta cc
#ggtattgt     60
aagaacaagc cgtacccaaa gtctcgcttc tgccgaggtg tccctgccct gg
#aggctgcc    120
cgaatttgtg ccaataagta catggtaaaa agttgtggca aagatggctt cc
#atatccgg    180
gtgcggctcc accccttcca cgtcatccgc atcaacaaga tgttgtcctg tg
#ctggggct    240
gacaggctcc aaacaggcat gcgaggtgc         
#                  
#           269
<210> SEQ ID NO 26
<211> LENGTH: 1743
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 988891.1
<221> NAME/KEY: unsure
<222> LOCATION: 1562
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 26
ggtattcaac agagaaattt ctcagcctcc tacttctgct tttgaaagct at
#aaaaacag     60
cgagggagaa actggcagat accaaacctc ttcgaggcac aagggcacaa ca
#ggctgctc    120
tgggattctc ttcagccaat cttcattgct caagtgtctg aagcagccat gg
#cagaagta    180
cctgagctcg ccagtgaaat gatggcttat tacagtggca atgaggatga ct
#tgttcttt    240
gaagctgatg gccctaaaca gatgaagtgc tccttccagg acctggacct ct
#gccctctg    300
gatggcggca tccagctacg aatctccgac caccactaca gcaagggctt ca
#ggcaggcc    360
gcgtcagttg ttgtggccat ggacaagctg aggaagatgc tggttccctg cc
#cacagacc    420
ttccaggaga atgacctgag caccttcttt cccttcatct ttgaagaaga ac
#ctatcttc    480
ttcgacacat gggataacga ggcttatgtg cacgatgcac ctgtacgatc ac
#tgaactgc    540
acgctccggg actcacagca aaaaagcttg gtgatgtctg gtccatatga ac
#tgaaagct    600
ctccacctcc agggacagga tatggagcaa caagtggtgt tctccatgtc ct
#ttgtacaa    660
ggagaagaaa gtaatgacaa aatacctgtg gccttgggcc tcaaggaaaa ga
#atctgtac    720
ctgtcctgcg tgttgaaaga tgataagccc actctacagc tggagagtgt ag
#atcccaaa    780
aattacccaa agaagaagat ggaaaagcga tttgtcttca acaagataga aa
#tcaataac    840
aagctggaat ttgagtctgc ccagttcccc aactggtaca tcagcacctc tc
#aagcagaa    900
aacatgcccg tcttcctggg agggaccaaa ggcggccagg atataactga ct
#tcaccatg    960
caatttgtgt cttcctaaag agagctgtac ccagagagtc ctgtgctgaa tg
#tggactca   1020
atccctaggg ctggcagaaa gggaacagaa aggtttttga gtacggctat ag
#cctggact   1080
ttcctgttgt ctacaccaat gcccaactgc ctgccttagg gtagtgctaa ga
#ggatctcc   1140
tgtccatcag ccaggacagt cagctctctc ctttcagggc caatccccag cc
#cttttgtt   1200
gagccaggcc tctctcacct ctcctactca cttaaagccc gcctgacaga aa
#ccacggcc   1260
acatttggtt ctaagaaacc ctctgtcatt cgctcccaca ttctgatgag ca
#accgcttc   1320
cctatttatt tatttatttg tttgtttgtt ttattcattg gtctaattta tt
#caaagggg   1380
gcaagaagta gcagtgtctg taaaagagcc tagtttttaa tagctatgga at
#caattcaa   1440
tttggactgg tgtgctctct ttaaatcaag tcctttaatt aagactgaaa at
#atataagc   1500
tcagattatt taaatgggaa tatttataaa tgagcaaata tcatactgtt ca
#atggttct   1560
gngcttatat attttcagtc ttaattaaag gactggtgtg ctctctttaa at
#caagtcct   1620
ttaattaaga ctgaaaatat ataagctcag attatttaaa tgggaatatt ta
#taaatgag   1680
caaatatcat actgttcaat ggttcttcag tgaagtttat ttcagaaaaa aa
#aaaaaaag   1740
ggg                  
#                  
#                  
#           1743
<210> SEQ ID NO 27
<211> LENGTH: 391
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 988891.15
<221> NAME/KEY: unsure
<222> LOCATION: 14
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 27
attttgctag agantgttct aaaaccattg cactttactt acaactcctg tc
#cggaaggt     60
gcgaggcaac aagtttttac agccttcaca gaggagtttc tggcagcacc tg
#tacgatca    120
ctgaactgca cgctccggga ctcacagcaa aaaagcttgg tgatgtctgg tc
#catatgaa    180
ctgaaagctc tccacctcca gggacaggat atggagcaac aagtggtgtt ct
#ccatgtcc    240
tttgtacaag gagaagaaag taatgacaaa atacctgtgg ccttgggcct tc
#aaggaaaa    300
gaatctgtac ctgtcctgcg tgttgaaaga tggataaagc ccacttctac ag
#ctgggaga    360
gtgttaggat ccccaaaaaa atttacccca a        
#                  
#         391
<210> SEQ ID NO 28
<211> LENGTH: 7045
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3774181CB1
<221> NAME/KEY: unsure
<222> LOCATION: 103, 6960
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 28
agtttgctcg gaattcggct cgagcagcac ataaaggaga acacagcgta tt
#tcgagttt     60
ttcaatgatg ccaaagaagc tactgattac ttaaggaatc tanaagatgc ca
#ttcagcgg    120
aagtacagct gtgatagatc aagcagcatt cacaagctag aagaccttgt tc
#aggaatca    180
atggaagaga aagaagaact tctgcagtac aaaagcacta tagcaaacct aa
#tgggaaaa    240
gcaaaaacaa taattcaact gaagccaagg aattctgact gtccactcaa aa
#cttctatt    300
ccgatcaaag ctatctgtga ctacagacaa attgagataa ccatttacaa ag
#acgatgaa    360
tgtgttttgg cgaataactc tcatcgtgct aaatggaagg tcattagtcc ta
#ctgggaat    420
gaggctatgg tcccatctgt gtgcttcacc gttcctccac caaacaaaga ag
#cggtggac    480
cttgccaaca gaattgagca acagtatcag aatgtcctga ctctttggca tg
#agtctcac    540
ataaacatga agagtgtagt atcctggcat tatctcatca atgaaattga ta
#gaattcga    600
gctagcaatg tggcttcaat aaagacaatg ctacctggtg aacatcagca ag
#ttctaagt    660
aatctacaat ctcgttttga agattttctg gaagatagcc aggaatccca ag
#tcttttca    720
ggctcagata taacacaact ggaaaaggag gttaatgtat gtaagcagta tt
#atcaagaa    780
cttcttaaat ctgcagaaag agaggagcaa gaggaatcag tttataatct ct
#acatctct    840
gaagttcgaa acattagact tcggttagag aactgtgaag atcggctgat ta
#gacagatt    900
cgaactcccc tggaaagaga tgatttgcat gaaagtgtgt tcagaatcac ag
#aacaggag    960
aaactaaaga aagagctgga acgacttaaa gatgatttgg gaacaatcac aa
#ataagtgt   1020
gaggagtttt tcagtcaagc agcagcctct tcatcagtcc ctaccctacg at
#cagagctt   1080
aatgtggtcc ttcagaacat gaaccaagtc tattctatgt cttccactta ca
#tagataag   1140
ttgaaaactg ttaacttggt gttaaaaaac actcaagctg cagaagccct cg
#taaaactc   1200
tatgaaacta aactgtgtga agaagaagca gttatagctg acaagaataa ta
#ttgagaat   1260
ctaataagta ctttaaagca atggagatct gaagtagatg aaaagagaca gg
#tattccat   1320
gccttagagg atgagttgca gaaagctaaa gccatcagtg atgaaatgtt ta
#aaacgtat   1380
aaagaacggg accttgattt tgactggcac aaagaaaaag cagatcaatt ag
#ttgaaagg   1440
tggcaaaatg ttcatgtgca gattgacaac aggttacggg acttagaggg ca
#ttggcaaa   1500
tcactgaagt actacagaga cacttaccat cctttagatg attggatcca gc
#aggttgaa   1560
actactcaga gaaagattca ggaaaatcag cctgaaaata gtaaaaccct ag
#ccacacag   1620
ttgaatcaac agaagatgct ggtgtccgaa atagaaatga aacagagcaa aa
#tggacgag   1680
tgtcaaaaat atgcagaaca gtactcagct acagtgaagg actatgaatt ac
#aaacaatg   1740
acctaccggg ccatggtaga ttcacaacaa aaatctccag tgaaacgccg aa
#gaatgcag   1800
agttcagcag atctcattat tcaagagttc atggacctaa ggactcgata ta
#ctgccctg   1860
gtcactctca tgacacaata tattaaattt gctggtgatt cattgaagag gc
#tggaagag   1920
gaggagatta aaaggtgtaa ggagacttct gaacatgggg catattcaga tc
#tgcttcag   1980
cgtcagaagg caacagtgct tgagaatagc aaacttacag gaaagataag tg
#agttggaa   2040
agaatggtag ctgaactaaa gaaacaaaag tcccgagtag aggaagaact tc
#cgaaggtc   2100
agggaggctg cagaaaatga attgagaaag cagcagagaa atgtagaaga ta
#tctctctg   2160
cagaagataa gggctgaaag tgaagccaag cagtaccgca gggaacttga aa
#ccattgtg   2220
agagagaagg aagccgctga aagagaactg gagcgggtga ggcagctcac ca
#tagaggcc   2280
gaggctaaaa gagctgccgt ggaagagaac ctcctgaatt ttcgcaatca gt
#tggaggaa   2340
aacaccttta ccagacgaac actggaagat catcttaaaa gaaaagattt aa
#gtctcaat   2400
gatttggagc aacaaaaaaa taaattaatg gaagaattaa gaagaaagag ag
#acaatgag   2460
gaagaactct tgaagctgat aaagcagatg gaaaaagacc ttgcatttca ga
#aacaggta   2520
gcagagaaac agttgaaaga aaagcagaaa attgaattgg aagcaagaag aa
#aaataact   2580
gaaattcagt atacatgtag agaaaatgca ttgccagtgt gtccgatcac ac
#aggctaca   2640
tcatgcaggg cagtaacggg tctccagcaa gaacatgaca agcagaaagc ag
#aagaactc   2700
aaacagcagg tagatgaact aacagctgcc aatagaaagg ctgaacaaga ca
#tgagagag   2760
ctgacatatg aacttaatgc cctccagctt gaaaaaacgt catctgagga aa
#aggctcgt   2820
ttgctaaaag ataaactaga tgaaacaaat aatacactca gatgccttaa gt
#tggagctg   2880
gaaaggaagg atcaggcgga gaaagggtat tctcaacaac tcagagagct tg
#gtaggcaa   2940
ttgaatcaaa ccacaggtaa agctgaagaa gccatgcaag aagctagtga tc
#tcaagaaa   3000
ataaagcgca attatcagtt agaattagaa tctcttaatc atgaaaaagg ga
#aactacaa   3060
agagaagtag acagaatcac aagggcacat gctgtagctg agaagaatat tc
#agcattta   3120
aattcacaaa ttcattcttt tcgagatgag aaagaattag aaagactaca aa
#tctgccag   3180
agaaaatcag atcatctaaa agaacaattt gagaaaagcc atgagcagtt gc
#ttcaaaat   3240
atcaaagctg aaaaagaaaa taatgataaa atccaaaggc tcaatgaaga at
#tggagaaa   3300
agtaatgagt gtgcagagat gctaaaacaa aaagtagagg agcttactag gc
#agaataat   3360
gaaaccaaat taatgatgca gagaattcag gcagaatcag agaatatagt tt
#tagagaaa   3420
caaactatcc agcaaagatg tgaagcactg aaaattcagg cagatggttt ta
#aagatcag   3480
ctacgcagca caaatgaaca cttgcataaa cagacaaaaa cagagcagga tt
#ttcaaaga   3540
aaaattaaat gcctagaaga agacctggcg aaaagtcaaa atttggtaag tg
#aatttaag   3600
caaaagtgtg accaacagaa cattatcatc cagaatacca agaaagaagt ta
#gaaatctg   3660
aatgcggaac tgaatgcttc caaagaagag aagcgacgcg gggagcagaa ag
#ttcagcta   3720
caacaagctc aggtgcaaga gttaaataac aggttgaaaa aagtacaaga cg
#aattacac   3780
ttaaagacca tagaggagca gatgacccac agaaagatgg ttctgtttca gg
#aagaatct   3840
ggtaaattca aacaatcagc agaggagttt cggaagaaga tggaaaaatt aa
#tggagtcc   3900
aaagtcatca ctgaaaatga tatttcaggc attaggcttg actttgtgtc tc
#ttcaacaa   3960
gaaaactcta gagcccaaga aaatgctaag ctttgtgaaa caaacattaa ag
#aacttgaa   4020
agacagcttc aacagtatcg tgaacaaatg cagcaagggc agcacatgga ag
#caaatcat   4080
taccaaaaat gtcagaaact tgaggatgag ctgatagccc agaagcgtga gg
#ttgaaaac   4140
ctgaagcaaa aaatggacca acagatcaaa gagcatgaac atcaattagt tt
#tgctccag   4200
tgtgaaattc aaaaaaagag cacagccaaa gactgtacct tcaaaccaga tt
#ttgagatg   4260
acagtgaagg agtgccagca ctctggagag ctgtcctcta gaaacactgg ac
#accttcac   4320
ccaacaccca gatcccctct gttgagatgg actcaagaac cacagccatt gg
#aagagaag   4380
tggcagcatc gggttgttga acagataccc aaagaagtcc aattccagcc ac
#caggggct   4440
ccactcgaga aagagaaaag ccagcagtgt tactctgagt acttttctca ga
#caagcacc   4500
gagttacaga taacttttga tgagacaaac cccattacaa gactgtctga aa
#ttgagaag   4560
ataagagacc aagccctgaa caattctaga ccacctgtta ggtatcaaga ta
#acgcatgt   4620
gaaatggaac tggtgaaggt tttgacaccc ttagagatag ctaagaacaa gc
#agtatgat   4680
atgcatacag aagtcacaac attaaaacaa gaaaagaacc cagttcccag tg
#ctgaagaa   4740
tggatgcttg aagggtgcag agcatctggt ggactcaaga aaggggattt cc
#ttaagaag   4800
ggcttagaac cagagacctt ccagaacttt gatggtgatc atgcatgttc ag
#tcagggat   4860
gatgaattta aattccaagg gcttaggcac actgtgactg ccaggcagtt gg
#tggaagct   4920
aagcttctgg acatgagaac aattgagcag ctgcgactcg gtcttaagac tg
#ttgaagaa   4980
gttcagaaaa ctcttaacaa gtttctgacg aaagccacct caattgcagg gc
#tttaccta   5040
gaatctacaa aagaaaagat ttcatttgcc tcagcggccg agagaatcat aa
#tagacaaa   5100
atggtggctt tggcattttt agaagctcag gctgcaacag gttttataat tg
#atcccatt   5160
tcaggtcaga catattctgt tgaagatgca gttcttaaag gagttgttga cc
#ccgaattc   5220
agaattaggc ttcttgaggc agagaaggca gctgtgggat attcttattc tt
#ctaagaca   5280
ttgtcagtgt ttcaagctat ggaaaataga atgcttgaca gacaaaaagg ta
#aacatatc   5340
ttggaagccc agattgccag tgggggtgtc attgaccctg tgagaggcat tc
#gtgttcct   5400
ccagaaattg ctctgcagca ggggttgttg aataatgcca tcttacagtt tt
#tacatgag   5460
ccatccagca acacaagagt tttccctaat cccaataaca agcaagctct gt
#attactca   5520
gaattactgc gaatgtgtgt atttgatgta gagtcccaat gctttctgtt tc
#catttggg   5580
gagaggaaca tttccaatct caatgtcaag aaaacacata gaatttctgt ag
#tagatact   5640
aaaacaggat cagaattgac cgtgtatgag gctttccaga gaaacctgat tg
#agaaaagt   5700
atatatcttg aactttcagg gcagcaatat cagtggaagg aagctatgtt tt
#ttgaatcc   5760
tatgggcatt cttctcatat gctgactgat actaaaacag gattacactt ca
#atattaat   5820
gaggctatag agcagggaac aattgacaaa gccttggtca aaaagtatca gg
#aaggcctc   5880
atcacactta cagaacttgc tgattctttg ctgagccggt tagtccccaa ga
#aagatttg   5940
cacagtcctg ttgcagggta ttggctgact gctagtgggg aaaggatctc tg
#tactaaaa   6000
gcctcccgta gaaatttggt tgatcggatt actgccctcc gatgccttga ag
#cccaagtc   6060
agtacagggg gcataattga tcctcttact ggcaaaaagt accgggtggc cg
#aagctttg   6120
catagaggcc tggttgatga ggggtttgcc cagcagctgc gacagtgtga at
#tagtaatc   6180
acagggattg gccatcccat cactaacaaa atgatgtcag tggtggaagc tg
#tgaatgca   6240
aatattataa ataaggaaat gggaatccga tgtttggaat ttcagtactt ga
#caggaggg   6300
ttgatagagc cacaggttca ctctcggtta tcaatagaag aggctctcca ag
#taggtatt   6360
atagatgtcc tcattgccac aaaactcaaa gatcaaaagt catatgtcag aa
#atataata   6420
tgccctcaga caaaaagaaa gttgacatat aaagaagcct tagaaaaagc tg
#attttgat   6480
ttccacacag gacttaaact gttagaagta tctgagcccc tgatgacagg aa
#tttctagc   6540
ctctactatt cttcctaatg ggacatgttt aaataactgt gcaaggggtg at
#gcaggctg   6600
gttcatgcca ctttttcaga gtatgatgat atcggctaca tatgcagtct gt
#gaattatg   6660
taacatactc tatttcttga gggctgcaaa ttgctaagtg ctcaaaatag ag
#taagtttt   6720
aaattgaaaa ttacataaga tttaatgccc ttcaaatggt ttcatttagc ct
#tgagaatg   6780
gttttttgaa acttggccac actaaaatgt tttttttttt ttacgtagaa tg
#tgggataa   6840
acttgatgaa ctccaagttc acagtgtcat ttcttcagaa ctccccttca tt
#gaatagtg   6900
atcatttatt aaatgataaa ttgcactcgc tgaaagagca cagtcatgag gc
#acctggan   6960
atccaagggg aaggtataaa ttccgttcca acggccttca ggtggcgtgt tt
#tgggttgc   7020
ttccaaaatg gaaagttttg ccttt          
#                  
#             7045
<210> SEQ ID NO 29
<211> LENGTH: 2125
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3774181CD1
<400> SEQUENCE: 29
Met Glu Glu Lys Glu Glu Leu Leu Gln Tyr Ly
#s Ser Thr Ile Ala
  1               5 
#                 10 
#                 15
Asn Leu Met Gly Lys Ala Lys Thr Ile Ile Gl
#n Leu Lys Pro Arg
                 20 
#                 25 
#                 30
Asn Ser Asp Cys Pro Leu Lys Thr Ser Ile Pr
#o Ile Lys Ala Ile
                 35 
#                 40 
#                 45
Cys Asp Tyr Arg Gln Ile Glu Ile Thr Ile Ty
#r Lys Asp Asp Glu
                 50 
#                 55 
#                 60
Cys Val Leu Ala Asn Asn Ser His Arg Ala Ly
#s Trp Lys Val Ile
                 65 
#                 70 
#                 75
Ser Pro Thr Gly Asn Glu Ala Met Val Pro Se
#r Val Cys Phe Thr
                 80 
#                 85 
#                 90
Val Pro Pro Pro Asn Lys Glu Ala Val Asp Le
#u Ala Asn Arg Ile
                 95 
#                100 
#                105
Glu Gln Gln Tyr Gln Asn Val Leu Thr Leu Tr
#p His Glu Ser His
                110  
#               115  
#               120
Ile Asn Met Lys Ser Val Val Ser Trp His Ty
#r Leu Ile Asn Glu
                125  
#               130  
#               135
Ile Asp Arg Ile Arg Ala Ser Asn Val Ala Se
#r Ile Lys Thr Met
                140  
#               145  
#               150
Leu Pro Gly Glu His Gln Gln Val Leu Ser As
#n Leu Gln Ser Arg
                155  
#               160  
#               165
Phe Glu Asp Phe Leu Glu Asp Ser Gln Glu Se
#r Gln Val Phe Ser
                170  
#               175  
#               180
Gly Ser Asp Ile Thr Gln Leu Glu Lys Glu Va
#l Asn Val Cys Lys
                185  
#               190  
#               195
Gln Tyr Tyr Gln Glu Leu Leu Lys Ser Ala Gl
#u Arg Glu Glu Gln
                200  
#               205  
#               210
Glu Glu Ser Val Tyr Asn Leu Tyr Ile Ser Gl
#u Val Arg Asn Ile
                215  
#               220  
#               225
Arg Leu Arg Leu Glu Asn Cys Glu Asp Arg Le
#u Ile Arg Gln Ile
                230  
#               235  
#               240
Arg Thr Pro Leu Glu Arg Asp Asp Leu His Gl
#u Ser Val Phe Arg
                245  
#               250  
#               255
Ile Thr Glu Gln Glu Lys Leu Lys Lys Glu Le
#u Glu Arg Leu Lys
                260  
#               265  
#               270
Asp Asp Leu Gly Thr Ile Thr Asn Lys Cys Gl
#u Glu Phe Phe Ser
                275  
#               280  
#               285
Gln Ala Ala Ala Ser Ser Ser Val Pro Thr Le
#u Arg Ser Glu Leu
                290  
#               295  
#               300
Asn Val Val Leu Gln Asn Met Asn Gln Val Ty
#r Ser Met Ser Ser
                305  
#               310  
#               315
Thr Tyr Ile Asp Lys Leu Lys Thr Val Asn Le
#u Val Leu Lys Asn
                320  
#               325  
#               330
Thr Gln Ala Ala Glu Ala Leu Val Lys Leu Ty
#r Glu Thr Lys Leu
                335  
#               340  
#               345
Cys Glu Glu Glu Ala Val Ile Ala Asp Lys As
#n Asn Ile Glu Asn
                350  
#               355  
#               360
Leu Ile Ser Thr Leu Lys Gln Trp Arg Ser Gl
#u Val Asp Glu Lys
                365  
#               370  
#               375
Arg Gln Val Phe His Ala Leu Glu Asp Glu Le
#u Gln Lys Ala Lys
                380  
#               385  
#               390
Ala Ile Ser Asp Glu Met Phe Lys Thr Tyr Ly
#s Glu Arg Asp Leu
                395  
#               400  
#               405
Asp Phe Asp Trp His Lys Glu Lys Ala Asp Gl
#n Leu Val Glu Arg
                410  
#               415  
#               420
Trp Gln Asn Val His Val Gln Ile Asp Asn Ar
#g Leu Arg Asp Leu
                425  
#               430  
#               435
Glu Gly Ile Gly Lys Ser Leu Lys Tyr Tyr Ar
#g Asp Thr Tyr His
                440  
#               445  
#               450
Pro Leu Asp Asp Trp Ile Gln Gln Val Glu Th
#r Thr Gln Arg Lys
                455  
#               460  
#               465
Ile Gln Glu Asn Gln Pro Glu Asn Ser Lys Th
#r Leu Ala Thr Gln
                470  
#               475  
#               480
Leu Asn Gln Gln Lys Met Leu Val Ser Glu Il
#e Glu Met Lys Gln
                485  
#               490  
#               495
Ser Lys Met Asp Glu Cys Gln Lys Tyr Ala Gl
#u Gln Tyr Ser Ala
                500  
#               505  
#               510
Thr Val Lys Asp Tyr Glu Leu Gln Thr Met Th
#r Tyr Arg Ala Met
                515  
#               520  
#               525
Val Asp Ser Gln Gln Lys Ser Pro Val Lys Ar
#g Arg Arg Met Gln
                530  
#               535  
#               540
Ser Ser Ala Asp Leu Ile Ile Gln Glu Phe Me
#t Asp Leu Arg Thr
                545  
#               550  
#               555
Arg Tyr Thr Ala Leu Val Thr Leu Met Thr Gl
#n Tyr Ile Lys Phe
                560  
#               565  
#               570
Ala Gly Asp Ser Leu Lys Arg Leu Glu Glu Gl
#u Glu Ile Lys Arg
                575  
#               580  
#               585
Cys Lys Glu Thr Ser Glu His Gly Ala Tyr Se
#r Asp Leu Leu Gln
                590  
#               595  
#               600
Arg Gln Lys Ala Thr Val Leu Glu Asn Ser Ly
#s Leu Thr Gly Lys
                605  
#               610  
#               615
Ile Ser Glu Leu Glu Arg Met Val Ala Glu Le
#u Lys Lys Gln Lys
                620  
#               625  
#               630
Ser Arg Val Glu Glu Glu Leu Pro Lys Val Ar
#g Glu Ala Ala Glu
                635  
#               640  
#               645
Asn Glu Leu Arg Lys Gln Gln Arg Asn Val Gl
#u Asp Ile Ser Leu
                650  
#               655  
#               660
Gln Lys Ile Arg Ala Glu Ser Glu Ala Lys Gl
#n Tyr Arg Arg Glu
                665  
#               670  
#               675
Leu Glu Thr Ile Val Arg Glu Lys Glu Ala Al
#a Glu Arg Glu Leu
                680  
#               685  
#               690
Glu Arg Val Arg Gln Leu Thr Ile Glu Ala Gl
#u Ala Lys Arg Ala
                695  
#               700  
#               705
Ala Val Glu Glu Asn Leu Leu Asn Phe Arg As
#n Gln Leu Glu Glu
                710  
#               715  
#               720
Asn Thr Phe Thr Arg Arg Thr Leu Glu Asp Hi
#s Leu Lys Arg Lys
                725  
#               730  
#               735
Asp Leu Ser Leu Asn Asp Leu Glu Gln Gln Ly
#s Asn Lys Leu Met
                740  
#               745  
#               750
Glu Glu Leu Arg Arg Lys Arg Asp Asn Glu Gl
#u Glu Leu Leu Lys
                755  
#               760  
#               765
Leu Ile Lys Gln Met Glu Lys Asp Leu Ala Ph
#e Gln Lys Gln Val
                770  
#               775  
#               780
Ala Glu Lys Gln Leu Lys Glu Lys Gln Lys Il
#e Glu Leu Glu Ala
                785  
#               790  
#               795
Arg Arg Lys Ile Thr Glu Ile Gln Tyr Thr Cy
#s Arg Glu Asn Ala
                800  
#               805  
#               810
Leu Pro Val Cys Pro Ile Thr Gln Ala Thr Se
#r Cys Arg Ala Val
                815  
#               820  
#               825
Thr Gly Leu Gln Gln Glu His Asp Lys Gln Ly
#s Ala Glu Glu Leu
                830  
#               835  
#               840
Lys Gln Gln Val Asp Glu Leu Thr Ala Ala As
#n Arg Lys Ala Glu
                845  
#               850  
#               855
Gln Asp Met Arg Glu Leu Thr Tyr Glu Leu As
#n Ala Leu Gln Leu
                860  
#               865  
#               870
Glu Lys Thr Ser Ser Glu Glu Lys Ala Arg Le
#u Leu Lys Asp Lys
                875  
#               880  
#               885
Leu Asp Glu Thr Asn Asn Thr Leu Arg Cys Le
#u Lys Leu Glu Leu
                890  
#               895  
#               900
Glu Arg Lys Asp Gln Ala Glu Lys Gly Tyr Se
#r Gln Gln Leu Arg
                905  
#               910  
#               915
Glu Leu Gly Arg Gln Leu Asn Gln Thr Thr Gl
#y Lys Ala Glu Glu
                920  
#               925  
#               930
Ala Met Gln Glu Ala Ser Asp Leu Lys Lys Il
#e Lys Arg Asn Tyr
                935  
#               940  
#               945
Gln Leu Glu Leu Glu Ser Leu Asn His Glu Ly
#s Gly Lys Leu Gln
                950  
#               955  
#               960
Arg Glu Val Asp Arg Ile Thr Arg Ala His Al
#a Val Ala Glu Lys
                965  
#               970  
#               975
Asn Ile Gln His Leu Asn Ser Gln Ile His Se
#r Phe Arg Asp Glu
                980  
#               985  
#               990
Lys Glu Leu Glu Arg Leu Gln Ile Cys Gln Ar
#g Lys Ser Asp His
                995  
#              1000   
#             1005
Leu Lys Glu Gln Phe Glu Lys Ser His Glu Gl
#n Leu Leu Gln Asn
               1010  
#              1015   
#             1020
Ile Lys Ala Glu Lys Glu Asn Asn Asp Lys Il
#e Gln Arg Leu Asn
               1025  
#              1030   
#             1035
Glu Glu Leu Glu Lys Ser Asn Glu Cys Ala Gl
#u Met Leu Lys Gln
               1040  
#              1045   
#             1050
Lys Val Glu Glu Leu Thr Arg Gln Asn Asn Gl
#u Thr Lys Leu Met
               1055  
#              1060   
#             1065
Met Gln Arg Ile Gln Ala Glu Ser Glu Asn Il
#e Val Leu Glu Lys
               1070  
#              1075   
#             1080
Gln Thr Ile Gln Gln Arg Cys Glu Ala Leu Ly
#s Ile Gln Ala Asp
               1085  
#              1090   
#             1095
Gly Phe Lys Asp Gln Leu Arg Ser Thr Asn Gl
#u His Leu His Lys
               1100  
#              1105   
#             1110
Gln Thr Lys Thr Glu Gln Asp Phe Gln Arg Ly
#s Ile Lys Cys Leu
               1115  
#              1120   
#             1125
Glu Glu Asp Leu Ala Lys Ser Gln Asn Leu Va
#l Ser Glu Phe Lys
               1130  
#              1135   
#             1140
Gln Lys Cys Asp Gln Gln Asn Ile Ile Ile Gl
#n Asn Thr Lys Lys
               1145  
#              1150   
#             1155
Glu Val Arg Asn Leu Asn Ala Glu Leu Asn Al
#a Ser Lys Glu Glu
               1160  
#              1165   
#             1170
Lys Arg Arg Gly Glu Gln Lys Val Gln Leu Gl
#n Gln Ala Gln Val
               1175  
#              1180   
#             1185
Gln Glu Leu Asn Asn Arg Leu Lys Lys Val Gl
#n Asp Glu Leu His
               1190  
#              1195   
#             1200
Leu Lys Thr Ile Glu Glu Gln Met Thr His Ar
#g Lys Met Val Leu
               1205  
#              1210   
#             1215
Phe Gln Glu Glu Ser Gly Lys Phe Lys Gln Se
#r Ala Glu Glu Phe
               1220  
#              1225   
#             1230
Arg Lys Lys Met Glu Lys Leu Met Glu Ser Ly
#s Val Ile Thr Glu
               1235  
#              1240   
#             1245
Asn Asp Ile Ser Gly Ile Arg Leu Asp Phe Va
#l Ser Leu Gln Gln
               1250  
#              1255   
#             1260
Glu Asn Ser Arg Ala Gln Glu Asn Ala Lys Le
#u Cys Glu Thr Asn
               1265  
#              1270   
#             1275
Ile Lys Glu Leu Glu Arg Gln Leu Gln Gln Ty
#r Arg Glu Gln Met
               1280  
#              1285   
#             1290
Gln Gln Gly Gln His Met Glu Ala Asn His Ty
#r Gln Lys Cys Gln
               1295  
#              1300   
#             1305
Lys Leu Glu Asp Glu Leu Ile Ala Gln Lys Ar
#g Glu Val Glu Asn
               1310  
#              1315   
#             1320
Leu Lys Gln Lys Met Asp Gln Gln Ile Lys Gl
#u His Glu His Gln
               1325  
#              1330   
#             1335
Leu Val Leu Leu Gln Cys Glu Ile Gln Lys Ly
#s Ser Thr Ala Lys
               1340  
#              1345   
#             1350
Asp Cys Thr Phe Lys Pro Asp Phe Glu Met Th
#r Val Lys Glu Cys
               1355  
#              1360   
#             1365
Gln His Ser Gly Glu Leu Ser Ser Arg Asn Th
#r Gly His Leu His
               1370  
#              1375   
#             1380
Pro Thr Pro Arg Ser Pro Leu Leu Arg Trp Th
#r Gln Glu Pro Gln
               1385  
#              1390   
#             1395
Pro Leu Glu Glu Lys Trp Gln His Arg Val Va
#l Glu Gln Ile Pro
               1400  
#              1405   
#             1410
Lys Glu Val Gln Phe Gln Pro Pro Gly Ala Pr
#o Leu Glu Lys Glu
               1415  
#              1420   
#             1425
Lys Ser Gln Gln Cys Tyr Ser Glu Tyr Phe Se
#r Gln Thr Ser Thr
               1430  
#              1435   
#             1440
Glu Leu Gln Ile Thr Phe Asp Glu Thr Asn Pr
#o Ile Thr Arg Leu
               1445  
#              1450   
#             1455
Ser Glu Ile Glu Lys Ile Arg Asp Gln Ala Le
#u Asn Asn Ser Arg
               1460  
#              1465   
#             1470
Pro Pro Val Arg Tyr Gln Asp Asn Ala Cys Gl
#u Met Glu Leu Val
               1475  
#              1480   
#             1485
Lys Val Leu Thr Pro Leu Glu Ile Ala Lys As
#n Lys Gln Tyr Asp
               1490  
#              1495   
#             1500
Met His Thr Glu Val Thr Thr Leu Lys Gln Gl
#u Lys Asn Pro Val
               1505  
#              1510   
#             1515
Pro Ser Ala Glu Glu Trp Met Leu Glu Gly Cy
#s Arg Ala Ser Gly
               1520  
#              1525   
#             1530
Gly Leu Lys Lys Gly Asp Phe Leu Lys Lys Gl
#y Leu Glu Pro Glu
               1535  
#              1540   
#             1545
Thr Phe Gln Asn Phe Asp Gly Asp His Ala Cy
#s Ser Val Arg Asp
               1550  
#              1555   
#             1560
Asp Glu Phe Lys Phe Gln Gly Leu Arg His Th
#r Val Thr Ala Arg
               1565  
#              1570   
#             1575
Gln Leu Val Glu Ala Lys Leu Leu Asp Met Ar
#g Thr Ile Glu Gln
               1580  
#              1585   
#             1590
Leu Arg Leu Gly Leu Lys Thr Val Glu Glu Va
#l Gln Lys Thr Leu
               1595  
#              1600   
#             1605
Asn Lys Phe Leu Thr Lys Ala Thr Ser Ile Al
#a Gly Leu Tyr Leu
               1610  
#              1615   
#             1620
Glu Ser Thr Lys Glu Lys Ile Ser Phe Ala Se
#r Ala Ala Glu Arg
               1625  
#              1630   
#             1635
Ile Ile Ile Asp Lys Met Val Ala Leu Ala Ph
#e Leu Glu Ala Gln
               1640  
#              1645   
#             1650
Ala Ala Thr Gly Phe Ile Ile Asp Pro Ile Se
#r Gly Gln Thr Tyr
               1655  
#              1660   
#             1665
Ser Val Glu Asp Ala Val Leu Lys Gly Val Va
#l Asp Pro Glu Phe
               1670  
#              1675   
#             1680
Arg Ile Arg Leu Leu Glu Ala Glu Lys Ala Al
#a Val Gly Tyr Ser
               1685  
#              1690   
#             1695
Tyr Ser Ser Lys Thr Leu Ser Val Phe Gln Al
#a Met Glu Asn Arg
               1700  
#              1705   
#             1710
Met Leu Asp Arg Gln Lys Gly Lys His Ile Le
#u Glu Ala Gln Ile
               1715  
#              1720   
#             1725
Ala Ser Gly Gly Val Ile Asp Pro Val Arg Gl
#y Ile Arg Val Pro
               1730  
#              1735   
#             1740
Pro Glu Ile Ala Leu Gln Gln Gly Leu Leu As
#n Asn Ala Ile Leu
               1745  
#              1750   
#             1755
Gln Phe Leu His Glu Pro Ser Ser Asn Thr Ar
#g Val Phe Pro Asn
               1760  
#              1765   
#             1770
Pro Asn Asn Lys Gln Ala Leu Tyr Tyr Ser Gl
#u Leu Leu Arg Met
               1775  
#              1780   
#             1785
Cys Val Phe Asp Val Glu Ser Gln Cys Phe Le
#u Phe Pro Phe Gly
               1790  
#              1795   
#             1800
Glu Arg Asn Ile Ser Asn Leu Asn Val Lys Ly
#s Thr His Arg Ile
               1805  
#              1810   
#             1815
Ser Val Val Asp Thr Lys Thr Gly Ser Glu Le
#u Thr Val Tyr Glu
               1820  
#              1825   
#             1830
Ala Phe Gln Arg Asn Leu Ile Glu Lys Ser Il
#e Tyr Leu Glu Leu
               1835  
#              1840   
#             1845
Ser Gly Gln Gln Tyr Gln Trp Lys Glu Ala Me
#t Phe Phe Glu Ser
               1850  
#              1855   
#             1860
Tyr Gly His Ser Ser His Met Leu Thr Asp Th
#r Lys Thr Gly Leu
               1865  
#              1870   
#             1875
His Phe Asn Ile Asn Glu Ala Ile Glu Gln Gl
#y Thr Ile Asp Lys
               1880  
#              1885   
#             1890
Ala Leu Val Lys Lys Tyr Gln Glu Gly Leu Il
#e Thr Leu Thr Glu
               1895  
#              1900   
#             1905
Leu Ala Asp Ser Leu Leu Ser Arg Leu Val Pr
#o Lys Lys Asp Leu
               1910  
#              1915   
#             1920
His Ser Pro Val Ala Gly Tyr Trp Leu Thr Al
#a Ser Gly Glu Arg
               1925  
#              1930   
#             1935
Ile Ser Val Leu Lys Ala Ser Arg Arg Asn Le
#u Val Asp Arg Ile
               1940  
#              1945   
#             1950
Thr Ala Leu Arg Cys Leu Glu Ala Gln Val Se
#r Thr Gly Gly Ile
               1955  
#              1960   
#             1965
Ile Asp Pro Leu Thr Gly Lys Lys Tyr Arg Va
#l Ala Glu Ala Leu
               1970  
#              1975   
#             1980
His Arg Gly Leu Val Asp Glu Gly Phe Ala Gl
#n Gln Leu Arg Gln
               1985  
#              1990   
#             1995
Cys Glu Leu Val Ile Thr Gly Ile Gly His Pr
#o Ile Thr Asn Lys
               2000  
#              2005   
#             2010
Met Met Ser Val Val Glu Ala Val Asn Ala As
#n Ile Ile Asn Lys
               2015  
#              2020   
#             2025
Glu Met Gly Ile Arg Cys Leu Glu Phe Gln Ty
#r Leu Thr Gly Gly
               2030  
#              2035   
#             2040
Leu Ile Glu Pro Gln Val His Ser Arg Leu Se
#r Ile Glu Glu Ala
               2045  
#              2050   
#             2055
Leu Gln Val Gly Ile Ile Asp Val Leu Ile Al
#a Thr Lys Leu Lys
               2060  
#              2065   
#             2070
Asp Gln Lys Ser Tyr Val Arg Asn Ile Ile Cy
#s Pro Gln Thr Lys
               2075  
#              2080   
#             2085
Arg Lys Leu Thr Tyr Lys Glu Ala Leu Glu Ly
#s Ala Asp Phe Asp
               2090  
#              2095   
#             2100
Phe His Thr Gly Leu Lys Leu Leu Glu Val Se
#r Glu Pro Leu Met
               2105  
#              2110   
#             2115
Thr Gly Ile Ser Ser Leu Tyr Tyr Ser Ser
               2120  
#              2125
<210> SEQ ID NO 30
<211> LENGTH: 1708
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1709387CB1
<400> SEQUENCE: 30
cctgccagca tctcttgggt ttgctgagaa ctcacgggct ccagctacct gg
#ccatgacc     60
accacatttc tgcaaacttc ttcctccacc tttgggggtg gctcaacccg ag
#ggggttcc    120
ctcctggctg ggggaggtgg ctttggtggg gggagtctct ctgggggagg tg
#gaagccga    180
agtatctcag cttcttctgc taggtttgtc tcttcagggt caggaggagg at
#atgggggt    240
ggcatgaggg tctgtggctt tggtggaggg gctggtagtg ttttcggtgg ag
#gctttgga    300
gggggcgttg gtgggggttt tggtggtggc tttggtggtg gcgatggtgg tc
#tcctctct    360
ggcaatgaga aaattaccat gcagaacctc aatgaccgcc tggcctccta cc
#tggacaag    420
gtacgtgccc tggaggaggc caatgctgac ctggaggtga agatccatga ct
#ggtaccag    480
aagcagaccc cagccagccc agaatgcgac tacagccaat acttcaagac ca
#ttgaagag    540
ctccgggaca agatcatggc caccaccatc gacaactccc gggtcatcct gg
#agatcgac    600
aatgccaggc tggctgcgga cgacttcagg ctcaagtatg agaatgagct gg
#ccctgcgc    660
cagggcgttg aggctgacat caacggcttg cgccgagtcc tggatgagct ga
#ccctggcc    720
aggactgacc tggagatgca gatcgagggc ctgaatgagg agctagccta cc
#tgaagaag    780
aaccacgaag aggagatgaa ggagttcagc agccagctgg ccggccaggt ca
#atgtggag    840
atggacgcag caccgggtgt ggacctgacc cgtgtgctgg cagagatgag gg
#agcagtac    900
gaggccatgg cggagaagaa ccgccgggat gtcgaggcct ggttcttcag ca
#agactgag    960
gagctgaaca aagaggtggc ctccaacaca gaaatgatcc agaccagcaa ga
#cggagatc   1020
acagacctga gacgcacgat gcaggagctg gagatcgagc tgcagtccca gc
#tcagcatg   1080
aaagctgggc tggagaactc actggccgag acagagtgcc gctatgccac gc
#agctgcag   1140
cagatccagg ggctcattgg tggcctggag gcccagctga gtgagctccg at
#gcgagatg   1200
gaggctcaga accaggagta caagatgctg cttgacataa agacacggct gg
#agcaggag   1260
atcgctactt accgcagcct gctcgagggc caggatgcca agatggctgg ca
#ttggcatc   1320
agggaagcct cttcaggagg tggtggtagc agcagcaatt tccacatcaa tg
#tagaagag   1380
tcagtggatg gacaggtggt ttcttcccac aagagagaaa tctaagtgtc ta
#ttgcagga   1440
gaaacgtccc ttgccactcc ccactctcat caggccaagt ggaggactgg cc
#agagggcc   1500
tgcacatgca aactccagtc cctgccttca gagagctgaa aagggtccct cg
#gtctttta   1560
tttcagggct ttgcatgcgc tctattcccc ctctgcctct ccccaccttc tt
#tggagcaa   1620
ggagatgcag ctgtattgtg taacaagctc atttgtacag tgtctgttca tg
#taataaag   1680
aattactttt ccttttgcaa aaaaaaaa         
#                  
#           1708
<210> SEQ ID NO 31
<211> LENGTH: 456
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1709387CD1
<400> SEQUENCE: 31
Met Thr Thr Thr Phe Leu Gln Thr Ser Ser Se
#r Thr Phe Gly Gly
  1               5 
#                 10 
#                 15
Gly Ser Thr Arg Gly Gly Ser Leu Leu Ala Gl
#y Gly Gly Gly Phe
                 20 
#                 25 
#                 30
Gly Gly Gly Ser Leu Ser Gly Gly Gly Gly Se
#r Arg Ser Ile Ser
                 35 
#                 40 
#                 45
Ala Ser Ser Ala Arg Phe Val Ser Ser Gly Se
#r Gly Gly Gly Tyr
                 50 
#                 55 
#                 60
Gly Gly Gly Met Arg Val Cys Gly Phe Gly Gl
#y Gly Ala Gly Ser
                 65 
#                 70 
#                 75
Val Phe Gly Gly Gly Phe Gly Gly Gly Val Gl
#y Gly Gly Phe Gly
                 80 
#                 85 
#                 90
Gly Gly Phe Gly Gly Gly Asp Gly Gly Leu Le
#u Ser Gly Asn Glu
                 95 
#                100 
#                105
Lys Ile Thr Met Gln Asn Leu Asn Asp Arg Le
#u Ala Ser Tyr Leu
                110  
#               115  
#               120
Asp Lys Val Arg Ala Leu Glu Glu Ala Asn Al
#a Asp Leu Glu Val
                125  
#               130  
#               135
Lys Ile His Asp Trp Tyr Gln Lys Gln Thr Pr
#o Ala Ser Pro Glu
                140  
#               145  
#               150
Cys Asp Tyr Ser Gln Tyr Phe Lys Thr Ile Gl
#u Glu Leu Arg Asp
                155  
#               160  
#               165
Lys Ile Met Ala Thr Thr Ile Asp Asn Ser Ar
#g Val Ile Leu Glu
                170  
#               175  
#               180
Ile Asp Asn Ala Arg Leu Ala Ala Asp Asp Ph
#e Arg Leu Lys Tyr
                185  
#               190  
#               195
Glu Asn Glu Leu Ala Leu Arg Gln Gly Val Gl
#u Ala Asp Ile Asn
                200  
#               205  
#               210
Gly Leu Arg Arg Val Leu Asp Glu Leu Thr Le
#u Ala Arg Thr Asp
                215  
#               220  
#               225
Leu Glu Met Gln Ile Glu Gly Leu Asn Glu Gl
#u Leu Ala Tyr Leu
                230  
#               235  
#               240
Lys Lys Asn His Glu Glu Glu Met Lys Glu Ph
#e Ser Ser Gln Leu
                245  
#               250  
#               255
Ala Gly Gln Val Asn Val Glu Met Asp Ala Al
#a Pro Gly Val Asp
                260  
#               265  
#               270
Leu Thr Arg Val Leu Ala Glu Met Arg Glu Gl
#n Tyr Glu Ala Met
                275  
#               280  
#               285
Ala Glu Lys Asn Arg Arg Asp Val Glu Ala Tr
#p Phe Phe Ser Lys
                290  
#               295  
#               300
Thr Glu Glu Leu Asn Lys Glu Val Ala Ser As
#n Thr Glu Met Ile
                305  
#               310  
#               315
Gln Thr Ser Lys Thr Glu Ile Thr Asp Leu Ar
#g Arg Thr Met Gln
                320  
#               325  
#               330
Glu Leu Glu Ile Glu Leu Gln Ser Gln Leu Se
#r Met Lys Ala Gly
                335  
#               340  
#               345
Leu Glu Asn Ser Leu Ala Glu Thr Glu Cys Ar
#g Tyr Ala Thr Gln
                350  
#               355  
#               360
Leu Gln Gln Ile Gln Gly Leu Ile Gly Gly Le
#u Glu Ala Gln Leu
                365  
#               370  
#               375
Ser Glu Leu Arg Cys Glu Met Glu Ala Gln As
#n Gln Glu Tyr Lys
                380  
#               385  
#               390
Met Leu Leu Asp Ile Lys Thr Arg Leu Glu Gl
#n Glu Ile Ala Thr
                395  
#               400  
#               405
Tyr Arg Ser Leu Leu Glu Gly Gln Asp Ala Ly
#s Met Ala Gly Ile
                410  
#               415  
#               420
Gly Ile Arg Glu Ala Ser Ser Gly Gly Gly Gl
#y Ser Ser Ser Asn
                425  
#               430  
#               435
Phe His Ile Asn Val Glu Glu Ser Val Asp Gl
#y Gln Val Val Ser
                440  
#               445  
#               450
Ser His Lys Arg Glu Ile
                455
<210> SEQ ID NO 32
<211> LENGTH: 1393
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1709118CB1
<400> SEQUENCE: 32
ggacagggct ggagatcgag ttcccagttc gtgaaaagga aaaccccctg aa
#gctgtgcc     60
aagatgtgtg acgacgagga gaccaccgcc ctggtgtgcg acaacggctc tg
#ggctggtg    120
aaggccggct ttgcgggcga tgacgcgccc cgcgctgtct tcccgtccat cg
#tgggccgc    180
ccgcggcacc agggagttat ggtgggtatg ggtcagaagg actcctacgt ag
#gtgatgaa    240
gcccagagca agagaggcat cctgaccctg aagtatccca tcgagcatgg ta
#tcatcacc    300
aactgggacg acatggagaa gatctggcac cacaccttct acaatgagct cc
#gtgtggct    360
cccgaggagc accccaccct gctcacagag gccccgctga accccaaggc ca
#accgggag    420
aagatgactc agatcatgtt tgagaccttc aatgtccctg ccatgtacgt gg
#ccatccag    480
gcagtgctat ccctgtatgc ttctggccgt accacaggca ttgttctgga ct
#ctggggat    540
ggtgtaactc acaatgtccc catctatgag ggctacgctt tgccccatgc ca
#tcatgcgt    600
ctggttctgg ctggtcggga cctcactgac tacctcatga agatcctcac tg
#agcgtggc    660
tactcctttg tcaccactgc tgaacgtgaa attgtccgtg acattaaaga ga
#agctgtgc    720
tatgtcgccc tggattttga gaatgagatg gccacagctg cctcttcctc ct
#ccctggag    780
aagagctatg aactgcctga tggccaagtc atcactattg gcaatgagcg ct
#tccgctgt    840
cctgagacac tcttccagcc ctccttcatt ggtatggaat ctgctggcat cc
#atgaaaca    900
acttacaata gcatcatgaa gtgtgacatt gatatccgca aggacctgta tg
#ccaacaat    960
gtcttatctg gaggcaccac tatgtaccct ggtattgctg atcgtatgca ga
#aggaaatc   1020
actgctctgg ctcctagcac catgaagatt aagattattg ctccccctga gc
#gtaaatac   1080
tctgtctgga ttgggggctc catcctggcc tctctgtcca ccttccagca aa
#tgtggatt   1140
agcaagcaag agtacgatga ggcaggccca tccattgtcc accgcaaatg ct
#tctaagat   1200
gccttctctc tccatctacc ttccagtcag gatgacggta ttatgcttct tg
#gagtcttc   1260
caaaccacct tccctcatct ttcatcaatc attgtacagt ttgtttacac ac
#gtgcaatt   1320
tgtttgtgct tctaatattt attgctttat aaataaacca gaccaggact tg
#caacctaa   1380
aaaaaaaaaa aaa              
#                  
#                  
#    1393
<210> SEQ ID NO 33
<211> LENGTH: 377
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1709118CD1
<400> SEQUENCE: 33
Met Cys Asp Asp Glu Glu Thr Thr Ala Leu Va
#l Cys Asp Asn Gly
  1               5 
#                 10 
#                 15
Ser Gly Leu Val Lys Ala Gly Phe Ala Gly As
#p Asp Ala Pro Arg
                 20 
#                 25 
#                 30
Ala Val Phe Pro Ser Ile Val Gly Arg Pro Ar
#g His Gln Gly Val
                 35 
#                 40 
#                 45
Met Val Gly Met Gly Gln Lys Asp Ser Tyr Va
#l Gly Asp Glu Ala
                 50 
#                 55 
#                 60
Gln Ser Lys Arg Gly Ile Leu Thr Leu Lys Ty
#r Pro Ile Glu His
                 65 
#                 70 
#                 75
Gly Ile Ile Thr Asn Trp Asp Asp Met Glu Ly
#s Ile Trp His His
                 80 
#                 85 
#                 90
Thr Phe Tyr Asn Glu Leu Arg Val Ala Pro Gl
#u Glu His Pro Thr
                 95 
#                100 
#                105
Leu Leu Thr Glu Ala Pro Leu Asn Pro Lys Al
#a Asn Arg Glu Lys
                110  
#               115  
#               120
Met Thr Gln Ile Met Phe Glu Thr Phe Asn Va
#l Pro Ala Met Tyr
                125  
#               130  
#               135
Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Al
#a Ser Gly Arg Thr
                140  
#               145  
#               150
Thr Gly Ile Val Leu Asp Ser Gly Asp Gly Va
#l Thr His Asn Val
                155  
#               160  
#               165
Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Al
#a Ile Met Arg Leu
                170  
#               175  
#               180
Val Leu Ala Gly Arg Asp Leu Thr Asp Tyr Le
#u Met Lys Ile Leu
                185  
#               190  
#               195
Thr Glu Arg Gly Tyr Ser Phe Val Thr Thr Al
#a Glu Arg Glu Ile
                200  
#               205  
#               210
Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Va
#l Ala Leu Asp Phe
                215  
#               220  
#               225
Glu Asn Glu Met Ala Thr Ala Ala Ser Ser Se
#r Ser Leu Glu Lys
                230  
#               235  
#               240
Ser Tyr Glu Leu Pro Asp Gly Gln Val Ile Th
#r Ile Gly Asn Glu
                245  
#               250  
#               255
Arg Phe Arg Cys Pro Glu Thr Leu Phe Gln Pr
#o Ser Phe Ile Gly
                260  
#               265  
#               270
Met Glu Ser Ala Gly Ile His Glu Thr Thr Ty
#r Asn Ser Ile Met
                275  
#               280  
#               285
Lys Cys Asp Ile Asp Ile Arg Lys Asp Leu Ty
#r Ala Asn Asn Val
                290  
#               295  
#               300
Leu Ser Gly Gly Thr Thr Met Tyr Pro Gly Il
#e Ala Asp Arg Met
                305  
#               310  
#               315
Gln Lys Glu Ile Thr Ala Leu Ala Pro Ser Th
#r Met Lys Ile Lys
                320  
#               325  
#               330
Ile Ile Ala Pro Pro Glu Arg Lys Tyr Ser Va
#l Trp Ile Gly Gly
                335  
#               340  
#               345
Ser Ile Leu Ala Ser Leu Ser Thr Phe Gln Gl
#n Met Trp Ile Ser
                350  
#               355  
#               360
Lys Gln Glu Tyr Asp Glu Ala Gly Pro Ser Il
#e Val His Arg Lys
                365  
#               370  
#               375
Cys Phe
<210> SEQ ID NO 34
<211> LENGTH: 2310
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 008513.49
<221> NAME/KEY: unsure
<222> LOCATION: 2307
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 34
cttccctctc tcctccagcc tctcacactc tcctcagctc tctcatctcc tg
#gaaccatg     60
gccagcacat ccaccaccat caggagccac agcagcagcc gccggggttt ca
#gtgccaac    120
ttcagccagg ctccctgggg tcagccgctc tggcttcagc agcgtctccg tg
#tcccgctc    180
caggggcagt ggtggcctgg gtggtgcatg tggaggagct ggctttggca gc
#cgcagtct    240
gtatggcctg gggggctcca agaggatctc cattggaggg ggcagctgtg cc
#atcagtgg    300
cggctatggc agcagagccg gaggcagcta tggctttggt ggcgccggga gt
#ggatttgg    360
tttcggtggt ggagccggca ttggctttgg tctgggtggt ggagccggcc tt
#gctggtgg    420
ctttgggggc cctggcttcc ctgtgtgccc ccctggaggc atccaagagg tc
#accgtcaa    480
ccagagtctc ctgactcccc tcaacctgca aatcgatccc accatccagc gg
#gtgcgggc    540
cgaggagcgt gagcagatca agaccctcaa caacaagttt gcctccttca tc
#gacaaggt    600
gcggttcctg gagcagcaga acaaggttct ggaaacaaag tggaccctgc tg
#caggagca    660
gggcaccaag actgtgaggc agaacctgga gccgttgttc gagcagtaca tc
#aacaacct    720
caggaggcag ctggacagca ttgtcgggga acggggccgc ctggactcag ag
#ctcagagg    780
catgcaggac ctggtggagg acttcaagaa caaatatgag gatgaaatca ac
#aagcgcac    840
agcagcagag aatgaatttg tgactctgaa gaaggatgtg gatgctgcct ac
#atgaacaa    900
ggttgaactg caagccaagg cagacactct cacagacgag atcaacttcc tg
#agagcctt    960
gtatgatgca gagctgtccc agatgcagac ccacatctca gacacatctg tg
#gtgctgtc   1020
catggacaac aaccgcaacc tggacctgga cagcatcatc gctgaggtca ag
#gcccaata   1080
tgaggagatt gctcagagaa gccgggctga ggctgagtcc tggtaccaga cc
#aagtacga   1140
ggagctgcag gtcacagcag gcagacatgg ggacgacctg cgcaacacca ag
#caggagat   1200
tgctgagatc aaccgcatga tccagaggct gagatctgag atcgaccacg tc
#aagaagca   1260
gtgcgccaac ctgcaggccg ccattgctga tgctgagcag cgtggggaga tg
#gccctcaa   1320
ggatgccaag aacaagctgg aagggctgga ggatgccctg cagaaggcca ag
#caggacct   1380
ggcccggctg ctgaaggagt accaggagct gatgaatgtc aagctggccc tg
#gacgtgga   1440
gatcgccacc taccgcaagc tgctggaggg tgaggagtgc aggctgaatg gc
#gaaggcgt   1500
tggacaagtc aacatctctg tggtgcagtc caccgtctcc agtggctatg gc
#ggtgccag   1560
tggtgtcggc agtggcttag gcctgggtgg aggaagcagc tactcctatg gc
#agtggtct   1620
tggcgttgga ggtggcttca gttccagcag tggcagagcc attgggggtg gc
#ctcagctc   1680
tgttggaggc ggcagttcca ccatcaagta caccaccacc tcctcctcca gc
#aggaagag   1740
ctataagcac taaagtgcgt ctgctagctc tcggtcccac agtcctcagg cc
#cctctctg   1800
gctgcagagc cctctcctca ggttgccttt cctctcctgg cctccagtct cc
#cctgctgt   1860
cccaggtaga gctgggtatg gatgcttagt gccctcactt cttctctctc tc
#tctatacc   1920
atctgagcac ccattgctca ccatcagatc aacctctgat tttacatcat ga
#tgtaatca   1980
ccactggagc ttcactgtta ctaaattatt aatttcttgc ctccagtgtt ct
#atctctga   2040
ggctgagcat tataagaaaa tgacctctgc tccttttcat tgcagaaaat tg
#ccaggggc   2100
ttatttcaga acaacttcca cttactttcc actggctctc aaactctcta ac
#ttataagt   2160
gttgtgaacc cccacccagg cagtatccat gaaagcacaa gtgactagtc ct
#atgatgta   2220
caaagcctgt atctctgtga tgatttctgt gctcttcgct gtttgcaatt gc
#taaataaa   2280
gcagatttat aatacaaaaa aaaaaanggg         
#                  
#         2310
<210> SEQ ID NO 35
<211> LENGTH: 493
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 047568.1
<400> SEQUENCE: 35
cttaacctta attttataag agacaaatac atgttataat aatacttaag ct
#ctttatag     60
aatttgtagg gctattgaga gacattatag ggaagccctt gttctggaag gt
#gtatggtt    120
gtggccatgg gtttctctgc cactaaatct gtacctggtt gttatttgaa gt
#tttctgtc    180
ctaaaatgta atctttggag aagctgcaca accgccatct gggaactcat ga
#gaaattta    240
cgttttatgc ctaagtaact ctaatgagca atggctatag gaatgactaa ta
#aaatatca    300
acaaggagat gggaattttc aaggaaatat gatatggtaa caatgtcctt tt
#tagaaagt    360
catttttact tatctatatt cacagcataa aatgttccaa aatctatgaa at
#attaaata    420
ttatacttca aaataaagta atattttgga gataaaagag tactgttcta ca
#attcaaaa    480
ttgaaatagt tca              
#                  
#                  
#     493
<210> SEQ ID NO 36
<211> LENGTH: 1983
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3120070CB1
<400> SEQUENCE: 36
ggaaccgcct ccccgcggcc tcttcgcttt tgtggcggcg cccgcgctcg ca
#ggccactc     60
tctgctgtcg cccgtcccgc gcgctcctcc gacccgctcc gctccgctcc gc
#tcggcccc    120
gcgccgcccg tcaacatgat ccgctgcggc ctggcctgcg agcgctgccg ct
#ggatcctg    180
cccctgctcc tactcagcgc catcgccttc gacatcatcg cgctggccgg cc
#gcggctgg    240
ttgcagtcta gcgaccacgg ccagacgtcc tcgctgtggt ggaaatgctc cc
#aagagggc    300
ggcggcagcg ggtcctacga ggagggctgt cagagcctca tggagtacgc gt
#ggggtaga    360
gcagcggctg ccatgctctt ctgtggcttc atcatcctgg tgatctgttt ca
#tcctctcc    420
ttcttcgccc tctgtggacc ccagatgctt gtcttcctga gagtgattgg ag
#gtctcctt    480
gccttggctg ctgtgttcca gatcatctcc ctggtaattt accccgtgaa gt
#acacccag    540
accttcaccc ttcatgccaa ccctgctgtc acttacatct ataactgggc ct
#acggcttt    600
gggtgggcag ccacgattat cctgattggc tgtgccttct tcttctgctg cc
#tccccaac    660
tacgaagatg accttctggg caatgccaag cccaggtact tctacacatc tg
#cctaactt    720
gggaatgaat gtgggagaaa atcgctgctg ctgagatgga ctccagaaga ag
#aaactgtt    780
tctccaggcg actttgaacc cattttttgg cagtgttcat attattaaac ta
#gtcaaaaa    840
tgctaaaata atttgggaga aaatattttt taagtagtgt tatagtttca tg
#tttatctt    900
ttattatgtt ttgtgaagtt gtgtcttttc actaattacc tatactatgc ca
#atatttcc    960
ttatatctat ccataacatt tatactacat ttgtaagaga atatgcacgt ga
#aacttaac   1020
actttataag gtaaaaatga ggtttccaag atttaataat ctgatcaagt tc
#ttgttatt   1080
tccaaataga atggactcgg tctgttaagg gctaaggaga agaggaagat aa
#ggttaaaa   1140
gttgttaatg accaaacatt ctaaaagaaa tgcaaaaaaa aagtttattt tc
#aagccttc   1200
gaactattta aggaaagcaa aatcatttcc taaatgcata tcatttgtga ga
#atttctca   1260
ttaatatcct gaatcattca tttcagctaa ggcttcatgt tgactcgata tg
#tcatctag   1320
gaaagtacta tttcatggtc caaacctgtt gccatagttg gtaaggcttt cc
#tttaagtg   1380
tgaaatattt agatgaaatt ttctctttta aagttcttta tagggttagg gt
#gtgggaaa   1440
atgctatatt aataaatctg tagtgttttg tgtttatatg ttcagaacca ga
#gtagactg   1500
gattgaaaga tggactgggt ctaatttatc atgactgata gatctggtta ag
#ttgtgtag   1560
taaagcatta gggtcattcc tgtcacaaaa gtgccactaa aacagcctca gg
#agaataaa   1620
tgacttgctt ttctaaatct caggtttatc tgggctctat catatagaca gg
#cttctgat   1680
agtttgcaac tgtaagcaga aacctacata tagttaaaat cctggtcttt ct
#tggtaaac   1740
agattttaaa tgtctgatat aaaacatgcc acaggagaat tcggggattt ga
#gtttctct   1800
gaatagcata tatatgatgc atcggatagg tcattatgat tttttaccat tt
#cgacttac   1860
ataatgaaaa ccaattcatt ttaaatatca gattattatt ttgtaagttg tg
#gaaaaagc   1920
taattgtagt tttcattatg aagttttccc aataaaccag gtattctaaa ct
#tgaaaaaa   1980
aaa                  
#                  
#                  
#           1983
<210> SEQ ID NO 37
<211> LENGTH: 193
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3120070CD1
<400> SEQUENCE: 37
Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cy
#s Arg Trp Ile Leu
  1               5 
#                 10 
#                 15
Pro Leu Leu Leu Leu Ser Ala Ile Ala Phe As
#p Ile Ile Ala Leu
                 20 
#                 25 
#                 30
Ala Gly Arg Gly Trp Leu Gln Ser Ser Asp Hi
#s Gly Gln Thr Ser
                 35 
#                 40 
#                 45
Ser Leu Trp Trp Lys Cys Ser Gln Glu Gly Gl
#y Gly Ser Gly Ser
                 50 
#                 55 
#                 60
Tyr Glu Glu Gly Cys Gln Ser Leu Met Glu Ty
#r Ala Trp Gly Arg
                 65 
#                 70 
#                 75
Ala Ala Ala Ala Met Leu Phe Cys Gly Phe Il
#e Ile Leu Val Ile
                 80 
#                 85 
#                 90
Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gl
#y Pro Gln Met Leu
                 95 
#                100 
#                105
Val Phe Leu Arg Val Ile Gly Gly Leu Leu Al
#a Leu Ala Ala Val
                110  
#               115  
#               120
Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Va
#l Lys Tyr Thr Gln
                125  
#               130  
#               135
Thr Phe Thr Leu His Ala Asn Pro Ala Val Th
#r Tyr Ile Tyr Asn
                140  
#               145  
#               150
Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Il
#e Ile Leu Ile Gly
                155  
#               160  
#               165
Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Ty
#r Glu Asp Asp Leu
                170  
#               175  
#               180
Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Th
#r Ser Ala
                185  
#               190
<210> SEQ ID NO 38
<211> LENGTH: 1516
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1303785CB1
<221> NAME/KEY: unsure
<222> LOCATION: 1512
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 38
ctttgttttt ggacatagct gagccatgta cttcaaacag aaggcagcca at
#tactaact     60
tctggttgct aggtgtggct tcctttaaaa tcctataaaa tcagaagccc aa
#gtctccac    120
tgccagtgtg aaatcttcag agaagaattt ctctttagtt ctttgcaaga ag
#gtagagat    180
aaagacactt tttcaaaaat ggcaatggta tcagaattcc tcaagcaggc ct
#ggtttatt    240
gaaaatgaag agcaggaata tgttcaaact gtgaagtcat ccaaaggtgg tc
#ccggatca    300
gcggtgagcc cctatcctac cttcaatcca tcctcggatg tcgctgcctt gc
#ataaggcc    360
ataatggtta aaggtgtgga tgaagcaacc atcattgaca ttctaactaa gc
#gaaacaat    420
gcacagcgtc aacagatcaa agcagcatat ctccaggaaa caggaaagcc cc
#tggatgaa    480
acactgaaga aagcccttac aggtcacctt gaggaggttg ttttagctct gc
#taaaaact    540
ccagcgcaat ttgatgctga tgaacttcgt gctgccatga agggccttgg aa
#ctgatgaa    600
gatactctaa ttgagatttt ggcatcaaga actaacaaag aaatcagaga ca
#ttaacagg    660
gtctacagag aggaactgaa gagagatctg gccaaagaca taacctcaga ca
#catctgga    720
gattttcgga acgctttgct ttctcttgct aagggtgacc gatctgagga ct
#ttggtgtg    780
aatgaagact tggctgattc agatgccagg gccttgtatg aagcaggaga aa
#ggagaaag    840
gggacagacg taaacgtgtt caataccatc cttaccacca gaagctatcc ac
#aacttcgc    900
agagtgtttc agaaatacac caagtacagt aagcatgaca tgaacaaagt tc
#tggacctg    960
gagttgaaag gtgacattga gaaatgcctc acagctatcg tgaagtgcgc ca
#caagcaaa   1020
ccagctttct ttgcagagaa gcttcatcaa gccatgaaag gtgttggaac tc
#gccataag   1080
gcattgatca ggattatggt ttcccgttct gaaattgaca tgaatgatat ca
#aagcattc   1140
tatcagaaga tgtatggtat ctccctttgc caagccatcc tggatgaaac ca
#aaggagag   1200
tatgagaaaa tcctggtggc tctttgtgga ggaaactaaa cattcccttg at
#ggtctcaa   1260
gctatgatca gaagacttta attatatatt ttcatcctat aagcttaaat ag
#gaaagttt   1320
cttcaacagg attacagtgt agctacctac atgctgaaaa atatagcctt ta
#aatcattt   1380
ttatattata actctgtata atagagataa gtccattttt taaaaatgtt tt
#ccccaaac   1440
cataaaaccc tatacaagtt gttctagtaa caatacatga gaaagatgtc ta
#tgtagctg   1500
aaaataaaat gncgtc             
#                  
#                  
#  1516
<210> SEQ ID NO 39
<211> LENGTH: 346
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1303785CD1
<400> SEQUENCE: 39
Met Ala Met Val Ser Glu Phe Leu Lys Gln Al
#a Trp Phe Ile Glu
  1               5 
#                 10 
#                 15
Asn Glu Glu Gln Glu Tyr Val Gln Thr Val Ly
#s Ser Ser Lys Gly
                 20 
#                 25 
#                 30
Gly Pro Gly Ser Ala Val Ser Pro Tyr Pro Th
#r Phe Asn Pro Ser
                 35 
#                 40 
#                 45
Ser Asp Val Ala Ala Leu His Lys Ala Ile Me
#t Val Lys Gly Val
                 50 
#                 55 
#                 60
Asp Glu Ala Thr Ile Ile Asp Ile Leu Thr Ly
#s Arg Asn Asn Ala
                 65 
#                 70 
#                 75
Gln Arg Gln Gln Ile Lys Ala Ala Tyr Leu Gl
#n Glu Thr Gly Lys
                 80 
#                 85 
#                 90
Pro Leu Asp Glu Thr Leu Lys Lys Ala Leu Th
#r Gly His Leu Glu
                 95 
#                100 
#                105
Glu Val Val Leu Ala Leu Leu Lys Thr Pro Al
#a Gln Phe Asp Ala
                110  
#               115  
#               120
Asp Glu Leu Arg Ala Ala Met Lys Gly Leu Gl
#y Thr Asp Glu Asp
                125  
#               130  
#               135
Thr Leu Ile Glu Ile Leu Ala Ser Arg Thr As
#n Lys Glu Ile Arg
                140  
#               145  
#               150
Asp Ile Asn Arg Val Tyr Arg Glu Glu Leu Ly
#s Arg Asp Leu Ala
                155  
#               160  
#               165
Lys Asp Ile Thr Ser Asp Thr Ser Gly Asp Ph
#e Arg Asn Ala Leu
                170  
#               175  
#               180
Leu Ser Leu Ala Lys Gly Asp Arg Ser Glu As
#p Phe Gly Val Asn
                185  
#               190  
#               195
Glu Asp Leu Ala Asp Ser Asp Ala Arg Ala Le
#u Tyr Glu Ala Gly
                200  
#               205  
#               210
Glu Arg Arg Lys Gly Thr Asp Val Asn Val Ph
#e Asn Thr Ile Leu
                215  
#               220  
#               225
Thr Thr Arg Ser Tyr Pro Gln Leu Arg Arg Va
#l Phe Gln Lys Tyr
                230  
#               235  
#               240
Thr Lys Tyr Ser Lys His Asp Met Asn Lys Va
#l Leu Asp Leu Glu
                245  
#               250  
#               255
Leu Lys Gly Asp Ile Glu Lys Cys Leu Thr Al
#a Ile Val Lys Cys
                260  
#               265  
#               270
Ala Thr Ser Lys Pro Ala Phe Phe Ala Glu Ly
#s Leu His Gln Ala
                275  
#               280  
#               285
Met Lys Gly Val Gly Thr Arg His Lys Ala Le
#u Ile Arg Ile Met
                290  
#               295  
#               300
Val Ser Arg Ser Glu Ile Asp Met Asn Asp Il
#e Lys Ala Phe Tyr
                305  
#               310  
#               315
Gln Lys Met Tyr Gly Ile Ser Leu Cys Gln Al
#a Ile Leu Asp Glu
                320  
#               325  
#               330
Thr Lys Gly Glu Tyr Glu Lys Ile Leu Val Al
#a Leu Cys Gly Gly
                335  
#               340  
#               345
Asn
<210> SEQ ID NO 40
<211> LENGTH: 2712
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1798379CB1
<400> SEQUENCE: 40
ccagccttga ctcttctcaa gagcctgtga ctttcctccc tggacaaagg ca
#tcatgagt     60
tgtcagatct cttgcaaatc tcgaggaaga ggaggaggtg gaggaggatt cc
#ggggcttc    120
agcagcggct cagctgtggt gtctggtgga agccggagat caacttccag ct
#tctcctgc    180
ttgagccgcc atggtggtgg tggtgggggc ttcggtggag gcggctttgg ca
#gtcggagt    240
cttgttggcc ttggagggac caagagcatc tccattagtg tggctggagg ag
#gtggtggc    300
tttggcgccg ctggtggatt tggtggcaga ggaggtggtt ttggaggcgg ca
#gcggcttt    360
ggaggcggca gcggctttgg aggtggcagc ggcttcagtg gtggtggttt cg
#gtggaggc    420
ggctttggtg gaggccgctt tggaggtttt gggggccctg gtggtgttgg ag
#gtttaggg    480
ggtcctggtg gctttgggcc tggaggatac cctggtggca tccacgaagt ct
#ctgtcaac    540
cagagcctcc tgcagcctct caacgtgaaa gttgacccag agatccagaa tg
#tgaaggcc    600
caagagcgtg agcagatcaa aactctcaac aacaaatttg cctccttcat tg
#acaaggtg    660
cggttcttgg agcagcagaa ccaggtgtta cagaccaaat gggagctgct ac
#aacaaatg    720
aatgttggca cccgccccat caacctggag cccatcttcc aggggtatat cg
#acagcctc    780
aagagatatc tggatgggct cactgcagaa agaacatcac agaattcaga gc
#tgaataac    840
atgcaggatc ttgtggagga ttataagaag aagtatgagg atgaaatcaa ta
#agcgcaca    900
gctgctgaga atgattttgt gacgcttaaa aaggacgtgg acaatgccta ca
#tgataaag    960
gtggagttgc agtccaaggt ggacctgctg aaccaggaaa ttgagtttct ga
#aagttctc   1020
tatgatgcgg agatatccca gatacatcag agtgtcactg acaccaacgt ca
#tcctctcc   1080
atggacaaca gccgcaacct ggacttggat agcatcatcg ccgaggtcaa gg
#cccagtat   1140
gaggagatcg cccagaggag caaggaagaa gcggaggccc tgtaccacag ca
#agtatgag   1200
gagctccagg tgactgtcgg gagacatgga gacagcctga aagagatcaa ga
#tagagatc   1260
agcgagctga accgcgtgat ccagaggctg cagggggaga tcgcacatgt ga
#agaagcag   1320
tgtaagaatg tgcaagatgc catcgcagat gccgagcagc gtggggagca tg
#ccctcaag   1380
gatgccagga acaagttgaa tgacctggag gaggccctgc agcaggccaa gg
#aggacttg   1440
gcgcggctgc tgcgtgacta ccaggagctg atgaacgtga agctggccct ag
#atgtggag   1500
atcgccacct accgcaaact gctggagggc gaggagtgca ggatgtctgg ag
#acctcagc   1560
agcaatgtga ctgtgtctgt gacaagcagc accatttcat caaatgtggc at
#ccaaggct   1620
gcctttggag gttctggagg tagagggtcc agttccggag gaggatacag ct
#ctggaagc   1680
agcagttatg gctctggagg ccgacagtct ggctccagag gcggtagtgg ag
#gaggaggt   1740
tctatctctg gaggaggata tggctctggc ggtggttctg gaggaagata cg
#gatctggt   1800
ggtggctcta agggagggtc catctctgga ggaggatatg gctctggagg tg
#gaaaacac   1860
agctctggag gtggctctag aggaggctcc agctctggag gaggatatgg ct
#ctggaggt   1920
gggggttcta gctctgtaaa gggtagctca ggtgaagctt ttggttccag cg
#tgaccttc   1980
tcttttagat aaagatgagc ccccaccacc accgactctc ccaacccaga ct
#ctcccact   2040
ccagaatgta gaagcctgtc tctgtacctc taactggcag caagttaaat tt
#ttgtcatt   2100
tatctctgat ggcactttga gggaaaagaa tgtccacata cagtttttga aa
#gatcttct   2160
ctccaaacca gttagttaga gccagtgacg cctctgtgtt ctggggcgga at
#ctgtgctg   2220
tctaggtttg tgcttctagc catgcccatt cccgccccca ccatgcctct tt
#gcattgcc   2280
cattttccag atgtgtattc tgttgaggac ccaggcccat ccagggattt ca
#tctctaag   2340
cctggcagtg ctggggggaa atgtgtttct gtgtatatag ctcctcttgt cc
#actctgct   2400
ttcggaagtg ctgtggtctg ggggtcttca taatataaac ctcatttggc aa
#ttcaaaaa   2460
aaaaaaaaag gggggccccc ccacttattt agggggttcc cgacctccaa at
#tcgcgaac   2520
cagggaaaaa ccggtttccc ggtggaaaaa ttgtaacccg cacaaaattt cc
#ccaaaaat   2580
attggccccg gaacctaaaa ggtaaaaact cggggggccc aaagagtttg gc
#aaacccca   2640
ataatttggg tgggcacaag gcccgtttcc catgggggaa acttttgtgc ca
#cggcttta   2700
ataataggcc cc              
#                  
#                  
#     2712
<210> SEQ ID NO 41
<211> LENGTH: 645
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1798379CD1
<400> SEQUENCE: 41
Met Ser Cys Gln Ile Ser Cys Lys Ser Arg Gl
#y Arg Gly Gly Gly
  1               5 
#                 10 
#                 15
Gly Gly Gly Phe Arg Gly Phe Ser Ser Gly Se
#r Ala Val Val Ser
                 20 
#                 25 
#                 30
Gly Gly Ser Arg Arg Ser Thr Ser Ser Phe Se
#r Cys Leu Ser Arg
                 35 
#                 40 
#                 45
His Gly Gly Gly Gly Gly Gly Phe Gly Gly Gl
#y Gly Phe Gly Ser
                 50 
#                 55 
#                 60
Arg Ser Leu Val Gly Leu Gly Gly Thr Lys Se
#r Ile Ser Ile Ser
                 65 
#                 70 
#                 75
Val Ala Gly Gly Gly Gly Gly Phe Gly Ala Al
#a Gly Gly Phe Gly
                 80 
#                 85 
#                 90
Gly Arg Gly Gly Gly Phe Gly Gly Gly Ser Gl
#y Phe Gly Gly Gly
                 95 
#                100 
#                105
Ser Gly Phe Gly Gly Gly Ser Gly Phe Ser Gl
#y Gly Gly Phe Gly
                110  
#               115  
#               120
Gly Gly Gly Phe Gly Gly Gly Arg Phe Gly Gl
#y Phe Gly Gly Pro
                125  
#               130  
#               135
Gly Gly Val Gly Gly Leu Gly Gly Pro Gly Gl
#y Phe Gly Pro Gly
                140  
#               145  
#               150
Gly Tyr Pro Gly Gly Ile His Glu Val Ser Va
#l Asn Gln Ser Leu
                155  
#               160  
#               165
Leu Gln Pro Leu Asn Val Lys Val Asp Pro Gl
#u Ile Gln Asn Val
                170  
#               175  
#               180
Lys Ala Gln Glu Arg Glu Gln Ile Lys Thr Le
#u Asn Asn Lys Phe
                185  
#               190  
#               195
Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Gl
#u Gln Gln Asn Gln
                200  
#               205  
#               210
Val Leu Gln Thr Lys Trp Glu Leu Leu Gln Gl
#n Met Asn Val Gly
                215  
#               220  
#               225
Thr Arg Pro Ile Asn Leu Glu Pro Ile Phe Gl
#n Gly Tyr Ile Asp
                230  
#               235  
#               240
Ser Leu Lys Arg Tyr Leu Asp Gly Leu Thr Al
#a Glu Arg Thr Ser
                245  
#               250  
#               255
Gln Asn Ser Glu Leu Asn Asn Met Gln Asp Le
#u Val Glu Asp Tyr
                260  
#               265  
#               270
Lys Lys Lys Tyr Glu Asp Glu Ile Asn Lys Ar
#g Thr Ala Ala Glu
                275  
#               280  
#               285
Asn Asp Phe Val Thr Leu Lys Lys Asp Val As
#p Asn Ala Tyr Met
                290  
#               295  
#               300
Ile Lys Val Glu Leu Gln Ser Lys Val Asp Le
#u Leu Asn Gln Glu
                305  
#               310  
#               315
Ile Glu Phe Leu Lys Val Leu Tyr Asp Ala Gl
#u Ile Ser Gln Ile
                320  
#               325  
#               330
His Gln Ser Val Thr Asp Thr Asn Val Ile Le
#u Ser Met Asp Asn
                335  
#               340  
#               345
Ser Arg Asn Leu Asp Leu Asp Ser Ile Ile Al
#a Glu Val Lys Ala
                350  
#               355  
#               360
Gln Tyr Glu Glu Ile Ala Gln Arg Ser Lys Gl
#u Glu Ala Glu Ala
                365  
#               370  
#               375
Leu Tyr His Ser Lys Tyr Glu Glu Leu Gln Va
#l Thr Val Gly Arg
                380  
#               385  
#               390
His Gly Asp Ser Leu Lys Glu Ile Lys Ile Gl
#u Ile Ser Glu Leu
                395  
#               400  
#               405
Asn Arg Val Ile Gln Arg Leu Gln Gly Glu Il
#e Ala His Val Lys
                410  
#               415  
#               420
Lys Gln Cys Lys Asn Val Gln Asp Ala Ile Al
#a Asp Ala Glu Gln
                425  
#               430  
#               435
Arg Gly Glu His Ala Leu Lys Asp Ala Arg As
#n Lys Leu Asn Asp
                440  
#               445  
#               450
Leu Glu Glu Ala Leu Gln Gln Ala Lys Glu As
#p Leu Ala Arg Leu
                455  
#               460  
#               465
Leu Arg Asp Tyr Gln Glu Leu Met Asn Val Ly
#s Leu Ala Leu Asp
                470  
#               475  
#               480
Val Glu Ile Ala Thr Tyr Arg Lys Leu Leu Gl
#u Gly Glu Glu Cys
                485  
#               490  
#               495
Arg Met Ser Gly Asp Leu Ser Ser Asn Val Th
#r Val Ser Val Thr
                500  
#               505  
#               510
Ser Ser Thr Ile Ser Ser Asn Val Ala Ser Ly
#s Ala Ala Phe Gly
                515  
#               520  
#               525
Gly Ser Gly Gly Arg Gly Ser Ser Ser Gly Gl
#y Gly Tyr Ser Ser
                530  
#               535  
#               540
Gly Ser Ser Ser Tyr Gly Ser Gly Gly Arg Gl
#n Ser Gly Ser Arg
                545  
#               550  
#               555
Gly Gly Ser Gly Gly Gly Gly Ser Ile Ser Gl
#y Gly Gly Tyr Gly
                560  
#               565  
#               570
Ser Gly Gly Gly Ser Gly Gly Arg Tyr Gly Se
#r Gly Gly Gly Ser
                575  
#               580  
#               585
Lys Gly Gly Ser Ile Ser Gly Gly Gly Tyr Gl
#y Ser Gly Gly Gly
                590  
#               595  
#               600
Lys His Ser Ser Gly Gly Gly Ser Arg Gly Gl
#y Ser Ser Ser Gly
                605  
#               610  
#               615
Gly Gly Tyr Gly Ser Gly Gly Gly Gly Ser Se
#r Ser Val Lys Gly
                620  
#               625  
#               630
Ser Ser Gly Glu Ala Phe Gly Ser Ser Val Th
#r Phe Ser Phe Arg
                635  
#               640  
#               645
<210> SEQ ID NO 42
<211> LENGTH: 663
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 350650.1
<400> SEQUENCE: 42
ctgggccatg aaaagctccc tggagggaac cctggctgac acagaagctg gc
#tacgtggc     60
tcagctgtca gaaattcaaa cgcagatcag tgccctggag gaggagatct gc
#cagatctg    120
gggtgagact aaatgccaga acgcagagta caagcaattg ctggacatca ag
#acacgcct    180
ggaggtggag atcgagacct accgccgcct gctcgatgga gagggaggtg gt
#tctagttt    240
tgcagaattt ggtggtagaa actccaggat ctgtaaacat ggggatccca gg
#gatctggg    300
tatctggtga ctcaagatct ggaagctgtt ctggtcaagg acgagattca ag
#caagacta    360
gagtgactaa gactatcgta gaggagttgg tggatggcaa ggttgtctcg tc
#tcaagtca    420
gcagtatttc tgaggtgaaa gttaaataag gaacttccag atcaacaaaa gt
#gtctttca    480
aagaaaaaaa aatcaagaag gacacaagcg aagaaatggc atcaatctag gc
#atctttct    540
ggataatttc aggaaaagct tcagtccaga aatggatgac tagccaactt tt
#ctgcatct    600
tcttatttcc tcattagaat gctcttgaaa tagctgaatt aacaactttg ct
#ttaattgt    660
ttg                  
#                  
#                  
#            663
<210> SEQ ID NO 43
<211> LENGTH: 809
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 474630.24
<221> NAME/KEY: unsure
<222> LOCATION: 511
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 43
ccgggagctg gagacgggct cccctcgcag agcctacggc cttcccccgc ct
#ggccctgc     60
tcggcccggc gccccccggc ggtgccaacg cggcccttcg ttgttcccaa tg
#gctgcggc    120
tggaagttcg agcccctgct gggggaggag ctggacctgc ggcgcgtcac gt
#ggcggctg    180
cccccggagc tcatcccgcg cctgtcggcc agcagcgggc gctcctccga cg
#ccgaggcg    240
ccccacgggc ccccggacga cggcggcgcg ggcgggaagg gcggcagcct gc
#cccgcagt    300
gcgacacccg ggccccccgg aggtgacagg ctcacccgcc gccccccgat cc
#gcgcccac    360
ccagcctcac tcgcgcctga gggccctggg gtgggcgtct gcgctgcctc gg
#gggcccca    420
gtctcagcca ggcacgggcc ttggcggctg ggagcacagc tgctcagagg ca
#gggcccag    480
tgccagggga cgcgtgaggc aggcgcttgg ncccttatgg tgcctgcctg gc
#cagggggt    540
gcaaattcag aagtctgccc gggaagcgga ccctggcacc caagtagacc cc
#tcaggggc    600
ctcaaaggac aggagggaag gcttggggat ctccccaggg cagagctgac tg
#cagacgca    660
gcaaaccccc gccactgcca gggtcagcag tgctcacacc gatagagtgg cc
#ggccagag    720
gatatgggct gtggaagcct gggtggccct tgggctcctg ctaggacaga gg
#gcctctgt    780
ccctagtggt ttgagggaaa ctggttgta         
#                  
#           809
<210> SEQ ID NO 44
<211> LENGTH: 295
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 108089.1
<400> SEQUENCE: 44
gggaactagg tcttggccct ttctacagct tttctcctgc aaagggtcca gc
#cttttcct     60
gctccccacg ttgtccttac ggctgtgtgg ggtagggcag ggtccacact cc
#ttcccatc    120
cattttagag gaggaagctg gagtctggga agggatggga ttttcccagg gc
#accctgtg    180
agtcacatgc cacttgagac aagggtctag agctccagca ttttccaagc ta
#caaatgta    240
tctgctgctc caagtgtccg ccagggtcgg cctcagagct ggcaggagtt cg
#gtg         295
<210> SEQ ID NO 45
<211> LENGTH: 1744
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3346307CB1
<400> SEQUENCE: 45
ccaaggggga ggtgcgagcg tggacctggg acgggtctgg gcggctctcg gt
#ggttggca     60
cgggttcgca cacccattca agcggcagga cgcacttgtc ttagcagttc tc
#gctgaccg    120
cgctagctgc ggcttctacg ctccggcact ctgagttcat cagcaaacgc cc
#tggcgtct    180
gtcctcacca tgcctagcct ttgggaccgc ttctcgtcgt cgtccacctc ct
#cttcgccc    240
tcgtccttgc cccgaactcc caccccagat cggccgccgc gctcagcctg gg
#ggtcggcg    300
acccgggagg aggggtttga ccgctccacg agcctggaga gctcggactg cg
#agtccctg    360
gacagcagca acagtggctt cgggccggag gaagacacgg cttacctgga tg
#gggtgtcg    420
ttgcccgact tcgagctgct cagtgaccct gaggatgaac acttgtgtgc ca
#acctgatg    480
cagctgctgc aggagagcct ggcccaggcg cggctgggct ctcgacgccc tg
#cgcgcctg    540
ctgatgccta gccagttggt aagccaggtg ggcaaagaac tactgcgcct gg
#cctacagc    600
gagccgtgcg gcctgcgggg ggcgctgctg gacgtctgcg tggagcaggg ca
#agagctgc    660
cacagcgtgg gccagctggc actcgacccc agcctggtgc ccaccttcca gc
#tgaccctc    720
gtgctgcgcc tggactcacg actctggccc aagatccagg ggctgtttag ct
#ccgccaac    780
tctcccttcc tccctggctt cagccagtcc ctgacgctga gcactggctt cc
#gagtcatc    840
aagaagaagc tgtacagctc ggaacagctg ctcattgagg agtgttgaac tt
#caacctga    900
gggggccgac agtgccctcc aagacagaga cgactgaact tttggggtgg ag
#actagagg    960
caggagctga gggactgatt ccagtggttg gaaaactgag gcagccacct aa
#ggtggagg   1020
tgggggaata gtgtttccca ggaagctcat tgagttgtgt gcgggtggct gt
#gcattggg   1080
gacacatacc cctcagtact gtagcatgaa acaaaggctt aggggccaac aa
#ggcttcca   1140
gctggatgtg tgtgtagcat gtaccttatt atttttgtta ctgacagtta ac
#agtggtgt   1200
gacatccaga gagcagctgg gctgctcccg ccccagcccg gcccagggtg aa
#ggaagagg   1260
cacgtgctcc tcagagcagc cggagggagg ggggaggtcg gaggtcgtgg ag
#gtggtttg   1320
tgtatcttac tggtctgaag ggaccaagtg tgtttgttgt ttgttttgta tc
#ttgttttt   1380
ctgatcggag catcactact gacctgttgt aggcagctat cttacagacg ca
#tgaatgta   1440
agagtaggaa ggggtgggtg tcagggatca cttgggatct ttgacacttg aa
#aaattaca   1500
cctggcagct gcgtttaagc cttcccccat cgtgtactgc agagttgagc tg
#gcagggga   1560
ggggctgaga gggtgggggc tggaacccct ccccgggagg agtgccatct gg
#gtcttcca   1620
tctagaactg tttacatgaa gataagatac tcactgttca tgaatacact tg
#atgttcaa   1680
gtattaagac ctatgcaata ttttttactt ttctaataaa catgtttgtt aa
#aacaaaaa   1740
aaaa                 
#                  
#                  
#           1744
<210> SEQ ID NO 46
<211> LENGTH: 232
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3346307CD1
<400> SEQUENCE: 46
Met Pro Ser Leu Trp Asp Arg Phe Ser Ser Se
#r Ser Thr Ser Ser
  1               5 
#                 10 
#                 15
Ser Pro Ser Ser Leu Pro Arg Thr Pro Thr Pr
#o Asp Arg Pro Pro
                 20 
#                 25 
#                 30
Arg Ser Ala Trp Gly Ser Ala Thr Arg Glu Gl
#u Gly Phe Asp Arg
                 35 
#                 40 
#                 45
Ser Thr Ser Leu Glu Ser Ser Asp Cys Glu Se
#r Leu Asp Ser Ser
                 50 
#                 55 
#                 60
Asn Ser Gly Phe Gly Pro Glu Glu Asp Thr Al
#a Tyr Leu Asp Gly
                 65 
#                 70 
#                 75
Val Ser Leu Pro Asp Phe Glu Leu Leu Ser As
#p Pro Glu Asp Glu
                 80 
#                 85 
#                 90
His Leu Cys Ala Asn Leu Met Gln Leu Leu Gl
#n Glu Ser Leu Ala
                 95 
#                100 
#                105
Gln Ala Arg Leu Gly Ser Arg Arg Pro Ala Ar
#g Leu Leu Met Pro
                110  
#               115  
#               120
Ser Gln Leu Val Ser Gln Val Gly Lys Glu Le
#u Leu Arg Leu Ala
                125  
#               130  
#               135
Tyr Ser Glu Pro Cys Gly Leu Arg Gly Ala Le
#u Leu Asp Val Cys
                140  
#               145  
#               150
Val Glu Gln Gly Lys Ser Cys His Ser Val Gl
#y Gln Leu Ala Leu
                155  
#               160  
#               165
Asp Pro Ser Leu Val Pro Thr Phe Gln Leu Th
#r Leu Val Leu Arg
                170  
#               175  
#               180
Leu Asp Ser Arg Leu Trp Pro Lys Ile Gln Gl
#y Leu Phe Ser Ser
                185  
#               190  
#               195
Ala Asn Ser Pro Phe Leu Pro Gly Phe Ser Gl
#n Ser Leu Thr Leu
                200  
#               205  
#               210
Ser Thr Gly Phe Arg Val Ile Lys Lys Lys Le
#u Tyr Ser Ser Glu
                215  
#               220  
#               225
Gln Leu Leu Ile Glu Glu Cys
                230
<210> SEQ ID NO 47
<211> LENGTH: 897
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 200143.25
<400> SEQUENCE: 47
ccccagggca gggagcaggt tatgaccagg actaaggtcc cagagtcccc ac
#cctgaccc     60
ctccctgctg ttccagccgc tccctcatat ccacccctgc cccatctcct ga
#ctttggtc    120
acgctagcat cttctgctga tcctgaaatt gtaccagcgg caagatgtgg cc
#tggaaggg    180
gactttaagt tctccacaac tgccagcaat ccttccacca ggcaaaacac at
#catctaag    240
gaaaagaagt gaggtcggaa caccaacgca tcatctcact gcatggccct gg
#aggctctg    300
ccgtttaaag accccagaac cttccccatt caaggtcctc tcctgggcac ag
#gagattgg    360
agaaagctcc tcccttaatt ccagggaccg agttccagcc catccaattc tc
#cgtctcac    420
ctgaggctgc tgtggtcctg gtgaccccag ggagcaacct gccgcccatg gc
#tggggagg    480
gggtgaagct gtctctttaa gagcaggaat ggagcccctg ggcctcaggg ca
#tctgactt    540
gttttctacc tgcccaggtt tgcttagggc gtggcagctt cggataaacg ca
#ggactccg    600
cctggcagcc cgatttctcc cggaacctct gctcagcctg gtgaaccaca ca
#ggtgagca    660
gctggggccc cttcctccaa gccctccttg tctctgcccc taaattagga ag
#tatctacc    720
tgccccctga ccctgcccca tagaagcttt tatgttaaag cgcctaaaat ct
#tgtgaaat    780
gcttttctgg agccaggaga taaacggaag tcccttcccc taatgtccct tt
#ccccacca    840
ttctcctctc agggacttgt tgaaccagct gaggccagcg ctctgacatg ca
#gaagg       897
<210> SEQ ID NO 48
<211> LENGTH: 1827
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 001929.1
<400> SEQUENCE: 48
ccttgacaat ctgtctgtcc gtctgcagct gcgtgactgt ctgtctctgc ca
#tgtctctc     60
tccccatgcc gggcccagag gggcttcagc gctcgctcag cctgttctgc tc
#gctcaagg    120
ggccgcagca ggggaggctt cagcagcagg ggcggcttca gcagcaggag cc
#ttaattcc    180
tttggggggt gcctggaagg ctctcgtggg agtacctggg ggtcaggggg ta
#ggctgggg    240
gtgcggtttg gggagtggag tggtgggcct gggctctccc tgtgccctcc gg
#ggggcatc    300
caagaagtga ccatcaacca gaatccgctg accccactga agattgagat cg
#atccccag    360
ttccaggtgg tgcggacgca ggagacccag gagatcagaa ccctcaacaa cc
#agtttgct    420
tccttcattg acaaggtgcg gttcctggag cagcagaaca aggtcctgga ga
#cgaagtgg    480
catctgctgc agcaacaggg gttgagtggc agccagcagg gcctggagcc tg
#tctttgag    540
gcctgcctgg atcagctcag gaagcagctg gagcagctcc agggagaacg ag
#gggctctg    600
gatgctgagt tgaaggcctg ccgggaccag gaggaggagt ataagtccaa gt
#atgaggag    660
gaggcccaca ggcgtgccac acttgagaac gactttgtgg tcctcaagaa gg
#atgtggat    720
ggggttttcc tgagcaagat ggagttggag ggcaagctgg aggctctgag ag
#agtacctc    780
tacttcttga agcatctgaa tgaagaagag ctgggccagc tccagaccca gg
#ccagcgac    840
acgtctgtgg tgctgtccat ggacaacaac cgctacctgg acttcagcag ca
#tcatcact    900
gaggtccgcg cccggtacga ggagatcgcc cggagcagca aggctgaggc tg
#aggccttg    960
taccagacca agtaccagga acttcaggtg tctgcccagc ttcatgggga ca
#ggatgcag   1020
gaaacgaaag tccagatctc tcagctacac caagagattc agaggctgca ga
#gtcagact   1080
gagaacctca agaagcagaa cgccagcctg caggccgcca tcactgatgc tg
#agcagcgt   1140
ggggagctgg ccctcaagga cgctcaggcc aaggtggacg agctggaggc tg
#ctctgagg   1200
atggccaagc agaacctggc ccggctgctg tgcgagtacc aggagctgac ga
#gcacgaag   1260
ctttccctgg atgtggagat tgccacttac cgcaggctgc tggagggcga gg
#agtgcagg   1320
atgtctgggg agtgcaccag ccaggtcact atctcctcgg tgggaggcag cg
#ctgtcatg   1380
tctggaggag ttggtggagg cttggggagc acttgtggac tcggtagtgg ga
#aaggcagc   1440
cctgggtcct gctgcaccag cattgtgact ggaggctcca acatcattct gg
#gctctggg   1500
aaggaccctg ttttggattc ctgctctgtg tctggctcca gcgctggctc ca
#gctgccac   1560
accatcctga agaagacagt tgagtcgagt ctgaagacat ccatcaccta ct
#gagcgacc   1620
cagcagccac ctccttcctg aacacatttg gcccactccc cccatcagcc gg
#ctctgcaa   1680
ggccaactcc gtgtccgctg cccacagccc aagccagccc acagcggatg ct
#gcaaaaat   1740
caataaagtc tcccctcctg ctgttctgaa tgctctaagt gcttgcacac ct
#cacccagc   1800
aaaacaaaag ctgtgtgact ccccagc          
#                  
#           1827
<210> SEQ ID NO 49
<211> LENGTH: 3936
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1088524.8
<221> NAME/KEY: unsure
<222> LOCATION: 2060-2170, 3796, 3799, 3816
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 49
taaacacagc tgcgatgacg aaccctttca cgggaaggaa catgcgagcc ca
#gaaaagtc     60
tctcctggtc ttgggatgga ggtcacacga agcctccgca aggcaaggac tt
#ttgcggct    120
tctgcaacca agcgggtctt acccccggtc ctccgcgtct ccagtcctcg ca
#cctggaac    180
cccaacgtcc ccgagagtcc ccgaatcccc gctcccaggc tacctaagag ga
#tgagcggt    240
gctccgacgg ccggggcagc cctgatgctc tgcgccgcca ccgccgtgct ac
#tgagcgct    300
cagggcggac ccgtgcagtc caagtcgccg cgctttgcgt cctgggacga ga
#tgaatgtc    360
ctggcgcacg gactcctgca gctcggccag gggctgcgcg aacacgcgga gc
#gcacccgc    420
agtcagctga gcgcgctgga gcggcgcctg agcgcgtgcg ggtccgcctg tc
#agggaacc    480
gaggggtcca ccgacctccc gttagcccct gagagccggg tggaccctga gg
#tccttcac    540
agcctgcaga cacaactcaa ggctcagaac agcaggatcc agcaactctt cc
#acaaggtg    600
gcccagcagc agcggcacct ggagaagcag cacctgcgaa ttcagcatct gc
#aaagccag    660
tttggcctcc tggaccacaa gcacctagac catgaggtgg ccaagcctgc cc
#gaagaaag    720
aggctgcccg agatggccca gccagttgac ccggctcaca atgtcagccg cc
#tgcaccgg    780
ctgcccaggg attgccagga gctgttccag gttggggaga ggcagagtgg ac
#tatttgaa    840
atccagcctc aggggtctcc gccatttttg gtgaactgca agatgacctc ag
#atggaggc    900
tggacagtaa ttcagaggcg ccacgatggc tcagtggact tcaaccggcc ct
#gggaagcc    960
tacaaggcgg ggtttgggga tccccacggc gagttctggc tgggtctgga ga
#aggtgcat   1020
agcatcaccg ggggaccgca acagccgcct ggccgtgcag ctgcgggact gg
#gatggcaa   1080
cgccgagttg ctgcagttct ccgtgcacct gggtggcgag gacacggcct at
#agcctgca   1140
gctcactgca cccgtggccg gccagctggg cgccaccacc gtcccaccca gc
#ggcctctc   1200
cgtacccttc tccacttggg accaggatca cgacctccgc agggacaaga ac
#tgcgccaa   1260
gagcctctct ggaggctggt ggtttggcac ctgcagccat tccaacctca ac
#ggccagta   1320
cttccgctcc atcccacagc agcggcagaa gcttaagaag ggaatcttct gg
#aagacctg   1380
gcggggccgc tactacccgc tgcaggccac caccatgttg atccagccca tg
#gcagcaga   1440
ggcagcctcc tagcgtcctg gctgggcctg gtcccaggcc cacgaaagac gg
#tgactctt   1500
ggctctgccc gaggatgtgg ccgttccctg cctgggcagg ggctccaagg ag
#gggccatc   1560
tggaaacttg tggacagaga agaagaccac gactggagaa gccccctttc tg
#agtgcagg   1620
ggggctgcat gcgttgcctc ctgagatcga ggctgcagga tatgctcaga ct
#ctagaggc   1680
gtggaccaag gggcatggag cttcactcct tgctggccag ggagttgggg ac
#tcagaggg   1740
accacttggg gccagccaga ctggcctcaa tggcggactc agtcacattg ac
#tgacgggg   1800
accagggctt gtgtgggtcg agagcgccct catggtgctg gtgctgttgt gt
#gtaggtcc   1860
cctggggaca caagcaggcg ccaatggtat ctgggcggag ctcacagagt tc
#ttggaata   1920
aaagcaacct cagaacactt tgttctttgt tcttgtttgt tttctttctt tt
#ttttctct   1980
ttctttagtt cacagatcta gtaagttacc ctcagtttgt tttaaaaagt ga
#acaaagtc   2040
catgtaaaca tgttcccagn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   2100
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   2160
nnnnnnnnnn catctcgcaa gggtccatgg cttcattctt gaagtcagtg ag
#accaagaa   2220
ccccccaatt ccggacacag tgccactgca ctccagccca ggcaacagag cg
#agattctg   2280
tctggacgta gccccatttc tcttcccgga caggtcctct gatagtcggg ta
#ggttctca   2340
atcaagcctc tcattagtta tttggtctgt caatccattt cattcctgca gt
#cttccgcc   2400
ccgccctctt gagctcgccc ctgataggct ggcgcgtccg tcacttcaaa aa
#ggtccgca   2460
ttccttccgc ctttctccag gacaccgagg gcgaggaggg tggtaccaag cg
#gcgcccac   2520
cctcagagca ctacttccat ctctgattgg cttcgctggg tgcccgtcgc ta
#ctccactc   2580
gccgatcccg ccggaagcgc caggacaatg gggacccggg acgacgagta cg
#actaccta   2640
ttcaaagtgg tgctcatcgg ggactcaggc gtgggcaaga gcaacctgct gt
#cgcgcttc   2700
acccgcaacg agttcaacct ggagagcaag agcaccatcg gcgtggagtt cg
#ccacccgc   2760
agcatccagg tggacggcaa gaccatcaag gcgcagatct gggacaccgc tg
#gccaggag   2820
cgctaccgcg ccatcacctc cgcgtactac cgtggtgcag tgggcgccct gc
#tggtgtac   2880
gacatcgcca agcacctgac ctatgagaac gtggagcgct ggctgaagga gc
#tgcgggac   2940
cacgcagaca gcaacatcgt catcatgctg gtgggcaaca agagtgacct gc
#gccacctg   3000
cgggctgtgc ccactgacga ggcccgcgcc ttcgcagaaa agaacaactt gt
#ccttcatc   3060
gagacctcag ccttggattc cactaacgta gaggaagcat tcaagaacat cc
#tcacagag   3120
atctaccgca tcgtgtcaca gaaacagatc gcagaccgtg ctgcccacga cg
#agtccccg   3180
gggaacaacg tggtggacat cagcgtgccg cccaccacgg acggacagaa gc
#ccaacaag   3240
ctgcagtgct gccagaacct gtgacccctg cgcctccacc cagcgtgcgt gc
#acgtcctc   3300
cgcccgtccc cgccacggta tcctctggcc cctccctgct gtccctctgt gg
#ccggctcg   3360
ttccagccct cccagtgagc tctgcacggc cgggccgggg cccaggaagg ac
#aggagcca   3420
gtgctacccc gtcctgcccg gggaaaagct agaagccccg gtttgctgca cc
#catgaaac   3480
tcgggtcccc acagcgtctt ggcggggtgg ggagggcggc aggatggacg gg
#gctggcca   3540
gaggcgagga ggacgggcgg acggcgccgc cttctcccct tttccttggc cg
#actctagg   3600
gagcgattgc ctccctccct ctgtgaccgg gtggcccagc cagcccgtcg tc
#cccaccca   3660
gaaccgtgct ctgggccaaa gcccgaagaa ccaggcagcg ggggccgggg ca
#ggcggacc   3720
ccccgggctc tcagcgccca cccgctcctc cgcacacagc agctcgcaca gg
#cctcccac   3780
tctgcctgtc cccctnctnt gtctcgtctc cccatntggt ctggaacctg tt
#tgcaagtg   3840
aagcaatatc tccgtgtttt gtagtataca accgctcttg tagcctttgg tt
#tgtgttaa   3900
tgtagagaaa ctcagattct ttatacactt ttgtaa      
#                  
#     3936
<210> SEQ ID NO 50
<211> LENGTH: 1114
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 632664CB1
<400> SEQUENCE: 50
gccgcctctg ccgccgcgga cttcccgaac ctcttcagcc gcccggagcc gc
#tcccggag     60
cccggccgta gaggctgcaa tcgcagccgg tgagcccgca gcccgcgccc cg
#agcccgcc    120
gccgcccttc gagggcgccc caggccgcgc catggtgaag gtgacgttca ac
#tccgctct    180
ggcccagaag gaggccaaga aggacgagcc caagagcggc gaggaggcgc tc
#atcatccc    240
ccccgacgcc gtcgcggtgg actgcaagga cccagatgat gtggtaccag tt
#ggccaaag    300
aagagcctgg tgttggtgca tgtgctttgg actagcattt atgcttgcag gt
#gttattct    360
aggaggagca tacttgtaca aatattttgc acttcaacca gatgacgtgt ac
#tactgtgg    420
aataaagtac atcaaagatg atgtcatctt aaatgagccc tctgcagatg cc
#ccagctgc    480
tctctaccag acaattgaag aaaatattaa aatctttgaa gaagaagaag tt
#gaatttat    540
cagtgtgcct gtcccagagt ttgcagatag tgatcctgcc aacattgttc at
#gactttaa    600
caagaaactt acagcctatt tagatcttaa cctggataag tgctatgtga tc
#cctctgaa    660
cacttccatt gttatgccac ccagaaacct actggagtta cttattaaca tc
#aaggctgg    720
aacctatttg cctcagtcct atctgattca tgagcacatg gttattactg at
#cgcattga    780
aaacattgat cacctgggtt tctttattta tcgactgtgt catgacaagg aa
#acttacaa    840
actgcaacgc agagaaacta ttaaaggtat tcagaaacgt gaagccagca at
#tgtttcgc    900
aattcggcat tttgaaaaca aatttgccgt ggaaacttta atttgttctt ga
#acagtcaa    960
gaaaaacatt attgaggaaa attaatatca cagcataacc ccacccttta ca
#ttttgtgc   1020
agtgattatt ttttaaagtc ttctttcatg taagtagcaa acagggcttt ac
#tatctttt   1080
catctcatta attcaattaa aaccattacc ttaa       
#                  
#      1114
<210> SEQ ID NO 51
<211> LENGTH: 266
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 632664CD1
<400> SEQUENCE: 51
Met Val Lys Val Thr Phe Asn Ser Ala Leu Al
#a Gln Lys Glu Ala
  1               5 
#                 10 
#                 15
Lys Lys Asp Glu Pro Lys Ser Gly Glu Glu Al
#a Leu Ile Ile Pro
                 20 
#                 25 
#                 30
Pro Asp Ala Val Ala Val Asp Cys Lys Asp Pr
#o Asp Asp Val Val
                 35 
#                 40 
#                 45
Pro Val Gly Gln Arg Arg Ala Trp Cys Trp Cy
#s Met Cys Phe Gly
                 50 
#                 55 
#                 60
Leu Ala Phe Met Leu Ala Gly Val Ile Leu Gl
#y Gly Ala Tyr Leu
                 65 
#                 70 
#                 75
Tyr Lys Tyr Phe Ala Leu Gln Pro Asp Asp Va
#l Tyr Tyr Cys Gly
                 80 
#                 85 
#                 90
Ile Lys Tyr Ile Lys Asp Asp Val Ile Leu As
#n Glu Pro Ser Ala
                 95 
#                100 
#                105
Asp Ala Pro Ala Ala Leu Tyr Gln Thr Ile Gl
#u Glu Asn Ile Lys
                110  
#               115  
#               120
Ile Phe Glu Glu Glu Glu Val Glu Phe Ile Se
#r Val Pro Val Pro
                125  
#               130  
#               135
Glu Phe Ala Asp Ser Asp Pro Ala Asn Ile Va
#l His Asp Phe Asn
                140  
#               145  
#               150
Lys Lys Leu Thr Ala Tyr Leu Asp Leu Asn Le
#u Asp Lys Cys Tyr
                155  
#               160  
#               165
Val Ile Pro Leu Asn Thr Ser Ile Val Met Pr
#o Pro Arg Asn Leu
                170  
#               175  
#               180
Leu Glu Leu Leu Ile Asn Ile Lys Ala Gly Th
#r Tyr Leu Pro Gln
                185  
#               190  
#               195
Ser Tyr Leu Ile His Glu His Met Val Ile Th
#r Asp Arg Ile Glu
                200  
#               205  
#               210
Asn Ile Asp His Leu Gly Phe Phe Ile Tyr Ar
#g Leu Cys His Asp
                215  
#               220  
#               225
Lys Glu Thr Tyr Lys Leu Gln Arg Arg Glu Th
#r Ile Lys Gly Ile
                230  
#               235  
#               240
Gln Lys Arg Glu Ala Ser Asn Cys Phe Ala Il
#e Arg His Phe Glu
                245  
#               250  
#               255
Asn Lys Phe Ala Val Glu Thr Leu Ile Cys Se
#r
                260  
#               265
<210> SEQ ID NO 52
<211> LENGTH: 1189
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 457372.17
<400> SEQUENCE: 52
acaggtgtga gccaccacac ccagcagttt ttttaaggtc acaaaatgac aa
#gactagga     60
tttggaccca gttctgttcg actcaaaata gagtgcccta cacttatgtg tc
#atgctgca    120
tttggcaagt cacgtcactt ctttgaatct ccttttccct ctgcaaaaca gt
#aaccttat    180
ctagcctgca gacttcaaag gtggttatgg agatcaaatg aagtaaaatg tt
#ttaaaaat    240
tgtacaatat ataccaataa aagctattgg ggaggtatat gtatgaacag gt
#agttggtt    300
tttctaccct gccacctcat aaagagtttg cagtggcacg tagaagggtt ta
#tcttatta    360
tcacaaagct acccatttgc tggccatact gatacttggc acattaaact at
#cagagaaa    420
tatatgtggc tcctttacaa ctgtgtctag aagggtacat ttccaatcag ag
#ttcccagg    480
ttctgacttt ctcccattac atatttgtaa ttagtcatct ttgatactga tt
#caaatttt    540
tgattaacat taattatata tatttacaag aatcttataa aaattaagat tt
#tatttcac    600
ctcattttgc cctgtgagat agatggaaat agactatatt ctacccaggt ta
#aaagtaca    660
gataatgaga caaaatgtca atagaacctg aaaaaagatt tttttagttg cc
#tctagtct    720
ctgtttactt ggtatagata gtatgctgct tttttttctt ttttttaaaa tg
#taactgct    780
gggttgtttt ttttttcttg ttttttcttt ccctccagga tacaatgtct ct
#ttgctata    840
tgaccttgaa aatcttccgg catccaagga ttccattgtg catcaagctg gc
#atgttgaa    900
gcgaaattgt tttgcctctg tctttgaaaa atacttccaa ttccaagaag ag
#ggcaagga    960
aggagagaac agggcagtta tccattatag ggatgatgag accatgtatg tt
#gagtctaa   1020
aaaggacaga gtcacagtag tcttcagcac agtgtttaag gatgacgacg at
#gtggtcat   1080
tggaaaggtg ttcatgcagg tatggagcag acatcttggg ggaaacccat gc
#atggcgac   1140
ttataccttt gcacccaaac ataccatgag cgtaggaaag agatctagc  
#             1189
<210> SEQ ID NO 53
<211> LENGTH: 2539
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2993696CB1
<400> SEQUENCE: 53
ctcgagccgc aagacagcac agacagattg acctattggg gtgtttcgcg ag
#tgtgagag     60
ggaagcgccg cggcctgtat ttctagacct gcccttcgcc tggttcgtgg cg
#ccttgtga    120
ccccgggccc ctgccgcctg caagtcggaa attgcgctgt gctcctgtgc ta
#cggcctgt    180
ggctggactg cctgctgctg cccaactggc tggcaagatg aagctctccc tg
#gtggccgc    240
gatgctgctg ctgctcagcg cggcgcgggc cgaggaggag gacaagaagg ag
#gacgtggg    300
cacggtggtc ggcatcgacc tggggaccac ctactcctgc gtcggcgtgt tc
#aagaacgg    360
ccgcgtggag atcatcgcca acgatcaggg caaccgcatc acgccgtcct at
#gtcgcctt    420
cactcctgaa ggggaacgtc tgattggcga tgccgccaag aaccagctca cc
#tccaaccc    480
cgagaacacg gtctttgacg ccaagcggct catcggccgc acgtggaatg ac
#ccgtctgt    540
gcagcaggac atcaagttct tgccgttcaa ggtggttgaa aagaaaacta aa
#ccatacat    600
tcaagttgat attggaggtg ggcaaacaaa gacatttgct cctgaagaaa tt
#tctgccat    660
ggttctcact aaaatgaaag aaaccgctga ggcttatttg ggaaagaagg tt
#acccatgc    720
agttgttact gtaccagcct attttaatga tgcccaacgc caagcaacca aa
#gacgctgg    780
aactattgct ggcctaaatg ttatgaggat catcaacgag cctacggcag ct
#gctattgc    840
ttatggcctg gataagaggg agggggagaa gaacatcctg gtgtttgacc tg
#ggtggcgg    900
aaccttcgat gtgtctcttc tcaccattga caatggtgtc ttcgaagttg tg
#gccactaa    960
tggagatact catctgggtg gagaagactt tgaccagcgt gtcatggaac ac
#ttcatcaa   1020
actgtacaaa aagaagacgg gcaaagatgt caggaaagac aatagagctg tg
#cagaaact   1080
ccggcgcgag gtagaaaagg ccaaacgggc cctgtcttct cagcatcaag ca
#agaattga   1140
aattgagtcc ttctatgaag gagaagactt ttctgagacc ctgactcggg cc
#aaatttga   1200
agagctcaac atggatctgt tccggtctac tatgaagccc gtccagaaag tg
#ttggaaga   1260
ttctgatttg aagaagtctg atattgatga aattgttctt gttggtggct cg
#actcgaat   1320
tccaaagatt cagcaactgg ttaaagagtt cttcaatggc aaggaaccat cc
#cgtggcat   1380
aaacccagat gaagctgtag cgtatggtgc tgctgtccag gctggtgtgc tc
#tctggtga   1440
tcaagataca ggtgacctgg tactgcttga tgtatgtccc cttacacttg gt
#attgaaac   1500
tgtgggaggt gtcatgacca aactgattcc aaggaacaca gtggtgccta cc
#aagaagtc   1560
tcagatcttt tctacagctt ctgataatca accaactgtt acaatcaagg tc
#tatgaagg   1620
tgaaagaccc ctgacaaaag acaatcatct tctgggtaca tttgatctga ct
#ggaattcc   1680
tcctgctcct cgtggggtcc cacagattga agtcaccttt gagatagatg tg
#aatggtat   1740
tcttcgagtg acagctgaag acaagggtac agggaacaaa aataagatca ca
#atcaccaa   1800
tgaccagaat cgcctgacac ctgaagaaat cgaaaggatg gttaatgatg ct
#gagaagtt   1860
tgctgaggaa gacaaaaagc tcaaggagcg cattgatact agaaatgagt tg
#gaaagcta   1920
tgcctattct ctaaagaatc agattggaga taaagaaaag ctgggaggta aa
#ctttcctc   1980
tgaagataag gagaccatgg aaaaagctgt agaagaaaag attgaatggc tg
#gaaagcca   2040
ccaagatgct gacattgaag acttcaaagc taagaagaag gaactggaag aa
#attgttca   2100
accaattatc agcaaactct atggaagtgc aggccctccc ccaactggtg aa
#gaggatac   2160
agcagaaaaa gatgagttgt agacactgat ctgctagtgc tgtaatattg ta
#aatactgg   2220
actcaggaac ttttgttagg aaaaaattga aagaacttaa gtctcgaatg ta
#attggaat   2280
cttcacctca gagtggagtt gaaactgcta tagcctaagc ggctgtttac tg
#cttttcat   2340
tagcagttgc tcacatgtct ttgggtgggg gggagaagaa gaattggcca tc
#ttaaaaag   2400
cgggtaaaaa acctgggtta gggtgtgtgt tcaccttcaa aatgttctat tt
#aacaactg   2460
ggtcatgtgc atctggtgta ggaagttttt tctaccataa gtgacaccaa ta
#aatgtttg   2520
ttatttacac tggtaagcg             
#                  
#                 253
#9
<210> SEQ ID NO 54
<211> LENGTH: 654
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2993696CD1
<400> SEQUENCE: 54
Met Lys Leu Ser Leu Val Ala Ala Met Leu Le
#u Leu Leu Ser Ala
  1               5 
#                 10 
#                 15
Ala Arg Ala Glu Glu Glu Asp Lys Lys Glu As
#p Val Gly Thr Val
                 20 
#                 25 
#                 30
Val Gly Ile Asp Leu Gly Thr Thr Tyr Ser Cy
#s Val Gly Val Phe
                 35 
#                 40 
#                 45
Lys Asn Gly Arg Val Glu Ile Ile Ala Asn As
#p Gln Gly Asn Arg
                 50 
#                 55 
#                 60
Ile Thr Pro Ser Tyr Val Ala Phe Thr Pro Gl
#u Gly Glu Arg Leu
                 65 
#                 70 
#                 75
Ile Gly Asp Ala Ala Lys Asn Gln Leu Thr Se
#r Asn Pro Glu Asn
                 80 
#                 85 
#                 90
Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Ar
#g Thr Trp Asn Asp
                 95 
#                100 
#                105
Pro Ser Val Gln Gln Asp Ile Lys Phe Leu Pr
#o Phe Lys Val Val
                110  
#               115  
#               120
Glu Lys Lys Thr Lys Pro Tyr Ile Gln Val As
#p Ile Gly Gly Gly
                125  
#               130  
#               135
Gln Thr Lys Thr Phe Ala Pro Glu Glu Ile Se
#r Ala Met Val Leu
                140  
#               145  
#               150
Thr Lys Met Lys Glu Thr Ala Glu Ala Tyr Le
#u Gly Lys Lys Val
                155  
#               160  
#               165
Thr His Ala Val Val Thr Val Pro Ala Tyr Ph
#e Asn Asp Ala Gln
                170  
#               175  
#               180
Arg Gln Ala Thr Lys Asp Ala Gly Thr Ile Al
#a Gly Leu Asn Val
                185  
#               190  
#               195
Met Arg Ile Ile Asn Glu Pro Thr Ala Ala Al
#a Ile Ala Tyr Gly
                200  
#               205  
#               210
Leu Asp Lys Arg Glu Gly Glu Lys Asn Ile Le
#u Val Phe Asp Leu
                215  
#               220  
#               225
Gly Gly Gly Thr Phe Asp Val Ser Leu Leu Th
#r Ile Asp Asn Gly
                230  
#               235  
#               240
Val Phe Glu Val Val Ala Thr Asn Gly Asp Th
#r His Leu Gly Gly
                245  
#               250  
#               255
Glu Asp Phe Asp Gln Arg Val Met Glu His Ph
#e Ile Lys Leu Tyr
                260  
#               265  
#               270
Lys Lys Lys Thr Gly Lys Asp Val Arg Lys As
#p Asn Arg Ala Val
                275  
#               280  
#               285
Gln Lys Leu Arg Arg Glu Val Glu Lys Ala Ly
#s Arg Ala Leu Ser
                290  
#               295  
#               300
Ser Gln His Gln Ala Arg Ile Glu Ile Glu Se
#r Phe Tyr Glu Gly
                305  
#               310  
#               315
Glu Asp Phe Ser Glu Thr Leu Thr Arg Ala Ly
#s Phe Glu Glu Leu
                320  
#               325  
#               330
Asn Met Asp Leu Phe Arg Ser Thr Met Lys Pr
#o Val Gln Lys Val
                335  
#               340  
#               345
Leu Glu Asp Ser Asp Leu Lys Lys Ser Asp Il
#e Asp Glu Ile Val
                350  
#               355  
#               360
Leu Val Gly Gly Ser Thr Arg Ile Pro Lys Il
#e Gln Gln Leu Val
                365  
#               370  
#               375
Lys Glu Phe Phe Asn Gly Lys Glu Pro Ser Ar
#g Gly Ile Asn Pro
                380  
#               385  
#               390
Asp Glu Ala Val Ala Tyr Gly Ala Ala Val Gl
#n Ala Gly Val Leu
                395  
#               400  
#               405
Ser Gly Asp Gln Asp Thr Gly Asp Leu Val Le
#u Leu Asp Val Cys
                410  
#               415  
#               420
Pro Leu Thr Leu Gly Ile Glu Thr Val Gly Gl
#y Val Met Thr Lys
                425  
#               430  
#               435
Leu Ile Pro Arg Asn Thr Val Val Pro Thr Ly
#s Lys Ser Gln Ile
                440  
#               445  
#               450
Phe Ser Thr Ala Ser Asp Asn Gln Pro Thr Va
#l Thr Ile Lys Val
                455  
#               460  
#               465
Tyr Glu Gly Glu Arg Pro Leu Thr Lys Asp As
#n His Leu Leu Gly
                470  
#               475  
#               480
Thr Phe Asp Leu Thr Gly Ile Pro Pro Ala Pr
#o Arg Gly Val Pro
                485  
#               490  
#               495
Gln Ile Glu Val Thr Phe Glu Ile Asp Val As
#n Gly Ile Leu Arg
                500  
#               505  
#               510
Val Thr Ala Glu Asp Lys Gly Thr Gly Asn Ly
#s Asn Lys Ile Thr
                515  
#               520  
#               525
Ile Thr Asn Asp Gln Asn Arg Leu Thr Pro Gl
#u Glu Ile Glu Arg
                530  
#               535  
#               540
Met Val Asn Asp Ala Glu Lys Phe Ala Glu Gl
#u Asp Lys Lys Leu
                545  
#               550  
#               555
Lys Glu Arg Ile Asp Thr Arg Asn Glu Leu Gl
#u Ser Tyr Ala Tyr
                560  
#               565  
#               570
Ser Leu Lys Asn Gln Ile Gly Asp Lys Glu Ly
#s Leu Gly Gly Lys
                575  
#               580  
#               585
Leu Ser Ser Glu Asp Lys Glu Thr Met Glu Ly
#s Ala Val Glu Glu
                590  
#               595  
#               600
Lys Ile Glu Trp Leu Glu Ser His Gln Asp Al
#a Asp Ile Glu Asp
                605  
#               610  
#               615
Phe Lys Ala Lys Lys Lys Glu Leu Glu Glu Il
#e Val Gln Pro Ile
                620  
#               625  
#               630
Ile Ser Lys Leu Tyr Gly Ser Ala Gly Pro Pr
#o Pro Thr Gly Glu
                635  
#               640  
#               645
Glu Asp Thr Ala Glu Lys Asp Glu Leu
                650
<210> SEQ ID NO 55
<211> LENGTH: 5762
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 331106.6
<400> SEQUENCE: 55
gcgcgaccgt cccgggggtg gggccgggcg cagcggcgag aggaggcgaa gg
#tggctgcg     60
gtagcagcag cgcggcagcc tcgtgaccca gcccggagcg cagggcggcc gc
#tgcaggtc    120
cccgctcccc tccccgtgcg tccgcccatg gccgccgccg ggcagctgtg ct
#tgctctac    180
ctgtcggcgg ggctcctgtc ccggctcggc gcagccttca acttggacac tc
#gggaggac    240
aacgtgatcc ggaaatatgg agaccccggg agcctcttcg gcttctcgct gg
#ccatgcac    300
tggcaactgc agcccgagga caagcggctg ttgctcgtgg gggccccgcg gg
#cagaagcg    360
cttccactgc agagagccaa cagaacggga gggctgtaca gctgcgacat ca
#ccgcccgg    420
gggccatgca cgcggatcga gtttgataac gatgctgacc ccacgtcaga aa
#gcaaggaa    480
gatcagtgga tgggggtcac cgtccagagc caaggtccag ggggcaaggt cg
#tgacatgt    540
gctcaccgat atgaaaaaag gcagcatgtt aatacgaagc aggaatcccg ag
#acatcttt    600
gggcggtgtt atgtcctgag tcagaatctc aggattgaag acgatatgga tg
#ggggagat    660
tggagctttt gtgatgggcg attgagaggc catgagaaat ttggctcttg cc
#agcaaggt    720
gtagcagcta cttttactaa agactttcat tacattgtat ttggagcccc gg
#gtacttat    780
aactggaaag ggattgttcg tgtagagcaa aagaataaca ctttttttga ca
#tgaacatc    840
tttgaagatg ggccttatga agttggtgga gagactgagc atgatgaaag tc
#tcgttcct    900
gttcctgcta acagttactt aggtttttct ttggactcag ggaaaggtat tg
#tttctaaa    960
gatgagatca cttttgtatc tggtgctccc agagccaatc acagtggagc cg
#tggttttg   1020
ctgaagagag acatgaagtc tgcacatctc ctccctgagc acatattcga tg
#gagaaggt   1080
ctggcctctt catttggcta tgatgtggcg gtggtggacc tcaacaagga tg
#ggtggcaa   1140
gatatagtta ttggagcccc acagtatttt gatagagatg gagaagttgg ag
#gtgcagtg   1200
tatgtctaca tgaaccagca aggcagatgg aataatgtga agccaattcg tc
#ttaatgga   1260
accaaagatt ctatgtttgg cattgcagta aaaaatattg gagatattaa tc
#aagatggc   1320
tacccagata ttgcagttgg agctccgtat gatgacttgg gaaaggtttt ta
#tctatcat   1380
ggatctgcaa atggaataaa taccaaacca acacaggttc tcaagggtat at
#caccttat   1440
tttggatatt caattgctgg aaacatggac cttgatcgaa attcctaccc tg
#atgttgct   1500
gttggttccc tctcagattc agtaactatt ttcagatccc ggcctgtgat ta
#atattcag   1560
aaaaccatca cagtaactcc taacagaatt gacctccgcc agaaaacagc gt
#gtggggcg   1620
cctagtggga tatgcctcca ggttaaatcc tgttttgaat atactgctaa cc
#ccgctggt   1680
tataatcctt caatatcaat tgtgggcaca cttgaagctg aaaaagaaag aa
#gaaaatct   1740
gggctatcct caagagttca gtttcgaaac caaggttctg agcccaaata ta
#ctcaagaa   1800
ctaactctga agaggcagaa acagaaagtg tgcatggagg aaaccctgtg gc
#tacaggat   1860
aatatcagag ataaactgcg tcccattccc ataactgcct cagtggagat cc
#aagagcca   1920
agctctcgta ggcgagtgaa ttcacttcca gaagttcttc caattctgaa tt
#cagatgaa   1980
cccaagacag ctcatattga tgttcacttc ttaaaagagg gatgtggaga cg
#acaatgta   2040
tgtaacagca accttaaact agaatataaa ttttgcaccc gagaaggaaa tc
#aagacaaa   2100
ttttcttatt taccaattca aaaaggtgta ccagaactag ttctaaaaga tc
#agaaggat   2160
attgctttag aaataacagt gacaaacagc ccttccaacc caaggaatcc ca
#caaaagat   2220
ggcgatgacg cccatgaggc taaactgatt gcaacgtttc cagacacttt aa
#cctattct   2280
gcatatagag aactgagggc tttccctgag aaacagttga gttgtgttgc ca
#accagaat   2340
ggctcgcaag ctgactgtga gctcggaaat ccttttaaaa gaaattcaaa tg
#tcactttt   2400
tatttggttt taagtacaac tgaagtcacc tttgacaccc cagatctgga ta
#ttaatctg   2460
aagttagaaa caacaagcaa tcaagataat ttggctccaa ttacagctaa ag
#caaaagtg   2520
gttattgaac tgcttttatc ggtctcggga gttgctaaac cttcccaggt gt
#attttgga   2580
ggtacagttg ttggcgagca agctatgaaa tctgaagatg aagtgggaag tt
#taatagag   2640
tatgaattca gggtaataaa cttaggtaaa cctcttacaa acctcggcac ag
#caaccttg   2700
aacattcagt ggccaaaaga aattagcaat gggaaatggt tgctttattt gg
#tgaaagta   2760
gaatccaaag gattggaaaa ggtaacttgt gagccacaaa aggagataaa ct
#ccctgaac   2820
ctaacggagt ctcacaactc aagaaagaaa cgggaaatta ctgaaaaaca ga
#tagatgat   2880
aacagaaaat tttctttatt tgctgaaaga aaataccaga ctcttaactg ta
#gcgtgaac   2940
gtgaactgtg tgaacatcag atgcccgctg cgggggctgg acagcaaggc gt
#ctcttatt   3000
ttgcgctcga ggttatggaa cagcacattt ctagaggaat attccaaact ga
#actacttg   3060
gacattctca tgcgagcctt cattgatgtg actgctgctg ccgaaaatat ca
#ggctgcca   3120
aatgcaggca ctcaggttcg agtgactgtg tttccctcaa agactgtagc tc
#agtattcg   3180
ggagtacctt ggtggatcat cctagtggct attctcgctg ggatcttgat gc
#ttgcttta   3240
ttagtgttta tactatggaa gtgtggtttc ttcaagagaa ataagaaaga tc
#attatgat   3300
gccacatatc acaaggctga gatccatgct cagccatctg ataaagagag gc
#ttacttct   3360
gatgcatagt attgatctac ttctgtaatt gtgtggattc tttaaacgct ct
#aggtacga   3420
tgacagtgtt ccccgatacc atgctgtaag gatccggaaa gaagagcgag ag
#atcaaaga   3480
tgaaaagtat attgataacc ttgaaaaaaa acagtggatc acaaagtgga ac
#agaaatga   3540
aagctactca tagcgggggc ctaaaaaaaa aaaaagcttc acagtaccca aa
#ctgctttt   3600
tccaactcag aaattcaatt tggatttaaa agcctgctca atccctgagg ac
#tgatttca   3660
gagtgactac acacagtacg aacctacagt tttaactgtg gatattgtta cg
#tagcctaa   3720
ggctcctgtt ttgcacagcc aaatttaaaa ctgttggaat ggatttttct tt
#aactgccg   3780
taatttaact ttctgggttg cctttgtttt tggcgtggct gacttacatc at
#gtgttggg   3840
gaagggcctg cccagttgca ctcaggtgac atcctccaga tagtgtagct ga
#ggaggcac   3900
ctacactcac ctgcactaac agagtggccg tcctaacctc gggcctgctg cg
#cagacgtc   3960
catcacgtta gctgtcccac atcacaagac tatgccattg gggtagttgt gt
#ttcaacgg   4020
aaagtgctgt cttaaactaa atgtgcaata gaaggtgatg ttgccatcct ac
#cgtctttt   4080
cctgtttcct agctgtgtga atacctgctc acgtcaaatg catacaagtt tc
#attctccc   4140
tttcactaaa aacacacagg tgcaacagac ttgaatgcta gttatactta tt
#tgtatatg   4200
gtatttattt tttcttttct ttacaaacca ttttgttatt gactaacagg cc
#aaagagtc   4260
tccagtttac ccttcaggtt ggtttaatca atcagaatta gaattagagc at
#gggaggtc   4320
atcactttga cctaaattat ttactgcaaa aagaaaatct ttataaatgt ac
#cagagaga   4380
gttgttttaa taacttatct ataaactata acctctcctt catgacagcc tc
#caccccac   4440
aacccaaaag gtttaagaaa tagaattata actgtaaaga tgtttatttc ag
#gcattgga   4500
tattttttac tttagaagcc tgcataatgt ttctggattt catactgtaa ca
#ttcaggaa   4560
ttcttggaga aaatgggttt attcactgaa ctctagtgcg gtttactcac tg
#ctgcaaat   4620
actgtatatt caggacttga aagaaatggt gaatgcctat ggtggatcca aa
#ctgatcca   4680
gtataagact actgaatctg ctaccaaaac agttaatcag tgagtcgatg tt
#ctattttt   4740
tgttttgttt cctcccctat ctgtattccc aaaaattact ttggggctaa tt
#taacaaga   4800
actttaaatt gtgttttaat tgtaaaaatg gcagggggtg gaattattac tc
#tatacatt   4860
caacagagac tgaatagata tgaaagctga ttttttttaa ttaccatgct tc
#acaatgtt   4920
aagttatatg gggagcaaca gcaaacaggt gctaatttgt tttggatata gt
#ataagcag   4980
tgtctgtgtt ttgaaagaat agaacacagt ttgtagtgcc actgttgttt tg
#ggggggct   5040
tttttctttt cggaaatctt aaaccttaag atactaagga cgttgttttg gt
#tgtacttt   5100
ggaattctta gtcacaaaat atattttgtt tacaaaaatt tctgtaaaac ag
#gttataac   5160
agtgtttaaa gtctcagttt cttgcttggg gaacttgtgt ccctaatgtg tt
#tagattgc   5220
tagattgcta aggagctgat actttgacag tgtttttaga cctgtgttac ta
#aaaaaaag   5280
atgaatgtcc tgaaaagggt gttgggaggg tggttcaaca aagaaacaaa ga
#tgttatgg   5340
tgtttagatt tatggttgtt aaaaatgtca tctcaagtca agtcactggt ct
#gtttgcat   5400
ttgatacatt tttgtactaa ctagcattgt aaaattattt catgattaga aa
#ttacctgt   5460
ggatatttgt ataaaagtgt gaaataaatt ttttataaaa gtgttcattg tt
#tcgtaaca   5520
cagcattgta tatgtgaagc aaactctaaa attataaatg acaacctgaa tt
#atctattt   5580
catcaaacca aagttcagtg tttttatttt tggtgtctca tgtaatctca ga
#tcagccaa   5640
agatactagt gccaaagcaa tgggattcgg ggtttttttc tgttttcgct ct
#atgtaggt   5700
gatcctcaag tctttcattt tccttcttta tgattaaaag aaacctacag gt
#atttaaca   5760
ac                  
#                  
#                  
#            5762
<210> SEQ ID NO 56
<211> LENGTH: 2471
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1256895CB1
<400> SEQUENCE: 56
ccgcgcgtcg cctgtcctcc gagccagtcg ctgacagccg cggcgccgcg ag
#cttctcct     60
ctcctcacga ccgaggcaga gcagtcatta tggcgaacct tggctgctgg at
#gctggttc    120
tctttgtggc cacatggagt gacctgggcc tctgcaagaa gcgcccgaag cc
#tggaggat    180
ggaacactgg gggcagccga tacccggggc agggcagccc tggaggcaac cg
#ctacccac    240
ctcagggcgg tggtggctgg gggcagcctc atggtggtgg ctgggggcag cc
#tcatggtg    300
gtggctgggg gcagccccat ggtggtggct ggggacagcc tcatggtggt gg
#ctggggtc    360
aaggaggtgg cacccacagt cagtggaaca agccgagtaa gccaaaaacc aa
#catgaagc    420
acatggctgg tgctgcagca gctggggcag tggtgggggg ccttggcggc ta
#cgtgctgg    480
gaagtgccat gagcaggccc atcatacatt tcggcagtga ctatgaggac cg
#ttactatc    540
gtgaaaacat gcaccgttac cccaaccaag tgtactacag gcccatggat ga
#gtacagca    600
accagaacaa ctttgtgcac gactgcgtca atatcacaat caagcagcac ac
#ggtcacca    660
caaccaccaa gggggagaac ttcaccgaga ccgacgttaa gatgatggag cg
#cgtggttg    720
agcagatgtg tatcacccag tacgagaggg aatctcaggc ctattaccag ag
#aggatcga    780
gcatggtcct cttctcctct ccacctgtga tcctcctgat ctctttcctc at
#cttcctga    840
tagtgggatg aggaaggtct tcctgttttc accatctttc taatcttttt cc
#agcttgag    900
ggaggcggta tccacctgca gcccttttag tggtggtgtc tcactctttc tt
#ctctcttt    960
gtcccggata ggctaatcaa tacccttggc actgatgggc actggaaaac at
#agagtaga   1020
cctgagatgc tggtcaagcc ccctttgatt gagttcatca tgagccgttg ct
#aatgccag   1080
gccagtaaaa gtataacagc aaataaccat tggttaatct ggacttattt tt
#ggacttag   1140
tgcaacaggt tgaggctaaa acaaatctca gaacagtctg aaataccttt gc
#ctggatac   1200
ctctggctcc ttcagcagct agagctcagt atactaatgc cctatcttag ta
#gagatttc   1260
atagctattt agagatattt tccattttaa gaaaacccga caacatttct gc
#caggtttg   1320
ttaggaggcc acatgatact tattcaaaaa aatcctagag attcttagct ct
#tgggatgc   1380
aggctcagcc cgctggagca tgagctctgt gtgtaccgag aactggggtg at
#gttttact   1440
tttcacagta tgggctacac agcagctgtt caacaagagt aaatattgtc ac
#aacactga   1500
acctctggct agaggacata ttcacagtga acataactgt aacatatatg aa
#aggcttct   1560
gggacttgaa atcaaatgtt tgggaatggt gcccttggag gcaacctccc at
#tttagatg   1620
tttaaaggac cctatatgtg gcattccttt ctttaaacta taggtaatta ag
#gcagctga   1680
aaagtaaatt gccttctaga cactgaaggc aaatctcctt tgtccattta cc
#tggaaacc   1740
agaatgattt tgacatacag gagagctgca gttgtgaaag caccatcatc at
#agaggatg   1800
atgtaattaa aaaatggtca gtgtgcaaag aaaagaactg cttgcatttc tt
#tatttctg   1860
tctcataatt gtcaaaaacc agaattaggt caagttcata gtttctgtaa tt
#ggcttttg   1920
aatcaaagaa tagggagaca atctaaaaaa tatcttaggt tggagatgac ag
#aaatatga   1980
ttgatttgaa gtggaaaaag aaattctgtt aatgttaatt aaagtaaaat ta
#ttccctga   2040
attgtttgat attgtcacct agcagatatg tattactttt ctgcaatgtt at
#tattggct   2100
tgcactttgt gagtattcta tgtaaaaata tatatgtata taaaatatat at
#tgcatagg   2160
acagacttag gagttttgtt tagagcagtt aacatctgaa gtgtctaatg ca
#ttaacttt   2220
tgtaaggtac tgaatactta atatgtggga aacccttttg cgtggtcctt ag
#gcttacaa   2280
tgtgcactga atcgtttcat gtaagaatcc aaagtggaca ccattaacag gt
#ctttgaaa   2340
tatgcatgta ctttatattt tctatatttg taactttgca tgttcttgtt tt
#gttatata   2400
aaaaaattgt aaatgtttaa tatctgactg aaattaaacg agcgaagatg ag
#caccaaaa   2460
aaaaaaaaaa a               
#                  
#                  
#     2471
<210> SEQ ID NO 57
<211> LENGTH: 253
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1256895CD1
<400> SEQUENCE: 57
Met Ala Asn Leu Gly Cys Trp Met Leu Val Le
#u Phe Val Ala Thr
  1               5 
#                 10 
#                 15
Trp Ser Asp Leu Gly Leu Cys Lys Lys Arg Pr
#o Lys Pro Gly Gly
                 20 
#                 25 
#                 30
Trp Asn Thr Gly Gly Ser Arg Tyr Pro Gly Gl
#n Gly Ser Pro Gly
                 35 
#                 40 
#                 45
Gly Asn Arg Tyr Pro Pro Gln Gly Gly Gly Gl
#y Trp Gly Gln Pro
                 50 
#                 55 
#                 60
His Gly Gly Gly Trp Gly Gln Pro His Gly Gl
#y Gly Trp Gly Gln
                 65 
#                 70 
#                 75
Pro His Gly Gly Gly Trp Gly Gln Pro His Gl
#y Gly Gly Trp Gly
                 80 
#                 85 
#                 90
Gln Gly Gly Gly Thr His Ser Gln Trp Asn Ly
#s Pro Ser Lys Pro
                 95 
#                100 
#                105
Lys Thr Asn Met Lys His Met Ala Gly Ala Al
#a Ala Ala Gly Ala
                110  
#               115  
#               120
Val Val Gly Gly Leu Gly Gly Tyr Val Leu Gl
#y Ser Ala Met Ser
                125  
#               130  
#               135
Arg Pro Ile Ile His Phe Gly Ser Asp Tyr Gl
#u Asp Arg Tyr Tyr
                140  
#               145  
#               150
Arg Glu Asn Met His Arg Tyr Pro Asn Gln Va
#l Tyr Tyr Arg Pro
                155  
#               160  
#               165
Met Asp Glu Tyr Ser Asn Gln Asn Asn Phe Va
#l His Asp Cys Val
                170  
#               175  
#               180
Asn Ile Thr Ile Lys Gln His Thr Val Thr Th
#r Thr Thr Lys Gly
                185  
#               190  
#               195
Glu Asn Phe Thr Glu Thr Asp Val Lys Met Me
#t Glu Arg Val Val
                200  
#               205  
#               210
Glu Gln Met Cys Ile Thr Gln Tyr Glu Arg Gl
#u Ser Gln Ala Tyr
                215  
#               220  
#               225
Tyr Gln Arg Gly Ser Ser Met Val Leu Phe Se
#r Ser Pro Pro Val
                230  
#               235  
#               240
Ile Leu Leu Ile Ser Phe Leu Ile Phe Leu Il
#e Val Gly
                245  
#               250
<210> SEQ ID NO 58
<211> LENGTH: 5681
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 474630.29
<400> SEQUENCE: 58
cccgcgcccg ccctcggaca gtccctgctc gcccgcgcgc tgcagcccca tc
#tcctagcg     60
gcagcccagg cgcggaggga gcgagtccgc cccgaggtag gtccaggacg gg
#cgcacagc    120
agcagccgag gctggccggg agagggagga agaggatggc agggccacgc cc
#cagcccat    180
gggccaggct gctcctggca gccttgatca gcgtcagcct ctctgggacc tt
#ggcaaacc    240
gctgcaagaa ggccccagtg aagagctgca cggagtgtgt ccgtgtggat aa
#ggactgcg    300
cctactgcac agacgagatg ttcagggacc ggcgctgcaa cacccaggcg ga
#gctgctgg    360
ccgcgggctg ccagcgggag agcatcgtgg tcatggagag cagcttccaa at
#cacagagg    420
agacccagat tgacaccacc ctgcggcgca gccagatgtc cccccaaggc ct
#gcgggtcc    480
gtctgcggcc cggtgaggag cggcattttg agctggaggt gtttgagcca ct
#ggagagcc    540
ccgtggacct gtacatcctc atggacttct ccaactccat gtccgatgat ct
#ggacaacc    600
tcaagaagat ggggcagaac ctggctcggg tcctgagcca gctcaccagc ga
#ctacacta    660
ttggatttgg caagtttgtg gacaaagtca gcgtcccgca gacggacatg ag
#gcctgaga    720
agctgaagga gccctggccc aacagtgacc cccccttctc cttcaagaac gt
#catcagcc    780
tgacagaaga tgtggatgag ttccggaata aactgcaggg agagcggatc tc
#aggcaacc    840
tggatgctcc tgagggcggc ttcgatgcca tcctgcagac agctgtgtgc ac
#gagggaca    900
ttggctggcg cccggacagc acccacctgc tggtcttctc caccgagtca gc
#cttccact    960
atgaggctga tggcgccaac gtgctggctg gcatcatgag ccgcaacgat ga
#acggtgcc   1020
acctggacac cacgggcacc tacacccagt acaggacaca ggactacccg tc
#ggtgccca   1080
ccctggtgcg cctgctcgcc aagcacaaca tcatccccat ctttgctgtc ac
#caactact   1140
cctatagcta ctacgagaag cttcacacct atttccctgt ctcctcactg gg
#ggtgctgc   1200
aggaggactc gtccaacatc gtggagctgc tggaggaggc cttcaatcgg at
#ccgctcca   1260
acctggacat ccgggcccta gacagccccc gaggccttcg gacagaggtc ac
#ctccaaga   1320
tgttccagaa gacgaggact gggtcctttc acatccggcg gggggaagtg gg
#tatatacc   1380
aggtgcagct gcgggccctt gagcacgtgg atgggacgca cgtgtgccag ct
#gccggagg   1440
accagaaggg caacatccat ctgaaacctt ccttctccga cggcctcaag at
#ggacgcgg   1500
gcatcatctg tgatgtgtgc acctgcgagc tgcaaaaaga ggtgcggtca gc
#tcgctgca   1560
gcttcaacgg agacttcgtg tgcggacagt gtgtgtgcag cgagggctgg ag
#tggccaga   1620
cctgcaactg ctccaccggc tctctgagtg acattcagcc ctgcctgcgg ga
#gggcgagg   1680
acaagccgtg ctccggccgt ggggagtgcc agtgcgggca ctgtgtgtgc ta
#cggcgaag   1740
gccgctacga gggtcagttc tgcgagtatg acaacttcca gtgtccccgc ac
#ttccgggt   1800
tcctctgcaa tgaccgagga cgctgctcca tgggccagtg tgtgtgtgag cc
#tggttgga   1860
caggcccaag ctgtgactgt cccctcagca atgccacctg catcgacagc aa
#tgggggca   1920
tctgtaatgg acgtggccac tgtgagtgtg gccgctgcca ctgccaccag ca
#gtcgctct   1980
acacggacac catctgcgag atcaactact cggcgatcca cccgggcctc tg
#cgaggacc   2040
tacgctcctg cgtgcagtgc caggcgtggg gcaccggcga gaagaagggg cg
#cacgtgtg   2100
aggaatgcaa cttcaaggtc aagatggtgg acgagcttaa gagagccgag ga
#ggtggtgg   2160
tgcgctgctc cttccgggac gaggatgacg actgcaccta cagctacacc at
#ggaaggtg   2220
acggcgcccc tgggcccaac agcactgtcc tggtgcacaa gaagaaggac tg
#ccctccgg   2280
gctccttctg gtggctcatc cccctgctcc tcctcctcct gccgctcctg gc
#cctgctac   2340
tgctgctatg ctggaagtac tgtgcctgct gcaaggcctg cctggcactt ct
#cccgtgct   2400
gcaaccgagg tcacatggtg ggctttaagg aagaccacta catgctgcgg ga
#gaacctga   2460
tggcctctga ccacttggac acgcccatgc tgcgcagcgg gaacctcaag gg
#ccgtgacg   2520
tggtccgctg gaaggtcacc aacaacatgc agcggcctgg ctttgccact ca
#tgccgcca   2580
gcatcaaccc cacagagctg gtgccctacg ggctgtcctt gcgcctggcc cg
#cctttgca   2640
ccgagaacct gctgaagcct gacactcggg agtgcgccca gctgcgccag ga
#ggtggagg   2700
agaacctgaa cgaggtctac aggcagatct ccggtgtaca caagctccag ca
#gaccaagt   2760
tccggcagca gcccaatgcc gggaaaaagc aagaccacac cattgtggac ac
#agtgctga   2820
tggcgccccg ctcggccaag ccggccctgc tgaagcttac agagaagcag gt
#ggaacaga   2880
gggccttcca cgacctcaag gtggcccccg gctactacac cctcactgca ga
#ccaggacg   2940
cccggggcat ggtggagttc caggagggcg tggagctggt ggacgtacgg gt
#gcccctct   3000
ttatccggcc tgaggatgac gacgagaagc agctgctggt ggaggccatc ga
#cgtgcccg   3060
caggcactgc caccctcggc cgccgcctgg taaacatcac catcatcaag ga
#gcaagcca   3120
gagacgtggt gtcctttgag cagcctgagt tctcggtcag ccgcggggac ca
#ggtggccc   3180
gcatccctgt catccggcgt gtcctggacg gcgggaagtc ccaggtctcc ta
#ccgcacac   3240
aggatggcac cgcgcagggc aaccgggact acatccccgt ggagggtgag ct
#gctgttcc   3300
agcctgggga ggcctggaaa gagctgcagg tgaagctcct ggagctgcaa ga
#agttgact   3360
ccctcctgcg gggccgccag gtccgccgtt tccacgtcca gctcagcaac cc
#taagtttg   3420
gggcccacct gggccagccc cactccacca ccatcatcat cagggaccca ga
#tgaactgg   3480
accggagctt cacgagtcag atgttgtcat cacagccacc ccctcacggc ga
#cctgggcg   3540
ccccgcagaa ccccaatgct aaggccgctg ggtccaggaa gatccatttc aa
#ctggctgc   3600
ccccttctgg caagccaatg gggtacaggg taaagtactg gattcagggt ga
#ctccgaat   3660
ccgaagccca cctgctcgac agcaaggtgc cctcagtgga gctcaccaac ct
#gtacccgt   3720
attgcgacta tgagatgaag gtgtgcgcct acggggctca gggcgaggga cc
#ctacagct   3780
ccctggtgtc ctgccgcacc caccaggaag tgcccagcga gccagggcgt ct
#ggccttca   3840
atgtcgtctc ctccacggtg acccagctga gctgggctga gccggctgag ac
#caacggtg   3900
agatcacagc ctacgaggtc tgctatggcc tggtcaacga tgacaaccga cc
#tattgggc   3960
ccatgaagaa agtgctggtt gacaacccta agaaccggat gctgcttatt ga
#gaaccttc   4020
gggagtccca gccctaccgc tacacggtga aggcgcgcaa cggggccggc tg
#ggggcctg   4080
agcgggaggc catcatcaac ctggccaccc agcccaagag gcccatgtcc at
#ccccatca   4140
tccctgacat ccctatcgtg gacgcccaga gcggggagga ctacgacagc tt
#ccttatgt   4200
acagcgatga cgttctacgc tctccatcgg gcagccagag gcccagcgtc tc
#cgatgaca   4260
ctgagcacct ggtgaatggc cggatggact ttgccttccc gggcagcacc aa
#ctccctgc   4320
acaggatgac cacgaccagt gctgctgcct atggcaccca cctgagccca ca
#cgtgcccc   4380
accgcgtgct aagcacatcc tccaccctca cacgggacta caactcactg ac
#ccgctcag   4440
aacactcaca ctcgaccaca ctgccgaggg actactccac cctcacctcc gt
#ctcctccc   4500
acgactctcg cctgactgct ggtgtgcccg acacgcccac ccgcctggtg tt
#ctctgccc   4560
tggggcccac atctctcaga gtgagctggc aggagccgcg gtgcgagcgg cc
#gctgcagg   4620
gctacagtgt ggagtaccag ctgctgaacg gcggtgagct gcatcggctc aa
#catcccca   4680
accctgccca gacctcggtg gtggtggaag acctcctgcc caaccactcc ta
#cgtgttcc   4740
gcgtgcgggc ccagagccag gaaggctggg gccgagagcg tgagggtgtc at
#caccattg   4800
aatcccaggt gcacccgcag agcccactgt gtcccctgcc aggctccgcc tt
#cactttga   4860
gcactcccag tgccccaggc ccgctggtgt tcactgccct gagcccagac tc
#gctgcagc   4920
tgagctggga gcggccacgg aggcccaatg gggatatcgt cggctacctg gt
#gacctgtg   4980
agatggccca aggaggaggg ccagccaccg cattccgggt ggatggagac ag
#ccccgaga   5040
gccggctgac cgtgccgggc ctcagcgaga acgtgcccta caagttcaag gt
#gcaggcca   5100
ggaccactga gggcttcggg ccagagcgcg agggcatcat caccatagag tc
#ccaggatg   5160
gaggaccctt cccgcagctg ggcagccgtg ccgggctctt ccagcacccg ct
#gcaaagcg   5220
agtacagcag catcaccacc acccacacca gcgccaccga gcccttccta gt
#ggatgggc   5280
tgaccctggg ggcccagcac ctggaggcag gcggctccct cacccggcat gt
#gacccagg   5340
agtttgtgag ccggacactg accaccagcg gaacccttag cacccacatg ga
#ccaacagt   5400
tcttccaaac ttgaccgcac cctgccccac ccccgccatg tcccactagg cg
#tcctcccg   5460
actcctctcc cggagcctcc tcagctactc catccttgca cccctggggg cc
#cagcccac   5520
ccgcatgcac agagcagggg ctaggtgtct cctgggaggc atgaaggggg ca
#aggtccgt   5580
cctctgtggg cccaaaccta tttgtaacca aagagctggg agcagcacaa gg
#acccagcc   5640
tttgttctgc acttaataaa tggttttgct actgctaaaa a    
#                  
# 5681
<210> SEQ ID NO 59
<211> LENGTH: 1366
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1256295.18
<400> SEQUENCE: 59
ctttgtcctc cagtggctgg taggcagtgg ctgggaggca gcggcccaat ta
#gtgtcgtg     60
cggcccgtgg cgaggcgagg tccggggagc gagcgagcaa gcaaggcggg ag
#gggtggcc    120
ggagctgcgg cggctggcac aggaggagga gcccgggcgg gcgaggggcg gc
#cggagagc    180
gccagggcct gagctgccgg agcggcgcct gtgagtgagt gcagaaagca gg
#cgcccgcg    240
cgctagccgt ggcaggagca gcccgcacgc cgcgctctct ccctgggcga cc
#tgcagttt    300
gcaatatgac tttggaggaa ttctcggctg gagagcagaa gaccgaaagg at
#ggataagg    360
tgggggatgc cctggaggaa gtgctcagca aagccctgag tcagcgcacg at
#cactgtcg    420
gggtgtacga agcggccaag ctgctcaacg tcgaccccga taacgtggtg tt
#gtgcctgc    480
tggcggcgga cgaggacgac gacagagatg tggctctgca gatccacttc ac
#cctgatcc    540
aggcgttttg ctgcgagaac gacatcaaca tcctgcgcgt cagcaacccg gg
#ccggctgg    600
cggagctcct gctcttggag accgacgctg gccccgcggc gagcgagggc gc
#cgagcagc    660
ccccggacct gcactgcgtg ctggtgacga atccacattc atctcaatgg aa
#ggatcctg    720
ccttaagtca acttatttgt ttttgccggg aaagtcgcta catggatcaa tg
#ggttccag    780
tgattaatct ccctgaacgg tgatggcatc tgaatgaaaa taactgaacc aa
#attgcact    840
gaagtttttg aaataccttt gtagttactc aagcagttac tccctacact ga
#tgcaagga    900
ttacagaaac tgatgccaag gggctgagtg agttcaacta catgttctgg gg
#gcccggag    960
atagatgact ttgcagatgg aaagaggtga aaatgaagaa ggaagctgtg tt
#gaaacaga   1020
aaaataagtc aaaaggaaca aaaattacaa agaaccatgc aggaaggaaa ac
#tatgtatt   1080
aatttagaat ggttgagtta cattaaaata aaccaaatat gttaaagttt aa
#gtgtgcag   1140
ccatagtttg ggtatttttg gtttatatgc cctcaagtaa aagaaaagcc ga
#aagggtta   1200
atcatatttg aaaaccatat tttattgtat tttgatgaga tattaaattc tc
#aaagtttt   1260
attataaatt ctactaagtt attttatgac atgaaaagtt atttatgcta ta
#aatttttt   1320
gaaacacaat acctacaata aactggtatg aataattgca tcattt   
#               1366
<210> SEQ ID NO 60
<211> LENGTH: 1432
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 444096.1
<400> SEQUENCE: 60
gacccatcag ggcttctgta aggctgagtg ggtcccatgc ctgaaaggag ag
#ccaggctg     60
agcctggcct gagtctccca tgtgtaacag gtacgaggat gaaatcaaca ag
#cacactgc    120
tgcagagaac gagtttgtgg tgctcaagaa ggatgtggat gcagcataca tg
#ggccggat    180
ggatctgcat ggcaaagtgg gcaccttgac ccaggagatt gacttcctgc ag
#caactcta    240
tgaaatggag ctgagccaag tgcagaccca cgtgtctaac accaatgtgg tg
#ctgtccat    300
ggacaacaac cgcaacctgg acctggacag catcatcgcc gaggtcaagg cc
#cagtatga    360
gctgattgcc cagaggagcc gggctgaggc cgaggcctgg taccagacca ag
#tatgagga    420
gctgcaggtg actgctggga agcatgggga caacctgcgg gacaccaaga ac
#gagattgc    480
tgagctcacc cgcactatcc agaggctgca gggggaggct gatgcagcca ag
#aagcagtg    540
tcagcagctg cagacggcca ttgcggaacg cggagcagcg tggggagctg gc
#actcaagg    600
atgctcagaa gaagcttggg gatctggatg tggccctgca ccaggccaag ga
#ggacctga    660
cacggctgct gcgtgactac caggagctga tgaatgtcaa gctggccctg ga
#cgtggaga    720
ttgccaccta ccgcaagctt ctggagagcg aggagagcag gatgtctgga ga
#atgtccca    780
gtgcagtcag catttctgtg actggcaact ccaccactgt gtgcggaggt gg
#cgcaccag    840
ctttggaggt ggcatctccc tgggtgggag tgggggggcc accaagggtg ga
#ttcagcac    900
aaatgtgggc tatagcaccg tcaagggagg gccagtctct gcgggcacct cc
#atcctgcg    960
gaagaccact acggtcaaga cgtccagcca gaggtattag ctgctgagcc ct
#gcaaggcc   1020
ccctgcaatc atgtccctgc cctcctcacc ccacctctgc tgtcctttcc ag
#tcacttct   1080
caggagcagg aacagccagg ggacctcaga cccagggtat tttcatacca ga
#ctatttgc   1140
atcttgggaa gcgctcaaat ctactcaggt tttctccttg gtcctgcagt ag
#gatgggag   1200
ggaaggttaa agttgccagc ttgagtgatg tgcttgggtg acttgggggt ga
#ccttttga   1260
ccaccgagag gaggctgaat ttctcaagcc attaggagag agagaaattg gg
#agtggtcc   1320
ccaaagaccc ttcaacctcc ccagtccccc accagaccca ccctctccct ga
#atctaccc   1380
acatccccct tccctgtctg tgtctcaata aatggtgcaa ctgcaaaaaa aa
#           1432
<210> SEQ ID NO 61
<211> LENGTH: 4559
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 008942.10
<400> SEQUENCE: 61
agcgggcggc gcgcacactg ctcgctgggc cgcggctccc gggtgtccca gg
#cccggccg     60
gtgcgcagag catggcgggt gcgggcccga agcggcgcgc gctagcggcg cc
#ggcggccg    120
aggagaagga agaggcgcgg gagaagatgc tggccgccaa gagcgcggac gg
#ctcggcgc    180
cggcaggcga gggcgagggc gtgaccctgc agcggaacat cacgctgctc aa
#cggcgtgg    240
ccatcatcgt ggggaccatt atcggctcgg gcatcttcgt gacgcccacg gg
#cgtgctca    300
aggaggcagg ctcgccgggg ctggcgctgg tggtgtgggc cgcgtgcggc gt
#cttctcca    360
tcgtgggcgc gctctgctac gcggagctcg gcaccaccat ctccaaatcg gg
#cggcgact    420
acgcctacat gctggaggtc tacggctcgc tgcccgcctt cctcaagctc tg
#gatcgagc    480
tgctcatcat ccggccttca tcgcagtaca tcgtggccct ggtcttcgcc ac
#ctacctgc    540
tcaagccgct cttccccacc tgcccggtgc ccgaggaggc agccaagctc gt
#ggcctgcc    600
tgtgcgtgct gctgctcacg gccgtgaact gctacagcgt gaaggccgcc ac
#ccgggtcc    660
aggatgcctt tgccgccgcc aagctcctgg ccctggccct gatcatcctg ct
#gggcttcg    720
tccagatcgg gaagggtgat gtgtccaatc tagatcccaa cttctcattt ga
#aggcacca    780
aactggatgt ggggaacatt gtgctggcat tatacagcgg cctctttgcc ta
#tggaggat    840
ggaattactt gaatttcgtc acagaggaaa tgatcaaccc ctacagaaac ct
#gcccctgg    900
ccatcatcat ctccctgccc atcgtgacgc tggtgtacgt gctgaccaac ct
#ggcctact    960
tcaccaccct gtccaccgag cagatgctgt cgtccgaggc cgtggccgtg ga
#cttcggga   1020
actatcacct gggcgtcatg tcctggatca tccccgtctt cgtgggcctg tc
#ctgctttg   1080
gctccgtcaa tgggtccctg ttcacatcct ccaggctctt cttcgtgggg tc
#ccgggaag   1140
gccacctgcc ctccatcctc tccatgatcc acccacagct cctcaccccc gt
#gccgtccc   1200
tcgtgttcac gtgtgtgatg acgctgctct acgccttctc caaggacatc tt
#ctccgtca   1260
tcaacttctt cagcttcttc aactggctct gcgtggccct ggccatcatc gg
#catgatct   1320
ggctgcgcca cagaaagcct gagcttgagc ggcccatcaa ggtgaacctg gc
#cctgcctg   1380
tgttcttcat cctggcctgc ctcttcctga tcgccgtctc cttctggaag ac
#acccgtgg   1440
agtgtggcat cggcttcacc atcatcctca gcgggctgcc cgtctacttc tt
#cggggtct   1500
ggtggaaaaa caagcccaag tggctcctcc agggcatctt ctccacgacc gt
#cctgtgtc   1560
agaagctcat gcaggtggtc ccccaggaga catagccagg aggccgagtg gc
#tgccggag   1620
gagcatgcgc agaggccagt taaagtagat cacctcctcg aacccactcc gg
#ttccccgc   1680
aacccacagc tcagctgccc atcccagtcc ctcgccgtcc ctcccaggtc gg
#gcagtgga   1740
ggctgctgtg aaaactctgg tacgaatctc atccctcaac tgagggccag gg
#acccaggt   1800
gtgcctgtgc tcctgcccag gagcagcttt tggtctcctt gggccctttt tc
#ccttccct   1860
cctttgttta cttatatata tatttttttt aaacttaaat tttgggtcaa ct
#tgacacca   1920
ctaagatgat tttttaagga gctgggggaa ggcaggagcc ttcctttctc ct
#gccccaag   1980
ggcccagacc ctgggcaaac agagctactg agacttggaa cctcattgct ac
#cacagact   2040
tgcactgaag ccggacagct gcccagacac atgggcttgt gacattcgtg aa
#aaccaacc   2100
ctgtgggctt atgtctctgc cttagggttt gcagagtgga aactcagccg ta
#gggtggca   2160
ctgggagggg gtgggggatc tgggcaaggt gggtgattcc tcccaggagg tg
#cttgaggc   2220
cccgatggac tcctgaccat aatcctagcc ccgagacacc atcctgagcc ag
#ggaacagc   2280
cccagggttg gggggtgccg gcatctcccc tagctcacca ggcctggcct ct
#gggcagtg   2340
tggcctcttg gctatttctg tgtccagttt tggaggctga gttctggttc at
#gcagacaa   2400
agccctgtcc ttcagtcttc tagaaacaga gacaagaaag gcagacacac cg
#cggccagg   2460
cacccatgtg ggcgcccacc ctgggctcca cacagcagtg tcccctgccc ca
#gaggtcgc   2520
agctaccctc agcctccaat gcattggcct ctgtaccgcc cggcagcccc tt
#ctggccgg   2580
tgctgggttc ccactcccgg cctaggcacc tccccgctct ccctgtcacg ct
#catgtcct   2640
gtcctggtcc tgatgcccgt tgtctaggag acagagccaa gcactgctca cg
#tctctgcc   2700
gcctgcgttt ggaggcccct gggctctcac ccagtcccca cccgcctgca ga
#gagggaac   2760
tagggcaccc cttgtttctg ttgttcccgt gaattttttt cgctatggga gg
#cagccgag   2820
gcctggccaa tgcggcccac tttcctgagc tgtcgctgcc tccatggcag ca
#gccaagga   2880
cccccagaac aagaagaccc ccccgcagga tccctcctga gctcgggggg ct
#ctgccttc   2940
tcagggcccc gggcttccct tctccccagc cagaggtgga gccaagtggt cc
#agcgtcac   3000
tccagtgctc agctgtggct ggaggagctg gcctgtggca cagccctgag tg
#tcccaagc   3060
cgggagccaa cgaagccgga cacggcttca ctgaccagcg gctgctcaag cc
#gcaagctc   3120
tcagcaagtg cccagtggag cctgccgccc ccacctgggc accgggaccc cc
#tcaccatc   3180
cagtgggccc ggagaaacct gatgaacagt ttggggactc aggaccagat gt
#ccgtctct   3240
cttgcttgag gaatgaagac ctttattcac ccctgccccg ttgcttcccg ct
#gcacatgg   3300
acagacttca cagcgtctgc tcataggacc tgcatccttc ctggggacga at
#tccactcg   3360
tccaagggac agcccacggt ctggaggccg aggaccacca gcaggcaggt gg
#actgactg   3420
ttgggcaaga cctcttccct ctgggcctgt tctcttggct gcaaataagg ac
#agcagctg   3480
gtgccccacc tgcctggtgc attgctgtgt gaatccagga ggcagtggac at
#cgtaggca   3540
gccacggccc cgggtccagg agaagtgctc cctggaggca cgcaccactg ct
#tcccactg   3600
gggccggcgg ggcccacgca cgacgtcagc ctcttacctt cccgcctcgg ct
#aggggtcc   3660
tcgggatgcc gttctgttcc aacctcctgc tctgggacgt ggacatgcct ca
#aggataca   3720
gggagccggc ggcctctcga cggcacgcac ttgcctgttg gctgctgcgg ct
#gtgggcga   3780
gcatgggggc tgccagcgtc tgttgtggaa agtagctgct agtgaaatgg ct
#ggggccgc   3840
tggggtccgt cttcacactg cgcaggtctc ttctgggcgt ctgagctggg gt
#gggagctc   3900
ctccgcagaa ggttggtggg gggtccagtc tgtgatcctt ggtgctgtgt gc
#cccactcc   3960
agcctgggga ccccacttca gaaggtaggg gccgtgtccc gcggtgctga ct
#gaggcctg   4020
cttccccctc cccctcctgc tgtgctggaa ttccacaggg accagggcca cc
#gcagggga   4080
ctgtctcaga agacttgatt tttccgtccc tttttctcca cactccactg ac
#aaacgtcc   4140
ccagcggttt ccacttgtgg gcttcaggtg ttttcaagca caacccacca ca
#acaagcaa   4200
gtgcattttc agtcgttgtg cttttttgtt ttgtgctaac gtcttactaa tt
#taaagatg   4260
ctgtcggcac catgtttatt tatttccagt ggtcatgctc agccttgctg ct
#ctgcgtgg   4320
cgcaggtgcc atgcctgctc cctgtctgtg tcccagccac gcagggccat cc
#actgtgac   4380
gtcggccgac caggctggac accctctgcc gagtaatgac gtgtgtggct gg
#gaccttct   4440
ttattctgtg ttaatggcta acctgttaca ctgggctggg ttgggtaggg tg
#ttctggct   4500
tttttgtggg gtttttattt ttaaagaaac actcaatcat cctaaaaaaa aa
#ttaaaaa    4559
<210> SEQ ID NO 62
<211> LENGTH: 1756
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 008942.9
<400> SEQUENCE: 62
agtccccaca ccgcctgcag agagggaact agggcaccac cttgtttcat gt
#tgttcccg     60
tgaatttttt tcagctatgg gaggcaaccg aggcactggc caaatgcagg cc
#caacattt    120
cactgagcat gtcagcatgc acatcacaat ggcaagcagc cagggaccca cc
#aagaacaa    180
gaagacccca gcaggatccc tcactgagca tcggggggca tctgcacttc at
#caggcacc    240
ccagggcatt caccattcat cacaccaagc acagaggtgg agcacaagtg gt
#ccagcgtc    300
acatccaagt gctcagctgt ggctggagga gctggcctgt ggcacagcca ct
#gagtgtcc    360
acaagccagg gagcacaacg atagccagga cacaggcttc actgaccagc ag
#gctgcatc    420
aagccagcaa gcatctcagc aagtgcacca gtggagcact gccagcaccc ca
#gcactggg    480
cacacaggga ccccacatca ccagtccagt gggccacgga gaaacactga tg
#cccgttgt    540
ctaggagaca gagcacaagc actgctcacg tctctgccgc ctgcgtttgg ag
#gcccctgg    600
gctctcaccc agtccccacc cgcctgcaga gagggaacta gggcacccct tg
#tttctgtt    660
gttcccgtga atttttttcg ctatgggagg cagccgaggc ctggccaatg cg
#gcccactt    720
tcctgagctg tcgctgcctc catggcagca gccagggacc cccagaacaa ga
#agaccccg    780
caggatccct cctgagctcg gggggctctg ccttctcagg ccccgggctt cc
#cttctccc    840
cagccagagg tggagccaag tggtccagcg tcactccagt gctcagctgt gg
#ctggagga    900
gctggcctgt ggcacagccc tgagtgtccc aagccgggag ccaacgaagc cg
#gacacggc    960
ttcactgacc agcggctgct caagccgcaa gctctcagca agtgcccagt gg
#agcctgcc   1020
gcccccgcct gggcaccggg accccctcac catccagtgg gcccggagaa ac
#ctgatgaa   1080
cagtttgggg actcaggacc agatgtccgt ctctcttgct tgaggaatga ag
#acctttat   1140
tcacccctgc cccgttgctt cccgctgcac atggacagac ttcacagcgt ct
#gctcatag   1200
gacctgcatc cttcctgggg acgaattcca ctcgtccaag ggacagccca cg
#gtctggag   1260
gccgaggacc accagcaggc aggtggactg actgtgttgg gcaagacctc tt
#ccctctgg   1320
gcctgttctc ttggctgcaa ataaggacag cagctggtgc cccacctgcc tg
#gtgcattg   1380
ctgtgtgaat ccaggaggca gtggacatcg taggcagcca cggccccggg tc
#caggagaa   1440
gtgctccctg gaggcacgca ccactgcttc ccactggggc cggcggggcc ca
#cgcacgac   1500
gtcagcctct taccttcccg cctcggctag gggtcctcgg gatgccgttc tg
#ttccaacc   1560
tcctgctctg ggacgtggac atgcctcaac tgagggccag ggacccaggt gt
#gcctgtgc   1620
tcctgcccag gagcagcttt tggtctcctt gggccctttt tcccttccct cc
#tttgttta   1680
cttatatata tatttttttt aaacttaaat tttgggtcaa cttgacacca ct
#aagatgat   1740
ttttaaggag ctgggg             
#                  
#                  
#  1756
<210> SEQ ID NO 63
<211> LENGTH: 3304
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1252415.1
<221> NAME/KEY: unsure
<222> LOCATION: 3267, 3276, 3289-3290, 3297, 3299
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 63
gcggaactct gaggtgaggg tgtgcagctt ggtagggatt ggggtccctt cc
#ggggccca     60
tcggcccctg gtggtgttaa tggcccttct ggcctacgcg cgtgtcatga ac
#cctggccg    120
agagggccgg ggctgaggcc ctcaggccga cccggactct tgggcgcggt ct
#cttgaggt    180
ggggccgggg tgagcagctg agtccgggtg ccccggggag gcccctctgg cc
#cgatttcg    240
cagcgctgcc catcagcttc agcggaggcc tgattcctga ggtgctctga ct
#ggaaggaa    300
cctccgagat cggagagtct tccctgtctc ctgttgatgc tcccattgca ct
#gataggta    360
aattgatccc tagagaagag gctagtctga gatatatagc gagtgaggaa aa
#gaatcgga    420
atcatgatcc tggtgcctta gataaccagc cccagttctt cccgtgttgc tc
#ggaacctc    480
tctaacttgg gatggtcttc cggtcggtgt tgccccgcag gctgctgcag ct
#taaaggcc    540
agcgctgcgt ggaacttttt tttttctctc ctcccaaatt gagccgtttg aa
#atgcctag    600
ggagttttta aaagaaaggc gggcacatcc ttgtatttac aggcagatat cc
#tccctttc    660
ctcctcggct gctgctctta ctttgacaag ccaggctaac attgaaggtg gt
#ccattatg    720
gctgacatgc aaaatctggt agaaagattg gagagggcag tgggccgcct gg
#aggcagta    780
tctcatacct ctgacatgca ccgtgggtat gcagacagtc cttcaaaagc ag
#gagcagct    840
ccatatgtgc aggcatttga ctcgctgctt gctggtcctg tggcagagta ct
#tgaagatc    900
agtaaagaga ttgggggaga cgtgcagaaa catgcggaga tggtccacac ag
#gtttgaag    960
ttggagcgag ctctgttggt tacagcttct cagtgtcaac agccagcaga aa
#ataagctt   1020
tccgatttgt tggcacccat ctcagagcag atcaaagaag tgataacctt tc
#gggagaag   1080
aaccgaggca gcaagttgtt taatcacctg tcagctgtca gcgaaagtat cc
#aggccctg   1140
ggctgggtgg ctatggctcc caagcctggc ccttatgtga aagaaatgaa tg
#atgccgcc   1200
atgttttata caaaccgagt cctcaaagag tacaaagatg tggataagaa gc
#atgtagac   1260
tgggtcaaag cttatttaag tatatggaca gagctgcagg cttacattaa gg
#agttccat   1320
accaccggac tggcctggag caaaacgggg cctgtggcaa aagaactgag cg
#gactgcca   1380
tctggaccct ctgccggatc aggtcctcct ccccctccac caggcccccc tc
#ctccccca   1440
gtctctacca gttcaggctc agatgagtct gcttcccgct cagcactgtt cg
#cgcagatt   1500
aatcaggggg agagcattac acatgccctg aaacatgtat ctgatgacat ga
#agactcac   1560
aagaaccctg ccctgaaggc tcagagtggt ccagtacgca gtggccccaa ac
#cattctct   1620
gcacctaaac cccaaaccag cccatccccc aaacgagcca caaagaagga gc
#cagctgta   1680
cttgaactgg agggcaagaa gtggagagtg gaaaatcagg aaaatgtttc ca
#acctggtg   1740
attgaggaca cagagctgaa acaggtggct tacatataca agtgtgtcaa ca
#cgacattg   1800
caaatcaagg gcaaaattaa ctccattaca gtagataact gtaagaaact tg
#gcctggta   1860
ttcgatgacg tggtgggcat tgtggagata atcaacagta aggatgtcaa ag
#ttcaggta   1920
atgggtaaag tgccaaccat atccatcaac aaaacagatg gctgccatgc tt
#acctgagc   1980
aagaattccc tggattgtga aatagtcagt gccaaatctt ccgagatgaa tg
#tcctcatt   2040
cctacagaag gcggtgactt taatgaattc ccagttcctg agcagttcaa ga
#ccctatgg   2100
aacgggcaga agttggtcac cacagtgaca gaaattgctg gataagcgaa gt
#gccactgg   2160
gttctttgcc ctcccttcac accatgggat aaatctgtat caagacggtt ct
#tttctaga   2220
tttcctctac ctttttgctc ttaaaactgc ttctctgctc tgagaagcac ag
#ctacctgc   2280
cttcactgaa atatacctca ggctgaaatt tggggtggga tagcaggtca gt
#tgatcttc   2340
tgcaggaagg tgcagctttt ccatatcagc tcaaccacgc cgccagtcca tt
#cttaagga   2400
actgccgact aggactgatg atgcatttta gctttgagct tttgggggtt at
#tctaccaa   2460
caaacagtcc attggaaaga aaacagtccc tggaattaac agatcagaat gt
#tcacactg   2520
gttaatcttt ttttaacaat gagcatgaag gtagcagaag ctggtgtgtt tc
#cagatggt   2580
tcttctaacc aaactaattt ttcactgttg acaagcgagg caagggttgc ac
#tggaccaa   2640
aggctgaggc ttggccatct agcattccat acaaaattgt ttcctataag ca
#ttcctttt   2700
attctctatt ctatcctggg tctgcctcaa ccgtgagata ggagagtctc tg
#gtactagc   2760
tgctgtagca gtgcccttca tccagggcag ttaatggagt cttggaccct tt
#ctttctct   2820
gggatccctg cccagcacct tcctatagag atgactttaa aaggaaaaaa aa
#aaaaaaaa   2880
caaacccaca tgatttcaag gagtctggca ttcctgaatc cttcttccct gc
#caggtgcc   2940
tgtcacctgt cttcactgcc tccttttccc tgtcatgctc atcagcttat gg
#cttctgtc   3000
taagcacctg aacagaggac tgaaacctcc actgcaggct ggttttaggt ct
#tgaattat   3060
gtaagaatct tgcacagcac tgctaatgta aatttcagtt gtttttccct ct
#aggacaaa   3120
cacttaccaa aatatgcaac ttttttttgg tgggaagaga gattgtcctg tg
#atttctac   3180
ccatttcctg aggcctgtgg aaataaacct ttatgtactt aaagttatac ag
#aaaataga   3240
ataaagttaa taccaaactt gaaaaanaaa aaaaangggg ggccgccgnn ta
#gtgancnc   3300
gtcg                 
#                  
#                  
#           3304
<210> SEQ ID NO 64
<211> LENGTH: 7231
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1399366.20
<221> NAME/KEY: unsure
<222> LOCATION: 5601, 5609, 7107
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 64
cccgagctgg cctgcgagtt cagggctcct gccgctctcc aggagcaacc tc
#tactccgg     60
acgcacaggc attccccgcg cccctccagc cctcgccgcc ctcgccaccg ct
#cccggccg    120
ccgcgctccg gtacacacag gatccctgct gggcaccaac agctccacca tg
#gggctggc    180
ctggggacta ggcgtcctgt tcctgatgca tgtgtgtggc accaaccgca tt
#ccagagtc    240
tggcggagac aacagcgtgt ttgacatctt tgaactcacc ggggccgccc gc
#aaggggtc    300
tgggcgccga ctggtgaagg gccccgaccc ttccagccca gctttccgca tc
#gaggatgc    360
caacctgatc ccccctgtgc ctgatgacaa gttccaagac ctggtggatg ct
#gtgcgggc    420
agaaaagggt ttcctccttc tggcatccct gaggcagatg aagaagaccc gg
#ggcacgct    480
gctggccctg gagcggaaag accactctgg ccaggtcttc agcgtggtgt cc
#aatggcaa    540
ggcgggcacc ctggacctca gcctgaccgt ccaaggaaag cagcacgtgg tg
#tctgtgga    600
agaagctctc ctggcaaccg gccagtggaa gagcatcacc ctgtttgtgc ag
#gaagacag    660
ggcccagctg tacatcgact gtgaaaagat ggagaatgct gagttggacg tc
#cccatcca    720
aagcgtcttc accagagacc tggccagcat cgccagactc cgcatcgcaa ag
#gggggcgt    780
caatgacaat ttccaggggg tgctgcagaa tgtgaggttt gtctttggaa cc
#acaccaga    840
agacatcctc aggaacaaag gctgctccag ctctaccagt gtcctcctca cc
#cttgacaa    900
caacgtggtg aatggttcca gccctgccat ccgcactaac tacattggcc ac
#aagacaaa    960
ggacttgcaa gccatctgcg gcatctcctg tgatgagctg tccagcatgg tc
#ctggaact   1020
caggggcctg cgcaccattg tgaccacgct gcaggacagc atccgcaaag tg
#actgaaga   1080
gaacaaagag ttggccaatg agctgaggcg gcctccccta tgctatcaca ac
#ggagttca   1140
gtacagaaat aacgaggaat ggactgttga tagctgcact gagtgtcact gt
#cagaactc   1200
agttaccatc tgcaaaaagg tgtcctgccc catcatgccc tgctccaatg cc
#acagttcc   1260
tgatggagaa tgctgtcctc gctgttggcc cagcgactct gcggacgatg gc
#tggtctcc   1320
atggtccgag tggacctcct gttctacgag ctgtggcaat ggaattcagc ag
#cgcggccg   1380
ctcctgcgat acgctcaaca accgatgtga gggctcctcg gtccagacac gg
#acctgcca   1440
cattcaggag tgtgacaaga gatttaaaca ggatggtggc tggagccact gg
#tccccgtg   1500
gtcatcttgt tctgtgacat gtggtgatgg tgtgatcaca aggatccggc tc
#tgcaactc   1560
tcccagcccc cagatgaacg ggaaaccctg tgaaggcgaa gcgcgggaga cc
#aaagcctg   1620
caagaaagac gcctgcccca tcaatggagg ctggggtcct tggtcaccat gg
#gacatctg   1680
ttctgtcacc tgtggaggag gggtacagaa acgtagtcgt ctctgcaaca ac
#cccacacc   1740
ccagtttgga ggcaaggact gcgttggtga tgtaacagaa aaccagatct gc
#aacaagca   1800
ggactgtcca attgatggat gcctgtccaa tccctgcttt gccggcgtga ag
#tgtactag   1860
ctaccctgat ggcagctgga aatgtggtgc ttgtccccct ggttacagtg ga
#aatggcat   1920
ccagtgcaca gatgttgatg agtgcaaaga agtgcctgat gcctgcttca ac
#cacaatgg   1980
agagcaccgg tgtgagaaca cggaccccgg ctacaactgc ctgccctgcc cc
#ccacgctt   2040
caccggctca cagcccttcg gccagggtgt cgaacatgcc acggccaaca aa
#caggtgtg   2100
caagccccgt aacccctgca cggatgggac ccacgactgc aacaagaacg cc
#aagtgcaa   2160
ctacctgggc cactatagcg accccatgta ccgctgcgag tgcaagcctg gc
#tacgctgg   2220
caatggcatc atctgcgggg aggacacaga cctggatggc tggcccaatg ag
#aacctggt   2280
gtgcgtggcc aatgcgactt accactgcaa aaaggataat tgccccaacc tt
#cccaactc   2340
agggcaggaa gactatgaca aggatggaat tggtgatgcc tgtgatgatg ac
#gatgacaa   2400
tgataaaatt ccagatgaca gggacaactg tccattccat tacaacccag ct
#cagtatga   2460
ctatgacaga gatgatgtgg gagaccgctg tgacaactgt ccctacaacc ac
#aacccaga   2520
tcaggcagac acagacaaca atggggaagg agacgcctgt gctgcagaca tt
#gatggaga   2580
cggtatcctc aatgaacggg acaactgcca gtacgtctac aatgtggacc ag
#agagacac   2640
tgatatggat ggggttggag atcagtgtga caattgcccc ttggaacaca at
#ccggatca   2700
gctggactct gactcagacc gcattggaga tacctgtgac aacaatcagg at
#attgatga   2760
agatggccac cagaacaatc tggacaactg tccctatgtg cccaatgcca ac
#caggctga   2820
ccatgacaaa gatggcaagg gagatgcctg tgaccacgat gatgacaacg at
#ggcattcc   2880
tgatgacaag gacaactgca gactcgtgcc caatcccgac cagaaggact ct
#gacggcga   2940
tggtcgaggt gatgcctgca aagatgattt tgaccatgac agtgtgccag ac
#atcgatga   3000
catctgtcct gagaatgttg acatcagtga gaccgacttc cgccgattcc ag
#atgattcc   3060
tctggacccc aaagggacat cccaaaatga ccctaactgg gttgtacgcc at
#cagggtaa   3120
agaactcgtc cagactgtca actgtgatcc tggactcgct gtaggttatg at
#gagtttaa   3180
tgctgtggac ttcagtggca ccttcttcat caacaccgaa agggacgatg ac
#tatgctgg   3240
atttgtcttt ggctaccagt ccagcagccg cttttatgtt gtgatgtgga ag
#caagtcac   3300
ccagtcctac tgggacacca accccacgag ggctcaggga tactcgggcc tt
#tctgtgaa   3360
agttgtaaac tccaccacag ggcctggcga gcacctgcgg aacgccctgt gg
#cacacagg   3420
aaacacccct ggccaggtgc gcaccctgtg gcatgaccct cgtcacatag gc
#tggaaaga   3480
tttcaccgcc tacagatggc gtctcagcca caggccaaag acgggtttca tt
#agagtggt   3540
gatgtatgaa gggaagaaaa tcatggctga ctcaggaccc atctatgata aa
#acctatgc   3600
tggtggtaga ctagggttgt ttgtcttctc tcaagaaatg gtgttcttct ct
#gacctgaa   3660
atacgaatgt agagatccct aatcatcaaa ttgttgattg aaagactgat ca
#taaaccaa   3720
tgctggtatt gcaccttctg gaactatggg cttgagaaaa cccccaggat ca
#cttctcct   3780
tggcttcctt cttttctgtg cttgcatcag tgtggactcc tagaacgtgc ga
#cctgcctc   3840
aagaaaatgc agttttcaaa aacagactca gcattcagcc tccaatgaat aa
#gacatctt   3900
ccaagcatat aaacaattgc tttggtttcc ttttgaaaaa gcatctactt gc
#ttcagttg   3960
ggaaggtgcc cattccactc tgcctttgtc acagagcagg gtgctattgt ga
#ggccatct   4020
ctgagcagtg gactcaaaag cattttcagg catgtcagag aagggaggac tc
#actagaat   4080
tagcaaacaa aaccaccctg acatcctcct tcaggaacac ggggagcaga gg
#ccaaagca   4140
ctaaggggag ggcgcatacc cgagacgatt gtatgaagaa aatatggagg aa
#ctgttaca   4200
tgttcggtac taagtcattt tcaggggatt gaaagactat tgctggattt ca
#tgatgctg   4260
actggcgtta gctgattaac ccatgtaaat aggcacttaa atagaagcag ga
#aagggaga   4320
caaagactgg cttctggact tcctccctga tccccaccct tactcatcac ct
#gcagtggc   4380
cagaattagg gaatcagaat caaaccagtg taaggcagtg ctggctgcca tt
#gcctggtc   4440
acattgaaat tggtggcttc attctagatg tagcttgtgc agatgtagca gg
#aaaatagg   4500
aaaacctacc atctcagtga gcaccagctg cctcccaaag gaggggcagc cg
#tgcttata   4560
tttttatggt tacaatggca caaaattatt atcaacctaa ctaaaacatt cc
#ttttctct   4620
tttttcctga attatcatgg agttttctaa ttctctcttt tggaatgtag at
#ttttttta   4680
aatgctttac gatgtaaaat atttattttt tacttattct ggaagatctg gc
#tgaaggat   4740
tattcatgga acaggaagaa gcgtaaagac tatccatgtc atctttgttg ag
#agtcttcg   4800
tgactgtaag attgtaaata cagattattt attaactctg ttctgcctgg aa
#atttaggc   4860
ttcatacgga aagtgtttga gagcaagtag ttgacattta tcagcaaatc tc
#ttgcaaga   4920
acagcacaag gaaaatcagt ctaataagct gctctgcccc ttgtgctcag ag
#tggatgtt   4980
atgggattct ttttttctct gttttatctt ttcaagtgga attagttggt ta
#tccatttg   5040
caaatgtttt aaattgcaaa gaaagccatg aggtcttcaa tactgtttta cc
#ccatccct   5100
tgtgcatatt tccagggaga aggaaagcat atacactttt ttctttcatt tt
#tccaaaag   5160
agaaaaaaat gacaaaaggt gaaacttaca tacaaatatt acctcatttg tt
#gtgtgact   5220
gagtaaagaa tttttggatc aagcggaaag agtttaagtg tctaacaaac tt
#aaagctac   5280
tgtagtacct aaaaagtcag tgttgtacat agcataaaaa ctctgcagag aa
#gtattccc   5340
aataaggaaa tagcattgaa atgttaaata caatttctga aagttatgtt tt
#ttatctat   5400
catctggtat accattgctt tatttttata aattattttc tcattgccat tg
#gaatagat   5460
atctcagatt gtgtagatat gctatttaaa taatttatca ggaaatactg cc
#tgtagagt   5520
tagtatttct atttttatat aatgtttgca cactgaattg aagaattgtt gg
#ttttttct   5580
tttttttgtt ttgttttttt ntttttttnt ttttgctttt gacctcccat tt
#ttactatt   5640
tgccaatacc tttttctagg aatgtgcttt tttttgtaca catttttatc ca
#ttttacat   5700
tctaaagcag tgtaagttgt atattactgt ttcttatgta caaggaacaa ca
#ataaatca   5760
tatggaaatt tatatttata cttactgtat ccatgcttat ttgttctcta ct
#ggctttat   5820
gtcatgaagt atatgcgtaa ataccattca taaatcaata tagcatatac aa
#aaataaat   5880
tacagtaagt catagcaaca ttcacagttt gtatgtgatt gagaaagact ga
#gttgctca   5940
ggcctaggct tagaatttgc tgcgtttgtg gaataaaaga acaaaatgat ac
#attagcct   6000
gccatatcaa aaacatataa aagagaaatt atccctaagt caagggcccc ca
#taagaata   6060
aaatttctta ttaaggtcat tagatgtcat tgaatccttt tcaaagtgca gt
#atgaaaac   6120
aaagggaaaa acactgaagc acacgcaact ctcacagcga cattttctga cc
#cacgaatg   6180
atgccttggg tgggcaacac gattgcatgt tgtggagaca cttcggaagt aa
#atgtggat   6240
gagggaggag ctgtccttgc aatgttgagc caagcattac agatacctcc tc
#ttgaagaa   6300
ggaataataa gtttaatcaa aaaagaagac taaaaaatgt aaaatttgga ag
#gaatccat   6360
aaatgcgtgt gtgtctaaat acaaattatc atgtgaagaa aaggcccaag tg
#taccaata   6420
agcagacctt gatttttgga tgggctaatt atgaatgtgg aatactgacc ag
#ttaatttc   6480
cagttttaat gaaaacagat caaagaagaa attttatgag taggttaaag gt
#ctggcttt   6540
gaggtctatt aaacactaga aaggactggc tgggtgagat aaaatcttcc tt
#gttgattt   6600
tcactctcat tctataaata ctcatctttc tgagtagcca tgatcacata ca
#aatgtaaa   6660
ttgccaaatc attttatagt accaaggtga agaagcagga actagaaagt gt
#tgataata   6720
gctgtggagt taggaaaact gatgtgaagg aaataattct ttgaaatggc aa
#agaattaa   6780
ataccatcat tcattatcag aagagttcaa cgtttgaagt gctgggagat aa
#ttctaatt   6840
cattcttgga tagtgaagca aaactgattg aaaataccaa gataagacag aa
#aaagtgac   6900
tggaaagagg agcttttctt ccaggcatgt tccagtttca ccctaagact ga
#ccttcaaa   6960
taatcaggtt gtactgaaat aaaggacttg ttaaaaatta aaattatgtc at
#cgagatga   7020
tagctttttt cctcctccaa cagtttattg tgcatgtgtt gtgggagagc tc
#gagtgaag   7080
agcaataaac tccaggtctt ataagantgt acatacaata aaggtggtgc ca
#gcagtttt   7140
tttttttcta aagagtcaca tgtagaaaag cctccagtat taagctcctg aa
#ttcattcc   7200
tataaataaa ttggctctct ctctcttcta t        
#                  
#        7231
<210> SEQ ID NO 65
<211> LENGTH: 961
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3732868CB1
<221> NAME/KEY: unsure
<222> LOCATION: 19
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 65
ctggctctga ccgcgctgnc ctgggcccga gagcccagga ggcgtgtctc ag
#agaaaaga     60
tataagcggc ccccggacgc taaagcggtg ccagcggcgg agtctccaac tg
#ggagagct    120
gcagctgccg agaggaggag aacgctgagg tcggtcggac caacggacgc gc
#tgaccgct    180
gccaactgca gctcgcgctg cctcctgctc gcgccgtgcc actaaggtca ct
#cccgcctc    240
cgagagccca gagccgagat ggaaacggtc caggagctga tccccctggc ca
#aggagatg    300
atggcccaga agcgcaaggg gaagatggtg aagctgtacg tgctgggcag cg
#tgctggcc    360
ctcttcggcg tggtgctcgg cctgatggag actgtgtgca gccccttcac gg
#ccgccaga    420
cgtctgcggg accaggaggc agccgtggcg gagctgcagg ccgccctgga gc
#gacaggct    480
ctccagaagc aagccctgca ggagaaaggc aagcagcagg acacggtcct cg
#gcggccgg    540
gccctgtcca accggcagca cgcctcctag gaactgtggg agaccagcgg ag
#tgggaggg    600
agacgcagta gacagagaca gaccgagaag gaagggagag acagaggggg cg
#cgcgcaca    660
ggagcctgac tccgctggga gagtgcagga gcacgtgctg ttttttattt gg
#acttaact    720
tcagagaaac cgctgacatc tagaactgac ctaccacaag catccaccaa ag
#gagtttgg    780
gattgagttt tgctgctgtg cagcactgca ttgtcatgac atttccaaca ct
#gtgtgaat    840
tatctaaatg cgtctaccat tttgcactag ggaggaagga taaatgcttt tt
#atgttatt    900
attattaatt attacaatga ccaccatttt gcattttgaa ataaaaaact tt
#ttatacca    960
t                  
#                  
#                  
#              961
<210> SEQ ID NO 66
<211> LENGTH: 103
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 3732868CD1
<400> SEQUENCE: 66
Met Glu Thr Val Gln Glu Leu Ile Pro Leu Al
#a Lys Glu Met Met
  1               5 
#                 10 
#                 15
Ala Gln Lys Arg Lys Gly Lys Met Val Lys Le
#u Tyr Val Leu Gly
                 20 
#                 25 
#                 30
Ser Val Leu Ala Leu Phe Gly Val Val Leu Gl
#y Leu Met Glu Thr
                 35 
#                 40 
#                 45
Val Cys Ser Pro Phe Thr Ala Ala Arg Arg Le
#u Arg Asp Gln Glu
                 50 
#                 55 
#                 60
Ala Ala Val Ala Glu Leu Gln Ala Ala Leu Gl
#u Arg Gln Ala Leu
                 65 
#                 70 
#                 75
Gln Lys Gln Ala Leu Gln Glu Lys Gly Lys Gl
#n Gln Asp Thr Val
                 80 
#                 85 
#                 90
Leu Gly Gly Arg Ala Leu Ser Asn Arg Gln Hi
#s Ala Ser
                 95 
#                100
<210> SEQ ID NO 67
<211> LENGTH: 2608
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1137894.1
<400> SEQUENCE: 67
ttcagcgctc ccactctcgg ccgacacccc tgcatggcca accgttacac ca
#tggatctg     60
actgccatct acgaggtgag tccccgccgc acggcatccc cggtacctgc at
#gcctgagt    120
ccgagtcccc acctctctag cgccgcaaac tccagcccgg gacgcttgcc tc
#ccttctcc    180
aactggggct ccctagcgcc gcgccctcca gcctggggcc cctgcctccc gc
#tcagacca    240
gcttggtgat ttggaggtga aaatggaacc cgcgacaccc ggctcttcgc tc
#aaacatgg    300
gtggggcggc ccatgcaagt ggaaagtcgg agaacttttc tcagaccgag gc
#tgcctgga    360
ggcggaagtg gcccccatac ctggctcacc cctagtcgtt gctgagggcg tg
#gttttgcg    420
cggaggcgtc tctggggctg aagtctcagg gtggggggat ccgacttctg tc
#tctccagt    480
ccctgaccgt agagacagag aaccctaaaa ccgaagcaat ccggacttcc ag
#gtcaactt    540
tgcccggttt ctccagttgt gaaactggag atcccgacgc gtgggtcata tc
#cggggagg    600
acaagagacc caaaattggg aaacagtggt gcgccctgac ttcggggtcc cc
#ctcttggt    660
ccagccgggg aagccgggat tcctgggtcc ctcgggataa ggcctcggtg gt
#gggtaaac    720
tcagaacctc caactctggg ttcctggcat ccggaaccca ggggtttctg cg
#ggcgggtg    780
gggctcaggc ggggagccca caaaccggcc tggcaagctc tagttccctg ca
#gctggggt    840
ggggcgtcgc cctgcatttt caggtgcctt aaccgaccca tttccgcaga gc
#ctcctgtc    900
gctgagccct gacgtgcccg tgccatccga ccatggaggg actgagtcca gc
#ccaggctg    960
gggctcctcg ggaccctgga gcctgagccc ctccgactcc agcccgtctg gg
#gtcacctc   1020
ccgcctgcct ggccgctcca ccagcctagt ggagggccgc agctgtggct gg
#gtgccccc   1080
accccctggc ttcgcaccgc tggctccccg cctgggccct gagctgtcac cc
#tcacccac   1140
ttcgcccact gcaacctcca ccaccccctc gcgctacaag actgagctat gt
#cggacctt   1200
ctcagagagt gggcgctgcc gctacggggc caagtgccag tttgcccatg gc
#ctgggcga   1260
gctgcgccag gccaatcgcc accccaaata caagacggaa ctctgtcaca ag
#ttctacct   1320
ccagggccgc tgcccctacg gctctcgctg ccacttcatc cacaacccta gc
#gaagacct   1380
ggcggccccg ggccaccctc ctgtgcttcg ccagagcatc agcttctccg gc
#ctgccctc   1440
tggccgccgg acctcaccac caccaccagg cctggccggc ccttccctgt cc
#tccagctc   1500
cttctcgccc tccagctccc caccaccacc tggggacctt ccactgtcac cc
#tctgcctt   1560
ctctgctgcc cctggcaccc ccctggctcg aagagacccc accccagtct gt
#tgcccctc   1620
ctgccgaagg gccactccta tcagcgtctg ggggcccttg ggtggcctgg tt
#cggacccc   1680
ctctgtacag tccctgggat ccgaccctga tgaatatgcc agcagcggca gc
#agcctggg   1740
gggctctgac tctcccgtct tcgaggcggg agtttttgca ccaccccagc cc
#gtggcagc   1800
cccccggcga ctccccatct tcaatcgcat ctctgtttct gagtgacaaa gt
#gactgccc   1860
ggtcagatca gctggatctc agcggggagc cacgtctctt gcactgtggt ct
#ctgcatgg   1920
accccagggc tgtggggact tgggggacag taatcaagta atcccctttt cc
#agaatgca   1980
ttaacccact cccctgacct cacgctgggg caggtcccca agtgtgcaag ct
#cagtattc   2040
atgatggtgg gggatggagt gtcttccgag gttcttgggg gaaaaaaaat tg
#tagcatat   2100
ttaagggagg caatgaaccc tctcccccac ctcttccctg cccaaatctg tc
#tcctagaa   2160
tcttatgtgc tgtgaataat aggccttcac tgcccctcca gtttttatag ac
#ctgaggtt   2220
ccagtgtctc ctggtaactg gaacctctcc tgagggggaa tcctggtgct ca
#aattaccc   2280
tccaaaagca agtagccaaa gccgttgcca aaccccaccc ataaatcaat gg
#gcccttta   2340
tttatgacga ctttatttat tctaatatga ttttatagta tttatatata tt
#gggtcgtc   2400
tgcttccctt gtatttttct tccttttttt gtaatattga aaacgacgat at
#aattatta   2460
taagtagact ataatatatt tagtaatata tattattacc ttaaaagtct at
#ttttgtgt   2520
tttgggcatt tttaaataaa caatctgagt gtgttcttcg tagaggaact cg
#attgagga   2580
ccagaggtcc tggacctcca aatacaac         
#                  
#           2608
<210> SEQ ID NO 68
<211> LENGTH: 1527
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1418671CB1
<400> SEQUENCE: 68
gcttcctggg cgccgtgggc gcggactgcg cgggctgcgc gggtgccgag ga
#gcgcgagg     60
cgcggggaag gcgcacctgg ggtggccctg gcgtgcgggc ggcgacatgg ag
#gacggcgt    120
gctcaaggag ggcttcctgg tcaagagggg ccacattgtc cacaactgga ag
#gcgcgatg    180
gttcatcctt cggcagaaca cgctggtgta ctacaagctt gaggggggtc gg
#agagtgac    240
ccctcccaag ggccggatcc tcctggatgg ctgcaccatc acctgcccct gc
#ctggagta    300
tgaaaaccga ccgctcctca ttaagctgaa gactcaaaca tccacggagt ac
#ttcctgga    360
ggcctgttct cgagaggagc gggatgcctg ggcctttgag atcaccgggg ct
#attcatgc    420
agggcagccg gggaaggtcc agcagctgca cagcctgaga aactccttca ag
#ctgccccc    480
gcacatcagc ctgcatcgca ttgtggacaa gatgcacgat agcaacaccg ga
#atccgttc    540
aagccccaac atggagcagg gaagcaccta taaaaagacc ttcctcggct cc
#tccctggt    600
ggactggctc atctccaaca gcttcacggc cagccgtctg gaggcggtga cc
#ctggcctc    660
catgctcatg gaggagaact tcctcaggcc tgtgggtgtc cgaagcatgg ga
#gccattcg    720
ctctggggat ctggccgagc agttcctgga tgactccaca gccctgtaca ct
#tttgctga    780
gagctacaaa aagaagataa gccccaagga agaaattagc ctgagcactg tg
#gagttaag    840
tggcacggtg gtgaaacaag gctacctggc caagcaggga cacaagagga aa
#aactggaa    900
ggtgcgtcgc tttgttctaa ggaaggatcc agctttcctg cattactatg ac
#ccttccaa    960
agaagagaac aggccagtgg gtgggttttc tcttcgtggt tcactcgtgt ct
#gctctgga   1020
agataatggc gttcccactg gggttaaagg gaatgtccag ggaaacctct tc
#aaagtgat   1080
tactaaggat gacacacact attacattca ggccagcagc aaggctgagc ga
#gccgagtg   1140
gattgaagct atcaaaaagc taacatgaca aggacctgag ggaaccagga tt
#cctccctc   1200
ctaccagatg acacagacaa gagttcctgg agaatgggag tgttaagact tt
#tgacttct   1260
ttgtaagttt tgtactgctt tggagagtga atgctgccaa gagttcctca ga
#ttacaaac   1320
agcagtggtg ccatttcctt ccccatcttc atgttacaaa cctggaaagg ct
#agaacagc   1380
cattaggcgt cagcatcttg acttttcccc agcatcacaa acagccattt cc
#tcgggcac   1440
caaagtaggt tccctttgtt ggaacaatta cactggccat gccataatgt tg
#aataaaac   1500
tctcttctta tgaaaaaaaa aaaaaaa          
#                  
#           1527
<210> SEQ ID NO 69
<211> LENGTH: 353
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1418671CD1
<400> SEQUENCE: 69
Met Glu Asp Gly Val Leu Lys Glu Gly Phe Le
#u Val Lys Arg Gly
  1               5 
#                 10 
#                 15
His Ile Val His Asn Trp Lys Ala Arg Trp Ph
#e Ile Leu Arg Gln
                 20 
#                 25 
#                 30
Asn Thr Leu Val Tyr Tyr Lys Leu Glu Gly Gl
#y Arg Arg Val Thr
                 35 
#                 40 
#                 45
Pro Pro Lys Gly Arg Ile Leu Leu Asp Gly Cy
#s Thr Ile Thr Cys
                 50 
#                 55 
#                 60
Pro Cys Leu Glu Tyr Glu Asn Arg Pro Leu Le
#u Ile Lys Leu Lys
                 65 
#                 70 
#                 75
Thr Gln Thr Ser Thr Glu Tyr Phe Leu Glu Al
#a Cys Ser Arg Glu
                 80 
#                 85 
#                 90
Glu Arg Asp Ala Trp Ala Phe Glu Ile Thr Gl
#y Ala Ile His Ala
                 95 
#                100 
#                105
Gly Gln Pro Gly Lys Val Gln Gln Leu His Se
#r Leu Arg Asn Ser
                110  
#               115  
#               120
Phe Lys Leu Pro Pro His Ile Ser Leu His Ar
#g Ile Val Asp Lys
                125  
#               130  
#               135
Met His Asp Ser Asn Thr Gly Ile Arg Ser Se
#r Pro Asn Met Glu
                140  
#               145  
#               150
Gln Gly Ser Thr Tyr Lys Lys Thr Phe Leu Gl
#y Ser Ser Leu Val
                155  
#               160  
#               165
Asp Trp Leu Ile Ser Asn Ser Phe Thr Ala Se
#r Arg Leu Glu Ala
                170  
#               175  
#               180
Val Thr Leu Ala Ser Met Leu Met Glu Glu As
#n Phe Leu Arg Pro
                185  
#               190  
#               195
Val Gly Val Arg Ser Met Gly Ala Ile Arg Se
#r Gly Asp Leu Ala
                200  
#               205  
#               210
Glu Gln Phe Leu Asp Asp Ser Thr Ala Leu Ty
#r Thr Phe Ala Glu
                215  
#               220  
#               225
Ser Tyr Lys Lys Lys Ile Ser Pro Lys Glu Gl
#u Ile Ser Leu Ser
                230  
#               235  
#               240
Thr Val Glu Leu Ser Gly Thr Val Val Lys Gl
#n Gly Tyr Leu Ala
                245  
#               250  
#               255
Lys Gln Gly His Lys Arg Lys Asn Trp Lys Va
#l Arg Arg Phe Val
                260  
#               265  
#               270
Leu Arg Lys Asp Pro Ala Phe Leu His Tyr Ty
#r Asp Pro Ser Lys
                275  
#               280  
#               285
Glu Glu Asn Arg Pro Val Gly Gly Phe Ser Le
#u Arg Gly Ser Leu
                290  
#               295  
#               300
Val Ser Ala Leu Glu Asp Asn Gly Val Pro Th
#r Gly Val Lys Gly
                305  
#               310  
#               315
Asn Val Gln Gly Asn Leu Phe Lys Val Ile Th
#r Lys Asp Asp Thr
                320  
#               325  
#               330
His Tyr Tyr Ile Gln Ala Ser Ser Lys Ala Gl
#u Arg Ala Glu Trp
                335  
#               340  
#               345
Ile Glu Ala Ile Lys Lys Leu Thr
                350
<210> SEQ ID NO 70
<211> LENGTH: 5648
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 464689.64
<400> SEQUENCE: 70
ggtgtggtgt cggtgtcggc agcatccccg gcgccctgct gcggtcgccg cg
#agcctcgg     60
cctctgtctc ctccccctcc cgcccttacc tccacgcggg accgcccgcg cc
#agtcaact    120
cctcgcactt tgcccctgct tggcagcgga taaaaggggg ctgaggaaat ac
#cggacacg    180
gtcacccgtt gccagctcta gcctttaaat tcccggctcg gggacctcca cg
#caccgcgg    240
ctagcgccga caaccagcta gcgtgcaagg cgccgcggct cagcgcgtac cg
#gcgggctt    300
cgaaaccgca gtcctccggc gaccccgaac tccgctccgg agcctcagcc cc
#ctggaaag    360
tgatcccggc atcggagagc caagatgccg gcccacttgc tgcaggacga ta
#tctctagc    420
tcctatacca ccaccaccac cattacagcg cctccctcca ggggtcctgc ag
#aatggagg    480
agataagttg gagacgatgc ccctctactt ggaagacgac attcgccctg at
#ataaaaga    540
tgatatatat gaccccacct acaaggataa ggaaggccca agccccaagg tt
#gaatatgt    600
ctggagaaac atcatcctta tgtctctgct acacttggga gccctgtatg gg
#atcacttt    660
gattcctacc tgcaagttct acacctggct ttggggggta ttctactatt tt
#gtcagtgc    720
cctgggcata acagcaggag ctcatcgtct gtggagccac cgctcttaca aa
#gctcggct    780
gcccctacgg ctctttctga tcattgccaa cacaatggca ttccagaatg at
#gtctatga    840
atgggctcgt gaccaccgtg cccaccacaa gttttcagaa acacatgctg at
#cctcataa    900
ttcccgacgt ggctttttct tctctcacgt gggttggctg cttgtgcgca aa
#cacccagc    960
tgtcaaagag aaggggagta cgctagactt gtctgaccta gaagctgaga aa
#ctggtgat   1020
gttccagagg aggtactaca aacctggctt gctgatgatg tgcttcatcc tg
#cccacgct   1080
tgtgccctgg tatttctggg gtgaaacttt tcaaaacagt gtgttcgttg cc
#actttctt   1140
gcgatatgct gtggtgctta atgccacctg gctggtgaac agtgctgccc ac
#ctcttcgg   1200
atatcgtcct tatgacaaga acattagccc ccgggagaat atcctggttt ca
#cttggagc   1260
tgtgggtgag ggcttccaca actaccacca ctcctttccc tatgactact ct
#gccagtga   1320
gtaccgctgg cacatcaact tcaccacatt cttcattgat tgcatggccg cc
#ctcggtct   1380
ggcctatgac cggaagaaag tctccaaggc cgccatcttg gccaggatta aa
#agaaccgg   1440
agatggaaac tacaagagtg gctgagtttg gggtccctca ggttcctttt tc
#aaaaacca   1500
gccaggcaga ggttttaatg tctgtttatt aactactgaa taatgctacc ag
#gatgctaa   1560
agatgatgat gttaacccat tccagtacag tattctttta aaattcaaaa gt
#attgaaag   1620
ccaacaactc tgcctttatg atgctaagct gatattattt cttctcttat cc
#tctctctc   1680
ttctaggccc attgtcctcc ttttcacttt attgctatcg ccctcctttc cc
#ttattgcc   1740
tcccaggcaa gcagctggtc agtctttgct cagtgtccag cttccaaagc ct
#agacaacc   1800
tttctgtagc ctaaaacgaa tggtctttgc tccagataac tctctttcct tg
#agctgttg   1860
tgagctttga agtaggtggc ttgagctaga gataaaacag aatcttctgg gt
#agtcccct   1920
gttgattatc ttcagcccag gcttttgcta gatggaatgg aaaagcaact tc
#atttgaca   1980
caaagcttct aaagcaggta aattgtcggg ggagagagtt agcatgtatg aa
#tgtaagga   2040
tgagggaagc gaagcaagag gaacctctcg ccatgatcag acatacagct gc
#ctacctaa   2100
tgaggacttc aagccccacc acatagcatg cttcctttct ctcctggctc gg
#ggtaaaaa   2160
gtggctgcgg tgtttggcaa tgctaattca atgccgcaac atatagttga gg
#ccgaggat   2220
aaagaaagac attttaagtt tgtagtaaaa gtggtctctg ctggggaagg gt
#ttcttttc   2280
ttttttcttt atcacaagga gatttcttag ttcatatatc aagaagtctt ga
#agttgggt   2340
gtttccagaa ttggtaaaaa cagcagctca tggaattttg agtattccat ga
#gctgctca   2400
ttacagttct ttcctctttc tgctctgcca tcttcaggat attggttctt cc
#cctcatag   2460
taataagatg gctgtggcat ttccaaacat ccaaaaaaag ggaaggattt aa
#ggaggtga   2520
agtcgggtca aaaataaaat atatatacat atatacattg cttagaacgt ta
#aactatta   2580
gagtatttcc cttccaaaga gggatgtttg gaaaaaactc tgaaggagag ga
#ggaattag   2640
ttgggatgcc aatttcctct ccactgctgg acatgagatg gagaggctga gg
#gacaggat   2700
ctataggcag cttctaagag cgaacttcac ataggaaggg atctgagaac ac
#gttgccag   2760
gggcttgaga aggttactga gtgagttatt gggagtctta ataaaataaa ct
#agatatta   2820
ggtccattca ttaattagtt ccagtttctc cttgaaatga gtaaaaacta ga
#aggcttct   2880
ctccacagtg ttgtgcccct tcactcattt ttttttgagg agaagggggt ct
#ctgttaac   2940
atctagccta aagtatacaa ctgcctgggg ggcagggtta ggaatctctt ca
#ctaccctg   3000
attcttgatt cctggctcta ccctgtctgt cccttttctt tgaccagatc tt
#tctcttcc   3060
ctgaacgttt tcttctttcc ctggacaggc agcctccttt gtgtgtattc ag
#aggcagtg   3120
atgacttgct gtccaggcag ctccctcctg cacacagaat gctcagggtc ac
#tgaaccac   3180
tgcttctctt ttgaaagtag agctagctgc cactttcacg tggcctccgc ag
#tgtctcca   3240
cctacacccc tgtgctcccc tgccacactg atggctcaag acaaggctgg ca
#aaccctcc   3300
cagaaacatc tctggcccag aaagcctctc tctccctccc tctctcatga gg
#cacagcca   3360
agccaagcgc tcatgttgag ccagtgggcc agccacagag caaaagaggg tt
#tattttca   3420
gtcccctctc tctgggtcag aaccagaggg catgctgaat gccccctgct ta
#cttggtga   3480
gggtgccccg cctgagtcag tgctctcagc tggcagtgca atgcttgtag aa
#gtaggagg   3540
aaacagttct cactgggaag aagcaagggc aagaacccaa gtgcctcacc tc
#gaaaggag   3600
gccctgttcc ctggagtcag ggtgaactgc aaagctttgg ctgagacctg gg
#atttgaga   3660
taccacaaac cctgctgaac acagtgtctg ttcagcaaac taaccagcat tc
#cctacagc   3720
ctagggcaga caatagtata gaagtctgga aaaaaacaaa aacagaattt ga
#gaaccttg   3780
gaccactcct tgtccctgta gctcagtcat caaagcagaa gtcctggctt tg
#ctctataa   3840
agaattggaa atggtacact acccaaacac tcagttcact tgttgagccc ca
#gtgcctgg   3900
aagggaggaa ggcctttctt ctgtgttaat tgccgtagag gctacagggg tt
#agccctgg   3960
actaaaggca tccttgtctt ttgagctatt cacctcagta gaaaaggatc ta
#agggaaga   4020
tcactgtagt ttagttctgt tgaccttgtg cacctacccc ttggaaatgt ct
#gctggtat   4080
ttctaattcc acaggtcatc agatgcctgc ttgataatat ataaacaata aa
#aacaactt   4140
tcacttcttc ctattgtaat cgtgtgccat ggatctgatc tgtaccatga cc
#ctacataa   4200
ggctggatgg cacctcaggc tgagggcccc aatgtatgtg tggctgtggg tg
#tgggtggg   4260
agtgtgtctg ctgagtaagg aacacgattt tcaagattct aaagctcaat tc
#aagtgaca   4320
cattaatgat aaactcagat ctgatcaaga gtccggattt ctaacagtcc tt
#gctttggg   4380
ggggtgtgct gacaacttag ctcaggtgcc ttacatcttt tctaatcaca gt
#gttgcata   4440
tgagcctgcc ctcactccct ctgcagaatc cctttgcacc tgagacccta ct
#gaagtggc   4500
tggtagaaaa aggggcctga gtggaggatt atcagtatca cgatttgcag ga
#ttcccttc   4560
tgggcttcat tctggaaact tttgttaggg ctgcttttct taagtgccca ca
#tttgatgg   4620
agggtggaaa taatttgaat gtatttgatt tataagtttt tttttttttt tt
#gggttaaa   4680
agatggttgt agcatttaaa atggaaaatt ttctccttgg tttgctagta tc
#ttgggtgt   4740
attctctgta agtgtagctc aaataggtca tcatgaaagg ttaaaaaagc ga
#ggtggcca   4800
tgttatgctg gtggttaagg ccagggcctc tccaaccact gtgccactga ct
#tgctgtgt   4860
gacctctggg caagtcactt aacgtataag gtgcctcagt tttccttctg tt
#aaaatggg   4920
gataataata ctgacctacc tcaaagggca gttttgaggc atgactaatg ct
#ttttagaa   4980
agcattttgg gatccttcag cacaggaatt ctcaagacct gagtattttt ta
#taatagga   5040
atgtccacca tgaacttgat acgtccgtgt gtcccagatg ctgtcattag tc
#tatatggt   5100
tctccaagaa actgaatgaa tccattggag aagcggtgga taactagcca ga
#caaaattt   5160
gagaatacat aaacaacgca ttgccacgga aacatacaga ggatgccttt tc
#tgtgattg   5220
ggtgggattt ttttcccttt ttatgtggga tatagtagtt acttgtgaca ag
#aataattt   5280
tggaataatt tctattaata tcaactctga agctaattgt actaatctga ga
#ttgtggtg   5340
agcagtgacg atgaggagtt gtccagggac agagacgtat atgtgactac cc
#atactccc   5400
agaaacgcca gggatgaggg cgctacaggc ctcaggccct caggtactgt ca
#gttgtccc   5460
atctgcatgg actggatact cagaggtaag taaaccaagc tgtatcttcc ag
#gcttctgg   5520
tttctaaact tcactgaaag aattggatga gacaggatct tccccctcgg tg
#ggattgga   5580
cacccctact cacagtcatg cctgggccct cacttattgc agatctgcct gt
#gaggggag   5640
aatgtgcc                
#                  
#                  
#        5648
<210> SEQ ID NO 71
<211> LENGTH: 56
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 053959.1
<221> NAME/KEY: unsure
<222> LOCATION: 2, 13, 20, 32, 41, 47
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 71
gngaggcaat ganccctctn ccccacctct tncctgccca natctgnctc ct
#agaa         56
<210> SEQ ID NO 72
<211> LENGTH: 580
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1384594.1
<400> SEQUENCE: 72
cttgggtgat ggggcacgga agagggttac aggcaaaggg accagcgttt ct
#aaactctt     60
ggagacacag tgaagaaggt tcatacctgg agtgccaagg ttactgtgtc tc
#cagaaaca    120
catatggacc tcacaaagga cgagtgggga cttcttgatg aggctcagag ac
#tcctgtac    180
cttgaagtga tgctggagaa ctttgccctt gtagcctcac tgggttgtgg cc
#atggaaca    240
gaggatgaag agacaccttc tgaccagaat gtttactcta ggagtgtcac ag
#tcaaaagg    300
caggttcatc caaaacagga gactccagtc ctgtggaaag tgtgtccaag tc
#ctaaagat    360
aattttggat ctagctgaat ctcctagggc aggaaacata cttgggttcg gg
#agatgtac    420
aaacctggca caaggacaag aaggcttaac agtgcaaaga aaaaccttga ta
#aggggcaa    480
tggacagagc ctcaaaaatg tggaagtgag gaccctagca tgtaagtcga tg
#gaagccct    540
ttcgggaatt gggagggttt ggaaagggac cctccagacc     
#                  
#   580
<210> SEQ ID NO 73
<211> LENGTH: 2572
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 021667CB1
<400> SEQUENCE: 73
gtgcgtaaca cacatcaaga cagaacctgt tgccattttc agccaccaga gt
#gaaacgac     60
tgcccctcct ccggccccga cccaggccct ccctgagttc accagtatat tc
#agctcaca    120
ccagaccgca gctccagagg tgaacaatat tttcatcaaa caagaacttc ct
#acaccaga    180
tcttcatctt tctgtcccta cccagcaggg ccacctgtac cagctactga at
#acaccgga    240
tctagatatg cccagttcta caaatcagac agcagcaatg gacactctta at
#gtttctat    300
gtcagctgcc atggcaggcc ttaacacaca cacctctgct gttccgcaga ct
#gcagtgaa    360
acaattccag ggcatgcccc cttgcacata cacaatgcca agtcagtttc tt
#ccacaaca    420
ggccacttac tttcccccgt caccaccaag ctcagagcct ggaagtccag at
#agacaagc    480
agagatgctc cagaatttaa ccccacctcc atcctatgct gctacaattg ct
#tctaaact    540
ggcaattcac aatccaaatt tacccaccac cctgccagtt aactcacaaa ac
#atccaacc    600
tgtcagatac aatagaagga gtaaccccga tttggagaaa cgacgcatcc ac
#tactgcga    660
ttaccctggt tgcacaaaag tttataccaa gtcttctcat ttaaaagctc ac
#ctgaggac    720
tcacactggt gaaaagccat acaagtgtac ctgggaaggc tgcgactgga gg
#ttcgcgcg    780
atcggatgag ctgacccgcc actaccggaa gcacacaggc gccaagccct tc
#cagtgcgg    840
ggtgtgcaac cgcagcttct cgcgctctga ccacctggcc ctgcatatga ag
#aggcacca    900
gaactgagca ctgcccgtgt gacccgttcc aggtcccctg ggctccctca aa
#tgacagac    960
ctaactattc ctgtgtaaaa acaacaaaaa caaacaaaag caagaaaacc ac
#aactaaaa   1020
ctggaaatgt atattttgta tatttgagaa aacagggaat acattgtatt aa
#taccaaag   1080
tgtttggtca ttttaagaat ctggaatgct tgctgtaatg tatatggctt ta
#ctcaagca   1140
gatctcatct catgacaggc agccacgtct caacatgggt aaggggtggg gg
#tggagggg   1200
agtgtgtgca gcgtttttac ctaggcacca tcatttaatg tgacagtgtt ca
#gtaaacaa   1260
atcagttggc aggcaccaga agaagaatgg attgtatgtc aagattttac tt
#ggcattga   1320
gtagtttttt tcaatagtag gtaattcctt agagatacag tatacctggc aa
#ttcacaaa   1380
tagccattga acaaatgtgt gggtttttaa aaattatata catatatgag tt
#gcctatat   1440
ttgctattca aaattttgta aatatgcaaa tcagctttat aggtttatta ca
#agtttttt   1500
aggattcttt tggggaagag tcataattct tttgaaaata accatgaata ca
#cttacagt   1560
taggatttgt ggtaaggtac ctctcaacat taccaaaatc atttctttag ag
#ggaaggaa   1620
taatcattca aatgaacttt aaaaaagcaa atttcatgca ctgattaaaa ta
#ggattatt   1680
ttaaatacaa aaggcatttt atatgaatta taaactgaag agcttaaaga ta
#gttacaaa   1740
atacaaaagt tcaacctctt acaataagct aaacgcaatg tcatttttaa aa
#agaaggac   1800
ttagggtgtc gttttcacat atgacaatgt tgcatttatg atgcagtttc aa
#gtaccaaa   1860
acgttgaatt gatgatgcag ttttcatata tcgagatgtt cgctcgtgca gt
#actgttgg   1920
ttaaatgaca atttatgtgg attttgcatg taatacacag tgagacacag ta
#attttatc   1980
taaattacag tgcagtttag ttaatctatt aatactgact cagtgtctgc ct
#ttaaatat   2040
aaatgatatg ttgaaaactt aaggaagcaa atgctacata tatgcaatat aa
#aatagtaa   2100
tgtgatgctg atgctgttaa ccaaagggca gaataaataa gcaaaatgcc aa
#aaggggtc   2160
ttaattgaaa tgaaaattta attttgtttt taaaatattg tttatcttta tt
#tattttgt   2220
ggtaatatag taagtttttt tagaagacaa ttttcataac ttgataaatt at
#agttttgt   2280
ttgttagaaa agttgctctt aaaagatgta aatagatgac aaacgatgta aa
#taattttg   2340
taagaggctt caaaatgttt atacgtggaa acacacctac atgaaaagca ga
#aatcggtt   2400
gctgttttgc ttctttttcc ctcttatttt tgtattgtgg tcatttccta tg
#caaataat   2460
ggagcaaaca gctgtatagt tgtagaattt tttgagagaa tgagatgttt at
#atattaac   2520
gacaattttt tttttggaaa ataaaaagtg cctaaaagac aaaaaaaaaa aa
#           2572
<210> SEQ ID NO 74
<211> LENGTH: 219
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 021667CD1
<400> SEQUENCE: 74
Met Pro Ser Ser Thr Asn Gln Thr Ala Ala Me
#t Asp Thr Leu Asn
  1               5 
#                 10 
#                 15
Val Ser Met Ser Ala Ala Met Ala Gly Leu As
#n Thr His Thr Ser
                 20 
#                 25 
#                 30
Ala Val Pro Gln Thr Ala Val Lys Gln Phe Gl
#n Gly Met Pro Pro
                 35 
#                 40 
#                 45
Cys Thr Tyr Thr Met Pro Ser Gln Phe Leu Pr
#o Gln Gln Ala Thr
                 50 
#                 55 
#                 60
Tyr Phe Pro Pro Ser Pro Pro Ser Ser Glu Pr
#o Gly Ser Pro Asp
                 65 
#                 70 
#                 75
Arg Gln Ala Glu Met Leu Gln Asn Leu Thr Pr
#o Pro Pro Ser Tyr
                 80 
#                 85 
#                 90
Ala Ala Thr Ile Ala Ser Lys Leu Ala Ile Hi
#s Asn Pro Asn Leu
                 95 
#                100 
#                105
Pro Thr Thr Leu Pro Val Asn Ser Gln Asn Il
#e Gln Pro Val Arg
                110  
#               115  
#               120
Tyr Asn Arg Arg Ser Asn Pro Asp Leu Glu Ly
#s Arg Arg Ile His
                125  
#               130  
#               135
Tyr Cys Asp Tyr Pro Gly Cys Thr Lys Val Ty
#r Thr Lys Ser Ser
                140  
#               145  
#               150
His Leu Lys Ala His Leu Arg Thr His Thr Gl
#y Glu Lys Pro Tyr
                155  
#               160  
#               165
Lys Cys Thr Trp Glu Gly Cys Asp Trp Arg Ph
#e Ala Arg Ser Asp
                170  
#               175  
#               180
Glu Leu Thr Arg His Tyr Arg Lys His Thr Gl
#y Ala Lys Pro Phe
                185  
#               190  
#               195
Gln Cys Gly Val Cys Asn Arg Ser Phe Ser Ar
#g Ser Asp His Leu
                200  
#               205  
#               210
Ala Leu His Met Lys Arg His Gln Asn
                215
<210> SEQ ID NO 75
<211> LENGTH: 5325
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 224855.4
<221> NAME/KEY: unsure
<222> LOCATION: 1500-1699
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 75
acctcgcact ctcagtttca ccgctcgatc ttgggaccca ccgctgccct ca
#gctccgag     60
tccagggcga gtgcagagca gagcgggcgg aggaccccgg gcgcgggcgc gg
#acggcacg    120
cggggcatga acctggaggg cggcggccga ggcggagagt tcggcatgag cg
#cggtgagc    180
tgcggcaacg ggaagctccg ccagtggctg atcgaccaga tcgacagcgg ca
#agtacccc    240
gggctggtgt gggagaacga ggagaagagc atcttccgca tcccctggaa gc
#acgcgggc    300
aagcaggact acaaccgcga ggaggacgcc gcgctcttca aggcttgggc ac
#tgtttaaa    360
ggaaagttcc gagaaggcat cgacaagccg gaccctccca cctggaagac gc
#gcctgcgg    420
tgcgctttga acaagagcaa tgactttgag gaactggttg agcggagcca gc
#tggacatc    480
tcagacccgt acaaagtgta caggattgtt cctgagggag ccaaaaaagg ag
#ccaagcag    540
ctcaccctgg aggacccgca gatgtccatg agccacccct acaccatgac aa
#cgccttac    600
ccttcgctcc cagcccaggt tcacaactac atgatgccac ccctcgaccg aa
#gctggagg    660
gactacgtcc cggatcagcc acacccggaa atcccgtacc aatgtcccat ga
#cgtttgga    720
ccccgcggcc accactggca aggcccagct tgtgaaaatg gttgccaggt ga
#caggaacc    780
ttttatgctt gtgccccacc tgagtcccag gctcccggag tccccacaga gc
#caagcata    840
aggtctgccg aagccttggc gttctcagac tgccggctgc acatctgcct gt
#actaccgg    900
gaaatcctcg tgaaggagct gaccacgtcc agccccgagg gctgccggat ct
#cccatgga    960
catacgtatg acgccagcaa cctggaccag gtcctgttcc cctacccaga gg
#acaatggc   1020
cagaggaaaa acattgagaa gctgctgagc cacctggaga ggggcgtggt cc
#tctggatg   1080
gcccccgacg ggctctatgc gaaaagactg tgccagagca ggatctactg gg
#acgggccc   1140
ctggcgctgt gcaacgaccg gcccaacaaa ctggagagag accagacctg ca
#agctcttt   1200
gacacacagc agttcttgtc agagctgcaa gcgtttgctc accacggccg ct
#ccctgcca   1260
agattccagg tgactctatg ctttggagag gagtttccag accctcagag gc
#aaagaaag   1320
ctcatcacag ctcacgtaga acctctgcta gccagacaac tatattattt tg
#ctcaacaa   1380
aacagtggac atttcctgag gggctacgat ttaccagaac acatcagcaa tc
#cagaagat   1440
taccacagat ctatccgcca ttcctctatt caagaatgaa aaatgtcaag at
#gagtgggn   1500
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1560
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1620
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn
#nnnnnnnn   1680
nnnnnnnnnn nnnnnnnnnc attgtaaata tttgacttta gtgaaagcgt cc
#aattgact   1740
gcgcctctta ctgttttgag gaactcagaa gtggagattt cagttcagcg gt
#tgaggaga   1800
attgcggcga gacaagcatg gaaaatcagt gacatctgat tggcagatga gc
#ttatttca   1860
aaaggaaggg tggctttgca ttttcttgtg ttctgtagac tgccatcatt ga
#tgatcact   1920
gtgaaaattg accaagtgat gtgtttacat ttactgaaat gcgctcttta at
#ttgttgta   1980
gattaggtct tgctggaaga cagagaaaac ttgcctttca gtattgacac tg
#actagagt   2040
gatgactgct tgtaggtatg tctgtgccat ttctcaggga agtaagatgt aa
#attgaaga   2100
agcctcacac gtaaaagaaa tgtattaatg tatgtaggag ctgcagttct tg
#tggaagac   2160
acttgctgag tgaaggaaat gaatctttga ctgaagccgt gcctgtagcc tt
#ggggaggc   2220
ccatccccca cctgccagcg gtttcctggt gtgggtccct ctgccccacc ct
#ccttccca   2280
ttggctttct ctccttggcc tttcctggaa gccagttagt aaacttccta tt
#ttcttgag   2340
tcaaaaaaca tgagcgctac tcttggatgg gacatttttg tctgtcctac aa
#tctagtaa   2400
tgtctaagta atggttaagt tttcttgttt ctgcatcttt ttgaccctca tt
#ctttagag   2460
atgctaaaat tcttcgcata aagaagaaga aattaaggaa cataaatctt aa
#tacttgaa   2520
ctgttgccct tctgtccaag tacttaacta tctgttccct tcctctgtgc ca
#cgctcctc   2580
tgtttgtttg gctgtccagc gatcagccat ggcgacacta aaggaggagg ag
#ccggggac   2640
tcccaggctg gagagcactg ccaggaccca ccactggaag caggatggag ct
#gactacgg   2700
aactgcacac tcagtgggct gtttctgctt atttcatctg ttctatgctt cc
#tcgtgcca   2760
attatagttt gacagggcct taaaattact tggctttttc caaatgcttc ta
#tttataga   2820
atcccaaaga cctccacttg cttaagtata cctatcactt acatttttgt gg
#ttttgaga   2880
aagtacagca gtagactggg gcgtcacctc caggccgttt ctcatactac ag
#gatattta   2940
ctattactcc caggatcagc agaagattgc gtagctctca aatgtgtgtt cc
#tgcttttc   3000
taatggatat tttaaattca ttcaacaagc acctagtaag tgcctgctgt at
#ccctacat   3060
tacacagttc agcctttatc aagcttagtg agcagtgagc actgaaacat ta
#ttttttaa   3120
tgtttaaaaa gtttctaata ttaaagtcag aatattaata caattaatat ta
#atattaac   3180
tacagaaaag acaaacagta gagaacagca aaaaaataaa aaggatctcc tt
#ttttccca   3240
gcccaaattc tcctctctaa aagtgtccac aagaaggggt gtttattctt cc
#aacacatt   3300
tcacttttct gtaaatatac ataaacttaa aaagaaaacc tcatggagtc at
#cttgcaca   3360
cactttcatg cagtgctctt tgtagctaac agtgaagatt tacctcgttc tg
#ctcagagg   3420
ccttgctgtg gagctccact gccatgtacc cagtagggtt tgacatttca tt
#agccatgc   3480
aacatggata tgtattgggc agcagactgt gtttcgtgaa ctgcagtgat gt
#atacatct   3540
tatagatgca aagtattttg gggtatatta tcctaaggga agataaagat ga
#tattaaga   3600
actgctgttt cacggggccc ttacctgtga ccctctttgc tgaagaatat tt
#aaccccac   3660
acagcacttt caaagaagct gtcttggaag tctgtctcag gagcaccctg tc
#ttcttaat   3720
tctccaagcg gatgctccat ttcaattgct ttgtgacttc ttcttctttg tt
#tttttaaa   3780
tattatgctg ctttaacagt ggagctgaat tttctggaaa atgcttcttg gc
#tggggcca   3840
ctacctcctt tcctatcttt acatctatgt gtatgttgac tttttaaaat tc
#tgagtgat   3900
ccagggtatg acctagggaa tgaactagct atgaaatact cagggttagg aa
#tcctagca   3960
cttgtctcag gactctgaaa aggaacggct tcctcattcc ttgtcttgat aa
#agtggaat   4020
tggcaaacta gaatttagtt tgtactcagt ggacagtgct gttgaagatt tg
#aggacttg   4080
ttaaagagca ctgggtcata tggaaaaaat gtatgtgtct cccaggtgca tt
#tcttggtt   4140
tatgtcttgt tcttgagatt ttgtatattt aggaaaacct caagcagtaa tt
#aatatctc   4200
ctggaacact atagagaacc aagtgaccga ctcatttaca actgaaacct ag
#gaagcccc   4260
tgagtcctga gcgaaaacag gagagttagt cgccctacag gaaacccagc ta
#gactattg   4320
ggtatgaact aaaaagagac tgtgccatgg tgagaaaaat gtaaaatcct ac
#agtggaat   4380
gagcagccct tacagtgttg ttaccaccaa gggcaggtag gtattagtgt tt
#gaaaaagc   4440
tggtctttga gcgagggcat aaatacagct agccccaggg gtggaacaac tc
#tgggagtc   4500
ttgggtactc gcacctcttg gctttgttga tgctccgcca ggaaggccac tt
#gtgtgtgc   4560
gtgtcagtta cttttttagt aacaattcag atccagtgta aacttccgtt ca
#ttgctctc   4620
cagtcacatg cccccacttc cccacaggtg aaagtttttc tgaaagtgtt gg
#gattggtt   4680
aaggtcttta tttgtattac gtatctcccc aagtcctctg tggccagctg cg
#tctgtctg   4740
aatggtgcgt gaaggctctc agaccttaca caccattttg taagttatgt tt
#tacatgcc   4800
ccgtttttga gactgatctc gatgcaggtg gatctccttg agatcctgat ag
#cctgttac   4860
aggaatgaag taaaggtcag ttttttttgt attgattttc acagctttga gg
#aacatgca   4920
taagaaatgt agctgaagta gagggggcgt gagagaaggg ccaggccggc ag
#gccaaccc   4980
tcctccaatg gaaattcccg tgttgcttca aactgagaca gatgggactt aa
#caggcaat   5040
ggggtccact tccccctctt cagcatcccc cgtaccccac tttctgctga aa
#gaactgcc   5100
agcaggtagg accccagagg cccccaaatg aaagcttgaa tttcccctac tg
#gctctgcg   5160
ttttgctgag atctgtagga aaggatgctt cacaaactga ggtagataat gc
#tatgctgt   5220
cgttggtata catcatgaat ttttatgtaa attgctctgc aaagcaaatt ga
#tatgtttg   5280
ataaatttat gtttttaggt aaataaaaac ttttaaaaag ttgtt   
#                5325
<210> SEQ ID NO 76
<211> LENGTH: 2278
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1518310CB1
<400> SEQUENCE: 76
ggctcctctc cccgactcgg agcccctcgg cggcgcccgg cccaggaccc gc
#ctaggagc     60
gcaggagccc cagcgcagag accccaacgc cgagaccccc gccccggccc cg
#ccgcgctt    120
cctcccgacg cagagcaaac cgcccagagt agaagatgga ttggggcacg ct
#gcagacga    180
tcctgggggg tgtgaacaaa cactccacca gcattggaaa gatctggctc ac
#cgtcctct    240
tcatttttcg cattatgatc ctcgttgtgg ctgcaaagga ggtgtgggga ga
#tgagcagg    300
ccgactttgt ctgcaacacc ctgcagccag gctgcaagaa cgtgtgctac ga
#tcactact    360
tccccatctc ccacatccgg ctatgggccc tgcagctgat cttcgtgtcc ac
#gccagcgc    420
tcctagtggc catgcacgtg gcctaccgga gacatgagaa gaagaggaag tt
#catcaagg    480
gggagataaa gagtgaattt aaggacatcg aggagatcaa aacccagaag gt
#ccgcatcg    540
aaggctccct gtggtggacc tacacaagca gcatcttctt ccgggtcatc tt
#cgaagccg    600
ccttcatgta cgtcttctat gtcatgtacg acggcttctc catgcagcgg ct
#ggtgaagt    660
gcaacgcctg gccttgtccc aacactgtgg actgctttgt gtcccggccc ac
#ggagaaga    720
ctgtcttcac agtgttcatg attgcagtgt ctggaatttg catcctgctg aa
#tgtcactg    780
aattgtgtta tttgctaatt agatattgtt ctgggaagtc aaaaaagcca gt
#ttaacgca    840
ttgcccagtt gttagattaa gaaatagaca gcatgagagg gatgaggcaa cc
#cgtgctca    900
gctgtcaagg ctcagtcgct agcatttccc aacacaaaga ttctgacctt aa
#atgcaacc    960
atttgaaacc cctgtaggcc tcaggtgaaa ctccagatgc cacaatggag ct
#ctgctccc   1020
ctaaagcctc aaaacaaagg cctaattcta tgcctgtctt aattttcttt ca
#cttaagtt   1080
agttccactg agaccccagg ctgttagggg ttattggtgt aaggtacttt ca
#tattttaa   1140
acagaggata tcggcatttg tttctttctc tgaggacaag agaaaaaagc ca
#ggttccac   1200
agaggacaca gagaaggttt gggtgtcctc ctggggttct ttttgccaac tt
#tccccacg   1260
ttaaaggtga acattggttc tttcatttgc tttggaagtt ttaatctcta ac
#agtggaca   1320
aagttaccag tgccttaaac tctgttacac tttttggaag tgaaaacttt gt
#agtatgat   1380
aggttatttt gatgtaaaga tgttctggat accattatat gttccccctg tt
#tcagaggc   1440
tcagattgta atatgtaaat ggtatgtcat tcgctactat gatttaattt ga
#aatatggt   1500
cttttggtta tgaatacttt gcagcacagc tgagaggctg tctgttgtat tc
#attgtggt   1560
catagcacct aacaacattg tagcctcaat cgagtgagac agactagaag tt
#cctagtga   1620
tggcttatga tagcaaatgg cctcatgtca aatatttaga tgtaattttg tg
#taagaaat   1680
acagactgga tgtaccacca actactacct gtaatgacag gcctgtccaa ca
#catctccc   1740
ttttccatga ctgtggtagc cagcatcgga aagaacgctg atttaaagag gt
#cgcttggg   1800
aattttattg acacagtacc atttaatggg gaggacaaaa tggggcaggg ga
#gggagaag   1860
tttctgtcgt taaaaacaga tttggaaaga ctggactcta aattctgttg at
#taaagatg   1920
agctttgtct acttcaaaag tttgtttgct taccccttca gcctccaatt tt
#ttaagtga   1980
aaatataact aataacatgt gaaaagaata gaagctaagg tttagataaa ta
#ttgagcag   2040
atctatagga agattgaacc tgaatattgc cattatgctt gacatggttt cc
#aaaaaatg   2100
gtactccaca tacttcagtg agggtaagta ttttcctgtt gtcaagaata gc
#attgtaaa   2160
agcattttgt aataataaag aatagcttta atgatatgct tgtaactaaa at
#aattttgt   2220
aatgtatcaa atacatttaa aacattaaaa tataatctct atagtaacga ac
#agaaaa     2278
<210> SEQ ID NO 77
<211> LENGTH: 226
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1518310CD1
<400> SEQUENCE: 77
Met Asp Trp Gly Thr Leu Gln Thr Ile Leu Gl
#y Gly Val Asn Lys
  1               5 
#                 10 
#                 15
His Ser Thr Ser Ile Gly Lys Ile Trp Leu Th
#r Val Leu Phe Ile
                 20 
#                 25 
#                 30
Phe Arg Ile Met Ile Leu Val Val Ala Ala Ly
#s Glu Val Trp Gly
                 35 
#                 40 
#                 45
Asp Glu Gln Ala Asp Phe Val Cys Asn Thr Le
#u Gln Pro Gly Cys
                 50 
#                 55 
#                 60
Lys Asn Val Cys Tyr Asp His Tyr Phe Pro Il
#e Ser His Ile Arg
                 65 
#                 70 
#                 75
Leu Trp Ala Leu Gln Leu Ile Phe Val Ser Th
#r Pro Ala Leu Leu
                 80 
#                 85 
#                 90
Val Ala Met His Val Ala Tyr Arg Arg His Gl
#u Lys Lys Arg Lys
                 95 
#                100 
#                105
Phe Ile Lys Gly Glu Ile Lys Ser Glu Phe Ly
#s Asp Ile Glu Glu
                110  
#               115  
#               120
Ile Lys Thr Gln Lys Val Arg Ile Glu Gly Se
#r Leu Trp Trp Thr
                125  
#               130  
#               135
Tyr Thr Ser Ser Ile Phe Phe Arg Val Ile Ph
#e Glu Ala Ala Phe
                140  
#               145  
#               150
Met Tyr Val Phe Tyr Val Met Tyr Asp Gly Ph
#e Ser Met Gln Arg
                155  
#               160  
#               165
Leu Val Lys Cys Asn Ala Trp Pro Cys Pro As
#n Thr Val Asp Cys
                170  
#               175  
#               180
Phe Val Ser Arg Pro Thr Glu Lys Thr Val Ph
#e Thr Val Phe Met
                185  
#               190  
#               195
Ile Ala Val Ser Gly Ile Cys Ile Leu Leu As
#n Val Thr Glu Leu
                200  
#               205  
#               210
Cys Tyr Leu Leu Ile Arg Tyr Cys Ser Gly Ly
#s Ser Lys Lys Pro
                215  
#               220  
#               225
Val
<210> SEQ ID NO 78
<211> LENGTH: 445
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 098533.1
<221> NAME/KEY: unsure
<222> LOCATION: 406, 413
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 78
ggcaaggcca gtggctccgc cgctgggtcc gctgcccttt actttcagtc ag
#cctggggc     60
ggtgtcctct cctacagaag tcctgagcgg ccttccacgt ggccggccct cg
#agtccgtc    120
cgccccgacc cttcgtagtc ccgaaaccgc ccccctggct aaggtctctt tc
#ccccaggc    180
tgcttccttt ctccttgctt ttttcccacc ttttttgtta ctgaccaagg tg
#aatccttt    240
ccttaacaaa tcggcttaaa gcaagctaac tcagttacaa tacagtagaa ct
#gtacttaa    300
aaaaaaaaga aacgtgaatc taaccgttac gtcagaaaaa aaaatcttaa at
#tagacgaa    360
tttcaaacag tgcttaacac atcgcagagc atttgcagtt atttgnatca cg
#ncttttga    420
aacaccttta tgctgtaaat agagc          
#                  
#              445
<210> SEQ ID NO 79
<211> LENGTH: 5227
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 410785.1
<221> NAME/KEY: unsure
<222> LOCATION: 4928, 4934, 4939, 4944, 4973, 4
#992
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 79
cacaagacct ggaattgaca ggactcccaa ctagtacaat gacagaagat aa
#ggtcactg     60
ggaccctggt tttcactgtc atcactgctg tgctgggttc cttccagttt gg
#atatgaca    120
ttggtgtgat caatgcacct caacaggtaa taatatctca ctatagacat gt
#tttgggtg    180
ttccactgga tgaccgaaaa gctatcaaca actatgttat caacagtaca ga
#tgaactgc    240
ccacaatctc atactcaatg aacccaaaac caaccccttg ggctgaggaa ga
#gactgtgg    300
cagctgctca actaatcacc atgctctggt ccctgtctgt atccagcttt gc
#agttggtg    360
gaatgactgc atcattcttt ggtgggtggc ttggggacac acttggaaga at
#caaagcca    420
tgttagtagc aaacattctg tcattagttg gagctctctt gatggggttt tc
#aaaattgg    480
gaccatctca tatacttata attgctggaa gaagcatatc aggactatat tg
#tgggctaa    540
tttcaggcct ggttcctatg tatatcggtg aaattgctcc aaccgctctc ag
#gggagcac    600
ttggcacttt tcatcagctg gccatcgtca cgggcattct tattagtcag at
#tattggtc    660
ttgaatttat cttgggcaat tatgatctgt ggcacatctt gcttggcctg tc
#tggtgtgc    720
gagccatcct tcagtctctg ctactctttt tctgtccaga aagccccaga ta
#cctttaca    780
tcaagttaga tgaggaagtc aaagcaaaac aaagcttgaa aagactcaga gg
#atatgatg    840
atgtcaccaa agatattaat gaaatgagaa aagaaagaga agaagcatcg ag
#tgagcaga    900
aagtctctat aattcagctc ttcaccaatt ccagctaccg acagcctatt ct
#agtggcac    960
tgatgctgca tgtggctcag caattttccg gaatcaatgg cattttttac ta
#ctcaacca   1020
gcatttttca gacggctggt atcagcaaac ctgtttatgc aaccattgga gt
#tggcgctg   1080
taaacatggt tttcactgct gtctctgtat tccttgtgga gaaggcaggg cg
#acgttctc   1140
tctttctaat tggaatgagt gggatgtttg tttgtgccat cttcatgtca gt
#gggacttg   1200
tgctgctgaa taagttctct tggactgagt tactgtgagc atgatagcca tc
#ttcctctt   1260
tgtcagcttc tttgaaattg ggccaggccc gatcccctgg ttcatggtgg ct
#gagttttt   1320
cagtcaagga ccacgtcctg ctgctttagc aatagctgca ttcagcaatt gg
#acctgcaa   1380
tttcattgta gctctgtgtt tccagtacat tgcggacttc tgtggacctt at
#gtgttttt   1440
cctctttgct ggagtgctcc tggcctttac cctgtttaca ttttttaaag tt
#ccagaaac   1500
caaaggaaag tcttttgagg aaattgctgc agaattccaa aagaagagtg gc
#tcagccca   1560
caggccaaaa gctgctgtag aaatgaaatt cctaggagct acagagactg tg
#taaaaaaa   1620
aaaccctgct ttttgacatg aacagaaaca ataagggaac cgtctgtttt ta
#aatgatga   1680
ttccttgagc attttatatc cacatcttta agtattgttt tatttttatg tg
#ctctcatc   1740
agaaatgtca tcaaatatta ccaaaaaagt atttttttaa gttagagaat at
#atttttga   1800
tggtaagact gtaattaagt aaaccaaaaa ggctagttta ttttgttaaa ct
#aaagggca   1860
ggtggttcta atatttttag ctctgttctt tataacaagg ttcttctaaa at
#tgaagaga   1920
tttcaacata tcattttttt aacacataac tagaaacctg aggatgcaac aa
#atatttat   1980
atatttgaat atcattaaat tggaattttc ttacccatat atcttatgtt aa
#aggagata   2040
tggctagtgg caataagttc catgttaaaa tagacaactc ttccatttat tg
#cactcagc   2100
ttttttcttg agtactagaa tttgtatttt gcttaaaatt ttacttttgt tc
#tgtatttt   2160
catgtggaat ggattataga gtatactaaa aaatgtctat agagaaaaac tt
#tcattttt   2220
ggtaggctta tcaaaatctt tcagcactca gaaaagaaaa ccattttagt tc
#ctttattt   2280
aatggccaaa tggtttttgc aagatttaac actaaaaagg tttcacctga tc
#atatagcg   2340
tgggttatca gttaacatta acatctatta taaaaccatg ttgattccct tc
#tggtacaa   2400
tcctttgagt tatagtttgc tttgcttttt aattgaggac agcctggttt tc
#acatacac   2460
tcaaacatca tgagtcagac atttggtata ttacctcaat tcctaataag tt
#tgatcaat   2520
ctaatgtaag aaaatttgaa gtaaaggatt gatcactttg ttaaaaatat tt
#tctgaatt   2580
attatgtctc aaaataagtt gaaaaggtag ggtttgagga ttcctgagtg tg
#ggcttctg   2640
aaacttcata aatgttcagc ttcagacttt tatcaaaatc cctatttaat tt
#tcctggaa   2700
agactgattg ttttatggtg tgttcctaac ataaaataat cgtctccttt ga
#catttcct   2760
tctttgtctt agctgtatac agattctagc caaactattc tatggccatt ac
#taacacgc   2820
attgtacact atctatctgc ctttacctac ataggcaaat tggaaataca ca
#gatgatta   2880
aacagacttt agcttacagt caattttaca attatggaaa tatagttctg at
#gggtccca   2940
aaagcttagc agggtgctaa cgtatctcta ggctgttttc tccaccaact gg
#agcactga   3000
tcaatccttc ttatgtttgc tttaatgtgt attgaagaaa agcacttttt aa
#aaagtact   3060
ctttaagagt gaaataatta aaaaccactg aacatttgct ttgttttcta aa
#gttgttca   3120
catatatgta atttagcagt ccaaagaaca agaaattgtt tcttttcagt gt
#gatttgtt   3180
tttcatttgg gccaatttgg gataaactat tttcacttgg gatttcagga ta
#cagtcaaa   3240
ataagcttaa ataactcagg acatctttgt gctaaactgt gaactctgga ca
#aaaataga   3300
gagtctctga atagggcagg agcaggaaaa tggctcctgg gtggctcttg ta
#tgcttctt   3360
caggatgctg atggcctttg ggaagcccag tgtaaacaat gataaaggag ct
#taacactt   3420
ttataggtga tacatgtgat ttaatcaaat cactattcct gatctcattt ac
#taacagaa   3480
taaagtggta aatatttaaa ttaaaaattc caaagaccac ttttaagtgc tt
#cttcacta   3540
ttttgactgg cccacaaaca ccagaaattc agaccctgaa gttttctgcc tc
#agagaaat   3600
ttaagtacct tatattgttc cccttctaca actttttcct tgcagagata ca
#tgtgagtt   3660
gacaagaaac attaaaggga aataagaaga agctgataaa gctttatagg ag
#gaccaaag   3720
aactagctta ctataataaa aaaattttaa gtcttcaagg gtatacatca ta
#ataaaaaa   3780
taaaattgac agtaattaat taaatttaat cccagggaaa ttagatgtga at
#ttgaacac   3840
ctaactttcc atgtactctc tcatttttgt ggaagtgttt ctatactcta at
#gcctttac   3900
aaatgtgatt tttctcttag ctcgtttgaa gtatgagaat tagagttttt gg
#tctcgcat   3960
tcacctgcta catctaggat tgcccactgt catgactccc agggaaaagg tc
#ctatctta   4020
gcttcctcct ccctactttc ctctacatgg tcagcactgt aatgtagcta ag
#atatagta   4080
aggcattgct ccctccccct acacttcaag gagttcacag tctaatgggg ag
#ttcaggaa   4140
ggccagagta ttaatatccc catctgtgtc ttttgccttc catgaacctg gg
#ttttgagc   4200
cctctcttgt aaaatgggca cagtaatatt acctacctca gggagttgtg ag
#gattaaac   4260
atgaagtgct aagcatagtg cctggtacaa agacagtact caataagtgc ta
#cctaaaac   4320
tagtattcat agcaatactg ttaggataaa gaattatcat atatgagata gt
#tccaaatt   4380
tttgtttttt taaaaaaaaa agagttttat aagttcaaga taatattttc tt
#acttcaaa   4440
gaaacaatct cacaacgagg gaatggtaag aatcaggaga gattactaac ct
#ggcagagg   4500
agctatcaca atcacaaagg tggtttttcc agggcacggc tcatccatta ca
#ctccagat   4560
gtgctgaccc ctgccatttc cccaaatgtg ggaaacccaa ctgcacagtt tg
#tagtagtg   4620
ggtgactgtg ttcatgcgct cccctgaaaa caacaacaac aacaaagaat ca
#gaagagat   4680
actaggctat ctaattccta aatccaaacc tgatatttct aagtaagatt at
#aagaattt   4740
ttattgcatt ttctgaattt gcttttgcat aagttatgtt atttttacag gg
#tctatatt   4800
actattattt cttagaataa tactaattat aaaacaaaat tctgtatatc ac
#atttaaat   4860
gtaatttaat agaattataa tcacaagaca agaccaaact ttgtgtgata at
#cctcagta   4920
attgcganag gggnatatnc atgnaggcca gcatacatgc ataaactact tc
#ntattgct   4980
aggctaattg tnccatatgt agcaaataca gcagttcagc aatatcttgt gc
#ttacaggg   5040
tcctaagcag aggtgatgag tcaagtgtaa atatatatat atattttttt at
#ttttcatg   5100
gcaattgtat attagtaacc tggggagaaa aggtttattg acaaccactc tg
#atccatct   5160
gctgctattt ttactgctaa tttggtgcac attaaaaaga atgatcatga aa
#agatatta   5220
ctttgag                 
#                  
#                  
#        5227
<210> SEQ ID NO 80
<211> LENGTH: 1199
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1089210.1
<400> SEQUENCE: 80
aaggaaacag gatctgctta gtgaaagaag tggcaagcaa tggatcccaa at
#atcagcgt     60
gtagagctaa atgatggtca cttcatgccc gtattgggat ttggcaccta tg
#cacctcca    120
gaggttccga ggaacagagc tgtggaggtc accaaattag caatagaagc tg
#gcttccgc    180
catattgatt ctgcttattt atacaataat gaggagcagg ttggactggc ca
#tccgaagc    240
aagattgcag atggcagtgt gaagagagaa gacatattct acacttcaaa gc
#tttggtgc    300
actttctttc aaccacagat ggtccaacca gccttggaaa gctcactgaa aa
#aactttaa    360
ctggactatg ttgacctcta tcttcttcat ttcccaatgg ctctcaagcc ag
#gtgagacg    420
ccactaccaa aagatgaaaa tggaaaagta atattcgaca cagtggatct ct
#ctgccaca    480
tgggaggtca tggagaagtg taaggatgca ggattggcca agtccatcgg gg
#tgtcaaac    540
ttcaactgca ggcagctgga gatgatcctc aacaagccag gactcaagta ca
#agcctgtc    600
tgcaaccagg tagaatgtca tccttacctc aaccagagca aactgctgga tt
#tctgcaag    660
tcaaaagaca ttgttctggt tgcccacagt gctctgggaa cccaacgaca ta
#aactatgg    720
gtggacccaa actccccagt tcttttggag gacccagttc tttgtgcctt ag
#caaagaaa    780
cacaaacgaa ccccagccct gattgccctg cgctaccagc tgcagcgtgg gg
#ttgtggtc    840
ctggccaaga gctacaatga gcagcggatc agagagaaca tccaggtttt tg
#aattccag    900
ttgacatcag agggatatga aagttctaga tggtctaaac agaaattatc ga
#tatgttgt    960
catggatttt cttatggacc atcctgatta tccattttca gatgaatatt ag
#catagagg   1020
gtgttgcacg acatctagca gaaggccctg tgtgtggatg gtgatgcaga gg
#atgtctct   1080
atgctggtga ctggacacac ggcctctggt taaatccctc ccctcctgct tg
#gcaacttc   1140
agctagctag atatatccat ggtccagaaa gcaaacataa taaattttta tc
#ttgaagt    1199
<210> SEQ ID NO 81
<211> LENGTH: 807
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 333453.6
<221> NAME/KEY: unsure
<222> LOCATION: 32, 35, 166
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 81
gaacaagact ccgtcaaaaa aaaaaaaatt gnttnggaac ctggttctgg aa
#tcggcttg     60
aatcattcca gcctttcata cttatagctg tgtggccttg ggcaacttac tt
#aactttat    120
ctataaaatg gggacaatag cttctcttcc tcatagcatg gttgtnagga tt
#agatgaag    180
ttctcagtgg gcattcctgt aagctctagg gagatgttag ctgttactaa tg
#tttggcac    240
catgacaaat gattagatgg aactttggag caattaataa tacaaattaa aa
#taagggga    300
caaagccagc caaggagaaa agtaaaagat ccaagaatag gggcatataa tg
#gctttatt    360
tttccttgag tctagtgtga ttctaacacc tgagtccaac cattcattat gt
#aggtccgt    420
atcctctcct gttcttttcc tctcatcctg ggtaccagac agaaggaaaa ac
#tgaaacaa    480
atgatgagtc ggctcccttt ctttccttcc atggtggcta tttaggtggc tg
#atttatga    540
agaacctgga tttcagggtg ttcctttcat cctggaacct ggtgaatacc ct
#gacttgtc    600
cttctgggat acagaagcag cgtacattgg atccatgcgg cctctgaaaa tg
#gtaaaaat    660
gaaatccaaa tgtccttgtg gtgattcttt gtcagcttga cgtggtaatt ca
#cagggtgt    720
gactttgaag caataaagct gacttttaag acacaaattt gtagtagatt gg
#acctattg    780
ctcaatacaa atcatggaaa gcataac          
#                  
#            807
<210> SEQ ID NO 82
<211> LENGTH: 764
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 365070.1
<400> SEQUENCE: 82
acgaagcagc tgactgtgca tcacgcagtc acaatattgt ttttagggtg ag
#ggtggagg     60
actgtgtgtc cgtggattac tcctcctgct ggtggattgc agatgcatta tt
#aggtcata    120
ctggctagaa tgcagctttt ctcccaccat aacatgaaaa cagtgtaaga ac
#atagggtg    180
ctttgtgcat agcccttctc tatgtaagca gccatggcag tcattaaaga ga
#aaggagta    240
gctttgacat taagctcccc agatccctgc tgctcatact tctggcaagg gg
#ttcccctc    300
tctcatgcat gaacaggggc atccaaaata agaagctctc cattctgtgg tg
#gggaaagc    360
ggagagggga gtgggtgaag ctgggaaagt aaaggcagca cgttacagaa gg
#aagaaagg    420
aagccagtaa ctgagggccc actgcctgcc cggccctggg ccaggccctc aa
#cagaagcc    480
atctcattta agccctgcaa ccaatgagat gcacgtcatc attggctctt ac
#agacaaga    540
aaactagact cagaggggct gagtccacat cccagacagc tcactgcaga ca
#caggtgga    600
gtggttccta caagacatcc agttttaaca acaaaagagt tattgaaatg ca
#tgggtaga    660
aattgaacca ggaaaatcag taaagtgatt gtaaaaaaga aggactagct tg
#cctggaga    720
tgatgtttct tgcttttgga aaaaaaaaaa aggtctctga aatt   
#                  
#764
<210> SEQ ID NO 83
<211> LENGTH: 1325
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 365070.3
<221> NAME/KEY: unsure
<222> LOCATION: 1242
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 83
gcgctgctgg cggccccggc ggccgggcgt gctgcctgca agatgtccgt gc
#gccgcggc     60
cggcggccgg cgcggccggg gacccgcctc tcctggctgc tgtgctgcag cg
#ccctgctg    120
tccccggccg cgggctacgt gatcgtgagc tccgtgtctt gggccgtcac ca
#acgaggtg    180
gacgaggagc tggacagcgc ctccactgag gaggctatgc ccgcgctgct ag
#aggattcg    240
ggcagcatct ggcagcaaag cttccccgcc tctgcccaca aggaggacgc gc
#acctgcgg    300
ccccgggcgg gcgccgcccg ggccaggccg ccccccgcgc cacccgggat gt
#tctcctac    360
cggcgcgagg gcggccagac ggccagtgcg cccccgggcc ctagactgcg cg
#ccgccacc    420
gcccgctccc tggcccatgc cagcgtctgg ggctgcctgg ccaccgtgtc ca
#cccacaag    480
aagatccaag gactgccatt tgggaactgc ctgcccgtca gtgatggccc ct
#tcaacaat    540
agcactggga ttcctttctt ctacatgaca gccaaggacc ccgtggtggc tg
#atctgatg    600
aagaacccca tggcctcgct gatgctgcca gaatcagaag gggagttctg ca
#gaaaaaac    660
atcgttgatc cggaagatcc ccgatgtgtc cagttaacgc tcactggcca ga
#tgatcgca    720
gtgtctccag aagaagtaga atttgccaag caagccatgt tttcaaggca cc
#cagggatg    780
aggaagtggc ctcgtcaata tgaatggttc tttatgaaga tgaggataga ac
#atatctgg    840
cttcagaaat ggtatggagg cgcatccagt atttcaaggg aggaatattt ca
#aagcagtt    900
cccagaaagg cctgatggag tgagaagaaa gtccttggtg tttgcactta aa
#taaaaacc    960
ttttcagtga tgcagccaga cagctattga ccactgtctc tttgttgaag gg
#ttcatagc   1020
agccctgcca tccctgcagc agaatgagag agggtgaaca gggaactcta tg
#ctagattt   1080
gagattaaag tggtcatttg cagatctcca actcacacag atacttcacg ta
#gatagtct   1140
ttattccatt gtattcaatc cagactcatc gattcagaaa tcatataata gc
#tggtggtc   1200
aaaatgacat gttgagatca ttgttgtttc attgtttaag gnaaaaaaaa aa
#tgcctgta   1260
cctacaatgt gattgctttg tattgtgaga gtatcttgtt gcttgctctg cc
#aaatgcag   1320
tcttg                 
#                  
#                  
#          1325
<210> SEQ ID NO 84
<211> LENGTH: 3663
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 413921.2
<400> SEQUENCE: 84
gtgcgctagg ctccggactc cgcggcgcag actggcacct cgcagtctcc cc
#aggtccgc     60
ccagcagccg cgcttcagcc agaatactgg gatcttcagt ggcaggagga gt
#aatcagaa    120
gacggagatg aattttaaca ctattttgga ggagattctt attaaaaggt ca
#cagcagaa    180
aaagaagaca tcgcccttaa actacaaaga gagacttttt gtacttacaa ag
#tccatgct    240
aacctactat gagggtcgag cagagaagaa atacagaaag gggtttattg at
#gtttcaaa    300
aatcaagtgt gtggaaatag tgaagaatga tgatggtgtc attccctgtc aa
#aataagta    360
tccatttcag gttgttcatg atgctaacac actttacatt tttgcaccta gt
#ccacaaag    420
cagggacctg tgggtgaaga agttaaaaga agaaataaag aacaacaata at
#attatgat    480
taaatatcat cctaaattct ggacagatgg aagttatcag tgttgtagac aa
#actgaaaa    540
attagcaccc ggatgtgaaa aatacaatct ttttgagagc agtataagaa aa
#gcactacc    600
tccagcacca gaaacaaaga agcgaaggcc tcccccacca attccactag aa
#gaagaaga    660
taatagtgaa gaaatcgttg tagccatgta tgatttccaa gcagcagaag ga
#catgatct    720
cagattagag agaggccaag agtatctcat tttagaaaag aatgatgtgc at
#tggtggag    780
agcaagagat aaatatggga atgaaggata tatcccaagt aattacgtaa cg
#ggaaagaa    840
atcaaacaac ttagatcaat atgaatggta ttgcagaaat atgaatagaa gc
#aaggcaga    900
gcaactcctc cgcagtgaag ataaagaagg tggttttatg gtaagggatt cc
#agtcaacc    960
aggcttgtac acagtctccc tttataccaa gtttggagga gaaggttcat cg
#ggttttag   1020
gcattatcat ataaaggaaa caacaacatc tccaaagaag tattacctag ct
#gaaaaaca   1080
tgcttttggc tccattcctg agattattga atatcataag cacaatgcag ca
#ggacttgt   1140
caccaggctt cggtacccag ttagtgtgaa agggaagaat gcacccacca ct
#gcaggatt   1200
cagctatgag aaatgggaga ttaacccttc agaactgacc tttatgaggg aa
#ttgggaag   1260
tggactgttt ggagtggtga ggcttggcaa atggcgagcc cagtacaaag tc
#gcaatcaa   1320
agctattcgg gaaggtgcaa tgtgcgagga ggactttata gaagaagcta aa
#gtgatgat   1380
gaagctgaca cacccgaagt tagtgcagct ttatggtgtg tgcacccagc ag
#aaaccaat   1440
atacattgtt actgagttca tggaaagggg ctgccttctg aatttcctcc ga
#cagagaca   1500
aggtcatttc agtagagacg tactgctgag catgtgtcag gatgtgtgtg aa
#gggatgga   1560
gtatctggag agaaacagct tcatccacag agatctggct gccagaaatt gt
#ctagtaag   1620
tgaggcggga gttgtaaaag tatctgattt tggaatggcc aggtatgttc tg
#gatgatca   1680
gtacacaagt tcttctggtg ctaagtttcc tgtgaagtgg tgtccacctg aa
#gtgtttaa   1740
ttacagccgc ttcagcagca aatcagatgt ctggtcattt ggtgttttaa tg
#tgggaagt   1800
attcacggaa ggcagaatgc cttttgaaaa atacaccaat tatgaagtgg ta
#accatggt   1860
tactcgaggc caccgactct accagccgaa gttggcgtcc aactatgtgt at
#gaggtgat   1920
gctgagatgt tggcaggaga aaccagaggg aaggccttct ttcgaagatc tg
#ctgcgcac   1980
aatagatgaa ctagttgaat gtgaagaaac ttttggaaga taagtgatgt gt
#gaccagtg   2040
gctcccagat tcccaagcac aaggaaggat gggcattttg tggcttttaa tt
#tattgagc   2100
acttggacat gtagatcatt ttacttatac agtggaaaca cataaataat tt
#gcttctag   2160
accagcctct gtctagactt gcttctagac agaatctccc agagtgtgga aa
#tgttgcct   2220
tagaaatggt gattaaaatc actcatttct attcattcct caggcacttg ag
#tgacagtt   2280
gtttaccagg cactgtgtgt agccccaggg tttggccatt caggggtgca ca
#catgggac   2340
catgttagct gatgccagtt gaaggccagg gtatttggga aggggaaggg ta
#ttagagtc   2400
atgaccaagc aacccttctt tttccctttg acttctacag aaatctgggc ct
#gagacatt   2460
gtctacaatt gggttctaga tacatcagga acccatcttg gataaataaa ta
#cctatctt   2520
ttgttttgaa aacatctcag ttttcaagac tgctcttagt attacatgaa ca
#atatttgt   2580
atgctgtata tattgtaaat atatataata tataaagtta tatatttatg ag
#aaacacga   2640
attgtctttt aattgaaact tttaatcctg tagtatagga gttcaccttc tt
#aggactag   2700
agactgtgcc ttatagctgt taattcattt ccccctgaac atcaaatatg cc
#tgaagaga   2760
agaaagtcta gattcttcta tgagtaacgc cccctcctca ctcaggtaaa tg
#tgtctggg   2820
gatgcctgtc cagcttaacc acgtgcattt ggcctatgta atcctgccca tg
#gtggccgc   2880
agctaatcag aatcagatgg aaaattaaac cgggtaatct acttctaagc ct
#taagaata   2940
ttccctggga cacagacact ataattggaa gtgctgagct ctggggcaga ag
#gatcaggt   3000
gaccttcgca acaaagtttg cccccacctc acataggacc cggaagcagc ct
#gagctgtg   3060
gcggaggatc caggaagcta cggagagaag cagccagcat ggtgttccgt gc
#ctcccgga   3120
cgtttttcag gaggcctggt tggacttggg ttcctggatg gtgggattgt tg
#tacagcct   3180
ctcaggagac cctgctgtca agactgtgtg tgtggatttc tcacccttag aa
#gctctact   3240
aagacatcaa cggaattagg gccttccttt ttgccttgtg agcgccaagg aa
#aagaaact   3300
atctcggtca cgtgagcgcc agcgaaaaga aactgtatca gtcatccaga ga
#ccgtttat   3360
tgcccaacac gttattcttg ctgttggtgg ggtaactagc cgaggaagac ac
#agcgcctt   3420
cccttcagga gttgcgtctc ctctgcaggc cacgatggtc tgctctggag ca
#ttgggtga   3480
acacacaggc tggctgctct gggcagcgcc ttcactctga ccctggagaa cc
#atttcatt   3540
tcatcctggt cagtctagag tctgtgcacc aggcagtcca tccactgaag gc
#tgtgttta   3600
ttcttttcct gtgcccctca taaatggaag aaagtaaact gcttatcccg ag
#ccttaaaa   3660
aaa                  
#                  
#                  
#           3663
<210> SEQ ID NO 85
<211> LENGTH: 1344
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 336615.1
<400> SEQUENCE: 85
ggaggaggag gcagctacgg tgataaagaa gagcaatcaa aagggcaaag cc
#aaaggaaa     60
aggcaaaaag aaagcgaagg aggagagggc cccgtctccc cccgtggagg tg
#gacgaacc    120
ccgggagttt gtgctccggc ctgcccccca gggccgcacg gtgcgctgcc gg
#ctgacccg    180
ggacaaaaag ggcatggatc gaggcatgta tccctcctac ttcctgcacc tg
#gacacgga    240
gaagaaggtg ttcctcttgg ctggcaggaa acgaaaacgg agcaagacag cc
#aattacct    300
catctccatc gaccctacca atctgtcccg aggaggggag aatttcatcg gg
#aagctgag    360
gtccaacctc ctggggaacc gcttcacggt ctttgacaac gggcagaacc ca
#cagcgtgg    420
gtacagcact aatgtggcaa gccttcggca ggagctggca gctgtgatct at
#gaaaccaa    480
cgtgctgggc ttccgtggcc cccggcgcat gaccgtcatc attcctggca tg
#agtgcgga    540
gaacgagagg gtccccatcc ggccccgaaa tgctagtgac ggcctgctgg tg
#cgctggca    600
gaacaagacg ctggagagcc tcatagaact gcacaacaag ccacctgtct gg
#aacgatga    660
cagtggctcc tacaccctca acttccaagg ccgggtcacc caggcctcag tc
#aagaactt    720
ccagattgtc cacgctgatg accccgacta tatcgtgctg cagttcggcc gc
#gtggcgga    780
ggacgccttc accctagact accggtaccc gctgtgcgcc ctgcaggcct tc
#gccatcgc    840
cctctccagt ttcgacggga agctggcctg cgagtgaccc cagcagcccc tc
#agcgcccc    900
cagagcccgt cagcgtgggg gaaaggattc agtggaggct ggcagggtcc ct
#ccagcaaa    960
gctcccgcgg aaaactgctc ctgtgtcggg gctgacctct cactgcctct cg
#gtgacctc   1020
cgtcctctcc ccagcctggc acaggccgag gcaggaggag cccggacggc gg
#gtaggacg   1080
gagatgaaga acatctggag ttggagccgc acatctggtc tcggagctcg cc
#tgcgccgc   1140
tgtgcccccc tcctccccgc gccccagtca cttcctgtcc gggagcagta gt
#cattgttg   1200
ttttaacctc ccctctcccc gggaccgcgc tagggctccg aggagctggg gc
#gggctagg   1260
aggagggggt aggtgatggg ggacgagggc caggcaccca catccccaat aa
#agccgcgt   1320
ccttgtgcaa aaaaaaaaaa aagg          
#                  
#              1344
<210> SEQ ID NO 86
<211> LENGTH: 3156
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2733282CB1
<400> SEQUENCE: 86
gttcaggaag aaaccatctg catccatatt gaaaacctga cacaatgtat gc
#agcaggct     60
cagtgtgagt gaactggagg cttctctaca acatgaccca aaggagcatt gc
#aggtccta    120
tttgcaacct gaagtttgtg actctcctgg ttgccttaag ttcagaactc cc
#attcctgg    180
gagctggagt acagcttcaa gacaatgggt ataatggatt gctcattgca at
#taatcctc    240
aggtacctga gaatcagaac ctcatctcaa acattaagga aatgataact ga
#agcttcat    300
tttacctatt taatgctacc aagagaagag tatttttcag aaatataaag at
#tttaatac    360
ctgccacatg gaaagctaat aataacagca aaataaaaca agaatcatat ga
#aaaggcaa    420
atgtcatagt gactgactgg tatggggcac atggagatga tccatacacc ct
#acaataca    480
gagggtgtgg aaaagaggga aaatacattc atttcacacc taatttccta ct
#gaatgata    540
acttaacagc tggctacgga tcacgaggcc gagtgtttgt ccatgaatgg gc
#ccacctcc    600
gttggggtgt gttcgatgag tataacaatg acaaaccttt ctacataaat gg
#gcaaaatc    660
aaattaaagt gacaaggtgt tcatctgaca tcacaggcat ttttgtgtgt ga
#aaaaggtc    720
cttgccccca agaaaactgt attattagta agctttttaa agaaggatgc ac
#ctttatct    780
acaatagcac ccaaaatgca actgcatcaa taatgttcat gcaaagttat ct
#ctgtggtg    840
aaatttgtaa tgccagtacc cacaaccaag aagcaccaaa cctacagaac ca
#gatgtgca    900
gcctcagaag tgcatgggat gtaatcacag actctgctga ctttcaccac ag
#ctttccca    960
tgaacgggac tgagcttcca cctcctccca cattctcgct tgtagaggct gg
#tgacaaag   1020
tggtctgttt agtgctggat gtgtccagca agatggcaga ggctgacaga ct
#ccttcaac   1080
tacaacaagc cgcagaattt tatttgatgc agattgttga aattcatacc tt
#cgtgggca   1140
ttgccagttt cgacagcaaa ggagagatca gagcccagct acaccaaatt aa
#cagcaatg   1200
atgatcgaaa gttgctggtt tcatatctgc ccaccactgt atcagctaaa ac
#agacatca   1260
gcatttgttc agggcttaag aaaggatttg aggtggttga aaaactgaat gg
#aaaagctt   1320
atggctctgt gatgatatta gtgaccagcg gagatgataa gcttcttggc aa
#ttgcttac   1380
ccactgtgct cagcagtggt tcaacaattc actccattgc cctgggttca tc
#tgcagccc   1440
caaatctgga ggaattatca cgtcttacag gaggtttaaa gttctttgtt cc
#agatatat   1500
caaactccaa tagcatgatt gatgctttca gtagaatttc ctctggaact gg
#agacattt   1560
tccagcaaca tattcagctt gaaagtacag gtgaaaatgt caaacctcac ca
#tcaattga   1620
aaaacacagt gactgtggat aatactgtgg gcaacgacac tatgtttcta gt
#tacgtggc   1680
aggccagtgg tcctcctgag attatattat ttgatcctga tggacgaaaa ta
#ctacacaa   1740
ataattttat caccaatcta acttttcgga cagctagtct ttggattcca gg
#aacagcta   1800
agcctgggca ctggacttac accctgaaca atacccatca ttctctgcaa gc
#cctgaaag   1860
tgacagtgac ctctcgcgcc tccaactcag ctgtgccccc agccactgtg ga
#agcctttg   1920
tggaaagaga cagcctccat tttcctcatc ctgtgatgat ttatgccaat gt
#gaaacagg   1980
gattttatcc cattcttaat gccactgtca ctgccacagt tgagccagag ac
#tggagatc   2040
ctgttacgct gagactcctt gatgatggag caggtgctga tgttataaaa aa
#tgatggaa   2100
tttactcgag gtattttttc tcctttgctg caaatggtag atatagcttg aa
#agtgcatg   2160
tcaatcactc tcccagcata agcaccccag cccactctat tccagggagt ca
#tgctatgt   2220
atgtaccagg ttacacagca aacggtaata ttcagatgaa tgctccaagg aa
#atcagtag   2280
gcagaaatga ggaggagcga aagtggggct ttagccgagt cagctcagga gg
#ctcctttt   2340
cagtgctggg agttccagct ggcccccacc ctgatgtgtt tccaccatgc aa
#aattattg   2400
acctggaagc tgtaaaagta gaagaggaat tgaccctatc ttggacagca cc
#tggagaag   2460
actttgatca gggccaggct acaagctatg aaataagaat gagtaaaagt ct
#acagaata   2520
tccaagatga ctttaacaat gctattttag taaatacatc aaagcgaaat cc
#tcagcaag   2580
ctggcatcag ggagatattt acgttctcac cccaaatttc cacgaatgga cc
#tgaacatc   2640
agccaaatgg agaaacacat gaaagccaca gaatttatgt tgcaatacga gc
#aatggata   2700
ggaactcctt acagtctgct gtatctaaca ttgcccaggc gcctctgttt at
#tcccccca   2760
attctgatcc tgtacctgcc agagattatc ttatattgaa aggagtttta ac
#agcaatgg   2820
gtttgatagg aatcatttgc cttattatag ttgtgacaca tcatacttta ag
#caggaaaa   2880
agagagcaga caagaaagag aatggaacaa aattattata aataaatatc ca
#aagtgtct   2940
tccttcttag atataagacc catggccttc gactacaaaa acatactaac aa
#agtcaaat   3000
taacatcaaa actgtattaa aatgcattga gtttttgtac aatacagata ag
#atttttac   3060
atggtagatc aacaaattct ttttgggggt agattagaaa acccttacac tt
#tggctatg   3120
aacaaataat aaaaattatt ctttaaaaaa aaaaaa      
#                  
#     3156
<210> SEQ ID NO 87
<211> LENGTH: 942
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2733282CD1
<400> SEQUENCE: 87
Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cy
#s Asn Leu Lys Phe
  1               5 
#                 10 
#                 15
Val Thr Leu Leu Val Ala Leu Ser Ser Glu Le
#u Pro Phe Leu Gly
                 20 
#                 25 
#                 30
Ala Gly Val Gln Leu Gln Asp Asn Gly Tyr As
#n Gly Leu Leu Ile
                 35 
#                 40 
#                 45
Ala Ile Asn Pro Gln Val Pro Glu Asn Gln As
#n Leu Ile Ser Asn
                 50 
#                 55 
#                 60
Ile Lys Glu Met Ile Thr Glu Ala Ser Phe Ty
#r Leu Phe Asn Ala
                 65 
#                 70 
#                 75
Thr Lys Arg Arg Val Phe Phe Arg Asn Ile Ly
#s Ile Leu Ile Pro
                 80 
#                 85 
#                 90
Ala Thr Trp Lys Ala Asn Asn Asn Ser Lys Il
#e Lys Gln Glu Ser
                 95 
#                100 
#                105
Tyr Glu Lys Ala Asn Val Ile Val Thr Asp Tr
#p Tyr Gly Ala His
                110  
#               115  
#               120
Gly Asp Asp Pro Tyr Thr Leu Gln Tyr Arg Gl
#y Cys Gly Lys Glu
                125  
#               130  
#               135
Gly Lys Tyr Ile His Phe Thr Pro Asn Phe Le
#u Leu Asn Asp Asn
                140  
#               145  
#               150
Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg Va
#l Phe Val His Glu
                155  
#               160  
#               165
Trp Ala His Leu Arg Trp Gly Val Phe Asp Gl
#u Tyr Asn Asn Asp
                170  
#               175  
#               180
Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Il
#e Lys Val Thr Arg
                185  
#               190  
#               195
Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cy
#s Glu Lys Gly Pro
                200  
#               205  
#               210
Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Le
#u Phe Lys Glu Gly
                215  
#               220  
#               225
Cys Thr Phe Ile Tyr Asn Ser Thr Gln Asn Al
#a Thr Ala Ser Ile
                230  
#               235  
#               240
Met Phe Met Gln Ser Tyr Leu Cys Gly Glu Il
#e Cys Asn Ala Ser
                245  
#               250  
#               255
Thr His Asn Gln Glu Ala Pro Asn Leu Gln As
#n Gln Met Cys Ser
                260  
#               265  
#               270
Leu Arg Ser Ala Trp Asp Val Ile Thr Asp Se
#r Ala Asp Phe His
                275  
#               280  
#               285
His Ser Phe Pro Met Asn Gly Thr Glu Leu Pr
#o Pro Pro Pro Thr
                290  
#               295  
#               300
Phe Ser Leu Val Glu Ala Gly Asp Lys Val Va
#l Cys Leu Val Leu
                305  
#               310  
#               315
Asp Val Ser Ser Lys Met Ala Glu Ala Asp Ar
#g Leu Leu Gln Leu
                320  
#               325  
#               330
Gln Gln Ala Ala Glu Phe Tyr Leu Met Gln Il
#e Val Glu Ile His
                335  
#               340  
#               345
Thr Phe Val Gly Ile Ala Ser Phe Asp Ser Ly
#s Gly Glu Ile Arg
                350  
#               355  
#               360
Ala Gln Leu His Gln Ile Asn Ser Asn Asp As
#p Arg Lys Leu Leu
                365  
#               370  
#               375
Val Ser Tyr Leu Pro Thr Thr Val Ser Ala Ly
#s Thr Asp Ile Ser
                380  
#               385  
#               390
Ile Cys Ser Gly Leu Lys Lys Gly Phe Glu Va
#l Val Glu Lys Leu
                395  
#               400  
#               405
Asn Gly Lys Ala Tyr Gly Ser Val Met Ile Le
#u Val Thr Ser Gly
                410  
#               415  
#               420
Asp Asp Lys Leu Leu Gly Asn Cys Leu Pro Th
#r Val Leu Ser Ser
                425  
#               430  
#               435
Gly Ser Thr Ile His Ser Ile Ala Leu Gly Se
#r Ser Ala Ala Pro
                440  
#               445  
#               450
Asn Leu Glu Glu Leu Ser Arg Leu Thr Gly Gl
#y Leu Lys Phe Phe
                455  
#               460  
#               465
Val Pro Asp Ile Ser Asn Ser Asn Ser Met Il
#e Asp Ala Phe Ser
                470  
#               475  
#               480
Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gl
#n Gln His Ile Gln
                485  
#               490  
#               495
Leu Glu Ser Thr Gly Glu Asn Val Lys Pro Hi
#s His Gln Leu Lys
                500  
#               505  
#               510
Asn Thr Val Thr Val Asp Asn Thr Val Gly As
#n Asp Thr Met Phe
                515  
#               520  
#               525
Leu Val Thr Trp Gln Ala Ser Gly Pro Pro Gl
#u Ile Ile Leu Phe
                530  
#               535  
#               540
Asp Pro Asp Gly Arg Lys Tyr Tyr Thr Asn As
#n Phe Ile Thr Asn
                545  
#               550  
#               555
Leu Thr Phe Arg Thr Ala Ser Leu Trp Ile Pr
#o Gly Thr Ala Lys
                560  
#               565  
#               570
Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Th
#r His His Ser Leu
                575  
#               580  
#               585
Gln Ala Leu Lys Val Thr Val Thr Ser Arg Al
#a Ser Asn Ser Ala
                590  
#               595  
#               600
Val Pro Pro Ala Thr Val Glu Ala Phe Val Gl
#u Arg Asp Ser Leu
                605  
#               610  
#               615
His Phe Pro His Pro Val Met Ile Tyr Ala As
#n Val Lys Gln Gly
                620  
#               625  
#               630
Phe Tyr Pro Ile Leu Asn Ala Thr Val Thr Al
#a Thr Val Glu Pro
                635  
#               640  
#               645
Glu Thr Gly Asp Pro Val Thr Leu Arg Leu Le
#u Asp Asp Gly Ala
                650  
#               655  
#               660
Gly Ala Asp Val Ile Lys Asn Asp Gly Ile Ty
#r Ser Arg Tyr Phe
                665  
#               670  
#               675
Phe Ser Phe Ala Ala Asn Gly Arg Tyr Ser Le
#u Lys Val His Val
                680  
#               685  
#               690
Asn His Ser Pro Ser Ile Ser Thr Pro Ala Hi
#s Ser Ile Pro Gly
                695  
#               700  
#               705
Ser His Ala Met Tyr Val Pro Gly Tyr Thr Al
#a Asn Gly Asn Ile
                710  
#               715  
#               720
Gln Met Asn Ala Pro Arg Lys Ser Val Gly Ar
#g Asn Glu Glu Glu
                725  
#               730  
#               735
Arg Lys Trp Gly Phe Ser Arg Val Ser Ser Gl
#y Gly Ser Phe Ser
                740  
#               745  
#               750
Val Leu Gly Val Pro Ala Gly Pro His Pro As
#p Val Phe Pro Pro
                755  
#               760  
#               765
Cys Lys Ile Ile Asp Leu Glu Ala Val Lys Va
#l Glu Glu Glu Leu
                770  
#               775  
#               780
Thr Leu Ser Trp Thr Ala Pro Gly Glu Asp Ph
#e Asp Gln Gly Gln
                785  
#               790  
#               795
Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Se
#r Leu Gln Asn Ile
                800  
#               805  
#               810
Gln Asp Asp Phe Asn Asn Ala Ile Leu Val As
#n Thr Ser Lys Arg
                815  
#               820  
#               825
Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Ph
#e Thr Phe Ser Pro
                830  
#               835  
#               840
Gln Ile Ser Thr Asn Gly Pro Glu His Gln Pr
#o Asn Gly Glu Thr
                845  
#               850  
#               855
His Glu Ser His Arg Ile Tyr Val Ala Ile Ar
#g Ala Met Asp Arg
                860  
#               865  
#               870
Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Al
#a Gln Ala Pro Leu
                875  
#               880  
#               885
Phe Ile Pro Pro Asn Ser Asp Pro Val Pro Al
#a Arg Asp Tyr Leu
                890  
#               895  
#               900
Ile Leu Lys Gly Val Leu Thr Ala Met Gly Le
#u Ile Gly Ile Ile
                905  
#               910  
#               915
Cys Leu Ile Ile Val Val Thr His His Thr Le
#u Ser Arg Lys Lys
                920  
#               925  
#               930
Arg Ala Asp Lys Lys Glu Asn Gly Thr Lys Le
#u Leu
                935  
#               940
<210> SEQ ID NO 88
<211> LENGTH: 1121
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 399161.1
<221> NAME/KEY: unsure
<222> LOCATION: 1070
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 88
caggcgggag caccgtgcct ggcccagatg gatttttaaa tatcacctgt tc
#atattgtt     60
taaaatagat acaactaaaa cagctttgag gcatacagga actctacaga ta
#aggaggac    120
catttcataa tgataaaggg cttatctcac caagaaggca gtcacactta cg
#tttttatg    180
tatttgttga agagtcccaa tgtatttaaa gcaaaaataa gcaactacaa ag
#agaaagat    240
acaaatccat gatcaaagtg aggaattttc acacacatcg tagtaactga tg
#gaatgagt    300
caatgaaaaa ttagtgagga aatagaagat ttggacagca caacaaatgg cc
#taggagaa    360
catttagaat gttgccttcg atgcttaaga atacatattc ttttcaaaag aa
#aacccaga    420
acagcctggc aggagagata ccatcatcat gaaggtgatt ttcccagagc tg
#ggcttatc    480
cattgcattc tggatgtgct gacgcctgtg gttttcccaa atgtgggaaa ct
#ggactgca    540
taatttgtgg tagtggggga ctatgttcgt gttctctcct ggtgtttaaa at
#taaaaaaa    600
aaaaaacttt attaaaggca cagaacatta ataaaaattg acaataaact gg
#gctattaa    660
gtaaattgca acaatttcca gaggtttgaa atgatacaga gtatgttttc tg
#accacagt    720
acagttaaac taggaatata acaaaaagat aactagggat atgtgtggat at
#tgcatacc    780
tctaagtaac ccttgggatg agaaagaaat tacaatggaa attagaaaat at
#cttgaata    840
atgaaaatac aatatatgta agcttgtaga attcagctta ttaaatgcat at
#tttagaaa    900
gaaggaaagg ctgaaaatca gtgagcaaag ccttccatct caagaaatag aa
#aaagaata    960
tagaaggaag gaattaatat ttttaaagaa gcactaattt acaagaataa tt
#aaatagaa   1020
aagaagttgt cattaggaag gatcaataaa gctagaagct tgttatttgn aa
#agacttgt   1080
aaatgtggta aatcacaagt aacgtacgta gatgaaaagg g    
#                  
# 1121
<210> SEQ ID NO 89
<211> LENGTH: 721
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 339638.1
<221> NAME/KEY: unsure
<222> LOCATION: 266
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 89
gtggcccaca gcgaactaga gaaacaaaag gagagtcttt taccccctgg ag
#ttatcgcc     60
atcagcaaac tgagagctgc ctctcttcct ctccctgccc tgtgtctgtc tc
#cacctcct    120
tccctctcat ccttgctctt tcccttttct ctttatcccc cgcccccttt ct
#ttctcttc    180
ctcctttctc ctcccaggga ccaaagggag aagggagagc cgagaaagtg gc
#cctgccat    240
cccctactgg aataaccgcc gccgcngccc catcactggt ggccacatcc ct
#tctaattt    300
gtagtggtgg gtttctttcc ttgaagagca gggtactttt aaacagatag ag
#gtaatggg    360
aggattaata ttcataggta agtccaaacg gaaaatgttt agcttcctta ca
#ccaaaggt    420
ctgctgtgtc tgagattaca ctaagttcaa gcaacatcat gtcagtgaag aa
#gccattag    480
ctgcaggaac acactgagaa gtgagggagc ctgtctacca gaaggaaatg ga
#gctaggat    540
ctttgcaaac tgctgagtag agaggagagg acgagtaaat gagacagacg ga
#aaagagct    600
ggaagagaga gactccttta tggcacattt ttatcctgag atttccaagc at
#tttatata    660
tattgcatgg taaagaggaa ttgaaatagc caaaagaaat gaactaaaat ga
#aaagggag    720
g                  
#                  
#                  
#              721
<210> SEQ ID NO 90
<211> LENGTH: 538
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 697785CB1
<400> SEQUENCE: 90
cccacgcgtc cggtggagtc ttctgacagc tggtgcgcct gcccgggaac at
#cctcctgg     60
actcaatcat ggcttgtggt ctggtcgcca gcaacctgaa tctcaaacct gg
#agagtgcc    120
ttcgagtgcg aggcgaggtg gctcctgacg ctaagagctt cgtgctgaac ct
#gggcaaag    180
acagcaacaa cctgtgcctg cacttcaacc ctcgcttcaa cgcccacggc ga
#cgccaaca    240
ccatcgtgtg caacagcaag gacggcgggg cctgggggac cgagcagcgg ga
#ggctgtct    300
ttcccttcca gcctggaagt gttgcagagg tgtgcatcac cttcgaccag gc
#caacctga    360
ccgtcaagct gccagatgga tacgaattca agttccccaa ccgcctcaac ct
#ggaggcca    420
tcaactacat ggcagctgac ggtgacttca agatcaaatg tgtggccttt ga
#ctgaaatc    480
agccagccca tggcccccaa taaaggcagc tgcctctgct ccctctgaaa aa
#aaaaaa      538
<210> SEQ ID NO 91
<211> LENGTH: 135
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 697785CD1
<400> SEQUENCE: 91
Met Ala Cys Gly Leu Val Ala Ser Asn Leu As
#n Leu Lys Pro Gly
  1               5 
#                 10 
#                 15
Glu Cys Leu Arg Val Arg Gly Glu Val Ala Pr
#o Asp Ala Lys Ser
                 20 
#                 25 
#                 30
Phe Val Leu Asn Leu Gly Lys Asp Ser Asn As
#n Leu Cys Leu His
                 35 
#                 40 
#                 45
Phe Asn Pro Arg Phe Asn Ala His Gly Asp Al
#a Asn Thr Ile Val
                 50 
#                 55 
#                 60
Cys Asn Ser Lys Asp Gly Gly Ala Trp Gly Th
#r Glu Gln Arg Glu
                 65 
#                 70 
#                 75
Ala Val Phe Pro Phe Gln Pro Gly Ser Val Al
#a Glu Val Cys Ile
                 80 
#                 85 
#                 90
Thr Phe Asp Gln Ala Asn Leu Thr Val Lys Le
#u Pro Asp Gly Tyr
                 95 
#                100 
#                105
Glu Phe Lys Phe Pro Asn Arg Leu Asn Leu Gl
#u Ala Ile Asn Tyr
                110  
#               115  
#               120
Met Ala Ala Asp Gly Asp Phe Lys Ile Lys Cy
#s Val Ala Phe Asp
                125  
#               130  
#               135
<210> SEQ ID NO 92
<211> LENGTH: 866
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 399785.1
<221> NAME/KEY: unsure
<222> LOCATION: 18
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 92
acgagacgag cacccgtngg gggctggagc accccgcgcg ctcccctggc ga
#gagggagg     60
gtcgtggctc ggcccctgct cagacaaagg ctgggaggcg ggagacatgc ac
#ttcccctt    120
ccttttcagc caggcgcgcg ctgataccag gcccacgtca gctatttttg ga
#gcctttta    180
cacgacagct ggaggagcgt cctttttaat tttccccttt tgtttggccg cc
#cccacccc    240
caccccttcg ccttcatcgc tgcacttgag gctccatcct ggggcctctc ct
#tgacttga    300
cctgccttgg caggcacatg ccctccctgc ctggctcact cgccgcagag ac
#ctggcagc    360
ccgcgcaaaa tgtcactttg cggaatcgtt cccacggctt ctgggtaccc tt
#agttccct    420
gcttagggag ggaagacagt agtcgggtcg taataagcaa gacttagccc ga
#gcctccgt    480
tgccaacgca ggctgccttg cttggcgtgt gggcatcggc ctgccccctc ac
#cctggcta    540
cccaacacag ctacaaaagg cagggaacaa tgtaggtccc ttggccctgc ct
#aatgcctg    600
ttgccatgga aacccctatc ctaatctggc caggagcccc ttgcagtgag cc
#aggagagt    660
gaggaagagg ggatggggcc cgctggcctg aacctggcca gaggaggtaa tg
#gttaaccg    720
gattgtggga gcagctgact agagccgggg gggtagggag gcttgggccc ca
#gtcctacc    780
ttccctgcca aggagaaagg ggcatgtctg cttttgtacc tctgggaatc ta
#cctcaggg    840
atctgcccaa caactcccag gttcca          
#                  
#             866
<210> SEQ ID NO 93
<211> LENGTH: 1274
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 002455.1
<400> SEQUENCE: 93
gcggccgcca gcttgcaaag ccgaagtctg gccgcgctct tcgactcgct gc
#gccacgtc     60
cccgggggtg ccgagccggc ggggggtgag tggtctgcgc cggcggccgc gc
#taggaggt    120
gcgggcactt gggggcgccg ggaaggggaa cttggcagcc ccgcgggggc ca
#cgggcgat    180
cccaggggcc aggaaggtcc cgctgcgggc acgcaatctg cctccgtcct tc
#ttcacgga    240
gccgtcccgg gcaggcggcg gcgggtgtgg cccgtcgggg ccggacgtga gc
#ttgggcga    300
cctggagaag ggcgcggagg ccgtggagtt ctttgagctg ctggggcccg ac
#tacggcgc    360
cggcacggag gcggcagtct tgcttgccgc cgagcctctc gacgtgttcc cc
#gccggagc    420
ctccgtactg cggggacccc cggagctgga gcccggcctc tttgagccgc cg
#ccggcagt    480
ggtgggaaac ctactgtacc ccgagccctg gagcgtcccg ggctgctccc cg
#accaaaaa    540
gagccccctg actgcccccc gcggcggctt gaccttgaac gagcccttga gc
#cccctgta    600
ccccgccgct gcggattctc ccggcgggga ggacgggcgg ggccatttgg cc
#tctttcgc    660
ccccttcttt ccagactgcg ccctgccccc gacgccgccg ccccatcagg tg
#tcctacga    720
ttacagcgcg ggctacagcc gcaccgccta ttccagcctt tggagatccg ac
#ggggtttg    780
ggaaggggcg ccgggggagg agggggcgca ccgggactga cttcgaggca cg
#cttccctt    840
cattagagac ggctgtggag agcgccgcgc ctccgtgggt ttctcctaaa tc
#tgaagaac    900
gatgggaaaa tgcacgtgga gatgaaacca gatttttaaa aattcaatta at
#aaaagcaa    960
ycttcagaaaa aagagatgaa gacgagttgg ggattgttta atcacaacct c
#aagtgttaa  1020
aacaaaaaca aacaaacacg tttgtaggtt cttactggac cagaggagtc aa
#gaaaccaa   1080
gatggtttgg ggtatggggt ggggacggca aaaggggtaa gagctggctt ct
#gtagccac   1140
ctgtcccttc tatttttcag cgaaggtcag tgtatttagt gtaattaccc ct
#tctaaaca   1200
gtgtcctagt ccctcccttc cctctccttg agtgcatttt gaattaaagc ct
#atattgaa   1260
aaaaaaaaaa aagg              
#                  
#                  
#   1274
<210> SEQ ID NO 94
<211> LENGTH: 924
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1382920.38
<400> SEQUENCE: 94
atctagaact accgagagtc gtcggggttt cctgcttcaa cagtgcttgg ac
#ggaacccg     60
gcgctcgttc cccaccccgg ccggccgccc atagccagcc ctccgtcacc tc
#ttcaccgc    120
accctcggac tgccccaagg cccccgccgc cgctccagcg ccgcgcagcc ac
#cgccgccg    180
ccgcctcctt tccttagtcg ccgccatgac gaccgcgtcc acctgcgcag gt
#gccgccag    240
aactaccacc aggactcaga ggccgccatc aaccgccaga tcaacctgga gc
#tctacgcc    300
tcctacgttt acctgtccat gtcttactac tttgaccgcg atgatgtggc tt
#tgaagaac    360
tttgccaaat actttcttca ccaatctcat gaggagaggg aacatgctga ga
#aactgatg    420
aagctgcaga accaacgagg tggccgaatc ttccttcagg atatcaagaa ac
#cagactgt    480
gatgactggg agagcgggct gaatgcaatg gagtgtgcat tacatttgga aa
#aaaatgtg    540
aatcagtcac tactggaact gcacaaactg gccactgaca aaaatgaccc cc
#atttgtgt    600
gacttcattg agacacatta cctgaatgag caggtgaaag ccatcaaaga at
#tgggtgac    660
cacgtgacca acttgcgcaa gatgggagcg cccgaatctg gcttggcgga at
#atctcttt    720
gacaagcaca ccctgggaga cagtgataat gaaagctaag cctcgggcta at
#ttccccat    780
agccgtgggg tgactttcct ggtcaccaag gcagtgcatg catgttgggg tt
#tcctttac    840
cttttctata agttgtacca aaacatccac ttaagttctt tgatttgtac ca
#ttccttca    900
aataaagaaa tttggtaccc aaaa          
#                  
#               924
<210> SEQ ID NO 95
<211> LENGTH: 634
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 334749.1
<400> SEQUENCE: 95
gacgcccatc aatgaacaaa caagattccc actgtcccat ctcctatcca gt
#gaaacaca     60
gccaacttga taatttgtgc agggaaagac tctgtttagc ttataccttg aa
#cctaaggg    120
aaattaaatt gcacattttc tgttcctggc taatcttctg aataatgtac tg
#aacacagt    180
aggagttaag aattaaaaat acctgtctgc agtttcagaa acaatcacac ac
#aaaatatt    240
tgtttatttc cagactgatg aaagactgaa tttttggtct catgtattta ct
#gtattgtt    300
tcatatattt atctatatgc tttggctgta ttaacttgtt gaaatagttt gt
#ggttcttt    360
atatttagct tttataaata attgaaaatc taatgaatgc ttacttaata ac
#caatctaa    420
actggggact tcaaacatag ggagtcaagt aatctggttg tgtaataaat aa
#gcaagttg    480
ttatctttca ggctgagggc atatcaacca agctaaaaga cgtgtgtgta tt
#aaaaaaaa    540
aaaaaagtct accaaaccac catatgatat ccaaggttaa ctatatagga gg
#tctaataa    600
cattcagaag gtgctagatg aatataccaa aaac       
#                  
#       634
<210> SEQ ID NO 96
<211> LENGTH: 579
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 041764.1
<400> SEQUENCE: 96
gaaaaaccat ataatggagg aaggccttgc cccaaactgg accatgtcaa cc
#aggcacag     60
gtgtatgagg ttgtcccatg ccacagtgac tgcaaccagt acctatgggt ca
#cagagccc    120
tggagcatct gcaaggtgac ctttgtgaat atgcgggaga actgtggaga gg
#gcgtgcaa    180
acccgaaaag tgagatgcat gcagaataca gcagatggcc cttctgaaca tg
#tagaggat    240
tacctctgtg acccagaaga gatgcccctg ggctctagag tgtgcaaatt ac
#catgccct    300
gaggactgtg tgatatctga atggggtcca tggacccaat gtgttttgcc tt
#gcaatcaa    360
agcagtttcc ggcaaaggtc agctgatccc atcagacaac cagctgatga ag
#gaagatct    420
tgccctaatg ctgttgagaa agaaccctgt aacctgaaca aaaactgcta cc
#actatgat    480
tataatgtaa cagactggag tacatgtcag ctgagtgaga aggcagtttg tg
#gaaatgga    540
ataaaaacaa ggatgttgga ttgtgttcga agtgatggc      
#                  
#   579
<210> SEQ ID NO 97
<211> LENGTH: 10432
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2700132CB1
<400> SEQUENCE: 97
tggttcgaca agtggccttg cgggccggat cgtcccagtg gaagagttgt aa
#atttgctt     60
ctggccttcc cctacggatt atacctggcc ttcccctacg gattatactc aa
#cttactgt    120
ttagaaaatg tggcccacga gacgcctggt tactatcaaa aggagcgggg tc
#gacggtcc    180
ccactttccc ctgagcctca gcacctgctt gtttggaagg ggtattgaat gt
#gacatccg    240
tatccagctt cctgttgtgt caaaacaaca ttgcaaaatt gaaatccatg ag
#caggaggc    300
aatattacat aatttcagtt ccacaaatcc aacacaagta aatgggtctg tt
#attgatga    360
gcctgtacgg ctaaaacatg gagatgtaat aactattatt gatcgttcct tc
#aggtatga    420
aaatgaaagt cttcagagtg gaaggaagtc aactgaattt ccaagaaaaa ta
#cgtgaaca    480
ggagccagca cgtcgtgtct caagatctag cttctcttct gaccctgatg ag
#aaagctca    540
agattccaag gcctattcaa aaatcactga aggaaaagtt tcaggaaatc ct
#caggtaca    600
tatcaagaat gtcaaagaag acagtaccgc agatgactca aaagacagtg tt
#gctcaggg    660
aacaactaat gttcattcct cagaacatgc tggacgtaat ggcagaaatg ca
#gctgatcc    720
catttctggg gattttaaag aaatttccag cgttaaatta gtgagccgtt at
#ggagaatt    780
gaagtctgtt cccactacac aatgtcttga caatagcaaa aaaaatgaat ct
#cccttttg    840
gaagctttat gagtcagtga agaaagagtt ggatgtaaaa tcacaaaaag aa
#aatgtcct    900
acagtattgt agaaaatctg gattacaaac tgattacgca acagagaaag aa
#agtgctga    960
ytggtttacag ggggagaccc aactgttggt ctcgcgtaag tcaagaccaa a
#atctggtgg  1020
gagcggccac gctgtggcag agcctgcttc acctgaacaa gagcttgacc ag
#aacaaggg   1080
gaagggaaga gacgtggagt ctgttcagac tcccagcaag gctgtgggcg cc
#agctttcc   1140
tctctatgag ccggctaaaa tgaagacccc tgtacaatat tcacagcaac aa
#aattctcc   1200
acaaaaacat aagaacaaag acctgtatac tactggtaga agagaatctg tg
#aatctggg   1260
taaaagtgaa ggcttcaagg ctggtgataa aactcttact cccaggaagc tt
#tcaactag   1320
aaatcgaaca ccagctaaag ttgaagatgc agctgactct gccactaagc ca
#gaaaatct   1380
ctcttccaaa accagaggaa gtattcctac agatgtggaa gttctgccta cg
#gaaactga   1440
aattcacaat gagccatttt taactctgtg gctcactcaa gttgagagga ag
#atccaaaa   1500
ggattccctc agcaagcctg agaaattggg cactacagct ggacagatgt gc
#tctgggtt   1560
acctggtctt agttcagttg atatcaacaa ctttggtgat tccattaatg ag
#agtgaggg   1620
aatacctttg aaaagaaggc gtgtgtcctt tggtgggcac ctaagacctg aa
#ctatttga   1680
tgaaaacttg cctcctaata cgcctctcaa aaggggagaa gccccaacca aa
#agaaagtc   1740
tctggtaatg cacactccac ctgtcctgaa gaaaatcatc aaggaacagc ct
#caaccatc   1800
aggaaaacaa gagtcaggtt cagaaatcca tgtggaagtg aaggcacaaa gc
#ttggttat   1860
aagccctcca gctcctagtc ctaggaaaac tccagttgcc agtgatcaac gc
#cgtaggtc   1920
ctgcaaaaca gcccctgctt ccagcagcaa atctcagaca gaggttccta ag
#agaggagg   1980
agaaagagtg gcaacctgcc ttcaaaagag agtgtctatc agccgaagtc aa
#catgatat   2040
tttacagatg atatgttcca aaagaagaag tggtgcttcg gaagcaaatc tg
#attgttgc   2100
aaaatcatgg gcagatgtag taaaacttgg tgcaaaacaa acacaaacta aa
#gtcataaa   2160
acatggtcct caaaggtcaa tgaacaaaag gcaaagaaga cctgctactc ca
#aagaagcc   2220
tgtgggcgaa gttcacagtc aatttagtac aggccacgca aactctcctt gt
#accataat   2280
aatagggaaa gctcatactg aaaaagtaca tgtgcctgct cgaccctaca ga
#gtgctcaa   2340
caacttcatt tccaaccaaa aaatggactt taaggaagat ctttcaggaa ta
#gctgaaat   2400
gttcaagacc ccagtgaagg agcaaccgca gttgacaagc acatgtcaca tc
#gctatttc   2460
aaattcagag aatttgcttg gaaaacagtt tcaaggaact gattcaggag aa
#gaacctct   2520
gctccccacc tcagagagtt ttggaggaaa tgtgttcttc agtgcacaga at
#gcagcaaa   2580
acagccatct gataaatgct ctgcaagccc tcccttaaga cggcagtgta tt
#agagaaaa   2640
tggaaacgta gcaaaaacgc ccaggaacac ctacaaaatg acttctctgg ag
#acaaaaac   2700
ttcagatact gagacagagc cttcaaaaac agtatccact gtaaacaggt ca
#ggaaggtc   2760
tacagagttc aggaatatac agaagctacc tgtggaaagt aagagtgaag aa
#acaaatac   2820
agaaattgtt gagtgcatcc taaaaagagg tcagaaggca acactactac aa
#caaaggag   2880
agaaggagag atgaaggaaa tagaaagacc ttttgagaca tataaggaaa at
#attgaatt   2940
aaaagaaaac gatgaaaaga tgaaagcaat gaagagatca agaacttggg gg
#cagaaatg   3000
tgcaccaatg tctgacctga cagacctcaa gagcttgcct gatacagaac tc
#atgaaaga   3060
cacggcacgt ggccagaatc tcctccaaac ccaagatcat gccaaggcac ca
#aagagtga   3120
gaaaggcaaa atcactaaaa tgccctgcca gtcattacaa ccagaaccaa ta
#aacacccc   3180
aacacacaca aaacaacagt tgaaggcatc cctggggaaa gtaggtgtga aa
#gaagagct   3240
cctagcagtc ggcaagttca cacggacgtc aggggagacc acgcacacgc ac
#agagagcc   3300
agcaggagat ggcaagagca tcagaacgtt taaggagtct ccaaagcaga tc
#ctggaccc   3360
agcagcccgt gtaactggaa tgaagaagtg gccaagaacg cctaaggaag ag
#gcccagtc   3420
actagaagac ctggctggct tcaaagagct cttccagaca ccaggtccct ct
#gaggaatc   3480
aatgactgat gagaaaacta ccaaaatagc ctgcaaatct ccaccaccag aa
#tcagtgga   3540
cactccaaca agcacaaagc aatggcctaa gagaagtctc aggaaagcag at
#gtagagga   3600
agaattctta gcactcagga aactaacacc atcagcaggg aaagccatgc tt
#acgcccaa   3660
accagcagga ggtgatgaga aagacattaa agcatttatg ggaactccag tg
#cagaaact   3720
ggacctggca ggaactttac ctggcagcaa aagacagcta cagactccta ag
#gaaaaggc   3780
ccaggctcta gaagacctgg ctggctttaa agagctcttc cagactcctg gt
#cacaccga   3840
ggaattagtg gctgctggta aaaccactaa aataccctgc gactctccac ag
#tcagaccc   3900
agtggacacc ccaacaagca caaagcaacg acccaagaga agtatcagga aa
#gcagatgt   3960
agagggagaa ctcttagcgt gcaggaatct aatgccatca gcaggcaaag cc
#atgcacac   4020
gcctaaacca tcagtaggtg aagagaaaga catcatcata tttgtgggaa ct
#ccagtgca   4080
gaaactggac ctgacagaga acttaaccgg cagcaagaga cggccacaaa ct
#cctaagga   4140
agaggcccag gctctggaag acctgactgg ctttaaagag ctcttccaga cc
#cctggtca   4200
tactgaagaa gcagtggctg ctggcaaaac tactaaaatg ccctgcgaat ct
#tctccacc   4260
agaatcagca gacaccccaa caagcacaag aaggcagccc aagacacctt tg
#gagaaaag   4320
ggacgtacag aaggagctct cagccctgaa gaagctcaca cagacatcag gg
#gaaaccac   4380
acacacagat aaagtaccag gaggtgagga taaaagcatc aacgcgttta gg
#gaaactgc   4440
aaaacagaaa ctggacccag cagcaagtgt aactggtagc aagaggcacc ca
#aaaactaa   4500
ggaaaaggcc caacccctag aagacctggc tggctggaaa gagctcttcc ag
#acaccagt   4560
atgcactgac aagcccacga ctcacgagaa aactaccaaa atagcctgca ga
#tcacaacc   4620
agacccagtg gacacaccaa caagctccaa gccacagtcc aagagaagtc tc
#aggaaagt   4680
ggacgtagaa gaagaattct tcgcactcag gaaacgaaca ccatcagcag gc
#aaagccat   4740
gcacacaccc aaaccagcag taagtggtga gaaaaacatc tacgcattta tg
#ggaactcc   4800
agtgcagaaa ctggacctga cagagaactt aactggcagc aagagacggc ta
#caaactcc   4860
taaggaaaag gcccaggctc tagaagacct ggctggcttt aaagagctct tc
#cagacacg   4920
aggtcacact gaggaatcaa tgactaacga taaaactgcc aaagtagcct gc
#aaatcttc   4980
acaaccagac ctagacaaaa acccagcaag ctccaagcga cggctcaaga ca
#tccctggg   5040
gaaagtgggc gtgaaagaag agctcctagc agttggcaag ctcacacaga ca
#tcaggaga   5100
gactacacac acacacacag agccaacagg agatggtaag agcatgaaag ca
#tttatgga   5160
gtctccaaag cagatcttag actcagcagc aagtctaact ggcagcaaga gg
#cagctgag   5220
aactcctaag ggaaagtctg aagtccctga agacctggcc ggcttcatcg ag
#ctcttcca   5280
gacaccaagt cacactaagg aatcaatgac taatgaaaaa actaccaaag ta
#tcctacag   5340
agcttcacag ccagacctag tggacacccc aacaagctcc aagccacagc cc
#aagagaag   5400
tctcaggaaa gcagacactg aagaagaatt tttagcattt aggaaacaaa cg
#ccatcagc   5460
aggcaaagcc atgcacacac ccaaaccagc agtaggtgaa gagaaagaca tc
#aacacgtt   5520
tttgggaact ccagtgcaga aactggacca gccaggaaat ttacctggca gc
#aatagacg   5580
gctacaaact cgtaaggaaa aggcccaggc tctagaagaa ctgactggct tc
#agagagct   5640
tttccagaca ccatgcactg ataaccccac gactgatgag aaaactacca aa
#aaaatact   5700
ctgcaaatct ccgcaatcag acccagcgga caccccaaca aacacaaagc aa
#cggcccaa   5760
gagaagcctc aagaaagcag acgtagagga agaattttta gcattcagga aa
#ctaacacc   5820
atcagcaggc aaagccatgc acacgcctaa agcagcagta ggtgaagaga aa
#gacatcaa   5880
cacatttgtg gggactccag tggagaaact ggacctgcta ggaaatttac ct
#ggcagcaa   5940
gagacggcca caaactccta aagaaaaggc caaggctcta gaagatctgg ct
#ggcttcaa   6000
agagctcttc cagacaccag gtcacactga ggaatcaatg accgatgaca aa
#atcacaga   6060
agtatcctgc aaatctccac aaccagaccc agtcaaaacc ccaacaagct cc
#aagcaacg   6120
actcaagata tccttgggga aagtaggtgt gaaagaagag gtcctaccag tc
#ggcaagct   6180
cacacagacg tcagggaaga ccacacagac acacagagag acagcaggag at
#ggaaagag   6240
catcaaagcg tttaaggaat ctgcaaagca gatgctggac ccagcaaact at
#ggaactgg   6300
gatggagagg tggccaagaa cacctaagga agaggcccaa tcactagaag ac
#ctggccgg   6360
cttcaaagag ctcttccaga caccagacca cactgaggaa tcaacaactg at
#gacaaaac   6420
taccaaaata gcctgcaaat ctccaccacc agaatcaatg gacactccaa ca
#agcacaag   6480
gaggcggccc aaaacacctt tggggaaaag ggatatagtg gaagagctct ca
#gccctgaa   6540
gcagctcaca cagaccacac acacagacaa agtaccagga gatgaggata aa
#ggcatcaa   6600
cgtgttcagg gaaactgcaa aacagaaact ggacccagca gcaagtgtaa ct
#ggtagcaa   6660
gaggcagcca agaactccta agggaaaagc ccaaccccta gaagacttgg ct
#ggcttgaa   6720
agagctcttc cagacaccaa tatgcactga caagcccacg actcatgaga aa
#actaccaa   6780
aatagcctgc agatctccac aaccagaccc agtgggtacc ccaacaatct tc
#aagccaca   6840
gtccaagaga agtctcagga aagcagacgt agaggaagaa tccttagcac tc
#aggaaacg   6900
aacaccatca gtagggaaag ctatggacac acccaaacca gcaggaggtg at
#gagaaaga   6960
catgaaagca tttatgggaa ctccagtgca gaaattggac ctgccaggaa at
#ttacctgg   7020
cagcaaaaga tggccacaaa ctcctaagga aaaggcccag gctctagaag ac
#ctggctgg   7080
cttcaaagag ctcttccaga caccaggcac tgacaagccc acgactgatg ag
#aaaactac   7140
caaaatagcc tgcaaatctc cacaaccaga cccagtggac accccagcaa gc
#acaaagca   7200
acggcccaag agaaacctca ggaaagcaga cgtagaggaa gaatttttag ca
#ctcaggaa   7260
acgaacacca tcagcaggca aagccatgga cacaccaaaa ccagcagtaa gt
#gatgagaa   7320
aaatatcaac acatttgtgg aaactccagt gcagaaactg gacctgctag ga
#aatttacc   7380
tggcagcaag agacagccac agactcctaa ggaaaaggct gaggctctag ag
#gacctggt   7440
tggcttcaaa gaactcttcc agacaccagg tcacactgag gaatcaatga ct
#gatgacaa   7500
aatcacagaa gtatcctgta aatctccaca gccagagtca ttcaaaacct ca
#agaagctc   7560
caagcaaagg ctcaagatac ccctggtgaa agtggacatg aaagaagagc cc
#ctagcagt   7620
cagcaagctc acacggacat caggggagac tacgcaaaca cacacagagc ca
#acaggaga   7680
tagtaagagc atcaaagcgt ttaaggagtc tccaaagcag atcctggacc ca
#gcagcaag   7740
tgtaactggt agcaggaggc agctgagaac tcgtaaggaa aaggcccgtg ct
#ctagaaga   7800
cctggttgac ttcaaagagc tcttctcagc accaggtcac actgaagagt ca
#atgactat   7860
tgacaaaaac acaaaaattc cctgcaaatc tcccccacca gaactaacag ac
#actgccac   7920
gagcacaaag agatgcccca agacacgtct caggaaagaa gtaaaagagg ag
#ctctcagc   7980
agttgagagg ctcacgcaaa catcagggca aagcacacac acacacaaag aa
#ccagcaag   8040
cggtgatgag ggcatcaaag tattgaagca acgtgcaaag aagaaaccaa ac
#ccagtaga   8100
agaggaaccc agcaggagaa ggccaagagc acctaaggaa aaggcccaac cc
#ctggaaga   8160
cctggccggc ttcacagagc tctctgaaac atcaggtcac actcaggaat ca
#ctgactgc   8220
tggcaaagcc actaaaatac cctgcgaatc tcccccacta gaagtggtag ac
#accacagc   8280
aagcacaaag aggcatctca ggacacgtgt gcagaaggta caagtaaaag aa
#gagccttc   8340
agcagtcaag ttcacacaaa catcagggga aaccacggat gcagacaaag aa
#ccagcagg   8400
tgaagataaa ggcatcaaag cattgaagga atctgcaaaa cagacaccgg ct
#ccagcagc   8460
aagtgtaact ggcagcagga gacggccaag agcacccagg gaaagtgccc aa
#gccataga   8520
agacctagct ggcttcaaag acccagcagc aggtcacact gaagaatcaa tg
#actgatga   8580
caaaaccact aaaataccct gcaaatcatc accagaacta gaagacaccg ca
#acaagctc   8640
aaagagacgg cccaggacac gtgcccagaa agtagaagtg aaggaggagc tg
#ttagcagt   8700
tggcaagctc acacaaacct caggggagac cacgcacacc gacaaagagc cg
#gtaggtga   8760
gggcaaaggc acgaaagcat ttaagcaacc tgcaaagcgg aagctggacg ca
#gaagatgt   8820
aattggcagc aggagacagc caagagcacc taaggaaaag gcccaacccc tg
#gaagatct   8880
ggccagcttc caagagctct ctcaaacacc aggccacact gaggaactgg ca
#aatggtgc   8940
tgctgatagc tttacaagcg ctccaaagca aacacctgac agtggaaaac ct
#ctaaaaat   9000
atccagaaga gttcttcggg cccctaaagt agaacccgtg ggagacgtgg ta
#agcaccag   9060
agaccctgta aaatcacaaa gcaaaagcaa cacttccctg cccccactgc cc
#ttcaagag   9120
gggaggtggc aaagatggaa gcgtcacggg aaccaagagg ctgcgctgca tg
#ccagcacc   9180
agaggaaatt gtggaggagc tgccagccag caagaagcag agggttgctc cc
#agggcaag   9240
aggcaaatca tccgaacccg tggtcatcat gaagagaagt ttgaggactt ct
#gcaaaaag   9300
aattgaacct gcggaagagc tgaacagcaa cgacatgaaa accaacaaag ag
#gaacacaa   9360
attacaagac tcagtccctg aaaataaggg aatatccctg cgctccagac gc
#caaaataa   9420
gactgaggca gaacagcaaa taactgaggt ctttgtatta gcagaaagaa ta
#gaaataaa   9480
cagaaatgaa aagaagccca tgaagacctc cccagagatg gacattcaga at
#ccagatga   9540
tggagcccgg aaacccatac ctagagacaa agtcactgag aacaaaaggt gc
#ttgaggtc   9600
tgctagacag aatgagagct cccagcctaa ggtggcagag gagagcggag gg
#cagaagag   9660
tgcgaaggtt ctcatgcaga atcagaaagg gaaaggagaa gcaggaaatt ca
#gactccat   9720
gtgcctgaga tcaagaaaga caaaaagcca gcctgcagca agcactttgg ag
#agcaaatc   9780
tgtgcagaga gtaacgcgga gtgtcaagag gtgtgcagaa aatccaaaga ag
#gctgagga   9840
caatgtgtgt gtcaagaaaa taagaaccag aagtcatagg gacagtgaag at
#atttgaca   9900
gaaaaatcga actgggaaaa atataataaa gttagttttg tgataagttc ta
#gtgcagtt   9960
tttgtcataa attacaagtg aattctgtaa gtaaggctgt cagtctgctt aa
#gggaagaa  10020
aactttggat ttgctgggtc tgaatcggct tcataaactc cactgggagc ac
#tgctgggc  10080
tcctggactg agaatagttg aacaccgggg gctttgtgaa ggagtctggg cc
#aaggtttg  10140
ccctcagctt tgcagaatga agccttgagg tctgtcacca cccacagcca cc
#ctacagca  10200
gccttaactg tgacacttgc cacactgtgt cgtcgtttgt ttgcctatgt cc
#tccagggc  10260
acggtggcag gaacaactat cctcgtctgt cccaacactg agcaggcact cg
#gtaaacac  10320
gaatgaatgg atgagcgcac ggatgaatgg agcttacaga tctgtctttc ca
#atggccgg  10380
ggggatttgg tccccaaatt aaggctattg gacatctgca caggacagtc ta
#          10432
<210> SEQ ID NO 98
<211> LENGTH: 3256
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 2700132CD1
<400> SEQUENCE: 98
Met Trp Pro Thr Arg Arg Leu Val Thr Ile Ly
#s Arg Ser Gly Val
  1               5 
#                 10 
#                 15
Asp Gly Pro His Phe Pro Leu Ser Leu Ser Th
#r Cys Leu Phe Gly
                 20 
#                 25 
#                 30
Arg Gly Ile Glu Cys Asp Ile Arg Ile Gln Le
#u Pro Val Val Ser
                 35 
#                 40 
#                 45
Lys Gln His Cys Lys Ile Glu Ile His Glu Gl
#n Glu Ala Ile Leu
                 50 
#                 55 
#                 60
His Asn Phe Ser Ser Thr Asn Pro Thr Gln Va
#l Asn Gly Ser Val
                 65 
#                 70 
#                 75
Ile Asp Glu Pro Val Arg Leu Lys His Gly As
#p Val Ile Thr Ile
                 80 
#                 85 
#                 90
Ile Asp Arg Ser Phe Arg Tyr Glu Asn Glu Se
#r Leu Gln Ser Gly
                 95 
#                100 
#                105
Arg Lys Ser Thr Glu Phe Pro Arg Lys Ile Ar
#g Glu Gln Glu Pro
                110  
#               115  
#               120
Ala Arg Arg Val Ser Arg Ser Ser Phe Ser Se
#r Asp Pro Asp Glu
                125  
#               130  
#               135
Lys Ala Gln Asp Ser Lys Ala Tyr Ser Lys Il
#e Thr Glu Gly Lys
                140  
#               145  
#               150
Val Ser Gly Asn Pro Gln Val His Ile Lys As
#n Val Lys Glu Asp
                155  
#               160  
#               165
Ser Thr Ala Asp Asp Ser Lys Asp Ser Val Al
#a Gln Gly Thr Thr
                170  
#               175  
#               180
Asn Val His Ser Ser Glu His Ala Gly Arg As
#n Gly Arg Asn Ala
                185  
#               190  
#               195
Ala Asp Pro Ile Ser Gly Asp Phe Lys Glu Il
#e Ser Ser Val Lys
                200  
#               205  
#               210
Leu Val Ser Arg Tyr Gly Glu Leu Lys Ser Va
#l Pro Thr Thr Gln
                215  
#               220  
#               225
Cys Leu Asp Asn Ser Lys Lys Asn Glu Ser Pr
#o Phe Trp Lys Leu
                230  
#               235  
#               240
Tyr Glu Ser Val Lys Lys Glu Leu Asp Val Ly
#s Ser Gln Lys Glu
                245  
#               250  
#               255
Asn Val Leu Gln Tyr Cys Arg Lys Ser Gly Le
#u Gln Thr Asp Tyr
                260  
#               265  
#               270
Ala Thr Glu Lys Glu Ser Ala Asp Gly Leu Gl
#n Gly Glu Thr Gln
                275  
#               280  
#               285
Leu Leu Val Ser Arg Lys Ser Arg Pro Lys Se
#r Gly Gly Ser Gly
                290  
#               295  
#               300
His Ala Val Ala Glu Pro Ala Ser Pro Glu Gl
#n Glu Leu Asp Gln
                305  
#               310  
#               315
Asn Lys Gly Lys Gly Arg Asp Val Glu Ser Va
#l Gln Thr Pro Ser
                320  
#               325  
#               330
Lys Ala Val Gly Ala Ser Phe Pro Leu Tyr Gl
#u Pro Ala Lys Met
                335  
#               340  
#               345
Lys Thr Pro Val Gln Tyr Ser Gln Gln Gln As
#n Ser Pro Gln Lys
                350  
#               355  
#               360
His Lys Asn Lys Asp Leu Tyr Thr Thr Gly Ar
#g Arg Glu Ser Val
                365  
#               370  
#               375
Asn Leu Gly Lys Ser Glu Gly Phe Lys Ala Gl
#y Asp Lys Thr Leu
                380  
#               385  
#               390
Thr Pro Arg Lys Leu Ser Thr Arg Asn Arg Th
#r Pro Ala Lys Val
                395  
#               400  
#               405
Glu Asp Ala Ala Asp Ser Ala Thr Lys Pro Gl
#u Asn Leu Ser Ser
                410  
#               415  
#               420
Lys Thr Arg Gly Ser Ile Pro Thr Asp Val Gl
#u Val Leu Pro Thr
                425  
#               430  
#               435
Glu Thr Glu Ile His Asn Glu Pro Phe Leu Th
#r Leu Trp Leu Thr
                440  
#               445  
#               450
Gln Val Glu Arg Lys Ile Gln Lys Asp Ser Le
#u Ser Lys Pro Glu
                455  
#               460  
#               465
Lys Leu Gly Thr Thr Ala Gly Gln Met Cys Se
#r Gly Leu Pro Gly
                470  
#               475  
#               480
Leu Ser Ser Val Asp Ile Asn Asn Phe Gly As
#p Ser Ile Asn Glu
                485  
#               490  
#               495
Ser Glu Gly Ile Pro Leu Lys Arg Arg Arg Va
#l Ser Phe Gly Gly
                500  
#               505  
#               510
His Leu Arg Pro Glu Leu Phe Asp Glu Asn Le
#u Pro Pro Asn Thr
                515  
#               520  
#               525
Pro Leu Lys Arg Gly Glu Ala Pro Thr Lys Ar
#g Lys Ser Leu Val
                530  
#               535  
#               540
Met His Thr Pro Pro Val Leu Lys Lys Ile Il
#e Lys Glu Gln Pro
                545  
#               550  
#               555
Gln Pro Ser Gly Lys Gln Glu Ser Gly Ser Gl
#u Ile His Val Glu
                560  
#               565  
#               570
Val Lys Ala Gln Ser Leu Val Ile Ser Pro Pr
#o Ala Pro Ser Pro
                575  
#               580  
#               585
Arg Lys Thr Pro Val Ala Ser Asp Gln Arg Ar
#g Arg Ser Cys Lys
                590  
#               595  
#               600
Thr Ala Pro Ala Ser Ser Ser Lys Ser Gln Th
#r Glu Val Pro Lys
                605  
#               610  
#               615
Arg Gly Gly Glu Arg Val Ala Thr Cys Leu Gl
#n Lys Arg Val Ser
                620  
#               625  
#               630
Ile Ser Arg Ser Gln His Asp Ile Leu Gln Me
#t Ile Cys Ser Lys
                635  
#               640  
#               645
Arg Arg Ser Gly Ala Ser Glu Ala Asn Leu Il
#e Val Ala Lys Ser
                650  
#               655  
#               660
Trp Ala Asp Val Val Lys Leu Gly Ala Lys Gl
#n Thr Gln Thr Lys
                665  
#               670  
#               675
Val Ile Lys His Gly Pro Gln Arg Ser Met As
#n Lys Arg Gln Arg
                680  
#               685  
#               690
Arg Pro Ala Thr Pro Lys Lys Pro Val Gly Gl
#u Val His Ser Gln
                695  
#               700  
#               705
Phe Ser Thr Gly His Ala Asn Ser Pro Cys Th
#r Ile Ile Ile Gly
                710  
#               715  
#               720
Lys Ala His Thr Glu Lys Val His Val Pro Al
#a Arg Pro Tyr Arg
                725  
#               730  
#               735
Val Leu Asn Asn Phe Ile Ser Asn Gln Lys Me
#t Asp Phe Lys Glu
                740  
#               745  
#               750
Asp Leu Ser Gly Ile Ala Glu Met Phe Lys Th
#r Pro Val Lys Glu
                755  
#               760  
#               765
Gln Pro Gln Leu Thr Ser Thr Cys His Ile Al
#a Ile Ser Asn Ser
                770  
#               775  
#               780
Glu Asn Leu Leu Gly Lys Gln Phe Gln Gly Th
#r Asp Ser Gly Glu
                785  
#               790  
#               795
Glu Pro Leu Leu Pro Thr Ser Glu Ser Phe Gl
#y Gly Asn Val Phe
                800  
#               805  
#               810
Phe Ser Ala Gln Asn Ala Ala Lys Gln Pro Se
#r Asp Lys Cys Ser
                815  
#               820  
#               825
Ala Ser Pro Pro Leu Arg Arg Gln Cys Ile Ar
#g Glu Asn Gly Asn
                830  
#               835  
#               840
Val Ala Lys Thr Pro Arg Asn Thr Tyr Lys Me
#t Thr Ser Leu Glu
                845  
#               850  
#               855
Thr Lys Thr Ser Asp Thr Glu Thr Glu Pro Se
#r Lys Thr Val Ser
                860  
#               865  
#               870
Thr Val Asn Arg Ser Gly Arg Ser Thr Glu Ph
#e Arg Asn Ile Gln
                875  
#               880  
#               885
Lys Leu Pro Val Glu Ser Lys Ser Glu Glu Th
#r Asn Thr Glu Ile
                890  
#               895  
#               900
Val Glu Cys Ile Leu Lys Arg Gly Gln Lys Al
#a Thr Leu Leu Gln
                905  
#               910  
#               915
Gln Arg Arg Glu Gly Glu Met Lys Glu Ile Gl
#u Arg Pro Phe Glu
                920  
#               925  
#               930
Thr Tyr Lys Glu Asn Ile Glu Leu Lys Glu As
#n Asp Glu Lys Met
                935  
#               940  
#               945
Lys Ala Met Lys Arg Ser Arg Thr Trp Gly Gl
#n Lys Cys Ala Pro
                950  
#               955  
#               960
Met Ser Asp Leu Thr Asp Leu Lys Ser Leu Pr
#o Asp Thr Glu Leu
                965  
#               970  
#               975
Met Lys Asp Thr Ala Arg Gly Gln Asn Leu Le
#u Gln Thr Gln Asp
                980  
#               985  
#               990
His Ala Lys Ala Pro Lys Ser Glu Lys Gly Ly
#s Ile Thr Lys Met
                995  
#              1000   
#             1005
Pro Cys Gln Ser Leu Gln Pro Glu Pro Ile As
#n Thr Pro Thr His
               1010  
#              1015   
#             1020
Thr Lys Gln Gln Leu Lys Ala Ser Leu Gly Ly
#s Val Gly Val Lys
               1025  
#              1030   
#             1035
Glu Glu Leu Leu Ala Val Gly Lys Phe Thr Ar
#g Thr Ser Gly Glu
               1040  
#              1045   
#             1050
Thr Thr His Thr His Arg Glu Pro Ala Gly As
#p Gly Lys Ser Ile
               1055  
#              1060   
#             1065
Arg Thr Phe Lys Glu Ser Pro Lys Gln Ile Le
#u Asp Pro Ala Ala
               1070  
#              1075   
#             1080
Arg Val Thr Gly Met Lys Lys Trp Pro Arg Th
#r Pro Lys Glu Glu
               1085  
#              1090   
#             1095
Ala Gln Ser Leu Glu Asp Leu Ala Gly Phe Ly
#s Glu Leu Phe Gln
               1100  
#              1105   
#             1110
Thr Pro Gly Pro Ser Glu Glu Ser Met Thr As
#p Glu Lys Thr Thr
               1115  
#              1120   
#             1125
Lys Ile Ala Cys Lys Ser Pro Pro Pro Glu Se
#r Val Asp Thr Pro
               1130  
#              1135   
#             1140
Thr Ser Thr Lys Gln Trp Pro Lys Arg Ser Le
#u Arg Lys Ala Asp
               1145  
#              1150   
#             1155
Val Glu Glu Glu Phe Leu Ala Leu Arg Lys Le
#u Thr Pro Ser Ala
               1160  
#              1165   
#             1170
Gly Lys Ala Met Leu Thr Pro Lys Pro Ala Gl
#y Gly Asp Glu Lys
               1175  
#              1180   
#             1185
Asp Ile Lys Ala Phe Met Gly Thr Pro Val Gl
#n Lys Leu Asp Leu
               1190  
#              1195   
#             1200
Ala Gly Thr Leu Pro Gly Ser Lys Arg Gln Le
#u Gln Thr Pro Lys
               1205  
#              1210   
#             1215
Glu Lys Ala Gln Ala Leu Glu Asp Leu Ala Gl
#y Phe Lys Glu Leu
               1220  
#              1225   
#             1230
Phe Gln Thr Pro Gly His Thr Glu Glu Leu Va
#l Ala Ala Gly Lys
               1235  
#              1240   
#             1245
Thr Thr Lys Ile Pro Cys Asp Ser Pro Gln Se
#r Asp Pro Val Asp
               1250  
#              1255   
#             1260
Thr Pro Thr Ser Thr Lys Gln Arg Pro Lys Ar
#g Ser Ile Arg Lys
               1265  
#              1270   
#             1275
Ala Asp Val Glu Gly Glu Leu Leu Ala Cys Ar
#g Asn Leu Met Pro
               1280  
#              1285   
#             1290
Ser Ala Gly Lys Ala Met His Thr Pro Lys Pr
#o Ser Val Gly Glu
               1295  
#              1300   
#             1305
Glu Lys Asp Ile Ile Ile Phe Val Gly Thr Pr
#o Val Gln Lys Leu
               1310  
#              1315   
#             1320
Asp Leu Thr Glu Asn Leu Thr Gly Ser Lys Ar
#g Arg Pro Gln Thr
               1325  
#              1330   
#             1335
Pro Lys Glu Glu Ala Gln Ala Leu Glu Asp Le
#u Thr Gly Phe Lys
               1340  
#              1345   
#             1350
Glu Leu Phe Gln Thr Pro Gly His Thr Glu Gl
#u Ala Val Ala Ala
               1355  
#              1360   
#             1365
Gly Lys Thr Thr Lys Met Pro Cys Glu Ser Se
#r Pro Pro Glu Ser
               1370  
#              1375   
#             1380
Ala Asp Thr Pro Thr Ser Thr Arg Arg Gln Pr
#o Lys Thr Pro Leu
               1385  
#              1390   
#             1395
Glu Lys Arg Asp Val Gln Lys Glu Leu Ser Al
#a Leu Lys Lys Leu
               1400  
#              1405   
#             1410
Thr Gln Thr Ser Gly Glu Thr Thr His Thr As
#p Lys Val Pro Gly
               1415  
#              1420   
#             1425
Gly Glu Asp Lys Ser Ile Asn Ala Phe Arg Gl
#u Thr Ala Lys Gln
               1430  
#              1435   
#             1440
Lys Leu Asp Pro Ala Ala Ser Val Thr Gly Se
#r Lys Arg His Pro
               1445  
#              1450   
#             1455
Lys Thr Lys Glu Lys Ala Gln Pro Leu Glu As
#p Leu Ala Gly Trp
               1460  
#              1465   
#             1470
Lys Glu Leu Phe Gln Thr Pro Val Cys Thr As
#p Lys Pro Thr Thr
               1475  
#              1480   
#             1485
His Glu Lys Thr Thr Lys Ile Ala Cys Arg Se
#r Gln Pro Asp Pro
               1490  
#              1495   
#             1500
Val Asp Thr Pro Thr Ser Ser Lys Pro Gln Se
#r Lys Arg Ser Leu
               1505  
#              1510   
#             1515
Arg Lys Val Asp Val Glu Glu Glu Phe Phe Al
#a Leu Arg Lys Arg
               1520  
#              1525   
#             1530
Thr Pro Ser Ala Gly Lys Ala Met His Thr Pr
#o Lys Pro Ala Val
               1535  
#              1540   
#             1545
Ser Gly Glu Lys Asn Ile Tyr Ala Phe Met Gl
#y Thr Pro Val Gln
               1550  
#              1555   
#             1560
Lys Leu Asp Leu Thr Glu Asn Leu Thr Gly Se
#r Lys Arg Arg Leu
               1565  
#              1570   
#             1575
Gln Thr Pro Lys Glu Lys Ala Gln Ala Leu Gl
#u Asp Leu Ala Gly
               1580  
#              1585   
#             1590
Phe Lys Glu Leu Phe Gln Thr Arg Gly His Th
#r Glu Glu Ser Met
               1595  
#              1600   
#             1605
Thr Asn Asp Lys Thr Ala Lys Val Ala Cys Ly
#s Ser Ser Gln Pro
               1610  
#              1615   
#             1620
Asp Leu Asp Lys Asn Pro Ala Ser Ser Lys Ar
#g Arg Leu Lys Thr
               1625  
#              1630   
#             1635
Ser Leu Gly Lys Val Gly Val Lys Glu Glu Le
#u Leu Ala Val Gly
               1640  
#              1645   
#             1650
Lys Leu Thr Gln Thr Ser Gly Glu Thr Thr Hi
#s Thr His Thr Glu
               1655  
#              1660   
#             1665
Pro Thr Gly Asp Gly Lys Ser Met Lys Ala Ph
#e Met Glu Ser Pro
               1670  
#              1675   
#             1680
Lys Gln Ile Leu Asp Ser Ala Ala Ser Leu Th
#r Gly Ser Lys Arg
               1685  
#              1690   
#             1695
Gln Leu Arg Thr Pro Lys Gly Lys Ser Glu Va
#l Pro Glu Asp Leu
               1700  
#              1705   
#             1710
Ala Gly Phe Ile Glu Leu Phe Gln Thr Pro Se
#r His Thr Lys Glu
               1715  
#              1720   
#             1725
Ser Met Thr Asn Glu Lys Thr Thr Lys Val Se
#r Tyr Arg Ala Ser
               1730  
#              1735   
#             1740
Gln Pro Asp Leu Val Asp Thr Pro Thr Ser Se
#r Lys Pro Gln Pro
               1745  
#              1750   
#             1755
Lys Arg Ser Leu Arg Lys Ala Asp Thr Glu Gl
#u Glu Phe Leu Ala
               1760  
#              1765   
#             1770
Phe Arg Lys Gln Thr Pro Ser Ala Gly Lys Al
#a Met His Thr Pro
               1775  
#              1780   
#             1785
Lys Pro Ala Val Gly Glu Glu Lys Asp Ile As
#n Thr Phe Leu Gly
               1790  
#              1795   
#             1800
Thr Pro Val Gln Lys Leu Asp Gln Pro Gly As
#n Leu Pro Gly Ser
               1805  
#              1810   
#             1815
Asn Arg Arg Leu Gln Thr Arg Lys Glu Lys Al
#a Gln Ala Leu Glu
               1820  
#              1825   
#             1830
Glu Leu Thr Gly Phe Arg Glu Leu Phe Gln Th
#r Pro Cys Thr Asp
               1835  
#              1840   
#             1845
Asn Pro Thr Thr Asp Glu Lys Thr Thr Lys Ly
#s Ile Leu Cys Lys
               1850  
#              1855   
#             1860
Ser Pro Gln Ser Asp Pro Ala Asp Thr Pro Th
#r Asn Thr Lys Gln
               1865  
#              1870   
#             1875
Arg Pro Lys Arg Ser Leu Lys Lys Ala Asp Va
#l Glu Glu Glu Phe
               1880  
#              1885   
#             1890
Leu Ala Phe Arg Lys Leu Thr Pro Ser Ala Gl
#y Lys Ala Met His
               1895  
#              1900   
#             1905
Thr Pro Lys Ala Ala Val Gly Glu Glu Lys As
#p Ile Asn Thr Phe
               1910  
#              1915   
#             1920
Val Gly Thr Pro Val Glu Lys Leu Asp Leu Le
#u Gly Asn Leu Pro
               1925  
#              1930   
#             1935
Gly Ser Lys Arg Arg Pro Gln Thr Pro Lys Gl
#u Lys Ala Lys Ala
               1940  
#              1945   
#             1950
Leu Glu Asp Leu Ala Gly Phe Lys Glu Leu Ph
#e Gln Thr Pro Gly
               1955  
#              1960   
#             1965
His Thr Glu Glu Ser Met Thr Asp Asp Lys Il
#e Thr Glu Val Ser
               1970  
#              1975   
#             1980
Cys Lys Ser Pro Gln Pro Asp Pro Val Lys Th
#r Pro Thr Ser Ser
               1985  
#              1990   
#             1995
Lys Gln Arg Leu Lys Ile Ser Leu Gly Lys Va
#l Gly Val Lys Glu
               2000  
#              2005   
#             2010
Glu Val Leu Pro Val Gly Lys Leu Thr Gln Th
#r Ser Gly Lys Thr
               2015  
#              2020   
#             2025
Thr Gln Thr His Arg Glu Thr Ala Gly Asp Gl
#y Lys Ser Ile Lys
               2030  
#              2035   
#             2040
Ala Phe Lys Glu Ser Ala Lys Gln Met Leu As
#p Pro Ala Asn Tyr
               2045  
#              2050   
#             2055
Gly Thr Gly Met Glu Arg Trp Pro Arg Thr Pr
#o Lys Glu Glu Ala
               2060  
#              2065   
#             2070
Gln Ser Leu Glu Asp Leu Ala Gly Phe Lys Gl
#u Leu Phe Gln Thr
               2075  
#              2080   
#             2085
Pro Asp His Thr Glu Glu Ser Thr Thr Asp As
#p Lys Thr Thr Lys
               2090  
#              2095   
#             2100
Ile Ala Cys Lys Ser Pro Pro Pro Glu Ser Me
#t Asp Thr Pro Thr
               2105  
#              2110   
#             2115
Ser Thr Arg Arg Arg Pro Lys Thr Pro Leu Gl
#y Lys Arg Asp Ile
               2120  
#              2125   
#             2130
Val Glu Glu Leu Ser Ala Leu Lys Gln Leu Th
#r Gln Thr Thr His
               2135  
#              2140   
#             2145
Thr Asp Lys Val Pro Gly Asp Glu Asp Lys Gl
#y Ile Asn Val Phe
               2150  
#              2155   
#             2160
Arg Glu Thr Ala Lys Gln Lys Leu Asp Pro Al
#a Ala Ser Val Thr
               2165  
#              2170   
#             2175
Gly Ser Lys Arg Gln Pro Arg Thr Pro Lys Gl
#y Lys Ala Gln Pro
               2180  
#              2185   
#             2190
Leu Glu Asp Leu Ala Gly Leu Lys Glu Leu Ph
#e Gln Thr Pro Ile
               2195  
#              2200   
#             2205
Cys Thr Asp Lys Pro Thr Thr His Glu Lys Th
#r Thr Lys Ile Ala
               2210  
#              2215   
#             2220
Cys Arg Ser Pro Gln Pro Asp Pro Val Gly Th
#r Pro Thr Ile Phe
               2225  
#              2230   
#             2235
Lys Pro Gln Ser Lys Arg Ser Leu Arg Lys Al
#a Asp Val Glu Glu
               2240  
#              2245   
#             2250
Glu Ser Leu Ala Leu Arg Lys Arg Thr Pro Se
#r Val Gly Lys Ala
               2255  
#              2260   
#             2265
Met Asp Thr Pro Lys Pro Ala Gly Gly Asp Gl
#u Lys Asp Met Lys
               2270  
#              2275   
#             2280
Ala Phe Met Gly Thr Pro Val Gln Lys Leu As
#p Leu Pro Gly Asn
               2285  
#              2290   
#             2295
Leu Pro Gly Ser Lys Arg Trp Pro Gln Thr Pr
#o Lys Glu Lys Ala
               2300  
#              2305   
#             2310
Gln Ala Leu Glu Asp Leu Ala Gly Phe Lys Gl
#u Leu Phe Gln Thr
               2315  
#              2320   
#             2325
Pro Gly Thr Asp Lys Pro Thr Thr Asp Glu Ly
#s Thr Thr Lys Ile
               2330  
#              2335   
#             2340
Ala Cys Lys Ser Pro Gln Pro Asp Pro Val As
#p Thr Pro Ala Ser
               2345  
#              2350   
#             2355
Thr Lys Gln Arg Pro Lys Arg Asn Leu Arg Ly
#s Ala Asp Val Glu
               2360  
#              2365   
#             2370
Glu Glu Phe Leu Ala Leu Arg Lys Arg Thr Pr
#o Ser Ala Gly Lys
               2375  
#              2380   
#             2385
Ala Met Asp Thr Pro Lys Pro Ala Val Ser As
#p Glu Lys Asn Ile
               2390  
#              2395   
#             2400
Asn Thr Phe Val Glu Thr Pro Val Gln Lys Le
#u Asp Leu Leu Gly
               2405  
#              2410   
#             2415
Asn Leu Pro Gly Ser Lys Arg Gln Pro Gln Th
#r Pro Lys Glu Lys
               2420  
#              2425   
#             2430
Ala Glu Ala Leu Glu Asp Leu Val Gly Phe Ly
#s Glu Leu Phe Gln
               2435  
#              2440   
#             2445
Thr Pro Gly His Thr Glu Glu Ser Met Thr As
#p Asp Lys Ile Thr
               2450  
#              2455   
#             2460
Glu Val Ser Cys Lys Ser Pro Gln Pro Glu Se
#r Phe Lys Thr Ser
               2465  
#              2470   
#             2475
Arg Ser Ser Lys Gln Arg Leu Lys Ile Pro Le
#u Val Lys Val Asp
               2480  
#              2485   
#             2490
Met Lys Glu Glu Pro Leu Ala Val Ser Lys Le
#u Thr Arg Thr Ser
               2495  
#              2500   
#             2505
Gly Glu Thr Thr Gln Thr His Thr Glu Pro Th
#r Gly Asp Ser Lys
               2510  
#              2515   
#             2520
Ser Ile Lys Ala Phe Lys Glu Ser Pro Lys Gl
#n Ile Leu Asp Pro
               2525  
#              2530   
#             2535
Ala Ala Ser Val Thr Gly Ser Arg Arg Gln Le
#u Arg Thr Arg Lys
               2540  
#              2545   
#             2550
Glu Lys Ala Arg Ala Leu Glu Asp Leu Val As
#p Phe Lys Glu Leu
               2555  
#              2560   
#             2565
Phe Ser Ala Pro Gly His Thr Glu Glu Ser Me
#t Thr Ile Asp Lys
               2570  
#              2575   
#             2580
Asn Thr Lys Ile Pro Cys Lys Ser Pro Pro Pr
#o Glu Leu Thr Asp
               2585  
#              2590   
#             2595
Thr Ala Thr Ser Thr Lys Arg Cys Pro Lys Th
#r Arg Leu Arg Lys
               2600  
#              2605   
#             2610
Glu Val Lys Glu Glu Leu Ser Ala Val Glu Ar
#g Leu Thr Gln Thr
               2615  
#              2620   
#             2625
Ser Gly Gln Ser Thr His Thr His Lys Glu Pr
#o Ala Ser Gly Asp
               2630  
#              2635   
#             2640
Glu Gly Ile Lys Val Leu Lys Gln Arg Ala Ly
#s Lys Lys Pro Asn
               2645  
#              2650   
#             2655
Pro Val Glu Glu Glu Pro Ser Arg Arg Arg Pr
#o Arg Ala Pro Lys
               2660  
#              2665   
#             2670
Glu Lys Ala Gln Pro Leu Glu Asp Leu Ala Gl
#y Phe Thr Glu Leu
               2675  
#              2680   
#             2685
Ser Glu Thr Ser Gly His Thr Gln Glu Ser Le
#u Thr Ala Gly Lys
               2690  
#              2695   
#             2700
Ala Thr Lys Ile Pro Cys Glu Ser Pro Pro Le
#u Glu Val Val Asp
               2705  
#              2710   
#             2715
Thr Thr Ala Ser Thr Lys Arg His Leu Arg Th
#r Arg Val Gln Lys
               2720  
#              2725   
#             2730
Val Gln Val Lys Glu Glu Pro Ser Ala Val Ly
#s Phe Thr Gln Thr
               2735  
#              2740   
#             2745
Ser Gly Glu Thr Thr Asp Ala Asp Lys Glu Pr
#o Ala Gly Glu Asp
               2750  
#              2755   
#             2760
Lys Gly Ile Lys Ala Leu Lys Glu Ser Ala Ly
#s Gln Thr Pro Ala
               2765  
#              2770   
#             2775
Pro Ala Ala Ser Val Thr Gly Ser Arg Arg Ar
#g Pro Arg Ala Pro
               2780  
#              2785   
#             2790
Arg Glu Ser Ala Gln Ala Ile Glu Asp Leu Al
#a Gly Phe Lys Asp
               2795  
#              2800   
#             2805
Pro Ala Ala Gly His Thr Glu Glu Ser Met Th
#r Asp Asp Lys Thr
               2810  
#              2815   
#             2820
Thr Lys Ile Pro Cys Lys Ser Ser Pro Glu Le
#u Glu Asp Thr Ala
               2825  
#              2830   
#             2835
Thr Ser Ser Lys Arg Arg Pro Arg Thr Arg Al
#a Gln Lys Val Glu
               2840  
#              2845   
#             2850
Val Lys Glu Glu Leu Leu Ala Val Gly Lys Le
#u Thr Gln Thr Ser
               2855  
#              2860   
#             2865
Gly Glu Thr Thr His Thr Asp Lys Glu Pro Va
#l Gly Glu Gly Lys
               2870  
#              2875   
#             2880
Gly Thr Lys Ala Phe Lys Gln Pro Ala Lys Ar
#g Lys Leu Asp Ala
               2885  
#              2890   
#             2895
Glu Asp Val Ile Gly Ser Arg Arg Gln Pro Ar
#g Ala Pro Lys Glu
               2900  
#              2905   
#             2910
Lys Ala Gln Pro Leu Glu Asp Leu Ala Ser Ph
#e Gln Glu Leu Ser
               2915  
#              2920   
#             2925
Gln Thr Pro Gly His Thr Glu Glu Leu Ala As
#n Gly Ala Ala Asp
               2930  
#              2935   
#             2940
Ser Phe Thr Ser Ala Pro Lys Gln Thr Pro As
#p Ser Gly Lys Pro
               2945  
#              2950   
#             2955
Leu Lys Ile Ser Arg Arg Val Leu Arg Ala Pr
#o Lys Val Glu Pro
               2960  
#              2965   
#             2970
Val Gly Asp Val Val Ser Thr Arg Asp Pro Va
#l Lys Ser Gln Ser
               2975  
#              2980   
#             2985
Lys Ser Asn Thr Ser Leu Pro Pro Leu Pro Ph
#e Lys Arg Gly Gly
               2990  
#              2995   
#             3000
Gly Lys Asp Gly Ser Val Thr Gly Thr Lys Ar
#g Leu Arg Cys Met
               3005  
#              3010   
#             3015
Pro Ala Pro Glu Glu Ile Val Glu Glu Leu Pr
#o Ala Ser Lys Lys
               3020  
#              3025   
#             3030
Gln Arg Val Ala Pro Arg Ala Arg Gly Lys Se
#r Ser Glu Pro Val
               3035  
#              3040   
#             3045
Val Ile Met Lys Arg Ser Leu Arg Thr Ser Al
#a Lys Arg Ile Glu
               3050  
#              3055   
#             3060
Pro Ala Glu Glu Leu Asn Ser Asn Asp Met Ly
#s Thr Asn Lys Glu
               3065  
#              3070   
#             3075
Glu His Lys Leu Gln Asp Ser Val Pro Glu As
#n Lys Gly Ile Ser
               3080  
#              3085   
#             3090
Leu Arg Ser Arg Arg Gln Asn Lys Thr Glu Al
#a Glu Gln Gln Ile
               3095  
#              3100   
#             3105
Thr Glu Val Phe Val Leu Ala Glu Arg Ile Gl
#u Ile Asn Arg Asn
               3110  
#              3115   
#             3120
Glu Lys Lys Pro Met Lys Thr Ser Pro Glu Me
#t Asp Ile Gln Asn
               3125  
#              3130   
#             3135
Pro Asp Asp Gly Ala Arg Lys Pro Ile Pro Ar
#g Asp Lys Val Thr
               3140  
#              3145   
#             3150
Glu Asn Lys Arg Cys Leu Arg Ser Ala Arg Gl
#n Asn Glu Ser Ser
               3155  
#              3160   
#             3165
Gln Pro Lys Val Ala Glu Glu Ser Gly Gly Gl
#n Lys Ser Ala Lys
               3170  
#              3175   
#             3180
Val Leu Met Gln Asn Gln Lys Gly Lys Gly Gl
#u Ala Gly Asn Ser
               3185  
#              3190   
#             3195
Asp Ser Met Cys Leu Arg Ser Arg Lys Thr Ly
#s Ser Gln Pro Ala
               3200  
#              3205   
#             3210
Ala Ser Thr Leu Glu Ser Lys Ser Val Gln Ar
#g Val Thr Arg Ser
               3215  
#              3220   
#             3225
Val Lys Arg Cys Ala Glu Asn Pro Lys Lys Al
#a Glu Asp Asn Val
               3230  
#              3235   
#             3240
Cys Val Lys Lys Ile Arg Thr Arg Ser His Ar
#g Asp Ser Glu Asp
               3245  
#              3250   
#             3255
Ile
<210> SEQ ID NO 99
<211> LENGTH: 826
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 211881.1
<400> SEQUENCE: 99
cttaaaacct gacatccttc atgttagcta acctttataa tctctttgga tg
#tagtaaat     60
ttttagtatt ttttagattg aatttgtatc atatttgcta gcaaattgag ta
#taaagagt    120
agcatatttt tactacagat gtattatttt aactaacaaa ggcatattat ac
#attttttt    180
catatataaa ctttggaata ggattttaca gtaacttaag ttttttattt ct
#acccatgt    240
gtcaaagttt tatgctaaat tctgaataga atagttgtaa ctcccactct gg
#gtatttta    300
tttattttaa acagttctag tattgtttcc tgtgaatttt ttccagggat tg
#ctactttc    360
tgcactattc attagaccaa gagcatttca ccaaatactt aaaacttaaa aa
#tttttaaa    420
cttttccaaa tttgattaaa aggataacat attctaaagg tattcaatat tt
#ttacttat    480
ctctgaaaaa cttaatcaca taaaagcata cattttacac atacagctct ct
#ccatcttc    540
cacaatagat taagacataa aacataacca gtatttttga aaagccccct ta
#actggcat    600
gcttcttact gaaattatca taaaaggttc gtatgagaaa ggattccaga at
#atccctta    660
attgtgttgt agcttatgca tttctattta ttttatacat tatttaattc at
#gtgagtta    720
cttacctggc agggaagata tgatcaccaa ggtgcctttc acattcattg ca
#ctctggat    780
gtgctgaccc ctgcaatttc cccaaatggg ggaagctcaa ctgcat   
#                826
<210> SEQ ID NO 100
<211> LENGTH: 1498
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 409895.2
<400> SEQUENCE: 100
agctaatgtg ttacattaga atcacctcgg ggaggccctg ggtgcccttc tc
#agccctcc     60
ctccggaggc tgctgaagcc cagcaaagcc ggagtcagag aacaatgtcc gc
#ctgagggc    120
agggctgggc tgggctggcc ttctggccct atctgctccg tgcccaaccc ag
#cgccccgc    180
acagtcggag ctttgtaaat acgaggtgac tgtctgccta caaactttgt aa
#acatcact    240
tgaaatggcc gcagggtatt gcgacatggc cataccacta tttgtttgct at
#tgaatttg    300
tacttccctg ccttactttt gctattgcaa accatgctgt cactaaggtc tt
#catgcaca    360
cagttgtgtc ttggtcagat gatatgtttc taccaatttt aattgtgttt ct
#ttccacct    420
gggacacaca gctctctggg ccccagggct gggtcatcag cacaccctgc tg
#ctgctgtt    480
cagatctgca tcctggtccc gcttggtccc acagtgagaa cgctttgcta tc
#acatgggc    540
aggctctgag agccctgccg gcctggcctt ctcaaagaag acctgagagc tt
#gggaccca    600
agcagagagg aagaacaggg ctcagggtgc ttgctccatg ctcgctccac ac
#ctggggct    660
caaccctggc tttccccggc tccctgtgtg acttcagggc aggtcccttg gg
#ccctctgg    720
gccttatcat cttcatctgt aacagggcga tgcctctgcc gtgtctggtg gt
#gttgagga    780
gttcctgttt gtgtaagcag ctagttcagt gccagcacga gatgggaggc cc
#atgaagtt    840
agcagtgcac aaaaaataga gcaaagactg gatgcatttc ctgagaacaa cc
#atcactgt    900
aaagcacttt acaaatccaa agacaacccc cggcaaaaac tcaaaatgaa ac
#tccctctc    960
gcagagcaca attccaattc gctctaaaaa cattacaagt tagttcatgt ca
#tgccagat   1020
agctgaaggc agctcacaag ttcttaaggc caggaatgcc atgtgtctgc ta
#tgcacagc   1080
tggccctggc cctgagcctg aatgacagca aaggtgacgc agatgtgggt gc
#cctgctcc   1140
tgcccagcag cagtgcttgg tggaggctga ggccctgcac aggcaccctc ac
#tgctgacc   1200
ttgagcctct ctctcctcta gagtggaaaa gacaaggatg ccgtggataa at
#tgctcaag   1260
gacctggacg ccaatggaga tgcccaggtg gacttcagtg agttcatcgt gt
#tcgtggct   1320
gcaatcacgt ctgcctgtca caagtacttt gagaaggcag gactcaaatg at
#gccctgga   1380
gatgtcacag attcctggca gagccatggt cccaggcttc ccaaaagtgt tt
#gttggcaa   1440
ttattcccct aggctgagcc tgctcatgta cctctgatta ataaatgctt at
#gaaatg     1498
<210> SEQ ID NO 101
<211> LENGTH: 860
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1422432CB1
<221> NAME/KEY: unsure
<222> LOCATION: 205
<223> OTHER INFORMATION: a, t, c, g, or othe
#r
<400> SEQUENCE: 101
agagcaaaga ctggatgcat ttcctgagaa caaccatcac tgtaaagcac tt
#tacaaatc     60
caaagacaac ccccggcaaa aactcaaaat gaaactccct ctcgcagagc ac
#aattccaa    120
ttcgctctaa aaacattaca agttagttca tgtcatgcca gatagctgaa gg
#cagctcac    180
aagttcttaa ggccaggaat gccangtgtc tgctatgcac agctggccct gg
#ccctgagc    240
ctgaatgaca gcaaaggtga cgcagatgtg ggtgccctgc tcctgcccag ca
#gcagtgct    300
tggtggaggc tgaggccctg cacaggcacc ctcactgctg accttgagcc tc
#tctctcct    360
ctcaagaggc tgccagtggg acattttctc ggccctgcca gcccccagga gg
#aaggtggg    420
tctgaatcta gcaccatgac ggaactagag acagccatgg gcatgatcat ag
#acgtcttt    480
tcccgatatt cgggcagcga gggcagcacg cagaccctga ccaaggggga gc
#tcaaggtg    540
ctgatggaga aggagctacc aggcttcctg cagagtggaa aagacaagga tg
#ccgtggat    600
aaattgctca aggacctgga cgccaatgga gatgcccagg tggacttcag tg
#agttcatc    660
gtgttcgtgg ctgcaatcac gtctgcctgt cacaagtact ttgagaaggc ag
#gactcaaa    720
tgatgccctg gagatgtcac agattcctgg cagagccatg gtcccaggct tc
#ccaaaagt    780
gtttgttggc aattattccc ctaggctgag cctgctcatg tacctctgat ta
#ataaatgc    840
ttatgaaatg aaaaaaaaaa            
#                  
#                  
#860
<210> SEQ ID NO 102
<211> LENGTH: 95
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: Incyte ID No: 1422432CD1
<400> SEQUENCE: 102
Met Thr Glu Leu Glu Thr Ala Met Gly Met Il
#e Ile Asp Val Phe
  1               5 
#                 10 
#                 15
Ser Arg Tyr Ser Gly Ser Glu Gly Ser Thr Gl
#n Thr Leu Thr Lys
                 20 
#                 25 
#                 30
Gly Glu Leu Lys Val Leu Met Glu Lys Glu Le
#u Pro Gly Phe Leu
                 35 
#                 40 
#                 45
Gln Ser Gly Lys Asp Lys Asp Ala Val Asp Ly
#s Leu Leu Lys Asp
                 50 
#                 55 
#                 60
Leu Asp Ala Asn Gly Asp Ala Gln Val Asp Ph
#e Ser Glu Phe Ile
                 65 
#                 70 
#                 75
Val Phe Val Ala Ala Ile Thr Ser Ala Cys Hi
#s Lys Tyr Phe Glu
                 80 
#                 85 
#                 90
Lys Ala Gly Leu Lys
                 95

Claims (9)

What is claimed is:
1. A combination comprising a plurality of cDNAs that are differentially expressed in prostate cancer, wherein the plurality of cDNAs consist of SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101 or a plurality of cDNAs consisting of the complements thereof.
2. The combination of claim 1, wherein each of the cDNAs is differentially regulated between non-metastatic and metastatic prostate cancer, consisting of SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75.
3. The combination of claim 1, wherein each of the cDNAs is differentially regulated between prostate cancer and normal prostate, consisting of SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101.
4. The combination of claim 1, wherein the cDNAs are immobilized on a substrate.
5. A high throughput method for detecting differential expression of one or more cDNAs in a sample containing nucleic acids, the method comprising:
(a) hybridizing the substrate of claim 4 with nucleic acids of the sample, thereby forming one or more hybridization complexes;
(b) detecting the hybridization complexes; and
(c) comparing the hybridization complexes with those of a standard, wherein differences between the standard and sample hybridization complexes indicate differential expression of cDNAs in the sample.
6. The method of claim 5, wherein the nucleic acids of the sample are amplified prior to hybridization.
7. The method of claim 5, wherein the sample is from a subject with prostate cancer and comparison with a standard defines an early, mid, or late stage of that disease.
8. A high throughput method of screening a plurality of molecules or compounds to identify a ligand which specifically binds a cDNA, the method comprising:
(a) combining the composition of claim 1 with the plurality of molecules or compounds under conditions to allow specific binding; and
(b) detecting specific binding between each cDNA and at least one molecule or compound, thereby identifying a ligand that specifically binds to each cDNA.
9. The method of claim 8 wherein the plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, transcription factors, repressors, and regulatory proteins.
US09/919,172 2000-07-28 2001-07-30 Prostate cancer markers Expired - Fee Related US6673545B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/919,172 US6673545B2 (en) 2000-07-28 2001-07-30 Prostate cancer markers
US10/752,986 US20040253609A1 (en) 2000-07-28 2004-01-06 Prostate cancer markers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22246900P 2000-07-28 2000-07-28
US09/919,172 US6673545B2 (en) 2000-07-28 2001-07-30 Prostate cancer markers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/752,986 Continuation US20040253609A1 (en) 2000-07-28 2004-01-06 Prostate cancer markers

Publications (2)

Publication Number Publication Date
US20020119463A1 US20020119463A1 (en) 2002-08-29
US6673545B2 true US6673545B2 (en) 2004-01-06

Family

ID=26916826

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/919,172 Expired - Fee Related US6673545B2 (en) 2000-07-28 2001-07-30 Prostate cancer markers
US10/752,986 Abandoned US20040253609A1 (en) 2000-07-28 2004-01-06 Prostate cancer markers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/752,986 Abandoned US20040253609A1 (en) 2000-07-28 2004-01-06 Prostate cancer markers

Country Status (1)

Country Link
US (2) US6673545B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020156263A1 (en) * 2000-10-05 2002-10-24 Huei-Mei Chen Genes expressed in breast cancer
US20030017516A1 (en) * 2001-06-26 2003-01-23 Trustees Of Tufts College Targeting tumor cell antigens: antibodies useful for the diagnosis, prognosis, and treatment of cancer
US20030027188A1 (en) * 2001-06-05 2003-02-06 Lori Friedman SLC7s as modifiers of the p53 pathway and methods of use
US20060093606A1 (en) * 2004-07-20 2006-05-04 Genentech, Inc. Compositions and methods of using angiopoietin-like 4 protein
US20060093607A1 (en) * 2004-07-20 2006-05-04 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
US20060240022A1 (en) * 2002-10-18 2006-10-26 Atugen Ag Factor involved in metastasis and uses thereof
US20100172877A1 (en) * 2009-01-08 2010-07-08 Yale University Compositions and methods of use of an oncolytic vesicular stomatitis virus
WO2011032003A1 (en) 2009-09-10 2011-03-17 Yale University Immunization to reduce neurotoxicity during treatment with cytolytic viruses
WO2011056993A1 (en) 2009-11-04 2011-05-12 Yale University Compositions and methods for treating cancer with attenuated oncolytic viruses
US8084200B2 (en) 2002-11-15 2011-12-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
WO2013019730A1 (en) * 2011-07-29 2013-02-07 The Washington University Antibodies to tip-1 and grp78
US8604185B2 (en) 2004-07-20 2013-12-10 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
US8617521B2 (en) 2001-11-09 2013-12-31 Vanderbilt University Phage antibodies to radiation-inducible neoantigens
US8765097B2 (en) 2001-10-03 2014-07-01 Washington University Ligands to radiation-induced molecules
WO2014186798A1 (en) 2013-05-17 2014-11-20 Amplimmune, Inc. Receptors for b7-h4
WO2015058111A1 (en) 2013-10-17 2015-04-23 The Brigham And Women's Hospital, Inc. Cationic nanoparticles for co-delivery of nucleic acids and thereapeutic agents
WO2016168197A1 (en) 2015-04-15 2016-10-20 Yale University Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof
WO2017095751A1 (en) 2015-12-02 2017-06-08 Partikula Llc Compositions and methods for modulating cancer cell metabolism
WO2017173453A1 (en) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
WO2018053434A1 (en) 2016-09-16 2018-03-22 The Johns Hopkins University Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery
WO2018112470A1 (en) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
WO2018196782A1 (en) 2017-04-27 2018-11-01 The University Of Hong Kong Use of hcn inhibitors for treatment of cancer
WO2018237109A1 (en) 2017-06-23 2018-12-27 Yale University Nanomaterials with enhanced drug delivery efficiency
US10238581B2 (en) 2014-05-09 2019-03-26 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US10449261B2 (en) 2014-07-24 2019-10-22 Washington University Compositions targeting radiation-induced molecules and methods of use thereof
US11352436B2 (en) 2017-02-10 2022-06-07 Washington University Antibodies to TIP1 and methods of use thereof
WO2023010060A2 (en) 2021-07-27 2023-02-02 Novab, Inc. Engineered vlrb antibodies with immune effector functions
WO2023108083A2 (en) 2021-12-08 2023-06-15 Yale University Nanoparticle immunogenic compositions and vaccination methods
WO2023147552A1 (en) 2022-01-28 2023-08-03 University Of Georgia Research Foundation, Inc. Radiosensitizing compositions and methods of use thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
WO2024050524A1 (en) 2022-09-01 2024-03-07 University Of Georgia Research Foundation, Inc. Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death
WO2024112867A1 (en) 2022-11-23 2024-05-30 University Of Georgia Research Foundation, Inc. Compositions and methods of use thereof for increasing immune responses

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737514B1 (en) 1998-12-22 2004-05-18 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US7258860B2 (en) * 1998-03-18 2007-08-21 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
US7579160B2 (en) 1998-03-18 2009-08-25 Corixa Corporation Methods for the detection of cervical cancer
US6660838B1 (en) 1998-03-18 2003-12-09 Corixa Corporation Compounds and methods for therapy and diagnosis of lung cancer
US7049063B2 (en) 1998-03-18 2006-05-23 Corixa Corporation Methods for diagnosis of lung cancer
US20030194702A1 (en) * 2000-12-22 2003-10-16 Engelhard Eric K. Novel compositions and methods for cancer
US20030119009A1 (en) * 2001-02-23 2003-06-26 Stuart Susan G. Genes regulated by MYCN activation
EP1552293A4 (en) * 2002-09-10 2006-12-06 Guennadi V Glinskii Gene segregation and biological sample classification methods
EP1660526A1 (en) * 2003-08-29 2006-05-31 The Nottingham Trent University Gastric and prostate cancer associated antigens
CA2555866A1 (en) * 2004-02-16 2005-08-25 Proteosys Ag Diagnostic markers for cancer
JP4468989B2 (en) * 2004-08-16 2010-05-26 クアーク・ファーマスーティカルス、インコーポレイテッド Use of RTP801 inhibitors for therapy
CA2632419A1 (en) 2005-12-06 2007-06-14 Kyowa Hakko Kogyo Co., Ltd. Genetically recombinant anti-perp antibody
US20070180545A1 (en) * 2006-01-19 2007-08-02 Daniel Chelsky TAT-031 and methods of assessing and treating cancer
DOP2007000015A (en) 2006-01-20 2007-08-31 Quark Biotech Inc THERAPEUTIC USES OF RTP801 INHIBITORS
WO2008054534A2 (en) 2006-05-11 2008-05-08 Quark Pharmaceuticals, Inc. Screening systems utilizing rtp801
EP2026843A4 (en) * 2006-06-09 2011-06-22 Quark Pharmaceuticals Inc Therapeutic uses of inhibitors of rtp801l
US8273539B2 (en) * 2006-09-25 2012-09-25 Mayo Foundation For Medical Education And Research Extracellular and membrane-associated prostate cancer markers
US8338109B2 (en) 2006-11-02 2012-12-25 Mayo Foundation For Medical Education And Research Predicting cancer outcome
JP2010518880A (en) * 2007-02-26 2010-06-03 クアーク・ファーマスーティカルス、インコーポレイテッド Inhibitors of RTP801 and their use in the treatment of diseases
WO2008154638A2 (en) * 2007-06-12 2008-12-18 Board Of Regents, The University Of Texas System Antagonists of the receptor for advanced glycation end-products (rage)
US8614311B2 (en) 2007-12-12 2013-12-24 Quark Pharmaceuticals, Inc. RTP801L siRNA compounds and methods of use thereof
EP2806054A1 (en) 2008-05-28 2014-11-26 Genomedx Biosciences Inc. Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer
US10407731B2 (en) 2008-05-30 2019-09-10 Mayo Foundation For Medical Education And Research Biomarker panels for predicting prostate cancer outcomes
EP2391379B1 (en) 2009-01-30 2017-08-02 Alphabeta AB Compound and method for treatment of alzheimer's disease
US8785391B2 (en) * 2010-06-24 2014-07-22 Alphabeta Ab Compound and method for treatment of alzheimer's disease and familial dementia
WO2012138284A1 (en) 2011-04-05 2012-10-11 Alphabeta Ab Amyloidosis target useful in methods of treatment and for screening of compounds
US10513737B2 (en) 2011-12-13 2019-12-24 Decipher Biosciences, Inc. Cancer diagnostics using non-coding transcripts
DK3435084T3 (en) 2012-08-16 2023-05-30 Mayo Found Medical Education & Res PROSTATE CANCER PROGNOSIS USING BIOMARKERS
US20170197997A1 (en) * 2016-01-07 2017-07-13 King Fahd University Of Petroleum And Minerals Gold(i) complexes with anticancer properties and methods of use thereof
EP3504348B1 (en) 2016-08-24 2022-12-14 Decipher Biosciences, Inc. Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy
US11208697B2 (en) 2017-01-20 2021-12-28 Decipher Biosciences, Inc. Molecular subtyping, prognosis, and treatment of bladder cancer
US11873532B2 (en) 2017-03-09 2024-01-16 Decipher Biosciences, Inc. Subtyping prostate cancer to predict response to hormone therapy
WO2018189292A1 (en) * 2017-04-13 2018-10-18 Institut National De La Sante Et De La Recherche Medicale Biomarkers of castration-resistant prostatic cells
WO2018205035A1 (en) 2017-05-12 2018-11-15 Genomedx Biosciences, Inc Genetic signatures to predict prostate cancer metastasis and identify tumor agressiveness
US20220260507A1 (en) * 2019-07-17 2022-08-18 Prosight Ltd. Method and system for analyzing prostate biopsy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968784A (en) * 1997-01-15 1999-10-19 Chugai Pharmaceutical Co., Ltd. Method for analyzing quantitative expression of genes
WO2000064479A1 (en) 1999-04-27 2000-11-02 Antibody Systems, Inc. Compositions containing tetracyclines for treating hemorrhagic virus infections and other disorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968784A (en) * 1997-01-15 1999-10-19 Chugai Pharmaceutical Co., Ltd. Method for analyzing quantitative expression of genes
WO2000064479A1 (en) 1999-04-27 2000-11-02 Antibody Systems, Inc. Compositions containing tetracyclines for treating hemorrhagic virus infections and other disorders

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
AF005258, GENBANK, Nov. 21, 1997.* *
AF047855, GENBANK, Feb. 25, 1998.* *
Attwood, The Babel of Bioinformatics. 2000, Science, vol. 290, No. 5491, pp. 471-473.* *
Chung T.D., et al., "Characterization of the Role of IL-6 in the Progression of Prostate Cancer", Prostate 38: 199-207 (1999).
Gerhold et al., It's the genes! EST access to human genome content. 1996, BioEssays, vol. 18, No. 12, pp. 973-981.* *
Gold, L.I., "The Role for Transforming Growth Factor-beta (TGF-beta)in Human Cancer", Crit Rev Oncog 10(4):303-360 (1999).
Gold, L.I., "The Role for Transforming Growth Factor-β (TGF-β)in Human Cancer", Crit Rev Oncog 10(4):303-360 (1999).
Hubert, R.S., et al., "STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors", PNAS, vol. 96, No. 25, 14523-14528 (Dec. 7, 1999).
Lin, J., et al., "The Phosphatidylinositol 3′-kinase Pathway is a Dominant Growth Factor-Activated Cell Survival Pathway in LNCaP Human Prostate Carcinoma Cells", Cancer Res;59(12):2891-2897, (Jun. 15, 1999).
Lin, J., et al., "The Phosphatidylinositol 3'-kinase Pathway is a Dominant Growth Factor-Activated Cell Survival Pathway in LNCaP Human Prostate Carcinoma Cells", Cancer Res;59(12):2891-2897, (Jun. 15, 1999).
Lopez et al., Whole-genome sequence annotation: 'Going wrong with confidence.' 1999, Molecular Microbiology, vol. 32, pp. 881-891.* *
Putz T., et al., Epideral Growth Factor (EGF) Receptor Blockade Inhibits the Action of EGF, Insulin-like Growth Factor I, and a Protein Kinase A Activator on the Mitogen-activated Protein Kinase Pathway in Prostate Cancer Cell Lines<1>, Cancer Res 59: 227-233 (1999).
Putz T., et al., Epideral Growth Factor (EGF) Receptor Blockade Inhibits the Action of EGF, Insulin-like Growth Factor I, and a Protein Kinase A Activator on the Mitogen-activated Protein Kinase Pathway in Prostate Cancer Cell Lines1, Cancer Res 59: 227-233 (1999).
Russell et al., Structural Features can be Unconserved in Proteins with Similar Folds. 1994, Journal of Molecular Biology, vol. 244, pp. 332-350.* *
Wells et al., The chemokine information source: identification and characterization of novel chemokines using the WorldWideWeb and Expressed Sequence Tag Databases. 1997, Journal of Leukocyte Biology, vol. 61, No. 5, pp. 545-550.* *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020156263A1 (en) * 2000-10-05 2002-10-24 Huei-Mei Chen Genes expressed in breast cancer
US20030027188A1 (en) * 2001-06-05 2003-02-06 Lori Friedman SLC7s as modifiers of the p53 pathway and methods of use
US20030017516A1 (en) * 2001-06-26 2003-01-23 Trustees Of Tufts College Targeting tumor cell antigens: antibodies useful for the diagnosis, prognosis, and treatment of cancer
US10086073B2 (en) 2001-10-03 2018-10-02 Washington University Ligands to radiation-induced molecules
US9340581B2 (en) 2001-10-03 2016-05-17 Washington University Ligands to radiation-induced molecules
US8765097B2 (en) 2001-10-03 2014-07-01 Washington University Ligands to radiation-induced molecules
US8927288B2 (en) 2001-11-09 2015-01-06 Vanderbilt University Phage antibodies to radiation-inducible neoantigens
US8617521B2 (en) 2001-11-09 2013-12-31 Vanderbilt University Phage antibodies to radiation-inducible neoantigens
US20100285038A1 (en) * 2002-10-18 2010-11-11 Anke Klippel-Giese Factor Involved in Metastasis and Uses Thereof
US20060240022A1 (en) * 2002-10-18 2006-10-26 Atugen Ag Factor involved in metastasis and uses thereof
US8084200B2 (en) 2002-11-15 2011-12-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US8633155B2 (en) 2004-07-20 2014-01-21 Genentech, Inc. Methods of using angiopoietin-like 4 protein to stimulate proliferation of pre-adipocytes
US20070054856A1 (en) * 2004-07-20 2007-03-08 Hanspeter Gerber Compositions and methods of using angiopoietin-like 4 protein
US20100172915A1 (en) * 2004-07-20 2010-07-08 Hanspeter Gerber Compositions and methods of using angiopoietin-like 4 protein
US20060093606A1 (en) * 2004-07-20 2006-05-04 Genentech, Inc. Compositions and methods of using angiopoietin-like 4 protein
US20060093607A1 (en) * 2004-07-20 2006-05-04 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
US20070026002A1 (en) * 2004-07-20 2007-02-01 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
US7371384B2 (en) 2004-07-20 2008-05-13 Genentech, Inc. Compositions and methods of using angiopoietin-like 4 protein antibody
US7740846B2 (en) 2004-07-20 2010-06-22 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
US8604185B2 (en) 2004-07-20 2013-12-10 Genentech, Inc. Inhibitors of angiopoietin-like 4 protein, combinations, and their use
US8481297B2 (en) 2009-01-08 2013-07-09 Yale University Compositions and methods of use of an oncolytic vesicular stomatitis virus
WO2010080909A1 (en) 2009-01-08 2010-07-15 Yale University Compositions and methods of use of an oncolytic vesicular stomatitis virus
US20100172877A1 (en) * 2009-01-08 2010-07-08 Yale University Compositions and methods of use of an oncolytic vesicular stomatitis virus
WO2011032003A1 (en) 2009-09-10 2011-03-17 Yale University Immunization to reduce neurotoxicity during treatment with cytolytic viruses
WO2011056993A1 (en) 2009-11-04 2011-05-12 Yale University Compositions and methods for treating cancer with attenuated oncolytic viruses
US9738725B2 (en) 2011-07-29 2017-08-22 Washington University Antibodies to TIP-1
WO2013019730A1 (en) * 2011-07-29 2013-02-07 The Washington University Antibodies to tip-1 and grp78
US10259884B2 (en) 2011-07-29 2019-04-16 Washington University Antibodies to GRP78
WO2014186798A1 (en) 2013-05-17 2014-11-20 Amplimmune, Inc. Receptors for b7-h4
WO2015058111A1 (en) 2013-10-17 2015-04-23 The Brigham And Women's Hospital, Inc. Cationic nanoparticles for co-delivery of nucleic acids and thereapeutic agents
US10660828B2 (en) 2014-05-09 2020-05-26 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
EP3721875A1 (en) 2014-05-09 2020-10-14 Yale University, Inc. Hyperbranched polyglycerol-coated particles and methods of making and using thereof
EP4331618A2 (en) 2014-05-09 2024-03-06 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11364182B2 (en) 2014-05-09 2022-06-21 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11826438B2 (en) 2014-05-09 2023-11-28 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
US10238581B2 (en) 2014-05-09 2019-03-26 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US10449261B2 (en) 2014-07-24 2019-10-22 Washington University Compositions targeting radiation-induced molecules and methods of use thereof
WO2016168197A1 (en) 2015-04-15 2016-10-20 Yale University Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof
WO2017095751A1 (en) 2015-12-02 2017-06-08 Partikula Llc Compositions and methods for modulating cancer cell metabolism
WO2017173453A1 (en) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
WO2018053434A1 (en) 2016-09-16 2018-03-22 The Johns Hopkins University Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery
US11090391B2 (en) 2016-09-16 2021-08-17 The Johns Hopkins University Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery
WO2018112470A1 (en) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
US11352436B2 (en) 2017-02-10 2022-06-07 Washington University Antibodies to TIP1 and methods of use thereof
WO2018196782A1 (en) 2017-04-27 2018-11-01 The University Of Hong Kong Use of hcn inhibitors for treatment of cancer
WO2018237109A1 (en) 2017-06-23 2018-12-27 Yale University Nanomaterials with enhanced drug delivery efficiency
WO2023010060A2 (en) 2021-07-27 2023-02-02 Novab, Inc. Engineered vlrb antibodies with immune effector functions
WO2023108083A2 (en) 2021-12-08 2023-06-15 Yale University Nanoparticle immunogenic compositions and vaccination methods
WO2023147552A1 (en) 2022-01-28 2023-08-03 University Of Georgia Research Foundation, Inc. Radiosensitizing compositions and methods of use thereof
WO2024050524A1 (en) 2022-09-01 2024-03-07 University Of Georgia Research Foundation, Inc. Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death
WO2024112867A1 (en) 2022-11-23 2024-05-30 University Of Georgia Research Foundation, Inc. Compositions and methods of use thereof for increasing immune responses

Also Published As

Publication number Publication date
US20040253609A1 (en) 2004-12-16
US20020119463A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
US6673545B2 (en) Prostate cancer markers
RU2721916C2 (en) Methods for prostate cancer prediction
US7705120B2 (en) Compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer
DK2644713T3 (en) A Method for Diagnosing Neoplasms II
AU2012203810B2 (en) Methods and compositions for the treatment and diagnosis of bladder cancer
US6773883B2 (en) Prognostic classification of endometrial cancer
KR101828290B1 (en) Markers for endometrial cancer
AU2012340393B2 (en) Methods and compositions for the treatment and diagnosis of bladder cancer
US20030190640A1 (en) Genes expressed in prostate cancer
US20020156263A1 (en) Genes expressed in breast cancer
US20230416827A1 (en) Assay for distinguishing between sepsis and systemic inflammatory response syndrome
KR20140006898A (en) Colon cancer gene expression signatures and methods of use
CA2430981A1 (en) Gene expression profiling of primary breast carcinomas using arrays of candidate genes
US10900086B1 (en) Compositions and methods for diagnosing prostate cancer using a gene expression signature
CA2403946A1 (en) Genes expressed in foam cell differentiation
US20030065157A1 (en) Genes expressed in lung cancer
AU2020201779B2 (en) Method for using gene expression to determine prognosis of prostate cancer
AU2008203227A1 (en) Colorectal cancer prognostics
US20030013099A1 (en) Genes regulated by DNA methylation in colon tumors
US20030165864A1 (en) Genes regulated by DNA methylation in tumor cells
KR20060087977A (en) Markers for the diagnosis of lung cancer
US20030119009A1 (en) Genes regulated by MYCN activation
US20030175761A1 (en) Identification of genes whose expression patterns distinguish benign lymphoid tissue and mantle cell, follicular, and small lymphocytic lymphoma
US20030175704A1 (en) Genes expressed in lung cancer
WO2015013233A2 (en) Methods and compositions for the treatment and diagnosis of bladder cancer

Legal Events

Date Code Title Description
AS Assignment

Owner name: INCYTE GENOMICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TURNER, CHRISTOPHER M.;FARIS, MARY;REEL/FRAME:012563/0837;SIGNING DATES FROM 20011021 TO 20011120

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20080106