US6673545B2 - Prostate cancer markers - Google Patents
Prostate cancer markers Download PDFInfo
- Publication number
- US6673545B2 US6673545B2 US09/919,172 US91917201A US6673545B2 US 6673545 B2 US6673545 B2 US 6673545B2 US 91917201 A US91917201 A US 91917201A US 6673545 B2 US6673545 B2 US 6673545B2
- Authority
- US
- United States
- Prior art keywords
- protein
- cdnas
- cdna
- human
- molecules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57434—Specifically defined cancers of prostate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to a composition comprising a plurality of cDNAs which are differentially expressed in prostate cancer and which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of prostate cancer.
- array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
- arrays are employed to detect the expression of a specific gene or its variants.
- arrays provide a platform for examining which genes are tissue specific, carrying out housekeeping functions, parts of a signaling cascade, or specifically related to a particular genetic predisposition, condition, disease, or disorder.
- gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease.
- both the levels and sequences expressed in tissues from subjects with prostate cancer may be compared with the levels and sequences expressed in normal tissue.
- Prostate cancer is a common malignancy in men over the age of 50, and the incidence increases with age. In the U.S., there are approximately 132,000 newly diagnosed cases of prostate cancer and more than 33,000 deaths from the disorder each year.
- cancer cells arise in the prostate, they are stimulated by testosterone to a more rapid growth. Thus, removal of the testes can indirectly reduce both rapid growth and metastasis of the cancer.
- prostatic cancers Over 95 percent of prostatic cancers are adenocarcinomas which originate in the prostatic acini. The remaining 5 percent are divided between squamous cell and transitional cell carcinomas, both of which arise in the prostatic ducts or other parts of the prostate gland.
- prostate cancer develops through a multistage progression ultimately resulting in an aggressive, metastatic phenotype.
- the initial step in tumor progression involves the hyperproliferation of normal luminal and/or basal epithelial cells that become hyperplastic and evolve into early-stage tumors.
- the early-stage tumors are localized in the prostate but eventually may metastasize, particularly to the bone, brain or lung. About 80% of these tumors remain responsive to androgen treatment, an important hormone controlling the growth of prostate epithelial cells.
- cancer growth becomes androgen-independent and there is currently no known treatment for this condition.
- PSA prostate specific antigen
- PSA is a tissue-specific serine protease almost exclusively produced by prostatic epithelial cells.
- the quantity of PSA correlates with the number and volume of the prostatic epithelial cells, and consequently, the levels of PSA are an excellent indicator of abnormal prostate growth.
- Men with prostate cancer exhibit an early linear increase in PSA levels followed by an exponential increase prior to diagnosis.
- PSA levels are also influenced by factors such as inflammation, androgen and other growth factors, some scientists maintain that changes in PSA levels are not useful in detecting individual cases of prostate cancer.
- EGF Epidermal Growth Factor
- FGF Fibroblast Growth Factor
- TGF ⁇ Tumor Growth Factor alpha
- TGF- ⁇ family of growth factors are generally expressed at increased levels in human cancers and the high expression levels in many cases correlates with advanced stages of malignancy and poor survival (Gold L I (1999) Crit Rev Oncog 10:303-360).
- LNCap androgen-dependent stage of prostate cancer
- PC3 and DU-145 the androgen-independent, hormone refractory stage of the disease
- the present invention provides for a composition comprising a plurality of cDNAs for use in detecting changes in expression of genes encoding proteins that are associated with prostate cancer.
- a composition can be employed for the diagnosis, prognosis or treatment of prostate cancer and related disorders correlated with differential gene expression.
- the present invention satisfies a need in the art in that it provides a set of differentially expressed genes which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of a subject with prostate cancer.
- the present invention provides a composition comprising a plurality of cDNAs and their complements which are differentially expressed in prostate adenocarcinomas and which are selected from SEQ ID NOs:1-1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101 as presented in the Sequence Listing.
- each cDNA is differentially regulated in metastatic versus non-metastatic tissue samples, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75; in another embodiment, each cDNA is differentially regulated at all stages of the disease, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101.
- the composition is immobilized on a substrate. In another aspect, the composition is used to diagnose the presence and stage of prostate cancer in a subject.
- the invention also provides proteins encoded by the cDNAs and which are selected from SEQ ID NOs:4, 7, 9, 16, 20, 22, 29, 31, 33, 37, 39, 41, 46, 51, 54, 57, 66, 69, 74, 77, 87, 91, 98 as presented in the Sequence Listing.
- the invention also provides a high throughput method to detect differential expression of one or more of the cDNAs of the composition.
- the method comprises hybridizing the substrate comprising the composition with the nucleic acids of a sample, thereby forming one or more hybridization complexes, detecting the hybridization complexes, and comparing the hybridization complexes with those of a standard, wherein differences in the size and signal intensity of each hybridization complex indicates differential expression of nucleic acids in the sample.
- the sample is from a subject with prostate cancer and differential expression determines an early, mid, and late stage of the disorder.
- the invention further provides a high throughput method of screening a library or a plurality of molecules or compounds to identify a ligand.
- the method comprises combining the substrate comprising the composition with a library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand.
- the library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, transcription factors, repressors, and other regulatory proteins.
- the invention still further provides an isolated cDNA encoding the protein comprising the amino acid sequence of SEQ ID NO:37.
- the invention also provides an isolated cDNA comprising SEQ ID NO:36 as presented in the Sequence Listing.
- the invention also provides a vector comprising the cDNA, a host cell comprising the vector, and a method for producing a protein comprising culturing the host cell under conditions for the expression of a protein and recovering the protein from the host cell culture.
- the invention additionally provides a method for purifying a ligand, the method comprising combining a cDNA of the invention with a sample under conditions which allow specific binding, recovering the bound cDNA, and separating the cDNA from the ligand, thereby obtaining purified ligand.
- the present invention provides a purified protein encoded and produced by a cDNA of the invention.
- the invention also provides a high-throughput method for using a protein to screen a library or a plurality of molecules or compounds to identify a ligand.
- the method comprises combining the protein or a portion thereof with the library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand which specifically binds the protein.
- a library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, proteins, agonists, antagonists, antibodies or their fragments, immunoglobulins, inhibitors, drug compounds, and pharmaceutical agents.
- the invention further provides for using a protein to purify a ligand.
- the method comprises combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and separating the protein from the ligand, thereby obtaining purified ligand.
- the invention still further provides a pharmaceutical composition comprising the protein.
- the invention yet still further provides a method for using the protein to produce an antibody. The method comprises immunizing an animal with the protein or an antigenically-effective epitope under conditions to elicit an antibody response, isolating animal antibodies, and screening the isolated antibodies with the protein to identify an antibody which specifically binds the protein.
- the invention yet still further provides a method for using the protein to purify antibodies which bind specifically to the protein.
- Sequence Listing is a compilation of cDNAs obtained by sequencing and extension of clone inserts. Each sequence is identified by a sequence identification number (SEQ ID NO) and by the template number (TEMPLATE ID) from which it was obtained.
- Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma.
- Column 1 shows the Clone ID of each sequence represented on a microarray.
- Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression.
- Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma.
- Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate.
- Column 1 shows the Clone ID of each sequence represented on a microarray.
- Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression.
- Table 3 shows the region within a gene template of each cDNA encompassed by a clone identified in Tables 1 and 2.
- Columns 1 and 2 show the SEQ ID NO: and Template ID, respectively.
- Column 3 shows the Clone ID and columns 4 and 5 show the first residue (Start) and last residue (Stop) encompassed by the clone on the template.
- Table 4 lists the functional annotation of the cDNAs of the present invention.
- Columns 1 and 2 show the SEQ ID NO and Template ID, respectively.
- Columns 3, 4, and 5 show the GenBank hit (GI Number), probability score (E-value), and functional annotation, respectivly, as determined by BLAST analysis (version 1.4 using default parameters; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) of the cDNA against GenBank (release 117; National Center for Biotechnology Information (NCBI), Bethesda Md.).
- Table 5 shows Pfam annotations of the cDNAs of the present invention.
- Columns 1 and 2 show the SEQ ID NO and Template ID, respectively.
- Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for the segment of the cDNA identified by Pfam analysis.
- Columns 6, 7, and 8 show the PFAM Hit, PFAM Annotation, and E-value, respectively, corresponding to the polypeptide domain of the protein or encoded by the cDNA segment.
- Table 6 shows signal peptide and transmembrane regions predicted within the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for a segment of the cDNA, and column 6 identifies the polypeptide encoded by the segment as either a signal peptide (SP) or transmembrane (TM) domain.
- SP signal peptide
- TM transmembrane
- Array refers to an ordered arrangement of at least two cDNAs on a substrate. At least one of the cDNAs represents a control or standard sequence, and the other, a cDNA of diagnostic interest. The arrangement of from about two to about 40,000 cDNAs on the substrate assures that the size and signal intensity of each labeled hybridization complex formed between a cDNA and a sample nucleic acid is individually distinguishable.
- nucleic acid molecule of the Sequence Listing refers to a cDNA which is completely complementary over the full length of the sequence and which will hybridize to the nucleic acid molecule under conditions of high stringency.
- composition comprises at least two sequences selected from the Sequence Listing.
- cDNA refers to a chain of nucleotides, an isolated polynucleotide, nucleic acid molecule, or any fragment or complement thereof. It may have originated recombinantly or synthetically, be double-stranded or single-stranded, coding and/or noncoding, an exon with or without an intron from a genomic DNA molecule, and purified or combined with carbohydrate, lipids, protein or inorganic elements or substances.
- the cDNA is from about 4000 to about 5000 nucleotides.
- cDNA encoding a protein refers to a nucleic acid sequence that closely aligns with sequences which encode conserved regions, motifs or domains that were identified by employing analyses well known in the art. These analyses include BLAST (Basic Local Alignment Search Tool; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) which provides identity within the conserved region. Brenner et al.
- “Derivative” refers to a cDNA or a protein that has been subjected to a chemical modification. Derivatization of a cDNA can involve substitution of a nontraditional base such as queosine or of an analog such as hypoxanthine. These substitutions are well known in the art. Derivatization of a protein involves the replacement of a hydrogen by an acetyl, acyl, alkyl, amino, formyl, or morpholino group. Derivative molecules retain the biological activities of the naturally occurring molecules but may confer advantages such as longer lifespan or enhanced activity.
- “Differential expression” refers to an increased, upregulated or present, or decreased, downregulated or absent, gene expression as detected by the absence, presence, or at least two-fold changes in the amount of transcribed messenger RNA or translated protein in a sample.
- disorder refers to conditions, diseases or syndromes associated with prostate cancer.
- Fragments refers to a chain of consecutive nucleotides from about 200 to about 700 base pairs in length. Fragments may be used in PCR or hybridization technologies to identify related nucleic acid molecules and in binding assays to screen for a ligand. Nucleic acids and their ligands identified in this manner are useful as therapeutics to regulate replication, transcription or translation.
- a “hybridization complex” is formed between a cDNA and a nucleic acid of a sample when the purines of one molecule hydrogen bond with the pyrimidines of the complementary molecule, e.g., 5′-A-G-T-C-3′ base pairs with 3′-T-C-A-G-5′.
- the degree of complementarity and the use of nucleotide analogs affect the efficiency and stringency of hybridization reactions.
- Ligand refers to any agent, molecule, or compound which will bind specifically to a complementary site on a cDNA molecule or polynucleotide, or to an epitope or a protein. Such ligands stabilize or modulate the activity of polynucleotides or proteins and may be composed of inorganic or organic substances including nucleic acids, proteins, carbohydrates, fats, and lipids.
- Oligomer refers a single stranded molecule from about 18 to about 60 nucleotides in length which may be used in hybridization or amplification technologies or in regulation of replication, transcription or translation. Substantially equivalent terms are amplimer, primer, and oligomer.
- “Portion” refers to any part of a protein used for any purpose; but especially, to an epitope for the screening of ligands or for the production of antibodies.
- Post-translational modification of a protein can involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and the like. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cellular location, cell type, pH, enzymatic milieu, and the like.
- Probe refers to a cDNA that hybridizes to at least one nucleic acid molecule in a sample. Where targets are single stranded, probes are complementary single strands. Probes can be labeled with reporter molecules for use in hybridization reactions including Southern, northern, in situ, dot blot, array, and like technologies or in screening assays.
- Protein refers to a polypeptide or any portion thereof.
- a “portion” of a protein retains at least one biological or antigenic characteristic of a native protein.
- An “oligopeptide” is an amino acid sequence from about five residues to about 15 residues that is used as part of a fusion protein to produce an antibody.
- “Purified” refers to any molecule or compound that is separated from its natural environment and is from about 60% free to about 90% free from other components with which it is naturally associated.
- sample is used in its broadest sense as containing nucleic acids, proteins, antibodies, and the like.
- a sample may comprise a bodily fluid; the soluble fraction of a cell preparation, or an aliquot of media in which cells were grown; a chromosome, an organelle, or membrane isolated or extracted from a cell; genomic DNA, RNA, or cDNA in solution or bound to a substrate; a cell; a tissue; a tissue print; a fingerprint, buccal cells, skin, or hair; and the like.
- Specific binding refers to a special and precise interaction between two molecules which is dependent upon their structure, particularly their molecular side groups. For example, the intercalation of a regulatory protein into the major groove of a DNA molecule, the hydrogen bonding along the backbone between two single stranded nucleic acids, or the binding between an epitope of a protein and an agonist, antagonist, or antibody.
- Similarity refers to the quantification (usually percentage) of nucleotide or residue matches between at least two sequences aligned using a standardized algorithm such as Smith-Waterman alignment (Smith and Waterman (1981) J Mol Biol 147:195-197) or BLAST2 (Altschul et al. (1997) Nucleic Acids Res 25:3389-3402).
- BLAST2 may be used in a standardized and reproducible way to insert gaps in one of the sequences in order to optimize alignment and to achieve a more meaningful comparison between them.
- Substrate refers to any rigid or semi-rigid support to which cDNAs or proteins are bound and includes membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, capillaries or other tubing, plates, polymers, and microparticles with a variety of surface forms including wells, trenches, pins, channels and pores.
- “Variant” refers to molecules that are recognized variations of a cDNA or a protein encoded by the cDNA. Splice variants may be determined by BLAST score, wherein the score is at least 100, and most preferably at least 400. Allelic variants have a high percent identity to the cDNAs and may differ by about three bases per hundred bases. “Single nucleotide polymorphism” (SNP) refers to a change in a single base as a result of a substitution, insertion or deletion. The change may be conservative (purine for purine) or non-conservative (purine to pyrimidine) and may or may not result in a change in an encoded amino acid.
- SNP single nucleotide polymorphism
- the present invention provides for a composition
- a composition comprising a plurality of cDNAs or their complements, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101, which may be used on a substrate to diagnose, to stage, to treat or to monitor the progression or treatment of prostate cancer.
- These cDNAs represent known and novel genes differentially expressed in cells from non-metastatic and metastatic prostate tumors.
- composition may be used in its entirety or in part, as subsets of cDNAs differentially regulated between non-metastatic and metastatic prostate cancer, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, or of cDNAs differentially regulated at all stages of prostate cancer, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101.
- SEQ ID NOs:24, 36, 47, 60, 82, 88, 89, 92, 93, and 95 represent novel cDNAs associated with prostate cancer.
- novel cDNAs were identified solely by their differential expression, it is not essential to know a priori the name, structure, or function of the gene or it's encoded protein. The usefulness of the novel cDNAs exist in their immediate value as diagnostics for prostate cancer.
- Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma.
- Column 1 shows the Clone ID of each sequence represented on a microarray.
- Columns 2-6 show the differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 of the absolute expression in normal prostate tissue ⁇ the absolute expression in prostate adenocarcinoma. Negative values represent an increase in expression.
- Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma. All of the cDNAs in Table 1 show significant differential regulation in metastatic cancer relative to non-metastatic cancer. Further, expression profiles between the metastatic cancer lines show a high degree of correlation (>0.48), as do the expression profiles between the non-metastatic lines (0.64). However, the expression profiles between the metastatic and non-metastatic lines show significantly less correlation ( ⁇ 0.3
- Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate.
- Column 1 shows the Clone ID of each sequence represented on a microarray.
- Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue ⁇ adenocarcinoma). Negative values represent an increase in expression.
- the expression profile for the cDNAs identified in Table 2 show high correlation between all tumor lines (>0.5).
- SEQ ID NO:36 is a novel sequence differentially regulated between metastatic and non-metastatic prostate tumors.
- SEQ ID NO:36 encodes SEQ ID NO:37 which is 193 amino acids in length.
- the cDNAs of the invention define a differential expression pattern against which to compare the expression pattern of biopsied and/or in vitro treated tissues.
- differential expression of the cDNAs can be evaluated by methods including, but not limited to, differential display by spatial immobilization or by gel electrophoresis, genome mismatch scanning, representational discriminate analysis, clustering, transcript imaging and array technologies. These methods may be used alone or in combination.
- the composition may be arranged on a substrate and hybridized with tumor tissues from subjects to identify those sequences which are differentially expressed in both prostate cancer and tumors derived from other tissues. This allows identification of those sequences of highest diagnostic and potential therapeutic value.
- an additional set of cDNAs such as cDNAs encoding signaling molecules, are arranged on the substrate with the composition. Such combinations may be useful in the elucidation of pathways which are affected in a particular cancer or to identify new, coexpressed, candidate, therapeutic molecules.
- the composition can be used for large scale genetic or gene expression analysis of a large number of novel, nucleic acid molecules.
- samples are prepared by methods well known in the art and are from mammalian cells or tissues which are in a certain stage of development; have been treated with a known molecule or compound, such as a cytokine, growth factor, a drug, and the like; or have been extracted or biopsied from a mammal with a known or unknown condition, disorder, or disease before or after treatment.
- the sample nucleic acid molecules are hybridized to the composition for the purpose of defining a novel gene profile associated with that developmental stage, treatment, or disorder.
- cDNAs can be prepared by a variety of synthetic or enzymatic methods well known in the art. cDNAs can be synthesized, in whole or in part, using chemical methods well known in the art (Caruthers et al. (1980) Nucleic Acids Symp. Ser. (7):215-233). Alternatively, cDNAs can be produced enzymatically or recombinantly, by in vitro or in vivo transcription.
- Nucleotide analogs can be incorporated into cDNAs by methods well known in the art. The only requirement is that the incorporated analog must base pair with native purines or pyrimidines. For example, 2,6-diaminopurine can substitute for adenine and form stronger bonds with thymidine than those between adenine and thymidine. A weaker pair is formed when hypoxanthine is substituted for guanine and base pairs with cytosine. Additionally, cDNAs can include nucleotides that have been derivatized chemically or enzymatically.
- cDNAs can be synthesized on a substrate. Synthesis on the surface of a substrate may be accomplished using a chemical coupling procedure and a piezoelectric printing apparatus as described by Baldeschweiler et al. (PCT publication WO95/251116). Alternatively, the cDNAs can be synthesized on a substrate surface using a self-addressable electronic device that controls when reagents are added as described by Heller et al. (U.S. Pat. No. 5,605,662). cDNAs can be synthesized directly on a substrate by sequentially dispensing reagents for their synthesis on the substrate surface or by dispensing preformed DNA fragments to the substrate surface.
- Typical dispensers include a micropipette delivering solution to the substrate with a robotic system to control the position of the micropipette with respect to the substrate. There can be a multiplicity of dispensers so that reagents can be delivered to the reaction regions efficiently.
- cDNAs can be immobilized on a substrate by covalent means such as by chemical bonding procedures or UV irradiation.
- a cDNA is bound to a glass surface which has been modified to contain epoxide or aldehyde groups.
- a cDNA is placed on a polylysine coated surface and UV cross-linked to it as described by Shalon et al. (WO95/35505).
- a cDNA is actively transported from a solution to a given position on a substrate by electrical means (Heller, supra). cDNAs do not have to be directly bound to the substrate, but rather can be bound to the substrate through a linker group.
- the linker groups are typically about 6 to 50 atoms long to provide exposure of the attached cDNA.
- Preferred linker groups include ethylene glycol oligomers, diamines, diacids and the like.
- Reactive groups on the substrate surface react with a terminal group of the linker to bind the linker to the substrate. The other terminus of the linker is then bound to the cDNA.
- polynucleotides, plasmids or cells can be arranged on a filter. In the latter case, cells are lysed, proteins and cellular components degraded, and the DNA is coupled to the filter by UV cross-linking.
- the cDNAs may be used for a variety of purposes.
- the composition of the invention may be used on an array.
- the array in turn, can be used in high-throughput methods for detecting a related polynucleotide in a sample, screening a plurality of molecules or compounds to identify a ligand, diagnosing prostate cancer, or inhibiting or inactivating a therapeutically relevant gene related to the cDNA.
- the cDNAs of the invention are employed on a microarray, the cDNAs are arranged in an ordered fashion so that each cDNA is present at a specified location. Because the cDNAs are at specified locations on the substrate, the hybridization patterns and intensities, which together create a unique expression profile, can be interpreted in terms of expression levels of particular genes and can be correlated with a particular metabolic process, condition, disorder, disease, stage of disease, or treatment.
- the cDNAs or fragments or complements thereof may be used in various hybridization technologies.
- the cDNAs may be labeled using a variety of reporter molecules by either PCR, recombinant, or enzymatic techniques.
- a commercially available vector containing the cDNA is transcribed in the presence of an appropriate polymerase, such as T7 or SP6 polymerase, and at least one labeled nucleotide.
- an appropriate polymerase such as T7 or SP6 polymerase
- kits are available for labeling and cleanup of such cDNAs. Radioactive (Amersham Pharmacia Biotech (APB), Piscataway N.J.), fluorescent (Operon Technologies, Alameda Calif.), and chemiluminescent labeling (Promega, Madison Wis.) are well known in the art.
- a cDNA may represent the complete coding region of an mRNA or be designed or derived from unique regions of the mRNA or genomic molecule, an intron, a 3′ untranslated region, or from a conserved motif.
- the cDNA is at least 18 contiguous nucleotides in length and is usually single stranded.
- Such a cDNA may be used under hybridization conditions that allow binding only to an identical sequence, a naturally occurring molecule encoding the same protein, or an allelic variant. Discovery of related human and mammalian sequences may also be accomplished using a pool of degenerate cDNAs and appropriate hybridization conditions.
- a cDNA for use in Southern or northern hybridizations may be from about 400 to about 6000 nucleotides long. Such cDNAs have high binding specificity in solution-based or substrate-based hybridizations.
- An oligonucleotide, a fragment of the cDNA may be used to detect a polynucleotide in a sample
- the stringency of hybridization is determined by G+C content of the cDNA, salt concentration, and temperature. In particular, stringency is increased by reducing the concentration of salt or raising the hybridization temperature. In solutions used for some membrane based hybridizations, addition of an organic solvent such as formamide allows the reaction to occur at a lower temperature.
- Hybridization may be performed with buffers, such as 5 ⁇ saline sodium citrate (SSC) with 1% sodium dodecyl sulfate (SDS) at 60° C., that permit the formation of a hybridization complex between nucleic acid sequences that contain some mismatches. Subsequent washes are performed with buffers such as 0.2 ⁇ SSC with 0.1% SDS at either 45° C.
- formamide may be added to the hybridization solution to reduce the temperature at which hybridization is performed. Background signals may be reduced by the use of detergents such as Sarkosyl or Triton X-100 (Sigma Aldrich, St. Louis Mo.) and a blocking agent such as denatured salmon sperm DNA. Selection of components and conditions for hybridization are well known to those skilled in the art and are reviewed in Ausubel et al. (1997, Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., Units 2.8-2.11, 3.18-3.19 and 4-64.9).
- Dot-blot, slot-blot, low density and high density arrays are prepared and analyzed using methods known in the art.
- cDNAs from about 18 consecutive nucleotides to about 5000 consecutive nucleotides in length are contemplated by the invention and used in array technologies.
- the preferred number of cDNAs on an array is at least about 100,000, a more preferred number is at least about 40,000, an even more preferred number is at least about 10,000, and a most preferred number is at least about 600 to about 800.
- the array may be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and SNPs.
- Such information may be used to determine gene function; to understand the genetic basis of a disorder; to diagnose a disorder; and to develop and monitor the activities of therapeutic agents being used to control or cure a disorder.
- a cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand which specifically binds the cDNA.
- Ligands may be DNA molecules, RNA molecules, peptide nucleic acid molecules, peptides, proteins such as transcription factors, promoters, enhancers, repressors, and other proteins that regulate replication, transcription, or translation of the polynucleotide in the biological system.
- the assay involves combining the cDNA or a fragment thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound cDNA to identify at least one ligand that specifically binds the cDNA.
- the cDNA may be incubated with a library of isolated and purified molecules or compounds and binding activity determined by methods such as a gel-retardation assay (U.S. Pat. No. 6,010,849) or a reticulocyte lysate transcriptional assay.
- the cDNA may be incubated with nuclear extracts from biopsied and/or cultured cells and tissues. Specific binding between the cDNA and a molecule or compound in the nuclear extract is initially determined by gel shift assay. Protein binding may be confirmed by raising antibodies against the protein and adding the antibodies to the gel-retardation assay where specific binding will cause a supershift in the assay.
- the cDNA may be used to purify a molecule or compound using affinity chromatography methods well known in the art.
- the cDNA is chemically reacted with cyanogen bromide groups on a polymeric resin or gel. Then a sample is passed over and reacts with or binds to the cDNA. The molecule or compound which is bound to the cDNA may be released from the cDNA by increasing the salt concentration of the flow-through medium and collected.
- the cDNA may be used to purify a ligand from a sample.
- a method for using a cDNA to purify a ligand would involve combining the cDNA or a fragment thereof with a sample under conditions to allow specific binding, recovering the bound cDNA, and using an appropriate agent to separate the cDNA from the purified ligand.
- the full length cDNAs or fragment thereof may be used to produce purified proteins using recombinant DNA technologies described herein and taught in Ausubel et al. (supra; Units 16.1-16.62).
- One of the advantages of producing proteins by these procedures is the ability to obtain highly-enriched sources of the proteins thereby simplifying purification procedures.
- the proteins may contain amino acid substitutions, deletions or insertions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. Such substitutions may be conservative in nature when the substituted residue has structural or chemical properties similar to the original residue (e.g., replacement of leucine with isoleucine or valine) or they may be nonconservative when the replacement residue is radically different (e.g., a glycine replaced by a tryptophan).
- Expression of a particular cDNA may be accomplished by cloning the cDNA into a vector and transforming this vector into a host cell.
- the cloning vector used for the construction of cDNA libraries in the LIFESEQ databases may also be used for expression.
- Such vectors usually contain a promoter and a polylinker useful for cloning, priming, and transcription.
- An exemplary vector may also contain the promoter for ⁇ -galactosidase, an amino-terminal methionine and the subsequent seven amino acid residues of ⁇ -galactosidase.
- the vector may be transformed into competent E. coli cells.
- IPTG isopropylthiogalactoside
- the cDNA may be shuttled into other vectors known to be useful for expression of protein in specific hosts. Oligonucleotides containing cloning sites and fragments of DNA sufficient to hybridize to stretches at both ends of the cDNA may be chemically synthesized by standard methods. These primers may then be used to amplify the desired fragments by PCR. The fragments may be digested with appropriate restriction enzymes under standard conditions and isolated using gel electrophoresis. Alternatively, similar fragments are produced by digestion of the cDNA with appropriate restriction enzymes and filled in with chemically synthesized oligonucleotides. Fragments of the coding sequence from more than one gene may be ligated together and expressed.
- a chimeric protein may be expressed that includes one or more additional purification-facilitating domains.
- additional purification-facilitating domains include, but are not limited to, metal-chelating domains that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex, Seattle Wash.).
- the inclusion of a cleavable-linker sequence such as ENTEROKINASEMAX (Invitrogen, San Diego Calif.) between the protein and the purification domain may also be used to recover the protein.
- Suitable host cells may include, but are not limited to, mammalian cells such as Chinese Hamster Ovary (CHO) and human 293 cells, insect cells such as Sf9 cells, plant cells such as Nicotiana tabacum, yeast cells such as Saccharomyces cerevisiae, and bacteria such as E. coli.
- a useful vector may also include an origin of replication and one or two selectable markers to allow selection in bacteria as well as in a transformed eukaryotic host.
- Vectors for use in eukaryotic host cells may require the addition of 3′ poly(A) tail if the cDNA lacks poly(A).
- the vector may contain promoters or enhancers that increase gene expression.
- Many promoters are known and used in the art. Most promoters are host specific and exemplary promoters includes SV40 promoters for CHO cells; T7 promoters for bacterial hosts; viral promoters and enhancers for plant cells; and PGH promoters for yeast.
- Adenoviral vectors with the rous sarcoma virus enhancer or retroviral vectors with long terminal repeat promoters may be used to drive protein expression in mammalian cell lines. Once homogeneous cultures of recombinant cells are obtained, large quantities of secreted soluble protein may be recovered from the conditioned medium and analyzed using chromatographic methods well known in the art.
- An alternative method for the production of large amounts of secreted protein involves the transformation of mammalian embryos and the recovery of the recombinant protein from milk produced by transgenic cows, goats, sheep, and the like.
- proteins or portions thereof may be produced manually, using solid-phase techniques (Stewart et al. (1969) Solid - Phase Peptide Synthesis, W H Freeman, San Francisco Calif.; Merrifield (1963) J Am Chem Soc 5:2149-2154), or using machines such as the ABI 431A peptide synthesizer (Applied Biosystems, Foster City Calif.). Proteins produced by any of the above methods may be used as pharmaceutical compositions to treat disorders associated with null or inadequate expression of the genomic sequence.
- a protein or a portion thereof encoded by the cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand with specific binding affinity or to purify a molecule or compound from a sample.
- the protein or portion thereof employed in such screening may be free in solution, affixed to an abiotic or biotic substrate, or located intracellularly.
- viable or fixed prokaryotic host cells that are stably transformed with recombinant nucleic acids that have expressed and positioned a protein on their cell surface can be used in screening assays. The cells are screened against a library or a plurality of ligands and the specificity of binding or formation of complexes between the expressed protein and the ligand may be measured.
- the ligands may be DNA, RNA, or PNA molecules, agonists, antagonists, antibodies, immunoglobulins, inhibitors, peptides, pharmaceutical agents, proteins, drugs, or any other test molecule or compound that specifically binds the protein.
- An exemplary assay involves combining the mammalian protein or a portion thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound protein to identify at least one ligand that specifically binds the protein.
- This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding the protein specifically compete with a test compound capable of binding to the protein or oligopeptide or fragment thereof.
- One method for high throughput screening using very small assay volumes and very small amounts of test compound is described in U.S. Pat. No. 5,876,946. Molecules or compounds identified by screening may be used in a model system to evaluate their toxicity, diagnostic, or therapeutic potential.
- the protein may be used to purify a ligand from a sample.
- a method for using a protein to purify a ligand would involve combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and using an appropriate chaotropic agent to separate the protein from the purified ligand.
- a protein encoded by a cDNA of the invention may be used to produce specific antibodies.
- Antibodies may be produced using an oligopeptide or a portion of the protein with inherent immunological activity. Methods for producing antibodies include: 1) injecting an animal, usually goats, rabbits, or mice, with the protein, or an antigenically-effective portion or an oligopeptide thereof, to induce an immune response; 2) engineering hybridomas to produce monoclonal antibodies; 3) inducing in vivo production in the lymphocyte population; or 4) screening libraries of recombinant immunoglobulins. Recombinant immunoglobulins may be produced as taught in U.S. Pat. No. 4,816,567.
- Antibodies produced using the proteins of the invention are useful for the diagnosis of prepathologic disorders as well as the diagnosis of chronic or acute diseases characterized by abnormalities in the expression, amount, or distribution of the protein.
- a variety of protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies specific for proteins are well known in the art. Immunoassays typically involve the formation of complexes between a protein and its specific binding molecule or compound and the measurement of complex formation.
- Immunoassays may employ a two-site, monoclonal-based assay that utilizes monoclonal antibodies reactive to two noninterfering epitopes on a specific protein or a competitive binding assay (Pound (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).
- Immunoassay procedures may be used to quantify expression of the protein in cell cultures, in subjects with a particular disorder or in model animal systems under various conditions. Increased or decreased production of proteins as monitored by immunoassay may contribute to knowledge of the cellular activities associated with developmental pathways, engineered conditions or diseases, or treatment efficacy.
- the quantity of a given protein in a given tissue may be determined by performing immunoassays on freeze-thawed detergent extracts of biological samples and comparing the slope of the binding curves to binding curves generated by purified protein.
- reporter molecules and conjugation techniques are known by those skilled in the art and may be used in various cDNA, polynucleotide, protein, peptide or antibody assays. Synthesis of labeled molecules may be achieved using commercial kits for incorporation of a labeled nucleotide such as 32 P-dCTP, Cy3-dCTP or Cy5-dCTP or amino acid such as 35 S-methionine. Polynucleotides, cDNAs, proteins, or antibodies may be directly labeled with a reporter molecule by chemical conjugation to amines, thiols and other groups present in the molecules using reagents such as BIODIPY or FITC (Molecular Probes, Eugene Oreg.).
- reagents such as BIODIPY or FITC (Molecular Probes, Eugene Oreg.).
- the proteins and antibodies may be labeled for purposes of assay by joining them, either covalently or noncovalently, with a reporter molecule that provides for a detectable signal.
- a reporter molecule that provides for a detectable signal.
- a wide variety of labels and conjugation techniques are known and have been reported in the scientific and patent literature including, but not limited to U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
- the cDNAs, or fragments thereof, may be used to detect and quantify differential gene expression; absence, presence, or excess expression of mRNAs; or to monitor mRNA levels during therapeutic intervention in subjects with prostate-related disorders including prostate cancer. These cDNAs can also be utilized as markers of treatment efficacy against prostate cancer over a period ranging from several days to months.
- the diagnostic assay may use hybridization or amplification technology to compare gene expression in a biological sample from a patient to standard samples in order to detect altered gene expression. Qualitative or quantitative methods for this comparison are well known in the art.
- the cDNA may be labeled by standard methods and added to a biological sample from a patient under conditions for hybridization complex formation. After an incubation period, the sample is washed and the amount of label (or signal) associated with hybridization complexes is quantified and compared with a standard value. If the amount of label in the patient sample is significantly altered in comparison to the standard value, then the presence of the associated condition, disease or disorder is indicated.
- a normal or standard expression profile is established. This may be accomplished by combining a biological sample taken from normal subjects, either animal or human, with a probe under conditions for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained using normal subjects with values from an experiment in which a known amount of a substantially purified target sequence is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a particular condition, disease, or disorder. Deviation from standard values toward those associated with a particular condition is used to diagnose that condition.
- Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies and in clinical trial or to monitor the treatment of an individual patient. Once the presence of a condition is established and a treatment protocol is initiated, diagnostic assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in a normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
- a gene expression profile comprises a plurality of cDNAs and a plurality of detectable hybridization complexes, wherein each complex is formed by hybridization of one or more probes to one or more complementary sequences in a sample.
- the cDNA composition of the invention is used as elements on a microarray to analyze gene expression profiles.
- the microarray is used to monitor the progression of prostate cancer.
- researchers can assess and catalog the differences in gene expression between healthy and diseased tissues or cells.
- the invention can be used to formulate a prognosis and to design a treatment regimen.
- the invention can also be used to monitor the efficacy of treatment.
- the microarray is employed to improve the treatment regimen.
- a dosage is established that causes a change in genetic expression patterns indicative of successful treatment. Expression patterns associated with the onset of undesirable side effects are avoided. This approach may be more sensitive and rapid than waiting for the patient to show inadequate improvement, or to manifest side effects, before altering the course of treatment.
- animal models which mimic a human disease can be used to characterize expression profiles associated with a particular condition, disorder or disease; or treatment of the condition, disorder or disease. Novel treatment regimens may be tested in these animal models using microarrays to establish and then follow expression profiles over time.
- microarrays may be used with cell cultures or tissues removed from animal models to rapidly screen large numbers of candidate drug molecules, looking for ones that produce an expression profile similar to those of known therapeutic drugs, with the expectation that molecules with the same expression profile will likely have similar therapeutic effects.
- the invention provides the means to rapidly determine the molecular mode of action of a drug.
- Antibodies directed against epitopes on a protein encoded by a cDNA of the invention may be used in assays to quantify the amount of protein found in a particular human cell. Such assays include methods utilizing the antibody and a label to detect expression level under normal or disease conditions.
- the antibodies may be used with or without modification, and labeled by joining them, either covalently or noncovalently, with a labeling moiety.
- Protocols for detecting and measuring protein expression using either polyclonal or monoclonal antibodies are well known in the art. Examples include ELISA, RIA, and fluorescent activated cell sorting (FACS). Such immunoassays typically involve the formation of complexes between the protein and its specific antibody and the measurement of such complexes. These and other assays are described in Pound (supra).
- the method may employ a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes, or a competitive binding assay. (See, e.g., Coligan et al. (1997) Current Protocols in Immunology, Wiley-Interscience, New York N.Y.; Pound, supra)
- cDNAs and fragments thereof can be used in gene therapy.
- cDNAs can be delivered ex vivo to target cells, such as cells of bone marrow. Once stable integration and transcription and or translation are confirmed, the bone marrow may be reintroduced into the subject. Expression of the protein encoded by the cDNA may correct a cancer associated with mutation of a normal sequence, reduction or loss of an endogenous target protein, or overepression of an endogenous or mutant protein.
- cDNAs may be delivered in vivo using vectors such as retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and bacterial plasmids.
- Non-viral methods of gene delivery include cationic liposomes, polylysine conjugates, artificial viral envelopes, and direct injection of DNA (Anderson (1998) Nature 392:25-30; Dachs et al. (1997) Oncol Res 9:313-325; Chu et al. (1998) J Mol Med 76(34):184-192; Weiss et al. (1999) Cell Mol Life Sci 55(3):334-358; Agrawal (1996) Antisense Therapeutics, Humana Press, Totowa N.J.; and August et al. (1997) Gene Therapy ( Advances in Pharmacology, Vol. 40), Academic Press, San Diego Calif.).
- expression of a particular protein can be regulated through the specific binding of a fragment of a cDNA to a genomic sequence or an mRNA which encodes the protein or directs its transcription or translation.
- the cDNA can be modified or derivatized to any RNA-like or DNA-like material including peptide nucleic acids, branched nucleic acids, and the like.
- Molecules which regulate the activity of the cDNA or encoded protein are useful as therapeutics for prostate cancer.
- Such molecules include agonists which increase the expression or activity of the polynucleotide or encoded protein, respectively; or antagonists which decrease expression or activity of the polynucleotide or encoded protein, respectively.
- an antibody which specifically binds the protein may be used directly as an antagonist or indirectly as a delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express the protein.
- any of the proteins, or their ligands, or complementary nucleic acid sequences may be administered as pharmaceutical compositions or in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
- the combination of therapeutic agents may act synergistically to affect the treatment or prevention of the conditions and disorders associated with an immune response. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
- the therapeutic agents may be combined with pharmaceutically-acceptable carriers including excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration used by doctors and pharmacists may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).
- Animal models may be used as bioassays where they exhibit a phenotypic response similar to that of humans and where exposure conditions are relevant to human exposures. Mammals are the most common models, and most infectious agent, cancer, drug, and toxicity studies are performed on rodents such as rats or mice because of low cost, availability, lifespan, reproductive potential, and abundant reference literature. Inbred and outbred rodent strains provide a convenient model for investigation of the physiological consequences of underexpression or overexpression of genes of interest and for the development of methods for diagnosis and treatment of diseases. A mammal inbred to overexpress a particular gene (for example, secreted in milk) may also serve as a convenient source of the protein expressed by that gene.
- Transgenic rodents that overexpress or underexpress a gene of interest may be inbred and used to model human diseases or to test therapeutic or toxic agents.
- the introduced gene may be activated at a specific time in a specific tissue type during fetal or postnatal development. Expression of the transgene is monitored by analysis of phenotype, of tissue-specific mRNA expression, or of serum and tissue protein levels in transgenic animals before, during, and after challenge with experimental drug therapies.
- Embryonic (ES) stem cells isolated from rodent embryos retain the potential to form embryonic tissues.
- ES cells such as the mouse 129/SvJ cell line are placed in a blastocyst from the C57BL/6 mouse strain, they resume normal development and contribute to tissues of the live-born animal.
- ES cells are preferred for use in the creation of experimental knockout and knockin animals.
- the method for this process is well known in the art and the steps are: the cDNA is introduced into a vector, the vector is transformed into ES cells, transformed cells are identified and microinjected into mouse cell blastocysts, blastocysts are surgically transferred to pseudopregnant dams.
- the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
- a region of a gene is enzymatically modified to include a non-natural intervening sequence such as the neomycin phosphotransferase gene (neo; Capecchi (1989) Science 244:1288-1292).
- the modified gene is transformed into cultured ES cells and integrates into the endogenous genome by homologous recombination.
- the inserted sequence disrupts transcription and translation of the endogenous gene.
- ES cells can be used to create knockin humanized animals or transgenic animal models of human diseases.
- knockin technology a region of a human gene is injected into animal ES cells, and the human sequence integrates into the animal cell genome.
- Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on the progression and treatment of the analogous human condition.
- cDNAs As described herein, the uses of the cDNAs, provided in the Sequence Listing of this application, and their encoded proteins are exemplary of known techniques and are not intended to reflect any limitation on their use in any technique that would be known to the person of average skill in the art.
- the cDNAs provided in this application may be used in molecular biology techniques that have not yet been developed, provided the new techniques rely on properties of nucleotide sequences that are currently known to the person of ordinary skill in the art, e.g., the triplet genetic code, specific base pair interactions, and the like.
- reference to a method may include combining more than one method for obtaining or assembling full length cDNA sequences that will be known to those skilled in the art.
- RNA was purchased from Clontech Laboratories (Palo Alto Calif.) or isolated from various tissues. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL reagent (Life Technologies, Rockville Md.). The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated with either isopropanol or ethanol and sodium acetate, or by other routine methods.
- poly(A) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (Qiagen, Valencia Calif.), or an OLIGOTEX mRNA purification kit (Qiagen).
- poly(A) RNA was isolated directly from tissue lysates using other kits, including the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).
- RNA was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies) using the recommended procedures or similar methods known in the art. (See Ausubel, supra, Units 5.1 through 6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
- the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (APB) or preparative agarose gel electrophoresis.
- cDNAs were ligated into compatible restriction enzyme sites of the polylinker of the PBLUESCRIPT phagemid (Stratagene), PSPORT1 plasmid (Life Technologies), or PINCY plasmid (Incyte Pharmaceuticals).
- Recombinant plasmids were transformed into XL1-BLUE, XL1-BLUEMRF, or SOLR competent E. coli cells (Stratagene) or DH5 ⁇ , DH10B, or ELECTROMAX DH10B competent E. coli cells (Life Technologies).
- libraries were superinfected with a 5 ⁇ excess of the helper phage, M13K07, according to the method of Vieira et al. (1987, Methods Enzymol. 153:3-11) and normalized or subtracted using a methodology adapted from Soares (1994, Proc Natl Acad Sci 91:9228-9232), Swaroop et al. (1991, Nucl Acids Res 19:1954), and Bonaldo et al. (1996, Genome Research 6:791-806).
- the modified Soares normalization procedure was utilized to reduce the repetitive cloning of highly expressed high abundance cDNAs while maintaining the overall sequence complexity of the library. Modification included significantly longer hybridization times which allowed for increased gene discovery rates by biasing the normalized libraries toward those infrequently expressed low-abundance cDNAs which are poorly represented in a standard transcript image (Soares et al., supra).
- Plasmids were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using one of the following: the Magic or WIZARD MINIPREPS DNA purification system (Promega); the AGTC MINIPREP purification kit (Edge BioSystems, Gaithersburg Md.); the QIAWELL 8, QIAWELL 8 Plus, or QIAWELL 8 Ultra plasmid purification systems, or the REAL PREP 96 plasmid purification kit (QIAGEN, Valencia Calif.). Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.
- the Magic or WIZARD MINIPREPS DNA purification system Promega
- AGTC MINIPREP purification kit Edge BioSystems, Gaithersburg Md.
- QIAWELL 8, QIAWELL 8 Plus, or QIAWELL 8 Ultra plasmid purification systems or
- plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao (1994) Anal Biochem 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
- cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 thermal cycler (Applied Biosystems) or the DNA ENGINE thermal cycler (MJ Research, Watertown Mass.) in conjunction with the HYDRA microdispenser (Robbins Scientific, Sunnyvale Calif.) or the MICROLAB 2200 system (Hamilton, Reno Nev.).
- cDNA sequencing reactions were prepared using reagents provided by APB or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE cycle sequencing kit (Applied Biosystems).
- Electrophoretic separation of cDNA sequencing reactions and detection of labeled cDNAs were carried out using the MEGABACE 1000 DNA sequencing system (APB); the ABI PRISM 373 or 377 sequencing systems (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, supra, Unit 7.7).
- Nucleic acid sequences were extended using the cDNA clones and oligonucleotide primers.
- One primer was synthesized to initiate 5′ extension of the known fragment, and the other, to initiate 3′ extension of the known fragment.
- the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
- Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. Preferred libraries are ones that have been size-selected to include larger cDNAs. Also, random primed libraries are preferred because they will contain more sequences with the 5′ and upstream regions of genes. A randomly primed library is particularly useful if an oligo d(T) library does not yield a full-length cDNA.
- PCR was performed in 96-well plates using the DNA ENGINE thermal cycler (MJ Research).
- the reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH 4 ) 2 SO 4 , and ⁇ -mercaptoethanol, Taq DNA polymerase (APB), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B (Incyte Pharmaceuticals): Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
- the parameters for primer pair T7 and SK+ were as follows: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 57° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
- the concentration of DNA in each well was determined by dispensing 100 ⁇ l PICOGREEN reagent (0.25% reagent in 1 ⁇ TE, v/v; Molecular Probes) and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.) and allowing the DNA to bind to the reagent.
- the plate was scanned in a FLUOROSKAN II (Labsystems Oy) to measure the fluorescence of the sample and to quantify the concentration of DNA.
- a 5 ⁇ l to 10 ⁇ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.
- the extended nucleic acids were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC18 vector (APB).
- CviJI cholera virus endonuclease Molecular Biology Research, Madison Wis.
- AGARACE enzyme Promega
- Extended clones were religated using T4 DNA ligase (New England Biolabs, Beverly Mass.) into pUC18 vector (APB), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transformed into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2 ⁇ carbenicillin liquid media.
- the cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (APB) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified using PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions described above.
- Bins were compared against each other, and those having local similarity of at least 82% were combined and reassembled. Reassembled bins having templates of insufficient overlap (less than 95% local identity) were re-split. Assembled templates were also subjected to analysis by STITCHER/EXON MAPPER algorithms which analyzed the probabilities of the presence of splice variants, alternatively spliced exons, splice junctions, differential expression of alternative spliced genes across tissue types, disease states, and the like. These resulting bins were subjected to several rounds of the above assembly procedures to generate the template sequences found in the LIFESEQ GOLD database (Incyte Genomics).
- the assembled templates were annotated using the following procedure. Template sequences were analyzed using BLASTn (vers. 2.0, NCBI) versus GBpri (GenBank vers. 116). “Hits” were defined as an exact match having from 95% local identity over 200 base pairs through 100% local identity over 100 base pairs, or a homolog match having an E-value equal to or greater than 1 ⁇ 10 ⁇ 8 . (The “E-value” quantifies the statistical probability that a match between two sequences occurred by chance). The hits were subjected to frameshift FASTx versus GENPEPT (GenBank version 109). In this analysis, a homolog match was defined as having an E-value of 1 ⁇ 10 ⁇ 8 . The assembly method used above was described in U.S. Ser. No. 09/276,534, filed Mar. 25, 1999, and the LIFESEQ GOLD user manual (Incyte Genomics).
- Template sequences were subjected to motif, BLAST, Hidden Markov Model (HMM; Pearson and Lipman (1988) Proc Natl Acad Sci 85:2444-2448; Smith and Waterman (1981) J Mol Biol 147:195-197), and functional analyses, and categorized in protein hierarchies using methods described in U.S. Ser. No. 08/812,290, filed Mar. 6, 1997; U.S. Ser. No. 08/947,845, filed Oct. 9, 1997; U.S. Pat. No. 5,953,727; and U.S. Ser. No. 09/034,807, filed Mar. 4, 1998. Template sequences may be further queried against public databases such as the GenBank rodent, mammalian, vertebrate, eukaryote, prokaryote, and human EST databases.
- Incyte clones represent template sequences derived from the LIFESEQ GOLD assembled human sequence database (Incyte Genomics). In cases where more than one clone was available for a particular template, the 5′-most clone in the template was used on the microarray.
- the HUMAN GENOME GEM series 1-3 microarrays (Incyte Pharmaceuticals) contain 28,626 array elements which represent 10,068 annotated clusters and 18,558 unannotated clusters. Tables 1 and 2 show the GenBank annotations for SEQ ID NOs:1-x of this invention as produced by BLAST analysis.
- cDNAs were amplified from bacterial cells using primers complementary to vector sequences flanking the cDNA insert. Thirty cycles of PCR increased the initial quantity of cDNAs from 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified cDNAs were then purified using SEPHACRYL-400 columns (APB). Purified cDNAs were immobilized on polymer-coated glass slides. Glass microscope slides (Corning, Corning N.Y.) were cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
- Microarrays were UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene), and then washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites were blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (Tropix, Bedford Mass.) for 30 minutes at 60° C. followed by washes in 0.2% SDS and distilled water as before.
- STRATALINKER UV-crosslinker Stratagene
- PZ-HPV-7 was derived from epithelial cells cultured from normal tissue from the peripheral zone of the prostate.
- CA-HPV-10 was derived from cells from a prostatic adenocarcinoma of Gleason Grade 4/4. Both PZ cells were transformed by transfection with human papillomavirus (HPV)-18, and express keratins 5 and 8 and the early region 6 oncoprotein of HPV.
- PZ-HPV-7 and CA-HPV-10 are negative for prostate specific antigen (PSA).
- DU-145 is a prostate carcinoma cell line isolated from a 69 year-old man with widespread metastatic disease.
- DU-145 was isolated from a brain metastasis and has no detectable hormone sensitivity. Further, DU-145 is negative for PSA: PC-3 is a prostate adenocarcinoma cell line isolated from a 62 year-old male with grade IV prostate adenocarcinoma metastasized to the bone. PC-3 cells exhibit low acid phosphatase and testosterone-5-alpha reductase activities; LNCaP is a prostate carcinoma cell line isolated from a lymph node biopsy of a 50 year-old male with metastatic prostate carcinoma. LNCaP cells are responsive to 5-alpha-dihydrotestosterone and express androgen receptors.
- PrEC a primary prostate epithelial cell line isolated from a normal donor, was obtained from Cambrex Bioscience Inc. (Walkersville Md.) and cultured in media according to the manufacturer's protocols.
- Cells were harvested when cultures were approximately 70% confluent and lysed in 1 ml of TRIZOL reagent (5 ⁇ 10 6 cells/ml; Life Technologies). The lysates were vortexed thoroughly and incubated at room temperature for 2-3 minutes and extracted with 0.5 ml chloroform. The extract was mixed, incubated at room temperature for 5 minutes, and centrifuged at 15,000 rpm for 15 minutes at 4° C. The aqueous layer was collected and an equal volume of isopropanol was added. Samples were mixed, incubated at room temperature for 10 minutes, and centrifuged at 15,000 rpm for 20 minutes at 4° C.
- RNA pellet was washed with 1 ml of 70% ethanol, centrifuged at 15,000 rpm at 4° C., and resuspended in RNase-free water. The concentration of the RNA was determined by measuring the optical density at 260 nm.
- Poly(A) RNA was prepared using an OLIGOTEX mRNA kit (QIAGEN) with the following modifications: OLIGOTEX beads were washed in tubes instead of on spin columns, resuspended in elution buffer, and then loaded onto spin columns to recover mRNA. To obtain maximum yield, the mRNA was eluted twice.
- Each poly(A) RNA sample was reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-d(T) primer (21 mer), 1 ⁇ first strand buffer, 0.03 units/ul RNase inhibitor, 500 uM dATP, 500 uM dGTP, 500 uM dTTP, 40 uM dCTP, and 40 uM either dCTP-Cy3 or dCTP-Cy5 (APB).
- the reverse transcription reaction was performed in a 25 ml volume containing 200 ng poly(A) RNA using the GEMBRIGHT kit (Incyte Pharmaceuticals).
- control poly(A) RNAs (YCFR06, YCFR45, YCFR67, YCFR85, YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were synthesized by in vitro transcription from non-coding yeast genomic DNA (W. Lei, unpublished).
- control mRNAs (YCFR06, YCFR45, YCFR67, and YCFR85) at 0.002 ng, 0.02 ng, 0.2 ng, and 2 ng were diluted into reverse transcription reaction at ratios of 1:100,000, 1:10,000, 1:1000, 1:100 (w/w) to sample mRNA, respectively.
- control mRNAs (YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were diluted into reverse transcription reaction at ratios of 1:3, 3:1, 1:10, 10:1, 1:25, 25:1 (w/w) to sample mRNA. Reactions were incubated at 37° C. for 2 hr, treated with 2.5 ml of 0.5M sodium hydroxide, and incubated for 20 minutes at 85° C. to the stop the reaction and degrade the RNA.
- cDNAs were purified using two successive CHROMA SPIN 30 gel filtration spin columns (Clontech). Cy3- and Cy5-labeled reaction samples were combined as follows: Aliquots of Cy3-labeled PrEC cDNA were individually mixed with Cy5 labeled cDNA from PZ-HPV-7, CA-HPV-10, DU-145, PC-3, and LNCaP cells. The mixtures were ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol, dried to completion using a SpeedVAC system (Savant Instruments, Holbrook N.Y.), and resuspended in 14 ⁇ l 5 ⁇ SSC/0.2% SDS.
- a SpeedVAC system Savant Instruments, Holbrook N.Y.
- Hybridization reactions contained 9 ⁇ l of sample mixture containing 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5 ⁇ SSC, 0.2% SDS hybridization buffer. The mixture was heated to 65° C. for 5 minutes and was aliquoted onto the microarray surface and covered with an 1.8 cm 2 coverslip. The microarrays were transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber was kept at 100% humidity internally by the addition of 140 ⁇ l of 5 ⁇ SSC in a corner of the chamber. The chamber containing the microarrays was incubated for about 6.5 hours at 60° C. The microarrays were washed for 10 min at 45° C. in low stringency wash buffer (1 ⁇ SSC, 0.1% SDS), three times for 10 minutes each at 45° C. in high stringency wash buffer (0.1 ⁇ SSC), and dried.
- Reporter-labeled hybridization complexes were detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Santa Clara Calif.) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
- the excitation laser light was focused on the microarray using a 20 ⁇ microscope objective (Nikon, Melville N.Y.).
- the slide containing the microarray was placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective.
- the 1.8 cm ⁇ 1.8 cm microarray used in the present example was scanned with a resolution of 20 micrometers.
- the mixed gas multiline laser excited the two fluorophores sequentially. Emitted light was split, based on wavelength, into two photomultiplier tube detectors (PMT R1477; Hamamatsu Photonics Systems, Bridgewater N.J.) corresponding to the two fluorophores. Appropriate filters positioned between the microarray and the photomultiplier tubes were used to filter the signals. The emission maxima of the fluorophores used were 565 nm for Cy3 and 650 nm for Cy5. Each microarray was typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus was capable of recording the spectra from both fluorophores simultaneously.
- the sensitivity of the scans was calibrated using the signal intensity generated by a cDNA control species.
- Samples of the calibrating cDNA were separately labeled with the two fluorophores and identical amounts of each were added to the hybridization mixture.
- a specific location on the microarray contained a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
- the output of the photomultiplier tube was digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Norwood, Mass.) installed in an IBM-compatible PC computer.
- the digitized data were displayed as an image where the signal intensity was mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
- the data was also analyzed quantitatively. Where two different fluorophores were excited and measured simultaneously, the data were first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
- a grid was superimposed over the fluorescence signal image such that the signal from each spot was centered in each element of the grid.
- the fluorescence signal within each element was then integrated to obtain a numerical value corresponding to the average intensity of the signal.
- the software used for signal analysis was the GEMTOOLS gene expression analysis program (Incyte Pharmaceuticals). Significance was defined as signal to background ratio exceeding 2 ⁇ and area hybridization exceeding 40%.
- Array elements that exhibited at least 2.5-fold change in expression at one or more time points, a signal intensity over 250 units, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40% were identified as differentially expressed using the GEMTOOLS program (Incyte Genomics). Differential expression values were converted to log base 2 scale. Differential expression values were then compared between the cell lines to identify genes which discriminated between normal and cancerous and between non-metastatic and metastatic cancer. The student's t-test and Pearson correlation statistics were used to distinguish significant differences between the groups. The resulting cDNAs are shown in Tables 1 and 2. The cDNAs are identified by their Clone ID.
- Table 3 shows the sequence overlap between the clones identified in Tables 1 and 2 and gene templates. Columns 1-3 show the SEQ ID NO:, Template ID, and Clone ID, respectively. Columns 4 and 5 show the start and stop nucleotides for the clone on the template. Table 4 shows a GenBank homolog and description associated with at least a fragment of each Template ID. The descriptions were obtained using the sequences of the Sequence Listing and BLAST analysis.
- SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75 are highly correlated with metastatic prostate cancer cells PC-3, LNCaP, and DU-145, and SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101 are differentially expressed at significant levels in all of the prostate cancer cell lines.
- hybridization technologies utilize a variety of substrates such as nylon membranes, capillary tubes, etc.
- Arranging cDNAs on polymer coated slides is described in Example V; sample cDNA preparation and hybridization and analysis using polymer coated slides is described in examples VI and VII, respectively.
- cDNAs are applied to a membrane substrate by one of the following methods.
- a mixture of cDNAs is fractionated by gel electrophoresis and transferred to a nylon membrane by capillary transfer.
- the cDNAs are individually ligated to a vector and inserted into bacterial host cells to form a library.
- the cDNAs are then arranged on a substrate by one of the following methods.
- bacterial cells containing individual clones are robotically picked and arranged on a nylon membrane.
- the membrane is placed on LB agar containing selective agent (carbenicillin, kanamycin, ampicillin, or chloramphenicol depending on the vector used) and incubated at 37° C. for 16 hr.
- the membrane is removed from the agar and consecutively placed colony side up in 10% SDS, denaturing solution (1.5 M NaCl, 0.5 M NaOH ), neutralizing solution (1.5 M NaCl, 1 M Tris, pH 8.0), and twice in 2 ⁇ SSC for 10 min each.
- the membrane is then UV irradiated in a STRATALINKER UV-crosslinker (Stratagene).
- cDNAs are amplified from bacterial vectors by thirty cycles of PCR using primers complementary to vector sequences flanking the insert. PCR amplification increases a starting concentration of 1-2 ng nucleic acid to a final quantity greater than 5 ⁇ g.
- Amplified nucleic acids from about 400 bp to about 5000 bp in length are purified using SEPHACRYL400 beads (APB). Purified nucleic acids are arranged on a nylon membrane manually or using a dot/slot blotting manifold and suction device and are immobilized by denaturation, neutralization, and UV irradiation as described above.
- Hybridization probes derived from cDNAs of the Sequence Listing are employed for screening cDNAs, mRNAs, or genomic DNA in membrane-based hybridizations. Probes are prepared by diluting the cDNAs to a concentration of 40-50 ng in 45 ⁇ l TE buffer, denaturing by heating to 100° C. for five min and briefly centrifuging. The denatured cDNA is then added to a REDIPRIME tube (APB), gently mixed until blue color is evenly distributed, and briefly centrifuged. Five microliters of [ 32 P]dCTP is added to the tube, and the contents are incubated at 37° C. for 10 min.
- APB REDIPRIME tube
- the labeling reaction is stopped by adding 5 ⁇ l of 0.2M EDTA, and probe is purified from unincorporated nucleotides using a PROBEQUANT G-50 microcolumn (APB).
- the purified probe is heated to 100° C. for five min and then snap cooled for two min on ice.
- Membranes are pre-hybridized in hybridization solution containing 1% Sarkosyl and 1 ⁇ high phosphate buffer (0.5 M NaCl, 0.1 M Na 2 HPO 4 , 5 mM EDTA, pH 7) at 55° C. for two hr.
- the probe diluted in 15 ml fresh hybridization solution, is then added to the membrane.
- the membrane is hybridized with the probe at 55° C. for 16 hr.
- the membrane is washed for 15 min at 25° C. in 1 mM Tris (pH 8.0), 1% Sarkosyl, and four times for 15 min each at 25° C. in 1 mM Tris (pH 8.0).
- XOMAT-AR film Eastman Kodak, Rochester N.Y.
- XOMAT-AR film Eastman Kodak, Rochester N.Y.
- Clones were blasted against the LIFESEQ Gold 5.1 database (Incyte Genomics) and an Incyte template and its sequence variants were chosen for each clone.
- the template and variant sequences were blasted against GenBank database to acquire annotation.
- the nucleotide sequences were translated into amino acid sequence which was blasted against the GenPept and other protein databases to acquire annotation and characterization, i.e., structural motifs.
- Percent sequence identity can be determined electronically for two or more amino acid or nucleic acid sequences using the MEGALIGN program (DNASTAR). The percent identity between two amino acid sequences is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no homology between the two amino acid sequences are not included in determining percentage identity.
- Sequences with conserved protein motifs may be searched using the BLOCKS search program.
- This program analyses sequence information contained in the Swiss-Prot and PROSITE databases and is useful for determining the classification of uncharacterized proteins translated from genomic or cDNA sequences (Bairoch et al.(supra); Attwood et al. (supra).
- PROSITE database is a useful source for identifying functional or structural domains that are not detected using motifs due to extreme sequence divergence. Using weight matrices, these domains are calibrated against the SWISS-PROT database to obtain a measure of the chance distribution of the matches.
- the PRINTS database can be searched using the BLIMPS search program to obtain protein family “fingerprints”.
- the PRINTS database complements the PROSITE database by exploiting groups of conserved motifs within sequence alignments to build characteristic signatures of different protein families.
- cDNA is subcloned into a vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
- promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
- Recombinant vectors are transformed into bacterial hosts, such as BL21(DE3). Antibiotic resistant bacteria express the protein upon induction with IPTG.
- Expression in eukaryotic cells is achieved by infecting Spodoptera frugiperda (Sf9) insect cells with recombinant baculovirus, Autographica californica nuclear polyhedrosis virus.
- the polyhedrin gene of baculovirus is replaced with the cDNA by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of transcription.
- the protein is synthesized as a fusion protein with glutathione-S-transferase (GST; APB) or a similar alternative such as FLAG.
- GST glutathione-S-transferase
- the fusion protein is purified on immobilized glutathione under conditions that maintain protein activity and antigenicity.
- the GST moiety is proteolytically cleaved from the protein with thrombin.
- a fusion protein with FLAG, an 8-amino acid peptide is purified using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak, Rochester N.Y.).
- a denatured protein from a reverse phase HPLC separation is obtained in quantities up to 75 mg.
- This denatured protein is used to immunize mice or rabbits following standard protocols. About 100 ⁇ g is used to immunize a mouse, while up to 1 mg is used to immunize a rabbit.
- the denatured protein is radioiodinated and incubated with murine B-cell hybridomas to screen for monoclonal antibodies. About 20 mg of protein is sufficient for labeling and screening several thousand clones.
- amino acid sequence translated from a cDNA of the invention is analyzed using PROTEAN software (DNASTAR) to determine regions of high antigenicity, essentially antigenically-effective epitopes of the protein.
- the optimal sequences for immunization are usually at the C-terminus, the N-terminus, and those intervening, hydrophilic regions of the protein that are likely to be exposed to the external environment when the protein is in its natural conformation.
- oligopeptides about 15 residues in length are synthesized using an ABI 431 peptide synthesizer (Applied Biosystems) using Fmoc-chemistry and then coupled to keyhole limpet hemocyanin (KLH; Sigma Aldrich) by reaction with M-maleimidobenzoyl-N-hydroxysuccinimide ester. If necessary, a cysteine may be introduced at the N-terminus of the peptide to permit coupling to KLH.
- Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity by binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated goat anti-rabbit IgG.
- Hybridomas are prepared and screened using standard techniques. Hybridomas of interest are detected by screening with radioiodinated protein to identify those fusions producing a monoclonal antibody specific for the protein.
- wells of 96 well plates FAST, Becton-Dickinson, Palo Alto Calif.
- affinity-purified, specific rabbit-anti-mouse (or suitable anti-species Ig) antibodies at 10 mg/ml.
- the coated wells are blocked with 1% BSA and washed and exposed to supernatants from hybridomas. After incubation, the wells are exposed to radiolabeled protein at 1 mg/ml. Clones producing antibodies bind a quantity of labeled protein that is detectable above background.
- Such clones are expanded and subjected to 2 cycles of cloning at 1 cell/3 wells.
- Cloned hybridomas are injected into pristane-treated mice to produce ascites, and monoclonal antibody is purified from the ascitic fluid by affinity chromatography on protein A (APB).
- Monoclonal antibodies with affinities of at least 10 8 M ⁇ 1 , preferably 10 9 to 10 10 M ⁇ 1 or stronger, are made by procedures well known in the art.
- Naturally occurring or recombinant protein is substantially purified by immunoaffinity chromatography using antibodies specific for the protein.
- An immunoaffinity column is constructed by covalently coupling the antibody to CNBr-activated SEPHAROSE resin (APB). Media containing the protein is passed over the immunoaffinity column, and the column is washed using high ionic strength buffers in the presence of detergent to allow preferential absorbance of the protein. After coupling, the protein is eluted from the column using a buffer of pH 2-3 or a high concentration of urea or thiocyanate ion to disrupt antibody/protein binding, and the protein is collected.
- APB CNBr-activated SEPHAROSE resin
- the cDNA or fragments thereof and the protein or portions thereof are labeled with 32 P-dCTP, Cy3-dCTP, Cy5-dCTP (APB), or BIODIPY or FITC (Molecular Probes), respectively.
- Candidate molecules or compounds previously arranged on a substrate are incubated in the presence of labeled nucleic or amino acid. After incubation under conditions for either a cDNA or a protein, the substrate is washed, and any position on the substrate retaining label, which indicates specific binding or complex formation, is assayed. The binding molecule is identified by its arrayed position on the substrate. Data obtained using different concentrations of the nucleic acid or protein are used to calculate affinity between the labeled nucleic acid or protein and the bound molecule. High throughput screening using very small assay volumes and very small amounts of test compound is fully described in Burbaum et al. U.S. Pat. No. 5,876,946.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
The present invention relates to a composition comprising a plurality of cDNAs which are differentially expressed in prostate cancer and which may be used in their entirety or in part as to diagnose, to stage to treat or to monitor the treatment of a subject with prostate cancer.
Description
This application claims the benefit of Provisional Application No. 60/222,469, filed Jul. 28, 2000.
The present invention relates to a composition comprising a plurality of cDNAs which are differentially expressed in prostate cancer and which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of prostate cancer.
Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for examining which genes are tissue specific, carrying out housekeeping functions, parts of a signaling cascade, or specifically related to a particular genetic predisposition, condition, disease, or disorder.
The potential application of gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease. For example, both the levels and sequences expressed in tissues from subjects with prostate cancer may be compared with the levels and sequences expressed in normal tissue.
Prostate cancer is a common malignancy in men over the age of 50, and the incidence increases with age. In the U.S., there are approximately 132,000 newly diagnosed cases of prostate cancer and more than 33,000 deaths from the disorder each year.
Once cancer cells arise in the prostate, they are stimulated by testosterone to a more rapid growth. Thus, removal of the testes can indirectly reduce both rapid growth and metastasis of the cancer. Over 95 percent of prostatic cancers are adenocarcinomas which originate in the prostatic acini. The remaining 5 percent are divided between squamous cell and transitional cell carcinomas, both of which arise in the prostatic ducts or other parts of the prostate gland.
As with most cancers, prostate cancer develops through a multistage progression ultimately resulting in an aggressive, metastatic phenotype. The initial step in tumor progression involves the hyperproliferation of normal luminal and/or basal epithelial cells that become hyperplastic and evolve into early-stage tumors. The early-stage tumors are localized in the prostate but eventually may metastasize, particularly to the bone, brain or lung. About 80% of these tumors remain responsive to androgen treatment, an important hormone controlling the growth of prostate epithelial cells. However, in its most advanced state, cancer growth becomes androgen-independent and there is currently no known treatment for this condition.
A primary diagnostic marker for prostate cancer is prostate specific antigen (PSA). PSA is a tissue-specific serine protease almost exclusively produced by prostatic epithelial cells. The quantity of PSA correlates with the number and volume of the prostatic epithelial cells, and consequently, the levels of PSA are an excellent indicator of abnormal prostate growth. Men with prostate cancer exhibit an early linear increase in PSA levels followed by an exponential increase prior to diagnosis. However, since PSA levels are also influenced by factors such as inflammation, androgen and other growth factors, some scientists maintain that changes in PSA levels are not useful in detecting individual cases of prostate cancer.
Current areas of cancer research provide additional prospects for markers as well as potential therapeutic targets for prostate cancer. Several growth factors have been shown to play a critical role in tumor development, growth, and progression. The growth factors Epidermal Growth Factor (EGF), Fibroblast Growth Factor (FGF), and Tumor Growth Factor alpha (TGFα) are important in the growth of normal as well as hyperproliferative prostate epithelial cells, particularly at early stages of tumor development and progression, and affect signaling pathways in these cells in various ways (Lin J et al. (1999) Cancer Res. 59:2891-2897; Putz T et al. (1999) Cancer Res 59:227-233). The TGF-β family of growth factors are generally expressed at increased levels in human cancers and the high expression levels in many cases correlates with advanced stages of malignancy and poor survival (Gold L I (1999) Crit Rev Oncog 10:303-360). Finally, there are human cell lines representing both the androgen-dependent stage of prostate cancer (LNCap) as well as the androgen-independent, hormone refractory stage of the disease PC3 and DU-145) that have proved useful in studying gene expression patterns associated with the progression of prostate cancer, and the effects of cell treatments on these expressed genes (Chung T D (1999) Prostate 15:199-207).
The present invention provides for a composition comprising a plurality of cDNAs for use in detecting changes in expression of genes encoding proteins that are associated with prostate cancer. Such a composition can be employed for the diagnosis, prognosis or treatment of prostate cancer and related disorders correlated with differential gene expression. The present invention satisfies a need in the art in that it provides a set of differentially expressed genes which may be used entirely or in part to diagnose, to stage, to treat, or to monitor the progression or treatment of a subject with prostate cancer.
The present invention provides a composition comprising a plurality of cDNAs and their complements which are differentially expressed in prostate adenocarcinomas and which are selected from SEQ ID NOs:1-1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101 as presented in the Sequence Listing. In one embodiment, each cDNA is differentially regulated in metastatic versus non-metastatic tissue samples, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75; in another embodiment, each cDNA is differentially regulated at all stages of the disease, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101. In one aspect, the composition is immobilized on a substrate. In another aspect, the composition is used to diagnose the presence and stage of prostate cancer in a subject. The invention also provides proteins encoded by the cDNAs and which are selected from SEQ ID NOs:4, 7, 9, 16, 20, 22, 29, 31, 33, 37, 39, 41, 46, 51, 54, 57, 66, 69, 74, 77, 87, 91, 98 as presented in the Sequence Listing.
The invention also provides a high throughput method to detect differential expression of one or more of the cDNAs of the composition. The method comprises hybridizing the substrate comprising the composition with the nucleic acids of a sample, thereby forming one or more hybridization complexes, detecting the hybridization complexes, and comparing the hybridization complexes with those of a standard, wherein differences in the size and signal intensity of each hybridization complex indicates differential expression of nucleic acids in the sample. In one aspect, the sample is from a subject with prostate cancer and differential expression determines an early, mid, and late stage of the disorder.
The invention further provides a high throughput method of screening a library or a plurality of molecules or compounds to identify a ligand. The method comprises combining the substrate comprising the composition with a library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand. The library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, transcription factors, repressors, and other regulatory proteins.
The invention still further provides an isolated cDNA encoding the protein comprising the amino acid sequence of SEQ ID NO:37. The invention also provides an isolated cDNA comprising SEQ ID NO:36 as presented in the Sequence Listing. The invention also provides a vector comprising the cDNA, a host cell comprising the vector, and a method for producing a protein comprising culturing the host cell under conditions for the expression of a protein and recovering the protein from the host cell culture. The invention additionally provides a method for purifying a ligand, the method comprising combining a cDNA of the invention with a sample under conditions which allow specific binding, recovering the bound cDNA, and separating the cDNA from the ligand, thereby obtaining purified ligand.
The present invention provides a purified protein encoded and produced by a cDNA of the invention. The invention also provides a high-throughput method for using a protein to screen a library or a plurality of molecules or compounds to identify a ligand. The method comprises combining the protein or a portion thereof with the library or a plurality of molecules or compounds under conditions to allow specific binding and detecting specific binding, thereby identifying a ligand which specifically binds the protein. A library or a plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, proteins, agonists, antagonists, antibodies or their fragments, immunoglobulins, inhibitors, drug compounds, and pharmaceutical agents. The invention further provides for using a protein to purify a ligand. The method comprises combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and separating the protein from the ligand, thereby obtaining purified ligand. The invention still further provides a pharmaceutical composition comprising the protein. The invention yet still further provides a method for using the protein to produce an antibody. The method comprises immunizing an animal with the protein or an antigenically-effective epitope under conditions to elicit an antibody response, isolating animal antibodies, and screening the isolated antibodies with the protein to identify an antibody which specifically binds the protein. The invention yet still further provides a method for using the protein to purify antibodies which bind specifically to the protein.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The Sequence Listing is a compilation of cDNAs obtained by sequencing and extension of clone inserts. Each sequence is identified by a sequence identification number (SEQ ID NO) and by the template number (TEMPLATE ID) from which it was obtained.
Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression. Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma.
Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue/adenocarcinoma). Negative values represent an increase in expression.
Table 3 shows the region within a gene template of each cDNA encompassed by a clone identified in Tables 1 and 2. Columns 1 and 2 show the SEQ ID NO: and Template ID, respectively. Column 3 shows the Clone ID and columns 4 and 5 show the first residue (Start) and last residue (Stop) encompassed by the clone on the template.
Table 4 lists the functional annotation of the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the GenBank hit (GI Number), probability score (E-value), and functional annotation, respectivly, as determined by BLAST analysis (version 1.4 using default parameters; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) of the cDNA against GenBank (release 117; National Center for Biotechnology Information (NCBI), Bethesda Md.).
Table 5 shows Pfam annotations of the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for the segment of the cDNA identified by Pfam analysis. Columns 6, 7, and 8 show the PFAM Hit, PFAM Annotation, and E-value, respectively, corresponding to the polypeptide domain of the protein or encoded by the cDNA segment.
Table 6 shows signal peptide and transmembrane regions predicted within the cDNAs of the present invention. Columns 1 and 2 show the SEQ ID NO and Template ID, respectively. Columns 3, 4, and 5 show the first residue (Start), last residue (Stop), and reading frame, respectively, for a segment of the cDNA, and column 6 identifies the polypeptide encoded by the segment as either a signal peptide (SP) or transmembrane (TM) domain.
Definitions
“Array” refers to an ordered arrangement of at least two cDNAs on a substrate. At least one of the cDNAs represents a control or standard sequence, and the other, a cDNA of diagnostic interest. The arrangement of from about two to about 40,000 cDNAs on the substrate assures that the size and signal intensity of each labeled hybridization complex formed between a cDNA and a sample nucleic acid is individually distinguishable.
The “complement” of a nucleic acid molecule of the Sequence Listing refers to a cDNA which is completely complementary over the full length of the sequence and which will hybridize to the nucleic acid molecule under conditions of high stringency.
A “composition” comprises at least two sequences selected from the Sequence Listing. “cDNA” refers to a chain of nucleotides, an isolated polynucleotide, nucleic acid molecule, or any fragment or complement thereof. It may have originated recombinantly or synthetically, be double-stranded or single-stranded, coding and/or noncoding, an exon with or without an intron from a genomic DNA molecule, and purified or combined with carbohydrate, lipids, protein or inorganic elements or substances. Preferably, the cDNA is from about 4000 to about 5000 nucleotides.
The phrase “cDNA encoding a protein” refers to a nucleic acid sequence that closely aligns with sequences which encode conserved regions, motifs or domains that were identified by employing analyses well known in the art. These analyses include BLAST (Basic Local Alignment Search Tool; Altschul (1993) J Mol Evol 36: 290-300; Altschul et al. (1990) J Mol Biol 215:403-410) which provides identity within the conserved region. Brenner et al. (1998; Proc Natl Acad Sci 95:6073-6078) who analyzed BLAST for its ability to identify structural homologs by sequence identity found 30% identity is a reliable threshold for sequence alignments of at least 150 residues and 40% is a reasonable threshold for alignments of at least 70 residues (Brenner et al., page 6076, column 2).
“Derivative” refers to a cDNA or a protein that has been subjected to a chemical modification. Derivatization of a cDNA can involve substitution of a nontraditional base such as queosine or of an analog such as hypoxanthine. These substitutions are well known in the art. Derivatization of a protein involves the replacement of a hydrogen by an acetyl, acyl, alkyl, amino, formyl, or morpholino group. Derivative molecules retain the biological activities of the naturally occurring molecules but may confer advantages such as longer lifespan or enhanced activity.
“Differential expression” refers to an increased, upregulated or present, or decreased, downregulated or absent, gene expression as detected by the absence, presence, or at least two-fold changes in the amount of transcribed messenger RNA or translated protein in a sample.
“Disorder” refers to conditions, diseases or syndromes associated with prostate cancer.
“Fragment” refers to a chain of consecutive nucleotides from about 200 to about 700 base pairs in length. Fragments may be used in PCR or hybridization technologies to identify related nucleic acid molecules and in binding assays to screen for a ligand. Nucleic acids and their ligands identified in this manner are useful as therapeutics to regulate replication, transcription or translation.
A “hybridization complex” is formed between a cDNA and a nucleic acid of a sample when the purines of one molecule hydrogen bond with the pyrimidines of the complementary molecule, e.g., 5′-A-G-T-C-3′ base pairs with 3′-T-C-A-G-5′. The degree of complementarity and the use of nucleotide analogs affect the efficiency and stringency of hybridization reactions.
“Ligand” refers to any agent, molecule, or compound which will bind specifically to a complementary site on a cDNA molecule or polynucleotide, or to an epitope or a protein. Such ligands stabilize or modulate the activity of polynucleotides or proteins and may be composed of inorganic or organic substances including nucleic acids, proteins, carbohydrates, fats, and lipids.
“Oligonucleotide” refers a single stranded molecule from about 18 to about 60 nucleotides in length which may be used in hybridization or amplification technologies or in regulation of replication, transcription or translation. Substantially equivalent terms are amplimer, primer, and oligomer.
“Portion” refers to any part of a protein used for any purpose; but especially, to an epitope for the screening of ligands or for the production of antibodies.
“Post-translational modification” of a protein can involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and the like. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cellular location, cell type, pH, enzymatic milieu, and the like.
“Probe” refers to a cDNA that hybridizes to at least one nucleic acid molecule in a sample. Where targets are single stranded, probes are complementary single strands. Probes can be labeled with reporter molecules for use in hybridization reactions including Southern, northern, in situ, dot blot, array, and like technologies or in screening assays.
“Protein” refers to a polypeptide or any portion thereof. A “portion” of a protein retains at least one biological or antigenic characteristic of a native protein. An “oligopeptide” is an amino acid sequence from about five residues to about 15 residues that is used as part of a fusion protein to produce an antibody.
“Purified” refers to any molecule or compound that is separated from its natural environment and is from about 60% free to about 90% free from other components with which it is naturally associated.
“Sample” is used in its broadest sense as containing nucleic acids, proteins, antibodies, and the like. A sample may comprise a bodily fluid; the soluble fraction of a cell preparation, or an aliquot of media in which cells were grown; a chromosome, an organelle, or membrane isolated or extracted from a cell; genomic DNA, RNA, or cDNA in solution or bound to a substrate; a cell; a tissue; a tissue print; a fingerprint, buccal cells, skin, or hair; and the like.
“Specific binding” refers to a special and precise interaction between two molecules which is dependent upon their structure, particularly their molecular side groups. For example, the intercalation of a regulatory protein into the major groove of a DNA molecule, the hydrogen bonding along the backbone between two single stranded nucleic acids, or the binding between an epitope of a protein and an agonist, antagonist, or antibody.
“Similarity” as applied to sequences, refers to the quantification (usually percentage) of nucleotide or residue matches between at least two sequences aligned using a standardized algorithm such as Smith-Waterman alignment (Smith and Waterman (1981) J Mol Biol 147:195-197) or BLAST2 (Altschul et al. (1997) Nucleic Acids Res 25:3389-3402). BLAST2 may be used in a standardized and reproducible way to insert gaps in one of the sequences in order to optimize alignment and to achieve a more meaningful comparison between them.
“Substrate” refers to any rigid or semi-rigid support to which cDNAs or proteins are bound and includes membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, capillaries or other tubing, plates, polymers, and microparticles with a variety of surface forms including wells, trenches, pins, channels and pores.
“Variant” refers to molecules that are recognized variations of a cDNA or a protein encoded by the cDNA. Splice variants may be determined by BLAST score, wherein the score is at least 100, and most preferably at least 400. Allelic variants have a high percent identity to the cDNAs and may differ by about three bases per hundred bases. “Single nucleotide polymorphism” (SNP) refers to a change in a single base as a result of a substitution, insertion or deletion. The change may be conservative (purine for purine) or non-conservative (purine to pyrimidine) and may or may not result in a change in an encoded amino acid.
The Invention
The present invention provides for a composition comprising a plurality of cDNAs or their complements, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101, which may be used on a substrate to diagnose, to stage, to treat or to monitor the progression or treatment of prostate cancer. These cDNAs represent known and novel genes differentially expressed in cells from non-metastatic and metastatic prostate tumors. The composition may be used in its entirety or in part, as subsets of cDNAs differentially regulated between non-metastatic and metastatic prostate cancer, SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, or of cDNAs differentially regulated at all stages of prostate cancer, SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101. SEQ ID NOs:24, 36, 47, 60, 82, 88, 89, 92, 93, and 95 represent novel cDNAs associated with prostate cancer. Since the novel cDNAs were identified solely by their differential expression, it is not essential to know a priori the name, structure, or function of the gene or it's encoded protein. The usefulness of the novel cDNAs exist in their immediate value as diagnostics for prostate cancer.
Table 1 shows the differential expression of cDNAs of the present invention in metastatic versus non-metastatic prostate adenocarcinoma. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show the differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 of the absolute expression in normal prostate tissue÷the absolute expression in prostate adenocarcinoma. Negative values represent an increase in expression. Column 7 shows the t-test statistic used to evaluate markers specific to metastatic versus non-metastatic prostate adenocarcinoma. All of the cDNAs in Table 1 show significant differential regulation in metastatic cancer relative to non-metastatic cancer. Further, expression profiles between the metastatic cancer lines show a high degree of correlation (>0.48), as do the expression profiles between the non-metastatic lines (0.64). However, the expression profiles between the metastatic and non-metastatic lines show significantly less correlation (<0.3).
Table 2 shows the differential expression of cDNAs of the present invention in prostate adenocarcinoma versus normal prostate. Column 1 shows the Clone ID of each sequence represented on a microarray. Columns 2-6 show differential expression in adenocarcinomas derived from prostate tissue relative to primary prostate epithelium. Differential expression values are presented as log 2 (normal tissue÷adenocarcinoma). Negative values represent an increase in expression. The expression profile for the cDNAs identified in Table 2 show high correlation between all tumor lines (>0.5).
SEQ ID NO:36 is a novel sequence differentially regulated between metastatic and non-metastatic prostate tumors. SEQ ID NO:36 encodes SEQ ID NO:37 which is 193 amino acids in length.
The cDNAs of the invention define a differential expression pattern against which to compare the expression pattern of biopsied and/or in vitro treated tissues. Experimentally, differential expression of the cDNAs can be evaluated by methods including, but not limited to, differential display by spatial immobilization or by gel electrophoresis, genome mismatch scanning, representational discriminate analysis, clustering, transcript imaging and array technologies. These methods may be used alone or in combination.
The composition may be arranged on a substrate and hybridized with tumor tissues from subjects to identify those sequences which are differentially expressed in both prostate cancer and tumors derived from other tissues. This allows identification of those sequences of highest diagnostic and potential therapeutic value. In one embodiment, an additional set of cDNAs, such as cDNAs encoding signaling molecules, are arranged on the substrate with the composition. Such combinations may be useful in the elucidation of pathways which are affected in a particular cancer or to identify new, coexpressed, candidate, therapeutic molecules.
In another embodiment, the composition can be used for large scale genetic or gene expression analysis of a large number of novel, nucleic acid molecules. These samples are prepared by methods well known in the art and are from mammalian cells or tissues which are in a certain stage of development; have been treated with a known molecule or compound, such as a cytokine, growth factor, a drug, and the like; or have been extracted or biopsied from a mammal with a known or unknown condition, disorder, or disease before or after treatment. The sample nucleic acid molecules are hybridized to the composition for the purpose of defining a novel gene profile associated with that developmental stage, treatment, or disorder.
cDNAs and Their Uses
cDNAs can be prepared by a variety of synthetic or enzymatic methods well known in the art. cDNAs can be synthesized, in whole or in part, using chemical methods well known in the art (Caruthers et al. (1980) Nucleic Acids Symp. Ser. (7):215-233). Alternatively, cDNAs can be produced enzymatically or recombinantly, by in vitro or in vivo transcription.
Nucleotide analogs can be incorporated into cDNAs by methods well known in the art. The only requirement is that the incorporated analog must base pair with native purines or pyrimidines. For example, 2,6-diaminopurine can substitute for adenine and form stronger bonds with thymidine than those between adenine and thymidine. A weaker pair is formed when hypoxanthine is substituted for guanine and base pairs with cytosine. Additionally, cDNAs can include nucleotides that have been derivatized chemically or enzymatically.
cDNAs can be synthesized on a substrate. Synthesis on the surface of a substrate may be accomplished using a chemical coupling procedure and a piezoelectric printing apparatus as described by Baldeschweiler et al. (PCT publication WO95/251116). Alternatively, the cDNAs can be synthesized on a substrate surface using a self-addressable electronic device that controls when reagents are added as described by Heller et al. (U.S. Pat. No. 5,605,662). cDNAs can be synthesized directly on a substrate by sequentially dispensing reagents for their synthesis on the substrate surface or by dispensing preformed DNA fragments to the substrate surface. Typical dispensers include a micropipette delivering solution to the substrate with a robotic system to control the position of the micropipette with respect to the substrate. There can be a multiplicity of dispensers so that reagents can be delivered to the reaction regions efficiently.
cDNAs can be immobilized on a substrate by covalent means such as by chemical bonding procedures or UV irradiation. In one method, a cDNA is bound to a glass surface which has been modified to contain epoxide or aldehyde groups. In another method, a cDNA is placed on a polylysine coated surface and UV cross-linked to it as described by Shalon et al. (WO95/35505). In yet another method, a cDNA is actively transported from a solution to a given position on a substrate by electrical means (Heller, supra). cDNAs do not have to be directly bound to the substrate, but rather can be bound to the substrate through a linker group. The linker groups are typically about 6 to 50 atoms long to provide exposure of the attached cDNA. Preferred linker groups include ethylene glycol oligomers, diamines, diacids and the like. Reactive groups on the substrate surface react with a terminal group of the linker to bind the linker to the substrate. The other terminus of the linker is then bound to the cDNA. Alternatively, polynucleotides, plasmids or cells can be arranged on a filter. In the latter case, cells are lysed, proteins and cellular components degraded, and the DNA is coupled to the filter by UV cross-linking.
The cDNAs may be used for a variety of purposes. For example, the composition of the invention may be used on an array. The array, in turn, can be used in high-throughput methods for detecting a related polynucleotide in a sample, screening a plurality of molecules or compounds to identify a ligand, diagnosing prostate cancer, or inhibiting or inactivating a therapeutically relevant gene related to the cDNA.
When the cDNAs of the invention are employed on a microarray, the cDNAs are arranged in an ordered fashion so that each cDNA is present at a specified location. Because the cDNAs are at specified locations on the substrate, the hybridization patterns and intensities, which together create a unique expression profile, can be interpreted in terms of expression levels of particular genes and can be correlated with a particular metabolic process, condition, disorder, disease, stage of disease, or treatment.
Hybridization
The cDNAs or fragments or complements thereof may be used in various hybridization technologies. The cDNAs may be labeled using a variety of reporter molecules by either PCR, recombinant, or enzymatic techniques. For example, a commercially available vector containing the cDNA is transcribed in the presence of an appropriate polymerase, such as T7 or SP6 polymerase, and at least one labeled nucleotide. Commercial kits are available for labeling and cleanup of such cDNAs. Radioactive (Amersham Pharmacia Biotech (APB), Piscataway N.J.), fluorescent (Operon Technologies, Alameda Calif.), and chemiluminescent labeling (Promega, Madison Wis.) are well known in the art.
A cDNA may represent the complete coding region of an mRNA or be designed or derived from unique regions of the mRNA or genomic molecule, an intron, a 3′ untranslated region, or from a conserved motif. The cDNA is at least 18 contiguous nucleotides in length and is usually single stranded. Such a cDNA may be used under hybridization conditions that allow binding only to an identical sequence, a naturally occurring molecule encoding the same protein, or an allelic variant. Discovery of related human and mammalian sequences may also be accomplished using a pool of degenerate cDNAs and appropriate hybridization conditions. Generally, a cDNA for use in Southern or northern hybridizations may be from about 400 to about 6000 nucleotides long. Such cDNAs have high binding specificity in solution-based or substrate-based hybridizations. An oligonucleotide, a fragment of the cDNA, may be used to detect a polynucleotide in a sample using PCR.
The stringency of hybridization is determined by G+C content of the cDNA, salt concentration, and temperature. In particular, stringency is increased by reducing the concentration of salt or raising the hybridization temperature. In solutions used for some membrane based hybridizations, addition of an organic solvent such as formamide allows the reaction to occur at a lower temperature. Hybridization may be performed with buffers, such as 5×saline sodium citrate (SSC) with 1% sodium dodecyl sulfate (SDS) at 60° C., that permit the formation of a hybridization complex between nucleic acid sequences that contain some mismatches. Subsequent washes are performed with buffers such as 0.2×SSC with 0.1% SDS at either 45° C. (medium stringency) or 65°-68° C. (high stringency). At high stringency, hybridization complexes will remain stable only where the nucleic acid molecules are completely complementary. In some membrane-based hybridizations, preferably 35% or most preferably 50%, formamide may be added to the hybridization solution to reduce the temperature at which hybridization is performed. Background signals may be reduced by the use of detergents such as Sarkosyl or Triton X-100 (Sigma Aldrich, St. Louis Mo.) and a blocking agent such as denatured salmon sperm DNA. Selection of components and conditions for hybridization are well known to those skilled in the art and are reviewed in Ausubel et al. (1997, Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., Units 2.8-2.11, 3.18-3.19 and 4-64.9).
Dot-blot, slot-blot, low density and high density arrays are prepared and analyzed using methods known in the art. cDNAs from about 18 consecutive nucleotides to about 5000 consecutive nucleotides in length are contemplated by the invention and used in array technologies. The preferred number of cDNAs on an array is at least about 100,000, a more preferred number is at least about 40,000, an even more preferred number is at least about 10,000, and a most preferred number is at least about 600 to about 800. The array may be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and SNPs. Such information may be used to determine gene function; to understand the genetic basis of a disorder; to diagnose a disorder; and to develop and monitor the activities of therapeutic agents being used to control or cure a disorder. (See, e.g., U.S. Pat. No. 5,474,796; WO95/11995; WO95/35505; U.S. Pat. No. 5,605,662; and U.S. Pat. No. 5,958,342.)
Screening and Purification Assays
A cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand which specifically binds the cDNA. Ligands may be DNA molecules, RNA molecules, peptide nucleic acid molecules, peptides, proteins such as transcription factors, promoters, enhancers, repressors, and other proteins that regulate replication, transcription, or translation of the polynucleotide in the biological system. The assay involves combining the cDNA or a fragment thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound cDNA to identify at least one ligand that specifically binds the cDNA.
In one embodiment, the cDNA may be incubated with a library of isolated and purified molecules or compounds and binding activity determined by methods such as a gel-retardation assay (U.S. Pat. No. 6,010,849) or a reticulocyte lysate transcriptional assay. In another embodiment, the cDNA may be incubated with nuclear extracts from biopsied and/or cultured cells and tissues. Specific binding between the cDNA and a molecule or compound in the nuclear extract is initially determined by gel shift assay. Protein binding may be confirmed by raising antibodies against the protein and adding the antibodies to the gel-retardation assay where specific binding will cause a supershift in the assay.
In another embodiment, the cDNA may be used to purify a molecule or compound using affinity chromatography methods well known in the art. In one embodiment, the cDNA is chemically reacted with cyanogen bromide groups on a polymeric resin or gel. Then a sample is passed over and reacts with or binds to the cDNA. The molecule or compound which is bound to the cDNA may be released from the cDNA by increasing the salt concentration of the flow-through medium and collected.
The cDNA may be used to purify a ligand from a sample. A method for using a cDNA to purify a ligand would involve combining the cDNA or a fragment thereof with a sample under conditions to allow specific binding, recovering the bound cDNA, and using an appropriate agent to separate the cDNA from the purified ligand.
Protein Production and Uses
The full length cDNAs or fragment thereof may be used to produce purified proteins using recombinant DNA technologies described herein and taught in Ausubel et al. (supra; Units 16.1-16.62). One of the advantages of producing proteins by these procedures is the ability to obtain highly-enriched sources of the proteins thereby simplifying purification procedures.
The proteins may contain amino acid substitutions, deletions or insertions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. Such substitutions may be conservative in nature when the substituted residue has structural or chemical properties similar to the original residue (e.g., replacement of leucine with isoleucine or valine) or they may be nonconservative when the replacement residue is radically different (e.g., a glycine replaced by a tryptophan). Computer programs included in LASERGENE software (DNASTAR, Madison Wis.), MACVECTOR software (Genetics Computer Group, Madison Wis.) and RasMol software (www.umass.edu/microbio/rasmol) may be used to help determine which and how many amino acid residues in a particular portion of the protein may be substituted, inserted, or deleted without abolishing biological or immunological activity.
Expression of Encoded Proteins
Expression of a particular cDNA may be accomplished by cloning the cDNA into a vector and transforming this vector into a host cell, The cloning vector used for the construction of cDNA libraries in the LIFESEQ databases may also be used for expression. Such vectors usually contain a promoter and a polylinker useful for cloning, priming, and transcription. An exemplary vector may also contain the promoter for β-galactosidase, an amino-terminal methionine and the subsequent seven amino acid residues of β-galactosidase. The vector may be transformed into competent E. coli cells. Induction of the isolated bacterial strain with isopropylthiogalactoside (IPTG) using standard methods will produce a fusion protein that contains an N terminal methionine, the first seven residues of β-galactosidase, about 15 residues of linker, and the protein encoded by the cDNA.
The cDNA may be shuttled into other vectors known to be useful for expression of protein in specific hosts. Oligonucleotides containing cloning sites and fragments of DNA sufficient to hybridize to stretches at both ends of the cDNA may be chemically synthesized by standard methods. These primers may then be used to amplify the desired fragments by PCR. The fragments may be digested with appropriate restriction enzymes under standard conditions and isolated using gel electrophoresis. Alternatively, similar fragments are produced by digestion of the cDNA with appropriate restriction enzymes and filled in with chemically synthesized oligonucleotides. Fragments of the coding sequence from more than one gene may be ligated together and expressed.
Signal sequences that dictate secretion of soluble proteins are particularly desirable as component parts of a recombinant sequence. For example, a chimeric protein may be expressed that includes one or more additional purification-facilitating domains. Such domains include, but are not limited to, metal-chelating domains that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex, Seattle Wash.). The inclusion of a cleavable-linker sequence such as ENTEROKINASEMAX (Invitrogen, San Diego Calif.) between the protein and the purification domain may also be used to recover the protein.
Suitable host cells may include, but are not limited to, mammalian cells such as Chinese Hamster Ovary (CHO) and human 293 cells, insect cells such as Sf9 cells, plant cells such as Nicotiana tabacum, yeast cells such as Saccharomyces cerevisiae, and bacteria such as E. coli. For each of these cell systems, a useful vector may also include an origin of replication and one or two selectable markers to allow selection in bacteria as well as in a transformed eukaryotic host. Vectors for use in eukaryotic host cells may require the addition of 3′ poly(A) tail if the cDNA lacks poly(A).
Additionally, the vector may contain promoters or enhancers that increase gene expression. Many promoters are known and used in the art. Most promoters are host specific and exemplary promoters includes SV40 promoters for CHO cells; T7 promoters for bacterial hosts; viral promoters and enhancers for plant cells; and PGH promoters for yeast. Adenoviral vectors with the rous sarcoma virus enhancer or retroviral vectors with long terminal repeat promoters may be used to drive protein expression in mammalian cell lines. Once homogeneous cultures of recombinant cells are obtained, large quantities of secreted soluble protein may be recovered from the conditioned medium and analyzed using chromatographic methods well known in the art. An alternative method for the production of large amounts of secreted protein involves the transformation of mammalian embryos and the recovery of the recombinant protein from milk produced by transgenic cows, goats, sheep, and the like.
In addition to recombinant production, proteins or portions thereof may be produced manually, using solid-phase techniques (Stewart et al. (1969) Solid-Phase Peptide Synthesis, W H Freeman, San Francisco Calif.; Merrifield (1963) J Am Chem Soc 5:2149-2154), or using machines such as the ABI 431A peptide synthesizer (Applied Biosystems, Foster City Calif.). Proteins produced by any of the above methods may be used as pharmaceutical compositions to treat disorders associated with null or inadequate expression of the genomic sequence.
Screening and Purification Assays
A protein or a portion thereof encoded by the cDNA may be used to screen a library or a plurality of molecules or compounds for a ligand with specific binding affinity or to purify a molecule or compound from a sample. The protein or portion thereof employed in such screening may be free in solution, affixed to an abiotic or biotic substrate, or located intracellularly. For example, viable or fixed prokaryotic host cells that are stably transformed with recombinant nucleic acids that have expressed and positioned a protein on their cell surface can be used in screening assays. The cells are screened against a library or a plurality of ligands and the specificity of binding or formation of complexes between the expressed protein and the ligand may be measured. The ligands may be DNA, RNA, or PNA molecules, agonists, antagonists, antibodies, immunoglobulins, inhibitors, peptides, pharmaceutical agents, proteins, drugs, or any other test molecule or compound that specifically binds the protein. An exemplary assay involves combining the mammalian protein or a portion thereof with the molecules or compounds under conditions that allow specific binding and detecting the bound protein to identify at least one ligand that specifically binds the protein.
This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding the protein specifically compete with a test compound capable of binding to the protein or oligopeptide or fragment thereof. One method for high throughput screening using very small assay volumes and very small amounts of test compound is described in U.S. Pat. No. 5,876,946. Molecules or compounds identified by screening may be used in a model system to evaluate their toxicity, diagnostic, or therapeutic potential.
The protein may be used to purify a ligand from a sample. A method for using a protein to purify a ligand would involve combining the protein or a portion thereof with a sample under conditions to allow specific binding, recovering the bound protein, and using an appropriate chaotropic agent to separate the protein from the purified ligand.
Production of Antibodies
A protein encoded by a cDNA of the invention may be used to produce specific antibodies. Antibodies may be produced using an oligopeptide or a portion of the protein with inherent immunological activity. Methods for producing antibodies include: 1) injecting an animal, usually goats, rabbits, or mice, with the protein, or an antigenically-effective portion or an oligopeptide thereof, to induce an immune response; 2) engineering hybridomas to produce monoclonal antibodies; 3) inducing in vivo production in the lymphocyte population; or 4) screening libraries of recombinant immunoglobulins. Recombinant immunoglobulins may be produced as taught in U.S. Pat. No. 4,816,567.
Antibodies produced using the proteins of the invention are useful for the diagnosis of prepathologic disorders as well as the diagnosis of chronic or acute diseases characterized by abnormalities in the expression, amount, or distribution of the protein. A variety of protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies specific for proteins are well known in the art. Immunoassays typically involve the formation of complexes between a protein and its specific binding molecule or compound and the measurement of complex formation. Immunoassays may employ a two-site, monoclonal-based assay that utilizes monoclonal antibodies reactive to two noninterfering epitopes on a specific protein or a competitive binding assay (Pound (1998) Immunochemical Protocols, Humana Press, Totowa N.J.).
Immunoassay procedures may be used to quantify expression of the protein in cell cultures, in subjects with a particular disorder or in model animal systems under various conditions. Increased or decreased production of proteins as monitored by immunoassay may contribute to knowledge of the cellular activities associated with developmental pathways, engineered conditions or diseases, or treatment efficacy. The quantity of a given protein in a given tissue may be determined by performing immunoassays on freeze-thawed detergent extracts of biological samples and comparing the slope of the binding curves to binding curves generated by purified protein.
Labeling of Molecules for Assay
A wide variety of reporter molecules and conjugation techniques are known by those skilled in the art and may be used in various cDNA, polynucleotide, protein, peptide or antibody assays. Synthesis of labeled molecules may be achieved using commercial kits for incorporation of a labeled nucleotide such as 32P-dCTP, Cy3-dCTP or Cy5-dCTP or amino acid such as 35S-methionine. Polynucleotides, cDNAs, proteins, or antibodies may be directly labeled with a reporter molecule by chemical conjugation to amines, thiols and other groups present in the molecules using reagents such as BIODIPY or FITC (Molecular Probes, Eugene Oreg.).
The proteins and antibodies may be labeled for purposes of assay by joining them, either covalently or noncovalently, with a reporter molecule that provides for a detectable signal. A wide variety of labels and conjugation techniques are known and have been reported in the scientific and patent literature including, but not limited to U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241.
Diagnostics
The cDNAs, or fragments thereof, may be used to detect and quantify differential gene expression; absence, presence, or excess expression of mRNAs; or to monitor mRNA levels during therapeutic intervention in subjects with prostate-related disorders including prostate cancer. These cDNAs can also be utilized as markers of treatment efficacy against prostate cancer over a period ranging from several days to months. The diagnostic assay may use hybridization or amplification technology to compare gene expression in a biological sample from a patient to standard samples in order to detect altered gene expression. Qualitative or quantitative methods for this comparison are well known in the art.
For example, the cDNA may be labeled by standard methods and added to a biological sample from a patient under conditions for hybridization complex formation. After an incubation period, the sample is washed and the amount of label (or signal) associated with hybridization complexes is quantified and compared with a standard value. If the amount of label in the patient sample is significantly altered in comparison to the standard value, then the presence of the associated condition, disease or disorder is indicated.
In order to provide a basis for the diagnosis of a condition, disease or disorder associated with gene expression, a normal or standard expression profile is established. This may be accomplished by combining a biological sample taken from normal subjects, either animal or human, with a probe under conditions for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained using normal subjects with values from an experiment in which a known amount of a substantially purified target sequence is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a particular condition, disease, or disorder. Deviation from standard values toward those associated with a particular condition is used to diagnose that condition.
Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies and in clinical trial or to monitor the treatment of an individual patient. Once the presence of a condition is established and a treatment protocol is initiated, diagnostic assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in a normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
Gene Expression Profiles
A gene expression profile comprises a plurality of cDNAs and a plurality of detectable hybridization complexes, wherein each complex is formed by hybridization of one or more probes to one or more complementary sequences in a sample. The cDNA composition of the invention is used as elements on a microarray to analyze gene expression profiles. In one embodiment, the microarray is used to monitor the progression of prostate cancer. Researchers can assess and catalog the differences in gene expression between healthy and diseased tissues or cells. By analyzing changes in patterns of gene expression, prostate cancer can be diagnosed at earlier stages before the patient is symptomatic. The invention can be used to formulate a prognosis and to design a treatment regimen. The invention can also be used to monitor the efficacy of treatment. For treatments with known side effects, the microarray is employed to improve the treatment regimen. A dosage is established that causes a change in genetic expression patterns indicative of successful treatment. Expression patterns associated with the onset of undesirable side effects are avoided. This approach may be more sensitive and rapid than waiting for the patient to show inadequate improvement, or to manifest side effects, before altering the course of treatment.
In another embodiment, animal models which mimic a human disease can be used to characterize expression profiles associated with a particular condition, disorder or disease; or treatment of the condition, disorder or disease. Novel treatment regimens may be tested in these animal models using microarrays to establish and then follow expression profiles over time. In addition, microarrays may be used with cell cultures or tissues removed from animal models to rapidly screen large numbers of candidate drug molecules, looking for ones that produce an expression profile similar to those of known therapeutic drugs, with the expectation that molecules with the same expression profile will likely have similar therapeutic effects. Thus, the invention provides the means to rapidly determine the molecular mode of action of a drug.
Assays Using Antibodies
Antibodies directed against epitopes on a protein encoded by a cDNA of the invention may be used in assays to quantify the amount of protein found in a particular human cell. Such assays include methods utilizing the antibody and a label to detect expression level under normal or disease conditions. The antibodies may be used with or without modification, and labeled by joining them, either covalently or noncovalently, with a labeling moiety.
Protocols for detecting and measuring protein expression using either polyclonal or monoclonal antibodies are well known in the art. Examples include ELISA, RIA, and fluorescent activated cell sorting (FACS). Such immunoassays typically involve the formation of complexes between the protein and its specific antibody and the measurement of such complexes. These and other assays are described in Pound (supra). The method may employ a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes, or a competitive binding assay. (See, e.g., Coligan et al. (1997) Current Protocols in Immunology, Wiley-Interscience, New York N.Y.; Pound, supra)
Therapeutics
The cDNAs and fragments thereof can be used in gene therapy. cDNAs can be delivered ex vivo to target cells, such as cells of bone marrow. Once stable integration and transcription and or translation are confirmed, the bone marrow may be reintroduced into the subject. Expression of the protein encoded by the cDNA may correct a cancer associated with mutation of a normal sequence, reduction or loss of an endogenous target protein, or overepression of an endogenous or mutant protein. Alternatively, cDNAs may be delivered in vivo using vectors such as retrovirus, adenovirus, adeno-associated virus, herpes simplex virus, and bacterial plasmids. Non-viral methods of gene delivery include cationic liposomes, polylysine conjugates, artificial viral envelopes, and direct injection of DNA (Anderson (1998) Nature 392:25-30; Dachs et al. (1997) Oncol Res 9:313-325; Chu et al. (1998) J Mol Med 76(34):184-192; Weiss et al. (1999) Cell Mol Life Sci 55(3):334-358; Agrawal (1996) Antisense Therapeutics, Humana Press, Totowa N.J.; and August et al. (1997) Gene Therapy (Advances in Pharmacology, Vol. 40), Academic Press, San Diego Calif.).
In addition, expression of a particular protein can be regulated through the specific binding of a fragment of a cDNA to a genomic sequence or an mRNA which encodes the protein or directs its transcription or translation. The cDNA can be modified or derivatized to any RNA-like or DNA-like material including peptide nucleic acids, branched nucleic acids, and the like. These sequences can be produced biologically by transforming an appropriate host cell with a vector containing the sequence of interest.
Molecules which regulate the activity of the cDNA or encoded protein are useful as therapeutics for prostate cancer. Such molecules include agonists which increase the expression or activity of the polynucleotide or encoded protein, respectively; or antagonists which decrease expression or activity of the polynucleotide or encoded protein, respectively. In one aspect, an antibody which specifically binds the protein may be used directly as an antagonist or indirectly as a delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express the protein.
Additionally, any of the proteins, or their ligands, or complementary nucleic acid sequences may be administered as pharmaceutical compositions or in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to affect the treatment or prevention of the conditions and disorders associated with an immune response. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects. Further, the therapeutic agents may be combined with pharmaceutically-acceptable carriers including excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration used by doctors and pharmacists may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.).
Model Systems
Animal models may be used as bioassays where they exhibit a phenotypic response similar to that of humans and where exposure conditions are relevant to human exposures. Mammals are the most common models, and most infectious agent, cancer, drug, and toxicity studies are performed on rodents such as rats or mice because of low cost, availability, lifespan, reproductive potential, and abundant reference literature. Inbred and outbred rodent strains provide a convenient model for investigation of the physiological consequences of underexpression or overexpression of genes of interest and for the development of methods for diagnosis and treatment of diseases. A mammal inbred to overexpress a particular gene (for example, secreted in milk) may also serve as a convenient source of the protein expressed by that gene.
Transgenic Animal Models
Transgenic rodents that overexpress or underexpress a gene of interest may be inbred and used to model human diseases or to test therapeutic or toxic agents. (See, e.g., U.S. Pat. No. 5,175,383 and U.S. Pat. No. 5,767,337.) In some cases, the introduced gene may be activated at a specific time in a specific tissue type during fetal or postnatal development. Expression of the transgene is monitored by analysis of phenotype, of tissue-specific mRNA expression, or of serum and tissue protein levels in transgenic animals before, during, and after challenge with experimental drug therapies.
Embryonic Stem Cells
Embryonic (ES) stem cells isolated from rodent embryos retain the potential to form embryonic tissues. When ES cells such as the mouse 129/SvJ cell line are placed in a blastocyst from the C57BL/6 mouse strain, they resume normal development and contribute to tissues of the live-born animal. ES cells are preferred for use in the creation of experimental knockout and knockin animals. The method for this process is well known in the art and the steps are: the cDNA is introduced into a vector, the vector is transformed into ES cells, transformed cells are identified and microinjected into mouse cell blastocysts, blastocysts are surgically transferred to pseudopregnant dams. The resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
Knockout Analysis
In gene knockout analysis, a region of a gene is enzymatically modified to include a non-natural intervening sequence such as the neomycin phosphotransferase gene (neo; Capecchi (1989) Science 244:1288-1292). The modified gene is transformed into cultured ES cells and integrates into the endogenous genome by homologous recombination. The inserted sequence disrupts transcription and translation of the endogenous gene.
Knockin Analysis
ES cells can be used to create knockin humanized animals or transgenic animal models of human diseases. With knockin technology, a region of a human gene is injected into animal ES cells, and the human sequence integrates into the animal cell genome. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on the progression and treatment of the analogous human condition.
As described herein, the uses of the cDNAs, provided in the Sequence Listing of this application, and their encoded proteins are exemplary of known techniques and are not intended to reflect any limitation on their use in any technique that would be known to the person of average skill in the art. Furthermore, the cDNAs provided in this application may be used in molecular biology techniques that have not yet been developed, provided the new techniques rely on properties of nucleotide sequences that are currently known to the person of ordinary skill in the art, e.g., the triplet genetic code, specific base pair interactions, and the like. Likewise, reference to a method may include combining more than one method for obtaining or assembling full length cDNA sequences that will be known to those skilled in the art. It is also to be understood that this invention is not limited to the particular methodology, protocols, and reagents described, as these may vary. It is also understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention.
I Construction of cDNA Libraries
RNA was purchased from Clontech Laboratories (Palo Alto Calif.) or isolated from various tissues. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL reagent (Life Technologies, Rockville Md.). The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated with either isopropanol or ethanol and sodium acetate, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In most cases, RNA was treated with DNase. For most libraries, poly(A) RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (Qiagen, Valencia Calif.), or an OLIGOTEX mRNA purification kit (Qiagen). Alternatively, poly(A) RNA was isolated directly from tissue lysates using other kits, including the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).
In some cases, Stratagene (La Jolla Calif.) was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies) using the recommended procedures or similar methods known in the art. (See Ausubel, supra, Units 5.1 through 6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (APB) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of the PBLUESCRIPT phagemid (Stratagene), PSPORT1 plasmid (Life Technologies), or PINCY plasmid (Incyte Pharmaceuticals). Recombinant plasmids were transformed into XL1-BLUE, XL1-BLUEMRF, or SOLR competent E. coli cells (Stratagene) or DH5α, DH10B, or ELECTROMAX DH10B competent E. coli cells (Life Technologies).
In some cases, libraries were superinfected with a 5×excess of the helper phage, M13K07, according to the method of Vieira et al. (1987, Methods Enzymol. 153:3-11) and normalized or subtracted using a methodology adapted from Soares (1994, Proc Natl Acad Sci 91:9228-9232), Swaroop et al. (1991, Nucl Acids Res 19:1954), and Bonaldo et al. (1996, Genome Research 6:791-806). The modified Soares normalization procedure was utilized to reduce the repetitive cloning of highly expressed high abundance cDNAs while maintaining the overall sequence complexity of the library. Modification included significantly longer hybridization times which allowed for increased gene discovery rates by biasing the normalized libraries toward those infrequently expressed low-abundance cDNAs which are poorly represented in a standard transcript image (Soares et al., supra).
II Isolation and Sequencing of cDNA Clones
Plasmids were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using one of the following: the Magic or WIZARD MINIPREPS DNA purification system (Promega); the AGTC MINIPREP purification kit (Edge BioSystems, Gaithersburg Md.); the QIAWELL 8, QIAWELL 8 Plus, or QIAWELL 8 Ultra plasmid purification systems, or the REAL PREP 96 plasmid purification kit (QIAGEN, Valencia Calif.). Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao (1994) Anal Biochem 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
cDNA sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 thermal cycler (Applied Biosystems) or the DNA ENGINE thermal cycler (MJ Research, Watertown Mass.) in conjunction with the HYDRA microdispenser (Robbins Scientific, Sunnyvale Calif.) or the MICROLAB 2200 system (Hamilton, Reno Nev.). cDNA sequencing reactions were prepared using reagents provided by APB or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE cycle sequencing kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled cDNAs were carried out using the MEGABACE 1000 DNA sequencing system (APB); the ABI PRISM 373 or 377 sequencing systems (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, supra, Unit 7.7).
III Extension of cDNA Sequences
Nucleic acid sequences were extended using the cDNA clones and oligonucleotide primers. One primer was synthesized to initiate 5′ extension of the known fragment, and the other, to initiate 3′ extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. Preferred libraries are ones that have been size-selected to include larger cDNAs. Also, random primed libraries are preferred because they will contain more sequences with the 5′ and upstream regions of genes. A randomly primed library is particularly useful if an oligo d(T) library does not yield a full-length cDNA.
High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the DNA ENGINE thermal cycler (MJ Research). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH4)2SO4, and β-mercaptoethanol, Taq DNA polymerase (APB), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B (Incyte Pharmaceuticals): Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C. In the alternative, the parameters for primer pair T7 and SK+ (Stratagene) were as follows: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 57° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 min; Step 7: storage at 4° C.
The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN reagent (0.25% reagent in 1×TE, v/v; Molecular Probes) and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.) and allowing the DNA to bind to the reagent. The plate was scanned in a FLUOROSKAN II (Labsystems Oy) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose mini-gel to determine which reactions were successful in extending the sequence.
The extended nucleic acids were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC18 vector (APB). For shotgun sequencing, the digested nucleic acids were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with AGARACE enzyme (Promega). Extended clones were religated using T4 DNA ligase (New England Biolabs, Beverly Mass.) into pUC18 vector (APB), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transformed into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2×carbenicillin liquid media.
The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (APB) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified using PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions described above. Samples were diluted with 20% dimethylsulfoxide (DMSO; 1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT cycle sequencing kit (APB) or the ABI PRISM BIGDYE terminator cycle sequencing kit (Applied Biosystems).
IV Assembly and Analysis of Sequences
Component nucleotide sequences from chromatograms were subjected to PHRED analysis (Phil Green, University of Washington, Seattle Wash.) and assigned a quality score. The sequences having at least a required quality score were subject to various pre-processing algorithms to eliminate low quality 3′ ends, vector and linker sequences, polyA tails, Alu repeats, mitochondrial and ribosomal sequences, bacterial contamination sequences, and sequences smaller than 50 base pairs. Sequences were screened using the BLOCK 2 program (Incyte Genomics), a motif analysis program based on sequence information contained in the SWISS-PROT and PROSITE databases (Bairoch et al. (1997) Nucleic Acids Res 25:217-221; Attwood et al. (1997) J Chem Inf Comput Sci 37:417-424).
Processed sequences were subjected to assembly procedures in which the sequences were assigned to bins, one sequence per bin. Sequences in each bin were assembled to produce consensus sequences, templates. Subsequent new sequences were added to existing bins using BLAST (Altschul (supra); Altschul et al. (supra); Karlin et al. (1988) Proc Natl Acad Sci 85:841-845), BLASTn (vers.1.4, WashU), and CROSSMATCH software (Phil Green, supra). Candidate pairs were identified as all BLAST hits having a quality score greater than or equal to 150. Alignments of at least 82% local identity were accepted into the bin. The component sequences from each bin were assembled using PHRAP (Phil Green, supra). Bins with several overlapping component sequences were assembled using DEEP PHRAP (Phil Green, supra).
Bins were compared against each other, and those having local similarity of at least 82% were combined and reassembled. Reassembled bins having templates of insufficient overlap (less than 95% local identity) were re-split. Assembled templates were also subjected to analysis by STITCHER/EXON MAPPER algorithms which analyzed the probabilities of the presence of splice variants, alternatively spliced exons, splice junctions, differential expression of alternative spliced genes across tissue types, disease states, and the like. These resulting bins were subjected to several rounds of the above assembly procedures to generate the template sequences found in the LIFESEQ GOLD database (Incyte Genomics).
The assembled templates were annotated using the following procedure. Template sequences were analyzed using BLASTn (vers. 2.0, NCBI) versus GBpri (GenBank vers. 116). “Hits” were defined as an exact match having from 95% local identity over 200 base pairs through 100% local identity over 100 base pairs, or a homolog match having an E-value equal to or greater than 1×10−8. (The “E-value” quantifies the statistical probability that a match between two sequences occurred by chance). The hits were subjected to frameshift FASTx versus GENPEPT (GenBank version 109). In this analysis, a homolog match was defined as having an E-value of 1×10−8. The assembly method used above was described in U.S. Ser. No. 09/276,534, filed Mar. 25, 1999, and the LIFESEQ GOLD user manual (Incyte Genomics).
Following assembly, template sequences were subjected to motif, BLAST, Hidden Markov Model (HMM; Pearson and Lipman (1988) Proc Natl Acad Sci 85:2444-2448; Smith and Waterman (1981) J Mol Biol 147:195-197), and functional analyses, and categorized in protein hierarchies using methods described in U.S. Ser. No. 08/812,290, filed Mar. 6, 1997; U.S. Ser. No. 08/947,845, filed Oct. 9, 1997; U.S. Pat. No. 5,953,727; and U.S. Ser. No. 09/034,807, filed Mar. 4, 1998. Template sequences may be further queried against public databases such as the GenBank rodent, mammalian, vertebrate, eukaryote, prokaryote, and human EST databases.
V Selection of Sequences, Microarray Preparation and Use
Incyte clones represent template sequences derived from the LIFESEQ GOLD assembled human sequence database (Incyte Genomics). In cases where more than one clone was available for a particular template, the 5′-most clone in the template was used on the microarray. The HUMAN GENOME GEM series 1-3 microarrays (Incyte Pharmaceuticals) contain 28,626 array elements which represent 10,068 annotated clusters and 18,558 unannotated clusters. Tables 1 and 2 show the GenBank annotations for SEQ ID NOs:1-x of this invention as produced by BLAST analysis.
To construct microarrays, cDNAs were amplified from bacterial cells using primers complementary to vector sequences flanking the cDNA insert. Thirty cycles of PCR increased the initial quantity of cDNAs from 1-2 ng to a final quantity greater than 5 μg. Amplified cDNAs were then purified using SEPHACRYL-400 columns (APB). Purified cDNAs were immobilized on polymer-coated glass slides. Glass microscope slides (Corning, Corning N.Y.) were cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides were etched in 4% hydrofluoric acid (VWR Scientific Products, West Chester Pa.), washed thoroughly in distilled water, and coated with 0.05% aminopropyl silane (Sigma Aldrich) in 95% ethanol. Coated slides were cured in a 110° C. oven. cDNAs were applied to the coated glass substrate using a procedure described in U.S. Pat. No. 5,807,522. One microliter of the cDNA at an average concentration of 100 ng/ul was loaded into the open capillary printing element by a high-speed robotic apparatus which then deposited about 5 nl of cDNA per slide.
Microarrays were UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene), and then washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites were blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (Tropix, Bedford Mass.) for 30 minutes at 60° C. followed by washes in 0.2% SDS and distilled water as before.
VI Preparation of Samples
The following cell lines were obtained from American Type Culture Collection (Manassus Va.) and cultured in media according to the manufacturer's protocols: PZ-HPV-7 was derived from epithelial cells cultured from normal tissue from the peripheral zone of the prostate. CA-HPV-10 was derived from cells from a prostatic adenocarcinoma of Gleason Grade 4/4. Both PZ cells were transformed by transfection with human papillomavirus (HPV)-18, and express keratins 5 and 8 and the early region 6 oncoprotein of HPV. PZ-HPV-7 and CA-HPV-10 are negative for prostate specific antigen (PSA). DU-145 is a prostate carcinoma cell line isolated from a 69 year-old man with widespread metastatic disease. DU-145 was isolated from a brain metastasis and has no detectable hormone sensitivity. Further, DU-145 is negative for PSA: PC-3 is a prostate adenocarcinoma cell line isolated from a 62 year-old male with grade IV prostate adenocarcinoma metastasized to the bone. PC-3 cells exhibit low acid phosphatase and testosterone-5-alpha reductase activities; LNCaP is a prostate carcinoma cell line isolated from a lymph node biopsy of a 50 year-old male with metastatic prostate carcinoma. LNCaP cells are responsive to 5-alpha-dihydrotestosterone and express androgen receptors.
PrEC, a primary prostate epithelial cell line isolated from a normal donor, was obtained from Cambrex Bioscience Inc. (Walkersville Md.) and cultured in media according to the manufacturer's protocols.
All cultures were maintained at 37° C. and 5% CO2 for 3-5 passages.
Isolation and Labeling of Sample cDNAs
Cells were harvested when cultures were approximately 70% confluent and lysed in 1 ml of TRIZOL reagent (5×106 cells/ml; Life Technologies). The lysates were vortexed thoroughly and incubated at room temperature for 2-3 minutes and extracted with 0.5 ml chloroform. The extract was mixed, incubated at room temperature for 5 minutes, and centrifuged at 15,000 rpm for 15 minutes at 4° C. The aqueous layer was collected and an equal volume of isopropanol was added. Samples were mixed, incubated at room temperature for 10 minutes, and centrifuged at 15,000 rpm for 20 minutes at 4° C. The supernatant was removed and the RNA pellet was washed with 1 ml of 70% ethanol, centrifuged at 15,000 rpm at 4° C., and resuspended in RNase-free water. The concentration of the RNA was determined by measuring the optical density at 260 nm.
Poly(A) RNA was prepared using an OLIGOTEX mRNA kit (QIAGEN) with the following modifications: OLIGOTEX beads were washed in tubes instead of on spin columns, resuspended in elution buffer, and then loaded onto spin columns to recover mRNA. To obtain maximum yield, the mRNA was eluted twice.
Each poly(A) RNA sample was reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-d(T) primer (21 mer), 1×first strand buffer, 0.03 units/ul RNase inhibitor, 500 uM dATP, 500 uM dGTP, 500 uM dTTP, 40 uM dCTP, and 40 uM either dCTP-Cy3 or dCTP-Cy5 (APB). The reverse transcription reaction was performed in a 25 ml volume containing 200 ng poly(A) RNA using the GEMBRIGHT kit (Incyte Pharmaceuticals). Specific control poly(A) RNAs (YCFR06, YCFR45, YCFR67, YCFR85, YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were synthesized by in vitro transcription from non-coding yeast genomic DNA (W. Lei, unpublished). As quantitative controls, control mRNAs (YCFR06, YCFR45, YCFR67, and YCFR85) at 0.002 ng, 0.02 ng, 0.2 ng, and 2 ng were diluted into reverse transcription reaction at ratios of 1:100,000, 1:10,000, 1:1000, 1:100 (w/w) to sample mRNA, respectively. To sample differential expression patterns, control mRNAs (YCFR43, YCFR22, YCFR23, YCFR25, YCFR44, YCFR26) were diluted into reverse transcription reaction at ratios of 1:3, 3:1, 1:10, 10:1, 1:25, 25:1 (w/w) to sample mRNA. Reactions were incubated at 37° C. for 2 hr, treated with 2.5 ml of 0.5M sodium hydroxide, and incubated for 20 minutes at 85° C. to the stop the reaction and degrade the RNA.
cDNAs were purified using two successive CHROMA SPIN 30 gel filtration spin columns (Clontech). Cy3- and Cy5-labeled reaction samples were combined as follows: Aliquots of Cy3-labeled PrEC cDNA were individually mixed with Cy5 labeled cDNA from PZ-HPV-7, CA-HPV-10, DU-145, PC-3, and LNCaP cells. The mixtures were ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol, dried to completion using a SpeedVAC system (Savant Instruments, Holbrook N.Y.), and resuspended in 14 μl 5×SSC/0.2% SDS.
VII Hybridization and Detection
Hybridization reactions contained 9 μl of sample mixture containing 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5×SSC, 0.2% SDS hybridization buffer. The mixture was heated to 65° C. for 5 minutes and was aliquoted onto the microarray surface and covered with an 1.8 cm2 coverslip. The microarrays were transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber was kept at 100% humidity internally by the addition of 140 μl of 5×SSC in a corner of the chamber. The chamber containing the microarrays was incubated for about 6.5 hours at 60° C. The microarrays were washed for 10 min at 45° C. in low stringency wash buffer (1×SSC, 0.1% SDS), three times for 10 minutes each at 45° C. in high stringency wash buffer (0.1×SSC), and dried.
Reporter-labeled hybridization complexes were detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Santa Clara Calif.) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light was focused on the microarray using a 20×microscope objective (Nikon, Melville N.Y.). The slide containing the microarray was placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm×1.8 cm microarray used in the present example was scanned with a resolution of 20 micrometers.
In two separate scans, the mixed gas multiline laser excited the two fluorophores sequentially. Emitted light was split, based on wavelength, into two photomultiplier tube detectors (PMT R1477; Hamamatsu Photonics Systems, Bridgewater N.J.) corresponding to the two fluorophores. Appropriate filters positioned between the microarray and the photomultiplier tubes were used to filter the signals. The emission maxima of the fluorophores used were 565 nm for Cy3 and 650 nm for Cy5. Each microarray was typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus was capable of recording the spectra from both fluorophores simultaneously.
The sensitivity of the scans was calibrated using the signal intensity generated by a cDNA control species. Samples of the calibrating cDNA were separately labeled with the two fluorophores and identical amounts of each were added to the hybridization mixture. A specific location on the microarray contained a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000.
The output of the photomultiplier tube was digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Norwood, Mass.) installed in an IBM-compatible PC computer. The digitized data were displayed as an image where the signal intensity was mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data was also analyzed quantitatively. Where two different fluorophores were excited and measured simultaneously, the data were first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
A grid was superimposed over the fluorescence signal image such that the signal from each spot was centered in each element of the grid. The fluorescence signal within each element was then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis was the GEMTOOLS gene expression analysis program (Incyte Pharmaceuticals). Significance was defined as signal to background ratio exceeding 2× and area hybridization exceeding 40%.
VIII Data Analysis and Results
Array elements that exhibited at least 2.5-fold change in expression at one or more time points, a signal intensity over 250 units, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40% were identified as differentially expressed using the GEMTOOLS program (Incyte Genomics). Differential expression values were converted to log base 2 scale. Differential expression values were then compared between the cell lines to identify genes which discriminated between normal and cancerous and between non-metastatic and metastatic cancer. The student's t-test and Pearson correlation statistics were used to distinguish significant differences between the groups. The resulting cDNAs are shown in Tables 1 and 2. The cDNAs are identified by their Clone ID. Table 3 shows the sequence overlap between the clones identified in Tables 1 and 2 and gene templates. Columns 1-3 show the SEQ ID NO:, Template ID, and Clone ID, respectively. Columns 4 and 5 show the start and stop nucleotides for the clone on the template. Table 4 shows a GenBank homolog and description associated with at least a fragment of each Template ID. The descriptions were obtained using the sequences of the Sequence Listing and BLAST analysis. SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75 are highly correlated with metastatic prostate cancer cells PC-3, LNCaP, and DU-145, and SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101 are differentially expressed at significant levels in all of the prostate cancer cell lines.
IX Other Hybridization Technologies and Analyses
Other hybridization technologies utilize a variety of substrates such as nylon membranes, capillary tubes, etc. Arranging cDNAs on polymer coated slides is described in Example V; sample cDNA preparation and hybridization and analysis using polymer coated slides is described in examples VI and VII, respectively.
cDNAs are applied to a membrane substrate by one of the following methods. A mixture of cDNAs is fractionated by gel electrophoresis and transferred to a nylon membrane by capillary transfer. Alternatively, the cDNAs are individually ligated to a vector and inserted into bacterial host cells to form a library. The cDNAs are then arranged on a substrate by one of the following methods. In the first method, bacterial cells containing individual clones are robotically picked and arranged on a nylon membrane. The membrane is placed on LB agar containing selective agent (carbenicillin, kanamycin, ampicillin, or chloramphenicol depending on the vector used) and incubated at 37° C. for 16 hr. The membrane is removed from the agar and consecutively placed colony side up in 10% SDS, denaturing solution (1.5 M NaCl, 0.5 M NaOH ), neutralizing solution (1.5 M NaCl, 1 M Tris, pH 8.0), and twice in 2×SSC for 10 min each. The membrane is then UV irradiated in a STRATALINKER UV-crosslinker (Stratagene).
In the second method, cDNAs are amplified from bacterial vectors by thirty cycles of PCR using primers complementary to vector sequences flanking the insert. PCR amplification increases a starting concentration of 1-2 ng nucleic acid to a final quantity greater than 5 μg. Amplified nucleic acids from about 400 bp to about 5000 bp in length are purified using SEPHACRYL400 beads (APB). Purified nucleic acids are arranged on a nylon membrane manually or using a dot/slot blotting manifold and suction device and are immobilized by denaturation, neutralization, and UV irradiation as described above.
Hybridization probes derived from cDNAs of the Sequence Listing are employed for screening cDNAs, mRNAs, or genomic DNA in membrane-based hybridizations. Probes are prepared by diluting the cDNAs to a concentration of 40-50 ng in 45 μl TE buffer, denaturing by heating to 100° C. for five min and briefly centrifuging. The denatured cDNA is then added to a REDIPRIME tube (APB), gently mixed until blue color is evenly distributed, and briefly centrifuged. Five microliters of [32P]dCTP is added to the tube, and the contents are incubated at 37° C. for 10 min. The labeling reaction is stopped by adding 5 μl of 0.2M EDTA, and probe is purified from unincorporated nucleotides using a PROBEQUANT G-50 microcolumn (APB). The purified probe is heated to 100° C. for five min and then snap cooled for two min on ice.
Membranes are pre-hybridized in hybridization solution containing 1% Sarkosyl and 1×high phosphate buffer (0.5 M NaCl, 0.1 M Na2HPO4, 5 mM EDTA, pH 7) at 55° C. for two hr. The probe, diluted in 15 ml fresh hybridization solution, is then added to the membrane. The membrane is hybridized with the probe at 55° C. for 16 hr. Following hybridization, the membrane is washed for 15 min at 25° C. in 1 mM Tris (pH 8.0), 1% Sarkosyl, and four times for 15 min each at 25° C. in 1 mM Tris (pH 8.0). To detect hybridization complexes, XOMAT-AR film (Eastman Kodak, Rochester N.Y.) is exposed to the membrane overnight at −70° C., developed, and examined.
X Further Characterization of Differentially Expressed cDNAs and Proteins
Clones were blasted against the LIFESEQ Gold 5.1 database (Incyte Genomics) and an Incyte template and its sequence variants were chosen for each clone. The template and variant sequences were blasted against GenBank database to acquire annotation. The nucleotide sequences were translated into amino acid sequence which was blasted against the GenPept and other protein databases to acquire annotation and characterization, i.e., structural motifs.
Percent sequence identity can be determined electronically for two or more amino acid or nucleic acid sequences using the MEGALIGN program (DNASTAR). The percent identity between two amino acid sequences is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no homology between the two amino acid sequences are not included in determining percentage identity.
Sequences with conserved protein motifs may be searched using the BLOCKS search program. This program analyses sequence information contained in the Swiss-Prot and PROSITE databases and is useful for determining the classification of uncharacterized proteins translated from genomic or cDNA sequences (Bairoch et al.(supra); Attwood et al. (supra). PROSITE database is a useful source for identifying functional or structural domains that are not detected using motifs due to extreme sequence divergence. Using weight matrices, these domains are calibrated against the SWISS-PROT database to obtain a measure of the chance distribution of the matches.
The PRINTS database can be searched using the BLIMPS search program to obtain protein family “fingerprints”. The PRINTS database complements the PROSITE database by exploiting groups of conserved motifs within sequence alignments to build characteristic signatures of different protein families. For both BLOCKS and PRINTS analyses, the cutoff scores for local similarity were: >1300=strong, 1000-1300=suggestive; for global similarity were: p<exp-3; and for strength (degree of correlation) were: >1300=strong, 1000-1300=weak.
X Expression of the Encoded Protein
Expression and purification of a protein encoded by a cDNA of the invention is achieved using bacterial or virus-based expression systems. For expression in bacteria, cDNA is subcloned into a vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into bacterial hosts, such as BL21(DE3). Antibiotic resistant bacteria express the protein upon induction with IPTG. Expression in eukaryotic cells is achieved by infecting Spodoptera frugiperda (Sf9) insect cells with recombinant baculovirus, Autographica californica nuclear polyhedrosis virus. The polyhedrin gene of baculovirus is replaced with the cDNA by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of transcription.
For ease of purification, the protein is synthesized as a fusion protein with glutathione-S-transferase (GST; APB) or a similar alternative such as FLAG. The fusion protein is purified on immobilized glutathione under conditions that maintain protein activity and antigenicity. After purification, the GST moiety is proteolytically cleaved from the protein with thrombin. A fusion protein with FLAG, an 8-amino acid peptide, is purified using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak, Rochester N.Y.).
XI Production of Specific Antibodies
A denatured protein from a reverse phase HPLC separation is obtained in quantities up to 75 mg. This denatured protein is used to immunize mice or rabbits following standard protocols. About 100 μg is used to immunize a mouse, while up to 1 mg is used to immunize a rabbit. The denatured protein is radioiodinated and incubated with murine B-cell hybridomas to screen for monoclonal antibodies. About 20 mg of protein is sufficient for labeling and screening several thousand clones.
In another approach, the amino acid sequence translated from a cDNA of the invention is analyzed using PROTEAN software (DNASTAR) to determine regions of high antigenicity, essentially antigenically-effective epitopes of the protein. The optimal sequences for immunization are usually at the C-terminus, the N-terminus, and those intervening, hydrophilic regions of the protein that are likely to be exposed to the external environment when the protein is in its natural conformation. Typically, oligopeptides about 15 residues in length are synthesized using an ABI 431 peptide synthesizer (Applied Biosystems) using Fmoc-chemistry and then coupled to keyhole limpet hemocyanin (KLH; Sigma Aldrich) by reaction with M-maleimidobenzoyl-N-hydroxysuccinimide ester. If necessary, a cysteine may be introduced at the N-terminus of the peptide to permit coupling to KLH. Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity by binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated goat anti-rabbit IgG.
Hybridomas are prepared and screened using standard techniques. Hybridomas of interest are detected by screening with radioiodinated protein to identify those fusions producing a monoclonal antibody specific for the protein. In a typical protocol, wells of 96 well plates (FAST, Becton-Dickinson, Palo Alto Calif.) are coated with affinity-purified, specific rabbit-anti-mouse (or suitable anti-species Ig) antibodies at 10 mg/ml. The coated wells are blocked with 1% BSA and washed and exposed to supernatants from hybridomas. After incubation, the wells are exposed to radiolabeled protein at 1 mg/ml. Clones producing antibodies bind a quantity of labeled protein that is detectable above background.
Such clones are expanded and subjected to 2 cycles of cloning at 1 cell/3 wells. Cloned hybridomas are injected into pristane-treated mice to produce ascites, and monoclonal antibody is purified from the ascitic fluid by affinity chromatography on protein A (APB). Monoclonal antibodies with affinities of at least 108 M−1, preferably 109 to 1010 M−1 or stronger, are made by procedures well known in the art.
XII Purification of Naturally Occurring Protein Using Specific Antibodies
Naturally occurring or recombinant protein is substantially purified by immunoaffinity chromatography using antibodies specific for the protein. An immunoaffinity column is constructed by covalently coupling the antibody to CNBr-activated SEPHAROSE resin (APB). Media containing the protein is passed over the immunoaffinity column, and the column is washed using high ionic strength buffers in the presence of detergent to allow preferential absorbance of the protein. After coupling, the protein is eluted from the column using a buffer of pH 2-3 or a high concentration of urea or thiocyanate ion to disrupt antibody/protein binding, and the protein is collected.
XIII Screening Molecules for Specific Binding with the cDNA or Protein
The cDNA or fragments thereof and the protein or portions thereof are labeled with 32P-dCTP, Cy3-dCTP, Cy5-dCTP (APB), or BIODIPY or FITC (Molecular Probes), respectively. Candidate molecules or compounds previously arranged on a substrate are incubated in the presence of labeled nucleic or amino acid. After incubation under conditions for either a cDNA or a protein, the substrate is washed, and any position on the substrate retaining label, which indicates specific binding or complex formation, is assayed. The binding molecule is identified by its arrayed position on the substrate. Data obtained using different concentrations of the nucleic acid or protein are used to calculate affinity between the labeled nucleic acid or protein and the bound molecule. High throughput screening using very small assay volumes and very small amounts of test compound is fully described in Burbaum et al. U.S. Pat. No. 5,876,946.
All patents and publications mentioned in the specification are incorporated herein by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.
TABLE 1 | ||||||
PrEC, | PrEC, | PrEC, | PrEC, | PrEC, | ||
Untx/CA- | Untx/PZ- | Untx/ | Untx/ | Untx/ | ||
Clone ID | HPV-10 | HPV-7 | DU145 | LNCaP | PC3 | t-test |
3184882 | −0.26 | −0.41 | −3.37 | −3.80 | −3.28 | 0.0007 |
3973887 | −0.45 | −0.47 | −1.47 | −1.59 | −1.59 | 0.0010 |
557538 | 0.15 | 0.41 | −3.61 | −3.88 | −3.73 | 0.0029 |
793403 | −0.57 | −0.58 | −2.84 | −2.73 | −2.45 | 0.0031 |
423513 | −0.61 | −0.67 | −1.72 | −1.81 | −1.52 | 0.0036 |
5497369 | −0.53 | −0.24 | −2.15 | −2.62 | −1.91 | 0.0054 |
3432534 | −0.50 | −0.61 | −2.76 | −3.45 | −2.72 | 0.0072 |
1955573 | 0.12 | −0.07 | −1.27 | −0.84 | −1.32 | 0.0076 |
4029118 | 0.14 | 0.12 | −1.32 | −1.43 | −1.00 | 0.0082 |
2723829 | −0.58 | −0.41 | −1.45 | −1.30 | −1.17 | 0.0087 |
1628341 | −0.39 | −0.01 | −2.07 | −2.42 | −1.68 | 0.0087 |
4513549 | 0.04 | −0.19 | −1.34 | −1.78 | −1.14 | 0.0091 |
1967556 | −0.27 | −0.39 | −1.27 | −1.80 | −1.67 | 0.0095 |
2729629 | −0.22 | 0.09 | −1.32 | −1.92 | −1.27 | 0.0118 |
2701607 | −0.62 | −0.59 | −2.23 | −2.49 | −1.88 | 0.0119 |
4933404 | 0.28 | 0.22 | −1.05 | −1.50 | −0.95 | 0.0119 |
3616296 | −0.59 | −0.45 | −1.23 | −1.33 | −0.97 | 0.0136 |
154371 | 0.08 | 0.40 | −2.54 | −2.91 | −1.54 | 0.0154 |
3774181 | −0.59 | −0.55 | −2.25 | −3.28 | −2.83 | 0.0172 |
1709387 | −0.44 | −0.74 | −2.22 | −2.42 | −2.12 | 0.0184 |
351981 | −0.21 | −0.22 | −1.08 | −0.98 | −1.41 | 0.0186 |
2057510 | −0.68 | −0.23 | −3.49 | −3.82 | −3.77 | 0.0192 |
1324789 | −0.38 | −0.42 | −1.67 | −2.32 | −1.66 | 0.0199 |
3120070 | −1.03 | −0.70 | −2.60 | −2.71 | −2.40 | 0.0203 |
2833609 | −0.19 | 0.07 | −0.98 | −1.90 | −1.55 | 0.0221 |
3431481 | −0.30 | −0.21 | −1.65 | −2.39 | −1.57 | 0.0222 |
4557506 | −0.40 | −0.08 | −1.20 | −1.81 | −1.14 | 0.0233 |
1597810 | −0.30 | −0.55 | −1.59 | −2.31 | −1.46 | 0.0237 |
2962788 | −1.09 | −1.13 | −3.13 | −4.19 | −3.04 | 0.0240 |
3120209 | −0.79 | −0.60 | −1.52 | −1.74 | 0.0247 | |
1800609 | −0.33 | −0.61 | −1.68 | −1.31 | −1.47 | 0.0247 |
3384548 | 0.02 | −0.07 | −0.89 | −1.42 | −0.85 | 0.0250 |
2056584 | −0.18 | −0.21 | −1.23 | −1.81 | −1.17 | 0.0268 |
3096030 | −0.66 | −0.85 | −2.07 | −1.79 | 0.0291 | |
2505801 | −0.01 | 0.11 | −1.21 | −1.88 | −0.98 | 0.0300 |
3658143 | 0.07 | −0.35 | −1.64 | −1.56 | −0.98 | 0.0306 |
3384076 | −0.25 | −0.26 | −1.43 | −2.13 | −1.32 | 0.0327 |
2058209 | −0.34 | −0.01 | −1.46 | −1.24 | −0.80 | 0.0329 |
509758 | −0.31 | −0.39 | −2.19 | −2.24 | −1.30 | 0.0341 |
1723319 | −0.57 | −0.71 | −2.41 | −3.45 | −2.12 | 0.0343 |
2198951 | −0.24 | −0.26 | −0.86 | −1.32 | −0.88 | 0.0359 |
4365223 | −0.20 | −0.15 | −1.10 | −1.97 | −1.35 | 0.0372 |
1437565 | −0.40 | −0.31 | −1.19 | −1.93 | −1.26 | 0.0381 |
3837686 | 0.01 | 0.27 | −0.68 | −1.36 | −0.57 | 0.0387 |
36406 | −0.78 | −0.05 | −2.26 | −3.01 | −1.93 | 0.0403 |
1217764 | −0.49 | 0.18 | −2.16 | −2.48 | −1.21 | 0.0412 |
2059420 | −0.29 | −0.41 | −0.80 | −1.31 | −1.45 | 0.0425 |
1805911 | −0.22 | −0.16 | −1.52 | −2.32 | −1.23 | 0.0429 |
461367 | 0.19 | 0.18 | −1.00 | −1.66 | −0.71 | 0.0429 |
4089868 | 0.27 | 0.28 | −0.46 | −0.92 | −1.35 | 0.0437 |
1549141 | −0.48 | −0.80 | −1.18 | −1.65 | −1.58 | 0.0456 |
4571104 | −0.88 | −0.57 | −1.69 | −1.22 | −2.00 | 0.0464 |
552594 | −0.21 | −0.49 | −1.27 | −1.84 | −0.94 | 0.0475 |
2834343 | −0.11 | 0.02 | −0.94 | −2.02 | −1.21 | 0.0493 |
TABLE 2 | |||||
PrEC, | PrEC, | PrEC, | |||
Untx/CA- | Untx/PZ- | Untx/ | PrEC, | PrEC, | |
Clone ID | HPV-10 | HPV-7 | DU145 | Untx/LNCaP | Untx/PC3 |
1518310 | −1.74 | −1.27 | −2.60 | −2.97 | −2.50 |
2823767 | −1.70 | −1.92 | −1.72 | −1.54 | −1.34 |
2241825 | −1.66 | −1.49 | −1.98 | −1.55 | −1.44 |
5033671 | −1.33 | −1.44 | −1.53 | −2.59 | −1.62 |
44913 | −1.30 | −1.30 | −1.11 | −2.21 | −2.29 |
4549259 | −1.29 | −1.36 | −1.35 | −1.68 | −1.12 |
319075 | −1.29 | −1.37 | −1.08 | −2.26 | −2.15 |
2520894 | −1.27 | −1.43 | −1.50 | −1.15 | −1.04 |
4107861 | −1.27 | −2.03 | −2.20 | −2.67 | −2.13 |
3172265 | −1.67 | −1.48 | −1.74 | −1.86 | |
4402555 | −1.43 | −1.24 | −1.52 | −1.11 | |
2495131 | −1.40 | −1.01 | −1.26 | −3.32 | −0.95 |
3158828 | −1.37 | −1.19 | −1.59 | −1.31 | |
5266015 | −1.25 | −1.31 | −1.56 | −1.26 | |
4978708 | −1.24 | −1.42 | −1.20 | −1.63 | −0.54 |
3069190 | −1.21 | −1.33 | −1.67 | −1.37 | |
64073 | −1.15 | −1.09 | −0.91 | −2.04 | −2.18 |
172023 | 1.01 | 1.29 | 2.11 | 0.98 | 1.59 |
3068978 | −1.32 | −1.13 | 0.00 | −1.94 | |
2060823 | −1.08 | −1.35 | −1.38 | −0.93 | −0.95 |
2060823 | −1.08 | −1.35 | −1.38 | −0.93 | −0.95 |
TABLE 3 | ||||||
SEQ ID NO: | Template ID | Clone ID | Start | Stop | ||
1 | 1382961.3 | 3184882 | 1080 | 1401 | ||
2 | 1382961.5 | 3184882 | 1 | 518 | ||
3 | 2852561CB1 | 3973887 | 1 | 1934 | ||
5 | 335942.2 | 557538 | −4 | 354 | ||
6 | 2483854CB1 | 557538 | 21 | 1677 | ||
8 | 1454852CB1 | 793403 | 54 | 1564 | ||
10 | 353005.1 | 423513 | 1 | 309 | ||
11 | 378497.1 | 5497369 | 1 | 176 | ||
12 | 994684.9 | 3432534 | 2312 | 2868 | ||
13 | 995610.1 | 1955573 | 2345 | 2804 | ||
14 | 417119.1 | 4029118 | 1 | 427 | ||
15 | 3615080CB1 | 2723829 | 563 | 4670 | ||
17 | 331749.3 | 1628341 | 264 | 748 | ||
18 | 979243.1 | 4513549 | 299 | 1245 | ||
19 | 3189059CB1 | 1967556 | 192 | 1981 | ||
21 | 1650519CB1 | 2729629 | 5 | 1448 | ||
23 | 474630.4 | 2701607 | 1610 | 2083 | ||
24 | 093496.1 | 4933404 | 319 | 455 | ||
25 | 1231633.4 | 3616296 | 7 | 58 | ||
26 | 988891.1 | 154371 | 987 | 1538 | ||
27 | 988891.15 | 154371 | 1 | 363 | ||
28 | 3774181CB1 | 3774181 | 37 | 7081 | ||
30 | 1709387CB1 | 1709387 | 34 | 1742 | ||
32 | 1709118CB1 | 351981 | 45 | 1437 | ||
34 | 008513.49 | 2057510 | 1721 | 2258 | ||
35 | 047568.1 | 1324789 | 1 | 493 | ||
36 | 3120070CB1 | 3120070 | 43 | 2028 | ||
38 | 1303785CB1 | 2833609 | 3251 | 4766 | ||
40 | 1798379CB1 | 3431481 | 3 | 2711 | ||
42 | 350650.1 | 4557506 | 1 | 663 | ||
43 | 474630.24 | 1597810 | 443 | 809 | ||
44 | 108089.1 | 2962788 | 1 | 295 | ||
45 | 3346307CB1 | 3120209 | 13 | 1756 | ||
47 | 200143.25 | 1800609 | 234 | 679 | ||
48 | 001929.1 | 3384548 | 12 | 432 | ||
48 | 001929.1 | 3384076 | 797 | 1744 | ||
49 | 1088524.8 | 2056584 | 1218 | 1900 | ||
50 | 632664CB1 | 3096030 | 67 | 1181 | ||
52 | 457372.17 | 2505801 | 527 | 824 | ||
53 | 2993696CB1 | 3658143 | 17 | 2556 | ||
55 | 331106.6 | 2058209 | 4948 | 5465 | ||
56 | 1256895CB1 | 509758 | 530 | 3000 | ||
58 | 474630.29 | 1723319 | 3978 | 4495 | ||
59 | 1256295.18 | 2198951 | 497 | 1314 | ||
60 | 444096.1 | 4365223 | 632 | 1383 | ||
60 | 444096.1 | 1805911 | 1 | 1387 | ||
61 | 008942.10 | 1437565 | 4357 | 4498 | ||
62 | 008942.9 | 1437565 | 1320 | 1602 | ||
63 | 1252415.1 | 3837686 | 2794 | 2872 | ||
64 | 1399366.20 | 36406 | 5046 | 5265 | ||
65 | 3732868CB1 | 1217764 | 1 | 961 | ||
67 | 1137894.1 | 2059420 | 1947 | 2552 | ||
68 | 1418671CB1 | 461367 | 1 | 1529 | ||
70 | 464689.64 | 4089868 | 4741 | 5350 | ||
71 | 053959.1 | 1549141 | 1 | 56 | ||
72 | 1384594.1 | 4571104 | 1 | 580 | ||
73 | 021667CB1 | 552594 | 778 | 3348 | ||
75 | 224855.4 | 2834343 | 3902 | 5287 | ||
76 | 1518310CB1 | 1518310 | 45 | 2323 | ||
78 | 098533.1 | 2823767 | 1 | 445 | ||
79 | 410785.1 | 2241825 | 4507 | 4882 | ||
80 | 1089210.1 | 5033671 | 34 | 1152 | ||
81 | 333453.6 | 44913 | 1 | 202 | ||
82 | 365070.1 | 4549259 | 123 | 698 | ||
83 | 365070.3 | 4549259 | 393 | 841 | ||
84 | 413921.2 | 319075 | 3140 | 3637 | ||
85 | 336615.1 | 2520894 | 1088 | 1325 | ||
86 | 2733282CB1 | 4107861 | 1 | 3156 | ||
88 | 399161.1 | 3172265 | 473 | 1121 | ||
89 | 339638.1 | 4402555 | 1 | 687 | ||
90 | 697785CB1 | 2495131 | 233 | 770 | ||
92 | 399785.1 | 3158828 | 199 | 627 | ||
93 | 002455.1 | 5266015 | 668 | 1133 | ||
94 | 1382920.38 | 4978708 | 49 | 565 | ||
95 | 334749.1 | 3069190 | 74 | 634 | ||
96 | 041764.1 | 64073 | 319 | 579 | ||
97 | 2700132CB1 | 172023 | 208 | 10640 | ||
99 | 211881.1 | 3068978 | 1 | 548 | ||
100 | 409895.2 | 2060823 | 1224 | 1458 | ||
101 | 1422432CB1 | 2060823 | 1 | 860 | ||
TABLE 4 | ||||
SEQ | GB | |||
ID NO: | Template ID | Number | E-value | Annotation |
1 | 1382961.3 | g186704 | 0 | Human 50 kDa type I |
epidermal keratin | ||||
gene, complete cds. | ||||
2 | 1382961.5 | g186704 | 2.00E − 86 | Human 50 kDa type I |
epidermal keratin | ||||
gene, complete cds. | ||||
3 | 2852561CB1 | g5926733 | 0 | Human mRNA for 4F2 |
heavy chain, complete | ||||
cds. | ||||
4 | 2852561CD1 | g5926733 | 0 | Human mRNA for 4F2 |
heavy chain, complete | ||||
cds. | ||||
5 | 335942.2 | g33794 | 0 | Human mRNA for |
interleukin-1 precursor | ||||
(pre IL-1). | ||||
6 | 2483854CB1 | g33794 | 0 | Human mRNA for |
interleukin-1 precursor | ||||
(pre IL-1). | ||||
7 | 2483854CD1 | g33794 | 0 | Human mRNA for |
interleukin-1 precursor | ||||
(pre IL-1). | ||||
8 | 1454852CB1 | g34074 | 0 | Human mRNA for |
keratin-related protein. | ||||
9 | 1454852CD1 | g34074 | 0 | Human mRNA for |
keratin-related protein. | ||||
10 | 353005.1 | g183063 | 0 | Human glia-derived |
nexin (GDN) mRNA, | ||||
5′ end. | ||||
11 | 378497.1 | g2627428 | 7.00E − 36 | Human laminin alpha |
3b chain mRNA, | ||||
partial cds. | ||||
12 | 994684.9 | g186697 | 0 | Human keratin type II |
(58 kD) mRNA, | ||||
complete cds. | ||||
13 | 995610.1 | g34815 | 0 | Human mRNA en- |
coding the c-myc | ||||
oncogene. | ||||
14 | 417119.1 | g33788 | 0 | Human gene for |
prointerleukin 1 beta. | ||||
15 | 3615080CB1 | g2429078 | 0 | Human mRNA for |
Laminin-5 beta3 chain, | ||||
complete cds. | ||||
16 | 3615080CD1 | g2429078 | 0 | Human mRNA for |
Laminin-5 beta3 chain, | ||||
complete cds. | ||||
17 | 331749.3 | g453368 | 0 | Human maspin |
mRNA, complete cds. | ||||
18 | 979243.1 | g212752 | 4.00E − 61 | tensin |
19 | 3189059CB1 | g3242792 | 0 | Human herpesvirus |
entry protein C | ||||
(HVEC) mRNA, | ||||
complete cds. | ||||
20 | 3189059CD1 | g3242792 | 0 | Human herpesvirus |
entry protein C | ||||
(HVEC) mRNA, | ||||
complete cds. | ||||
21 | 1650519CB1 | g3483777 | 0 | Human full length |
insert cDNA clone | ||||
ZD79H11. | ||||
22 | 1650519CD1 | g3483777 | 0 | Human full length |
insert cDNA clone | ||||
ZD79H11. | ||||
23 | 474630.4 | g33956 | 0 | Human mRNA for |
integrin beta-4 subunit. | ||||
24 | 093496.1 | g338320 | 4.00E − 12 | Human osyeonectin |
gene, exon 7. | ||||
25 | 1231633.4 | g189265 | 5.00F-87 | Human novel gene |
mRNA, complete cds. | ||||
26 | 988891.1 | g186268 | 0 | Human monocyte |
interleukin I (IL-1) | ||||
mRNA, complete cds. | ||||
27 | 988891.15 | g186268 | 0 | Human monocyte |
interleukin I (IL-1) | ||||
mRNA, complete cds. | ||||
28 | 3774181CB1 | g179522 | 0 | Human bullous |
pemphigoid antigen | ||||
(BPAG1) mRNA, | ||||
complete cds. | ||||
29 | 3774181CD1 | g179522 | 0 | Human bullous |
pemphigoid antigen | ||||
(BPAG1) mRNA, | ||||
complete cds. | ||||
30 | 1709387CB1 | g34070 | 0 | Human mRNA for |
cytokeratin 15. | ||||
31 | 1709387CD1 | g34070 | 0 | Human mRNA for |
cytokeratin 15. | ||||
32 | 1709118CB1 | g178037 | 0 | Human alpha-cardiac |
actin gene, exon 6 | ||||
and 3′ flank. | ||||
33 | 1709118CD1 | g178037 | 0 | Human alpha-cardiac |
actin gene, exon 6 | ||||
and 3′ flank. | ||||
34 | 008513.49 | g908802 | 0 | Human keratin 6 |
isoform K6e (KRT6E) | ||||
mRNA, complete cds. | ||||
35 | 047568.1 | g184056 | 0 | Human histatin 3 |
(HIS2) gene exons | ||||
3-5, complete cds. | ||||
36 | 3120070CB1 | g7582391 | 1.00F-60 | p53 apoptosis- |
associated target | ||||
37 | 3120070CD1 | g7582391 | 1.00F-60 | p53 apoptosis- |
associated target | ||||
38 | 1303785CB1 | g34387 | 0 | Human mRNA for |
lipocortin. | ||||
39 | 1303785CD1 | g34387 | 0 | Human mRNA for |
lipocortin. | ||||
40 | 1798379CB1 | g181401 | 0 | Human epidermal |
cytokeratin 2 mRNA, | ||||
complete cds. | ||||
41 | 1798379CD1 | g181401 | 0 | Human epidermal |
cytokeratin 2 mRNA, | ||||
complete cds. | ||||
42 | 350650.1 | g7020235 | 0 | Human cDNA |
FLJ20261 fis, clone | ||||
COLF7630. | ||||
43 | 474630.24 | g2270919 | 0 | Human beta4-integrin |
(ITGB4) gene, exons | ||||
31, 32, 33 and 34 | ||||
44 | 108089.1 | g747615 | 7.00E − 68 | Human laminin S B3 |
chain (LAMB3) gene, | ||||
exons 2-3. | ||||
45 | 3346307CB1 | g7020644 | 0 | Human cDNA |
FLJ20500 fis, clone | ||||
KAT09159. | ||||
46 | 3346307CD1 | g7020644 | 0 | Human cDNA |
FLJ20500 fis, clone | ||||
KAT09159. | ||||
47 | 200143.25 | g897916 | 1.00E − 47 | Human 11kd protein |
mRNA, complete cds. | ||||
48 | 001929.1 | g908779 | 0 | keratin type II |
49 | 1088524.8 | g7453533 | 0 | Human hepatic |
angiopoietin-related | ||||
protein (ANGPTL2) | ||||
mRNA, complete cds. | ||||
50 | 632664CB1 | g7658294 | 0 | Human transmembrane |
protein BRI mRNA, | ||||
complete cds. | ||||
51 | 632664CD1 | g7658294 | 0 | Human transmembrane |
protein BRI mRNA, | ||||
complete cds. | ||||
52 | 457372.17 | g7959902 | 0 | Human PRO2446 |
mRNA, complete cds. | ||||
53 | 2993696CB1 | g1143491 | 0 | Human mRNA for |
BiP protein. | ||||
54 | 2993696CD1 | g1143491 | 0 | Human mRNA for |
BiP protein. | ||||
55 | 331106.6 | g33943 | 0 | Human mRNA for |
integrin alpha 6. | ||||
56 | 1256895CB1 | g2618612 | 0 | Human mRNA for |
prion protein, | ||||
complete cds. | ||||
57 | 1256895CD1 | g2618612 | 0 | Human mRNA for |
prion protein, | ||||
complete cds. | ||||
58 | 474630.29 | g33910 | 0 | Human mRNA for |
integrin beta(4) | ||||
subunit. | ||||
59 | 1256295.18 | g182939 | 0 | Human growth arrest |
and DNA-damage- | ||||
inducible protein | ||||
(gadd45) mRNA, | ||||
complete cds. | ||||
60 | 444096.1 | g34073 | 1.00E − 85 | cytokeratin 4 |
(408 AA) | ||||
61 | 008942.10 | g4426639 | 0 | Human L-type amino |
acid transporter | ||||
subunit LAT1 mRNA, | ||||
complete cds. | ||||
62 | 008942.9 | g5926731 | 0 | Human mRNA for |
L-type amino acid | ||||
transporter 1, | ||||
complete cds. | ||||
63 | 1252415.1 | g178083 | 0 | Human adenylyl |
cyclase-associated | ||||
protein (CAP) mRNA, | ||||
complete cds. | ||||
64 | 1399366.20 | g37464 | 0 | Human mRNA for |
thrombospondin. | ||||
65 | 3732868CB1 | g182852 | 0 | Human GOS2 gene, |
5′ flank and cds. | ||||
66 | 3732868CD1 | g182852 | 0 | Human GOS2 gene, |
5′ flank and cds. | ||||
67 | 1137894.1 | g2072389 | 0 | Human zinc finger |
transcriptional | ||||
regulator (COS24) | ||||
gene, complete cds. | ||||
68 | 1418671CB1 | g6984179 | 0 | Human pleckstrin 2 |
mRNA, complete cds. | ||||
69 | 1418671CD1 | g6984179 | 0 | Human pleckstrin 2 |
mRNA, complete cds. | ||||
70 | 464689.64 | g7415720 | 0 | Human Sed mRNA for |
stearoyl-CoA | ||||
desaturase, complete | ||||
cds. | ||||
71 | 053959.1 | g340012 | 3.00E − 13 | Human tristetraproline |
(TTP) mRNA, | ||||
complete cds. | ||||
72 | 1384594.1 | g7020744 | 7.00E − 14 | Human cDNA |
FLJ20557 fis, clone | ||||
KAT11869. | ||||
73 | 021667CB1 | g6580834 | 0 | Human colon Kruppel- |
like factor (CKLF) | ||||
mRNA, complete cds. | ||||
74 | 021667CD1 | g6580834 | 0 | Human colon Kruppel- |
like factor (CKLF) | ||||
mRNA, complete cds. | ||||
75 | 224855.4 | g1378108 | 0 | Human lymphocyte |
specific interferon | ||||
regulatory factor/ | ||||
interferon regulatory | ||||
factor 4 (LSIRF/IRF4) | ||||
mRNA | ||||
76 | 1518310CB1 | g4481752 | 0 | Human connexin 26 |
(GJB2) mRNA, | ||||
complete cds. | ||||
77 | 1518310CD1 | g4481752 | 0 | Human connexin 26 |
(GJB2) mRNA, | ||||
complete cds. | ||||
78 | 098533.1 | g2898163 | 4.00E − 52 | Human microtubule- |
associated protein tau | ||||
(tau) gene, exon 0. | ||||
79 | 410785.1 | g187133 | 0 | Human liver glucose |
transporter-like protein | ||||
(GLUT2), complete | ||||
cds. | ||||
80 | 1089210.1 | g544761 | 0 | chlordecone reductase |
{clone HAKRa} | ||||
[Human liver, mRNA, | ||||
1167 nt]. | ||||
81 | 333453.6 | g2072424 | 5.00E − 65 | Human non-lens beta |
gamma-crystallin like | ||||
protein (AIM1) | ||||
mRNA, partial cds. | ||||
82 | 365070.1 | Incyte Unique | ||
83 | 365070.3 | g3550345 | 4.00E − 34 | cellular repressor of |
E1A-stimulated genes | ||||
CREG | ||||
84 | 413921.2 | g474303 | 0 | Human mRNA for Tec |
protein-tyrosine | ||||
kinase, complete cds. | ||||
85 | 336615.1 | g2072161 | 0 | Human tubby related |
protein 1 (TULP1) | ||||
mRNA, complete cds. | ||||
86 | 2733282CB1 | g4887600 | 0 | Human mRNA for |
chloride channel | ||||
protein, complete cds. | ||||
87 | 2733282CD1 | g4887600 | 0 | Human mRNA for |
chloride channel | ||||
protein, complete cds. | ||||
88 | 399161.1 | g337708 | 2.00E − 37 | Human U1 small |
nuclear RNA gene, | ||||
clone HSD4, complete | ||||
cds. | ||||
89 | 339638.1 | Incyte Unique | ||
90 | 697785CB1 | g187109 | 0 | Human 14 kd lectin |
mRNA, complete cds. | ||||
91 | 697785CD1 | g187109 | 0 | Human 14 kd lectin |
mRNA, complete cds. | ||||
92 | 399785.1 | Incyte Unique | ||
93 | 002455.1 | g2708709 | 2.00E − 13 | Wiskott-Aldrich |
Syndrome protein | ||||
homolog | ||||
94 | 1382920.38 | g31347 | 0 | Human pseudogene for |
apoferritin H | ||||
(clone 133) | ||||
95 | 334749.1 | Incyte Unique | ||
96 | 041764.1 | g4589563 | 0 | Human mRNA for |
KIAA0960 protein, | ||||
partial cds. | ||||
97 | 2700132CB1 | g415818 | 0 | Human mki67a mRNA |
(long type) for antigen | ||||
of monoclonal anti- | ||||
body Ki-67. | ||||
98 | 2700132CD1 | g415818 | 0 | Human mki67a mRNA |
(long type) for antigen | ||||
of monoclonal anti- | ||||
body Ki-67. | ||||
99 | 211881.1 | g340088 | 7.00E − 15 | Human small nuclear |
rna pseudogene (clone | ||||
pul-1) and flanks. | ||||
100 | 409895.2 | g36177 | 0 | Human mRNA for |
calcium-binding | ||||
protein S100P. | ||||
101 | 1422432CB1 | g36177 | 0 | Human mRNA for |
calcium-binding | ||||
protein S100P. | ||||
102 | 1422432CD1 | g36177 | 0 | Human mRNA for |
calcium-binding | ||||
protein S100P. | ||||
TABLE 5 | |||||||
SEQ ID NO: | Template ID | Start | Stop | Frame | PFAM Hit | PFAM Annotaion | E-value |
1 | 1382961.3 | 413 | 1348 | forward 2 | filament | Intermediate filament proteins | 2.30E − 184 |
2 | 1382961.5 | 266 | 1036 | forward 2 | filament | Intermediate filament proteins | 1.40E − 114 |
4 | 2852561CD1 | 112 | 491 | alpha-amylase | Alpha amylase | 1.70E − 04 | |
7 | 2483854CD1 | 136 | 270 | interleukin-1 | Interleukin-1 | 5.60E − 68 | |
9 | 1454852CD1 | 83 | 394 | filament | Intermediate filament proteins | 2.50E − 175 | |
10 | 353005.1 | 87 | 242 | forward 3 | serpin | Serpins (serine protease inhibitors) | 2.50E − 14 |
12 | 994684.9 | 1870 | 2601 | forward 1 | filament | Intermediate filament proteins | 1.60E − 128 |
12 | 994684.9 | 2628 | 2729 | forward 3 | filament | Intermediate filament proteins | 4.50E − 20 |
12 | 994684.9 | 2534 | 2644 | forward 2 | filament | Intermediate filament proteins | 2.10E − 07 |
13 | 995610.1 | 2235 | 2393 | forward 3 | HLH | Helix-loop-helix DNA-binding domain | 2.40E − 24 |
13 | 995610.1 | 1260 | 2207 | forward 3 | Myc_N_term | Myc amino-terminal region | 2.90E − 166 |
16 | 3615080CD1 | 379 | 428 | laminin_EGF | Laminin EGF-like (Domains III and V) | 9.50E − 18 | |
16 | 3615080CD1 | 26 | 248 | laminin_Nterm | Laminin N-terminal (Domain VI) | 1.50E − 38 | |
20 | 3189059CD1 | 263 | 319 | ig | Immunoglobulin domain | 2.50E − 06 | |
22 | 1650519CD1 | 59 | 314 | 7tm_1 | 7 transmembrane receptor (rhodopsin family) | 6.90E − 42 | |
23 | 474630.4 | 4737 | 4991 | forward 3 | fn3 | Fibronectin type III domain | 1.80E − 25 |
23 | 474630.4 | 329 | 1192 | forward 2 | integrin_B | Integrins, beta chain | 1.10E − 231 |
23 | 474630.4 | 1179 | 1571 | forward 3 | integrin_B | Integrins, beta chain | 2.80E − 75 |
25 | 1231633.4 | 25 | 267 | forward 1 | Ribosomal_L10e | Ribosomal L10 | 7.40E − 24 |
26 | 988891.1 | 538 | 966 | forward 1 | interleukin-1 | Interleukin-1 | 2.60E − 86 |
27 | 988891.15 | 133 | 300 | forward 1 | interleukin-1 | Interleukin-1 | 2.50E − 25 |
29 | 3774181CD1 | 1953 | 1997 | Plectin_repeat | Plectin repeat | 1.10E − 19 | |
31 | 1709387CD1 | 104 | 416 | filament | Intermediate filament proteins | 8.90E − 178 | |
33 | 1709118CD1 | 3 | 377 | actin | Actin | 3.90E − 282 | |
34 | 008513.49 | 542 | 1483 | forward 2 | filament | Intermediate filament proteins | 7.00E − 170 |
39 | 1303785CD1 | 275 | 342 | annexin | Annexin | 1.20E − 40 | |
41 | 1798379CD1 | 183 | 496 | filament | Intermediate filament proteins | 8.20E − 159 | |
42 | 350650.1 | 5 | 232 | forward 2 | filament | Intermediate filament proteins | 1.10E − 27 |
48 | 001929.1 | 373 | 1314 | forward 1 | filament | Intermediate filament proteins | 1.60E − 119 |
49 | 1088524.8 | 775 | 1023 | forward 1 | fibrinogen_C | Fibrinogen beta and gamma chains, C-terminal globular | 1.80E − 41 |
domain | |||||||
49 | 1088524.8 | 1175 | 1399 | forward 2 | fibrinogen_C | Fibrinogen beta and gamma chains, C-terminal globular | 2.70E − 19 |
domain | |||||||
49 | 1088524.8 | 2596 | 3213 | forward 1 | ras | Ras family | 6.50E − 107 |
54 | 2993696CD1 | 30 | 636 | HSP70 | Hsp70 protein | 0.00E + 00 | |
55 | 331106.6 | 1084 | 1266 | forward 1 | FG-GAP | FG-GAP repeat | 3.50E − 17 |
55 | 331106.6 | 3259 | 3303 | forward 1 | integrin_A | Integrin alpha cytoplasmic region | 2.90E − 04 |
57 | 1256895CD1 | 23 | 253 | prion | Prion protein | 6.30E − 203 | |
58 | 474630.29 | 4527 | 4781 | forward 3 | fn3 | Fibronectin type III domain | 1.80E − 25 |
58 | 474630.29 | 264 | 1520 | forward 3 | integrin_B | Integrins, beta chain | 6.3e − 317 |
60 | 444096.1 | 83 | 565 | forward 2 | filament | Intermediate filament proteins | 2.20E − 61 |
60 | 444096.1 | 546 | 746 | forward 3 | filament | Intermediate filament proteins | 2.40E − 29 |
61 | 008942.10 | 207 | 1514 | forward 3 | aa_permeases | Amino acid permease | 2.30E − 06 |
63 | 1252415.1 | 682 | 2094 | forward 1 | CAP | CAP protein | 0.00E + 00 |
64 | 1399366.20 | 2117 | 2236 | forward 2 | EGF | EGF-like domain | 3.00E − 06 |
64 | 1399366.20 | 1484 | 1636 | forward 2 | tsp_1 | Thrombospondin type 1 domain | 1.60E − 24 |
64 | 1399366.20 | 1121 | 1285 | forward 2 | vwc | von Willebrand factor type C domain | 2.50E − 23 |
67 | 1137894.1 | 1145 | 1234 | forward 2 | zf-CCCH | Zinc finger C-x8-C-x5-C-x3-H type (and similar) | 3.80E − 16 |
69 | 1418671CD1 | 139 | 225 | DEP | Domain found in Dishevelled, Egl-10, and Pleckstrin | 2.00E − 10 | |
69 | 1418671CD1 | 248 | 353 | PH | PH domain | 1.70E − 18 | |
70 | 464689.64 | 608 | 1342 | forward 2 | Desaturase | Fatty acid desaturase | 1.20E − 163 |
72 | 1384594.1 | 121 | 264 | forward 1 | KRAB | KRAB box | 4.20E − 04 |
74 | 021667CD1 | 165 | 189 | zf-C2H2 | Zinc finger, C2H2 type | 1.60E − 06 | |
75 | 224855.4 | 175 | 516 | forward 1 | IRF | Interferon regulatory factor transcription factor | 2.60E − 76 |
77 | 1518310CD1 | 1 | 213 | connexin | Connexin | 5.80E − 163 | |
79 | 410785.1 | 72 | 1451 | forward 3 | sugar_tr | Sugar (and other) transporter | 8.10E − 124 |
79 | 410785.1 | 410 | 1480 | forward 2 | sugar_tr | Sugar (and other) transporter | 2.30E − 05 |
80 | 1089210.1 | 61 | 903 | forward 1 | aldo_ket_red | Aldo/keto reductase family | 2.60E − 192 |
84 | 413921.2 | 464 | 574 | forward 2 | BTK | BTK motif | 4.30E − 23 |
84 | 413921.2 | 140 | 460 | forward 2 | PH | PH domain | 2.70E − 16 |
84 | 413921.2 | 1235 | 1975 | forward 2 | pkinase | Eukaryotic protein kinase domain | 8.80E − 72 |
84 | 413921.2 | 866 | 1117 | forward 2 | SH2 | Src homology domain 2 | 2.30E − 35 |
84 | 413921.2 | 671 | 838 | forward 2 | SH3 | SH3 domain | 1.30E − 19 |
85 | 336615.1 | 86 | 874 | forward 2 | Tub | Tub family | 3.00E − 195 |
91 | 697785CD1 | 22 | 126 | Gal-bind_lectin | Vertebrate galactoside-binding lectins | 2.90E − 65 | |
94 | 1382920.38 | 253 | 723 | forward 1 | ferritin | Ferritins | 9.80E − 116 |
98 | 2700132CD1 | 27 | 91 | FHA | FHA domain | 4.30E − 21 | |
100 | 409895.2 | 1198 | 1284 | forward 1 | efhand | EF hand | 1.80E − 04 |
102 | 1422432CD1 | 53 | 81 | efhand | EF hand | 1.80E − 04 | |
102 | 1422432CD1 | 4 | 47 | S_100 | S-100/ICaBP type calcium binding domain | 2.70E − 21 | |
TABLE 6 | |||||
SEQ ID NO: | Template ID | Start | Stop | Frame | Domain |
1 | 1382961.3 | 336 | 422 | forward 3 | SP |
4 | 2852561CD1 | 79 | 106 | SP | |
5 | 335942.2 | 127 | 213 | forward 1 | TM |
10 | 353005.1 | 14 | 100 | forward 2 | SP |
12 | 994684.9 | 101 | 190 | forward 2 | SP |
12 | 994684.9 | 2354 | 2446 | forward 2 | SP |
13 | 995610.1 | 40 | 117 | forward 1 | SP |
20 | 3189059CD1 | 1 | 30 | SP | |
22 | 1650519CD1 | 43 | 70 | TM | |
23 | 474630.4 | 53 | 133 | forward 2 | SP |
26 | 988891.1 | 1300 | 1377 | forward 1 | TM |
34 | 008513.49 | 243 | 335 | forward 3 | SP |
37 | 3120070CD1 | 79 | 105 | TM | |
37 | 3120070CD1 | 1 | 31 | SP | |
49 | 1088524.8 | 1884 | 2000 | forward 3 | SP |
49 | 1088524.8 | 232 | 321 | forward 1 | SP |
49 | 1088524.8 | 1938 | 2015 | forward 3 | TM |
55 | 331106.6 | 857 | 943 | forward 2 | SP |
58 | 474630.29 | 2277 | 2369 | forward 3 | SP |
58 | 474630.29 | 156 | 236 | forward 3 | SP |
59 | 1256295.18 | 1242 | 1328 | forward 3 | TM |
64 | 1399366.20 | 210 | 299 | forward 3 | SP |
64 | 1399366.20 | 3746 | 3826 | forward 2 | SP |
67 | 1137894.1 | 1459 | 1536 | forward 1 | SP |
75 | 224855.4 | 2804 | 2890 | forward 2 | SP |
75 | 224855.4 | 3845 | 3922 | forward 2 | TM |
79 | 410785.1 | 1057 | 1143 | forward 1 | SP |
79 | 410785.1 | 1385 | 1471 | forward 2 | TM |
79 | 410785.1 | 2099 | 2185 | forward 2 | TM |
79 | 410785.1 | 4757 | 4840 | forward 2 | TM |
79 | 410785.1 | 4710 | 4787 | forward 3 | TM |
83 | 365070.3 | 43 | 135 | forward 1 | SP |
87 | 2733282CD1 | 900 | 926 | TM | |
99 | 211881.1 | 651 | 731 | forward 3 | TM |
# SEQUENCE LISTING |
<160> NUMBER OF SEQ ID NOS: 102 |
<210> SEQ ID NO 1 |
<211> LENGTH: 1645 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1382961.3 |
<400> SEQUENCE: 1 |
cctttccaat ttacccgagc accttctctt cactcagcca actgctcgct cg |
#ctcacctc 60 |
cctcctctgc accatgacta cctgcagccg ccagttcacc tcctccagct cc |
#atgaaggg 120 |
ctcctgcggc atcgggggcg gcatcggggg cggctccagc cgcatctcct cc |
#gtcctggc 180 |
cggagggtcc tgccgcgccc ccagcaccta cgggggcggc ctgtctgtct ca |
#tcctcccg 240 |
cttctcctct gggggagcct atgggttggg gggcggctat ggcggtggct tc |
#agcagcag 300 |
aaccagcagc tttggtagtg gctttggggg aggatatggt ggtggccttg gt |
#gctggctt 360 |
gggtggtggc tttggtggtg gctttgctgg tggtgatggg cttctggtgg gc |
#agtgagaa 420 |
ggtgaccatg cagaacctca acgaccgcct ggcctcctac ctggacaagg tg |
#cgtgctct 480 |
ggaggaggcc aacgccgacc tggaagtgaa gatccgtgac tggtaccaga gg |
#cagcggcc 540 |
tgctgagatc aaagactaca gtccctactt caagaccatt gaggacctga gg |
#aacaagat 600 |
tctcacagcc acagtggaca atgccaatgt ccttctgcag attgacaatg cc |
#cgtctggc 660 |
cgcggatgac ttccgcacca agtatgagac agagttgaac ctgcgcatga gt |
#gtggaagc 720 |
cgacatcaat ggcctgcgca gggtgctgga cgaactgacc ctggccagag ct |
#gacctgga 780 |
gatgcagatt gagagcctga aggaggagct ggcctacctg aagaagaacc ac |
#gaggagga 840 |
gatgaatgcc ctgagaggcc aggtgggtgg agatgtcaat gtggagatgg ac |
#gctgcacc 900 |
tggcgtggac ctgagccgca ttctgaacga gatgcgtgac cagtatgaga ag |
#atggcaga 960 |
gaagaaccgc aaggatgccg aggaatggtt cttcaccaag acagaggagc tg |
#aaccgcga 1020 |
ggtggccacc aacagcgagc tggtgcagag cggcaagagc gagatctcgg ag |
#ctccggcg 1080 |
caccatgcag aacctggaga ttgagctgca gtcccagctc agcatgaaag ca |
#tccctgga 1140 |
gaacagcctg gaggagacca aaggtcgcta ctgcatgcag ctggcccaga tc |
#caggagat 1200 |
gattggcagc gtggaggagc agctggccca gctccgctgc gagatggagc ag |
#cagaacca 1260 |
ggagtacaag atcctgctgg acgtgaagac gcggctggag caggagatcg cc |
#acctaccg 1320 |
ccgcctgctg gagggcgagg acgcccacct ctcctcctcc cagttctcct ct |
#ggatcgca 1380 |
gtcatccaga gatgtgacct cctccagccg ccaaatccgc accaaggtca tg |
#gatgtgca 1440 |
cgatggcaag gtggtgtcca cccacgagca ggtccttcgc accaagaact ga |
#ggctgccc 1500 |
agccccgctc aggcctagga ggccccccgt gtggacacag atcccactgg aa |
#gatcccct 1560 |
ctcctgccca agcacttcac agctggaccc tgcttcaccc tcaccccctc ct |
#ggcaatca 1620 |
atacagcttc attatctgag ttgca |
# |
# 1645 |
<210> SEQ ID NO 2 |
<211> LENGTH: 1051 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1382961.5 |
<400> SEQUENCE: 2 |
agcaaatgcc ttctccctgc atgctccctg caaggcctcc tcgctatctc ca |
#cacacctg 60 |
actcatccca ttttacagga gcagttgatc ccaggaagag cattggagcc tc |
#cagcaggg 120 |
gctgttgggg cctgtctgag gagataggat gcgtcaggca gccccagaca cg |
#atcacatt 180 |
cctctcaaca tgcctgccgg gccgggtatc catcccctgc agcagcaggc tt |
#cctctacg 240 |
tggatgttaa aggcccattc agttcatgga gagctagcag gtgcgtgctc tg |
#gaggaggc 300 |
caacgccgac ctggaagtga agatccgtga ctggtaccag aggcagcggc ct |
#gctgagat 360 |
caaagactac agtccctact tcaagaccat tgaggacctg aggaacaaga tt |
#ctcacagc 420 |
cacagtggac aatgccaatg tccttctgca gattgacaat gcccgtctgg cc |
#gcggatga 480 |
cttccgcacc aagtatgaga cagagttgaa cctgcgcatg agtgtggaag cc |
#gaccatca 540 |
atggcctgcg cagggtgctg gacgaactga cctggccaga gctgacctgg ag |
#atgcagat 600 |
tgagagcctg aaggaggagc tggcctacct gaagaagaac cacgaggagg ag |
#atgaatgc 660 |
cctgagaggc caggtgggtg gagatgtcaa tgtggagatg gacgctgcac ct |
#ggcgtgga 720 |
cctgagccgc attctgaacg agatgcgtga ccagtatgag aagatggcag ag |
#aagaaccg 780 |
caaggatgcc gaggaatggt tcttcaccaa gacagaggag ctgaaccgcg ag |
#gtggccac 840 |
caacagcgag ctggtgcaga gcggcaagag cgagatctcg gagctccggc gc |
#accatgca 900 |
gaacctggag atgattggca gcgtggagga gcagctggcc cagctccgct gc |
#gagatgga 960 |
gcagcagaac caggagtaca agatcctgct ggacgtgaag acgcggctgg ag |
#caggagat 1020 |
cgccacctac cgccgcctgc tggagggcga g |
# |
# 1051 |
<210> SEQ ID NO 3 |
<211> LENGTH: 1930 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2852561CB1 |
<400> SEQUENCE: 3 |
ccttaagggg cgggccgggg cggggctccg ctgccccttc ccagaggccg cg |
#cctgctgc 60 |
tgagcagatg cagtagccga aactgcgcgg aggcacagag gccggggaga gc |
#gttctggg 120 |
tccgagggtc caggtagggg ttgagccacc atctgaccgc aagctgcgtc gt |
#gtcgccgg 180 |
ttctgcaggc accatgagcc aggacaccga ggtggatatg aaggaggtgg ag |
#ctgaatga 240 |
gttagagccc gagaagcagc cgatgaacgc ggcgtctggg gcggccatgt cc |
#ctggcggg 300 |
agccgagaag aatggtctgg tgaagatcaa ggtggcggaa gacgaggcgg ag |
#gcggcagc 360 |
cgcggctaag ttcacgggcc tgtccaagga ggagctgctg aaggtggcag gc |
#agccccgg 420 |
ctgggtacgc acccgctggg cactgctgct gctcttctgg ctcggctggc tc |
#ggcatgct 480 |
tgctggtgcc gtggtcataa tcgtgcgagc gccgcgttgt cgcgagctac cg |
#gcgcagaa 540 |
gtggtggcac acgggcgccc tctaccgcat cggcgacctt caggccttcc ag |
#ggccacgg 600 |
cgcgggcaac ctggcgggtc tgaaggggcg tctcgattac ctgagctctc tg |
#aaggtgaa 660 |
gggccttgtg ctgggtccaa ttcacaagaa ccagaaggat gatgtcgctc ag |
#actgactt 720 |
gctgcagatc gaccccaatt ttggctccaa ggaagatttt gacagtctct tg |
#caatcggc 780 |
taaaaaaaag agcatccgtg tcattctgga ccttactccc aactaccggg gt |
#gagaactc 840 |
gtggttctcc actcaggttg acactgtggc caccaaggtg aaggatgctc tg |
#gagttttg 900 |
gctgcaagct ggcgtggatg ggttccaggt tcgggacata gagaatctga ag |
#gatgcatc 960 |
ctcattcttg gctgagtggc aaaatatcac caagggcttc agtgaagaca gg |
#ctcttgat 1020 |
tgcggggact aactcctccg accttcagca gatcctgagc ctactcgaat cc |
#aacaaaga 1080 |
cttgctgttg actagctcat acctgtctga ttctggttct actggggagc at |
#acaaaatc 1140 |
cctagtcaca cagtatttga atgccactgg caatcgctgg tgcagctgga gt |
#ttgtctca 1200 |
ggcaaggctc ctgacttcct tcttgccggc tcaacttctc cgactctacc ag |
#ctgatgct 1260 |
cttcaccctg ccagggaccc ctgttttcag ctacggggat gagattggcc tg |
#gatgcagc 1320 |
tgcccttcct ggacagccta tggaggctcc agtcatgctg tgggatgagt cc |
#agcttccc 1380 |
tgacatccca ggggctgtaa gtgccaacat gactgtgaag ggccagagtg aa |
#gaccctgg 1440 |
ctccctcctt tccttgttcc ggcggctgag tgaccagcgg agtaaggagc gc |
#tccctact 1500 |
gcatggggac ttccacgcgt tctccgctgg gcctggactc ttctcctata tc |
#cgccactg 1560 |
ggaccagaat gagcgttttc tggtagtgct taactttggg gatgtgggcc tc |
#tcggctgg 1620 |
actgcaggcc tccgacctgc ctgccagcgc cagcctgcca gccaaggctg ac |
#ctcctgct 1680 |
cagcacccag ccaggccgtg aggagggctc ccctcttgag ctggaacgcc tg |
#aaactgga 1740 |
gcctcacgaa gggctgctgc tccgcttccc ctacgcggcc tgacttcagc ct |
#gacatgga 1800 |
cccactaccc ttctcctttc cttcccaggc cctttggctt ctgatttttc tc |
#ttttttaa 1860 |
aaacaaacaa acaaactgtt gcagattatg agtgaacccc caaataggtg tt |
#tctgcctt 1920 |
caaataagaa |
# |
# |
# 1930 |
<210> SEQ ID NO 4 |
<211> LENGTH: 529 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2852561CD1 |
<400> SEQUENCE: 4 |
Met Ser Gln Asp Thr Glu Val Asp Met Lys Gl |
#u Val Glu Leu Asn |
1 5 |
# 10 |
# 15 |
Glu Leu Glu Pro Glu Lys Gln Pro Met Asn Al |
#a Ala Ser Gly Ala |
20 |
# 25 |
# 30 |
Ala Met Ser Leu Ala Gly Ala Glu Lys Asn Gl |
#y Leu Val Lys Ile |
35 |
# 40 |
# 45 |
Lys Val Ala Glu Asp Glu Ala Glu Ala Ala Al |
#a Ala Ala Lys Phe |
50 |
# 55 |
# 60 |
Thr Gly Leu Ser Lys Glu Glu Leu Leu Lys Va |
#l Ala Gly Ser Pro |
65 |
# 70 |
# 75 |
Gly Trp Val Arg Thr Arg Trp Ala Leu Leu Le |
#u Leu Phe Trp Leu |
80 |
# 85 |
# 90 |
Gly Trp Leu Gly Met Leu Ala Gly Ala Val Va |
#l Ile Ile Val Arg |
95 |
# 100 |
# 105 |
Ala Pro Arg Cys Arg Glu Leu Pro Ala Gln Ly |
#s Trp Trp His Thr |
110 |
# 115 |
# 120 |
Gly Ala Leu Tyr Arg Ile Gly Asp Leu Gln Al |
#a Phe Gln Gly His |
125 |
# 130 |
# 135 |
Gly Ala Gly Asn Leu Ala Gly Leu Lys Gly Ar |
#g Leu Asp Tyr Leu |
140 |
# 145 |
# 150 |
Ser Ser Leu Lys Val Lys Gly Leu Val Leu Gl |
#y Pro Ile His Lys |
155 |
# 160 |
# 165 |
Asn Gln Lys Asp Asp Val Ala Gln Thr Asp Le |
#u Leu Gln Ile Asp |
170 |
# 175 |
# 180 |
Pro Asn Phe Gly Ser Lys Glu Asp Phe Asp Se |
#r Leu Leu Gln Ser |
185 |
# 190 |
# 195 |
Ala Lys Lys Lys Ser Ile Arg Val Ile Leu As |
#p Leu Thr Pro Asn |
200 |
# 205 |
# 210 |
Tyr Arg Gly Glu Asn Ser Trp Phe Ser Thr Gl |
#n Val Asp Thr Val |
215 |
# 220 |
# 225 |
Ala Thr Lys Val Lys Asp Ala Leu Glu Phe Tr |
#p Leu Gln Ala Gly |
230 |
# 235 |
# 240 |
Val Asp Gly Phe Gln Val Arg Asp Ile Glu As |
#n Leu Lys Asp Ala |
245 |
# 250 |
# 255 |
Ser Ser Phe Leu Ala Glu Trp Gln Asn Ile Th |
#r Lys Gly Phe Ser |
260 |
# 265 |
# 270 |
Glu Asp Arg Leu Leu Ile Ala Gly Thr Asn Se |
#r Ser Asp Leu Gln |
275 |
# 280 |
# 285 |
Gln Ile Leu Ser Leu Leu Glu Ser Asn Lys As |
#p Leu Leu Leu Thr |
290 |
# 295 |
# 300 |
Ser Ser Tyr Leu Ser Asp Ser Gly Ser Thr Gl |
#y Glu His Thr Lys |
305 |
# 310 |
# 315 |
Ser Leu Val Thr Gln Tyr Leu Asn Ala Thr Gl |
#y Asn Arg Trp Cys |
320 |
# 325 |
# 330 |
Ser Trp Ser Leu Ser Gln Ala Arg Leu Leu Th |
#r Ser Phe Leu Pro |
335 |
# 340 |
# 345 |
Ala Gln Leu Leu Arg Leu Tyr Gln Leu Met Le |
#u Phe Thr Leu Pro |
350 |
# 355 |
# 360 |
Gly Thr Pro Val Phe Ser Tyr Gly Asp Glu Il |
#e Gly Leu Asp Ala |
365 |
# 370 |
# 375 |
Ala Ala Leu Pro Gly Gln Pro Met Glu Ala Pr |
#o Val Met Leu Trp |
380 |
# 385 |
# 390 |
Asp Glu Ser Ser Phe Pro Asp Ile Pro Gly Al |
#a Val Ser Ala Asn |
395 |
# 400 |
# 405 |
Met Thr Val Lys Gly Gln Ser Glu Asp Pro Gl |
#y Ser Leu Leu Ser |
410 |
# 415 |
# 420 |
Leu Phe Arg Arg Leu Ser Asp Gln Arg Ser Ly |
#s Glu Arg Ser Leu |
425 |
# 430 |
# 435 |
Leu His Gly Asp Phe His Ala Phe Ser Ala Gl |
#y Pro Gly Leu Phe |
440 |
# 445 |
# 450 |
Ser Tyr Ile Arg His Trp Asp Gln Asn Glu Ar |
#g Phe Leu Val Val |
455 |
# 460 |
# 465 |
Leu Asn Phe Gly Asp Val Gly Leu Ser Ala Gl |
#y Leu Gln Ala Ser |
470 |
# 475 |
# 480 |
Asp Leu Pro Ala Ser Ala Ser Leu Pro Ala Ly |
#s Ala Asp Leu Leu |
485 |
# 490 |
# 495 |
Leu Ser Thr Gln Pro Gly Arg Glu Glu Gly Se |
#r Pro Leu Glu Leu |
500 |
# 505 |
# 510 |
Glu Arg Leu Lys Leu Glu Pro His Glu Gly Le |
#u Leu Leu Arg Phe |
515 |
# 520 |
# 525 |
Pro Tyr Ala Ala |
<210> SEQ ID NO 5 |
<211> LENGTH: 664 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 335942.2 |
<400> SEQUENCE: 5 |
ccaaaatgga gggaataata cctaagcctt cctgccgcaa cagtttttta tg |
#ctaatcag 60 |
ggaggtcatt ttggtaaaat acttcttgaa gccgagcctc aagatgaagg ca |
#aagcacga 120 |
aatgttattt tttaattatt atttatatat gtatttataa atatatttaa ga |
#taattata 180 |
atatactata tttatgggaa ccccttcatc ctctgagtgt gaccaggcat cc |
#tccacaat 240 |
agcagacagt gttttctggg ataagtaagt ttgatttcat taatacaggg ca |
#ttttggtc 300 |
caagttgtgc ttatcccata gccaggaaac tctgcattct agtacttggg ag |
#acctgtaa 360 |
tcatataata aatgtacatt aattaccttg agccagtaat tggtccgatc tt |
#tgactctt 420 |
ttgccattaa acttacctgg gcattcttgt ttcaattcca cctgcaatca ag |
#tcctacaa 480 |
gctaaaatta gatgaactca actttgacaa ccatgagacc actgttatca aa |
#actttctt 540 |
ttctggaatg taatcaatgt ttcttctagg ttctaaaaat tgtgatcaga cc |
#ataatgtt 600 |
acattattat caacaatagt gattgataga gtgttatcag tcataactaa at |
#aaagcttg 660 |
caac |
# |
# |
# 664 |
<210> SEQ ID NO 6 |
<211> LENGTH: 1667 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2483854CB1 |
<400> SEQUENCE: 6 |
gtcatttcat tggcgtttga gtcagcaaag aagtcaagat ggccaaagtt cc |
#agacatgt 60 |
ttgaagacct gaagaactgt tacagtgaaa atgaagaaga cagttcctcc at |
#tgatcatc 120 |
tgtctctgaa tcagaaatcc ttctatcatg taagctatgg cccactccat ga |
#aggctgca 180 |
tggatcaatc tgtgtctctg agtatctctg aaacctctaa aacatccaag ct |
#taccttca 240 |
aggagagcat ggtggtagta gcaaccaacg ggaaggttct gaagaagaga cg |
#gttgagtt 300 |
taagccaatc catcactgat gatgacctgg aggccatcgc caatgactca ga |
#ggaagaaa 360 |
tcatcaagcc taggtcagca ccttttagct tcctgagcaa tgtgaaatac aa |
#ctttatga 420 |
ggatcatcaa atacgaattc atcctgaatg acgccctcaa tcaaagtata at |
#tcgagcca 480 |
atgatcagta cctcacggct gctgcattac ataatctgga tgaagcagtg aa |
#atttgaca 540 |
tgggtgctta taagtcatca aaggatgatg ctaaaattac cgtgattcta ag |
#aatctcaa 600 |
aaactcaatt gtatgtgact gcccaagatg aagaccaacc agtgctgctg aa |
#ggagatgc 660 |
ctgagatacc caaaaccatc acaggtagtg agaccaacct cctcttcttc tg |
#ggaaactc 720 |
acggcactaa gaactatttc acatcagttg cccatccaaa cttgtttatt gc |
#cacaaagc 780 |
aagactactg ggtgtgcttg gcaggggggc caccctctat cactgacttt ca |
#gatactgg 840 |
aaaaccaggc gtaggtctgg agtctcactt gtctcacttg tgcagtgttg ac |
#agttcata 900 |
tgtaccatgt acatgaagaa gctaaatcct ttactgttag tcatttgctg ag |
#catgtact 960 |
gagccttgta attctaaatg aatgtttaca ctctttgtaa gagtggaacc aa |
#cactaaca 1020 |
tataatgttg ttatttaaag aacaccctat attttgcata gtaccaatca tt |
#ttaattat 1080 |
tattcttcat aacaatttta ggaggaccag agctactgac tatggctacc aa |
#aaagactc 1140 |
tacccatatt acagatgggc aaattaaggc ataagaaaac taagaaatat gc |
#acaatagc 1200 |
agttgaaaca agaagccaca gacctaggat ttcatgattt catttcaact gt |
#ttgccttc 1260 |
tacttttaag ttgctgatga actcttaatc aaatagcata agtttctggg ac |
#ctcagttt 1320 |
tatcattttc aaaatggagg gaataatacc taagccttcc tgccgcaaca gt |
#tttttatg 1380 |
ctaatcaggg agggcatttt ggtaaaatac ttcttgaagc cgagcctcaa ga |
#tgaaggca 1440 |
aagcacgaaa tgttattttt taattattat ttatatatgt atttataaat at |
#atttcaga 1500 |
taattataat atacctatat tgatgggaac ccttcatcct ctgaggtgtg ac |
#cagggcat 1560 |
cctccacaat tagccgacag tggtttcctg gggataggta aggtttggtt tc |
#cattaata 1620 |
ccagggcatt ttgggtccaa gttgtgctta atcccataag ccaggga |
# 1667 |
<210> SEQ ID NO 7 |
<211> LENGTH: 271 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2483854CD1 |
<400> SEQUENCE: 7 |
Met Ala Lys Val Pro Asp Met Phe Glu Asp Le |
#u Lys Asn Cys Tyr |
1 5 |
# 10 |
# 15 |
Ser Glu Asn Glu Glu Asp Ser Ser Ser Ile As |
#p His Leu Ser Leu |
20 |
# 25 |
# 30 |
Asn Gln Lys Ser Phe Tyr His Val Ser Tyr Gl |
#y Pro Leu His Glu |
35 |
# 40 |
# 45 |
Gly Cys Met Asp Gln Ser Val Ser Leu Ser Il |
#e Ser Glu Thr Ser |
50 |
# 55 |
# 60 |
Lys Thr Ser Lys Leu Thr Phe Lys Glu Ser Me |
#t Val Val Val Ala |
65 |
# 70 |
# 75 |
Thr Asn Gly Lys Val Leu Lys Lys Arg Arg Le |
#u Ser Leu Ser Gln |
80 |
# 85 |
# 90 |
Ser Ile Thr Asp Asp Asp Leu Glu Ala Ile Al |
#a Asn Asp Ser Glu |
95 |
# 100 |
# 105 |
Glu Glu Ile Ile Lys Pro Arg Ser Ala Pro Ph |
#e Ser Phe Leu Ser |
110 |
# 115 |
# 120 |
Asn Val Lys Tyr Asn Phe Met Arg Ile Ile Ly |
#s Tyr Glu Phe Ile |
125 |
# 130 |
# 135 |
Leu Asn Asp Ala Leu Asn Gln Ser Ile Ile Ar |
#g Ala Asn Asp Gln |
140 |
# 145 |
# 150 |
Tyr Leu Thr Ala Ala Ala Leu His Asn Leu As |
#p Glu Ala Val Lys |
155 |
# 160 |
# 165 |
Phe Asp Met Gly Ala Tyr Lys Ser Ser Lys As |
#p Asp Ala Lys Ile |
170 |
# 175 |
# 180 |
Thr Val Ile Leu Arg Ile Ser Lys Thr Gln Le |
#u Tyr Val Thr Ala |
185 |
# 190 |
# 195 |
Gln Asp Glu Asp Gln Pro Val Leu Leu Lys Gl |
#u Met Pro Glu Ile |
200 |
# 205 |
# 210 |
Pro Lys Thr Ile Thr Gly Ser Glu Thr Asn Le |
#u Leu Phe Phe Trp |
215 |
# 220 |
# 225 |
Glu Thr His Gly Thr Lys Asn Tyr Phe Thr Se |
#r Val Ala His Pro |
230 |
# 235 |
# 240 |
Asn Leu Phe Ile Ala Thr Lys Gln Asp Tyr Tr |
#p Val Cys Leu Ala |
245 |
# 250 |
# 255 |
Gly Gly Pro Pro Ser Ile Thr Asp Phe Gln Il |
#e Leu Glu Asn Gln |
260 |
# 265 |
# 270 |
Ala |
<210> SEQ ID NO 8 |
<211> LENGTH: 1511 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1454852CB1 |
<400> SEQUENCE: 8 |
cccctctcct ccccagccct tctcctgtgt gcctgcctcc tgctgccctc ac |
#catgacca 60 |
cctccatccg ccagttcacc tcctccagct ccatcaaggg ctcctccggc ct |
#ggggggcg 120 |
gctcgtcccg cacctcctgc cggctgtctg gcggcctggg tgccggctcc tg |
#caggctgg 180 |
gatctgctgg cggcctgggc agcaccctcg ggggtagcag ctactccagc tg |
#ctacagct 240 |
ttggctctgg tggtggctat ggcagcagct ttgggggtgt tgatgggctg ct |
#ggctggag 300 |
gtgagaaggc caccatgcag aacctcaatg accgcctggc ctcctacctg ga |
#caaggtgc 360 |
gtgccctgga ggaggccaac actgagctgg aggtgaagat ccgtgactgg ta |
#ccagaggc 420 |
aggccccggg gcccgcccgt gactacagcc agtactacag gacaattgag ga |
#gctgcaga 480 |
acaagatcct cacagccacc gtggacaatg ccaacatcct gctacagatt ga |
#caatgccc 540 |
gtctggctgc tgatgacttc cgcaccaagt ttgagacaga gcaggccctg cg |
#cctgagtg 600 |
tggaggccga catcaatggc ctgcgcaggg tgctggatga gctgaccctg gc |
#cagagccg 660 |
acctggagat gcagattgag aacctcaagg aggagctggc ctacctgaag aa |
#gaaccacg 720 |
aggaggagat gaacgccctg cgaggccagg tgggtggtga gatcaatgtg ga |
#gatggacg 780 |
ctgccccagg cgtggacctg agccgcatcc tcaacgagat gcgtgaccag ta |
#tgagaaga 840 |
tggcagagaa gaaccgcaag gatgccgagg attggttctt cagcaagaca ga |
#ggaactga 900 |
accgcgaggt ggccaccaac agtgagctgg tgcagagtgg caagagtgag at |
#ctcggagc 960 |
tccggcgcac catgcaggcc ttggagatag agctgcagtc ccagctcagc at |
#gaaagcat 1020 |
ccctggaggg caacctggcg gagacagaga accgctactg cgtgcagctg tc |
#ccagatcc 1080 |
aggggctgat tggcagcgtg gaggagcagc tggcccagct tcgctgcgag at |
#ggagcagc 1140 |
agaaccagga atacaaaatc ctgctggatg tgaagacgcg gctggagcag ga |
#gattgcca 1200 |
cctaccgccg cctgctggag ggagaggatg cccacctgac tcagtacaag aa |
#agaaccgg 1260 |
tgaccacccg tcaggtgcgt accattgtgg aagaggtcca ggatggcaag gt |
#catctcct 1320 |
cccgcgagca ggtccaccag accacccgct gaggactcag ctaccccggc cg |
#gccaccca 1380 |
ggaggcaggg aggcagccgc cccatctgcc ccacagtctc cggcctctcc ag |
#cctcagcc 1440 |
ccctgcttca gtcccttccc catgcttcct tgcctgatga caataaagct tg |
#ttgactca 1500 |
gctaaaaaaa a |
# |
# |
# 1511 |
<210> SEQ ID NO 9 |
<211> LENGTH: 432 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1454852CD1 |
<400> SEQUENCE: 9 |
Met Thr Thr Ser Ile Arg Gln Phe Thr Ser Se |
#r Ser Ser Ile Lys |
1 5 |
# 10 |
# 15 |
Gly Ser Ser Gly Leu Gly Gly Gly Ser Ser Ar |
#g Thr Ser Cys Arg |
20 |
# 25 |
# 30 |
Leu Ser Gly Gly Leu Gly Ala Gly Ser Cys Ar |
#g Leu Gly Ser Ala |
35 |
# 40 |
# 45 |
Gly Gly Leu Gly Ser Thr Leu Gly Gly Ser Se |
#r Tyr Ser Ser Cys |
50 |
# 55 |
# 60 |
Tyr Ser Phe Gly Ser Gly Gly Gly Tyr Gly Se |
#r Ser Phe Gly Gly |
65 |
# 70 |
# 75 |
Val Asp Gly Leu Leu Ala Gly Gly Glu Lys Al |
#a Thr Met Gln Asn |
80 |
# 85 |
# 90 |
Leu Asn Asp Arg Leu Ala Ser Tyr Leu Asp Ly |
#s Val Arg Ala Leu |
95 |
# 100 |
# 105 |
Glu Glu Ala Asn Thr Glu Leu Glu Val Lys Il |
#e Arg Asp Trp Tyr |
110 |
# 115 |
# 120 |
Gln Arg Gln Ala Pro Gly Pro Ala Arg Asp Ty |
#r Ser Gln Tyr Tyr |
125 |
# 130 |
# 135 |
Arg Thr Ile Glu Glu Leu Gln Asn Lys Ile Le |
#u Thr Ala Thr Val |
140 |
# 145 |
# 150 |
Asp Asn Ala Asn Ile Leu Leu Gln Ile Asp As |
#n Ala Arg Leu Ala |
155 |
# 160 |
# 165 |
Ala Asp Asp Phe Arg Thr Lys Phe Glu Thr Gl |
#u Gln Ala Leu Arg |
170 |
# 175 |
# 180 |
Leu Ser Val Glu Ala Asp Ile Asn Gly Leu Ar |
#g Arg Val Leu Asp |
185 |
# 190 |
# 195 |
Glu Leu Thr Leu Ala Arg Ala Asp Leu Glu Me |
#t Gln Ile Glu Asn |
200 |
# 205 |
# 210 |
Leu Lys Glu Glu Leu Ala Tyr Leu Lys Lys As |
#n His Glu Glu Glu |
215 |
# 220 |
# 225 |
Met Asn Ala Leu Arg Gly Gln Val Gly Gly Gl |
#u Ile Asn Val Glu |
230 |
# 235 |
# 240 |
Met Asp Ala Ala Pro Gly Val Asp Leu Ser Ar |
#g Ile Leu Asn Glu |
245 |
# 250 |
# 255 |
Met Arg Asp Gln Tyr Glu Lys Met Ala Glu Ly |
#s Asn Arg Lys Asp |
260 |
# 265 |
# 270 |
Ala Glu Asp Trp Phe Phe Ser Lys Thr Glu Gl |
#u Leu Asn Arg Glu |
275 |
# 280 |
# 285 |
Val Ala Thr Asn Ser Glu Leu Val Gln Ser Gl |
#y Lys Ser Glu Ile |
290 |
# 295 |
# 300 |
Ser Glu Leu Arg Arg Thr Met Gln Ala Leu Gl |
#u Ile Glu Leu Gln |
305 |
# 310 |
# 315 |
Ser Gln Leu Ser Met Lys Ala Ser Leu Glu Gl |
#y Asn Leu Ala Glu |
320 |
# 325 |
# 330 |
Thr Glu Asn Arg Tyr Cys Val Gln Leu Ser Gl |
#n Ile Gln Gly Leu |
335 |
# 340 |
# 345 |
Ile Gly Ser Val Glu Glu Gln Leu Ala Gln Le |
#u Arg Cys Glu Met |
350 |
# 355 |
# 360 |
Glu Gln Gln Asn Gln Glu Tyr Lys Ile Leu Le |
#u Asp Val Lys Thr |
365 |
# 370 |
# 375 |
Arg Leu Glu Gln Glu Ile Ala Thr Tyr Arg Ar |
#g Leu Leu Glu Gly |
380 |
# 385 |
# 390 |
Glu Asp Ala His Leu Thr Gln Tyr Lys Lys Gl |
#u Pro Val Thr Thr |
395 |
# 400 |
# 405 |
Arg Gln Val Arg Thr Ile Val Glu Glu Val Gl |
#n Asp Gly Lys Val |
410 |
# 415 |
# 420 |
Ile Ser Ser Arg Glu Gln Val His Gln Thr Th |
#r Arg |
425 |
# 430 |
<210> SEQ ID NO 10 |
<211> LENGTH: 309 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 353005.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 6, 10, 18, 24-25, 67, 76, 83 |
#, 98, 159, 290 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 10 |
ggtggntggn accatggnac tgtnnatctc cccctcttcc tcttggcctc tg |
#tggacggt 60 |
gcctttncat ctgctnccac ttnaatcctc tgtctctnga ggaactaggc tc |
#caacacgg 120 |
ggatccaggt tttcaatcag attgtgaagt cgaggcctna tgacaacatc gt |
#gatctctc 180 |
cccatgggat tgcgtcggtc ctggggatgc ttcagctggg ggcggacggc ag |
#gaccagaa 240 |
gcagctcgcc atggtgatga gatacggcgt aaatgatatg attgacaatn tg |
#ctgtcccc 300 |
agatcttat |
# |
# |
# 309 |
<210> SEQ ID NO 11 |
<211> LENGTH: 176 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 378497.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 18, 30, 35, 39, 44, 52, 87, |
#93, 108, 112, 114, 151, |
166, 168, 170 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 11 |
gcccaacgtc atcgggcngc agtgcacccn ctgtncaana ggancactac gn |
#attcccac 60 |
gctgcaaccg tgcagctgtg gtcggcncct ttntgaagag atgacggngc an |
#tnccggct 120 |
tcccttcccc gcacggtcag gccccagtgt naggtgtgtg agacanantn ca |
#ttca 176 |
<210> SEQ ID NO 12 |
<211> LENGTH: 3544 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 994684.9 |
<400> SEQUENCE: 12 |
cagcgtcaaa tttgtctcca ccacctcctc ctcccggaag agcttcaaga gc |
#taagaacc 60 |
tgctgcaagt cactgccttc caagtgcagc aacccagccc atggagattg cc |
#tcttctag 120 |
gcagttgctc aagccatgtt ttatcctttt ctggatagca tcatcgctga gg |
#tcaaggcc 180 |
cagtatgagg agattgccaa ccgcagccgg acagaagccg agtcctggta tc |
#agaccaag 240 |
tatgaggagc tgcagcagac agctggccgg catggcgatg acctccgcaa ca |
#ccaagcat 300 |
gagatctctg agatgaaccg gatgatccag aggctgagag ccgagattga ca |
#atgtcaag 360 |
aaacagtgcg ccaatctgca gaacgccatt gcggatgccg agcagcgtgg gg |
#agctggcc 420 |
ctcaaggatg ccaggaacaa gctggccgag ctggaggagg ccctgcagaa gg |
#ccaagcag 480 |
gacatggccc ggctgctgcg tgagtaccag gagctcatga acaccaagct gg |
#ccctggac 540 |
gtggagatcg ccacttaccg caagctgctg gagggcgagg aatgcagact ca |
#gtggagaa 600 |
ggagttggac cagtcaacat ctgtaagtag ctttgaacag acattaacaa cg |
#acaataat 660 |
atgggatata tttagtgcca actcagaatt ctgctgtttc tagatccaaa ct |
#tttcccat 720 |
cccagcatat ggttatttat aataatacac ttagtaagtt gtgggtggtg ga |
#ggggaagg 780 |
acagattggg acaggaagca atgtggctta tgtctcatct cttaaagggt aa |
#gccatgca 840 |
tcctatgctt cttggaccct gtcccctgcc ttgtccctag tacctagctc cc |
#cccagtac 900 |
ctagctcctc ccctcagtac ctagctcccc tcagtaccta gctccctgta gt |
#acctagct 960 |
cccctcagta cctagctcct ctcagtacct agcaccttgc ctcttacact ca |
#cccacttt 1020 |
tttagggacc ttaattaaat gacagttctt ccgggccttg tttgctactc tg |
#taaagggg 1080 |
gtccagtaga gtgctccaac accagcagat caaataaatg ggccatgcag ga |
#tcagcctg 1140 |
gcagatggtc tcactgagtc ctccctcctt tccctgcagc tgttgtcaca ag |
#cagtgttt 1200 |
cctctggata tggcagtggc agtggctatg gcggtggcct cggtggaggt ct |
#tggcggcg 1260 |
gcctcggtgg aggtcttgcc ggaggtagca gtggaagcta ctactccagc ag |
#cagtgggg 1320 |
gtgtcggcct aggtggtggg ctcagtgtgg ggggctctgg cttcagtgca ag |
#cagtggcc 1380 |
gagggctggg ggtgggcttt ggcagtggcg ggggtagcag ctccagcgtc aa |
#atttgtct 1440 |
ccaccacctc ctcctcccgg aagagcttca agagctaaga acctgctgca ag |
#tcactgcc 1500 |
ttccaagtgc agcaacccag cccatggaga ttgcctcttc taggcagagt ca |
#gccttgcg 1560 |
ggtgcttgtg gagtgggtgg ctatggcagc cggagcctct acaacctggg gg |
#gctccaag 1620 |
aggatatcca tcagcactag tggtggcagc ttcaggaacc ggtttggtgc tg |
#gtgctgga 1680 |
ggcggctatg gctttggagg tggtgccggt agtggatttg gtttcggcgg tg |
#gagctggt 1740 |
ggtggctttg ggctcggtgg cggagctggc tttggaggtg gcttcggtgg cc |
#ctggcttt 1800 |
cctgtctgcc ctcctggagg tatccaagag gtcactgtca accagagtct cc |
#tgactccc 1860 |
ctcaacctgc aaatcgaccc cagcatccag agggtgagga ccgaggagcg cg |
#agcagatc 1920 |
aagaccctca acaataagtt tgcctccttc atcgacaagg tgcggttcct gg |
#agcagcag 1980 |
aacaaggttc tggaaacaaa gtggaccctg ctgcaggagc agggcaccaa ga |
#ctgtgagg 2040 |
cagaacctgg agccgttgtt cgagcagtac atcaacaacc tcaggaggca gc |
#tggacagc 2100 |
atcgtggggg aacggggccg cctggactca gagctgagaa acatgcagga cc |
#tggtggaa 2160 |
gacttcaaga acaagtatga ggatgaaatc aacaagcgta ccactgctga ga |
#atgagttt 2220 |
gtgatgctga agaaggatgt agatgctgcc tacatgaaca aggtggagct gg |
#aggccaag 2280 |
gttgatgcac tgatggatga gattaacttc atgaagatgt tctttgatgc gg |
#agctgtcc 2340 |
cagatgcaga cgcatgtctc tgacacctca gtggtcctct ccatggacaa ca |
#accgcaac 2400 |
ctggacctgg atagcatcat cgctgaggtc aaggcccagt atgaggagat tg |
#ccaaccgc 2460 |
agccggaccg aagccgagtc ctggtatcag accaagtatg aggagctgca gc |
#agacagct 2520 |
ggccggcatg gcgatgacct ccgcaacacc aagcatgaga tctctgagat ga |
#accggatg 2580 |
atccagaggc tgagagccga gattgacaat gtcaagaaac agtgcgccaa tc |
#tggcagaa 2640 |
cgccattgcg gatgccgagc agcgtgggga gctggccctc aaggatgcca gg |
#aacaagct 2700 |
ggccgagctg gaggaggccc tgcagaaggc caagcaggac atgggcccgg ct |
#gctgcgtg 2760 |
agtaccagga gctcatgaac accaagctgg ccctggacgt ggagatcgcc ac |
#ttaccgca 2820 |
agctgctgga gggcgaggaa tgcagactca gtggagaagg agttggacca gt |
#caacatct 2880 |
ctgttgtcac aagcagtgtt tcctctggat atggcagtgg cagtggctat gg |
#cggtggcc 2940 |
tcggtggagg tcttggcggc ggcctcggtg gaggtcttgc cggaggtagc ag |
#tggaagct 3000 |
actactccag cagcagtggg ggtgtcggcc taggtggtgg gctcagtgtg gg |
#gggctctg 3060 |
gcttcagtgc aagcagtggc cgagggctgg gggtgggctt tggcagtggc gg |
#gggtagca 3120 |
gctccagcgt caaatttgtc tccaccacct cctcctcccg gaagagcttc aa |
#gagctaag 3180 |
aacctgctgc aagtcactgc cttccaagtg cagcaaccca gcccatggag at |
#tgcctctt 3240 |
ctaggcagtt gctcaagcca tgttttatcc ttttctggag agtagtctag ac |
#caagccaa 3300 |
ttgcagaacc acattctttg gttcccagga gagccccatt cccagcccct gg |
#tctcccgt 3360 |
gccgcagttc tatattctgc ttcaaatcag ccttcaggtt tcccacagca tg |
#gcccctgc 3420 |
tgacacgaga acccaaagtt ttcccaaatc taaatcatca aaacagaatc cc |
#caccccaa 3480 |
tcccaaattt tgttttggtt ctaactacct ccagaatgtg ttcaataaaa tg |
#cttttata 3540 |
ttat |
# |
# |
# 3544 |
<210> SEQ ID NO 13 |
<211> LENGTH: 3000 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 995610.1 |
<400> SEQUENCE: 13 |
ggagtttatt cataacgcgc tctccaagta tacgtggcaa tgcgttgctg gg |
#ttatttta 60 |
atcattctag gcatcgtttt cctccttatg cctctatcat tcctccctat ct |
#acactaac 120 |
atcccacgct ctgaacgcgc gcccattaat acccttcttt cctccactct cc |
#ctgggact 180 |
cttgatcaaa gcgcggccct ttccccagcc ttagcgaggc gccctgcagc ct |
#ggtacgcg 240 |
cgtggcgtgg cggtgggcgc gcagtgcgtt ctcggtgtgg agggcagctg tt |
#ccgcctgc 300 |
gatgatttat actcacagga caaggatgcg gtttgtcaaa cagtactgct ac |
#ggaggagc 360 |
agcagagaaa gggagagggt ttgagaggga gcaaaagaaa atggtaggcg cg |
#cgtagtta 420 |
attcatgcgg ctctcttact ctgtttacat cctagagcta gagtgctcgg ct |
#gcccggct 480 |
gagtctcctc cccaccttcc ccaccctccc caccctcccc ataagcgccc tc |
#ccgggttc 540 |
ccaaagcaga gggcgtgggg gaaaagaaaa aagatcctct ctcgctaatc tc |
#cgcccacc 600 |
ggccctttat aatgcgaggg tctggacggc tgaggacccc cgagctgtgc tg |
#ctcgcggc 660 |
cgccaccgcc gggccccggc cgtccctggc tcccctcctg cctcgagaag gg |
#cagggctt 720 |
ctcagaggct tggcgggaaa aagaacggag ggagggatcg cgctgagtat aa |
#aagccggt 780 |
tttcggggct ttatctaact cgctgtagta attccagcga gaggcagagg ga |
#gcgagcgg 840 |
gcggccggct agggtggaag agccgggcga gcagagctgc gctgcgggcg tc |
#ctgggaag 900 |
ggagatccgg agcgaatagg gggcttcgcc tctggcccag ccctcccgct ga |
#tcccccag 960 |
ccagcggtcc gcaacccttg ccgcatccac gaaactttgc ccatagcagc gg |
#gcgggcac 1020 |
tttgcactgg aacttacaac acccgagcaa ggacgcgact ctcccgacgc gg |
#ggaggcta 1080 |
ttctgcccat ttggggacac ttccccgccg ctgccaggac ccgcttctct ga |
#aaggctct 1140 |
ccttgcagct gcttagacgc tggatttttt tcgggtagtg gaaaaccagc ag |
#cctcccgc 1200 |
gacgatgccc ctcaacgtta gcttcaccaa caggaactat gacctcgact ac |
#gactcggt 1260 |
gcagccgtat ttctactgcg acgaggagga gaacttctac cagcagcagc ag |
#cagagcga 1320 |
ggctgcagcc cccggcgccc agcgaggata tctggaagaa attcgagctg ct |
#gcccaccc 1380 |
cgcccctgtc ccctagccgc cgctccgggc tctgctcgcc ctcctacgtt gc |
#ggtcacac 1440 |
ccttctccct tcggggagac aacgacggcg gtggcgggag cttctccacg gc |
#cgaccagc 1500 |
tggagatggt gaccgagctg ctgggaggag acatggtgaa ccagagtttc at |
#ctgcgacc 1560 |
cggacgacga gaccttcatc aaaaacatca tcatccagga ctgtatgtgg ag |
#cggcttct 1620 |
cggccgccgc caagctcgtc tcagagaagc tggcctccta ccaggctgcg cg |
#caaagaca 1680 |
gcggcagccc gaaccccgcc cgcggccaca gcgtctgctc cacctccagc tt |
#gtacctgc 1740 |
aggatctgag cgccgccgcc tcagagtgca tcgacccctc ggtggtcttc cc |
#ctaccctc 1800 |
tcaacgacag cagctcgccc aagtcctgcg cctcgcaaga ctccagcgcc tt |
#ctctccgt 1860 |
cctcggattc tctgctctcc tcgacggagt cctccccgca gggcagcccc ga |
#gcccctgg 1920 |
tgctccatga ggagacaccg cccaccacca gcagcgactc tgaggaggaa ca |
#agaagatg 1980 |
aggaagaaat cgatgttgtt tctgtggaaa agaggcaggc tcctggcaaa ag |
#gtcagagt 2040 |
ctggatcacc ttctgctgga ggccacagca aacctcctca cagcccactg gt |
#cctcaaga 2100 |
ggtgccacgt ctccacacat cagcacaact acgcagcgcc tccctccact cg |
#gaaggact 2160 |
atcctgctgc caagagggtc aagttggaca gtgtcagagt cctgagacag at |
#cagcaaca 2220 |
accgaaaatg caccagcccc aggtcctcgg acaccgagga gaatgtcaag ag |
#gcgaacac 2280 |
acaacgtctt ggagcgccag aggaggaacg agctaaaacg gagctttttt gc |
#cctgcgtg 2340 |
accagatccc ggagttggaa aacaatgaaa aggcccccaa ggtagttatc ct |
#taaaaaag 2400 |
ccacagcata catcctgtcc gtccaagcag aggagcaaaa gctcatttct ga |
#agaggact 2460 |
tgttgcggaa acgacgagaa cagttgaaac acaaacttga acagctacgg aa |
#ctcttgtg 2520 |
cgtaaggaaa agtaaggaaa acgattcctt ctaacagaaa tgtcctgagc aa |
#tcacctat 2580 |
gaacttgttt caaatgcatg atcaaatgca acctcacaac cttggctgag tc |
#ttgagact 2640 |
gaaagattta gccataatgt aaactgcctc aaattggact ttgggcataa aa |
#gaactttt 2700 |
ttatgcttac catctttttt ttttctttaa cagatttgta tttaagaatt gt |
#ttttaaaa 2760 |
aattttaaga tttacacaat gtttctctgt aaatattgcc attaaatgta aa |
#taacttta 2820 |
ataaaacgtt tatagcagtt acacagaatt tcaatcctag tatatagtac ct |
#agtattat 2880 |
aggtactata aaccctaatt ttttttattt aagtacattt tgctttttaa ag |
#ttgatttt 2940 |
tttctattgt ttttagaaaa aataaaataa ctggcaaata tatcattgag cc |
#aaaaaaaa 3000 |
<210> SEQ ID NO 14 |
<211> LENGTH: 427 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 417119.1 |
<400> SEQUENCE: 14 |
aaaacaaaga aggctggaaa ccaaagcaat catctcttta gtggaaacta tt |
#cttaaaga 60 |
agatcttgat ggctactgac atttgcaact ccctcactct ttctcagggg cc |
#tttcactt 120 |
acattgtcac cagaggttcg taacctccct gtgggctagt gttatgacca tc |
#accatttt 180 |
acctaagtag ctctgttgct cggccacagt gagcagtaat agacctgaag ct |
#ggaaccca 240 |
tgtctaatag tgtcaggtcc agtgttctta gccaccccac tcccagcttc at |
#ccctactg 300 |
gtgttgtcat cagactttga ccgtatatgc tcaggtgtcc tccaagaaat ca |
#aattttgc 360 |
cacctcgcct tcacgaggcc tgcccttctg gatttatacc taacaacatg tg |
#ctccacat 420 |
ttcagaa |
# |
# |
# 427 |
<210> SEQ ID NO 15 |
<211> LENGTH: 4108 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3615080CB1 |
<400> SEQUENCE: 15 |
tgccagattc ctgagacccg cctgcggtgg ggctacaccc agccagggag tc |
#tccagagg 60 |
tgaggctgtt gtttaaaaac ctggagccgg gaggggagac ccccacattc aa |
#gaggagct 120 |
ttcaggcgat ctggagaaag aacggcagaa cacacagcaa ggaaaggtcc tt |
#tctgggga 180 |
tcaccccatt ggctgaagat gagaccattc ttcctcttgt gttttgccct gc |
#ctggcctc 240 |
ctgcatgccc aacaagcctg ctcccgtggg gcctgctatc cacctgttgg gg |
#acctgctt 300 |
gttgggagga cccggtttct ccgagcttca tctacctgtg gactgaccaa gc |
#ctgagacc 360 |
tactgcaccc agtatggcga gtggcagatg aaatgctgca agtgtgactc ca |
#ggcagcct 420 |
cacaactact acagtcaccg agtagagaat gtggcttcat cctccggccc ca |
#tgcgctgg 480 |
tggcagtcac agaatgatgt gaaccctgtc tctctgcagc tggacctgga ca |
#ggagattc 540 |
cagcttcaag aagtcatgat ggagttccag gggcccatgc ccgccggcat gc |
#tgattgag 600 |
cgctcctcag acttcggtaa gacctggcga gtgtaccagt acctggctgc cg |
#actgcacc 660 |
tccaccttcc ctcgggtccg ccagggtcgg cctcagagct ggcaggatgt tc |
#ggtgccag 720 |
tccctgcctc agaggcctga tgcacgccta aatgggggga aggtccaact ta |
#accttatg 780 |
gatttagtgt ctgggattcc agcaactcaa agtcaaaaaa ttcaagaggt gg |
#gggagatc 840 |
acaaacttga gagtcaattt caccaggctg gcccctgtgc cccaaagggg ct |
#accaccct 900 |
cccagcgcct actatgctgt gtcccagctc cgtctgcagg ggagctgctt ct |
#gtcacggc 960 |
catgctgatc gctgcgcacc caagcctggg gcctctgcag gcccctccac cg |
#ctgtgcag 1020 |
gtccacgatg tctgtgtctg ccagcacaac actgccggcc caaattgtga gc |
#gctgtgca 1080 |
cccttctaca acaaccggcc ctggagaccg gcggagggcc aggacgccca tg |
#aatgccaa 1140 |
aggtgcgact gcaatgggca ctcagagaca tgtcactttg accccgctgt gt |
#ttgccgcc 1200 |
agccaggggg catatggagg tgtgtgtgac aattgccggg accacaccga ag |
#gcaagaac 1260 |
tgtgagcggt gtcagctgca ctatttccgg aaccggcgcc cgggagcttc ca |
#ttcaggag 1320 |
acctgcatct cctgcgagtg tgatccggat ggggcagtgc caggggctcc ct |
#gtgaccca 1380 |
gtgaccgggc agtgtgtgtg caaggagcat gtgcagggag agcgctgtga cc |
#tatgcaag 1440 |
ccgggcttca ctggactcac ctacgccaac ccgcagggct gccaccgctg tg |
#actgcaac 1500 |
atcctggggt cccggaggga catgccgtgt gacgaggaga gtgggcgctg cc |
#tttgtctg 1560 |
cccaacgtgg tgggtcccaa atgtgaccag tgtgctccct accactggaa gc |
#tggccagt 1620 |
ggccagggct gtgaaccgtg tgcctgcgac ccgcacaact ccctcagccc ac |
#agtgcaac 1680 |
cagttcacag ggcagtgccc ctgtcgggaa ggctttggtg gcctgatgtg ca |
#gcgctgca 1740 |
gccatccgcc agtgtccaga ccggacctat ggagacgtgg ccacaggatg cc |
#gagcctgt 1800 |
gactgtgatt tccggggaac agagggcccg ggctgcgaca aggcatcagg cc |
#gctgcctc 1860 |
tgccgccctg gcttgaccgg gccccgctgt gaccagtgcc agcgaggcta ct |
#gcaatcgc 1920 |
tacccggtgt gcgtggcctg ccacccttgc ttccagacct atgatgcgga cc |
#tccgggag 1980 |
caggccctgc gctttggtag actccgcaat gccaccgcca gcctgtggtc ag |
#ggcctggg 2040 |
ctggaggacc gtggcctggc ctcccggatc ctagatgcaa agagtaagat tg |
#agcagatc 2100 |
cgagcagttc tcagcagccc cgcagtcaca gagcaggagg tggctcaggt gg |
#ccagtgcc 2160 |
atcctctccc tcaggcgaac tctccagggc ctgcagctgg atctgcccct gg |
#aggaggag 2220 |
acgttgtccc ttccgagaga cctggagagt cttgacagaa gcttcaatgg tc |
#tccttact 2280 |
atgtatcaga ggaagaggga gcagtttgaa aaaataagca gtgctgatcc tt |
#caggagcc 2340 |
ttccggatgc tgagcacagc ctacgagcag tcagcccagg ctgctcagca gg |
#tctccgac 2400 |
agctcgcgcc ttttggacca gctcagggac agccggagag aggcagagag gc |
#tggtgcgg 2460 |
caggcgggag gaggaggagg caccggcagc cccaagcttg tggccctgag gc |
#tggagatg 2520 |
tcttcgttgc ctgacctgac acccaccttc aacaagctct gtggcaactc ca |
#ggcagatg 2580 |
gcttgcaccc caatatcatg ccctggtgag ctatgtcccc aagacaatgg ca |
#cagcctgt 2640 |
ggctcccgct gcaggggtgt ccttcccagg gccggtgggg ccttcttgat gg |
#cggggcag 2700 |
gtggctgagc agctgcgggg cttcaatgcc cagctccagc ggaccaggca ga |
#tgattagg 2760 |
gcagccgagg aatctgcctc acagattcaa tccagtgccc agcgcttgga ga |
#cccaggtg 2820 |
agcgccagcc gctcccagat ggaggaagat gtcagacgca cacggctcct aa |
#tccagcag 2880 |
gtccgggact tcctaacaga ccccgacact gatgcagcca ctatccagga gg |
#tcagcgag 2940 |
gccgtgctgg ccctgtggct gcccacagac tcagatactg ttctgcagaa ga |
#tgaatgag 3000 |
atccaggcca ttgcagccag gctccccaac gtggacttgg tgctgtccca ga |
#ccaagcag 3060 |
gacattgcgc gtgcccgccg gttgcaggct gaggctgagg aagccaggag cc |
#gagcccat 3120 |
gcagtggagg gccaggtgga agatgtggtt gggaacctgc ggcaggggac ag |
#tggcactg 3180 |
caggaagctc aggacaccat gcaaggcacc agccgctccc ttcggcttat cc |
#aggacagg 3240 |
gttgctgagg ttcagcaggt actgcggcca gcagaaaagc tggtgacaag ca |
#tgaccaag 3300 |
cagctgggtg acttctggac acggatggag gagctccgcc accaagcccg gc |
#agcagggg 3360 |
gcagaggcag tccaggccca gcagcttgcg gaaggtgcca gcgagcaggc at |
#tgagtgcc 3420 |
caagagggat ttgagagaat aaaacaaaag tatgctgagt tgaaggaccg gt |
#tgggtcag 3480 |
agttccatgc tgggtgagca gggtgcccgg atccagagtg tgaagacaga gg |
#cagaggag 3540 |
ctgtttgggg agaccatgga gatgatggac aggatgaaag acatggagtt gg |
#agctgctg 3600 |
cggggcagcc aggccatcat gctgcgctca gcggacctga caggactgga ga |
#agcgtgtg 3660 |
gagcagatcc gtgaccacat caatgggcgc gtgctctact atgccacctg ca |
#agtgatgc 3720 |
tacagcttcc agcccgttgc cccactcatc tgccgccttt gcttttggtt gg |
#gggcagat 3780 |
tgggttggaa tgctttccat ctccaggaga ctttcatgta gcctaaagta ca |
#gcctggac 3840 |
cacccctggt gtgtagctag taagattacc ctgagctgca gctgagcctg ag |
#ccaatggg 3900 |
acagttacac ttgacagaca aagatggtgg agattggcat gccattgaaa ct |
#aagagctc 3960 |
tcaagtcaag gaagctgggc tgggcagtat cccccgcctt tagttctcca ct |
#ggggagga 4020 |
atcctggacc aagcacaaaa acttaacaaa agtgatgtaa aaatgaaaag cc |
#aaataaaa 4080 |
atctttggaa aagaaaaaaa aaaaaaaa |
# |
# 4108 |
<210> SEQ ID NO 16 |
<211> LENGTH: 1172 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3615080CD1 |
<400> SEQUENCE: 16 |
Met Arg Pro Phe Phe Leu Leu Cys Phe Ala Le |
#u Pro Gly Leu Leu |
1 5 |
# 10 |
# 15 |
His Ala Gln Gln Ala Cys Ser Arg Gly Ala Cy |
#s Tyr Pro Pro Val |
20 |
# 25 |
# 30 |
Gly Asp Leu Leu Val Gly Arg Thr Arg Phe Le |
#u Arg Ala Ser Ser |
35 |
# 40 |
# 45 |
Thr Cys Gly Leu Thr Lys Pro Glu Thr Tyr Cy |
#s Thr Gln Tyr Gly |
50 |
# 55 |
# 60 |
Glu Trp Gln Met Lys Cys Cys Lys Cys Asp Se |
#r Arg Gln Pro His |
65 |
# 70 |
# 75 |
Asn Tyr Tyr Ser His Arg Val Glu Asn Val Al |
#a Ser Ser Ser Gly |
80 |
# 85 |
# 90 |
Pro Met Arg Trp Trp Gln Ser Gln Asn Asp Va |
#l Asn Pro Val Ser |
95 |
# 100 |
# 105 |
Leu Gln Leu Asp Leu Asp Arg Arg Phe Gln Le |
#u Gln Glu Val Met |
110 |
# 115 |
# 120 |
Met Glu Phe Gln Gly Pro Met Pro Ala Gly Me |
#t Leu Ile Glu Arg |
125 |
# 130 |
# 135 |
Ser Ser Asp Phe Gly Lys Thr Trp Arg Val Ty |
#r Gln Tyr Leu Ala |
140 |
# 145 |
# 150 |
Ala Asp Cys Thr Ser Thr Phe Pro Arg Val Ar |
#g Gln Gly Arg Pro |
155 |
# 160 |
# 165 |
Gln Ser Trp Gln Asp Val Arg Cys Gln Ser Le |
#u Pro Gln Arg Pro |
170 |
# 175 |
# 180 |
Asp Ala Arg Leu Asn Gly Gly Lys Val Gln Le |
#u Asn Leu Met Asp |
185 |
# 190 |
# 195 |
Leu Val Ser Gly Ile Pro Ala Thr Gln Ser Gl |
#n Lys Ile Gln Glu |
200 |
# 205 |
# 210 |
Val Gly Glu Ile Thr Asn Leu Arg Val Asn Ph |
#e Thr Arg Leu Ala |
215 |
# 220 |
# 225 |
Pro Val Pro Gln Arg Gly Tyr His Pro Pro Se |
#r Ala Tyr Tyr Ala |
230 |
# 235 |
# 240 |
Val Ser Gln Leu Arg Leu Gln Gly Ser Cys Ph |
#e Cys His Gly His |
245 |
# 250 |
# 255 |
Ala Asp Arg Cys Ala Pro Lys Pro Gly Ala Se |
#r Ala Gly Pro Ser |
260 |
# 265 |
# 270 |
Thr Ala Val Gln Val His Asp Val Cys Val Cy |
#s Gln His Asn Thr |
275 |
# 280 |
# 285 |
Ala Gly Pro Asn Cys Glu Arg Cys Ala Pro Ph |
#e Tyr Asn Asn Arg |
290 |
# 295 |
# 300 |
Pro Trp Arg Pro Ala Glu Gly Gln Asp Ala Hi |
#s Glu Cys Gln Arg |
305 |
# 310 |
# 315 |
Cys Asp Cys Asn Gly His Ser Glu Thr Cys Hi |
#s Phe Asp Pro Ala |
320 |
# 325 |
# 330 |
Val Phe Ala Ala Ser Gln Gly Ala Tyr Gly Gl |
#y Val Cys Asp Asn |
335 |
# 340 |
# 345 |
Cys Arg Asp His Thr Glu Gly Lys Asn Cys Gl |
#u Arg Cys Gln Leu |
350 |
# 355 |
# 360 |
His Tyr Phe Arg Asn Arg Arg Pro Gly Ala Se |
#r Ile Gln Glu Thr |
365 |
# 370 |
# 375 |
Cys Ile Ser Cys Glu Cys Asp Pro Asp Gly Al |
#a Val Pro Gly Ala |
380 |
# 385 |
# 390 |
Pro Cys Asp Pro Val Thr Gly Gln Cys Val Cy |
#s Lys Glu His Val |
395 |
# 400 |
# 405 |
Gln Gly Glu Arg Cys Asp Leu Cys Lys Pro Gl |
#y Phe Thr Gly Leu |
410 |
# 415 |
# 420 |
Thr Tyr Ala Asn Pro Gln Gly Cys His Arg Cy |
#s Asp Cys Asn Ile |
425 |
# 430 |
# 435 |
Leu Gly Ser Arg Arg Asp Met Pro Cys Asp Gl |
#u Glu Ser Gly Arg |
440 |
# 445 |
# 450 |
Cys Leu Cys Leu Pro Asn Val Val Gly Pro Ly |
#s Cys Asp Gln Cys |
455 |
# 460 |
# 465 |
Ala Pro Tyr His Trp Lys Leu Ala Ser Gly Gl |
#n Gly Cys Glu Pro |
470 |
# 475 |
# 480 |
Cys Ala Cys Asp Pro His Asn Ser Leu Ser Pr |
#o Gln Cys Asn Gln |
485 |
# 490 |
# 495 |
Phe Thr Gly Gln Cys Pro Cys Arg Glu Gly Ph |
#e Gly Gly Leu Met |
500 |
# 505 |
# 510 |
Cys Ser Ala Ala Ala Ile Arg Gln Cys Pro As |
#p Arg Thr Tyr Gly |
515 |
# 520 |
# 525 |
Asp Val Ala Thr Gly Cys Arg Ala Cys Asp Cy |
#s Asp Phe Arg Gly |
530 |
# 535 |
# 540 |
Thr Glu Gly Pro Gly Cys Asp Lys Ala Ser Gl |
#y Arg Cys Leu Cys |
545 |
# 550 |
# 555 |
Arg Pro Gly Leu Thr Gly Pro Arg Cys Asp Gl |
#n Cys Gln Arg Gly |
560 |
# 565 |
# 570 |
Tyr Cys Asn Arg Tyr Pro Val Cys Val Ala Cy |
#s His Pro Cys Phe |
575 |
# 580 |
# 585 |
Gln Thr Tyr Asp Ala Asp Leu Arg Glu Gln Al |
#a Leu Arg Phe Gly |
590 |
# 595 |
# 600 |
Arg Leu Arg Asn Ala Thr Ala Ser Leu Trp Se |
#r Gly Pro Gly Leu |
605 |
# 610 |
# 615 |
Glu Asp Arg Gly Leu Ala Ser Arg Ile Leu As |
#p Ala Lys Ser Lys |
620 |
# 625 |
# 630 |
Ile Glu Gln Ile Arg Ala Val Leu Ser Ser Pr |
#o Ala Val Thr Glu |
635 |
# 640 |
# 645 |
Gln Glu Val Ala Gln Val Ala Ser Ala Ile Le |
#u Ser Leu Arg Arg |
650 |
# 655 |
# 660 |
Thr Leu Gln Gly Leu Gln Leu Asp Leu Pro Le |
#u Glu Glu Glu Thr |
665 |
# 670 |
# 675 |
Leu Ser Leu Pro Arg Asp Leu Glu Ser Leu As |
#p Arg Ser Phe Asn |
680 |
# 685 |
# 690 |
Gly Leu Leu Thr Met Tyr Gln Arg Lys Arg Gl |
#u Gln Phe Glu Lys |
695 |
# 700 |
# 705 |
Ile Ser Ser Ala Asp Pro Ser Gly Ala Phe Ar |
#g Met Leu Ser Thr |
710 |
# 715 |
# 720 |
Ala Tyr Glu Gln Ser Ala Gln Ala Ala Gln Gl |
#n Val Ser Asp Ser |
725 |
# 730 |
# 735 |
Ser Arg Leu Leu Asp Gln Leu Arg Asp Ser Ar |
#g Arg Glu Ala Glu |
740 |
# 745 |
# 750 |
Arg Leu Val Arg Gln Ala Gly Gly Gly Gly Gl |
#y Thr Gly Ser Pro |
755 |
# 760 |
# 765 |
Lys Leu Val Ala Leu Arg Leu Glu Met Ser Se |
#r Leu Pro Asp Leu |
770 |
# 775 |
# 780 |
Thr Pro Thr Phe Asn Lys Leu Cys Gly Asn Se |
#r Arg Gln Met Ala |
785 |
# 790 |
# 795 |
Cys Thr Pro Ile Ser Cys Pro Gly Glu Leu Cy |
#s Pro Gln Asp Asn |
800 |
# 805 |
# 810 |
Gly Thr Ala Cys Gly Ser Arg Cys Arg Gly Va |
#l Leu Pro Arg Ala |
815 |
# 820 |
# 825 |
Gly Gly Ala Phe Leu Met Ala Gly Gln Val Al |
#a Glu Gln Leu Arg |
830 |
# 835 |
# 840 |
Gly Phe Asn Ala Gln Leu Gln Arg Thr Arg Gl |
#n Met Ile Arg Ala |
845 |
# 850 |
# 855 |
Ala Glu Glu Ser Ala Ser Gln Ile Gln Ser Se |
#r Ala Gln Arg Leu |
860 |
# 865 |
# 870 |
Glu Thr Gln Val Ser Ala Ser Arg Ser Gln Me |
#t Glu Glu Asp Val |
875 |
# 880 |
# 885 |
Arg Arg Thr Arg Leu Leu Ile Gln Gln Val Ar |
#g Asp Phe Leu Thr |
890 |
# 895 |
# 900 |
Asp Pro Asp Thr Asp Ala Ala Thr Ile Gln Gl |
#u Val Ser Glu Ala |
905 |
# 910 |
# 915 |
Val Leu Ala Leu Trp Leu Pro Thr Asp Ser As |
#p Thr Val Leu Gln |
920 |
# 925 |
# 930 |
Lys Met Asn Glu Ile Gln Ala Ile Ala Ala Ar |
#g Leu Pro Asn Val |
935 |
# 940 |
# 945 |
Asp Leu Val Leu Ser Gln Thr Lys Gln Asp Il |
#e Ala Arg Ala Arg |
950 |
# 955 |
# 960 |
Arg Leu Gln Ala Glu Ala Glu Glu Ala Arg Se |
#r Arg Ala His Ala |
965 |
# 970 |
# 975 |
Val Glu Gly Gln Val Glu Asp Val Val Gly As |
#n Leu Arg Gln Gly |
980 |
# 985 |
# 990 |
Thr Val Ala Leu Gln Glu Ala Gln Asp Thr Me |
#t Gln Gly Thr Ser |
995 |
# 1000 |
# 1005 |
Arg Ser Leu Arg Leu Ile Gln Asp Arg Val Al |
#a Glu Val Gln Gln |
1010 |
# 1015 |
# 1020 |
Val Leu Arg Pro Ala Glu Lys Leu Val Thr Se |
#r Met Thr Lys Gln |
1025 |
# 1030 |
# 1035 |
Leu Gly Asp Phe Trp Thr Arg Met Glu Glu Le |
#u Arg His Gln Ala |
1040 |
# 1045 |
# 1050 |
Arg Gln Gln Gly Ala Glu Ala Val Gln Ala Gl |
#n Gln Leu Ala Glu |
1055 |
# 1060 |
# 1065 |
Gly Ala Ser Glu Gln Ala Leu Ser Ala Gln Gl |
#u Gly Phe Glu Arg |
1070 |
# 1075 |
# 1080 |
Ile Lys Gln Lys Tyr Ala Glu Leu Lys Asp Ar |
#g Leu Gly Gln Ser |
1085 |
# 1090 |
# 1095 |
Ser Met Leu Gly Glu Gln Gly Ala Arg Ile Gl |
#n Ser Val Lys Thr |
1100 |
# 1105 |
# 1110 |
Glu Ala Glu Glu Leu Phe Gly Glu Thr Met Gl |
#u Met Met Asp Arg |
1115 |
# 1120 |
# 1125 |
Met Lys Asp Met Glu Leu Glu Leu Leu Arg Gl |
#y Ser Gln Ala Ile |
1130 |
# 1135 |
# 1140 |
Met Leu Arg Ser Ala Asp Leu Thr Gly Leu Gl |
#u Lys Arg Val Glu |
1145 |
# 1150 |
# 1155 |
Gln Ile Arg Asp His Ile Asn Gly Arg Val Le |
#u Tyr Tyr Ala Thr |
1160 |
# 1165 |
# 1170 |
Cys Lys |
<210> SEQ ID NO 17 |
<211> LENGTH: 795 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 331749.3 |
<400> SEQUENCE: 17 |
attttacata cactgtatgt tatagaactt catggatcag atctggggca gc |
#accctata 60 |
aatcaccacc ttaatatgct gcaacaaaat gtagaatatt cagacaaaat gg |
#atacataa 120 |
agactaagta gcccataagg ggtcaaattt tgctgccaaa tgcgtatgcc ac |
#caacttac 180 |
aaaaacactt cgttcgcaga gcttttcaga ttgtggaatg ttggataagg aa |
#ttatagac 240 |
ctctagtagc tgaaatgcaa gaccccaaga ggaagttcag atcttaatat aa |
#attcactt 300 |
tcatttttga tagctgtccc atctggtcat ttggttggca ctagactggt gg |
#caggggct 360 |
tctagctgac tcgcacaggg attctcacaa tagccgatat cagaatttgt gt |
#tgaaggaa 420 |
cttgtctctt catctaatat gatagcggga aaaggagagg aaactactgc ct |
#ttagaaaa 480 |
tataagtaaa gtgattaaag tgctcacgtt accttgacac atagtttttc ag |
#tctatggg 540 |
tttagttact ttagatggca agcatgtaac ttatattaat agtaatttgt aa |
#agttggtt 600 |
ggataagcta tccatgttgc aggttcatgg attacttctc tataaaaaat at |
#gtatttac 660 |
caaaaaattt tgtgacattc cttctcccat ctcttccttg acatgcattg ta |
#aataggtt 720 |
cttcttgttc tgagattcaa tattgaattt ctcctatgct attgacaata aa |
#atattatt 780 |
gaactacaaa aaaaa |
# |
# |
# 795 |
<210> SEQ ID NO 18 |
<211> LENGTH: 2538 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 979243.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 1479-1784, 1933-2000, 2002 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 18 |
cgccaggaca tgcagcccac catgaagttc gtgatggaca catctaaata ct |
#ggtttaag 60 |
ccaaacatca cccgagagca agcaatcgag ctgctgagga aggaggagcc ag |
#gggctttg 120 |
tcataaggga cagctcttca taccgaggct ccttcggcct ggccctgaag gt |
#gcaggagg 180 |
ttcccgcgtc tgctcagaat cgaccaggtg aggacagcaa tgacctcatc cg |
#acacttcc 240 |
tcatcgagtc gtctgccaaa ggagtgcatc tcaaaggagc agatgaggag cc |
#ctactttg 300 |
aactgggagg tgcagatggg gcctcggact ctacagacag cccagcctcc tg |
#ccagaaga 360 |
aatctgcggg ctgccacacc ctgtacctga gctcagtgag cgtggagacc ct |
#gactggag 420 |
ccctggccgt gcagaaagcc atctccacca cctttgagag ggacatcctc cc |
#cacgccca 480 |
ccgtggtcca cttcaaagtc acagagcagg gcatcactct gactgatgtc ca |
#gaggaagg 540 |
tgtttttccg gcgccattac ccactcacca ccctccgctt ctgtggtatg ga |
#ccctgagc 600 |
aacggaagtg gcagaagtac tgcaaaccct cctggatctt tgggtttgtg gc |
#caagagcc 660 |
agacagagcc tcaggagaac gtatgccacc tctttgcgga gtatgacatg gt |
#ccagccag 720 |
cctcgcaggt catcggcctg gtgactgctc tgctgcagga cgcagaaagg at |
#gtagggga 780 |
gagactgcct gtgcacctaa ccaacacctc caggggctcg ctaaggagcc cc |
#cctccacc 840 |
ccctgaatgg gtgtggcttg tggccatatt gacagaccaa tctatgggac ta |
#gggggatt 900 |
ggcatcaagt tgacaccctt gaacctgcta tggccttcag cagtcaccat ca |
#tccagacc 960 |
ccccgggcct cagtttcctc aatcatagaa gaagaccaat agacaagatc ag |
#ctgttctt 1020 |
agatgctggt gggcatttga acatgctcct ccatgattct gaagcatgca ca |
#cctctgaa 1080 |
gacccctgca tgaaaataac ctccaaggac cctctgaccc catcgacctg gg |
#ccctgccc 1140 |
acacaacagt ctgagcaaga gacctgcagc ccctgtttcg tggcagacag ca |
#ggtgcctg 1200 |
gcggtgaccc acggggctcc tggcttgcag ctggtgatgg tcaagaactg ac |
#tacaaaac 1260 |
aggaatggat agactctatt tccttccata tctgttcctc tgttcctttt cc |
#cactttct 1320 |
gggtggcttt ttgggtccac ccagccagga tgctgcaggc caagctgggt gt |
#ggtattta 1380 |
gggcagctca gcagggggaa cttgtcccca tggtcagagg agacccagct gt |
#cctgcacc 1440 |
cccttgcaga tgagtatcac cccatctttt ctttccacnn nnnnnnnnnn nn |
#nnnnnnnn 1500 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1560 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1620 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1680 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1740 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnccattc ct |
#tgataggc 1800 |
gagtattcca aagctggtat cgtagctgcc ctaatgttgc atattaggcg gc |
#gggggcag 1860 |
agataagggc catctctctg tgattctgcc tcagctcctg tcttgctgag cc |
#ctccccca 1920 |
acccacgctc cannnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1980 |
nnnnnnnnnn nnnnnnnnnn gnccctctac tgctatgtgg cttcaaccag cc |
#tcacagcc 2040 |
acacggggga agcagagagt caagaatgca aagaggccgc ttccctaaga gg |
#cttggagg 2100 |
agctgggctc tatcccacac ccacccccac cccaccccca cccagcctcc ag |
#aagctgga 2160 |
accatttctc ccgcaggcct gagttcctaa ggaaaccacc ctaccggggt gg |
#aagggagg 2220 |
gtcagggaag aaacccactc ttgctctacg aggagcaagt gcctgccccc tc |
#ccagcagc 2280 |
cagccctgcc aaagttgcat tatctttggc caaggctggg cctgacggtt at |
#gatttcag 2340 |
ccctgggcct gcaggagagg ctgagaccag cccacccagc cagtggtcga gc |
#actgcccc 2400 |
gccgccaaag tctgcagaat gtgagatgag gttctcaagg tcacaggccc ca |
#gtcccagc 2460 |
ctgggggctg gcagaggccc ccatatactc tgctacagct cctatcatga aa |
#aataaaat 2520 |
gtttgtcttt gcaaaaca |
# |
# |
#2538 |
<210> SEQ ID NO 19 |
<211> LENGTH: 1730 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3189059CB1 |
<400> SEQUENCE: 19 |
gcggccgcgc ggtatcccac ccagcccacc ccgccccggc cgacggctga ca |
#gctgacct 60 |
ggatccttcg agcgcccgcc gaccgccagc gatcttccct catcttccgg gc |
#tggtttct 120 |
gctgcgcgag gagcgtgccc tcgccgcccc tctcgccgga cccccggccc cc |
#gatggctc 180 |
ggatggggct tgcgggcgcc gctggacgct ggtggggact cgctctcggc tt |
#gaccgcat 240 |
tcttcctccc aggcgtccac tcccaggtgg tccaggtgaa cgactccatg ta |
#tggcttca 300 |
tcggcacaga cgtggttctg cactgcagct ttgccaaccc gcttcccagc gt |
#gaagatca 360 |
cccaggtcac atggcagaag tccaccaatg gctccaagca gaacgtggcc at |
#ctacaacc 420 |
catccatggg cgtgtccgtg ctggctccct accgcgagcg tgtggaattc ct |
#gcggccct 480 |
ccttcaccga tggcactatc cgcctctccc gcctggagct ggaggatgag gg |
#tgtctaca 540 |
tctgcgagtt tgctaccttc cctacgggca atcgagaaag ccagctcaat ct |
#cacggtga 600 |
tggccaaacc caccaattgg atagagggta cccaggcagt gcttcgagcc aa |
#gaaggggc 660 |
aggatgacaa ggtcctggtg gccacctgca cctcagccaa tgggaagcct cc |
#cagtgtgg 720 |
tatcctggga aactcggtta aaaggtgagg ccagagtacc aggagactcc gg |
#aaccccaa 780 |
tggcaccagt gacggtcatc agccgctacc gcctggtgcc cagcagggaa gc |
#ccaccagc 840 |
agtccttggc ctgcatcgtc aactaccaca tggaccgctt caaggaaagc ct |
#cactctca 900 |
acgtgcagta tgagcctgag gtaaccattg aggggtttga tggcaactgg ta |
#cctgcagc 960 |
ggatggacgt gaagctcacc tgcaaagctg atgctaaccc cccagccact ga |
#gtaccact 1020 |
ggaccacgct aaatggctct ctccccaagg gtgtggaggc ccagaacaga ac |
#cctcttct 1080 |
tcaagggacc catcaactac agcctggcag ggacctacat ctgtgaggcc ac |
#caacccca 1140 |
tcggtacacg ctcaggccag gtggaggtca atatcacaga attcccctac ac |
#cccgtctc 1200 |
ctcccgaaca tgggcggcgc gccgggccgg tgcccacggc catcattggg gg |
#cgtggcgg 1260 |
ggagcatcct gctggtgttg attgtggtcg gcgggatcgt ggtcgccctg cg |
#tcggcgcc 1320 |
ggcacacctt caagggtgac tacagcacca agaagcacgt gtatggcaac gg |
#ctacagca 1380 |
aggcaggcat cccccagcac cacccaccaa tggcacagaa cctgcagtac cc |
#cgacgact 1440 |
cagacgacga gaagaaggcc ggcccactgg gtggaagcag ctatgaggag ga |
#ggaggagg 1500 |
aggaggaggg cggtggaggg ggcgagcgca aggtgggcgg cccccacccc aa |
#atatgacg 1560 |
aggacgccaa gcggccctac ttcaccgtgg atgaggccga ggcccgtcag ga |
#cggctacg 1620 |
gggaccggac tctgggctac cagtacgacc ctgagcagct ggacttggct ga |
#gaacatgg 1680 |
tttctcagaa cgacgggtct ttcatttcca agaaggagtg gtacgtgtag |
# 1730 |
<210> SEQ ID NO 20 |
<211> LENGTH: 518 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3189059CD1 |
<400> SEQUENCE: 20 |
Met Ala Arg Met Gly Leu Ala Gly Ala Ala Gl |
#y Arg Trp Trp Gly |
1 5 |
# 10 |
# 15 |
Leu Ala Leu Gly Leu Thr Ala Phe Phe Leu Pr |
#o Gly Val His Ser |
20 |
# 25 |
# 30 |
Gln Val Val Gln Val Asn Asp Ser Met Tyr Gl |
#y Phe Ile Gly Thr |
35 |
# 40 |
# 45 |
Asp Val Val Leu His Cys Ser Phe Ala Asn Pr |
#o Leu Pro Ser Val |
50 |
# 55 |
# 60 |
Lys Ile Thr Gln Val Thr Trp Gln Lys Ser Th |
#r Asn Gly Ser Lys |
65 |
# 70 |
# 75 |
Gln Asn Val Ala Ile Tyr Asn Pro Ser Met Gl |
#y Val Ser Val Leu |
80 |
# 85 |
# 90 |
Ala Pro Tyr Arg Glu Arg Val Glu Phe Leu Ar |
#g Pro Ser Phe Thr |
95 |
# 100 |
# 105 |
Asp Gly Thr Ile Arg Leu Ser Arg Leu Glu Le |
#u Glu Asp Glu Gly |
110 |
# 115 |
# 120 |
Val Tyr Ile Cys Glu Phe Ala Thr Phe Pro Th |
#r Gly Asn Arg Glu |
125 |
# 130 |
# 135 |
Ser Gln Leu Asn Leu Thr Val Met Ala Lys Pr |
#o Thr Asn Trp Ile |
140 |
# 145 |
# 150 |
Glu Gly Thr Gln Ala Val Leu Arg Ala Lys Ly |
#s Gly Gln Asp Asp |
155 |
# 160 |
# 165 |
Lys Val Leu Val Ala Thr Cys Thr Ser Ala As |
#n Gly Lys Pro Pro |
170 |
# 175 |
# 180 |
Ser Val Val Ser Trp Glu Thr Arg Leu Lys Gl |
#y Glu Ala Arg Val |
185 |
# 190 |
# 195 |
Pro Gly Asp Ser Gly Thr Pro Met Ala Pro Va |
#l Thr Val Ile Ser |
200 |
# 205 |
# 210 |
Arg Tyr Arg Leu Val Pro Ser Arg Glu Ala Hi |
#s Gln Gln Ser Leu |
215 |
# 220 |
# 225 |
Ala Cys Ile Val Asn Tyr His Met Asp Arg Ph |
#e Lys Glu Ser Leu |
230 |
# 235 |
# 240 |
Thr Leu Asn Val Gln Tyr Glu Pro Glu Val Th |
#r Ile Glu Gly Phe |
245 |
# 250 |
# 255 |
Asp Gly Asn Trp Tyr Leu Gln Arg Met Asp Va |
#l Lys Leu Thr Cys |
260 |
# 265 |
# 270 |
Lys Ala Asp Ala Asn Pro Pro Ala Thr Glu Ty |
#r His Trp Thr Thr |
275 |
# 280 |
# 285 |
Leu Asn Gly Ser Leu Pro Lys Gly Val Glu Al |
#a Gln Asn Arg Thr |
290 |
# 295 |
# 300 |
Leu Phe Phe Lys Gly Pro Ile Asn Tyr Ser Le |
#u Ala Gly Thr Tyr |
305 |
# 310 |
# 315 |
Ile Cys Glu Ala Thr Asn Pro Ile Gly Thr Ar |
#g Ser Gly Gln Val |
320 |
# 325 |
# 330 |
Glu Val Asn Ile Thr Glu Phe Pro Tyr Thr Pr |
#o Ser Pro Pro Glu |
335 |
# 340 |
# 345 |
His Gly Arg Arg Ala Gly Pro Val Pro Thr Al |
#a Ile Ile Gly Gly |
350 |
# 355 |
# 360 |
Val Ala Gly Ser Ile Leu Leu Val Leu Ile Va |
#l Val Gly Gly Ile |
365 |
# 370 |
# 375 |
Val Val Ala Leu Arg Arg Arg Arg His Thr Ph |
#e Lys Gly Asp Tyr |
380 |
# 385 |
# 390 |
Ser Thr Lys Lys His Val Tyr Gly Asn Gly Ty |
#r Ser Lys Ala Gly |
395 |
# 400 |
# 405 |
Ile Pro Gln His His Pro Pro Met Ala Gln As |
#n Leu Gln Tyr Pro |
410 |
# 415 |
# 420 |
Asp Asp Ser Asp Asp Glu Lys Lys Ala Gly Pr |
#o Leu Gly Gly Ser |
425 |
# 430 |
# 435 |
Ser Tyr Glu Glu Glu Glu Glu Glu Glu Glu Gl |
#y Gly Gly Gly Gly |
440 |
# 445 |
# 450 |
Glu Arg Lys Val Gly Gly Pro His Pro Lys Ty |
#r Asp Glu Asp Ala |
455 |
# 460 |
# 465 |
Lys Arg Pro Tyr Phe Thr Val Asp Glu Ala Gl |
#u Ala Arg Gln Asp |
470 |
# 475 |
# 480 |
Gly Tyr Gly Asp Arg Thr Leu Gly Tyr Gln Ty |
#r Asp Pro Glu Gln |
485 |
# 490 |
# 495 |
Leu Asp Leu Ala Glu Asn Met Val Ser Gln As |
#n Asp Gly Ser Phe |
500 |
# 505 |
# 510 |
Ile Ser Lys Lys Glu Trp Tyr Val |
515 |
<210> SEQ ID NO 21 |
<211> LENGTH: 1444 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1650519CB1 |
<400> SEQUENCE: 21 |
ggagaatttg aaagggtgcc ccaaaggaca atctctaaag gggtaagggg ga |
#tacctacc 60 |
ttgtctggta ggggagatgt ttcgttttca tgctttacca gaaaatccac tt |
#ccctgccg 120 |
accttagttt caaagcttat tcttaattag agacaagaaa cctgtttcaa ct |
#tgaagaca 180 |
ccgtatgagg tgaatggaca gccagccacc acaatgaaag aaatcaaacc ag |
#gaataacc 240 |
tatgctgaac ccacgcctca atcgtcccca agtgtttcct gacacgcatc tt |
#tgcttaca 300 |
gtgcatcaca actgaagaat ggggttcaac ttgacgcttg caaaattacc aa |
#ataacgag 360 |
ctgcacggcc aagagagtca caattcaggc aacaggagcg acgggccagg aa |
#agaacacc 420 |
acccttcaca atgaatttga cacaattgtc ttgccggtgc tttatctcat ta |
#tatttgtg 480 |
gcaagcatct tgctgaatgg tttagcagtg tggatcttct tccacattag ga |
#ataaaacc 540 |
agcttcatat tctatctcaa aaacatagtg gttgcagacc tcataatgac gc |
#tgacattt 600 |
ccatttcgaa tagtccatga tgcaggattt ggaccttggt acttcaagtt ta |
#ttctctgc 660 |
agatacactt cagttttgtt ttatgcaaac atgtatactt ccatcgtgtt cc |
#ttgggctg 720 |
ataagcattg atcgctatct gaaggtggtc aagccatttg gggactctcg ga |
#tgtacagc 780 |
ataaccttca cgaaggtttt atctgtttgt gtttgggtga tcatggctgt tt |
#tgtctttg 840 |
ccaaacatca tcctgacaaa tggtcagcca acagaggaca atatccatga ct |
#gctcaaaa 900 |
cttaaaagtc ctttgggggt caaatggcat acggcagtca cctatgtgaa ca |
#gctgcttg 960 |
tttgtggccg tgctggtgat tctgatcgga tgttacatag ccatatccag gt |
#acatccac 1020 |
aaatccagca ggcaattcat aagtcagtca agccgaaagc gaaaacataa cc |
#agagcatc 1080 |
agggttgttg tggctgtgta ttttacctgc tttctaccat atcacttgtg ca |
#gaatgcct 1140 |
tctactttta gtcacttaga caggctttta gatgaatctg cacaaaaaat cc |
#tatattac 1200 |
tgcaaagaaa ttacactttt cttgtctgcg tgtaatgttt gcctggatcc aa |
#taatttac 1260 |
tttttcatgt gtaggtcatt ttcaagatgg ctgttcaaaa aatcaaatat ca |
#gacccagg 1320 |
agtgaaagca tcagatcact gcaaagtgtg agaagatcgg aagttcgcat at |
#attatgat 1380 |
tacactgatg tgtaggcctt ttattgtttg ttggaatcga tatgtacaaa gt |
#gtaataca 1440 |
tcag |
# |
# |
# 1444 |
<210> SEQ ID NO 22 |
<211> LENGTH: 358 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1650519CD1 |
<400> SEQUENCE: 22 |
Met Gly Phe Asn Leu Thr Leu Ala Lys Leu Pr |
#o Asn Asn Glu Leu |
1 5 |
# 10 |
# 15 |
His Gly Gln Glu Ser His Asn Ser Gly Asn Ar |
#g Ser Asp Gly Pro |
20 |
# 25 |
# 30 |
Gly Lys Asn Thr Thr Leu His Asn Glu Phe As |
#p Thr Ile Val Leu |
35 |
# 40 |
# 45 |
Pro Val Leu Tyr Leu Ile Ile Phe Val Ala Se |
#r Ile Leu Leu Asn |
50 |
# 55 |
# 60 |
Gly Leu Ala Val Trp Ile Phe Phe His Ile Ar |
#g Asn Lys Thr Ser |
65 |
# 70 |
# 75 |
Phe Ile Phe Tyr Leu Lys Asn Ile Val Val Al |
#a Asp Leu Ile Met |
80 |
# 85 |
# 90 |
Thr Leu Thr Phe Pro Phe Arg Ile Val His As |
#p Ala Gly Phe Gly |
95 |
# 100 |
# 105 |
Pro Trp Tyr Phe Lys Phe Ile Leu Cys Arg Ty |
#r Thr Ser Val Leu |
110 |
# 115 |
# 120 |
Phe Tyr Ala Asn Met Tyr Thr Ser Ile Val Ph |
#e Leu Gly Leu Ile |
125 |
# 130 |
# 135 |
Ser Ile Asp Arg Tyr Leu Lys Val Val Lys Pr |
#o Phe Gly Asp Ser |
140 |
# 145 |
# 150 |
Arg Met Tyr Ser Ile Thr Phe Thr Lys Val Le |
#u Ser Val Cys Val |
155 |
# 160 |
# 165 |
Trp Val Ile Met Ala Val Leu Ser Leu Pro As |
#n Ile Ile Leu Thr |
170 |
# 175 |
# 180 |
Asn Gly Gln Pro Thr Glu Asp Asn Ile His As |
#p Cys Ser Lys Leu |
185 |
# 190 |
# 195 |
Lys Ser Pro Leu Gly Val Lys Trp His Thr Al |
#a Val Thr Tyr Val |
200 |
# 205 |
# 210 |
Asn Ser Cys Leu Phe Val Ala Val Leu Val Il |
#e Leu Ile Gly Cys |
215 |
# 220 |
# 225 |
Tyr Ile Ala Ile Ser Arg Tyr Ile His Lys Se |
#r Ser Arg Gln Phe |
230 |
# 235 |
# 240 |
Ile Ser Gln Ser Ser Arg Lys Arg Lys His As |
#n Gln Ser Ile Arg |
245 |
# 250 |
# 255 |
Val Val Val Ala Val Tyr Phe Thr Cys Phe Le |
#u Pro Tyr His Leu |
260 |
# 265 |
# 270 |
Cys Arg Met Pro Ser Thr Phe Ser His Leu As |
#p Arg Leu Leu Asp |
275 |
# 280 |
# 285 |
Glu Ser Ala Gln Lys Ile Leu Tyr Tyr Cys Ly |
#s Glu Ile Thr Leu |
290 |
# 295 |
# 300 |
Phe Leu Ser Ala Cys Asn Val Cys Leu Asp Pr |
#o Ile Ile Tyr Phe |
305 |
# 310 |
# 315 |
Phe Met Cys Arg Ser Phe Ser Arg Trp Leu Ph |
#e Lys Lys Ser Asn |
320 |
# 325 |
# 330 |
Ile Arg Pro Arg Ser Glu Ser Ile Arg Ser Le |
#u Gln Ser Val Arg |
335 |
# 340 |
# 345 |
Arg Ser Glu Val Arg Ile Tyr Tyr Asp Tyr Th |
#r Asp Val |
350 |
# 355 |
<210> SEQ ID NO 23 |
<211> LENGTH: 5933 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 474630.4 |
<221> NAME/KEY: unsure |
<222> LOCATION: 2373-2407 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 23 |
caggacgggc gcacagcagc agccgaggct ggccgggaga gggaggaaga gg |
#atggcagg 60 |
gccacgcccc agcccatggg ccaggctgct cctggcagcc ttgatcagcg tc |
#agcctctc 120 |
tgggaccttg gcaactgacc actgcccacc ttcagggctg gaaaacttga gg |
#ctccaagc 180 |
tcttcagcct agagaagctt gagccctgac cacggggcct gagaatagga gc |
#gaaggagg 240 |
ctgtgtctag aggaaagagg agacacccac ccaggactga ggcacccaga gg |
#atgcactg 300 |
aggccccaga gcaaaccgct gcaagaaggc cccagtgaag agctgcacgg ag |
#tgtgtccg 360 |
tgtggataag gactgcgcct actgcacaga cgagatgttc agggaccggc gc |
#tgcaacac 420 |
ccaggcggag ctgctggccg cgggctgcca gcgggagagc atcgtggtca tg |
#gagagcag 480 |
cttccaaatc acagaggaga cccagattga caccaccctg cggcgcagcc ag |
#atgtcccc 540 |
ccaaggcctg cgggtccgtc tgcggcccgg tgaggagcgg cattttgagc tg |
#gaggtgtt 600 |
tgagccactg gagagccccg tggacctgta catcctcatg gacttctcca ac |
#tccatgtc 660 |
cgatgatctg gacaacctca agaagatggg gcagaacctg gctcgggtcc tg |
#agccagct 720 |
caccagcgac tacactattg gatttggcaa gtttgtggac aaagtcagcg tc |
#ccgcagac 780 |
ggacatgagg cctgagaagc tgaaggagcc ttggcccaac agtgaccccc cc |
#ttctcctt 840 |
caagaacgtc atcagcctga cagaagatgt ggatgagttc cggaataaac tg |
#cagggaga 900 |
gcggatctca ggcaacctgg atgctcctga gggcggcttc gatgccatcc tg |
#cagacagc 960 |
tgtgtgcacg agggacattg gctggcgccc ggacagcacc cacctgctgg tc |
#ttctccac 1020 |
cgagtcagcc ttccactatg aggctgatgg cgccaacgtg ctggctggca tc |
#atgagccg 1080 |
caacgatgaa cggtgccacc tggacaccac gggcacctac acccagtaca gg |
#acacagga 1140 |
ctacccgtcg gtgcccaccc tggtgcgcct gctcgccaag cacaacatca tc |
#cccatctt 1200 |
tgcttgtcac caactactcc tatagctact acgagaagct tcacacctat tt |
#ccctgtct 1260 |
cctcactggg ggtgctgcag gaggactcgt ccaacatcgt ggagctgctg ga |
#ggaggcct 1320 |
tcaatcggat ccgctccaac ctggacatcc gggccctaga cagcccccga gg |
#ccttcgga 1380 |
cagaggtcac ctccaagatg ttccagaaga cgaggactgg gtcctttcac at |
#ccggcggg 1440 |
gggaagtggg tatataccag gtgcagctgc gggcccttga gcacgtggat gg |
#gacgcacg 1500 |
tgtgccagct gccggaggac cagaagggca acatccatct gaaaccttcc tt |
#ctccgacg 1560 |
gcctcaagat ggacgcgggc atcatctgtg atgtgtgcac ctgcgagctg ca |
#aaaagagg 1620 |
tgcggtcagc tcgctgcagc ttcaacggag acttcgtgtg cggacagtgt gt |
#gtgcagcg 1680 |
agggctggag tggccagacc tgcaactgct ccaccggctc tctgagtgac at |
#tcagccct 1740 |
gcctgcggga gggcgaggac aagccgtgct ccggccgtgg ggagtgccag tg |
#cgggcact 1800 |
gtgtgtgcta cggcgaaggc cgctacgagg gtcagttctg cgagtatgac aa |
#cttccagt 1860 |
gtccccgcac ttccgggttc ctgtgcaatg accgaggacg ctgctccatg gg |
#ccagtgtg 1920 |
tgtgtgagcc tggttggaca ggcccaagct gtgactgtcc cctcagcaat gc |
#cacctgca 1980 |
tcgacagcaa tgggggcatc tgtaatggac gtggccactg tgagtgtggc cg |
#ctgccact 2040 |
gccaccagca gtcgctctac acggacacca tctgcgagat caactactcg gc |
#gatccacc 2100 |
cgggcctctg cgaggaccta cgctcctgcg tgcagtgcca ggcgtggggc ac |
#cggcgaga 2160 |
agaaggggcg cacgtgtgag gaatgcaact tcaaggtcaa gatggtggac ga |
#gcttaaga 2220 |
gagccgagga ggtggtggtg cgctgctcct tccgggacga ggatgacgac tg |
#cacctaca 2280 |
gctacaccat ggaaggtgac ggcgcccctg ggcccaacag cactgtcctg gt |
#gcacaaga 2340 |
agaaggactg ccctccgggc tccttctggt ggnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 2400 |
nnnnnnnggc cctgctactg ctgctatgct ggaagtactg tgcctgctgc aa |
#ggcctgcc 2460 |
tggcacttct cccgtgctgc aaccgaggtc acatggtggg ctttaaggaa ga |
#ccactaca 2520 |
tgctgcggga gaacctgatg gcctctgacc acttggacac gcccatgctg cg |
#cagcggga 2580 |
acctcaaggg ccgtgacgtg gtccgctgga aggtcaccaa caacatgcag cg |
#gcctggct 2640 |
ttgccactca tgccgccagc atcaacccca cagagctggt gccctacggg ct |
#gtccttgc 2700 |
gcctggcccg cctttgcacc gagaacctgc tgaagcctga cactcgggag tg |
#cgcccagc 2760 |
tgcgccagga ggtggaggag aacctgaacg aggtctacag gcagatctcc gg |
#tgtacaca 2820 |
agctccagca gaccaagttc cggcagcagc ccaatgccgg gaaaaagcaa ga |
#ccacacca 2880 |
ttgtggacac agtgctgatg gcgccccgct cggccaagcc ggccctgctg aa |
#gcttacag 2940 |
agaagcaggt ggaacagagg gccttccacg acctcaaggt ggcccccggc ta |
#ctacaccc 3000 |
tcactgcaga ccaggacgcc cggggcatgg tggagttcca ggagggcgtg ga |
#gctggtgg 3060 |
acgtacgggt gcccctcttt atccggcctg aggatgacga cgagaagcag ct |
#gctggtgg 3120 |
aggccatcga cgtgcccgca ggcactgcca ccctcggccg ccgcctggta aa |
#catcacca 3180 |
tcatcaagga gcaagccaga gacgtggtgt cctttgagca gcctgagttc tc |
#ggtcagcc 3240 |
gcggggacca ggtggcccgc atccctgtca tccggcgtgt cctggacggc gg |
#gaagtccc 3300 |
aggtctccta ccgcacacag gatggcaccg cgcagggcaa ccgggactac at |
#ccccgtgg 3360 |
agggtgagct gctgttccag cctggggagg cctggaaaga gctgcaggtg aa |
#gctcctgg 3420 |
agctgcaaga agttgactcc ctcctgcggg gccgccaggt ccgccgtttc ca |
#cgtccagc 3480 |
tcagcaaccc taagtttggg gcccacctgg gccagcccca ctccaccacc at |
#catcatca 3540 |
gggacccaga tgaactggac cggagcttca cgagtcagat gttgtcatca ca |
#gccacccc 3600 |
ctcacggcga cctgggcgcc ccgcagaacc ccaatgctaa ggccgctggg tc |
#caggaaga 3660 |
tccatttcaa ctggctgccc ccttctggca agccaatggg gtacagggta aa |
#gtactgga 3720 |
ttcagggtga ctccgaatcc gaagcccacc tgctcgacag caaggtgccc tc |
#agtggagc 3780 |
tcaccaacct gtacccgtat tgcgactatg agatgaaggt gtgcgcctac gg |
#ggctcagg 3840 |
gcgagggacc ctacagctcc ctggtgtcct gccgcaccca ccaggaagtg cc |
#cagcgagc 3900 |
cagggcgtct ggccttcaat gtcgtctcct ccacggtgac ccagctgagc tg |
#ggctgagc 3960 |
cggctgagac caacggtgag atcacagcct acgaggtctg ctatggcctg gt |
#caacgatg 4020 |
acaaccgacc tattgggccc atgaagaaag tgctggttga caaccctaag aa |
#ccggatgc 4080 |
tgcttattga gaaccttcgg gagtcccagc cctaccgcta cacggtgaag gc |
#gcgcaacg 4140 |
gggccggctg ggggcctgag cgggaggcca tcatcaacct ggccacccag cc |
#caagaggc 4200 |
ccatgtccat ccccatcatc cctgacatcc ctatcgtgga cgcccagagc gg |
#ggaggact 4260 |
acgacagctt ccttatgtac agcgatgacg ttctacgctc tccatcgggc ag |
#ccagaggc 4320 |
ccagcgtctc cgatgacact gagcacctgg tgaatggccg gatggacttt gc |
#cttcccgg 4380 |
gcagcaccaa ctccctgcac aggatgacca cgaccagtgc tgctgcctat gg |
#cacccacc 4440 |
tgagcccaca cgtgccccac cgcgtgctaa gcacatcctc caccctcaca cg |
#ggactaca 4500 |
actcactgac ccgctcagaa cactcacact cgaccacact gcccagggac ta |
#ctccaccc 4560 |
tcacctccgt ctcctcccac ggcctccctc ccatctggga acacgggagg ag |
#caggcttc 4620 |
cgctgtcctg ggccctgggg tcccggagtc gggctcagat gaaagggttc cc |
#cccttcca 4680 |
ggggcccacg agactctata atcctggctg ggaggccagc agcgccctcc tg |
#gggcccag 4740 |
actctcgcct gactgctggt gtgcccgaca cgcccacccg cctggtgttc tc |
#tgccctgg 4800 |
ggcccacatc tctcagagtg agctggcagg agccgcggtg cgagcggccg ct |
#gcagggct 4860 |
acagtgtgga gtaccagctg ctgaacggcg gtgagctgca tcggctcaac at |
#ccccaacc 4920 |
ctgcccagac ctcggtggtg gtggaagacc tcctgcccaa ccactcctac gt |
#gttccgcg 4980 |
tgcgggccca gagccaggaa ggctggggcc gagagcgtga gggtgtcatc ac |
#cattgaat 5040 |
cccaggtgca cccgcagagc ccactgtgtc ccctgccagg ctccgccttc ac |
#tttgagca 5100 |
ctcccagtgc cccaggcccg ctggtgttca ctgccctgag cccagactcg ct |
#gcagctga 5160 |
gctgggagcg gccacggagg cccaatgggg atatcgtcgg ctacctggtg ac |
#ctgtgaga 5220 |
tggcccaagg aggagggcca gccaccgcat tccgggtgga tggagacagc cc |
#cgagagcc 5280 |
ggctgaccgt gccgggcctc agcgagaacg tgccctacaa gttcaaggtg ca |
#ggccagga 5340 |
ccactgaggg cttcgggcca gagcgcgagg gcatcatcac catagagtcc ca |
#ggatggag 5400 |
gacccttccc gcagctgggc agccgtgccg ggctcttcca gcacccgctg ca |
#aagcgagt 5460 |
acagcagcat caccaccacc cacaccagcg ccaccgagcc cttcctagtg ga |
#tgggccga 5520 |
ccctgggggc ccagcacctg gaggcaggcg gctccctcac ccggcatgtg ac |
#ccaggagt 5580 |
ttgtgagccg gacactgacc accagcggaa cccttagcac ccacatggac ca |
#acagttct 5640 |
tccaaacttg accgcaccct gccccacccc cgccatgtcc cactaggcgt cc |
#tcccgact 5700 |
cctctcccgg agcctcctca gctactccat ccttgcaccc ctgggggccc ag |
#cccacccg 5760 |
catgcacaga gcaggggcta ggtgtctcct gggaggcatg aagggggcaa gg |
#tccgtcct 5820 |
ctgtgggccc aaacctattt gtaaccaaag agctgggagc agcacaagga cc |
#cagccttt 5880 |
gttctgcact taataaatgg ttttgctact gctaaaaaaa aaaaaaaagc gg |
#c 5933 |
<210> SEQ ID NO 24 |
<211> LENGTH: 573 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 093496.1 |
<400> SEQUENCE: 24 |
aaaagaaaag gaaaagaaaa gtgtggactt ggatgaaatc ttcaggtcca ac |
#atttggga 60 |
ttctaagttc caaagaccag gttggaatca tttctaagaa ggttctggtg gt |
#tacacatt 120 |
cctggagtcc tctactcccc actccctgcc aagctgggcc tgtggataga tg |
#tgatccct 180 |
cagcctccca gcttcaaaca cctgccaatg gttgacgtga acaacatggg ct |
#cagtctca 240 |
gctaggatca cacccaaagc ccagcaccca gtaaggtgca ggagccatcc at |
#ttccctga 300 |
gcagagcaga ttaggctgag gaaagcagca gccatgcctt tgcacaatgc at |
#ttctaggg 360 |
cattcttccc acacataatc tcctctgctc attgtcctgt gaagaaactg tg |
#gcctggag 420 |
aggttgagcc actgtgccaa ggccaccaat gcaggtggta tgtgggtggg tg |
#ggggcctg 480 |
gggtggggag cacggcccag gcagggtctg tgctgaccgc ccttgtgttt gg |
#aacctaga 540 |
catcccccct tgcctggatc tgagctgacc gaa |
# |
# 573 |
<210> SEQ ID NO 25 |
<211> LENGTH: 269 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1231633.4 |
<400> SEQUENCE: 25 |
accactgaag atcctggtgt cgccatgggc cgccgccccg cccgttgtta cc |
#ggtattgt 60 |
aagaacaagc cgtacccaaa gtctcgcttc tgccgaggtg tccctgccct gg |
#aggctgcc 120 |
cgaatttgtg ccaataagta catggtaaaa agttgtggca aagatggctt cc |
#atatccgg 180 |
gtgcggctcc accccttcca cgtcatccgc atcaacaaga tgttgtcctg tg |
#ctggggct 240 |
gacaggctcc aaacaggcat gcgaggtgc |
# |
# 269 |
<210> SEQ ID NO 26 |
<211> LENGTH: 1743 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 988891.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 1562 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 26 |
ggtattcaac agagaaattt ctcagcctcc tacttctgct tttgaaagct at |
#aaaaacag 60 |
cgagggagaa actggcagat accaaacctc ttcgaggcac aagggcacaa ca |
#ggctgctc 120 |
tgggattctc ttcagccaat cttcattgct caagtgtctg aagcagccat gg |
#cagaagta 180 |
cctgagctcg ccagtgaaat gatggcttat tacagtggca atgaggatga ct |
#tgttcttt 240 |
gaagctgatg gccctaaaca gatgaagtgc tccttccagg acctggacct ct |
#gccctctg 300 |
gatggcggca tccagctacg aatctccgac caccactaca gcaagggctt ca |
#ggcaggcc 360 |
gcgtcagttg ttgtggccat ggacaagctg aggaagatgc tggttccctg cc |
#cacagacc 420 |
ttccaggaga atgacctgag caccttcttt cccttcatct ttgaagaaga ac |
#ctatcttc 480 |
ttcgacacat gggataacga ggcttatgtg cacgatgcac ctgtacgatc ac |
#tgaactgc 540 |
acgctccggg actcacagca aaaaagcttg gtgatgtctg gtccatatga ac |
#tgaaagct 600 |
ctccacctcc agggacagga tatggagcaa caagtggtgt tctccatgtc ct |
#ttgtacaa 660 |
ggagaagaaa gtaatgacaa aatacctgtg gccttgggcc tcaaggaaaa ga |
#atctgtac 720 |
ctgtcctgcg tgttgaaaga tgataagccc actctacagc tggagagtgt ag |
#atcccaaa 780 |
aattacccaa agaagaagat ggaaaagcga tttgtcttca acaagataga aa |
#tcaataac 840 |
aagctggaat ttgagtctgc ccagttcccc aactggtaca tcagcacctc tc |
#aagcagaa 900 |
aacatgcccg tcttcctggg agggaccaaa ggcggccagg atataactga ct |
#tcaccatg 960 |
caatttgtgt cttcctaaag agagctgtac ccagagagtc ctgtgctgaa tg |
#tggactca 1020 |
atccctaggg ctggcagaaa gggaacagaa aggtttttga gtacggctat ag |
#cctggact 1080 |
ttcctgttgt ctacaccaat gcccaactgc ctgccttagg gtagtgctaa ga |
#ggatctcc 1140 |
tgtccatcag ccaggacagt cagctctctc ctttcagggc caatccccag cc |
#cttttgtt 1200 |
gagccaggcc tctctcacct ctcctactca cttaaagccc gcctgacaga aa |
#ccacggcc 1260 |
acatttggtt ctaagaaacc ctctgtcatt cgctcccaca ttctgatgag ca |
#accgcttc 1320 |
cctatttatt tatttatttg tttgtttgtt ttattcattg gtctaattta tt |
#caaagggg 1380 |
gcaagaagta gcagtgtctg taaaagagcc tagtttttaa tagctatgga at |
#caattcaa 1440 |
tttggactgg tgtgctctct ttaaatcaag tcctttaatt aagactgaaa at |
#atataagc 1500 |
tcagattatt taaatgggaa tatttataaa tgagcaaata tcatactgtt ca |
#atggttct 1560 |
gngcttatat attttcagtc ttaattaaag gactggtgtg ctctctttaa at |
#caagtcct 1620 |
ttaattaaga ctgaaaatat ataagctcag attatttaaa tgggaatatt ta |
#taaatgag 1680 |
caaatatcat actgttcaat ggttcttcag tgaagtttat ttcagaaaaa aa |
#aaaaaaag 1740 |
ggg |
# |
# |
# 1743 |
<210> SEQ ID NO 27 |
<211> LENGTH: 391 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 988891.15 |
<221> NAME/KEY: unsure |
<222> LOCATION: 14 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 27 |
attttgctag agantgttct aaaaccattg cactttactt acaactcctg tc |
#cggaaggt 60 |
gcgaggcaac aagtttttac agccttcaca gaggagtttc tggcagcacc tg |
#tacgatca 120 |
ctgaactgca cgctccggga ctcacagcaa aaaagcttgg tgatgtctgg tc |
#catatgaa 180 |
ctgaaagctc tccacctcca gggacaggat atggagcaac aagtggtgtt ct |
#ccatgtcc 240 |
tttgtacaag gagaagaaag taatgacaaa atacctgtgg ccttgggcct tc |
#aaggaaaa 300 |
gaatctgtac ctgtcctgcg tgttgaaaga tggataaagc ccacttctac ag |
#ctgggaga 360 |
gtgttaggat ccccaaaaaa atttacccca a |
# |
# 391 |
<210> SEQ ID NO 28 |
<211> LENGTH: 7045 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3774181CB1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 103, 6960 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 28 |
agtttgctcg gaattcggct cgagcagcac ataaaggaga acacagcgta tt |
#tcgagttt 60 |
ttcaatgatg ccaaagaagc tactgattac ttaaggaatc tanaagatgc ca |
#ttcagcgg 120 |
aagtacagct gtgatagatc aagcagcatt cacaagctag aagaccttgt tc |
#aggaatca 180 |
atggaagaga aagaagaact tctgcagtac aaaagcacta tagcaaacct aa |
#tgggaaaa 240 |
gcaaaaacaa taattcaact gaagccaagg aattctgact gtccactcaa aa |
#cttctatt 300 |
ccgatcaaag ctatctgtga ctacagacaa attgagataa ccatttacaa ag |
#acgatgaa 360 |
tgtgttttgg cgaataactc tcatcgtgct aaatggaagg tcattagtcc ta |
#ctgggaat 420 |
gaggctatgg tcccatctgt gtgcttcacc gttcctccac caaacaaaga ag |
#cggtggac 480 |
cttgccaaca gaattgagca acagtatcag aatgtcctga ctctttggca tg |
#agtctcac 540 |
ataaacatga agagtgtagt atcctggcat tatctcatca atgaaattga ta |
#gaattcga 600 |
gctagcaatg tggcttcaat aaagacaatg ctacctggtg aacatcagca ag |
#ttctaagt 660 |
aatctacaat ctcgttttga agattttctg gaagatagcc aggaatccca ag |
#tcttttca 720 |
ggctcagata taacacaact ggaaaaggag gttaatgtat gtaagcagta tt |
#atcaagaa 780 |
cttcttaaat ctgcagaaag agaggagcaa gaggaatcag tttataatct ct |
#acatctct 840 |
gaagttcgaa acattagact tcggttagag aactgtgaag atcggctgat ta |
#gacagatt 900 |
cgaactcccc tggaaagaga tgatttgcat gaaagtgtgt tcagaatcac ag |
#aacaggag 960 |
aaactaaaga aagagctgga acgacttaaa gatgatttgg gaacaatcac aa |
#ataagtgt 1020 |
gaggagtttt tcagtcaagc agcagcctct tcatcagtcc ctaccctacg at |
#cagagctt 1080 |
aatgtggtcc ttcagaacat gaaccaagtc tattctatgt cttccactta ca |
#tagataag 1140 |
ttgaaaactg ttaacttggt gttaaaaaac actcaagctg cagaagccct cg |
#taaaactc 1200 |
tatgaaacta aactgtgtga agaagaagca gttatagctg acaagaataa ta |
#ttgagaat 1260 |
ctaataagta ctttaaagca atggagatct gaagtagatg aaaagagaca gg |
#tattccat 1320 |
gccttagagg atgagttgca gaaagctaaa gccatcagtg atgaaatgtt ta |
#aaacgtat 1380 |
aaagaacggg accttgattt tgactggcac aaagaaaaag cagatcaatt ag |
#ttgaaagg 1440 |
tggcaaaatg ttcatgtgca gattgacaac aggttacggg acttagaggg ca |
#ttggcaaa 1500 |
tcactgaagt actacagaga cacttaccat cctttagatg attggatcca gc |
#aggttgaa 1560 |
actactcaga gaaagattca ggaaaatcag cctgaaaata gtaaaaccct ag |
#ccacacag 1620 |
ttgaatcaac agaagatgct ggtgtccgaa atagaaatga aacagagcaa aa |
#tggacgag 1680 |
tgtcaaaaat atgcagaaca gtactcagct acagtgaagg actatgaatt ac |
#aaacaatg 1740 |
acctaccggg ccatggtaga ttcacaacaa aaatctccag tgaaacgccg aa |
#gaatgcag 1800 |
agttcagcag atctcattat tcaagagttc atggacctaa ggactcgata ta |
#ctgccctg 1860 |
gtcactctca tgacacaata tattaaattt gctggtgatt cattgaagag gc |
#tggaagag 1920 |
gaggagatta aaaggtgtaa ggagacttct gaacatgggg catattcaga tc |
#tgcttcag 1980 |
cgtcagaagg caacagtgct tgagaatagc aaacttacag gaaagataag tg |
#agttggaa 2040 |
agaatggtag ctgaactaaa gaaacaaaag tcccgagtag aggaagaact tc |
#cgaaggtc 2100 |
agggaggctg cagaaaatga attgagaaag cagcagagaa atgtagaaga ta |
#tctctctg 2160 |
cagaagataa gggctgaaag tgaagccaag cagtaccgca gggaacttga aa |
#ccattgtg 2220 |
agagagaagg aagccgctga aagagaactg gagcgggtga ggcagctcac ca |
#tagaggcc 2280 |
gaggctaaaa gagctgccgt ggaagagaac ctcctgaatt ttcgcaatca gt |
#tggaggaa 2340 |
aacaccttta ccagacgaac actggaagat catcttaaaa gaaaagattt aa |
#gtctcaat 2400 |
gatttggagc aacaaaaaaa taaattaatg gaagaattaa gaagaaagag ag |
#acaatgag 2460 |
gaagaactct tgaagctgat aaagcagatg gaaaaagacc ttgcatttca ga |
#aacaggta 2520 |
gcagagaaac agttgaaaga aaagcagaaa attgaattgg aagcaagaag aa |
#aaataact 2580 |
gaaattcagt atacatgtag agaaaatgca ttgccagtgt gtccgatcac ac |
#aggctaca 2640 |
tcatgcaggg cagtaacggg tctccagcaa gaacatgaca agcagaaagc ag |
#aagaactc 2700 |
aaacagcagg tagatgaact aacagctgcc aatagaaagg ctgaacaaga ca |
#tgagagag 2760 |
ctgacatatg aacttaatgc cctccagctt gaaaaaacgt catctgagga aa |
#aggctcgt 2820 |
ttgctaaaag ataaactaga tgaaacaaat aatacactca gatgccttaa gt |
#tggagctg 2880 |
gaaaggaagg atcaggcgga gaaagggtat tctcaacaac tcagagagct tg |
#gtaggcaa 2940 |
ttgaatcaaa ccacaggtaa agctgaagaa gccatgcaag aagctagtga tc |
#tcaagaaa 3000 |
ataaagcgca attatcagtt agaattagaa tctcttaatc atgaaaaagg ga |
#aactacaa 3060 |
agagaagtag acagaatcac aagggcacat gctgtagctg agaagaatat tc |
#agcattta 3120 |
aattcacaaa ttcattcttt tcgagatgag aaagaattag aaagactaca aa |
#tctgccag 3180 |
agaaaatcag atcatctaaa agaacaattt gagaaaagcc atgagcagtt gc |
#ttcaaaat 3240 |
atcaaagctg aaaaagaaaa taatgataaa atccaaaggc tcaatgaaga at |
#tggagaaa 3300 |
agtaatgagt gtgcagagat gctaaaacaa aaagtagagg agcttactag gc |
#agaataat 3360 |
gaaaccaaat taatgatgca gagaattcag gcagaatcag agaatatagt tt |
#tagagaaa 3420 |
caaactatcc agcaaagatg tgaagcactg aaaattcagg cagatggttt ta |
#aagatcag 3480 |
ctacgcagca caaatgaaca cttgcataaa cagacaaaaa cagagcagga tt |
#ttcaaaga 3540 |
aaaattaaat gcctagaaga agacctggcg aaaagtcaaa atttggtaag tg |
#aatttaag 3600 |
caaaagtgtg accaacagaa cattatcatc cagaatacca agaaagaagt ta |
#gaaatctg 3660 |
aatgcggaac tgaatgcttc caaagaagag aagcgacgcg gggagcagaa ag |
#ttcagcta 3720 |
caacaagctc aggtgcaaga gttaaataac aggttgaaaa aagtacaaga cg |
#aattacac 3780 |
ttaaagacca tagaggagca gatgacccac agaaagatgg ttctgtttca gg |
#aagaatct 3840 |
ggtaaattca aacaatcagc agaggagttt cggaagaaga tggaaaaatt aa |
#tggagtcc 3900 |
aaagtcatca ctgaaaatga tatttcaggc attaggcttg actttgtgtc tc |
#ttcaacaa 3960 |
gaaaactcta gagcccaaga aaatgctaag ctttgtgaaa caaacattaa ag |
#aacttgaa 4020 |
agacagcttc aacagtatcg tgaacaaatg cagcaagggc agcacatgga ag |
#caaatcat 4080 |
taccaaaaat gtcagaaact tgaggatgag ctgatagccc agaagcgtga gg |
#ttgaaaac 4140 |
ctgaagcaaa aaatggacca acagatcaaa gagcatgaac atcaattagt tt |
#tgctccag 4200 |
tgtgaaattc aaaaaaagag cacagccaaa gactgtacct tcaaaccaga tt |
#ttgagatg 4260 |
acagtgaagg agtgccagca ctctggagag ctgtcctcta gaaacactgg ac |
#accttcac 4320 |
ccaacaccca gatcccctct gttgagatgg actcaagaac cacagccatt gg |
#aagagaag 4380 |
tggcagcatc gggttgttga acagataccc aaagaagtcc aattccagcc ac |
#caggggct 4440 |
ccactcgaga aagagaaaag ccagcagtgt tactctgagt acttttctca ga |
#caagcacc 4500 |
gagttacaga taacttttga tgagacaaac cccattacaa gactgtctga aa |
#ttgagaag 4560 |
ataagagacc aagccctgaa caattctaga ccacctgtta ggtatcaaga ta |
#acgcatgt 4620 |
gaaatggaac tggtgaaggt tttgacaccc ttagagatag ctaagaacaa gc |
#agtatgat 4680 |
atgcatacag aagtcacaac attaaaacaa gaaaagaacc cagttcccag tg |
#ctgaagaa 4740 |
tggatgcttg aagggtgcag agcatctggt ggactcaaga aaggggattt cc |
#ttaagaag 4800 |
ggcttagaac cagagacctt ccagaacttt gatggtgatc atgcatgttc ag |
#tcagggat 4860 |
gatgaattta aattccaagg gcttaggcac actgtgactg ccaggcagtt gg |
#tggaagct 4920 |
aagcttctgg acatgagaac aattgagcag ctgcgactcg gtcttaagac tg |
#ttgaagaa 4980 |
gttcagaaaa ctcttaacaa gtttctgacg aaagccacct caattgcagg gc |
#tttaccta 5040 |
gaatctacaa aagaaaagat ttcatttgcc tcagcggccg agagaatcat aa |
#tagacaaa 5100 |
atggtggctt tggcattttt agaagctcag gctgcaacag gttttataat tg |
#atcccatt 5160 |
tcaggtcaga catattctgt tgaagatgca gttcttaaag gagttgttga cc |
#ccgaattc 5220 |
agaattaggc ttcttgaggc agagaaggca gctgtgggat attcttattc tt |
#ctaagaca 5280 |
ttgtcagtgt ttcaagctat ggaaaataga atgcttgaca gacaaaaagg ta |
#aacatatc 5340 |
ttggaagccc agattgccag tgggggtgtc attgaccctg tgagaggcat tc |
#gtgttcct 5400 |
ccagaaattg ctctgcagca ggggttgttg aataatgcca tcttacagtt tt |
#tacatgag 5460 |
ccatccagca acacaagagt tttccctaat cccaataaca agcaagctct gt |
#attactca 5520 |
gaattactgc gaatgtgtgt atttgatgta gagtcccaat gctttctgtt tc |
#catttggg 5580 |
gagaggaaca tttccaatct caatgtcaag aaaacacata gaatttctgt ag |
#tagatact 5640 |
aaaacaggat cagaattgac cgtgtatgag gctttccaga gaaacctgat tg |
#agaaaagt 5700 |
atatatcttg aactttcagg gcagcaatat cagtggaagg aagctatgtt tt |
#ttgaatcc 5760 |
tatgggcatt cttctcatat gctgactgat actaaaacag gattacactt ca |
#atattaat 5820 |
gaggctatag agcagggaac aattgacaaa gccttggtca aaaagtatca gg |
#aaggcctc 5880 |
atcacactta cagaacttgc tgattctttg ctgagccggt tagtccccaa ga |
#aagatttg 5940 |
cacagtcctg ttgcagggta ttggctgact gctagtgggg aaaggatctc tg |
#tactaaaa 6000 |
gcctcccgta gaaatttggt tgatcggatt actgccctcc gatgccttga ag |
#cccaagtc 6060 |
agtacagggg gcataattga tcctcttact ggcaaaaagt accgggtggc cg |
#aagctttg 6120 |
catagaggcc tggttgatga ggggtttgcc cagcagctgc gacagtgtga at |
#tagtaatc 6180 |
acagggattg gccatcccat cactaacaaa atgatgtcag tggtggaagc tg |
#tgaatgca 6240 |
aatattataa ataaggaaat gggaatccga tgtttggaat ttcagtactt ga |
#caggaggg 6300 |
ttgatagagc cacaggttca ctctcggtta tcaatagaag aggctctcca ag |
#taggtatt 6360 |
atagatgtcc tcattgccac aaaactcaaa gatcaaaagt catatgtcag aa |
#atataata 6420 |
tgccctcaga caaaaagaaa gttgacatat aaagaagcct tagaaaaagc tg |
#attttgat 6480 |
ttccacacag gacttaaact gttagaagta tctgagcccc tgatgacagg aa |
#tttctagc 6540 |
ctctactatt cttcctaatg ggacatgttt aaataactgt gcaaggggtg at |
#gcaggctg 6600 |
gttcatgcca ctttttcaga gtatgatgat atcggctaca tatgcagtct gt |
#gaattatg 6660 |
taacatactc tatttcttga gggctgcaaa ttgctaagtg ctcaaaatag ag |
#taagtttt 6720 |
aaattgaaaa ttacataaga tttaatgccc ttcaaatggt ttcatttagc ct |
#tgagaatg 6780 |
gttttttgaa acttggccac actaaaatgt tttttttttt ttacgtagaa tg |
#tgggataa 6840 |
acttgatgaa ctccaagttc acagtgtcat ttcttcagaa ctccccttca tt |
#gaatagtg 6900 |
atcatttatt aaatgataaa ttgcactcgc tgaaagagca cagtcatgag gc |
#acctggan 6960 |
atccaagggg aaggtataaa ttccgttcca acggccttca ggtggcgtgt tt |
#tgggttgc 7020 |
ttccaaaatg gaaagttttg ccttt |
# |
# 7045 |
<210> SEQ ID NO 29 |
<211> LENGTH: 2125 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3774181CD1 |
<400> SEQUENCE: 29 |
Met Glu Glu Lys Glu Glu Leu Leu Gln Tyr Ly |
#s Ser Thr Ile Ala |
1 5 |
# 10 |
# 15 |
Asn Leu Met Gly Lys Ala Lys Thr Ile Ile Gl |
#n Leu Lys Pro Arg |
20 |
# 25 |
# 30 |
Asn Ser Asp Cys Pro Leu Lys Thr Ser Ile Pr |
#o Ile Lys Ala Ile |
35 |
# 40 |
# 45 |
Cys Asp Tyr Arg Gln Ile Glu Ile Thr Ile Ty |
#r Lys Asp Asp Glu |
50 |
# 55 |
# 60 |
Cys Val Leu Ala Asn Asn Ser His Arg Ala Ly |
#s Trp Lys Val Ile |
65 |
# 70 |
# 75 |
Ser Pro Thr Gly Asn Glu Ala Met Val Pro Se |
#r Val Cys Phe Thr |
80 |
# 85 |
# 90 |
Val Pro Pro Pro Asn Lys Glu Ala Val Asp Le |
#u Ala Asn Arg Ile |
95 |
# 100 |
# 105 |
Glu Gln Gln Tyr Gln Asn Val Leu Thr Leu Tr |
#p His Glu Ser His |
110 |
# 115 |
# 120 |
Ile Asn Met Lys Ser Val Val Ser Trp His Ty |
#r Leu Ile Asn Glu |
125 |
# 130 |
# 135 |
Ile Asp Arg Ile Arg Ala Ser Asn Val Ala Se |
#r Ile Lys Thr Met |
140 |
# 145 |
# 150 |
Leu Pro Gly Glu His Gln Gln Val Leu Ser As |
#n Leu Gln Ser Arg |
155 |
# 160 |
# 165 |
Phe Glu Asp Phe Leu Glu Asp Ser Gln Glu Se |
#r Gln Val Phe Ser |
170 |
# 175 |
# 180 |
Gly Ser Asp Ile Thr Gln Leu Glu Lys Glu Va |
#l Asn Val Cys Lys |
185 |
# 190 |
# 195 |
Gln Tyr Tyr Gln Glu Leu Leu Lys Ser Ala Gl |
#u Arg Glu Glu Gln |
200 |
# 205 |
# 210 |
Glu Glu Ser Val Tyr Asn Leu Tyr Ile Ser Gl |
#u Val Arg Asn Ile |
215 |
# 220 |
# 225 |
Arg Leu Arg Leu Glu Asn Cys Glu Asp Arg Le |
#u Ile Arg Gln Ile |
230 |
# 235 |
# 240 |
Arg Thr Pro Leu Glu Arg Asp Asp Leu His Gl |
#u Ser Val Phe Arg |
245 |
# 250 |
# 255 |
Ile Thr Glu Gln Glu Lys Leu Lys Lys Glu Le |
#u Glu Arg Leu Lys |
260 |
# 265 |
# 270 |
Asp Asp Leu Gly Thr Ile Thr Asn Lys Cys Gl |
#u Glu Phe Phe Ser |
275 |
# 280 |
# 285 |
Gln Ala Ala Ala Ser Ser Ser Val Pro Thr Le |
#u Arg Ser Glu Leu |
290 |
# 295 |
# 300 |
Asn Val Val Leu Gln Asn Met Asn Gln Val Ty |
#r Ser Met Ser Ser |
305 |
# 310 |
# 315 |
Thr Tyr Ile Asp Lys Leu Lys Thr Val Asn Le |
#u Val Leu Lys Asn |
320 |
# 325 |
# 330 |
Thr Gln Ala Ala Glu Ala Leu Val Lys Leu Ty |
#r Glu Thr Lys Leu |
335 |
# 340 |
# 345 |
Cys Glu Glu Glu Ala Val Ile Ala Asp Lys As |
#n Asn Ile Glu Asn |
350 |
# 355 |
# 360 |
Leu Ile Ser Thr Leu Lys Gln Trp Arg Ser Gl |
#u Val Asp Glu Lys |
365 |
# 370 |
# 375 |
Arg Gln Val Phe His Ala Leu Glu Asp Glu Le |
#u Gln Lys Ala Lys |
380 |
# 385 |
# 390 |
Ala Ile Ser Asp Glu Met Phe Lys Thr Tyr Ly |
#s Glu Arg Asp Leu |
395 |
# 400 |
# 405 |
Asp Phe Asp Trp His Lys Glu Lys Ala Asp Gl |
#n Leu Val Glu Arg |
410 |
# 415 |
# 420 |
Trp Gln Asn Val His Val Gln Ile Asp Asn Ar |
#g Leu Arg Asp Leu |
425 |
# 430 |
# 435 |
Glu Gly Ile Gly Lys Ser Leu Lys Tyr Tyr Ar |
#g Asp Thr Tyr His |
440 |
# 445 |
# 450 |
Pro Leu Asp Asp Trp Ile Gln Gln Val Glu Th |
#r Thr Gln Arg Lys |
455 |
# 460 |
# 465 |
Ile Gln Glu Asn Gln Pro Glu Asn Ser Lys Th |
#r Leu Ala Thr Gln |
470 |
# 475 |
# 480 |
Leu Asn Gln Gln Lys Met Leu Val Ser Glu Il |
#e Glu Met Lys Gln |
485 |
# 490 |
# 495 |
Ser Lys Met Asp Glu Cys Gln Lys Tyr Ala Gl |
#u Gln Tyr Ser Ala |
500 |
# 505 |
# 510 |
Thr Val Lys Asp Tyr Glu Leu Gln Thr Met Th |
#r Tyr Arg Ala Met |
515 |
# 520 |
# 525 |
Val Asp Ser Gln Gln Lys Ser Pro Val Lys Ar |
#g Arg Arg Met Gln |
530 |
# 535 |
# 540 |
Ser Ser Ala Asp Leu Ile Ile Gln Glu Phe Me |
#t Asp Leu Arg Thr |
545 |
# 550 |
# 555 |
Arg Tyr Thr Ala Leu Val Thr Leu Met Thr Gl |
#n Tyr Ile Lys Phe |
560 |
# 565 |
# 570 |
Ala Gly Asp Ser Leu Lys Arg Leu Glu Glu Gl |
#u Glu Ile Lys Arg |
575 |
# 580 |
# 585 |
Cys Lys Glu Thr Ser Glu His Gly Ala Tyr Se |
#r Asp Leu Leu Gln |
590 |
# 595 |
# 600 |
Arg Gln Lys Ala Thr Val Leu Glu Asn Ser Ly |
#s Leu Thr Gly Lys |
605 |
# 610 |
# 615 |
Ile Ser Glu Leu Glu Arg Met Val Ala Glu Le |
#u Lys Lys Gln Lys |
620 |
# 625 |
# 630 |
Ser Arg Val Glu Glu Glu Leu Pro Lys Val Ar |
#g Glu Ala Ala Glu |
635 |
# 640 |
# 645 |
Asn Glu Leu Arg Lys Gln Gln Arg Asn Val Gl |
#u Asp Ile Ser Leu |
650 |
# 655 |
# 660 |
Gln Lys Ile Arg Ala Glu Ser Glu Ala Lys Gl |
#n Tyr Arg Arg Glu |
665 |
# 670 |
# 675 |
Leu Glu Thr Ile Val Arg Glu Lys Glu Ala Al |
#a Glu Arg Glu Leu |
680 |
# 685 |
# 690 |
Glu Arg Val Arg Gln Leu Thr Ile Glu Ala Gl |
#u Ala Lys Arg Ala |
695 |
# 700 |
# 705 |
Ala Val Glu Glu Asn Leu Leu Asn Phe Arg As |
#n Gln Leu Glu Glu |
710 |
# 715 |
# 720 |
Asn Thr Phe Thr Arg Arg Thr Leu Glu Asp Hi |
#s Leu Lys Arg Lys |
725 |
# 730 |
# 735 |
Asp Leu Ser Leu Asn Asp Leu Glu Gln Gln Ly |
#s Asn Lys Leu Met |
740 |
# 745 |
# 750 |
Glu Glu Leu Arg Arg Lys Arg Asp Asn Glu Gl |
#u Glu Leu Leu Lys |
755 |
# 760 |
# 765 |
Leu Ile Lys Gln Met Glu Lys Asp Leu Ala Ph |
#e Gln Lys Gln Val |
770 |
# 775 |
# 780 |
Ala Glu Lys Gln Leu Lys Glu Lys Gln Lys Il |
#e Glu Leu Glu Ala |
785 |
# 790 |
# 795 |
Arg Arg Lys Ile Thr Glu Ile Gln Tyr Thr Cy |
#s Arg Glu Asn Ala |
800 |
# 805 |
# 810 |
Leu Pro Val Cys Pro Ile Thr Gln Ala Thr Se |
#r Cys Arg Ala Val |
815 |
# 820 |
# 825 |
Thr Gly Leu Gln Gln Glu His Asp Lys Gln Ly |
#s Ala Glu Glu Leu |
830 |
# 835 |
# 840 |
Lys Gln Gln Val Asp Glu Leu Thr Ala Ala As |
#n Arg Lys Ala Glu |
845 |
# 850 |
# 855 |
Gln Asp Met Arg Glu Leu Thr Tyr Glu Leu As |
#n Ala Leu Gln Leu |
860 |
# 865 |
# 870 |
Glu Lys Thr Ser Ser Glu Glu Lys Ala Arg Le |
#u Leu Lys Asp Lys |
875 |
# 880 |
# 885 |
Leu Asp Glu Thr Asn Asn Thr Leu Arg Cys Le |
#u Lys Leu Glu Leu |
890 |
# 895 |
# 900 |
Glu Arg Lys Asp Gln Ala Glu Lys Gly Tyr Se |
#r Gln Gln Leu Arg |
905 |
# 910 |
# 915 |
Glu Leu Gly Arg Gln Leu Asn Gln Thr Thr Gl |
#y Lys Ala Glu Glu |
920 |
# 925 |
# 930 |
Ala Met Gln Glu Ala Ser Asp Leu Lys Lys Il |
#e Lys Arg Asn Tyr |
935 |
# 940 |
# 945 |
Gln Leu Glu Leu Glu Ser Leu Asn His Glu Ly |
#s Gly Lys Leu Gln |
950 |
# 955 |
# 960 |
Arg Glu Val Asp Arg Ile Thr Arg Ala His Al |
#a Val Ala Glu Lys |
965 |
# 970 |
# 975 |
Asn Ile Gln His Leu Asn Ser Gln Ile His Se |
#r Phe Arg Asp Glu |
980 |
# 985 |
# 990 |
Lys Glu Leu Glu Arg Leu Gln Ile Cys Gln Ar |
#g Lys Ser Asp His |
995 |
# 1000 |
# 1005 |
Leu Lys Glu Gln Phe Glu Lys Ser His Glu Gl |
#n Leu Leu Gln Asn |
1010 |
# 1015 |
# 1020 |
Ile Lys Ala Glu Lys Glu Asn Asn Asp Lys Il |
#e Gln Arg Leu Asn |
1025 |
# 1030 |
# 1035 |
Glu Glu Leu Glu Lys Ser Asn Glu Cys Ala Gl |
#u Met Leu Lys Gln |
1040 |
# 1045 |
# 1050 |
Lys Val Glu Glu Leu Thr Arg Gln Asn Asn Gl |
#u Thr Lys Leu Met |
1055 |
# 1060 |
# 1065 |
Met Gln Arg Ile Gln Ala Glu Ser Glu Asn Il |
#e Val Leu Glu Lys |
1070 |
# 1075 |
# 1080 |
Gln Thr Ile Gln Gln Arg Cys Glu Ala Leu Ly |
#s Ile Gln Ala Asp |
1085 |
# 1090 |
# 1095 |
Gly Phe Lys Asp Gln Leu Arg Ser Thr Asn Gl |
#u His Leu His Lys |
1100 |
# 1105 |
# 1110 |
Gln Thr Lys Thr Glu Gln Asp Phe Gln Arg Ly |
#s Ile Lys Cys Leu |
1115 |
# 1120 |
# 1125 |
Glu Glu Asp Leu Ala Lys Ser Gln Asn Leu Va |
#l Ser Glu Phe Lys |
1130 |
# 1135 |
# 1140 |
Gln Lys Cys Asp Gln Gln Asn Ile Ile Ile Gl |
#n Asn Thr Lys Lys |
1145 |
# 1150 |
# 1155 |
Glu Val Arg Asn Leu Asn Ala Glu Leu Asn Al |
#a Ser Lys Glu Glu |
1160 |
# 1165 |
# 1170 |
Lys Arg Arg Gly Glu Gln Lys Val Gln Leu Gl |
#n Gln Ala Gln Val |
1175 |
# 1180 |
# 1185 |
Gln Glu Leu Asn Asn Arg Leu Lys Lys Val Gl |
#n Asp Glu Leu His |
1190 |
# 1195 |
# 1200 |
Leu Lys Thr Ile Glu Glu Gln Met Thr His Ar |
#g Lys Met Val Leu |
1205 |
# 1210 |
# 1215 |
Phe Gln Glu Glu Ser Gly Lys Phe Lys Gln Se |
#r Ala Glu Glu Phe |
1220 |
# 1225 |
# 1230 |
Arg Lys Lys Met Glu Lys Leu Met Glu Ser Ly |
#s Val Ile Thr Glu |
1235 |
# 1240 |
# 1245 |
Asn Asp Ile Ser Gly Ile Arg Leu Asp Phe Va |
#l Ser Leu Gln Gln |
1250 |
# 1255 |
# 1260 |
Glu Asn Ser Arg Ala Gln Glu Asn Ala Lys Le |
#u Cys Glu Thr Asn |
1265 |
# 1270 |
# 1275 |
Ile Lys Glu Leu Glu Arg Gln Leu Gln Gln Ty |
#r Arg Glu Gln Met |
1280 |
# 1285 |
# 1290 |
Gln Gln Gly Gln His Met Glu Ala Asn His Ty |
#r Gln Lys Cys Gln |
1295 |
# 1300 |
# 1305 |
Lys Leu Glu Asp Glu Leu Ile Ala Gln Lys Ar |
#g Glu Val Glu Asn |
1310 |
# 1315 |
# 1320 |
Leu Lys Gln Lys Met Asp Gln Gln Ile Lys Gl |
#u His Glu His Gln |
1325 |
# 1330 |
# 1335 |
Leu Val Leu Leu Gln Cys Glu Ile Gln Lys Ly |
#s Ser Thr Ala Lys |
1340 |
# 1345 |
# 1350 |
Asp Cys Thr Phe Lys Pro Asp Phe Glu Met Th |
#r Val Lys Glu Cys |
1355 |
# 1360 |
# 1365 |
Gln His Ser Gly Glu Leu Ser Ser Arg Asn Th |
#r Gly His Leu His |
1370 |
# 1375 |
# 1380 |
Pro Thr Pro Arg Ser Pro Leu Leu Arg Trp Th |
#r Gln Glu Pro Gln |
1385 |
# 1390 |
# 1395 |
Pro Leu Glu Glu Lys Trp Gln His Arg Val Va |
#l Glu Gln Ile Pro |
1400 |
# 1405 |
# 1410 |
Lys Glu Val Gln Phe Gln Pro Pro Gly Ala Pr |
#o Leu Glu Lys Glu |
1415 |
# 1420 |
# 1425 |
Lys Ser Gln Gln Cys Tyr Ser Glu Tyr Phe Se |
#r Gln Thr Ser Thr |
1430 |
# 1435 |
# 1440 |
Glu Leu Gln Ile Thr Phe Asp Glu Thr Asn Pr |
#o Ile Thr Arg Leu |
1445 |
# 1450 |
# 1455 |
Ser Glu Ile Glu Lys Ile Arg Asp Gln Ala Le |
#u Asn Asn Ser Arg |
1460 |
# 1465 |
# 1470 |
Pro Pro Val Arg Tyr Gln Asp Asn Ala Cys Gl |
#u Met Glu Leu Val |
1475 |
# 1480 |
# 1485 |
Lys Val Leu Thr Pro Leu Glu Ile Ala Lys As |
#n Lys Gln Tyr Asp |
1490 |
# 1495 |
# 1500 |
Met His Thr Glu Val Thr Thr Leu Lys Gln Gl |
#u Lys Asn Pro Val |
1505 |
# 1510 |
# 1515 |
Pro Ser Ala Glu Glu Trp Met Leu Glu Gly Cy |
#s Arg Ala Ser Gly |
1520 |
# 1525 |
# 1530 |
Gly Leu Lys Lys Gly Asp Phe Leu Lys Lys Gl |
#y Leu Glu Pro Glu |
1535 |
# 1540 |
# 1545 |
Thr Phe Gln Asn Phe Asp Gly Asp His Ala Cy |
#s Ser Val Arg Asp |
1550 |
# 1555 |
# 1560 |
Asp Glu Phe Lys Phe Gln Gly Leu Arg His Th |
#r Val Thr Ala Arg |
1565 |
# 1570 |
# 1575 |
Gln Leu Val Glu Ala Lys Leu Leu Asp Met Ar |
#g Thr Ile Glu Gln |
1580 |
# 1585 |
# 1590 |
Leu Arg Leu Gly Leu Lys Thr Val Glu Glu Va |
#l Gln Lys Thr Leu |
1595 |
# 1600 |
# 1605 |
Asn Lys Phe Leu Thr Lys Ala Thr Ser Ile Al |
#a Gly Leu Tyr Leu |
1610 |
# 1615 |
# 1620 |
Glu Ser Thr Lys Glu Lys Ile Ser Phe Ala Se |
#r Ala Ala Glu Arg |
1625 |
# 1630 |
# 1635 |
Ile Ile Ile Asp Lys Met Val Ala Leu Ala Ph |
#e Leu Glu Ala Gln |
1640 |
# 1645 |
# 1650 |
Ala Ala Thr Gly Phe Ile Ile Asp Pro Ile Se |
#r Gly Gln Thr Tyr |
1655 |
# 1660 |
# 1665 |
Ser Val Glu Asp Ala Val Leu Lys Gly Val Va |
#l Asp Pro Glu Phe |
1670 |
# 1675 |
# 1680 |
Arg Ile Arg Leu Leu Glu Ala Glu Lys Ala Al |
#a Val Gly Tyr Ser |
1685 |
# 1690 |
# 1695 |
Tyr Ser Ser Lys Thr Leu Ser Val Phe Gln Al |
#a Met Glu Asn Arg |
1700 |
# 1705 |
# 1710 |
Met Leu Asp Arg Gln Lys Gly Lys His Ile Le |
#u Glu Ala Gln Ile |
1715 |
# 1720 |
# 1725 |
Ala Ser Gly Gly Val Ile Asp Pro Val Arg Gl |
#y Ile Arg Val Pro |
1730 |
# 1735 |
# 1740 |
Pro Glu Ile Ala Leu Gln Gln Gly Leu Leu As |
#n Asn Ala Ile Leu |
1745 |
# 1750 |
# 1755 |
Gln Phe Leu His Glu Pro Ser Ser Asn Thr Ar |
#g Val Phe Pro Asn |
1760 |
# 1765 |
# 1770 |
Pro Asn Asn Lys Gln Ala Leu Tyr Tyr Ser Gl |
#u Leu Leu Arg Met |
1775 |
# 1780 |
# 1785 |
Cys Val Phe Asp Val Glu Ser Gln Cys Phe Le |
#u Phe Pro Phe Gly |
1790 |
# 1795 |
# 1800 |
Glu Arg Asn Ile Ser Asn Leu Asn Val Lys Ly |
#s Thr His Arg Ile |
1805 |
# 1810 |
# 1815 |
Ser Val Val Asp Thr Lys Thr Gly Ser Glu Le |
#u Thr Val Tyr Glu |
1820 |
# 1825 |
# 1830 |
Ala Phe Gln Arg Asn Leu Ile Glu Lys Ser Il |
#e Tyr Leu Glu Leu |
1835 |
# 1840 |
# 1845 |
Ser Gly Gln Gln Tyr Gln Trp Lys Glu Ala Me |
#t Phe Phe Glu Ser |
1850 |
# 1855 |
# 1860 |
Tyr Gly His Ser Ser His Met Leu Thr Asp Th |
#r Lys Thr Gly Leu |
1865 |
# 1870 |
# 1875 |
His Phe Asn Ile Asn Glu Ala Ile Glu Gln Gl |
#y Thr Ile Asp Lys |
1880 |
# 1885 |
# 1890 |
Ala Leu Val Lys Lys Tyr Gln Glu Gly Leu Il |
#e Thr Leu Thr Glu |
1895 |
# 1900 |
# 1905 |
Leu Ala Asp Ser Leu Leu Ser Arg Leu Val Pr |
#o Lys Lys Asp Leu |
1910 |
# 1915 |
# 1920 |
His Ser Pro Val Ala Gly Tyr Trp Leu Thr Al |
#a Ser Gly Glu Arg |
1925 |
# 1930 |
# 1935 |
Ile Ser Val Leu Lys Ala Ser Arg Arg Asn Le |
#u Val Asp Arg Ile |
1940 |
# 1945 |
# 1950 |
Thr Ala Leu Arg Cys Leu Glu Ala Gln Val Se |
#r Thr Gly Gly Ile |
1955 |
# 1960 |
# 1965 |
Ile Asp Pro Leu Thr Gly Lys Lys Tyr Arg Va |
#l Ala Glu Ala Leu |
1970 |
# 1975 |
# 1980 |
His Arg Gly Leu Val Asp Glu Gly Phe Ala Gl |
#n Gln Leu Arg Gln |
1985 |
# 1990 |
# 1995 |
Cys Glu Leu Val Ile Thr Gly Ile Gly His Pr |
#o Ile Thr Asn Lys |
2000 |
# 2005 |
# 2010 |
Met Met Ser Val Val Glu Ala Val Asn Ala As |
#n Ile Ile Asn Lys |
2015 |
# 2020 |
# 2025 |
Glu Met Gly Ile Arg Cys Leu Glu Phe Gln Ty |
#r Leu Thr Gly Gly |
2030 |
# 2035 |
# 2040 |
Leu Ile Glu Pro Gln Val His Ser Arg Leu Se |
#r Ile Glu Glu Ala |
2045 |
# 2050 |
# 2055 |
Leu Gln Val Gly Ile Ile Asp Val Leu Ile Al |
#a Thr Lys Leu Lys |
2060 |
# 2065 |
# 2070 |
Asp Gln Lys Ser Tyr Val Arg Asn Ile Ile Cy |
#s Pro Gln Thr Lys |
2075 |
# 2080 |
# 2085 |
Arg Lys Leu Thr Tyr Lys Glu Ala Leu Glu Ly |
#s Ala Asp Phe Asp |
2090 |
# 2095 |
# 2100 |
Phe His Thr Gly Leu Lys Leu Leu Glu Val Se |
#r Glu Pro Leu Met |
2105 |
# 2110 |
# 2115 |
Thr Gly Ile Ser Ser Leu Tyr Tyr Ser Ser |
2120 |
# 2125 |
<210> SEQ ID NO 30 |
<211> LENGTH: 1708 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1709387CB1 |
<400> SEQUENCE: 30 |
cctgccagca tctcttgggt ttgctgagaa ctcacgggct ccagctacct gg |
#ccatgacc 60 |
accacatttc tgcaaacttc ttcctccacc tttgggggtg gctcaacccg ag |
#ggggttcc 120 |
ctcctggctg ggggaggtgg ctttggtggg gggagtctct ctgggggagg tg |
#gaagccga 180 |
agtatctcag cttcttctgc taggtttgtc tcttcagggt caggaggagg at |
#atgggggt 240 |
ggcatgaggg tctgtggctt tggtggaggg gctggtagtg ttttcggtgg ag |
#gctttgga 300 |
gggggcgttg gtgggggttt tggtggtggc tttggtggtg gcgatggtgg tc |
#tcctctct 360 |
ggcaatgaga aaattaccat gcagaacctc aatgaccgcc tggcctccta cc |
#tggacaag 420 |
gtacgtgccc tggaggaggc caatgctgac ctggaggtga agatccatga ct |
#ggtaccag 480 |
aagcagaccc cagccagccc agaatgcgac tacagccaat acttcaagac ca |
#ttgaagag 540 |
ctccgggaca agatcatggc caccaccatc gacaactccc gggtcatcct gg |
#agatcgac 600 |
aatgccaggc tggctgcgga cgacttcagg ctcaagtatg agaatgagct gg |
#ccctgcgc 660 |
cagggcgttg aggctgacat caacggcttg cgccgagtcc tggatgagct ga |
#ccctggcc 720 |
aggactgacc tggagatgca gatcgagggc ctgaatgagg agctagccta cc |
#tgaagaag 780 |
aaccacgaag aggagatgaa ggagttcagc agccagctgg ccggccaggt ca |
#atgtggag 840 |
atggacgcag caccgggtgt ggacctgacc cgtgtgctgg cagagatgag gg |
#agcagtac 900 |
gaggccatgg cggagaagaa ccgccgggat gtcgaggcct ggttcttcag ca |
#agactgag 960 |
gagctgaaca aagaggtggc ctccaacaca gaaatgatcc agaccagcaa ga |
#cggagatc 1020 |
acagacctga gacgcacgat gcaggagctg gagatcgagc tgcagtccca gc |
#tcagcatg 1080 |
aaagctgggc tggagaactc actggccgag acagagtgcc gctatgccac gc |
#agctgcag 1140 |
cagatccagg ggctcattgg tggcctggag gcccagctga gtgagctccg at |
#gcgagatg 1200 |
gaggctcaga accaggagta caagatgctg cttgacataa agacacggct gg |
#agcaggag 1260 |
atcgctactt accgcagcct gctcgagggc caggatgcca agatggctgg ca |
#ttggcatc 1320 |
agggaagcct cttcaggagg tggtggtagc agcagcaatt tccacatcaa tg |
#tagaagag 1380 |
tcagtggatg gacaggtggt ttcttcccac aagagagaaa tctaagtgtc ta |
#ttgcagga 1440 |
gaaacgtccc ttgccactcc ccactctcat caggccaagt ggaggactgg cc |
#agagggcc 1500 |
tgcacatgca aactccagtc cctgccttca gagagctgaa aagggtccct cg |
#gtctttta 1560 |
tttcagggct ttgcatgcgc tctattcccc ctctgcctct ccccaccttc tt |
#tggagcaa 1620 |
ggagatgcag ctgtattgtg taacaagctc atttgtacag tgtctgttca tg |
#taataaag 1680 |
aattactttt ccttttgcaa aaaaaaaa |
# |
# 1708 |
<210> SEQ ID NO 31 |
<211> LENGTH: 456 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1709387CD1 |
<400> SEQUENCE: 31 |
Met Thr Thr Thr Phe Leu Gln Thr Ser Ser Se |
#r Thr Phe Gly Gly |
1 5 |
# 10 |
# 15 |
Gly Ser Thr Arg Gly Gly Ser Leu Leu Ala Gl |
#y Gly Gly Gly Phe |
20 |
# 25 |
# 30 |
Gly Gly Gly Ser Leu Ser Gly Gly Gly Gly Se |
#r Arg Ser Ile Ser |
35 |
# 40 |
# 45 |
Ala Ser Ser Ala Arg Phe Val Ser Ser Gly Se |
#r Gly Gly Gly Tyr |
50 |
# 55 |
# 60 |
Gly Gly Gly Met Arg Val Cys Gly Phe Gly Gl |
#y Gly Ala Gly Ser |
65 |
# 70 |
# 75 |
Val Phe Gly Gly Gly Phe Gly Gly Gly Val Gl |
#y Gly Gly Phe Gly |
80 |
# 85 |
# 90 |
Gly Gly Phe Gly Gly Gly Asp Gly Gly Leu Le |
#u Ser Gly Asn Glu |
95 |
# 100 |
# 105 |
Lys Ile Thr Met Gln Asn Leu Asn Asp Arg Le |
#u Ala Ser Tyr Leu |
110 |
# 115 |
# 120 |
Asp Lys Val Arg Ala Leu Glu Glu Ala Asn Al |
#a Asp Leu Glu Val |
125 |
# 130 |
# 135 |
Lys Ile His Asp Trp Tyr Gln Lys Gln Thr Pr |
#o Ala Ser Pro Glu |
140 |
# 145 |
# 150 |
Cys Asp Tyr Ser Gln Tyr Phe Lys Thr Ile Gl |
#u Glu Leu Arg Asp |
155 |
# 160 |
# 165 |
Lys Ile Met Ala Thr Thr Ile Asp Asn Ser Ar |
#g Val Ile Leu Glu |
170 |
# 175 |
# 180 |
Ile Asp Asn Ala Arg Leu Ala Ala Asp Asp Ph |
#e Arg Leu Lys Tyr |
185 |
# 190 |
# 195 |
Glu Asn Glu Leu Ala Leu Arg Gln Gly Val Gl |
#u Ala Asp Ile Asn |
200 |
# 205 |
# 210 |
Gly Leu Arg Arg Val Leu Asp Glu Leu Thr Le |
#u Ala Arg Thr Asp |
215 |
# 220 |
# 225 |
Leu Glu Met Gln Ile Glu Gly Leu Asn Glu Gl |
#u Leu Ala Tyr Leu |
230 |
# 235 |
# 240 |
Lys Lys Asn His Glu Glu Glu Met Lys Glu Ph |
#e Ser Ser Gln Leu |
245 |
# 250 |
# 255 |
Ala Gly Gln Val Asn Val Glu Met Asp Ala Al |
#a Pro Gly Val Asp |
260 |
# 265 |
# 270 |
Leu Thr Arg Val Leu Ala Glu Met Arg Glu Gl |
#n Tyr Glu Ala Met |
275 |
# 280 |
# 285 |
Ala Glu Lys Asn Arg Arg Asp Val Glu Ala Tr |
#p Phe Phe Ser Lys |
290 |
# 295 |
# 300 |
Thr Glu Glu Leu Asn Lys Glu Val Ala Ser As |
#n Thr Glu Met Ile |
305 |
# 310 |
# 315 |
Gln Thr Ser Lys Thr Glu Ile Thr Asp Leu Ar |
#g Arg Thr Met Gln |
320 |
# 325 |
# 330 |
Glu Leu Glu Ile Glu Leu Gln Ser Gln Leu Se |
#r Met Lys Ala Gly |
335 |
# 340 |
# 345 |
Leu Glu Asn Ser Leu Ala Glu Thr Glu Cys Ar |
#g Tyr Ala Thr Gln |
350 |
# 355 |
# 360 |
Leu Gln Gln Ile Gln Gly Leu Ile Gly Gly Le |
#u Glu Ala Gln Leu |
365 |
# 370 |
# 375 |
Ser Glu Leu Arg Cys Glu Met Glu Ala Gln As |
#n Gln Glu Tyr Lys |
380 |
# 385 |
# 390 |
Met Leu Leu Asp Ile Lys Thr Arg Leu Glu Gl |
#n Glu Ile Ala Thr |
395 |
# 400 |
# 405 |
Tyr Arg Ser Leu Leu Glu Gly Gln Asp Ala Ly |
#s Met Ala Gly Ile |
410 |
# 415 |
# 420 |
Gly Ile Arg Glu Ala Ser Ser Gly Gly Gly Gl |
#y Ser Ser Ser Asn |
425 |
# 430 |
# 435 |
Phe His Ile Asn Val Glu Glu Ser Val Asp Gl |
#y Gln Val Val Ser |
440 |
# 445 |
# 450 |
Ser His Lys Arg Glu Ile |
455 |
<210> SEQ ID NO 32 |
<211> LENGTH: 1393 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1709118CB1 |
<400> SEQUENCE: 32 |
ggacagggct ggagatcgag ttcccagttc gtgaaaagga aaaccccctg aa |
#gctgtgcc 60 |
aagatgtgtg acgacgagga gaccaccgcc ctggtgtgcg acaacggctc tg |
#ggctggtg 120 |
aaggccggct ttgcgggcga tgacgcgccc cgcgctgtct tcccgtccat cg |
#tgggccgc 180 |
ccgcggcacc agggagttat ggtgggtatg ggtcagaagg actcctacgt ag |
#gtgatgaa 240 |
gcccagagca agagaggcat cctgaccctg aagtatccca tcgagcatgg ta |
#tcatcacc 300 |
aactgggacg acatggagaa gatctggcac cacaccttct acaatgagct cc |
#gtgtggct 360 |
cccgaggagc accccaccct gctcacagag gccccgctga accccaaggc ca |
#accgggag 420 |
aagatgactc agatcatgtt tgagaccttc aatgtccctg ccatgtacgt gg |
#ccatccag 480 |
gcagtgctat ccctgtatgc ttctggccgt accacaggca ttgttctgga ct |
#ctggggat 540 |
ggtgtaactc acaatgtccc catctatgag ggctacgctt tgccccatgc ca |
#tcatgcgt 600 |
ctggttctgg ctggtcggga cctcactgac tacctcatga agatcctcac tg |
#agcgtggc 660 |
tactcctttg tcaccactgc tgaacgtgaa attgtccgtg acattaaaga ga |
#agctgtgc 720 |
tatgtcgccc tggattttga gaatgagatg gccacagctg cctcttcctc ct |
#ccctggag 780 |
aagagctatg aactgcctga tggccaagtc atcactattg gcaatgagcg ct |
#tccgctgt 840 |
cctgagacac tcttccagcc ctccttcatt ggtatggaat ctgctggcat cc |
#atgaaaca 900 |
acttacaata gcatcatgaa gtgtgacatt gatatccgca aggacctgta tg |
#ccaacaat 960 |
gtcttatctg gaggcaccac tatgtaccct ggtattgctg atcgtatgca ga |
#aggaaatc 1020 |
actgctctgg ctcctagcac catgaagatt aagattattg ctccccctga gc |
#gtaaatac 1080 |
tctgtctgga ttgggggctc catcctggcc tctctgtcca ccttccagca aa |
#tgtggatt 1140 |
agcaagcaag agtacgatga ggcaggccca tccattgtcc accgcaaatg ct |
#tctaagat 1200 |
gccttctctc tccatctacc ttccagtcag gatgacggta ttatgcttct tg |
#gagtcttc 1260 |
caaaccacct tccctcatct ttcatcaatc attgtacagt ttgtttacac ac |
#gtgcaatt 1320 |
tgtttgtgct tctaatattt attgctttat aaataaacca gaccaggact tg |
#caacctaa 1380 |
aaaaaaaaaa aaa |
# |
# |
# 1393 |
<210> SEQ ID NO 33 |
<211> LENGTH: 377 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1709118CD1 |
<400> SEQUENCE: 33 |
Met Cys Asp Asp Glu Glu Thr Thr Ala Leu Va |
#l Cys Asp Asn Gly |
1 5 |
# 10 |
# 15 |
Ser Gly Leu Val Lys Ala Gly Phe Ala Gly As |
#p Asp Ala Pro Arg |
20 |
# 25 |
# 30 |
Ala Val Phe Pro Ser Ile Val Gly Arg Pro Ar |
#g His Gln Gly Val |
35 |
# 40 |
# 45 |
Met Val Gly Met Gly Gln Lys Asp Ser Tyr Va |
#l Gly Asp Glu Ala |
50 |
# 55 |
# 60 |
Gln Ser Lys Arg Gly Ile Leu Thr Leu Lys Ty |
#r Pro Ile Glu His |
65 |
# 70 |
# 75 |
Gly Ile Ile Thr Asn Trp Asp Asp Met Glu Ly |
#s Ile Trp His His |
80 |
# 85 |
# 90 |
Thr Phe Tyr Asn Glu Leu Arg Val Ala Pro Gl |
#u Glu His Pro Thr |
95 |
# 100 |
# 105 |
Leu Leu Thr Glu Ala Pro Leu Asn Pro Lys Al |
#a Asn Arg Glu Lys |
110 |
# 115 |
# 120 |
Met Thr Gln Ile Met Phe Glu Thr Phe Asn Va |
#l Pro Ala Met Tyr |
125 |
# 130 |
# 135 |
Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Al |
#a Ser Gly Arg Thr |
140 |
# 145 |
# 150 |
Thr Gly Ile Val Leu Asp Ser Gly Asp Gly Va |
#l Thr His Asn Val |
155 |
# 160 |
# 165 |
Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Al |
#a Ile Met Arg Leu |
170 |
# 175 |
# 180 |
Val Leu Ala Gly Arg Asp Leu Thr Asp Tyr Le |
#u Met Lys Ile Leu |
185 |
# 190 |
# 195 |
Thr Glu Arg Gly Tyr Ser Phe Val Thr Thr Al |
#a Glu Arg Glu Ile |
200 |
# 205 |
# 210 |
Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Va |
#l Ala Leu Asp Phe |
215 |
# 220 |
# 225 |
Glu Asn Glu Met Ala Thr Ala Ala Ser Ser Se |
#r Ser Leu Glu Lys |
230 |
# 235 |
# 240 |
Ser Tyr Glu Leu Pro Asp Gly Gln Val Ile Th |
#r Ile Gly Asn Glu |
245 |
# 250 |
# 255 |
Arg Phe Arg Cys Pro Glu Thr Leu Phe Gln Pr |
#o Ser Phe Ile Gly |
260 |
# 265 |
# 270 |
Met Glu Ser Ala Gly Ile His Glu Thr Thr Ty |
#r Asn Ser Ile Met |
275 |
# 280 |
# 285 |
Lys Cys Asp Ile Asp Ile Arg Lys Asp Leu Ty |
#r Ala Asn Asn Val |
290 |
# 295 |
# 300 |
Leu Ser Gly Gly Thr Thr Met Tyr Pro Gly Il |
#e Ala Asp Arg Met |
305 |
# 310 |
# 315 |
Gln Lys Glu Ile Thr Ala Leu Ala Pro Ser Th |
#r Met Lys Ile Lys |
320 |
# 325 |
# 330 |
Ile Ile Ala Pro Pro Glu Arg Lys Tyr Ser Va |
#l Trp Ile Gly Gly |
335 |
# 340 |
# 345 |
Ser Ile Leu Ala Ser Leu Ser Thr Phe Gln Gl |
#n Met Trp Ile Ser |
350 |
# 355 |
# 360 |
Lys Gln Glu Tyr Asp Glu Ala Gly Pro Ser Il |
#e Val His Arg Lys |
365 |
# 370 |
# 375 |
Cys Phe |
<210> SEQ ID NO 34 |
<211> LENGTH: 2310 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 008513.49 |
<221> NAME/KEY: unsure |
<222> LOCATION: 2307 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 34 |
cttccctctc tcctccagcc tctcacactc tcctcagctc tctcatctcc tg |
#gaaccatg 60 |
gccagcacat ccaccaccat caggagccac agcagcagcc gccggggttt ca |
#gtgccaac 120 |
ttcagccagg ctccctgggg tcagccgctc tggcttcagc agcgtctccg tg |
#tcccgctc 180 |
caggggcagt ggtggcctgg gtggtgcatg tggaggagct ggctttggca gc |
#cgcagtct 240 |
gtatggcctg gggggctcca agaggatctc cattggaggg ggcagctgtg cc |
#atcagtgg 300 |
cggctatggc agcagagccg gaggcagcta tggctttggt ggcgccggga gt |
#ggatttgg 360 |
tttcggtggt ggagccggca ttggctttgg tctgggtggt ggagccggcc tt |
#gctggtgg 420 |
ctttgggggc cctggcttcc ctgtgtgccc ccctggaggc atccaagagg tc |
#accgtcaa 480 |
ccagagtctc ctgactcccc tcaacctgca aatcgatccc accatccagc gg |
#gtgcgggc 540 |
cgaggagcgt gagcagatca agaccctcaa caacaagttt gcctccttca tc |
#gacaaggt 600 |
gcggttcctg gagcagcaga acaaggttct ggaaacaaag tggaccctgc tg |
#caggagca 660 |
gggcaccaag actgtgaggc agaacctgga gccgttgttc gagcagtaca tc |
#aacaacct 720 |
caggaggcag ctggacagca ttgtcgggga acggggccgc ctggactcag ag |
#ctcagagg 780 |
catgcaggac ctggtggagg acttcaagaa caaatatgag gatgaaatca ac |
#aagcgcac 840 |
agcagcagag aatgaatttg tgactctgaa gaaggatgtg gatgctgcct ac |
#atgaacaa 900 |
ggttgaactg caagccaagg cagacactct cacagacgag atcaacttcc tg |
#agagcctt 960 |
gtatgatgca gagctgtccc agatgcagac ccacatctca gacacatctg tg |
#gtgctgtc 1020 |
catggacaac aaccgcaacc tggacctgga cagcatcatc gctgaggtca ag |
#gcccaata 1080 |
tgaggagatt gctcagagaa gccgggctga ggctgagtcc tggtaccaga cc |
#aagtacga 1140 |
ggagctgcag gtcacagcag gcagacatgg ggacgacctg cgcaacacca ag |
#caggagat 1200 |
tgctgagatc aaccgcatga tccagaggct gagatctgag atcgaccacg tc |
#aagaagca 1260 |
gtgcgccaac ctgcaggccg ccattgctga tgctgagcag cgtggggaga tg |
#gccctcaa 1320 |
ggatgccaag aacaagctgg aagggctgga ggatgccctg cagaaggcca ag |
#caggacct 1380 |
ggcccggctg ctgaaggagt accaggagct gatgaatgtc aagctggccc tg |
#gacgtgga 1440 |
gatcgccacc taccgcaagc tgctggaggg tgaggagtgc aggctgaatg gc |
#gaaggcgt 1500 |
tggacaagtc aacatctctg tggtgcagtc caccgtctcc agtggctatg gc |
#ggtgccag 1560 |
tggtgtcggc agtggcttag gcctgggtgg aggaagcagc tactcctatg gc |
#agtggtct 1620 |
tggcgttgga ggtggcttca gttccagcag tggcagagcc attgggggtg gc |
#ctcagctc 1680 |
tgttggaggc ggcagttcca ccatcaagta caccaccacc tcctcctcca gc |
#aggaagag 1740 |
ctataagcac taaagtgcgt ctgctagctc tcggtcccac agtcctcagg cc |
#cctctctg 1800 |
gctgcagagc cctctcctca ggttgccttt cctctcctgg cctccagtct cc |
#cctgctgt 1860 |
cccaggtaga gctgggtatg gatgcttagt gccctcactt cttctctctc tc |
#tctatacc 1920 |
atctgagcac ccattgctca ccatcagatc aacctctgat tttacatcat ga |
#tgtaatca 1980 |
ccactggagc ttcactgtta ctaaattatt aatttcttgc ctccagtgtt ct |
#atctctga 2040 |
ggctgagcat tataagaaaa tgacctctgc tccttttcat tgcagaaaat tg |
#ccaggggc 2100 |
ttatttcaga acaacttcca cttactttcc actggctctc aaactctcta ac |
#ttataagt 2160 |
gttgtgaacc cccacccagg cagtatccat gaaagcacaa gtgactagtc ct |
#atgatgta 2220 |
caaagcctgt atctctgtga tgatttctgt gctcttcgct gtttgcaatt gc |
#taaataaa 2280 |
gcagatttat aatacaaaaa aaaaaanggg |
# |
# 2310 |
<210> SEQ ID NO 35 |
<211> LENGTH: 493 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 047568.1 |
<400> SEQUENCE: 35 |
cttaacctta attttataag agacaaatac atgttataat aatacttaag ct |
#ctttatag 60 |
aatttgtagg gctattgaga gacattatag ggaagccctt gttctggaag gt |
#gtatggtt 120 |
gtggccatgg gtttctctgc cactaaatct gtacctggtt gttatttgaa gt |
#tttctgtc 180 |
ctaaaatgta atctttggag aagctgcaca accgccatct gggaactcat ga |
#gaaattta 240 |
cgttttatgc ctaagtaact ctaatgagca atggctatag gaatgactaa ta |
#aaatatca 300 |
acaaggagat gggaattttc aaggaaatat gatatggtaa caatgtcctt tt |
#tagaaagt 360 |
catttttact tatctatatt cacagcataa aatgttccaa aatctatgaa at |
#attaaata 420 |
ttatacttca aaataaagta atattttgga gataaaagag tactgttcta ca |
#attcaaaa 480 |
ttgaaatagt tca |
# |
# |
# 493 |
<210> SEQ ID NO 36 |
<211> LENGTH: 1983 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3120070CB1 |
<400> SEQUENCE: 36 |
ggaaccgcct ccccgcggcc tcttcgcttt tgtggcggcg cccgcgctcg ca |
#ggccactc 60 |
tctgctgtcg cccgtcccgc gcgctcctcc gacccgctcc gctccgctcc gc |
#tcggcccc 120 |
gcgccgcccg tcaacatgat ccgctgcggc ctggcctgcg agcgctgccg ct |
#ggatcctg 180 |
cccctgctcc tactcagcgc catcgccttc gacatcatcg cgctggccgg cc |
#gcggctgg 240 |
ttgcagtcta gcgaccacgg ccagacgtcc tcgctgtggt ggaaatgctc cc |
#aagagggc 300 |
ggcggcagcg ggtcctacga ggagggctgt cagagcctca tggagtacgc gt |
#ggggtaga 360 |
gcagcggctg ccatgctctt ctgtggcttc atcatcctgg tgatctgttt ca |
#tcctctcc 420 |
ttcttcgccc tctgtggacc ccagatgctt gtcttcctga gagtgattgg ag |
#gtctcctt 480 |
gccttggctg ctgtgttcca gatcatctcc ctggtaattt accccgtgaa gt |
#acacccag 540 |
accttcaccc ttcatgccaa ccctgctgtc acttacatct ataactgggc ct |
#acggcttt 600 |
gggtgggcag ccacgattat cctgattggc tgtgccttct tcttctgctg cc |
#tccccaac 660 |
tacgaagatg accttctggg caatgccaag cccaggtact tctacacatc tg |
#cctaactt 720 |
gggaatgaat gtgggagaaa atcgctgctg ctgagatgga ctccagaaga ag |
#aaactgtt 780 |
tctccaggcg actttgaacc cattttttgg cagtgttcat attattaaac ta |
#gtcaaaaa 840 |
tgctaaaata atttgggaga aaatattttt taagtagtgt tatagtttca tg |
#tttatctt 900 |
ttattatgtt ttgtgaagtt gtgtcttttc actaattacc tatactatgc ca |
#atatttcc 960 |
ttatatctat ccataacatt tatactacat ttgtaagaga atatgcacgt ga |
#aacttaac 1020 |
actttataag gtaaaaatga ggtttccaag atttaataat ctgatcaagt tc |
#ttgttatt 1080 |
tccaaataga atggactcgg tctgttaagg gctaaggaga agaggaagat aa |
#ggttaaaa 1140 |
gttgttaatg accaaacatt ctaaaagaaa tgcaaaaaaa aagtttattt tc |
#aagccttc 1200 |
gaactattta aggaaagcaa aatcatttcc taaatgcata tcatttgtga ga |
#atttctca 1260 |
ttaatatcct gaatcattca tttcagctaa ggcttcatgt tgactcgata tg |
#tcatctag 1320 |
gaaagtacta tttcatggtc caaacctgtt gccatagttg gtaaggcttt cc |
#tttaagtg 1380 |
tgaaatattt agatgaaatt ttctctttta aagttcttta tagggttagg gt |
#gtgggaaa 1440 |
atgctatatt aataaatctg tagtgttttg tgtttatatg ttcagaacca ga |
#gtagactg 1500 |
gattgaaaga tggactgggt ctaatttatc atgactgata gatctggtta ag |
#ttgtgtag 1560 |
taaagcatta gggtcattcc tgtcacaaaa gtgccactaa aacagcctca gg |
#agaataaa 1620 |
tgacttgctt ttctaaatct caggtttatc tgggctctat catatagaca gg |
#cttctgat 1680 |
agtttgcaac tgtaagcaga aacctacata tagttaaaat cctggtcttt ct |
#tggtaaac 1740 |
agattttaaa tgtctgatat aaaacatgcc acaggagaat tcggggattt ga |
#gtttctct 1800 |
gaatagcata tatatgatgc atcggatagg tcattatgat tttttaccat tt |
#cgacttac 1860 |
ataatgaaaa ccaattcatt ttaaatatca gattattatt ttgtaagttg tg |
#gaaaaagc 1920 |
taattgtagt tttcattatg aagttttccc aataaaccag gtattctaaa ct |
#tgaaaaaa 1980 |
aaa |
# |
# |
# 1983 |
<210> SEQ ID NO 37 |
<211> LENGTH: 193 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3120070CD1 |
<400> SEQUENCE: 37 |
Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cy |
#s Arg Trp Ile Leu |
1 5 |
# 10 |
# 15 |
Pro Leu Leu Leu Leu Ser Ala Ile Ala Phe As |
#p Ile Ile Ala Leu |
20 |
# 25 |
# 30 |
Ala Gly Arg Gly Trp Leu Gln Ser Ser Asp Hi |
#s Gly Gln Thr Ser |
35 |
# 40 |
# 45 |
Ser Leu Trp Trp Lys Cys Ser Gln Glu Gly Gl |
#y Gly Ser Gly Ser |
50 |
# 55 |
# 60 |
Tyr Glu Glu Gly Cys Gln Ser Leu Met Glu Ty |
#r Ala Trp Gly Arg |
65 |
# 70 |
# 75 |
Ala Ala Ala Ala Met Leu Phe Cys Gly Phe Il |
#e Ile Leu Val Ile |
80 |
# 85 |
# 90 |
Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gl |
#y Pro Gln Met Leu |
95 |
# 100 |
# 105 |
Val Phe Leu Arg Val Ile Gly Gly Leu Leu Al |
#a Leu Ala Ala Val |
110 |
# 115 |
# 120 |
Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Va |
#l Lys Tyr Thr Gln |
125 |
# 130 |
# 135 |
Thr Phe Thr Leu His Ala Asn Pro Ala Val Th |
#r Tyr Ile Tyr Asn |
140 |
# 145 |
# 150 |
Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Il |
#e Ile Leu Ile Gly |
155 |
# 160 |
# 165 |
Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Ty |
#r Glu Asp Asp Leu |
170 |
# 175 |
# 180 |
Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Th |
#r Ser Ala |
185 |
# 190 |
<210> SEQ ID NO 38 |
<211> LENGTH: 1516 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1303785CB1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 1512 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 38 |
ctttgttttt ggacatagct gagccatgta cttcaaacag aaggcagcca at |
#tactaact 60 |
tctggttgct aggtgtggct tcctttaaaa tcctataaaa tcagaagccc aa |
#gtctccac 120 |
tgccagtgtg aaatcttcag agaagaattt ctctttagtt ctttgcaaga ag |
#gtagagat 180 |
aaagacactt tttcaaaaat ggcaatggta tcagaattcc tcaagcaggc ct |
#ggtttatt 240 |
gaaaatgaag agcaggaata tgttcaaact gtgaagtcat ccaaaggtgg tc |
#ccggatca 300 |
gcggtgagcc cctatcctac cttcaatcca tcctcggatg tcgctgcctt gc |
#ataaggcc 360 |
ataatggtta aaggtgtgga tgaagcaacc atcattgaca ttctaactaa gc |
#gaaacaat 420 |
gcacagcgtc aacagatcaa agcagcatat ctccaggaaa caggaaagcc cc |
#tggatgaa 480 |
acactgaaga aagcccttac aggtcacctt gaggaggttg ttttagctct gc |
#taaaaact 540 |
ccagcgcaat ttgatgctga tgaacttcgt gctgccatga agggccttgg aa |
#ctgatgaa 600 |
gatactctaa ttgagatttt ggcatcaaga actaacaaag aaatcagaga ca |
#ttaacagg 660 |
gtctacagag aggaactgaa gagagatctg gccaaagaca taacctcaga ca |
#catctgga 720 |
gattttcgga acgctttgct ttctcttgct aagggtgacc gatctgagga ct |
#ttggtgtg 780 |
aatgaagact tggctgattc agatgccagg gccttgtatg aagcaggaga aa |
#ggagaaag 840 |
gggacagacg taaacgtgtt caataccatc cttaccacca gaagctatcc ac |
#aacttcgc 900 |
agagtgtttc agaaatacac caagtacagt aagcatgaca tgaacaaagt tc |
#tggacctg 960 |
gagttgaaag gtgacattga gaaatgcctc acagctatcg tgaagtgcgc ca |
#caagcaaa 1020 |
ccagctttct ttgcagagaa gcttcatcaa gccatgaaag gtgttggaac tc |
#gccataag 1080 |
gcattgatca ggattatggt ttcccgttct gaaattgaca tgaatgatat ca |
#aagcattc 1140 |
tatcagaaga tgtatggtat ctccctttgc caagccatcc tggatgaaac ca |
#aaggagag 1200 |
tatgagaaaa tcctggtggc tctttgtgga ggaaactaaa cattcccttg at |
#ggtctcaa 1260 |
gctatgatca gaagacttta attatatatt ttcatcctat aagcttaaat ag |
#gaaagttt 1320 |
cttcaacagg attacagtgt agctacctac atgctgaaaa atatagcctt ta |
#aatcattt 1380 |
ttatattata actctgtata atagagataa gtccattttt taaaaatgtt tt |
#ccccaaac 1440 |
cataaaaccc tatacaagtt gttctagtaa caatacatga gaaagatgtc ta |
#tgtagctg 1500 |
aaaataaaat gncgtc |
# |
# |
# 1516 |
<210> SEQ ID NO 39 |
<211> LENGTH: 346 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1303785CD1 |
<400> SEQUENCE: 39 |
Met Ala Met Val Ser Glu Phe Leu Lys Gln Al |
#a Trp Phe Ile Glu |
1 5 |
# 10 |
# 15 |
Asn Glu Glu Gln Glu Tyr Val Gln Thr Val Ly |
#s Ser Ser Lys Gly |
20 |
# 25 |
# 30 |
Gly Pro Gly Ser Ala Val Ser Pro Tyr Pro Th |
#r Phe Asn Pro Ser |
35 |
# 40 |
# 45 |
Ser Asp Val Ala Ala Leu His Lys Ala Ile Me |
#t Val Lys Gly Val |
50 |
# 55 |
# 60 |
Asp Glu Ala Thr Ile Ile Asp Ile Leu Thr Ly |
#s Arg Asn Asn Ala |
65 |
# 70 |
# 75 |
Gln Arg Gln Gln Ile Lys Ala Ala Tyr Leu Gl |
#n Glu Thr Gly Lys |
80 |
# 85 |
# 90 |
Pro Leu Asp Glu Thr Leu Lys Lys Ala Leu Th |
#r Gly His Leu Glu |
95 |
# 100 |
# 105 |
Glu Val Val Leu Ala Leu Leu Lys Thr Pro Al |
#a Gln Phe Asp Ala |
110 |
# 115 |
# 120 |
Asp Glu Leu Arg Ala Ala Met Lys Gly Leu Gl |
#y Thr Asp Glu Asp |
125 |
# 130 |
# 135 |
Thr Leu Ile Glu Ile Leu Ala Ser Arg Thr As |
#n Lys Glu Ile Arg |
140 |
# 145 |
# 150 |
Asp Ile Asn Arg Val Tyr Arg Glu Glu Leu Ly |
#s Arg Asp Leu Ala |
155 |
# 160 |
# 165 |
Lys Asp Ile Thr Ser Asp Thr Ser Gly Asp Ph |
#e Arg Asn Ala Leu |
170 |
# 175 |
# 180 |
Leu Ser Leu Ala Lys Gly Asp Arg Ser Glu As |
#p Phe Gly Val Asn |
185 |
# 190 |
# 195 |
Glu Asp Leu Ala Asp Ser Asp Ala Arg Ala Le |
#u Tyr Glu Ala Gly |
200 |
# 205 |
# 210 |
Glu Arg Arg Lys Gly Thr Asp Val Asn Val Ph |
#e Asn Thr Ile Leu |
215 |
# 220 |
# 225 |
Thr Thr Arg Ser Tyr Pro Gln Leu Arg Arg Va |
#l Phe Gln Lys Tyr |
230 |
# 235 |
# 240 |
Thr Lys Tyr Ser Lys His Asp Met Asn Lys Va |
#l Leu Asp Leu Glu |
245 |
# 250 |
# 255 |
Leu Lys Gly Asp Ile Glu Lys Cys Leu Thr Al |
#a Ile Val Lys Cys |
260 |
# 265 |
# 270 |
Ala Thr Ser Lys Pro Ala Phe Phe Ala Glu Ly |
#s Leu His Gln Ala |
275 |
# 280 |
# 285 |
Met Lys Gly Val Gly Thr Arg His Lys Ala Le |
#u Ile Arg Ile Met |
290 |
# 295 |
# 300 |
Val Ser Arg Ser Glu Ile Asp Met Asn Asp Il |
#e Lys Ala Phe Tyr |
305 |
# 310 |
# 315 |
Gln Lys Met Tyr Gly Ile Ser Leu Cys Gln Al |
#a Ile Leu Asp Glu |
320 |
# 325 |
# 330 |
Thr Lys Gly Glu Tyr Glu Lys Ile Leu Val Al |
#a Leu Cys Gly Gly |
335 |
# 340 |
# 345 |
Asn |
<210> SEQ ID NO 40 |
<211> LENGTH: 2712 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1798379CB1 |
<400> SEQUENCE: 40 |
ccagccttga ctcttctcaa gagcctgtga ctttcctccc tggacaaagg ca |
#tcatgagt 60 |
tgtcagatct cttgcaaatc tcgaggaaga ggaggaggtg gaggaggatt cc |
#ggggcttc 120 |
agcagcggct cagctgtggt gtctggtgga agccggagat caacttccag ct |
#tctcctgc 180 |
ttgagccgcc atggtggtgg tggtgggggc ttcggtggag gcggctttgg ca |
#gtcggagt 240 |
cttgttggcc ttggagggac caagagcatc tccattagtg tggctggagg ag |
#gtggtggc 300 |
tttggcgccg ctggtggatt tggtggcaga ggaggtggtt ttggaggcgg ca |
#gcggcttt 360 |
ggaggcggca gcggctttgg aggtggcagc ggcttcagtg gtggtggttt cg |
#gtggaggc 420 |
ggctttggtg gaggccgctt tggaggtttt gggggccctg gtggtgttgg ag |
#gtttaggg 480 |
ggtcctggtg gctttgggcc tggaggatac cctggtggca tccacgaagt ct |
#ctgtcaac 540 |
cagagcctcc tgcagcctct caacgtgaaa gttgacccag agatccagaa tg |
#tgaaggcc 600 |
caagagcgtg agcagatcaa aactctcaac aacaaatttg cctccttcat tg |
#acaaggtg 660 |
cggttcttgg agcagcagaa ccaggtgtta cagaccaaat gggagctgct ac |
#aacaaatg 720 |
aatgttggca cccgccccat caacctggag cccatcttcc aggggtatat cg |
#acagcctc 780 |
aagagatatc tggatgggct cactgcagaa agaacatcac agaattcaga gc |
#tgaataac 840 |
atgcaggatc ttgtggagga ttataagaag aagtatgagg atgaaatcaa ta |
#agcgcaca 900 |
gctgctgaga atgattttgt gacgcttaaa aaggacgtgg acaatgccta ca |
#tgataaag 960 |
gtggagttgc agtccaaggt ggacctgctg aaccaggaaa ttgagtttct ga |
#aagttctc 1020 |
tatgatgcgg agatatccca gatacatcag agtgtcactg acaccaacgt ca |
#tcctctcc 1080 |
atggacaaca gccgcaacct ggacttggat agcatcatcg ccgaggtcaa gg |
#cccagtat 1140 |
gaggagatcg cccagaggag caaggaagaa gcggaggccc tgtaccacag ca |
#agtatgag 1200 |
gagctccagg tgactgtcgg gagacatgga gacagcctga aagagatcaa ga |
#tagagatc 1260 |
agcgagctga accgcgtgat ccagaggctg cagggggaga tcgcacatgt ga |
#agaagcag 1320 |
tgtaagaatg tgcaagatgc catcgcagat gccgagcagc gtggggagca tg |
#ccctcaag 1380 |
gatgccagga acaagttgaa tgacctggag gaggccctgc agcaggccaa gg |
#aggacttg 1440 |
gcgcggctgc tgcgtgacta ccaggagctg atgaacgtga agctggccct ag |
#atgtggag 1500 |
atcgccacct accgcaaact gctggagggc gaggagtgca ggatgtctgg ag |
#acctcagc 1560 |
agcaatgtga ctgtgtctgt gacaagcagc accatttcat caaatgtggc at |
#ccaaggct 1620 |
gcctttggag gttctggagg tagagggtcc agttccggag gaggatacag ct |
#ctggaagc 1680 |
agcagttatg gctctggagg ccgacagtct ggctccagag gcggtagtgg ag |
#gaggaggt 1740 |
tctatctctg gaggaggata tggctctggc ggtggttctg gaggaagata cg |
#gatctggt 1800 |
ggtggctcta agggagggtc catctctgga ggaggatatg gctctggagg tg |
#gaaaacac 1860 |
agctctggag gtggctctag aggaggctcc agctctggag gaggatatgg ct |
#ctggaggt 1920 |
gggggttcta gctctgtaaa gggtagctca ggtgaagctt ttggttccag cg |
#tgaccttc 1980 |
tcttttagat aaagatgagc ccccaccacc accgactctc ccaacccaga ct |
#ctcccact 2040 |
ccagaatgta gaagcctgtc tctgtacctc taactggcag caagttaaat tt |
#ttgtcatt 2100 |
tatctctgat ggcactttga gggaaaagaa tgtccacata cagtttttga aa |
#gatcttct 2160 |
ctccaaacca gttagttaga gccagtgacg cctctgtgtt ctggggcgga at |
#ctgtgctg 2220 |
tctaggtttg tgcttctagc catgcccatt cccgccccca ccatgcctct tt |
#gcattgcc 2280 |
cattttccag atgtgtattc tgttgaggac ccaggcccat ccagggattt ca |
#tctctaag 2340 |
cctggcagtg ctggggggaa atgtgtttct gtgtatatag ctcctcttgt cc |
#actctgct 2400 |
ttcggaagtg ctgtggtctg ggggtcttca taatataaac ctcatttggc aa |
#ttcaaaaa 2460 |
aaaaaaaaag gggggccccc ccacttattt agggggttcc cgacctccaa at |
#tcgcgaac 2520 |
cagggaaaaa ccggtttccc ggtggaaaaa ttgtaacccg cacaaaattt cc |
#ccaaaaat 2580 |
attggccccg gaacctaaaa ggtaaaaact cggggggccc aaagagtttg gc |
#aaacccca 2640 |
ataatttggg tgggcacaag gcccgtttcc catgggggaa acttttgtgc ca |
#cggcttta 2700 |
ataataggcc cc |
# |
# |
# 2712 |
<210> SEQ ID NO 41 |
<211> LENGTH: 645 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1798379CD1 |
<400> SEQUENCE: 41 |
Met Ser Cys Gln Ile Ser Cys Lys Ser Arg Gl |
#y Arg Gly Gly Gly |
1 5 |
# 10 |
# 15 |
Gly Gly Gly Phe Arg Gly Phe Ser Ser Gly Se |
#r Ala Val Val Ser |
20 |
# 25 |
# 30 |
Gly Gly Ser Arg Arg Ser Thr Ser Ser Phe Se |
#r Cys Leu Ser Arg |
35 |
# 40 |
# 45 |
His Gly Gly Gly Gly Gly Gly Phe Gly Gly Gl |
#y Gly Phe Gly Ser |
50 |
# 55 |
# 60 |
Arg Ser Leu Val Gly Leu Gly Gly Thr Lys Se |
#r Ile Ser Ile Ser |
65 |
# 70 |
# 75 |
Val Ala Gly Gly Gly Gly Gly Phe Gly Ala Al |
#a Gly Gly Phe Gly |
80 |
# 85 |
# 90 |
Gly Arg Gly Gly Gly Phe Gly Gly Gly Ser Gl |
#y Phe Gly Gly Gly |
95 |
# 100 |
# 105 |
Ser Gly Phe Gly Gly Gly Ser Gly Phe Ser Gl |
#y Gly Gly Phe Gly |
110 |
# 115 |
# 120 |
Gly Gly Gly Phe Gly Gly Gly Arg Phe Gly Gl |
#y Phe Gly Gly Pro |
125 |
# 130 |
# 135 |
Gly Gly Val Gly Gly Leu Gly Gly Pro Gly Gl |
#y Phe Gly Pro Gly |
140 |
# 145 |
# 150 |
Gly Tyr Pro Gly Gly Ile His Glu Val Ser Va |
#l Asn Gln Ser Leu |
155 |
# 160 |
# 165 |
Leu Gln Pro Leu Asn Val Lys Val Asp Pro Gl |
#u Ile Gln Asn Val |
170 |
# 175 |
# 180 |
Lys Ala Gln Glu Arg Glu Gln Ile Lys Thr Le |
#u Asn Asn Lys Phe |
185 |
# 190 |
# 195 |
Ala Ser Phe Ile Asp Lys Val Arg Phe Leu Gl |
#u Gln Gln Asn Gln |
200 |
# 205 |
# 210 |
Val Leu Gln Thr Lys Trp Glu Leu Leu Gln Gl |
#n Met Asn Val Gly |
215 |
# 220 |
# 225 |
Thr Arg Pro Ile Asn Leu Glu Pro Ile Phe Gl |
#n Gly Tyr Ile Asp |
230 |
# 235 |
# 240 |
Ser Leu Lys Arg Tyr Leu Asp Gly Leu Thr Al |
#a Glu Arg Thr Ser |
245 |
# 250 |
# 255 |
Gln Asn Ser Glu Leu Asn Asn Met Gln Asp Le |
#u Val Glu Asp Tyr |
260 |
# 265 |
# 270 |
Lys Lys Lys Tyr Glu Asp Glu Ile Asn Lys Ar |
#g Thr Ala Ala Glu |
275 |
# 280 |
# 285 |
Asn Asp Phe Val Thr Leu Lys Lys Asp Val As |
#p Asn Ala Tyr Met |
290 |
# 295 |
# 300 |
Ile Lys Val Glu Leu Gln Ser Lys Val Asp Le |
#u Leu Asn Gln Glu |
305 |
# 310 |
# 315 |
Ile Glu Phe Leu Lys Val Leu Tyr Asp Ala Gl |
#u Ile Ser Gln Ile |
320 |
# 325 |
# 330 |
His Gln Ser Val Thr Asp Thr Asn Val Ile Le |
#u Ser Met Asp Asn |
335 |
# 340 |
# 345 |
Ser Arg Asn Leu Asp Leu Asp Ser Ile Ile Al |
#a Glu Val Lys Ala |
350 |
# 355 |
# 360 |
Gln Tyr Glu Glu Ile Ala Gln Arg Ser Lys Gl |
#u Glu Ala Glu Ala |
365 |
# 370 |
# 375 |
Leu Tyr His Ser Lys Tyr Glu Glu Leu Gln Va |
#l Thr Val Gly Arg |
380 |
# 385 |
# 390 |
His Gly Asp Ser Leu Lys Glu Ile Lys Ile Gl |
#u Ile Ser Glu Leu |
395 |
# 400 |
# 405 |
Asn Arg Val Ile Gln Arg Leu Gln Gly Glu Il |
#e Ala His Val Lys |
410 |
# 415 |
# 420 |
Lys Gln Cys Lys Asn Val Gln Asp Ala Ile Al |
#a Asp Ala Glu Gln |
425 |
# 430 |
# 435 |
Arg Gly Glu His Ala Leu Lys Asp Ala Arg As |
#n Lys Leu Asn Asp |
440 |
# 445 |
# 450 |
Leu Glu Glu Ala Leu Gln Gln Ala Lys Glu As |
#p Leu Ala Arg Leu |
455 |
# 460 |
# 465 |
Leu Arg Asp Tyr Gln Glu Leu Met Asn Val Ly |
#s Leu Ala Leu Asp |
470 |
# 475 |
# 480 |
Val Glu Ile Ala Thr Tyr Arg Lys Leu Leu Gl |
#u Gly Glu Glu Cys |
485 |
# 490 |
# 495 |
Arg Met Ser Gly Asp Leu Ser Ser Asn Val Th |
#r Val Ser Val Thr |
500 |
# 505 |
# 510 |
Ser Ser Thr Ile Ser Ser Asn Val Ala Ser Ly |
#s Ala Ala Phe Gly |
515 |
# 520 |
# 525 |
Gly Ser Gly Gly Arg Gly Ser Ser Ser Gly Gl |
#y Gly Tyr Ser Ser |
530 |
# 535 |
# 540 |
Gly Ser Ser Ser Tyr Gly Ser Gly Gly Arg Gl |
#n Ser Gly Ser Arg |
545 |
# 550 |
# 555 |
Gly Gly Ser Gly Gly Gly Gly Ser Ile Ser Gl |
#y Gly Gly Tyr Gly |
560 |
# 565 |
# 570 |
Ser Gly Gly Gly Ser Gly Gly Arg Tyr Gly Se |
#r Gly Gly Gly Ser |
575 |
# 580 |
# 585 |
Lys Gly Gly Ser Ile Ser Gly Gly Gly Tyr Gl |
#y Ser Gly Gly Gly |
590 |
# 595 |
# 600 |
Lys His Ser Ser Gly Gly Gly Ser Arg Gly Gl |
#y Ser Ser Ser Gly |
605 |
# 610 |
# 615 |
Gly Gly Tyr Gly Ser Gly Gly Gly Gly Ser Se |
#r Ser Val Lys Gly |
620 |
# 625 |
# 630 |
Ser Ser Gly Glu Ala Phe Gly Ser Ser Val Th |
#r Phe Ser Phe Arg |
635 |
# 640 |
# 645 |
<210> SEQ ID NO 42 |
<211> LENGTH: 663 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 350650.1 |
<400> SEQUENCE: 42 |
ctgggccatg aaaagctccc tggagggaac cctggctgac acagaagctg gc |
#tacgtggc 60 |
tcagctgtca gaaattcaaa cgcagatcag tgccctggag gaggagatct gc |
#cagatctg 120 |
gggtgagact aaatgccaga acgcagagta caagcaattg ctggacatca ag |
#acacgcct 180 |
ggaggtggag atcgagacct accgccgcct gctcgatgga gagggaggtg gt |
#tctagttt 240 |
tgcagaattt ggtggtagaa actccaggat ctgtaaacat ggggatccca gg |
#gatctggg 300 |
tatctggtga ctcaagatct ggaagctgtt ctggtcaagg acgagattca ag |
#caagacta 360 |
gagtgactaa gactatcgta gaggagttgg tggatggcaa ggttgtctcg tc |
#tcaagtca 420 |
gcagtatttc tgaggtgaaa gttaaataag gaacttccag atcaacaaaa gt |
#gtctttca 480 |
aagaaaaaaa aatcaagaag gacacaagcg aagaaatggc atcaatctag gc |
#atctttct 540 |
ggataatttc aggaaaagct tcagtccaga aatggatgac tagccaactt tt |
#ctgcatct 600 |
tcttatttcc tcattagaat gctcttgaaa tagctgaatt aacaactttg ct |
#ttaattgt 660 |
ttg |
# |
# |
# 663 |
<210> SEQ ID NO 43 |
<211> LENGTH: 809 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 474630.24 |
<221> NAME/KEY: unsure |
<222> LOCATION: 511 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 43 |
ccgggagctg gagacgggct cccctcgcag agcctacggc cttcccccgc ct |
#ggccctgc 60 |
tcggcccggc gccccccggc ggtgccaacg cggcccttcg ttgttcccaa tg |
#gctgcggc 120 |
tggaagttcg agcccctgct gggggaggag ctggacctgc ggcgcgtcac gt |
#ggcggctg 180 |
cccccggagc tcatcccgcg cctgtcggcc agcagcgggc gctcctccga cg |
#ccgaggcg 240 |
ccccacgggc ccccggacga cggcggcgcg ggcgggaagg gcggcagcct gc |
#cccgcagt 300 |
gcgacacccg ggccccccgg aggtgacagg ctcacccgcc gccccccgat cc |
#gcgcccac 360 |
ccagcctcac tcgcgcctga gggccctggg gtgggcgtct gcgctgcctc gg |
#gggcccca 420 |
gtctcagcca ggcacgggcc ttggcggctg ggagcacagc tgctcagagg ca |
#gggcccag 480 |
tgccagggga cgcgtgaggc aggcgcttgg ncccttatgg tgcctgcctg gc |
#cagggggt 540 |
gcaaattcag aagtctgccc gggaagcgga ccctggcacc caagtagacc cc |
#tcaggggc 600 |
ctcaaaggac aggagggaag gcttggggat ctccccaggg cagagctgac tg |
#cagacgca 660 |
gcaaaccccc gccactgcca gggtcagcag tgctcacacc gatagagtgg cc |
#ggccagag 720 |
gatatgggct gtggaagcct gggtggccct tgggctcctg ctaggacaga gg |
#gcctctgt 780 |
ccctagtggt ttgagggaaa ctggttgta |
# |
# 809 |
<210> SEQ ID NO 44 |
<211> LENGTH: 295 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 108089.1 |
<400> SEQUENCE: 44 |
gggaactagg tcttggccct ttctacagct tttctcctgc aaagggtcca gc |
#cttttcct 60 |
gctccccacg ttgtccttac ggctgtgtgg ggtagggcag ggtccacact cc |
#ttcccatc 120 |
cattttagag gaggaagctg gagtctggga agggatggga ttttcccagg gc |
#accctgtg 180 |
agtcacatgc cacttgagac aagggtctag agctccagca ttttccaagc ta |
#caaatgta 240 |
tctgctgctc caagtgtccg ccagggtcgg cctcagagct ggcaggagtt cg |
#gtg 295 |
<210> SEQ ID NO 45 |
<211> LENGTH: 1744 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3346307CB1 |
<400> SEQUENCE: 45 |
ccaaggggga ggtgcgagcg tggacctggg acgggtctgg gcggctctcg gt |
#ggttggca 60 |
cgggttcgca cacccattca agcggcagga cgcacttgtc ttagcagttc tc |
#gctgaccg 120 |
cgctagctgc ggcttctacg ctccggcact ctgagttcat cagcaaacgc cc |
#tggcgtct 180 |
gtcctcacca tgcctagcct ttgggaccgc ttctcgtcgt cgtccacctc ct |
#cttcgccc 240 |
tcgtccttgc cccgaactcc caccccagat cggccgccgc gctcagcctg gg |
#ggtcggcg 300 |
acccgggagg aggggtttga ccgctccacg agcctggaga gctcggactg cg |
#agtccctg 360 |
gacagcagca acagtggctt cgggccggag gaagacacgg cttacctgga tg |
#gggtgtcg 420 |
ttgcccgact tcgagctgct cagtgaccct gaggatgaac acttgtgtgc ca |
#acctgatg 480 |
cagctgctgc aggagagcct ggcccaggcg cggctgggct ctcgacgccc tg |
#cgcgcctg 540 |
ctgatgccta gccagttggt aagccaggtg ggcaaagaac tactgcgcct gg |
#cctacagc 600 |
gagccgtgcg gcctgcgggg ggcgctgctg gacgtctgcg tggagcaggg ca |
#agagctgc 660 |
cacagcgtgg gccagctggc actcgacccc agcctggtgc ccaccttcca gc |
#tgaccctc 720 |
gtgctgcgcc tggactcacg actctggccc aagatccagg ggctgtttag ct |
#ccgccaac 780 |
tctcccttcc tccctggctt cagccagtcc ctgacgctga gcactggctt cc |
#gagtcatc 840 |
aagaagaagc tgtacagctc ggaacagctg ctcattgagg agtgttgaac tt |
#caacctga 900 |
gggggccgac agtgccctcc aagacagaga cgactgaact tttggggtgg ag |
#actagagg 960 |
caggagctga gggactgatt ccagtggttg gaaaactgag gcagccacct aa |
#ggtggagg 1020 |
tgggggaata gtgtttccca ggaagctcat tgagttgtgt gcgggtggct gt |
#gcattggg 1080 |
gacacatacc cctcagtact gtagcatgaa acaaaggctt aggggccaac aa |
#ggcttcca 1140 |
gctggatgtg tgtgtagcat gtaccttatt atttttgtta ctgacagtta ac |
#agtggtgt 1200 |
gacatccaga gagcagctgg gctgctcccg ccccagcccg gcccagggtg aa |
#ggaagagg 1260 |
cacgtgctcc tcagagcagc cggagggagg ggggaggtcg gaggtcgtgg ag |
#gtggtttg 1320 |
tgtatcttac tggtctgaag ggaccaagtg tgtttgttgt ttgttttgta tc |
#ttgttttt 1380 |
ctgatcggag catcactact gacctgttgt aggcagctat cttacagacg ca |
#tgaatgta 1440 |
agagtaggaa ggggtgggtg tcagggatca cttgggatct ttgacacttg aa |
#aaattaca 1500 |
cctggcagct gcgtttaagc cttcccccat cgtgtactgc agagttgagc tg |
#gcagggga 1560 |
ggggctgaga gggtgggggc tggaacccct ccccgggagg agtgccatct gg |
#gtcttcca 1620 |
tctagaactg tttacatgaa gataagatac tcactgttca tgaatacact tg |
#atgttcaa 1680 |
gtattaagac ctatgcaata ttttttactt ttctaataaa catgtttgtt aa |
#aacaaaaa 1740 |
aaaa |
# |
# |
# 1744 |
<210> SEQ ID NO 46 |
<211> LENGTH: 232 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3346307CD1 |
<400> SEQUENCE: 46 |
Met Pro Ser Leu Trp Asp Arg Phe Ser Ser Se |
#r Ser Thr Ser Ser |
1 5 |
# 10 |
# 15 |
Ser Pro Ser Ser Leu Pro Arg Thr Pro Thr Pr |
#o Asp Arg Pro Pro |
20 |
# 25 |
# 30 |
Arg Ser Ala Trp Gly Ser Ala Thr Arg Glu Gl |
#u Gly Phe Asp Arg |
35 |
# 40 |
# 45 |
Ser Thr Ser Leu Glu Ser Ser Asp Cys Glu Se |
#r Leu Asp Ser Ser |
50 |
# 55 |
# 60 |
Asn Ser Gly Phe Gly Pro Glu Glu Asp Thr Al |
#a Tyr Leu Asp Gly |
65 |
# 70 |
# 75 |
Val Ser Leu Pro Asp Phe Glu Leu Leu Ser As |
#p Pro Glu Asp Glu |
80 |
# 85 |
# 90 |
His Leu Cys Ala Asn Leu Met Gln Leu Leu Gl |
#n Glu Ser Leu Ala |
95 |
# 100 |
# 105 |
Gln Ala Arg Leu Gly Ser Arg Arg Pro Ala Ar |
#g Leu Leu Met Pro |
110 |
# 115 |
# 120 |
Ser Gln Leu Val Ser Gln Val Gly Lys Glu Le |
#u Leu Arg Leu Ala |
125 |
# 130 |
# 135 |
Tyr Ser Glu Pro Cys Gly Leu Arg Gly Ala Le |
#u Leu Asp Val Cys |
140 |
# 145 |
# 150 |
Val Glu Gln Gly Lys Ser Cys His Ser Val Gl |
#y Gln Leu Ala Leu |
155 |
# 160 |
# 165 |
Asp Pro Ser Leu Val Pro Thr Phe Gln Leu Th |
#r Leu Val Leu Arg |
170 |
# 175 |
# 180 |
Leu Asp Ser Arg Leu Trp Pro Lys Ile Gln Gl |
#y Leu Phe Ser Ser |
185 |
# 190 |
# 195 |
Ala Asn Ser Pro Phe Leu Pro Gly Phe Ser Gl |
#n Ser Leu Thr Leu |
200 |
# 205 |
# 210 |
Ser Thr Gly Phe Arg Val Ile Lys Lys Lys Le |
#u Tyr Ser Ser Glu |
215 |
# 220 |
# 225 |
Gln Leu Leu Ile Glu Glu Cys |
230 |
<210> SEQ ID NO 47 |
<211> LENGTH: 897 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 200143.25 |
<400> SEQUENCE: 47 |
ccccagggca gggagcaggt tatgaccagg actaaggtcc cagagtcccc ac |
#cctgaccc 60 |
ctccctgctg ttccagccgc tccctcatat ccacccctgc cccatctcct ga |
#ctttggtc 120 |
acgctagcat cttctgctga tcctgaaatt gtaccagcgg caagatgtgg cc |
#tggaaggg 180 |
gactttaagt tctccacaac tgccagcaat ccttccacca ggcaaaacac at |
#catctaag 240 |
gaaaagaagt gaggtcggaa caccaacgca tcatctcact gcatggccct gg |
#aggctctg 300 |
ccgtttaaag accccagaac cttccccatt caaggtcctc tcctgggcac ag |
#gagattgg 360 |
agaaagctcc tcccttaatt ccagggaccg agttccagcc catccaattc tc |
#cgtctcac 420 |
ctgaggctgc tgtggtcctg gtgaccccag ggagcaacct gccgcccatg gc |
#tggggagg 480 |
gggtgaagct gtctctttaa gagcaggaat ggagcccctg ggcctcaggg ca |
#tctgactt 540 |
gttttctacc tgcccaggtt tgcttagggc gtggcagctt cggataaacg ca |
#ggactccg 600 |
cctggcagcc cgatttctcc cggaacctct gctcagcctg gtgaaccaca ca |
#ggtgagca 660 |
gctggggccc cttcctccaa gccctccttg tctctgcccc taaattagga ag |
#tatctacc 720 |
tgccccctga ccctgcccca tagaagcttt tatgttaaag cgcctaaaat ct |
#tgtgaaat 780 |
gcttttctgg agccaggaga taaacggaag tcccttcccc taatgtccct tt |
#ccccacca 840 |
ttctcctctc agggacttgt tgaaccagct gaggccagcg ctctgacatg ca |
#gaagg 897 |
<210> SEQ ID NO 48 |
<211> LENGTH: 1827 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 001929.1 |
<400> SEQUENCE: 48 |
ccttgacaat ctgtctgtcc gtctgcagct gcgtgactgt ctgtctctgc ca |
#tgtctctc 60 |
tccccatgcc gggcccagag gggcttcagc gctcgctcag cctgttctgc tc |
#gctcaagg 120 |
ggccgcagca ggggaggctt cagcagcagg ggcggcttca gcagcaggag cc |
#ttaattcc 180 |
tttggggggt gcctggaagg ctctcgtggg agtacctggg ggtcaggggg ta |
#ggctgggg 240 |
gtgcggtttg gggagtggag tggtgggcct gggctctccc tgtgccctcc gg |
#ggggcatc 300 |
caagaagtga ccatcaacca gaatccgctg accccactga agattgagat cg |
#atccccag 360 |
ttccaggtgg tgcggacgca ggagacccag gagatcagaa ccctcaacaa cc |
#agtttgct 420 |
tccttcattg acaaggtgcg gttcctggag cagcagaaca aggtcctgga ga |
#cgaagtgg 480 |
catctgctgc agcaacaggg gttgagtggc agccagcagg gcctggagcc tg |
#tctttgag 540 |
gcctgcctgg atcagctcag gaagcagctg gagcagctcc agggagaacg ag |
#gggctctg 600 |
gatgctgagt tgaaggcctg ccgggaccag gaggaggagt ataagtccaa gt |
#atgaggag 660 |
gaggcccaca ggcgtgccac acttgagaac gactttgtgg tcctcaagaa gg |
#atgtggat 720 |
ggggttttcc tgagcaagat ggagttggag ggcaagctgg aggctctgag ag |
#agtacctc 780 |
tacttcttga agcatctgaa tgaagaagag ctgggccagc tccagaccca gg |
#ccagcgac 840 |
acgtctgtgg tgctgtccat ggacaacaac cgctacctgg acttcagcag ca |
#tcatcact 900 |
gaggtccgcg cccggtacga ggagatcgcc cggagcagca aggctgaggc tg |
#aggccttg 960 |
taccagacca agtaccagga acttcaggtg tctgcccagc ttcatgggga ca |
#ggatgcag 1020 |
gaaacgaaag tccagatctc tcagctacac caagagattc agaggctgca ga |
#gtcagact 1080 |
gagaacctca agaagcagaa cgccagcctg caggccgcca tcactgatgc tg |
#agcagcgt 1140 |
ggggagctgg ccctcaagga cgctcaggcc aaggtggacg agctggaggc tg |
#ctctgagg 1200 |
atggccaagc agaacctggc ccggctgctg tgcgagtacc aggagctgac ga |
#gcacgaag 1260 |
ctttccctgg atgtggagat tgccacttac cgcaggctgc tggagggcga gg |
#agtgcagg 1320 |
atgtctgggg agtgcaccag ccaggtcact atctcctcgg tgggaggcag cg |
#ctgtcatg 1380 |
tctggaggag ttggtggagg cttggggagc acttgtggac tcggtagtgg ga |
#aaggcagc 1440 |
cctgggtcct gctgcaccag cattgtgact ggaggctcca acatcattct gg |
#gctctggg 1500 |
aaggaccctg ttttggattc ctgctctgtg tctggctcca gcgctggctc ca |
#gctgccac 1560 |
accatcctga agaagacagt tgagtcgagt ctgaagacat ccatcaccta ct |
#gagcgacc 1620 |
cagcagccac ctccttcctg aacacatttg gcccactccc cccatcagcc gg |
#ctctgcaa 1680 |
ggccaactcc gtgtccgctg cccacagccc aagccagccc acagcggatg ct |
#gcaaaaat 1740 |
caataaagtc tcccctcctg ctgttctgaa tgctctaagt gcttgcacac ct |
#cacccagc 1800 |
aaaacaaaag ctgtgtgact ccccagc |
# |
# 1827 |
<210> SEQ ID NO 49 |
<211> LENGTH: 3936 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1088524.8 |
<221> NAME/KEY: unsure |
<222> LOCATION: 2060-2170, 3796, 3799, 3816 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 49 |
taaacacagc tgcgatgacg aaccctttca cgggaaggaa catgcgagcc ca |
#gaaaagtc 60 |
tctcctggtc ttgggatgga ggtcacacga agcctccgca aggcaaggac tt |
#ttgcggct 120 |
tctgcaacca agcgggtctt acccccggtc ctccgcgtct ccagtcctcg ca |
#cctggaac 180 |
cccaacgtcc ccgagagtcc ccgaatcccc gctcccaggc tacctaagag ga |
#tgagcggt 240 |
gctccgacgg ccggggcagc cctgatgctc tgcgccgcca ccgccgtgct ac |
#tgagcgct 300 |
cagggcggac ccgtgcagtc caagtcgccg cgctttgcgt cctgggacga ga |
#tgaatgtc 360 |
ctggcgcacg gactcctgca gctcggccag gggctgcgcg aacacgcgga gc |
#gcacccgc 420 |
agtcagctga gcgcgctgga gcggcgcctg agcgcgtgcg ggtccgcctg tc |
#agggaacc 480 |
gaggggtcca ccgacctccc gttagcccct gagagccggg tggaccctga gg |
#tccttcac 540 |
agcctgcaga cacaactcaa ggctcagaac agcaggatcc agcaactctt cc |
#acaaggtg 600 |
gcccagcagc agcggcacct ggagaagcag cacctgcgaa ttcagcatct gc |
#aaagccag 660 |
tttggcctcc tggaccacaa gcacctagac catgaggtgg ccaagcctgc cc |
#gaagaaag 720 |
aggctgcccg agatggccca gccagttgac ccggctcaca atgtcagccg cc |
#tgcaccgg 780 |
ctgcccaggg attgccagga gctgttccag gttggggaga ggcagagtgg ac |
#tatttgaa 840 |
atccagcctc aggggtctcc gccatttttg gtgaactgca agatgacctc ag |
#atggaggc 900 |
tggacagtaa ttcagaggcg ccacgatggc tcagtggact tcaaccggcc ct |
#gggaagcc 960 |
tacaaggcgg ggtttgggga tccccacggc gagttctggc tgggtctgga ga |
#aggtgcat 1020 |
agcatcaccg ggggaccgca acagccgcct ggccgtgcag ctgcgggact gg |
#gatggcaa 1080 |
cgccgagttg ctgcagttct ccgtgcacct gggtggcgag gacacggcct at |
#agcctgca 1140 |
gctcactgca cccgtggccg gccagctggg cgccaccacc gtcccaccca gc |
#ggcctctc 1200 |
cgtacccttc tccacttggg accaggatca cgacctccgc agggacaaga ac |
#tgcgccaa 1260 |
gagcctctct ggaggctggt ggtttggcac ctgcagccat tccaacctca ac |
#ggccagta 1320 |
cttccgctcc atcccacagc agcggcagaa gcttaagaag ggaatcttct gg |
#aagacctg 1380 |
gcggggccgc tactacccgc tgcaggccac caccatgttg atccagccca tg |
#gcagcaga 1440 |
ggcagcctcc tagcgtcctg gctgggcctg gtcccaggcc cacgaaagac gg |
#tgactctt 1500 |
ggctctgccc gaggatgtgg ccgttccctg cctgggcagg ggctccaagg ag |
#gggccatc 1560 |
tggaaacttg tggacagaga agaagaccac gactggagaa gccccctttc tg |
#agtgcagg 1620 |
ggggctgcat gcgttgcctc ctgagatcga ggctgcagga tatgctcaga ct |
#ctagaggc 1680 |
gtggaccaag gggcatggag cttcactcct tgctggccag ggagttgggg ac |
#tcagaggg 1740 |
accacttggg gccagccaga ctggcctcaa tggcggactc agtcacattg ac |
#tgacgggg 1800 |
accagggctt gtgtgggtcg agagcgccct catggtgctg gtgctgttgt gt |
#gtaggtcc 1860 |
cctggggaca caagcaggcg ccaatggtat ctgggcggag ctcacagagt tc |
#ttggaata 1920 |
aaagcaacct cagaacactt tgttctttgt tcttgtttgt tttctttctt tt |
#ttttctct 1980 |
ttctttagtt cacagatcta gtaagttacc ctcagtttgt tttaaaaagt ga |
#acaaagtc 2040 |
catgtaaaca tgttcccagn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 2100 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 2160 |
nnnnnnnnnn catctcgcaa gggtccatgg cttcattctt gaagtcagtg ag |
#accaagaa 2220 |
ccccccaatt ccggacacag tgccactgca ctccagccca ggcaacagag cg |
#agattctg 2280 |
tctggacgta gccccatttc tcttcccgga caggtcctct gatagtcggg ta |
#ggttctca 2340 |
atcaagcctc tcattagtta tttggtctgt caatccattt cattcctgca gt |
#cttccgcc 2400 |
ccgccctctt gagctcgccc ctgataggct ggcgcgtccg tcacttcaaa aa |
#ggtccgca 2460 |
ttccttccgc ctttctccag gacaccgagg gcgaggaggg tggtaccaag cg |
#gcgcccac 2520 |
cctcagagca ctacttccat ctctgattgg cttcgctggg tgcccgtcgc ta |
#ctccactc 2580 |
gccgatcccg ccggaagcgc caggacaatg gggacccggg acgacgagta cg |
#actaccta 2640 |
ttcaaagtgg tgctcatcgg ggactcaggc gtgggcaaga gcaacctgct gt |
#cgcgcttc 2700 |
acccgcaacg agttcaacct ggagagcaag agcaccatcg gcgtggagtt cg |
#ccacccgc 2760 |
agcatccagg tggacggcaa gaccatcaag gcgcagatct gggacaccgc tg |
#gccaggag 2820 |
cgctaccgcg ccatcacctc cgcgtactac cgtggtgcag tgggcgccct gc |
#tggtgtac 2880 |
gacatcgcca agcacctgac ctatgagaac gtggagcgct ggctgaagga gc |
#tgcgggac 2940 |
cacgcagaca gcaacatcgt catcatgctg gtgggcaaca agagtgacct gc |
#gccacctg 3000 |
cgggctgtgc ccactgacga ggcccgcgcc ttcgcagaaa agaacaactt gt |
#ccttcatc 3060 |
gagacctcag ccttggattc cactaacgta gaggaagcat tcaagaacat cc |
#tcacagag 3120 |
atctaccgca tcgtgtcaca gaaacagatc gcagaccgtg ctgcccacga cg |
#agtccccg 3180 |
gggaacaacg tggtggacat cagcgtgccg cccaccacgg acggacagaa gc |
#ccaacaag 3240 |
ctgcagtgct gccagaacct gtgacccctg cgcctccacc cagcgtgcgt gc |
#acgtcctc 3300 |
cgcccgtccc cgccacggta tcctctggcc cctccctgct gtccctctgt gg |
#ccggctcg 3360 |
ttccagccct cccagtgagc tctgcacggc cgggccgggg cccaggaagg ac |
#aggagcca 3420 |
gtgctacccc gtcctgcccg gggaaaagct agaagccccg gtttgctgca cc |
#catgaaac 3480 |
tcgggtcccc acagcgtctt ggcggggtgg ggagggcggc aggatggacg gg |
#gctggcca 3540 |
gaggcgagga ggacgggcgg acggcgccgc cttctcccct tttccttggc cg |
#actctagg 3600 |
gagcgattgc ctccctccct ctgtgaccgg gtggcccagc cagcccgtcg tc |
#cccaccca 3660 |
gaaccgtgct ctgggccaaa gcccgaagaa ccaggcagcg ggggccgggg ca |
#ggcggacc 3720 |
ccccgggctc tcagcgccca cccgctcctc cgcacacagc agctcgcaca gg |
#cctcccac 3780 |
tctgcctgtc cccctnctnt gtctcgtctc cccatntggt ctggaacctg tt |
#tgcaagtg 3840 |
aagcaatatc tccgtgtttt gtagtataca accgctcttg tagcctttgg tt |
#tgtgttaa 3900 |
tgtagagaaa ctcagattct ttatacactt ttgtaa |
# |
# 3936 |
<210> SEQ ID NO 50 |
<211> LENGTH: 1114 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 632664CB1 |
<400> SEQUENCE: 50 |
gccgcctctg ccgccgcgga cttcccgaac ctcttcagcc gcccggagcc gc |
#tcccggag 60 |
cccggccgta gaggctgcaa tcgcagccgg tgagcccgca gcccgcgccc cg |
#agcccgcc 120 |
gccgcccttc gagggcgccc caggccgcgc catggtgaag gtgacgttca ac |
#tccgctct 180 |
ggcccagaag gaggccaaga aggacgagcc caagagcggc gaggaggcgc tc |
#atcatccc 240 |
ccccgacgcc gtcgcggtgg actgcaagga cccagatgat gtggtaccag tt |
#ggccaaag 300 |
aagagcctgg tgttggtgca tgtgctttgg actagcattt atgcttgcag gt |
#gttattct 360 |
aggaggagca tacttgtaca aatattttgc acttcaacca gatgacgtgt ac |
#tactgtgg 420 |
aataaagtac atcaaagatg atgtcatctt aaatgagccc tctgcagatg cc |
#ccagctgc 480 |
tctctaccag acaattgaag aaaatattaa aatctttgaa gaagaagaag tt |
#gaatttat 540 |
cagtgtgcct gtcccagagt ttgcagatag tgatcctgcc aacattgttc at |
#gactttaa 600 |
caagaaactt acagcctatt tagatcttaa cctggataag tgctatgtga tc |
#cctctgaa 660 |
cacttccatt gttatgccac ccagaaacct actggagtta cttattaaca tc |
#aaggctgg 720 |
aacctatttg cctcagtcct atctgattca tgagcacatg gttattactg at |
#cgcattga 780 |
aaacattgat cacctgggtt tctttattta tcgactgtgt catgacaagg aa |
#acttacaa 840 |
actgcaacgc agagaaacta ttaaaggtat tcagaaacgt gaagccagca at |
#tgtttcgc 900 |
aattcggcat tttgaaaaca aatttgccgt ggaaacttta atttgttctt ga |
#acagtcaa 960 |
gaaaaacatt attgaggaaa attaatatca cagcataacc ccacccttta ca |
#ttttgtgc 1020 |
agtgattatt ttttaaagtc ttctttcatg taagtagcaa acagggcttt ac |
#tatctttt 1080 |
catctcatta attcaattaa aaccattacc ttaa |
# |
# 1114 |
<210> SEQ ID NO 51 |
<211> LENGTH: 266 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 632664CD1 |
<400> SEQUENCE: 51 |
Met Val Lys Val Thr Phe Asn Ser Ala Leu Al |
#a Gln Lys Glu Ala |
1 5 |
# 10 |
# 15 |
Lys Lys Asp Glu Pro Lys Ser Gly Glu Glu Al |
#a Leu Ile Ile Pro |
20 |
# 25 |
# 30 |
Pro Asp Ala Val Ala Val Asp Cys Lys Asp Pr |
#o Asp Asp Val Val |
35 |
# 40 |
# 45 |
Pro Val Gly Gln Arg Arg Ala Trp Cys Trp Cy |
#s Met Cys Phe Gly |
50 |
# 55 |
# 60 |
Leu Ala Phe Met Leu Ala Gly Val Ile Leu Gl |
#y Gly Ala Tyr Leu |
65 |
# 70 |
# 75 |
Tyr Lys Tyr Phe Ala Leu Gln Pro Asp Asp Va |
#l Tyr Tyr Cys Gly |
80 |
# 85 |
# 90 |
Ile Lys Tyr Ile Lys Asp Asp Val Ile Leu As |
#n Glu Pro Ser Ala |
95 |
# 100 |
# 105 |
Asp Ala Pro Ala Ala Leu Tyr Gln Thr Ile Gl |
#u Glu Asn Ile Lys |
110 |
# 115 |
# 120 |
Ile Phe Glu Glu Glu Glu Val Glu Phe Ile Se |
#r Val Pro Val Pro |
125 |
# 130 |
# 135 |
Glu Phe Ala Asp Ser Asp Pro Ala Asn Ile Va |
#l His Asp Phe Asn |
140 |
# 145 |
# 150 |
Lys Lys Leu Thr Ala Tyr Leu Asp Leu Asn Le |
#u Asp Lys Cys Tyr |
155 |
# 160 |
# 165 |
Val Ile Pro Leu Asn Thr Ser Ile Val Met Pr |
#o Pro Arg Asn Leu |
170 |
# 175 |
# 180 |
Leu Glu Leu Leu Ile Asn Ile Lys Ala Gly Th |
#r Tyr Leu Pro Gln |
185 |
# 190 |
# 195 |
Ser Tyr Leu Ile His Glu His Met Val Ile Th |
#r Asp Arg Ile Glu |
200 |
# 205 |
# 210 |
Asn Ile Asp His Leu Gly Phe Phe Ile Tyr Ar |
#g Leu Cys His Asp |
215 |
# 220 |
# 225 |
Lys Glu Thr Tyr Lys Leu Gln Arg Arg Glu Th |
#r Ile Lys Gly Ile |
230 |
# 235 |
# 240 |
Gln Lys Arg Glu Ala Ser Asn Cys Phe Ala Il |
#e Arg His Phe Glu |
245 |
# 250 |
# 255 |
Asn Lys Phe Ala Val Glu Thr Leu Ile Cys Se |
#r |
260 |
# 265 |
<210> SEQ ID NO 52 |
<211> LENGTH: 1189 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 457372.17 |
<400> SEQUENCE: 52 |
acaggtgtga gccaccacac ccagcagttt ttttaaggtc acaaaatgac aa |
#gactagga 60 |
tttggaccca gttctgttcg actcaaaata gagtgcccta cacttatgtg tc |
#atgctgca 120 |
tttggcaagt cacgtcactt ctttgaatct ccttttccct ctgcaaaaca gt |
#aaccttat 180 |
ctagcctgca gacttcaaag gtggttatgg agatcaaatg aagtaaaatg tt |
#ttaaaaat 240 |
tgtacaatat ataccaataa aagctattgg ggaggtatat gtatgaacag gt |
#agttggtt 300 |
tttctaccct gccacctcat aaagagtttg cagtggcacg tagaagggtt ta |
#tcttatta 360 |
tcacaaagct acccatttgc tggccatact gatacttggc acattaaact at |
#cagagaaa 420 |
tatatgtggc tcctttacaa ctgtgtctag aagggtacat ttccaatcag ag |
#ttcccagg 480 |
ttctgacttt ctcccattac atatttgtaa ttagtcatct ttgatactga tt |
#caaatttt 540 |
tgattaacat taattatata tatttacaag aatcttataa aaattaagat tt |
#tatttcac 600 |
ctcattttgc cctgtgagat agatggaaat agactatatt ctacccaggt ta |
#aaagtaca 660 |
gataatgaga caaaatgtca atagaacctg aaaaaagatt tttttagttg cc |
#tctagtct 720 |
ctgtttactt ggtatagata gtatgctgct tttttttctt ttttttaaaa tg |
#taactgct 780 |
gggttgtttt ttttttcttg ttttttcttt ccctccagga tacaatgtct ct |
#ttgctata 840 |
tgaccttgaa aatcttccgg catccaagga ttccattgtg catcaagctg gc |
#atgttgaa 900 |
gcgaaattgt tttgcctctg tctttgaaaa atacttccaa ttccaagaag ag |
#ggcaagga 960 |
aggagagaac agggcagtta tccattatag ggatgatgag accatgtatg tt |
#gagtctaa 1020 |
aaaggacaga gtcacagtag tcttcagcac agtgtttaag gatgacgacg at |
#gtggtcat 1080 |
tggaaaggtg ttcatgcagg tatggagcag acatcttggg ggaaacccat gc |
#atggcgac 1140 |
ttataccttt gcacccaaac ataccatgag cgtaggaaag agatctagc |
# 1189 |
<210> SEQ ID NO 53 |
<211> LENGTH: 2539 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2993696CB1 |
<400> SEQUENCE: 53 |
ctcgagccgc aagacagcac agacagattg acctattggg gtgtttcgcg ag |
#tgtgagag 60 |
ggaagcgccg cggcctgtat ttctagacct gcccttcgcc tggttcgtgg cg |
#ccttgtga 120 |
ccccgggccc ctgccgcctg caagtcggaa attgcgctgt gctcctgtgc ta |
#cggcctgt 180 |
ggctggactg cctgctgctg cccaactggc tggcaagatg aagctctccc tg |
#gtggccgc 240 |
gatgctgctg ctgctcagcg cggcgcgggc cgaggaggag gacaagaagg ag |
#gacgtggg 300 |
cacggtggtc ggcatcgacc tggggaccac ctactcctgc gtcggcgtgt tc |
#aagaacgg 360 |
ccgcgtggag atcatcgcca acgatcaggg caaccgcatc acgccgtcct at |
#gtcgcctt 420 |
cactcctgaa ggggaacgtc tgattggcga tgccgccaag aaccagctca cc |
#tccaaccc 480 |
cgagaacacg gtctttgacg ccaagcggct catcggccgc acgtggaatg ac |
#ccgtctgt 540 |
gcagcaggac atcaagttct tgccgttcaa ggtggttgaa aagaaaacta aa |
#ccatacat 600 |
tcaagttgat attggaggtg ggcaaacaaa gacatttgct cctgaagaaa tt |
#tctgccat 660 |
ggttctcact aaaatgaaag aaaccgctga ggcttatttg ggaaagaagg tt |
#acccatgc 720 |
agttgttact gtaccagcct attttaatga tgcccaacgc caagcaacca aa |
#gacgctgg 780 |
aactattgct ggcctaaatg ttatgaggat catcaacgag cctacggcag ct |
#gctattgc 840 |
ttatggcctg gataagaggg agggggagaa gaacatcctg gtgtttgacc tg |
#ggtggcgg 900 |
aaccttcgat gtgtctcttc tcaccattga caatggtgtc ttcgaagttg tg |
#gccactaa 960 |
tggagatact catctgggtg gagaagactt tgaccagcgt gtcatggaac ac |
#ttcatcaa 1020 |
actgtacaaa aagaagacgg gcaaagatgt caggaaagac aatagagctg tg |
#cagaaact 1080 |
ccggcgcgag gtagaaaagg ccaaacgggc cctgtcttct cagcatcaag ca |
#agaattga 1140 |
aattgagtcc ttctatgaag gagaagactt ttctgagacc ctgactcggg cc |
#aaatttga 1200 |
agagctcaac atggatctgt tccggtctac tatgaagccc gtccagaaag tg |
#ttggaaga 1260 |
ttctgatttg aagaagtctg atattgatga aattgttctt gttggtggct cg |
#actcgaat 1320 |
tccaaagatt cagcaactgg ttaaagagtt cttcaatggc aaggaaccat cc |
#cgtggcat 1380 |
aaacccagat gaagctgtag cgtatggtgc tgctgtccag gctggtgtgc tc |
#tctggtga 1440 |
tcaagataca ggtgacctgg tactgcttga tgtatgtccc cttacacttg gt |
#attgaaac 1500 |
tgtgggaggt gtcatgacca aactgattcc aaggaacaca gtggtgccta cc |
#aagaagtc 1560 |
tcagatcttt tctacagctt ctgataatca accaactgtt acaatcaagg tc |
#tatgaagg 1620 |
tgaaagaccc ctgacaaaag acaatcatct tctgggtaca tttgatctga ct |
#ggaattcc 1680 |
tcctgctcct cgtggggtcc cacagattga agtcaccttt gagatagatg tg |
#aatggtat 1740 |
tcttcgagtg acagctgaag acaagggtac agggaacaaa aataagatca ca |
#atcaccaa 1800 |
tgaccagaat cgcctgacac ctgaagaaat cgaaaggatg gttaatgatg ct |
#gagaagtt 1860 |
tgctgaggaa gacaaaaagc tcaaggagcg cattgatact agaaatgagt tg |
#gaaagcta 1920 |
tgcctattct ctaaagaatc agattggaga taaagaaaag ctgggaggta aa |
#ctttcctc 1980 |
tgaagataag gagaccatgg aaaaagctgt agaagaaaag attgaatggc tg |
#gaaagcca 2040 |
ccaagatgct gacattgaag acttcaaagc taagaagaag gaactggaag aa |
#attgttca 2100 |
accaattatc agcaaactct atggaagtgc aggccctccc ccaactggtg aa |
#gaggatac 2160 |
agcagaaaaa gatgagttgt agacactgat ctgctagtgc tgtaatattg ta |
#aatactgg 2220 |
actcaggaac ttttgttagg aaaaaattga aagaacttaa gtctcgaatg ta |
#attggaat 2280 |
cttcacctca gagtggagtt gaaactgcta tagcctaagc ggctgtttac tg |
#cttttcat 2340 |
tagcagttgc tcacatgtct ttgggtgggg gggagaagaa gaattggcca tc |
#ttaaaaag 2400 |
cgggtaaaaa acctgggtta gggtgtgtgt tcaccttcaa aatgttctat tt |
#aacaactg 2460 |
ggtcatgtgc atctggtgta ggaagttttt tctaccataa gtgacaccaa ta |
#aatgtttg 2520 |
ttatttacac tggtaagcg |
# |
# 253 |
#9 |
<210> SEQ ID NO 54 |
<211> LENGTH: 654 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2993696CD1 |
<400> SEQUENCE: 54 |
Met Lys Leu Ser Leu Val Ala Ala Met Leu Le |
#u Leu Leu Ser Ala |
1 5 |
# 10 |
# 15 |
Ala Arg Ala Glu Glu Glu Asp Lys Lys Glu As |
#p Val Gly Thr Val |
20 |
# 25 |
# 30 |
Val Gly Ile Asp Leu Gly Thr Thr Tyr Ser Cy |
#s Val Gly Val Phe |
35 |
# 40 |
# 45 |
Lys Asn Gly Arg Val Glu Ile Ile Ala Asn As |
#p Gln Gly Asn Arg |
50 |
# 55 |
# 60 |
Ile Thr Pro Ser Tyr Val Ala Phe Thr Pro Gl |
#u Gly Glu Arg Leu |
65 |
# 70 |
# 75 |
Ile Gly Asp Ala Ala Lys Asn Gln Leu Thr Se |
#r Asn Pro Glu Asn |
80 |
# 85 |
# 90 |
Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Ar |
#g Thr Trp Asn Asp |
95 |
# 100 |
# 105 |
Pro Ser Val Gln Gln Asp Ile Lys Phe Leu Pr |
#o Phe Lys Val Val |
110 |
# 115 |
# 120 |
Glu Lys Lys Thr Lys Pro Tyr Ile Gln Val As |
#p Ile Gly Gly Gly |
125 |
# 130 |
# 135 |
Gln Thr Lys Thr Phe Ala Pro Glu Glu Ile Se |
#r Ala Met Val Leu |
140 |
# 145 |
# 150 |
Thr Lys Met Lys Glu Thr Ala Glu Ala Tyr Le |
#u Gly Lys Lys Val |
155 |
# 160 |
# 165 |
Thr His Ala Val Val Thr Val Pro Ala Tyr Ph |
#e Asn Asp Ala Gln |
170 |
# 175 |
# 180 |
Arg Gln Ala Thr Lys Asp Ala Gly Thr Ile Al |
#a Gly Leu Asn Val |
185 |
# 190 |
# 195 |
Met Arg Ile Ile Asn Glu Pro Thr Ala Ala Al |
#a Ile Ala Tyr Gly |
200 |
# 205 |
# 210 |
Leu Asp Lys Arg Glu Gly Glu Lys Asn Ile Le |
#u Val Phe Asp Leu |
215 |
# 220 |
# 225 |
Gly Gly Gly Thr Phe Asp Val Ser Leu Leu Th |
#r Ile Asp Asn Gly |
230 |
# 235 |
# 240 |
Val Phe Glu Val Val Ala Thr Asn Gly Asp Th |
#r His Leu Gly Gly |
245 |
# 250 |
# 255 |
Glu Asp Phe Asp Gln Arg Val Met Glu His Ph |
#e Ile Lys Leu Tyr |
260 |
# 265 |
# 270 |
Lys Lys Lys Thr Gly Lys Asp Val Arg Lys As |
#p Asn Arg Ala Val |
275 |
# 280 |
# 285 |
Gln Lys Leu Arg Arg Glu Val Glu Lys Ala Ly |
#s Arg Ala Leu Ser |
290 |
# 295 |
# 300 |
Ser Gln His Gln Ala Arg Ile Glu Ile Glu Se |
#r Phe Tyr Glu Gly |
305 |
# 310 |
# 315 |
Glu Asp Phe Ser Glu Thr Leu Thr Arg Ala Ly |
#s Phe Glu Glu Leu |
320 |
# 325 |
# 330 |
Asn Met Asp Leu Phe Arg Ser Thr Met Lys Pr |
#o Val Gln Lys Val |
335 |
# 340 |
# 345 |
Leu Glu Asp Ser Asp Leu Lys Lys Ser Asp Il |
#e Asp Glu Ile Val |
350 |
# 355 |
# 360 |
Leu Val Gly Gly Ser Thr Arg Ile Pro Lys Il |
#e Gln Gln Leu Val |
365 |
# 370 |
# 375 |
Lys Glu Phe Phe Asn Gly Lys Glu Pro Ser Ar |
#g Gly Ile Asn Pro |
380 |
# 385 |
# 390 |
Asp Glu Ala Val Ala Tyr Gly Ala Ala Val Gl |
#n Ala Gly Val Leu |
395 |
# 400 |
# 405 |
Ser Gly Asp Gln Asp Thr Gly Asp Leu Val Le |
#u Leu Asp Val Cys |
410 |
# 415 |
# 420 |
Pro Leu Thr Leu Gly Ile Glu Thr Val Gly Gl |
#y Val Met Thr Lys |
425 |
# 430 |
# 435 |
Leu Ile Pro Arg Asn Thr Val Val Pro Thr Ly |
#s Lys Ser Gln Ile |
440 |
# 445 |
# 450 |
Phe Ser Thr Ala Ser Asp Asn Gln Pro Thr Va |
#l Thr Ile Lys Val |
455 |
# 460 |
# 465 |
Tyr Glu Gly Glu Arg Pro Leu Thr Lys Asp As |
#n His Leu Leu Gly |
470 |
# 475 |
# 480 |
Thr Phe Asp Leu Thr Gly Ile Pro Pro Ala Pr |
#o Arg Gly Val Pro |
485 |
# 490 |
# 495 |
Gln Ile Glu Val Thr Phe Glu Ile Asp Val As |
#n Gly Ile Leu Arg |
500 |
# 505 |
# 510 |
Val Thr Ala Glu Asp Lys Gly Thr Gly Asn Ly |
#s Asn Lys Ile Thr |
515 |
# 520 |
# 525 |
Ile Thr Asn Asp Gln Asn Arg Leu Thr Pro Gl |
#u Glu Ile Glu Arg |
530 |
# 535 |
# 540 |
Met Val Asn Asp Ala Glu Lys Phe Ala Glu Gl |
#u Asp Lys Lys Leu |
545 |
# 550 |
# 555 |
Lys Glu Arg Ile Asp Thr Arg Asn Glu Leu Gl |
#u Ser Tyr Ala Tyr |
560 |
# 565 |
# 570 |
Ser Leu Lys Asn Gln Ile Gly Asp Lys Glu Ly |
#s Leu Gly Gly Lys |
575 |
# 580 |
# 585 |
Leu Ser Ser Glu Asp Lys Glu Thr Met Glu Ly |
#s Ala Val Glu Glu |
590 |
# 595 |
# 600 |
Lys Ile Glu Trp Leu Glu Ser His Gln Asp Al |
#a Asp Ile Glu Asp |
605 |
# 610 |
# 615 |
Phe Lys Ala Lys Lys Lys Glu Leu Glu Glu Il |
#e Val Gln Pro Ile |
620 |
# 625 |
# 630 |
Ile Ser Lys Leu Tyr Gly Ser Ala Gly Pro Pr |
#o Pro Thr Gly Glu |
635 |
# 640 |
# 645 |
Glu Asp Thr Ala Glu Lys Asp Glu Leu |
650 |
<210> SEQ ID NO 55 |
<211> LENGTH: 5762 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 331106.6 |
<400> SEQUENCE: 55 |
gcgcgaccgt cccgggggtg gggccgggcg cagcggcgag aggaggcgaa gg |
#tggctgcg 60 |
gtagcagcag cgcggcagcc tcgtgaccca gcccggagcg cagggcggcc gc |
#tgcaggtc 120 |
cccgctcccc tccccgtgcg tccgcccatg gccgccgccg ggcagctgtg ct |
#tgctctac 180 |
ctgtcggcgg ggctcctgtc ccggctcggc gcagccttca acttggacac tc |
#gggaggac 240 |
aacgtgatcc ggaaatatgg agaccccggg agcctcttcg gcttctcgct gg |
#ccatgcac 300 |
tggcaactgc agcccgagga caagcggctg ttgctcgtgg gggccccgcg gg |
#cagaagcg 360 |
cttccactgc agagagccaa cagaacggga gggctgtaca gctgcgacat ca |
#ccgcccgg 420 |
gggccatgca cgcggatcga gtttgataac gatgctgacc ccacgtcaga aa |
#gcaaggaa 480 |
gatcagtgga tgggggtcac cgtccagagc caaggtccag ggggcaaggt cg |
#tgacatgt 540 |
gctcaccgat atgaaaaaag gcagcatgtt aatacgaagc aggaatcccg ag |
#acatcttt 600 |
gggcggtgtt atgtcctgag tcagaatctc aggattgaag acgatatgga tg |
#ggggagat 660 |
tggagctttt gtgatgggcg attgagaggc catgagaaat ttggctcttg cc |
#agcaaggt 720 |
gtagcagcta cttttactaa agactttcat tacattgtat ttggagcccc gg |
#gtacttat 780 |
aactggaaag ggattgttcg tgtagagcaa aagaataaca ctttttttga ca |
#tgaacatc 840 |
tttgaagatg ggccttatga agttggtgga gagactgagc atgatgaaag tc |
#tcgttcct 900 |
gttcctgcta acagttactt aggtttttct ttggactcag ggaaaggtat tg |
#tttctaaa 960 |
gatgagatca cttttgtatc tggtgctccc agagccaatc acagtggagc cg |
#tggttttg 1020 |
ctgaagagag acatgaagtc tgcacatctc ctccctgagc acatattcga tg |
#gagaaggt 1080 |
ctggcctctt catttggcta tgatgtggcg gtggtggacc tcaacaagga tg |
#ggtggcaa 1140 |
gatatagtta ttggagcccc acagtatttt gatagagatg gagaagttgg ag |
#gtgcagtg 1200 |
tatgtctaca tgaaccagca aggcagatgg aataatgtga agccaattcg tc |
#ttaatgga 1260 |
accaaagatt ctatgtttgg cattgcagta aaaaatattg gagatattaa tc |
#aagatggc 1320 |
tacccagata ttgcagttgg agctccgtat gatgacttgg gaaaggtttt ta |
#tctatcat 1380 |
ggatctgcaa atggaataaa taccaaacca acacaggttc tcaagggtat at |
#caccttat 1440 |
tttggatatt caattgctgg aaacatggac cttgatcgaa attcctaccc tg |
#atgttgct 1500 |
gttggttccc tctcagattc agtaactatt ttcagatccc ggcctgtgat ta |
#atattcag 1560 |
aaaaccatca cagtaactcc taacagaatt gacctccgcc agaaaacagc gt |
#gtggggcg 1620 |
cctagtggga tatgcctcca ggttaaatcc tgttttgaat atactgctaa cc |
#ccgctggt 1680 |
tataatcctt caatatcaat tgtgggcaca cttgaagctg aaaaagaaag aa |
#gaaaatct 1740 |
gggctatcct caagagttca gtttcgaaac caaggttctg agcccaaata ta |
#ctcaagaa 1800 |
ctaactctga agaggcagaa acagaaagtg tgcatggagg aaaccctgtg gc |
#tacaggat 1860 |
aatatcagag ataaactgcg tcccattccc ataactgcct cagtggagat cc |
#aagagcca 1920 |
agctctcgta ggcgagtgaa ttcacttcca gaagttcttc caattctgaa tt |
#cagatgaa 1980 |
cccaagacag ctcatattga tgttcacttc ttaaaagagg gatgtggaga cg |
#acaatgta 2040 |
tgtaacagca accttaaact agaatataaa ttttgcaccc gagaaggaaa tc |
#aagacaaa 2100 |
ttttcttatt taccaattca aaaaggtgta ccagaactag ttctaaaaga tc |
#agaaggat 2160 |
attgctttag aaataacagt gacaaacagc ccttccaacc caaggaatcc ca |
#caaaagat 2220 |
ggcgatgacg cccatgaggc taaactgatt gcaacgtttc cagacacttt aa |
#cctattct 2280 |
gcatatagag aactgagggc tttccctgag aaacagttga gttgtgttgc ca |
#accagaat 2340 |
ggctcgcaag ctgactgtga gctcggaaat ccttttaaaa gaaattcaaa tg |
#tcactttt 2400 |
tatttggttt taagtacaac tgaagtcacc tttgacaccc cagatctgga ta |
#ttaatctg 2460 |
aagttagaaa caacaagcaa tcaagataat ttggctccaa ttacagctaa ag |
#caaaagtg 2520 |
gttattgaac tgcttttatc ggtctcggga gttgctaaac cttcccaggt gt |
#attttgga 2580 |
ggtacagttg ttggcgagca agctatgaaa tctgaagatg aagtgggaag tt |
#taatagag 2640 |
tatgaattca gggtaataaa cttaggtaaa cctcttacaa acctcggcac ag |
#caaccttg 2700 |
aacattcagt ggccaaaaga aattagcaat gggaaatggt tgctttattt gg |
#tgaaagta 2760 |
gaatccaaag gattggaaaa ggtaacttgt gagccacaaa aggagataaa ct |
#ccctgaac 2820 |
ctaacggagt ctcacaactc aagaaagaaa cgggaaatta ctgaaaaaca ga |
#tagatgat 2880 |
aacagaaaat tttctttatt tgctgaaaga aaataccaga ctcttaactg ta |
#gcgtgaac 2940 |
gtgaactgtg tgaacatcag atgcccgctg cgggggctgg acagcaaggc gt |
#ctcttatt 3000 |
ttgcgctcga ggttatggaa cagcacattt ctagaggaat attccaaact ga |
#actacttg 3060 |
gacattctca tgcgagcctt cattgatgtg actgctgctg ccgaaaatat ca |
#ggctgcca 3120 |
aatgcaggca ctcaggttcg agtgactgtg tttccctcaa agactgtagc tc |
#agtattcg 3180 |
ggagtacctt ggtggatcat cctagtggct attctcgctg ggatcttgat gc |
#ttgcttta 3240 |
ttagtgttta tactatggaa gtgtggtttc ttcaagagaa ataagaaaga tc |
#attatgat 3300 |
gccacatatc acaaggctga gatccatgct cagccatctg ataaagagag gc |
#ttacttct 3360 |
gatgcatagt attgatctac ttctgtaatt gtgtggattc tttaaacgct ct |
#aggtacga 3420 |
tgacagtgtt ccccgatacc atgctgtaag gatccggaaa gaagagcgag ag |
#atcaaaga 3480 |
tgaaaagtat attgataacc ttgaaaaaaa acagtggatc acaaagtgga ac |
#agaaatga 3540 |
aagctactca tagcgggggc ctaaaaaaaa aaaaagcttc acagtaccca aa |
#ctgctttt 3600 |
tccaactcag aaattcaatt tggatttaaa agcctgctca atccctgagg ac |
#tgatttca 3660 |
gagtgactac acacagtacg aacctacagt tttaactgtg gatattgtta cg |
#tagcctaa 3720 |
ggctcctgtt ttgcacagcc aaatttaaaa ctgttggaat ggatttttct tt |
#aactgccg 3780 |
taatttaact ttctgggttg cctttgtttt tggcgtggct gacttacatc at |
#gtgttggg 3840 |
gaagggcctg cccagttgca ctcaggtgac atcctccaga tagtgtagct ga |
#ggaggcac 3900 |
ctacactcac ctgcactaac agagtggccg tcctaacctc gggcctgctg cg |
#cagacgtc 3960 |
catcacgtta gctgtcccac atcacaagac tatgccattg gggtagttgt gt |
#ttcaacgg 4020 |
aaagtgctgt cttaaactaa atgtgcaata gaaggtgatg ttgccatcct ac |
#cgtctttt 4080 |
cctgtttcct agctgtgtga atacctgctc acgtcaaatg catacaagtt tc |
#attctccc 4140 |
tttcactaaa aacacacagg tgcaacagac ttgaatgcta gttatactta tt |
#tgtatatg 4200 |
gtatttattt tttcttttct ttacaaacca ttttgttatt gactaacagg cc |
#aaagagtc 4260 |
tccagtttac ccttcaggtt ggtttaatca atcagaatta gaattagagc at |
#gggaggtc 4320 |
atcactttga cctaaattat ttactgcaaa aagaaaatct ttataaatgt ac |
#cagagaga 4380 |
gttgttttaa taacttatct ataaactata acctctcctt catgacagcc tc |
#caccccac 4440 |
aacccaaaag gtttaagaaa tagaattata actgtaaaga tgtttatttc ag |
#gcattgga 4500 |
tattttttac tttagaagcc tgcataatgt ttctggattt catactgtaa ca |
#ttcaggaa 4560 |
ttcttggaga aaatgggttt attcactgaa ctctagtgcg gtttactcac tg |
#ctgcaaat 4620 |
actgtatatt caggacttga aagaaatggt gaatgcctat ggtggatcca aa |
#ctgatcca 4680 |
gtataagact actgaatctg ctaccaaaac agttaatcag tgagtcgatg tt |
#ctattttt 4740 |
tgttttgttt cctcccctat ctgtattccc aaaaattact ttggggctaa tt |
#taacaaga 4800 |
actttaaatt gtgttttaat tgtaaaaatg gcagggggtg gaattattac tc |
#tatacatt 4860 |
caacagagac tgaatagata tgaaagctga ttttttttaa ttaccatgct tc |
#acaatgtt 4920 |
aagttatatg gggagcaaca gcaaacaggt gctaatttgt tttggatata gt |
#ataagcag 4980 |
tgtctgtgtt ttgaaagaat agaacacagt ttgtagtgcc actgttgttt tg |
#ggggggct 5040 |
tttttctttt cggaaatctt aaaccttaag atactaagga cgttgttttg gt |
#tgtacttt 5100 |
ggaattctta gtcacaaaat atattttgtt tacaaaaatt tctgtaaaac ag |
#gttataac 5160 |
agtgtttaaa gtctcagttt cttgcttggg gaacttgtgt ccctaatgtg tt |
#tagattgc 5220 |
tagattgcta aggagctgat actttgacag tgtttttaga cctgtgttac ta |
#aaaaaaag 5280 |
atgaatgtcc tgaaaagggt gttgggaggg tggttcaaca aagaaacaaa ga |
#tgttatgg 5340 |
tgtttagatt tatggttgtt aaaaatgtca tctcaagtca agtcactggt ct |
#gtttgcat 5400 |
ttgatacatt tttgtactaa ctagcattgt aaaattattt catgattaga aa |
#ttacctgt 5460 |
ggatatttgt ataaaagtgt gaaataaatt ttttataaaa gtgttcattg tt |
#tcgtaaca 5520 |
cagcattgta tatgtgaagc aaactctaaa attataaatg acaacctgaa tt |
#atctattt 5580 |
catcaaacca aagttcagtg tttttatttt tggtgtctca tgtaatctca ga |
#tcagccaa 5640 |
agatactagt gccaaagcaa tgggattcgg ggtttttttc tgttttcgct ct |
#atgtaggt 5700 |
gatcctcaag tctttcattt tccttcttta tgattaaaag aaacctacag gt |
#atttaaca 5760 |
ac |
# |
# |
# 5762 |
<210> SEQ ID NO 56 |
<211> LENGTH: 2471 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1256895CB1 |
<400> SEQUENCE: 56 |
ccgcgcgtcg cctgtcctcc gagccagtcg ctgacagccg cggcgccgcg ag |
#cttctcct 60 |
ctcctcacga ccgaggcaga gcagtcatta tggcgaacct tggctgctgg at |
#gctggttc 120 |
tctttgtggc cacatggagt gacctgggcc tctgcaagaa gcgcccgaag cc |
#tggaggat 180 |
ggaacactgg gggcagccga tacccggggc agggcagccc tggaggcaac cg |
#ctacccac 240 |
ctcagggcgg tggtggctgg gggcagcctc atggtggtgg ctgggggcag cc |
#tcatggtg 300 |
gtggctgggg gcagccccat ggtggtggct ggggacagcc tcatggtggt gg |
#ctggggtc 360 |
aaggaggtgg cacccacagt cagtggaaca agccgagtaa gccaaaaacc aa |
#catgaagc 420 |
acatggctgg tgctgcagca gctggggcag tggtgggggg ccttggcggc ta |
#cgtgctgg 480 |
gaagtgccat gagcaggccc atcatacatt tcggcagtga ctatgaggac cg |
#ttactatc 540 |
gtgaaaacat gcaccgttac cccaaccaag tgtactacag gcccatggat ga |
#gtacagca 600 |
accagaacaa ctttgtgcac gactgcgtca atatcacaat caagcagcac ac |
#ggtcacca 660 |
caaccaccaa gggggagaac ttcaccgaga ccgacgttaa gatgatggag cg |
#cgtggttg 720 |
agcagatgtg tatcacccag tacgagaggg aatctcaggc ctattaccag ag |
#aggatcga 780 |
gcatggtcct cttctcctct ccacctgtga tcctcctgat ctctttcctc at |
#cttcctga 840 |
tagtgggatg aggaaggtct tcctgttttc accatctttc taatcttttt cc |
#agcttgag 900 |
ggaggcggta tccacctgca gcccttttag tggtggtgtc tcactctttc tt |
#ctctcttt 960 |
gtcccggata ggctaatcaa tacccttggc actgatgggc actggaaaac at |
#agagtaga 1020 |
cctgagatgc tggtcaagcc ccctttgatt gagttcatca tgagccgttg ct |
#aatgccag 1080 |
gccagtaaaa gtataacagc aaataaccat tggttaatct ggacttattt tt |
#ggacttag 1140 |
tgcaacaggt tgaggctaaa acaaatctca gaacagtctg aaataccttt gc |
#ctggatac 1200 |
ctctggctcc ttcagcagct agagctcagt atactaatgc cctatcttag ta |
#gagatttc 1260 |
atagctattt agagatattt tccattttaa gaaaacccga caacatttct gc |
#caggtttg 1320 |
ttaggaggcc acatgatact tattcaaaaa aatcctagag attcttagct ct |
#tgggatgc 1380 |
aggctcagcc cgctggagca tgagctctgt gtgtaccgag aactggggtg at |
#gttttact 1440 |
tttcacagta tgggctacac agcagctgtt caacaagagt aaatattgtc ac |
#aacactga 1500 |
acctctggct agaggacata ttcacagtga acataactgt aacatatatg aa |
#aggcttct 1560 |
gggacttgaa atcaaatgtt tgggaatggt gcccttggag gcaacctccc at |
#tttagatg 1620 |
tttaaaggac cctatatgtg gcattccttt ctttaaacta taggtaatta ag |
#gcagctga 1680 |
aaagtaaatt gccttctaga cactgaaggc aaatctcctt tgtccattta cc |
#tggaaacc 1740 |
agaatgattt tgacatacag gagagctgca gttgtgaaag caccatcatc at |
#agaggatg 1800 |
atgtaattaa aaaatggtca gtgtgcaaag aaaagaactg cttgcatttc tt |
#tatttctg 1860 |
tctcataatt gtcaaaaacc agaattaggt caagttcata gtttctgtaa tt |
#ggcttttg 1920 |
aatcaaagaa tagggagaca atctaaaaaa tatcttaggt tggagatgac ag |
#aaatatga 1980 |
ttgatttgaa gtggaaaaag aaattctgtt aatgttaatt aaagtaaaat ta |
#ttccctga 2040 |
attgtttgat attgtcacct agcagatatg tattactttt ctgcaatgtt at |
#tattggct 2100 |
tgcactttgt gagtattcta tgtaaaaata tatatgtata taaaatatat at |
#tgcatagg 2160 |
acagacttag gagttttgtt tagagcagtt aacatctgaa gtgtctaatg ca |
#ttaacttt 2220 |
tgtaaggtac tgaatactta atatgtggga aacccttttg cgtggtcctt ag |
#gcttacaa 2280 |
tgtgcactga atcgtttcat gtaagaatcc aaagtggaca ccattaacag gt |
#ctttgaaa 2340 |
tatgcatgta ctttatattt tctatatttg taactttgca tgttcttgtt tt |
#gttatata 2400 |
aaaaaattgt aaatgtttaa tatctgactg aaattaaacg agcgaagatg ag |
#caccaaaa 2460 |
aaaaaaaaaa a |
# |
# |
# 2471 |
<210> SEQ ID NO 57 |
<211> LENGTH: 253 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1256895CD1 |
<400> SEQUENCE: 57 |
Met Ala Asn Leu Gly Cys Trp Met Leu Val Le |
#u Phe Val Ala Thr |
1 5 |
# 10 |
# 15 |
Trp Ser Asp Leu Gly Leu Cys Lys Lys Arg Pr |
#o Lys Pro Gly Gly |
20 |
# 25 |
# 30 |
Trp Asn Thr Gly Gly Ser Arg Tyr Pro Gly Gl |
#n Gly Ser Pro Gly |
35 |
# 40 |
# 45 |
Gly Asn Arg Tyr Pro Pro Gln Gly Gly Gly Gl |
#y Trp Gly Gln Pro |
50 |
# 55 |
# 60 |
His Gly Gly Gly Trp Gly Gln Pro His Gly Gl |
#y Gly Trp Gly Gln |
65 |
# 70 |
# 75 |
Pro His Gly Gly Gly Trp Gly Gln Pro His Gl |
#y Gly Gly Trp Gly |
80 |
# 85 |
# 90 |
Gln Gly Gly Gly Thr His Ser Gln Trp Asn Ly |
#s Pro Ser Lys Pro |
95 |
# 100 |
# 105 |
Lys Thr Asn Met Lys His Met Ala Gly Ala Al |
#a Ala Ala Gly Ala |
110 |
# 115 |
# 120 |
Val Val Gly Gly Leu Gly Gly Tyr Val Leu Gl |
#y Ser Ala Met Ser |
125 |
# 130 |
# 135 |
Arg Pro Ile Ile His Phe Gly Ser Asp Tyr Gl |
#u Asp Arg Tyr Tyr |
140 |
# 145 |
# 150 |
Arg Glu Asn Met His Arg Tyr Pro Asn Gln Va |
#l Tyr Tyr Arg Pro |
155 |
# 160 |
# 165 |
Met Asp Glu Tyr Ser Asn Gln Asn Asn Phe Va |
#l His Asp Cys Val |
170 |
# 175 |
# 180 |
Asn Ile Thr Ile Lys Gln His Thr Val Thr Th |
#r Thr Thr Lys Gly |
185 |
# 190 |
# 195 |
Glu Asn Phe Thr Glu Thr Asp Val Lys Met Me |
#t Glu Arg Val Val |
200 |
# 205 |
# 210 |
Glu Gln Met Cys Ile Thr Gln Tyr Glu Arg Gl |
#u Ser Gln Ala Tyr |
215 |
# 220 |
# 225 |
Tyr Gln Arg Gly Ser Ser Met Val Leu Phe Se |
#r Ser Pro Pro Val |
230 |
# 235 |
# 240 |
Ile Leu Leu Ile Ser Phe Leu Ile Phe Leu Il |
#e Val Gly |
245 |
# 250 |
<210> SEQ ID NO 58 |
<211> LENGTH: 5681 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 474630.29 |
<400> SEQUENCE: 58 |
cccgcgcccg ccctcggaca gtccctgctc gcccgcgcgc tgcagcccca tc |
#tcctagcg 60 |
gcagcccagg cgcggaggga gcgagtccgc cccgaggtag gtccaggacg gg |
#cgcacagc 120 |
agcagccgag gctggccggg agagggagga agaggatggc agggccacgc cc |
#cagcccat 180 |
gggccaggct gctcctggca gccttgatca gcgtcagcct ctctgggacc tt |
#ggcaaacc 240 |
gctgcaagaa ggccccagtg aagagctgca cggagtgtgt ccgtgtggat aa |
#ggactgcg 300 |
cctactgcac agacgagatg ttcagggacc ggcgctgcaa cacccaggcg ga |
#gctgctgg 360 |
ccgcgggctg ccagcgggag agcatcgtgg tcatggagag cagcttccaa at |
#cacagagg 420 |
agacccagat tgacaccacc ctgcggcgca gccagatgtc cccccaaggc ct |
#gcgggtcc 480 |
gtctgcggcc cggtgaggag cggcattttg agctggaggt gtttgagcca ct |
#ggagagcc 540 |
ccgtggacct gtacatcctc atggacttct ccaactccat gtccgatgat ct |
#ggacaacc 600 |
tcaagaagat ggggcagaac ctggctcggg tcctgagcca gctcaccagc ga |
#ctacacta 660 |
ttggatttgg caagtttgtg gacaaagtca gcgtcccgca gacggacatg ag |
#gcctgaga 720 |
agctgaagga gccctggccc aacagtgacc cccccttctc cttcaagaac gt |
#catcagcc 780 |
tgacagaaga tgtggatgag ttccggaata aactgcaggg agagcggatc tc |
#aggcaacc 840 |
tggatgctcc tgagggcggc ttcgatgcca tcctgcagac agctgtgtgc ac |
#gagggaca 900 |
ttggctggcg cccggacagc acccacctgc tggtcttctc caccgagtca gc |
#cttccact 960 |
atgaggctga tggcgccaac gtgctggctg gcatcatgag ccgcaacgat ga |
#acggtgcc 1020 |
acctggacac cacgggcacc tacacccagt acaggacaca ggactacccg tc |
#ggtgccca 1080 |
ccctggtgcg cctgctcgcc aagcacaaca tcatccccat ctttgctgtc ac |
#caactact 1140 |
cctatagcta ctacgagaag cttcacacct atttccctgt ctcctcactg gg |
#ggtgctgc 1200 |
aggaggactc gtccaacatc gtggagctgc tggaggaggc cttcaatcgg at |
#ccgctcca 1260 |
acctggacat ccgggcccta gacagccccc gaggccttcg gacagaggtc ac |
#ctccaaga 1320 |
tgttccagaa gacgaggact gggtcctttc acatccggcg gggggaagtg gg |
#tatatacc 1380 |
aggtgcagct gcgggccctt gagcacgtgg atgggacgca cgtgtgccag ct |
#gccggagg 1440 |
accagaaggg caacatccat ctgaaacctt ccttctccga cggcctcaag at |
#ggacgcgg 1500 |
gcatcatctg tgatgtgtgc acctgcgagc tgcaaaaaga ggtgcggtca gc |
#tcgctgca 1560 |
gcttcaacgg agacttcgtg tgcggacagt gtgtgtgcag cgagggctgg ag |
#tggccaga 1620 |
cctgcaactg ctccaccggc tctctgagtg acattcagcc ctgcctgcgg ga |
#gggcgagg 1680 |
acaagccgtg ctccggccgt ggggagtgcc agtgcgggca ctgtgtgtgc ta |
#cggcgaag 1740 |
gccgctacga gggtcagttc tgcgagtatg acaacttcca gtgtccccgc ac |
#ttccgggt 1800 |
tcctctgcaa tgaccgagga cgctgctcca tgggccagtg tgtgtgtgag cc |
#tggttgga 1860 |
caggcccaag ctgtgactgt cccctcagca atgccacctg catcgacagc aa |
#tgggggca 1920 |
tctgtaatgg acgtggccac tgtgagtgtg gccgctgcca ctgccaccag ca |
#gtcgctct 1980 |
acacggacac catctgcgag atcaactact cggcgatcca cccgggcctc tg |
#cgaggacc 2040 |
tacgctcctg cgtgcagtgc caggcgtggg gcaccggcga gaagaagggg cg |
#cacgtgtg 2100 |
aggaatgcaa cttcaaggtc aagatggtgg acgagcttaa gagagccgag ga |
#ggtggtgg 2160 |
tgcgctgctc cttccgggac gaggatgacg actgcaccta cagctacacc at |
#ggaaggtg 2220 |
acggcgcccc tgggcccaac agcactgtcc tggtgcacaa gaagaaggac tg |
#ccctccgg 2280 |
gctccttctg gtggctcatc cccctgctcc tcctcctcct gccgctcctg gc |
#cctgctac 2340 |
tgctgctatg ctggaagtac tgtgcctgct gcaaggcctg cctggcactt ct |
#cccgtgct 2400 |
gcaaccgagg tcacatggtg ggctttaagg aagaccacta catgctgcgg ga |
#gaacctga 2460 |
tggcctctga ccacttggac acgcccatgc tgcgcagcgg gaacctcaag gg |
#ccgtgacg 2520 |
tggtccgctg gaaggtcacc aacaacatgc agcggcctgg ctttgccact ca |
#tgccgcca 2580 |
gcatcaaccc cacagagctg gtgccctacg ggctgtcctt gcgcctggcc cg |
#cctttgca 2640 |
ccgagaacct gctgaagcct gacactcggg agtgcgccca gctgcgccag ga |
#ggtggagg 2700 |
agaacctgaa cgaggtctac aggcagatct ccggtgtaca caagctccag ca |
#gaccaagt 2760 |
tccggcagca gcccaatgcc gggaaaaagc aagaccacac cattgtggac ac |
#agtgctga 2820 |
tggcgccccg ctcggccaag ccggccctgc tgaagcttac agagaagcag gt |
#ggaacaga 2880 |
gggccttcca cgacctcaag gtggcccccg gctactacac cctcactgca ga |
#ccaggacg 2940 |
cccggggcat ggtggagttc caggagggcg tggagctggt ggacgtacgg gt |
#gcccctct 3000 |
ttatccggcc tgaggatgac gacgagaagc agctgctggt ggaggccatc ga |
#cgtgcccg 3060 |
caggcactgc caccctcggc cgccgcctgg taaacatcac catcatcaag ga |
#gcaagcca 3120 |
gagacgtggt gtcctttgag cagcctgagt tctcggtcag ccgcggggac ca |
#ggtggccc 3180 |
gcatccctgt catccggcgt gtcctggacg gcgggaagtc ccaggtctcc ta |
#ccgcacac 3240 |
aggatggcac cgcgcagggc aaccgggact acatccccgt ggagggtgag ct |
#gctgttcc 3300 |
agcctgggga ggcctggaaa gagctgcagg tgaagctcct ggagctgcaa ga |
#agttgact 3360 |
ccctcctgcg gggccgccag gtccgccgtt tccacgtcca gctcagcaac cc |
#taagtttg 3420 |
gggcccacct gggccagccc cactccacca ccatcatcat cagggaccca ga |
#tgaactgg 3480 |
accggagctt cacgagtcag atgttgtcat cacagccacc ccctcacggc ga |
#cctgggcg 3540 |
ccccgcagaa ccccaatgct aaggccgctg ggtccaggaa gatccatttc aa |
#ctggctgc 3600 |
ccccttctgg caagccaatg gggtacaggg taaagtactg gattcagggt ga |
#ctccgaat 3660 |
ccgaagccca cctgctcgac agcaaggtgc cctcagtgga gctcaccaac ct |
#gtacccgt 3720 |
attgcgacta tgagatgaag gtgtgcgcct acggggctca gggcgaggga cc |
#ctacagct 3780 |
ccctggtgtc ctgccgcacc caccaggaag tgcccagcga gccagggcgt ct |
#ggccttca 3840 |
atgtcgtctc ctccacggtg acccagctga gctgggctga gccggctgag ac |
#caacggtg 3900 |
agatcacagc ctacgaggtc tgctatggcc tggtcaacga tgacaaccga cc |
#tattgggc 3960 |
ccatgaagaa agtgctggtt gacaacccta agaaccggat gctgcttatt ga |
#gaaccttc 4020 |
gggagtccca gccctaccgc tacacggtga aggcgcgcaa cggggccggc tg |
#ggggcctg 4080 |
agcgggaggc catcatcaac ctggccaccc agcccaagag gcccatgtcc at |
#ccccatca 4140 |
tccctgacat ccctatcgtg gacgcccaga gcggggagga ctacgacagc tt |
#ccttatgt 4200 |
acagcgatga cgttctacgc tctccatcgg gcagccagag gcccagcgtc tc |
#cgatgaca 4260 |
ctgagcacct ggtgaatggc cggatggact ttgccttccc gggcagcacc aa |
#ctccctgc 4320 |
acaggatgac cacgaccagt gctgctgcct atggcaccca cctgagccca ca |
#cgtgcccc 4380 |
accgcgtgct aagcacatcc tccaccctca cacgggacta caactcactg ac |
#ccgctcag 4440 |
aacactcaca ctcgaccaca ctgccgaggg actactccac cctcacctcc gt |
#ctcctccc 4500 |
acgactctcg cctgactgct ggtgtgcccg acacgcccac ccgcctggtg tt |
#ctctgccc 4560 |
tggggcccac atctctcaga gtgagctggc aggagccgcg gtgcgagcgg cc |
#gctgcagg 4620 |
gctacagtgt ggagtaccag ctgctgaacg gcggtgagct gcatcggctc aa |
#catcccca 4680 |
accctgccca gacctcggtg gtggtggaag acctcctgcc caaccactcc ta |
#cgtgttcc 4740 |
gcgtgcgggc ccagagccag gaaggctggg gccgagagcg tgagggtgtc at |
#caccattg 4800 |
aatcccaggt gcacccgcag agcccactgt gtcccctgcc aggctccgcc tt |
#cactttga 4860 |
gcactcccag tgccccaggc ccgctggtgt tcactgccct gagcccagac tc |
#gctgcagc 4920 |
tgagctggga gcggccacgg aggcccaatg gggatatcgt cggctacctg gt |
#gacctgtg 4980 |
agatggccca aggaggaggg ccagccaccg cattccgggt ggatggagac ag |
#ccccgaga 5040 |
gccggctgac cgtgccgggc ctcagcgaga acgtgcccta caagttcaag gt |
#gcaggcca 5100 |
ggaccactga gggcttcggg ccagagcgcg agggcatcat caccatagag tc |
#ccaggatg 5160 |
gaggaccctt cccgcagctg ggcagccgtg ccgggctctt ccagcacccg ct |
#gcaaagcg 5220 |
agtacagcag catcaccacc acccacacca gcgccaccga gcccttccta gt |
#ggatgggc 5280 |
tgaccctggg ggcccagcac ctggaggcag gcggctccct cacccggcat gt |
#gacccagg 5340 |
agtttgtgag ccggacactg accaccagcg gaacccttag cacccacatg ga |
#ccaacagt 5400 |
tcttccaaac ttgaccgcac cctgccccac ccccgccatg tcccactagg cg |
#tcctcccg 5460 |
actcctctcc cggagcctcc tcagctactc catccttgca cccctggggg cc |
#cagcccac 5520 |
ccgcatgcac agagcagggg ctaggtgtct cctgggaggc atgaaggggg ca |
#aggtccgt 5580 |
cctctgtggg cccaaaccta tttgtaacca aagagctggg agcagcacaa gg |
#acccagcc 5640 |
tttgttctgc acttaataaa tggttttgct actgctaaaa a |
# |
# 5681 |
<210> SEQ ID NO 59 |
<211> LENGTH: 1366 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1256295.18 |
<400> SEQUENCE: 59 |
ctttgtcctc cagtggctgg taggcagtgg ctgggaggca gcggcccaat ta |
#gtgtcgtg 60 |
cggcccgtgg cgaggcgagg tccggggagc gagcgagcaa gcaaggcggg ag |
#gggtggcc 120 |
ggagctgcgg cggctggcac aggaggagga gcccgggcgg gcgaggggcg gc |
#cggagagc 180 |
gccagggcct gagctgccgg agcggcgcct gtgagtgagt gcagaaagca gg |
#cgcccgcg 240 |
cgctagccgt ggcaggagca gcccgcacgc cgcgctctct ccctgggcga cc |
#tgcagttt 300 |
gcaatatgac tttggaggaa ttctcggctg gagagcagaa gaccgaaagg at |
#ggataagg 360 |
tgggggatgc cctggaggaa gtgctcagca aagccctgag tcagcgcacg at |
#cactgtcg 420 |
gggtgtacga agcggccaag ctgctcaacg tcgaccccga taacgtggtg tt |
#gtgcctgc 480 |
tggcggcgga cgaggacgac gacagagatg tggctctgca gatccacttc ac |
#cctgatcc 540 |
aggcgttttg ctgcgagaac gacatcaaca tcctgcgcgt cagcaacccg gg |
#ccggctgg 600 |
cggagctcct gctcttggag accgacgctg gccccgcggc gagcgagggc gc |
#cgagcagc 660 |
ccccggacct gcactgcgtg ctggtgacga atccacattc atctcaatgg aa |
#ggatcctg 720 |
ccttaagtca acttatttgt ttttgccggg aaagtcgcta catggatcaa tg |
#ggttccag 780 |
tgattaatct ccctgaacgg tgatggcatc tgaatgaaaa taactgaacc aa |
#attgcact 840 |
gaagtttttg aaataccttt gtagttactc aagcagttac tccctacact ga |
#tgcaagga 900 |
ttacagaaac tgatgccaag gggctgagtg agttcaacta catgttctgg gg |
#gcccggag 960 |
atagatgact ttgcagatgg aaagaggtga aaatgaagaa ggaagctgtg tt |
#gaaacaga 1020 |
aaaataagtc aaaaggaaca aaaattacaa agaaccatgc aggaaggaaa ac |
#tatgtatt 1080 |
aatttagaat ggttgagtta cattaaaata aaccaaatat gttaaagttt aa |
#gtgtgcag 1140 |
ccatagtttg ggtatttttg gtttatatgc cctcaagtaa aagaaaagcc ga |
#aagggtta 1200 |
atcatatttg aaaaccatat tttattgtat tttgatgaga tattaaattc tc |
#aaagtttt 1260 |
attataaatt ctactaagtt attttatgac atgaaaagtt atttatgcta ta |
#aatttttt 1320 |
gaaacacaat acctacaata aactggtatg aataattgca tcattt |
# 1366 |
<210> SEQ ID NO 60 |
<211> LENGTH: 1432 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 444096.1 |
<400> SEQUENCE: 60 |
gacccatcag ggcttctgta aggctgagtg ggtcccatgc ctgaaaggag ag |
#ccaggctg 60 |
agcctggcct gagtctccca tgtgtaacag gtacgaggat gaaatcaaca ag |
#cacactgc 120 |
tgcagagaac gagtttgtgg tgctcaagaa ggatgtggat gcagcataca tg |
#ggccggat 180 |
ggatctgcat ggcaaagtgg gcaccttgac ccaggagatt gacttcctgc ag |
#caactcta 240 |
tgaaatggag ctgagccaag tgcagaccca cgtgtctaac accaatgtgg tg |
#ctgtccat 300 |
ggacaacaac cgcaacctgg acctggacag catcatcgcc gaggtcaagg cc |
#cagtatga 360 |
gctgattgcc cagaggagcc gggctgaggc cgaggcctgg taccagacca ag |
#tatgagga 420 |
gctgcaggtg actgctggga agcatgggga caacctgcgg gacaccaaga ac |
#gagattgc 480 |
tgagctcacc cgcactatcc agaggctgca gggggaggct gatgcagcca ag |
#aagcagtg 540 |
tcagcagctg cagacggcca ttgcggaacg cggagcagcg tggggagctg gc |
#actcaagg 600 |
atgctcagaa gaagcttggg gatctggatg tggccctgca ccaggccaag ga |
#ggacctga 660 |
cacggctgct gcgtgactac caggagctga tgaatgtcaa gctggccctg ga |
#cgtggaga 720 |
ttgccaccta ccgcaagctt ctggagagcg aggagagcag gatgtctgga ga |
#atgtccca 780 |
gtgcagtcag catttctgtg actggcaact ccaccactgt gtgcggaggt gg |
#cgcaccag 840 |
ctttggaggt ggcatctccc tgggtgggag tgggggggcc accaagggtg ga |
#ttcagcac 900 |
aaatgtgggc tatagcaccg tcaagggagg gccagtctct gcgggcacct cc |
#atcctgcg 960 |
gaagaccact acggtcaaga cgtccagcca gaggtattag ctgctgagcc ct |
#gcaaggcc 1020 |
ccctgcaatc atgtccctgc cctcctcacc ccacctctgc tgtcctttcc ag |
#tcacttct 1080 |
caggagcagg aacagccagg ggacctcaga cccagggtat tttcatacca ga |
#ctatttgc 1140 |
atcttgggaa gcgctcaaat ctactcaggt tttctccttg gtcctgcagt ag |
#gatgggag 1200 |
ggaaggttaa agttgccagc ttgagtgatg tgcttgggtg acttgggggt ga |
#ccttttga 1260 |
ccaccgagag gaggctgaat ttctcaagcc attaggagag agagaaattg gg |
#agtggtcc 1320 |
ccaaagaccc ttcaacctcc ccagtccccc accagaccca ccctctccct ga |
#atctaccc 1380 |
acatccccct tccctgtctg tgtctcaata aatggtgcaa ctgcaaaaaa aa |
# 1432 |
<210> SEQ ID NO 61 |
<211> LENGTH: 4559 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 008942.10 |
<400> SEQUENCE: 61 |
agcgggcggc gcgcacactg ctcgctgggc cgcggctccc gggtgtccca gg |
#cccggccg 60 |
gtgcgcagag catggcgggt gcgggcccga agcggcgcgc gctagcggcg cc |
#ggcggccg 120 |
aggagaagga agaggcgcgg gagaagatgc tggccgccaa gagcgcggac gg |
#ctcggcgc 180 |
cggcaggcga gggcgagggc gtgaccctgc agcggaacat cacgctgctc aa |
#cggcgtgg 240 |
ccatcatcgt ggggaccatt atcggctcgg gcatcttcgt gacgcccacg gg |
#cgtgctca 300 |
aggaggcagg ctcgccgggg ctggcgctgg tggtgtgggc cgcgtgcggc gt |
#cttctcca 360 |
tcgtgggcgc gctctgctac gcggagctcg gcaccaccat ctccaaatcg gg |
#cggcgact 420 |
acgcctacat gctggaggtc tacggctcgc tgcccgcctt cctcaagctc tg |
#gatcgagc 480 |
tgctcatcat ccggccttca tcgcagtaca tcgtggccct ggtcttcgcc ac |
#ctacctgc 540 |
tcaagccgct cttccccacc tgcccggtgc ccgaggaggc agccaagctc gt |
#ggcctgcc 600 |
tgtgcgtgct gctgctcacg gccgtgaact gctacagcgt gaaggccgcc ac |
#ccgggtcc 660 |
aggatgcctt tgccgccgcc aagctcctgg ccctggccct gatcatcctg ct |
#gggcttcg 720 |
tccagatcgg gaagggtgat gtgtccaatc tagatcccaa cttctcattt ga |
#aggcacca 780 |
aactggatgt ggggaacatt gtgctggcat tatacagcgg cctctttgcc ta |
#tggaggat 840 |
ggaattactt gaatttcgtc acagaggaaa tgatcaaccc ctacagaaac ct |
#gcccctgg 900 |
ccatcatcat ctccctgccc atcgtgacgc tggtgtacgt gctgaccaac ct |
#ggcctact 960 |
tcaccaccct gtccaccgag cagatgctgt cgtccgaggc cgtggccgtg ga |
#cttcggga 1020 |
actatcacct gggcgtcatg tcctggatca tccccgtctt cgtgggcctg tc |
#ctgctttg 1080 |
gctccgtcaa tgggtccctg ttcacatcct ccaggctctt cttcgtgggg tc |
#ccgggaag 1140 |
gccacctgcc ctccatcctc tccatgatcc acccacagct cctcaccccc gt |
#gccgtccc 1200 |
tcgtgttcac gtgtgtgatg acgctgctct acgccttctc caaggacatc tt |
#ctccgtca 1260 |
tcaacttctt cagcttcttc aactggctct gcgtggccct ggccatcatc gg |
#catgatct 1320 |
ggctgcgcca cagaaagcct gagcttgagc ggcccatcaa ggtgaacctg gc |
#cctgcctg 1380 |
tgttcttcat cctggcctgc ctcttcctga tcgccgtctc cttctggaag ac |
#acccgtgg 1440 |
agtgtggcat cggcttcacc atcatcctca gcgggctgcc cgtctacttc tt |
#cggggtct 1500 |
ggtggaaaaa caagcccaag tggctcctcc agggcatctt ctccacgacc gt |
#cctgtgtc 1560 |
agaagctcat gcaggtggtc ccccaggaga catagccagg aggccgagtg gc |
#tgccggag 1620 |
gagcatgcgc agaggccagt taaagtagat cacctcctcg aacccactcc gg |
#ttccccgc 1680 |
aacccacagc tcagctgccc atcccagtcc ctcgccgtcc ctcccaggtc gg |
#gcagtgga 1740 |
ggctgctgtg aaaactctgg tacgaatctc atccctcaac tgagggccag gg |
#acccaggt 1800 |
gtgcctgtgc tcctgcccag gagcagcttt tggtctcctt gggccctttt tc |
#ccttccct 1860 |
cctttgttta cttatatata tatttttttt aaacttaaat tttgggtcaa ct |
#tgacacca 1920 |
ctaagatgat tttttaagga gctgggggaa ggcaggagcc ttcctttctc ct |
#gccccaag 1980 |
ggcccagacc ctgggcaaac agagctactg agacttggaa cctcattgct ac |
#cacagact 2040 |
tgcactgaag ccggacagct gcccagacac atgggcttgt gacattcgtg aa |
#aaccaacc 2100 |
ctgtgggctt atgtctctgc cttagggttt gcagagtgga aactcagccg ta |
#gggtggca 2160 |
ctgggagggg gtgggggatc tgggcaaggt gggtgattcc tcccaggagg tg |
#cttgaggc 2220 |
cccgatggac tcctgaccat aatcctagcc ccgagacacc atcctgagcc ag |
#ggaacagc 2280 |
cccagggttg gggggtgccg gcatctcccc tagctcacca ggcctggcct ct |
#gggcagtg 2340 |
tggcctcttg gctatttctg tgtccagttt tggaggctga gttctggttc at |
#gcagacaa 2400 |
agccctgtcc ttcagtcttc tagaaacaga gacaagaaag gcagacacac cg |
#cggccagg 2460 |
cacccatgtg ggcgcccacc ctgggctcca cacagcagtg tcccctgccc ca |
#gaggtcgc 2520 |
agctaccctc agcctccaat gcattggcct ctgtaccgcc cggcagcccc tt |
#ctggccgg 2580 |
tgctgggttc ccactcccgg cctaggcacc tccccgctct ccctgtcacg ct |
#catgtcct 2640 |
gtcctggtcc tgatgcccgt tgtctaggag acagagccaa gcactgctca cg |
#tctctgcc 2700 |
gcctgcgttt ggaggcccct gggctctcac ccagtcccca cccgcctgca ga |
#gagggaac 2760 |
tagggcaccc cttgtttctg ttgttcccgt gaattttttt cgctatggga gg |
#cagccgag 2820 |
gcctggccaa tgcggcccac tttcctgagc tgtcgctgcc tccatggcag ca |
#gccaagga 2880 |
cccccagaac aagaagaccc ccccgcagga tccctcctga gctcgggggg ct |
#ctgccttc 2940 |
tcagggcccc gggcttccct tctccccagc cagaggtgga gccaagtggt cc |
#agcgtcac 3000 |
tccagtgctc agctgtggct ggaggagctg gcctgtggca cagccctgag tg |
#tcccaagc 3060 |
cgggagccaa cgaagccgga cacggcttca ctgaccagcg gctgctcaag cc |
#gcaagctc 3120 |
tcagcaagtg cccagtggag cctgccgccc ccacctgggc accgggaccc cc |
#tcaccatc 3180 |
cagtgggccc ggagaaacct gatgaacagt ttggggactc aggaccagat gt |
#ccgtctct 3240 |
cttgcttgag gaatgaagac ctttattcac ccctgccccg ttgcttcccg ct |
#gcacatgg 3300 |
acagacttca cagcgtctgc tcataggacc tgcatccttc ctggggacga at |
#tccactcg 3360 |
tccaagggac agcccacggt ctggaggccg aggaccacca gcaggcaggt gg |
#actgactg 3420 |
ttgggcaaga cctcttccct ctgggcctgt tctcttggct gcaaataagg ac |
#agcagctg 3480 |
gtgccccacc tgcctggtgc attgctgtgt gaatccagga ggcagtggac at |
#cgtaggca 3540 |
gccacggccc cgggtccagg agaagtgctc cctggaggca cgcaccactg ct |
#tcccactg 3600 |
gggccggcgg ggcccacgca cgacgtcagc ctcttacctt cccgcctcgg ct |
#aggggtcc 3660 |
tcgggatgcc gttctgttcc aacctcctgc tctgggacgt ggacatgcct ca |
#aggataca 3720 |
gggagccggc ggcctctcga cggcacgcac ttgcctgttg gctgctgcgg ct |
#gtgggcga 3780 |
gcatgggggc tgccagcgtc tgttgtggaa agtagctgct agtgaaatgg ct |
#ggggccgc 3840 |
tggggtccgt cttcacactg cgcaggtctc ttctgggcgt ctgagctggg gt |
#gggagctc 3900 |
ctccgcagaa ggttggtggg gggtccagtc tgtgatcctt ggtgctgtgt gc |
#cccactcc 3960 |
agcctgggga ccccacttca gaaggtaggg gccgtgtccc gcggtgctga ct |
#gaggcctg 4020 |
cttccccctc cccctcctgc tgtgctggaa ttccacaggg accagggcca cc |
#gcagggga 4080 |
ctgtctcaga agacttgatt tttccgtccc tttttctcca cactccactg ac |
#aaacgtcc 4140 |
ccagcggttt ccacttgtgg gcttcaggtg ttttcaagca caacccacca ca |
#acaagcaa 4200 |
gtgcattttc agtcgttgtg cttttttgtt ttgtgctaac gtcttactaa tt |
#taaagatg 4260 |
ctgtcggcac catgtttatt tatttccagt ggtcatgctc agccttgctg ct |
#ctgcgtgg 4320 |
cgcaggtgcc atgcctgctc cctgtctgtg tcccagccac gcagggccat cc |
#actgtgac 4380 |
gtcggccgac caggctggac accctctgcc gagtaatgac gtgtgtggct gg |
#gaccttct 4440 |
ttattctgtg ttaatggcta acctgttaca ctgggctggg ttgggtaggg tg |
#ttctggct 4500 |
tttttgtggg gtttttattt ttaaagaaac actcaatcat cctaaaaaaa aa |
#ttaaaaa 4559 |
<210> SEQ ID NO 62 |
<211> LENGTH: 1756 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 008942.9 |
<400> SEQUENCE: 62 |
agtccccaca ccgcctgcag agagggaact agggcaccac cttgtttcat gt |
#tgttcccg 60 |
tgaatttttt tcagctatgg gaggcaaccg aggcactggc caaatgcagg cc |
#caacattt 120 |
cactgagcat gtcagcatgc acatcacaat ggcaagcagc cagggaccca cc |
#aagaacaa 180 |
gaagacccca gcaggatccc tcactgagca tcggggggca tctgcacttc at |
#caggcacc 240 |
ccagggcatt caccattcat cacaccaagc acagaggtgg agcacaagtg gt |
#ccagcgtc 300 |
acatccaagt gctcagctgt ggctggagga gctggcctgt ggcacagcca ct |
#gagtgtcc 360 |
acaagccagg gagcacaacg atagccagga cacaggcttc actgaccagc ag |
#gctgcatc 420 |
aagccagcaa gcatctcagc aagtgcacca gtggagcact gccagcaccc ca |
#gcactggg 480 |
cacacaggga ccccacatca ccagtccagt gggccacgga gaaacactga tg |
#cccgttgt 540 |
ctaggagaca gagcacaagc actgctcacg tctctgccgc ctgcgtttgg ag |
#gcccctgg 600 |
gctctcaccc agtccccacc cgcctgcaga gagggaacta gggcacccct tg |
#tttctgtt 660 |
gttcccgtga atttttttcg ctatgggagg cagccgaggc ctggccaatg cg |
#gcccactt 720 |
tcctgagctg tcgctgcctc catggcagca gccagggacc cccagaacaa ga |
#agaccccg 780 |
caggatccct cctgagctcg gggggctctg ccttctcagg ccccgggctt cc |
#cttctccc 840 |
cagccagagg tggagccaag tggtccagcg tcactccagt gctcagctgt gg |
#ctggagga 900 |
gctggcctgt ggcacagccc tgagtgtccc aagccgggag ccaacgaagc cg |
#gacacggc 960 |
ttcactgacc agcggctgct caagccgcaa gctctcagca agtgcccagt gg |
#agcctgcc 1020 |
gcccccgcct gggcaccggg accccctcac catccagtgg gcccggagaa ac |
#ctgatgaa 1080 |
cagtttgggg actcaggacc agatgtccgt ctctcttgct tgaggaatga ag |
#acctttat 1140 |
tcacccctgc cccgttgctt cccgctgcac atggacagac ttcacagcgt ct |
#gctcatag 1200 |
gacctgcatc cttcctgggg acgaattcca ctcgtccaag ggacagccca cg |
#gtctggag 1260 |
gccgaggacc accagcaggc aggtggactg actgtgttgg gcaagacctc tt |
#ccctctgg 1320 |
gcctgttctc ttggctgcaa ataaggacag cagctggtgc cccacctgcc tg |
#gtgcattg 1380 |
ctgtgtgaat ccaggaggca gtggacatcg taggcagcca cggccccggg tc |
#caggagaa 1440 |
gtgctccctg gaggcacgca ccactgcttc ccactggggc cggcggggcc ca |
#cgcacgac 1500 |
gtcagcctct taccttcccg cctcggctag gggtcctcgg gatgccgttc tg |
#ttccaacc 1560 |
tcctgctctg ggacgtggac atgcctcaac tgagggccag ggacccaggt gt |
#gcctgtgc 1620 |
tcctgcccag gagcagcttt tggtctcctt gggccctttt tcccttccct cc |
#tttgttta 1680 |
cttatatata tatttttttt aaacttaaat tttgggtcaa cttgacacca ct |
#aagatgat 1740 |
ttttaaggag ctgggg |
# |
# |
# 1756 |
<210> SEQ ID NO 63 |
<211> LENGTH: 3304 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1252415.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 3267, 3276, 3289-3290, 3297, 3299 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 63 |
gcggaactct gaggtgaggg tgtgcagctt ggtagggatt ggggtccctt cc |
#ggggccca 60 |
tcggcccctg gtggtgttaa tggcccttct ggcctacgcg cgtgtcatga ac |
#cctggccg 120 |
agagggccgg ggctgaggcc ctcaggccga cccggactct tgggcgcggt ct |
#cttgaggt 180 |
ggggccgggg tgagcagctg agtccgggtg ccccggggag gcccctctgg cc |
#cgatttcg 240 |
cagcgctgcc catcagcttc agcggaggcc tgattcctga ggtgctctga ct |
#ggaaggaa 300 |
cctccgagat cggagagtct tccctgtctc ctgttgatgc tcccattgca ct |
#gataggta 360 |
aattgatccc tagagaagag gctagtctga gatatatagc gagtgaggaa aa |
#gaatcgga 420 |
atcatgatcc tggtgcctta gataaccagc cccagttctt cccgtgttgc tc |
#ggaacctc 480 |
tctaacttgg gatggtcttc cggtcggtgt tgccccgcag gctgctgcag ct |
#taaaggcc 540 |
agcgctgcgt ggaacttttt tttttctctc ctcccaaatt gagccgtttg aa |
#atgcctag 600 |
ggagttttta aaagaaaggc gggcacatcc ttgtatttac aggcagatat cc |
#tccctttc 660 |
ctcctcggct gctgctctta ctttgacaag ccaggctaac attgaaggtg gt |
#ccattatg 720 |
gctgacatgc aaaatctggt agaaagattg gagagggcag tgggccgcct gg |
#aggcagta 780 |
tctcatacct ctgacatgca ccgtgggtat gcagacagtc cttcaaaagc ag |
#gagcagct 840 |
ccatatgtgc aggcatttga ctcgctgctt gctggtcctg tggcagagta ct |
#tgaagatc 900 |
agtaaagaga ttgggggaga cgtgcagaaa catgcggaga tggtccacac ag |
#gtttgaag 960 |
ttggagcgag ctctgttggt tacagcttct cagtgtcaac agccagcaga aa |
#ataagctt 1020 |
tccgatttgt tggcacccat ctcagagcag atcaaagaag tgataacctt tc |
#gggagaag 1080 |
aaccgaggca gcaagttgtt taatcacctg tcagctgtca gcgaaagtat cc |
#aggccctg 1140 |
ggctgggtgg ctatggctcc caagcctggc ccttatgtga aagaaatgaa tg |
#atgccgcc 1200 |
atgttttata caaaccgagt cctcaaagag tacaaagatg tggataagaa gc |
#atgtagac 1260 |
tgggtcaaag cttatttaag tatatggaca gagctgcagg cttacattaa gg |
#agttccat 1320 |
accaccggac tggcctggag caaaacgggg cctgtggcaa aagaactgag cg |
#gactgcca 1380 |
tctggaccct ctgccggatc aggtcctcct ccccctccac caggcccccc tc |
#ctccccca 1440 |
gtctctacca gttcaggctc agatgagtct gcttcccgct cagcactgtt cg |
#cgcagatt 1500 |
aatcaggggg agagcattac acatgccctg aaacatgtat ctgatgacat ga |
#agactcac 1560 |
aagaaccctg ccctgaaggc tcagagtggt ccagtacgca gtggccccaa ac |
#cattctct 1620 |
gcacctaaac cccaaaccag cccatccccc aaacgagcca caaagaagga gc |
#cagctgta 1680 |
cttgaactgg agggcaagaa gtggagagtg gaaaatcagg aaaatgtttc ca |
#acctggtg 1740 |
attgaggaca cagagctgaa acaggtggct tacatataca agtgtgtcaa ca |
#cgacattg 1800 |
caaatcaagg gcaaaattaa ctccattaca gtagataact gtaagaaact tg |
#gcctggta 1860 |
ttcgatgacg tggtgggcat tgtggagata atcaacagta aggatgtcaa ag |
#ttcaggta 1920 |
atgggtaaag tgccaaccat atccatcaac aaaacagatg gctgccatgc tt |
#acctgagc 1980 |
aagaattccc tggattgtga aatagtcagt gccaaatctt ccgagatgaa tg |
#tcctcatt 2040 |
cctacagaag gcggtgactt taatgaattc ccagttcctg agcagttcaa ga |
#ccctatgg 2100 |
aacgggcaga agttggtcac cacagtgaca gaaattgctg gataagcgaa gt |
#gccactgg 2160 |
gttctttgcc ctcccttcac accatgggat aaatctgtat caagacggtt ct |
#tttctaga 2220 |
tttcctctac ctttttgctc ttaaaactgc ttctctgctc tgagaagcac ag |
#ctacctgc 2280 |
cttcactgaa atatacctca ggctgaaatt tggggtggga tagcaggtca gt |
#tgatcttc 2340 |
tgcaggaagg tgcagctttt ccatatcagc tcaaccacgc cgccagtcca tt |
#cttaagga 2400 |
actgccgact aggactgatg atgcatttta gctttgagct tttgggggtt at |
#tctaccaa 2460 |
caaacagtcc attggaaaga aaacagtccc tggaattaac agatcagaat gt |
#tcacactg 2520 |
gttaatcttt ttttaacaat gagcatgaag gtagcagaag ctggtgtgtt tc |
#cagatggt 2580 |
tcttctaacc aaactaattt ttcactgttg acaagcgagg caagggttgc ac |
#tggaccaa 2640 |
aggctgaggc ttggccatct agcattccat acaaaattgt ttcctataag ca |
#ttcctttt 2700 |
attctctatt ctatcctggg tctgcctcaa ccgtgagata ggagagtctc tg |
#gtactagc 2760 |
tgctgtagca gtgcccttca tccagggcag ttaatggagt cttggaccct tt |
#ctttctct 2820 |
gggatccctg cccagcacct tcctatagag atgactttaa aaggaaaaaa aa |
#aaaaaaaa 2880 |
caaacccaca tgatttcaag gagtctggca ttcctgaatc cttcttccct gc |
#caggtgcc 2940 |
tgtcacctgt cttcactgcc tccttttccc tgtcatgctc atcagcttat gg |
#cttctgtc 3000 |
taagcacctg aacagaggac tgaaacctcc actgcaggct ggttttaggt ct |
#tgaattat 3060 |
gtaagaatct tgcacagcac tgctaatgta aatttcagtt gtttttccct ct |
#aggacaaa 3120 |
cacttaccaa aatatgcaac ttttttttgg tgggaagaga gattgtcctg tg |
#atttctac 3180 |
ccatttcctg aggcctgtgg aaataaacct ttatgtactt aaagttatac ag |
#aaaataga 3240 |
ataaagttaa taccaaactt gaaaaanaaa aaaaangggg ggccgccgnn ta |
#gtgancnc 3300 |
gtcg |
# |
# |
# 3304 |
<210> SEQ ID NO 64 |
<211> LENGTH: 7231 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1399366.20 |
<221> NAME/KEY: unsure |
<222> LOCATION: 5601, 5609, 7107 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 64 |
cccgagctgg cctgcgagtt cagggctcct gccgctctcc aggagcaacc tc |
#tactccgg 60 |
acgcacaggc attccccgcg cccctccagc cctcgccgcc ctcgccaccg ct |
#cccggccg 120 |
ccgcgctccg gtacacacag gatccctgct gggcaccaac agctccacca tg |
#gggctggc 180 |
ctggggacta ggcgtcctgt tcctgatgca tgtgtgtggc accaaccgca tt |
#ccagagtc 240 |
tggcggagac aacagcgtgt ttgacatctt tgaactcacc ggggccgccc gc |
#aaggggtc 300 |
tgggcgccga ctggtgaagg gccccgaccc ttccagccca gctttccgca tc |
#gaggatgc 360 |
caacctgatc ccccctgtgc ctgatgacaa gttccaagac ctggtggatg ct |
#gtgcgggc 420 |
agaaaagggt ttcctccttc tggcatccct gaggcagatg aagaagaccc gg |
#ggcacgct 480 |
gctggccctg gagcggaaag accactctgg ccaggtcttc agcgtggtgt cc |
#aatggcaa 540 |
ggcgggcacc ctggacctca gcctgaccgt ccaaggaaag cagcacgtgg tg |
#tctgtgga 600 |
agaagctctc ctggcaaccg gccagtggaa gagcatcacc ctgtttgtgc ag |
#gaagacag 660 |
ggcccagctg tacatcgact gtgaaaagat ggagaatgct gagttggacg tc |
#cccatcca 720 |
aagcgtcttc accagagacc tggccagcat cgccagactc cgcatcgcaa ag |
#gggggcgt 780 |
caatgacaat ttccaggggg tgctgcagaa tgtgaggttt gtctttggaa cc |
#acaccaga 840 |
agacatcctc aggaacaaag gctgctccag ctctaccagt gtcctcctca cc |
#cttgacaa 900 |
caacgtggtg aatggttcca gccctgccat ccgcactaac tacattggcc ac |
#aagacaaa 960 |
ggacttgcaa gccatctgcg gcatctcctg tgatgagctg tccagcatgg tc |
#ctggaact 1020 |
caggggcctg cgcaccattg tgaccacgct gcaggacagc atccgcaaag tg |
#actgaaga 1080 |
gaacaaagag ttggccaatg agctgaggcg gcctccccta tgctatcaca ac |
#ggagttca 1140 |
gtacagaaat aacgaggaat ggactgttga tagctgcact gagtgtcact gt |
#cagaactc 1200 |
agttaccatc tgcaaaaagg tgtcctgccc catcatgccc tgctccaatg cc |
#acagttcc 1260 |
tgatggagaa tgctgtcctc gctgttggcc cagcgactct gcggacgatg gc |
#tggtctcc 1320 |
atggtccgag tggacctcct gttctacgag ctgtggcaat ggaattcagc ag |
#cgcggccg 1380 |
ctcctgcgat acgctcaaca accgatgtga gggctcctcg gtccagacac gg |
#acctgcca 1440 |
cattcaggag tgtgacaaga gatttaaaca ggatggtggc tggagccact gg |
#tccccgtg 1500 |
gtcatcttgt tctgtgacat gtggtgatgg tgtgatcaca aggatccggc tc |
#tgcaactc 1560 |
tcccagcccc cagatgaacg ggaaaccctg tgaaggcgaa gcgcgggaga cc |
#aaagcctg 1620 |
caagaaagac gcctgcccca tcaatggagg ctggggtcct tggtcaccat gg |
#gacatctg 1680 |
ttctgtcacc tgtggaggag gggtacagaa acgtagtcgt ctctgcaaca ac |
#cccacacc 1740 |
ccagtttgga ggcaaggact gcgttggtga tgtaacagaa aaccagatct gc |
#aacaagca 1800 |
ggactgtcca attgatggat gcctgtccaa tccctgcttt gccggcgtga ag |
#tgtactag 1860 |
ctaccctgat ggcagctgga aatgtggtgc ttgtccccct ggttacagtg ga |
#aatggcat 1920 |
ccagtgcaca gatgttgatg agtgcaaaga agtgcctgat gcctgcttca ac |
#cacaatgg 1980 |
agagcaccgg tgtgagaaca cggaccccgg ctacaactgc ctgccctgcc cc |
#ccacgctt 2040 |
caccggctca cagcccttcg gccagggtgt cgaacatgcc acggccaaca aa |
#caggtgtg 2100 |
caagccccgt aacccctgca cggatgggac ccacgactgc aacaagaacg cc |
#aagtgcaa 2160 |
ctacctgggc cactatagcg accccatgta ccgctgcgag tgcaagcctg gc |
#tacgctgg 2220 |
caatggcatc atctgcgggg aggacacaga cctggatggc tggcccaatg ag |
#aacctggt 2280 |
gtgcgtggcc aatgcgactt accactgcaa aaaggataat tgccccaacc tt |
#cccaactc 2340 |
agggcaggaa gactatgaca aggatggaat tggtgatgcc tgtgatgatg ac |
#gatgacaa 2400 |
tgataaaatt ccagatgaca gggacaactg tccattccat tacaacccag ct |
#cagtatga 2460 |
ctatgacaga gatgatgtgg gagaccgctg tgacaactgt ccctacaacc ac |
#aacccaga 2520 |
tcaggcagac acagacaaca atggggaagg agacgcctgt gctgcagaca tt |
#gatggaga 2580 |
cggtatcctc aatgaacggg acaactgcca gtacgtctac aatgtggacc ag |
#agagacac 2640 |
tgatatggat ggggttggag atcagtgtga caattgcccc ttggaacaca at |
#ccggatca 2700 |
gctggactct gactcagacc gcattggaga tacctgtgac aacaatcagg at |
#attgatga 2760 |
agatggccac cagaacaatc tggacaactg tccctatgtg cccaatgcca ac |
#caggctga 2820 |
ccatgacaaa gatggcaagg gagatgcctg tgaccacgat gatgacaacg at |
#ggcattcc 2880 |
tgatgacaag gacaactgca gactcgtgcc caatcccgac cagaaggact ct |
#gacggcga 2940 |
tggtcgaggt gatgcctgca aagatgattt tgaccatgac agtgtgccag ac |
#atcgatga 3000 |
catctgtcct gagaatgttg acatcagtga gaccgacttc cgccgattcc ag |
#atgattcc 3060 |
tctggacccc aaagggacat cccaaaatga ccctaactgg gttgtacgcc at |
#cagggtaa 3120 |
agaactcgtc cagactgtca actgtgatcc tggactcgct gtaggttatg at |
#gagtttaa 3180 |
tgctgtggac ttcagtggca ccttcttcat caacaccgaa agggacgatg ac |
#tatgctgg 3240 |
atttgtcttt ggctaccagt ccagcagccg cttttatgtt gtgatgtgga ag |
#caagtcac 3300 |
ccagtcctac tgggacacca accccacgag ggctcaggga tactcgggcc tt |
#tctgtgaa 3360 |
agttgtaaac tccaccacag ggcctggcga gcacctgcgg aacgccctgt gg |
#cacacagg 3420 |
aaacacccct ggccaggtgc gcaccctgtg gcatgaccct cgtcacatag gc |
#tggaaaga 3480 |
tttcaccgcc tacagatggc gtctcagcca caggccaaag acgggtttca tt |
#agagtggt 3540 |
gatgtatgaa gggaagaaaa tcatggctga ctcaggaccc atctatgata aa |
#acctatgc 3600 |
tggtggtaga ctagggttgt ttgtcttctc tcaagaaatg gtgttcttct ct |
#gacctgaa 3660 |
atacgaatgt agagatccct aatcatcaaa ttgttgattg aaagactgat ca |
#taaaccaa 3720 |
tgctggtatt gcaccttctg gaactatggg cttgagaaaa cccccaggat ca |
#cttctcct 3780 |
tggcttcctt cttttctgtg cttgcatcag tgtggactcc tagaacgtgc ga |
#cctgcctc 3840 |
aagaaaatgc agttttcaaa aacagactca gcattcagcc tccaatgaat aa |
#gacatctt 3900 |
ccaagcatat aaacaattgc tttggtttcc ttttgaaaaa gcatctactt gc |
#ttcagttg 3960 |
ggaaggtgcc cattccactc tgcctttgtc acagagcagg gtgctattgt ga |
#ggccatct 4020 |
ctgagcagtg gactcaaaag cattttcagg catgtcagag aagggaggac tc |
#actagaat 4080 |
tagcaaacaa aaccaccctg acatcctcct tcaggaacac ggggagcaga gg |
#ccaaagca 4140 |
ctaaggggag ggcgcatacc cgagacgatt gtatgaagaa aatatggagg aa |
#ctgttaca 4200 |
tgttcggtac taagtcattt tcaggggatt gaaagactat tgctggattt ca |
#tgatgctg 4260 |
actggcgtta gctgattaac ccatgtaaat aggcacttaa atagaagcag ga |
#aagggaga 4320 |
caaagactgg cttctggact tcctccctga tccccaccct tactcatcac ct |
#gcagtggc 4380 |
cagaattagg gaatcagaat caaaccagtg taaggcagtg ctggctgcca tt |
#gcctggtc 4440 |
acattgaaat tggtggcttc attctagatg tagcttgtgc agatgtagca gg |
#aaaatagg 4500 |
aaaacctacc atctcagtga gcaccagctg cctcccaaag gaggggcagc cg |
#tgcttata 4560 |
tttttatggt tacaatggca caaaattatt atcaacctaa ctaaaacatt cc |
#ttttctct 4620 |
tttttcctga attatcatgg agttttctaa ttctctcttt tggaatgtag at |
#ttttttta 4680 |
aatgctttac gatgtaaaat atttattttt tacttattct ggaagatctg gc |
#tgaaggat 4740 |
tattcatgga acaggaagaa gcgtaaagac tatccatgtc atctttgttg ag |
#agtcttcg 4800 |
tgactgtaag attgtaaata cagattattt attaactctg ttctgcctgg aa |
#atttaggc 4860 |
ttcatacgga aagtgtttga gagcaagtag ttgacattta tcagcaaatc tc |
#ttgcaaga 4920 |
acagcacaag gaaaatcagt ctaataagct gctctgcccc ttgtgctcag ag |
#tggatgtt 4980 |
atgggattct ttttttctct gttttatctt ttcaagtgga attagttggt ta |
#tccatttg 5040 |
caaatgtttt aaattgcaaa gaaagccatg aggtcttcaa tactgtttta cc |
#ccatccct 5100 |
tgtgcatatt tccagggaga aggaaagcat atacactttt ttctttcatt tt |
#tccaaaag 5160 |
agaaaaaaat gacaaaaggt gaaacttaca tacaaatatt acctcatttg tt |
#gtgtgact 5220 |
gagtaaagaa tttttggatc aagcggaaag agtttaagtg tctaacaaac tt |
#aaagctac 5280 |
tgtagtacct aaaaagtcag tgttgtacat agcataaaaa ctctgcagag aa |
#gtattccc 5340 |
aataaggaaa tagcattgaa atgttaaata caatttctga aagttatgtt tt |
#ttatctat 5400 |
catctggtat accattgctt tatttttata aattattttc tcattgccat tg |
#gaatagat 5460 |
atctcagatt gtgtagatat gctatttaaa taatttatca ggaaatactg cc |
#tgtagagt 5520 |
tagtatttct atttttatat aatgtttgca cactgaattg aagaattgtt gg |
#ttttttct 5580 |
tttttttgtt ttgttttttt ntttttttnt ttttgctttt gacctcccat tt |
#ttactatt 5640 |
tgccaatacc tttttctagg aatgtgcttt tttttgtaca catttttatc ca |
#ttttacat 5700 |
tctaaagcag tgtaagttgt atattactgt ttcttatgta caaggaacaa ca |
#ataaatca 5760 |
tatggaaatt tatatttata cttactgtat ccatgcttat ttgttctcta ct |
#ggctttat 5820 |
gtcatgaagt atatgcgtaa ataccattca taaatcaata tagcatatac aa |
#aaataaat 5880 |
tacagtaagt catagcaaca ttcacagttt gtatgtgatt gagaaagact ga |
#gttgctca 5940 |
ggcctaggct tagaatttgc tgcgtttgtg gaataaaaga acaaaatgat ac |
#attagcct 6000 |
gccatatcaa aaacatataa aagagaaatt atccctaagt caagggcccc ca |
#taagaata 6060 |
aaatttctta ttaaggtcat tagatgtcat tgaatccttt tcaaagtgca gt |
#atgaaaac 6120 |
aaagggaaaa acactgaagc acacgcaact ctcacagcga cattttctga cc |
#cacgaatg 6180 |
atgccttggg tgggcaacac gattgcatgt tgtggagaca cttcggaagt aa |
#atgtggat 6240 |
gagggaggag ctgtccttgc aatgttgagc caagcattac agatacctcc tc |
#ttgaagaa 6300 |
ggaataataa gtttaatcaa aaaagaagac taaaaaatgt aaaatttgga ag |
#gaatccat 6360 |
aaatgcgtgt gtgtctaaat acaaattatc atgtgaagaa aaggcccaag tg |
#taccaata 6420 |
agcagacctt gatttttgga tgggctaatt atgaatgtgg aatactgacc ag |
#ttaatttc 6480 |
cagttttaat gaaaacagat caaagaagaa attttatgag taggttaaag gt |
#ctggcttt 6540 |
gaggtctatt aaacactaga aaggactggc tgggtgagat aaaatcttcc tt |
#gttgattt 6600 |
tcactctcat tctataaata ctcatctttc tgagtagcca tgatcacata ca |
#aatgtaaa 6660 |
ttgccaaatc attttatagt accaaggtga agaagcagga actagaaagt gt |
#tgataata 6720 |
gctgtggagt taggaaaact gatgtgaagg aaataattct ttgaaatggc aa |
#agaattaa 6780 |
ataccatcat tcattatcag aagagttcaa cgtttgaagt gctgggagat aa |
#ttctaatt 6840 |
cattcttgga tagtgaagca aaactgattg aaaataccaa gataagacag aa |
#aaagtgac 6900 |
tggaaagagg agcttttctt ccaggcatgt tccagtttca ccctaagact ga |
#ccttcaaa 6960 |
taatcaggtt gtactgaaat aaaggacttg ttaaaaatta aaattatgtc at |
#cgagatga 7020 |
tagctttttt cctcctccaa cagtttattg tgcatgtgtt gtgggagagc tc |
#gagtgaag 7080 |
agcaataaac tccaggtctt ataagantgt acatacaata aaggtggtgc ca |
#gcagtttt 7140 |
tttttttcta aagagtcaca tgtagaaaag cctccagtat taagctcctg aa |
#ttcattcc 7200 |
tataaataaa ttggctctct ctctcttcta t |
# |
# 7231 |
<210> SEQ ID NO 65 |
<211> LENGTH: 961 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3732868CB1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 19 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 65 |
ctggctctga ccgcgctgnc ctgggcccga gagcccagga ggcgtgtctc ag |
#agaaaaga 60 |
tataagcggc ccccggacgc taaagcggtg ccagcggcgg agtctccaac tg |
#ggagagct 120 |
gcagctgccg agaggaggag aacgctgagg tcggtcggac caacggacgc gc |
#tgaccgct 180 |
gccaactgca gctcgcgctg cctcctgctc gcgccgtgcc actaaggtca ct |
#cccgcctc 240 |
cgagagccca gagccgagat ggaaacggtc caggagctga tccccctggc ca |
#aggagatg 300 |
atggcccaga agcgcaaggg gaagatggtg aagctgtacg tgctgggcag cg |
#tgctggcc 360 |
ctcttcggcg tggtgctcgg cctgatggag actgtgtgca gccccttcac gg |
#ccgccaga 420 |
cgtctgcggg accaggaggc agccgtggcg gagctgcagg ccgccctgga gc |
#gacaggct 480 |
ctccagaagc aagccctgca ggagaaaggc aagcagcagg acacggtcct cg |
#gcggccgg 540 |
gccctgtcca accggcagca cgcctcctag gaactgtggg agaccagcgg ag |
#tgggaggg 600 |
agacgcagta gacagagaca gaccgagaag gaagggagag acagaggggg cg |
#cgcgcaca 660 |
ggagcctgac tccgctggga gagtgcagga gcacgtgctg ttttttattt gg |
#acttaact 720 |
tcagagaaac cgctgacatc tagaactgac ctaccacaag catccaccaa ag |
#gagtttgg 780 |
gattgagttt tgctgctgtg cagcactgca ttgtcatgac atttccaaca ct |
#gtgtgaat 840 |
tatctaaatg cgtctaccat tttgcactag ggaggaagga taaatgcttt tt |
#atgttatt 900 |
attattaatt attacaatga ccaccatttt gcattttgaa ataaaaaact tt |
#ttatacca 960 |
t |
# |
# |
# 961 |
<210> SEQ ID NO 66 |
<211> LENGTH: 103 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 3732868CD1 |
<400> SEQUENCE: 66 |
Met Glu Thr Val Gln Glu Leu Ile Pro Leu Al |
#a Lys Glu Met Met |
1 5 |
# 10 |
# 15 |
Ala Gln Lys Arg Lys Gly Lys Met Val Lys Le |
#u Tyr Val Leu Gly |
20 |
# 25 |
# 30 |
Ser Val Leu Ala Leu Phe Gly Val Val Leu Gl |
#y Leu Met Glu Thr |
35 |
# 40 |
# 45 |
Val Cys Ser Pro Phe Thr Ala Ala Arg Arg Le |
#u Arg Asp Gln Glu |
50 |
# 55 |
# 60 |
Ala Ala Val Ala Glu Leu Gln Ala Ala Leu Gl |
#u Arg Gln Ala Leu |
65 |
# 70 |
# 75 |
Gln Lys Gln Ala Leu Gln Glu Lys Gly Lys Gl |
#n Gln Asp Thr Val |
80 |
# 85 |
# 90 |
Leu Gly Gly Arg Ala Leu Ser Asn Arg Gln Hi |
#s Ala Ser |
95 |
# 100 |
<210> SEQ ID NO 67 |
<211> LENGTH: 2608 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1137894.1 |
<400> SEQUENCE: 67 |
ttcagcgctc ccactctcgg ccgacacccc tgcatggcca accgttacac ca |
#tggatctg 60 |
actgccatct acgaggtgag tccccgccgc acggcatccc cggtacctgc at |
#gcctgagt 120 |
ccgagtcccc acctctctag cgccgcaaac tccagcccgg gacgcttgcc tc |
#ccttctcc 180 |
aactggggct ccctagcgcc gcgccctcca gcctggggcc cctgcctccc gc |
#tcagacca 240 |
gcttggtgat ttggaggtga aaatggaacc cgcgacaccc ggctcttcgc tc |
#aaacatgg 300 |
gtggggcggc ccatgcaagt ggaaagtcgg agaacttttc tcagaccgag gc |
#tgcctgga 360 |
ggcggaagtg gcccccatac ctggctcacc cctagtcgtt gctgagggcg tg |
#gttttgcg 420 |
cggaggcgtc tctggggctg aagtctcagg gtggggggat ccgacttctg tc |
#tctccagt 480 |
ccctgaccgt agagacagag aaccctaaaa ccgaagcaat ccggacttcc ag |
#gtcaactt 540 |
tgcccggttt ctccagttgt gaaactggag atcccgacgc gtgggtcata tc |
#cggggagg 600 |
acaagagacc caaaattggg aaacagtggt gcgccctgac ttcggggtcc cc |
#ctcttggt 660 |
ccagccgggg aagccgggat tcctgggtcc ctcgggataa ggcctcggtg gt |
#gggtaaac 720 |
tcagaacctc caactctggg ttcctggcat ccggaaccca ggggtttctg cg |
#ggcgggtg 780 |
gggctcaggc ggggagccca caaaccggcc tggcaagctc tagttccctg ca |
#gctggggt 840 |
ggggcgtcgc cctgcatttt caggtgcctt aaccgaccca tttccgcaga gc |
#ctcctgtc 900 |
gctgagccct gacgtgcccg tgccatccga ccatggaggg actgagtcca gc |
#ccaggctg 960 |
gggctcctcg ggaccctgga gcctgagccc ctccgactcc agcccgtctg gg |
#gtcacctc 1020 |
ccgcctgcct ggccgctcca ccagcctagt ggagggccgc agctgtggct gg |
#gtgccccc 1080 |
accccctggc ttcgcaccgc tggctccccg cctgggccct gagctgtcac cc |
#tcacccac 1140 |
ttcgcccact gcaacctcca ccaccccctc gcgctacaag actgagctat gt |
#cggacctt 1200 |
ctcagagagt gggcgctgcc gctacggggc caagtgccag tttgcccatg gc |
#ctgggcga 1260 |
gctgcgccag gccaatcgcc accccaaata caagacggaa ctctgtcaca ag |
#ttctacct 1320 |
ccagggccgc tgcccctacg gctctcgctg ccacttcatc cacaacccta gc |
#gaagacct 1380 |
ggcggccccg ggccaccctc ctgtgcttcg ccagagcatc agcttctccg gc |
#ctgccctc 1440 |
tggccgccgg acctcaccac caccaccagg cctggccggc ccttccctgt cc |
#tccagctc 1500 |
cttctcgccc tccagctccc caccaccacc tggggacctt ccactgtcac cc |
#tctgcctt 1560 |
ctctgctgcc cctggcaccc ccctggctcg aagagacccc accccagtct gt |
#tgcccctc 1620 |
ctgccgaagg gccactccta tcagcgtctg ggggcccttg ggtggcctgg tt |
#cggacccc 1680 |
ctctgtacag tccctgggat ccgaccctga tgaatatgcc agcagcggca gc |
#agcctggg 1740 |
gggctctgac tctcccgtct tcgaggcggg agtttttgca ccaccccagc cc |
#gtggcagc 1800 |
cccccggcga ctccccatct tcaatcgcat ctctgtttct gagtgacaaa gt |
#gactgccc 1860 |
ggtcagatca gctggatctc agcggggagc cacgtctctt gcactgtggt ct |
#ctgcatgg 1920 |
accccagggc tgtggggact tgggggacag taatcaagta atcccctttt cc |
#agaatgca 1980 |
ttaacccact cccctgacct cacgctgggg caggtcccca agtgtgcaag ct |
#cagtattc 2040 |
atgatggtgg gggatggagt gtcttccgag gttcttgggg gaaaaaaaat tg |
#tagcatat 2100 |
ttaagggagg caatgaaccc tctcccccac ctcttccctg cccaaatctg tc |
#tcctagaa 2160 |
tcttatgtgc tgtgaataat aggccttcac tgcccctcca gtttttatag ac |
#ctgaggtt 2220 |
ccagtgtctc ctggtaactg gaacctctcc tgagggggaa tcctggtgct ca |
#aattaccc 2280 |
tccaaaagca agtagccaaa gccgttgcca aaccccaccc ataaatcaat gg |
#gcccttta 2340 |
tttatgacga ctttatttat tctaatatga ttttatagta tttatatata tt |
#gggtcgtc 2400 |
tgcttccctt gtatttttct tccttttttt gtaatattga aaacgacgat at |
#aattatta 2460 |
taagtagact ataatatatt tagtaatata tattattacc ttaaaagtct at |
#ttttgtgt 2520 |
tttgggcatt tttaaataaa caatctgagt gtgttcttcg tagaggaact cg |
#attgagga 2580 |
ccagaggtcc tggacctcca aatacaac |
# |
# 2608 |
<210> SEQ ID NO 68 |
<211> LENGTH: 1527 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1418671CB1 |
<400> SEQUENCE: 68 |
gcttcctggg cgccgtgggc gcggactgcg cgggctgcgc gggtgccgag ga |
#gcgcgagg 60 |
cgcggggaag gcgcacctgg ggtggccctg gcgtgcgggc ggcgacatgg ag |
#gacggcgt 120 |
gctcaaggag ggcttcctgg tcaagagggg ccacattgtc cacaactgga ag |
#gcgcgatg 180 |
gttcatcctt cggcagaaca cgctggtgta ctacaagctt gaggggggtc gg |
#agagtgac 240 |
ccctcccaag ggccggatcc tcctggatgg ctgcaccatc acctgcccct gc |
#ctggagta 300 |
tgaaaaccga ccgctcctca ttaagctgaa gactcaaaca tccacggagt ac |
#ttcctgga 360 |
ggcctgttct cgagaggagc gggatgcctg ggcctttgag atcaccgggg ct |
#attcatgc 420 |
agggcagccg gggaaggtcc agcagctgca cagcctgaga aactccttca ag |
#ctgccccc 480 |
gcacatcagc ctgcatcgca ttgtggacaa gatgcacgat agcaacaccg ga |
#atccgttc 540 |
aagccccaac atggagcagg gaagcaccta taaaaagacc ttcctcggct cc |
#tccctggt 600 |
ggactggctc atctccaaca gcttcacggc cagccgtctg gaggcggtga cc |
#ctggcctc 660 |
catgctcatg gaggagaact tcctcaggcc tgtgggtgtc cgaagcatgg ga |
#gccattcg 720 |
ctctggggat ctggccgagc agttcctgga tgactccaca gccctgtaca ct |
#tttgctga 780 |
gagctacaaa aagaagataa gccccaagga agaaattagc ctgagcactg tg |
#gagttaag 840 |
tggcacggtg gtgaaacaag gctacctggc caagcaggga cacaagagga aa |
#aactggaa 900 |
ggtgcgtcgc tttgttctaa ggaaggatcc agctttcctg cattactatg ac |
#ccttccaa 960 |
agaagagaac aggccagtgg gtgggttttc tcttcgtggt tcactcgtgt ct |
#gctctgga 1020 |
agataatggc gttcccactg gggttaaagg gaatgtccag ggaaacctct tc |
#aaagtgat 1080 |
tactaaggat gacacacact attacattca ggccagcagc aaggctgagc ga |
#gccgagtg 1140 |
gattgaagct atcaaaaagc taacatgaca aggacctgag ggaaccagga tt |
#cctccctc 1200 |
ctaccagatg acacagacaa gagttcctgg agaatgggag tgttaagact tt |
#tgacttct 1260 |
ttgtaagttt tgtactgctt tggagagtga atgctgccaa gagttcctca ga |
#ttacaaac 1320 |
agcagtggtg ccatttcctt ccccatcttc atgttacaaa cctggaaagg ct |
#agaacagc 1380 |
cattaggcgt cagcatcttg acttttcccc agcatcacaa acagccattt cc |
#tcgggcac 1440 |
caaagtaggt tccctttgtt ggaacaatta cactggccat gccataatgt tg |
#aataaaac 1500 |
tctcttctta tgaaaaaaaa aaaaaaa |
# |
# 1527 |
<210> SEQ ID NO 69 |
<211> LENGTH: 353 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1418671CD1 |
<400> SEQUENCE: 69 |
Met Glu Asp Gly Val Leu Lys Glu Gly Phe Le |
#u Val Lys Arg Gly |
1 5 |
# 10 |
# 15 |
His Ile Val His Asn Trp Lys Ala Arg Trp Ph |
#e Ile Leu Arg Gln |
20 |
# 25 |
# 30 |
Asn Thr Leu Val Tyr Tyr Lys Leu Glu Gly Gl |
#y Arg Arg Val Thr |
35 |
# 40 |
# 45 |
Pro Pro Lys Gly Arg Ile Leu Leu Asp Gly Cy |
#s Thr Ile Thr Cys |
50 |
# 55 |
# 60 |
Pro Cys Leu Glu Tyr Glu Asn Arg Pro Leu Le |
#u Ile Lys Leu Lys |
65 |
# 70 |
# 75 |
Thr Gln Thr Ser Thr Glu Tyr Phe Leu Glu Al |
#a Cys Ser Arg Glu |
80 |
# 85 |
# 90 |
Glu Arg Asp Ala Trp Ala Phe Glu Ile Thr Gl |
#y Ala Ile His Ala |
95 |
# 100 |
# 105 |
Gly Gln Pro Gly Lys Val Gln Gln Leu His Se |
#r Leu Arg Asn Ser |
110 |
# 115 |
# 120 |
Phe Lys Leu Pro Pro His Ile Ser Leu His Ar |
#g Ile Val Asp Lys |
125 |
# 130 |
# 135 |
Met His Asp Ser Asn Thr Gly Ile Arg Ser Se |
#r Pro Asn Met Glu |
140 |
# 145 |
# 150 |
Gln Gly Ser Thr Tyr Lys Lys Thr Phe Leu Gl |
#y Ser Ser Leu Val |
155 |
# 160 |
# 165 |
Asp Trp Leu Ile Ser Asn Ser Phe Thr Ala Se |
#r Arg Leu Glu Ala |
170 |
# 175 |
# 180 |
Val Thr Leu Ala Ser Met Leu Met Glu Glu As |
#n Phe Leu Arg Pro |
185 |
# 190 |
# 195 |
Val Gly Val Arg Ser Met Gly Ala Ile Arg Se |
#r Gly Asp Leu Ala |
200 |
# 205 |
# 210 |
Glu Gln Phe Leu Asp Asp Ser Thr Ala Leu Ty |
#r Thr Phe Ala Glu |
215 |
# 220 |
# 225 |
Ser Tyr Lys Lys Lys Ile Ser Pro Lys Glu Gl |
#u Ile Ser Leu Ser |
230 |
# 235 |
# 240 |
Thr Val Glu Leu Ser Gly Thr Val Val Lys Gl |
#n Gly Tyr Leu Ala |
245 |
# 250 |
# 255 |
Lys Gln Gly His Lys Arg Lys Asn Trp Lys Va |
#l Arg Arg Phe Val |
260 |
# 265 |
# 270 |
Leu Arg Lys Asp Pro Ala Phe Leu His Tyr Ty |
#r Asp Pro Ser Lys |
275 |
# 280 |
# 285 |
Glu Glu Asn Arg Pro Val Gly Gly Phe Ser Le |
#u Arg Gly Ser Leu |
290 |
# 295 |
# 300 |
Val Ser Ala Leu Glu Asp Asn Gly Val Pro Th |
#r Gly Val Lys Gly |
305 |
# 310 |
# 315 |
Asn Val Gln Gly Asn Leu Phe Lys Val Ile Th |
#r Lys Asp Asp Thr |
320 |
# 325 |
# 330 |
His Tyr Tyr Ile Gln Ala Ser Ser Lys Ala Gl |
#u Arg Ala Glu Trp |
335 |
# 340 |
# 345 |
Ile Glu Ala Ile Lys Lys Leu Thr |
350 |
<210> SEQ ID NO 70 |
<211> LENGTH: 5648 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 464689.64 |
<400> SEQUENCE: 70 |
ggtgtggtgt cggtgtcggc agcatccccg gcgccctgct gcggtcgccg cg |
#agcctcgg 60 |
cctctgtctc ctccccctcc cgcccttacc tccacgcggg accgcccgcg cc |
#agtcaact 120 |
cctcgcactt tgcccctgct tggcagcgga taaaaggggg ctgaggaaat ac |
#cggacacg 180 |
gtcacccgtt gccagctcta gcctttaaat tcccggctcg gggacctcca cg |
#caccgcgg 240 |
ctagcgccga caaccagcta gcgtgcaagg cgccgcggct cagcgcgtac cg |
#gcgggctt 300 |
cgaaaccgca gtcctccggc gaccccgaac tccgctccgg agcctcagcc cc |
#ctggaaag 360 |
tgatcccggc atcggagagc caagatgccg gcccacttgc tgcaggacga ta |
#tctctagc 420 |
tcctatacca ccaccaccac cattacagcg cctccctcca ggggtcctgc ag |
#aatggagg 480 |
agataagttg gagacgatgc ccctctactt ggaagacgac attcgccctg at |
#ataaaaga 540 |
tgatatatat gaccccacct acaaggataa ggaaggccca agccccaagg tt |
#gaatatgt 600 |
ctggagaaac atcatcctta tgtctctgct acacttggga gccctgtatg gg |
#atcacttt 660 |
gattcctacc tgcaagttct acacctggct ttggggggta ttctactatt tt |
#gtcagtgc 720 |
cctgggcata acagcaggag ctcatcgtct gtggagccac cgctcttaca aa |
#gctcggct 780 |
gcccctacgg ctctttctga tcattgccaa cacaatggca ttccagaatg at |
#gtctatga 840 |
atgggctcgt gaccaccgtg cccaccacaa gttttcagaa acacatgctg at |
#cctcataa 900 |
ttcccgacgt ggctttttct tctctcacgt gggttggctg cttgtgcgca aa |
#cacccagc 960 |
tgtcaaagag aaggggagta cgctagactt gtctgaccta gaagctgaga aa |
#ctggtgat 1020 |
gttccagagg aggtactaca aacctggctt gctgatgatg tgcttcatcc tg |
#cccacgct 1080 |
tgtgccctgg tatttctggg gtgaaacttt tcaaaacagt gtgttcgttg cc |
#actttctt 1140 |
gcgatatgct gtggtgctta atgccacctg gctggtgaac agtgctgccc ac |
#ctcttcgg 1200 |
atatcgtcct tatgacaaga acattagccc ccgggagaat atcctggttt ca |
#cttggagc 1260 |
tgtgggtgag ggcttccaca actaccacca ctcctttccc tatgactact ct |
#gccagtga 1320 |
gtaccgctgg cacatcaact tcaccacatt cttcattgat tgcatggccg cc |
#ctcggtct 1380 |
ggcctatgac cggaagaaag tctccaaggc cgccatcttg gccaggatta aa |
#agaaccgg 1440 |
agatggaaac tacaagagtg gctgagtttg gggtccctca ggttcctttt tc |
#aaaaacca 1500 |
gccaggcaga ggttttaatg tctgtttatt aactactgaa taatgctacc ag |
#gatgctaa 1560 |
agatgatgat gttaacccat tccagtacag tattctttta aaattcaaaa gt |
#attgaaag 1620 |
ccaacaactc tgcctttatg atgctaagct gatattattt cttctcttat cc |
#tctctctc 1680 |
ttctaggccc attgtcctcc ttttcacttt attgctatcg ccctcctttc cc |
#ttattgcc 1740 |
tcccaggcaa gcagctggtc agtctttgct cagtgtccag cttccaaagc ct |
#agacaacc 1800 |
tttctgtagc ctaaaacgaa tggtctttgc tccagataac tctctttcct tg |
#agctgttg 1860 |
tgagctttga agtaggtggc ttgagctaga gataaaacag aatcttctgg gt |
#agtcccct 1920 |
gttgattatc ttcagcccag gcttttgcta gatggaatgg aaaagcaact tc |
#atttgaca 1980 |
caaagcttct aaagcaggta aattgtcggg ggagagagtt agcatgtatg aa |
#tgtaagga 2040 |
tgagggaagc gaagcaagag gaacctctcg ccatgatcag acatacagct gc |
#ctacctaa 2100 |
tgaggacttc aagccccacc acatagcatg cttcctttct ctcctggctc gg |
#ggtaaaaa 2160 |
gtggctgcgg tgtttggcaa tgctaattca atgccgcaac atatagttga gg |
#ccgaggat 2220 |
aaagaaagac attttaagtt tgtagtaaaa gtggtctctg ctggggaagg gt |
#ttcttttc 2280 |
ttttttcttt atcacaagga gatttcttag ttcatatatc aagaagtctt ga |
#agttgggt 2340 |
gtttccagaa ttggtaaaaa cagcagctca tggaattttg agtattccat ga |
#gctgctca 2400 |
ttacagttct ttcctctttc tgctctgcca tcttcaggat attggttctt cc |
#cctcatag 2460 |
taataagatg gctgtggcat ttccaaacat ccaaaaaaag ggaaggattt aa |
#ggaggtga 2520 |
agtcgggtca aaaataaaat atatatacat atatacattg cttagaacgt ta |
#aactatta 2580 |
gagtatttcc cttccaaaga gggatgtttg gaaaaaactc tgaaggagag ga |
#ggaattag 2640 |
ttgggatgcc aatttcctct ccactgctgg acatgagatg gagaggctga gg |
#gacaggat 2700 |
ctataggcag cttctaagag cgaacttcac ataggaaggg atctgagaac ac |
#gttgccag 2760 |
gggcttgaga aggttactga gtgagttatt gggagtctta ataaaataaa ct |
#agatatta 2820 |
ggtccattca ttaattagtt ccagtttctc cttgaaatga gtaaaaacta ga |
#aggcttct 2880 |
ctccacagtg ttgtgcccct tcactcattt ttttttgagg agaagggggt ct |
#ctgttaac 2940 |
atctagccta aagtatacaa ctgcctgggg ggcagggtta ggaatctctt ca |
#ctaccctg 3000 |
attcttgatt cctggctcta ccctgtctgt cccttttctt tgaccagatc tt |
#tctcttcc 3060 |
ctgaacgttt tcttctttcc ctggacaggc agcctccttt gtgtgtattc ag |
#aggcagtg 3120 |
atgacttgct gtccaggcag ctccctcctg cacacagaat gctcagggtc ac |
#tgaaccac 3180 |
tgcttctctt ttgaaagtag agctagctgc cactttcacg tggcctccgc ag |
#tgtctcca 3240 |
cctacacccc tgtgctcccc tgccacactg atggctcaag acaaggctgg ca |
#aaccctcc 3300 |
cagaaacatc tctggcccag aaagcctctc tctccctccc tctctcatga gg |
#cacagcca 3360 |
agccaagcgc tcatgttgag ccagtgggcc agccacagag caaaagaggg tt |
#tattttca 3420 |
gtcccctctc tctgggtcag aaccagaggg catgctgaat gccccctgct ta |
#cttggtga 3480 |
gggtgccccg cctgagtcag tgctctcagc tggcagtgca atgcttgtag aa |
#gtaggagg 3540 |
aaacagttct cactgggaag aagcaagggc aagaacccaa gtgcctcacc tc |
#gaaaggag 3600 |
gccctgttcc ctggagtcag ggtgaactgc aaagctttgg ctgagacctg gg |
#atttgaga 3660 |
taccacaaac cctgctgaac acagtgtctg ttcagcaaac taaccagcat tc |
#cctacagc 3720 |
ctagggcaga caatagtata gaagtctgga aaaaaacaaa aacagaattt ga |
#gaaccttg 3780 |
gaccactcct tgtccctgta gctcagtcat caaagcagaa gtcctggctt tg |
#ctctataa 3840 |
agaattggaa atggtacact acccaaacac tcagttcact tgttgagccc ca |
#gtgcctgg 3900 |
aagggaggaa ggcctttctt ctgtgttaat tgccgtagag gctacagggg tt |
#agccctgg 3960 |
actaaaggca tccttgtctt ttgagctatt cacctcagta gaaaaggatc ta |
#agggaaga 4020 |
tcactgtagt ttagttctgt tgaccttgtg cacctacccc ttggaaatgt ct |
#gctggtat 4080 |
ttctaattcc acaggtcatc agatgcctgc ttgataatat ataaacaata aa |
#aacaactt 4140 |
tcacttcttc ctattgtaat cgtgtgccat ggatctgatc tgtaccatga cc |
#ctacataa 4200 |
ggctggatgg cacctcaggc tgagggcccc aatgtatgtg tggctgtggg tg |
#tgggtggg 4260 |
agtgtgtctg ctgagtaagg aacacgattt tcaagattct aaagctcaat tc |
#aagtgaca 4320 |
cattaatgat aaactcagat ctgatcaaga gtccggattt ctaacagtcc tt |
#gctttggg 4380 |
ggggtgtgct gacaacttag ctcaggtgcc ttacatcttt tctaatcaca gt |
#gttgcata 4440 |
tgagcctgcc ctcactccct ctgcagaatc cctttgcacc tgagacccta ct |
#gaagtggc 4500 |
tggtagaaaa aggggcctga gtggaggatt atcagtatca cgatttgcag ga |
#ttcccttc 4560 |
tgggcttcat tctggaaact tttgttaggg ctgcttttct taagtgccca ca |
#tttgatgg 4620 |
agggtggaaa taatttgaat gtatttgatt tataagtttt tttttttttt tt |
#gggttaaa 4680 |
agatggttgt agcatttaaa atggaaaatt ttctccttgg tttgctagta tc |
#ttgggtgt 4740 |
attctctgta agtgtagctc aaataggtca tcatgaaagg ttaaaaaagc ga |
#ggtggcca 4800 |
tgttatgctg gtggttaagg ccagggcctc tccaaccact gtgccactga ct |
#tgctgtgt 4860 |
gacctctggg caagtcactt aacgtataag gtgcctcagt tttccttctg tt |
#aaaatggg 4920 |
gataataata ctgacctacc tcaaagggca gttttgaggc atgactaatg ct |
#ttttagaa 4980 |
agcattttgg gatccttcag cacaggaatt ctcaagacct gagtattttt ta |
#taatagga 5040 |
atgtccacca tgaacttgat acgtccgtgt gtcccagatg ctgtcattag tc |
#tatatggt 5100 |
tctccaagaa actgaatgaa tccattggag aagcggtgga taactagcca ga |
#caaaattt 5160 |
gagaatacat aaacaacgca ttgccacgga aacatacaga ggatgccttt tc |
#tgtgattg 5220 |
ggtgggattt ttttcccttt ttatgtggga tatagtagtt acttgtgaca ag |
#aataattt 5280 |
tggaataatt tctattaata tcaactctga agctaattgt actaatctga ga |
#ttgtggtg 5340 |
agcagtgacg atgaggagtt gtccagggac agagacgtat atgtgactac cc |
#atactccc 5400 |
agaaacgcca gggatgaggg cgctacaggc ctcaggccct caggtactgt ca |
#gttgtccc 5460 |
atctgcatgg actggatact cagaggtaag taaaccaagc tgtatcttcc ag |
#gcttctgg 5520 |
tttctaaact tcactgaaag aattggatga gacaggatct tccccctcgg tg |
#ggattgga 5580 |
cacccctact cacagtcatg cctgggccct cacttattgc agatctgcct gt |
#gaggggag 5640 |
aatgtgcc |
# |
# |
# 5648 |
<210> SEQ ID NO 71 |
<211> LENGTH: 56 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 053959.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 2, 13, 20, 32, 41, 47 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 71 |
gngaggcaat ganccctctn ccccacctct tncctgccca natctgnctc ct |
#agaa 56 |
<210> SEQ ID NO 72 |
<211> LENGTH: 580 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1384594.1 |
<400> SEQUENCE: 72 |
cttgggtgat ggggcacgga agagggttac aggcaaaggg accagcgttt ct |
#aaactctt 60 |
ggagacacag tgaagaaggt tcatacctgg agtgccaagg ttactgtgtc tc |
#cagaaaca 120 |
catatggacc tcacaaagga cgagtgggga cttcttgatg aggctcagag ac |
#tcctgtac 180 |
cttgaagtga tgctggagaa ctttgccctt gtagcctcac tgggttgtgg cc |
#atggaaca 240 |
gaggatgaag agacaccttc tgaccagaat gtttactcta ggagtgtcac ag |
#tcaaaagg 300 |
caggttcatc caaaacagga gactccagtc ctgtggaaag tgtgtccaag tc |
#ctaaagat 360 |
aattttggat ctagctgaat ctcctagggc aggaaacata cttgggttcg gg |
#agatgtac 420 |
aaacctggca caaggacaag aaggcttaac agtgcaaaga aaaaccttga ta |
#aggggcaa 480 |
tggacagagc ctcaaaaatg tggaagtgag gaccctagca tgtaagtcga tg |
#gaagccct 540 |
ttcgggaatt gggagggttt ggaaagggac cctccagacc |
# |
# 580 |
<210> SEQ ID NO 73 |
<211> LENGTH: 2572 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 021667CB1 |
<400> SEQUENCE: 73 |
gtgcgtaaca cacatcaaga cagaacctgt tgccattttc agccaccaga gt |
#gaaacgac 60 |
tgcccctcct ccggccccga cccaggccct ccctgagttc accagtatat tc |
#agctcaca 120 |
ccagaccgca gctccagagg tgaacaatat tttcatcaaa caagaacttc ct |
#acaccaga 180 |
tcttcatctt tctgtcccta cccagcaggg ccacctgtac cagctactga at |
#acaccgga 240 |
tctagatatg cccagttcta caaatcagac agcagcaatg gacactctta at |
#gtttctat 300 |
gtcagctgcc atggcaggcc ttaacacaca cacctctgct gttccgcaga ct |
#gcagtgaa 360 |
acaattccag ggcatgcccc cttgcacata cacaatgcca agtcagtttc tt |
#ccacaaca 420 |
ggccacttac tttcccccgt caccaccaag ctcagagcct ggaagtccag at |
#agacaagc 480 |
agagatgctc cagaatttaa ccccacctcc atcctatgct gctacaattg ct |
#tctaaact 540 |
ggcaattcac aatccaaatt tacccaccac cctgccagtt aactcacaaa ac |
#atccaacc 600 |
tgtcagatac aatagaagga gtaaccccga tttggagaaa cgacgcatcc ac |
#tactgcga 660 |
ttaccctggt tgcacaaaag tttataccaa gtcttctcat ttaaaagctc ac |
#ctgaggac 720 |
tcacactggt gaaaagccat acaagtgtac ctgggaaggc tgcgactgga gg |
#ttcgcgcg 780 |
atcggatgag ctgacccgcc actaccggaa gcacacaggc gccaagccct tc |
#cagtgcgg 840 |
ggtgtgcaac cgcagcttct cgcgctctga ccacctggcc ctgcatatga ag |
#aggcacca 900 |
gaactgagca ctgcccgtgt gacccgttcc aggtcccctg ggctccctca aa |
#tgacagac 960 |
ctaactattc ctgtgtaaaa acaacaaaaa caaacaaaag caagaaaacc ac |
#aactaaaa 1020 |
ctggaaatgt atattttgta tatttgagaa aacagggaat acattgtatt aa |
#taccaaag 1080 |
tgtttggtca ttttaagaat ctggaatgct tgctgtaatg tatatggctt ta |
#ctcaagca 1140 |
gatctcatct catgacaggc agccacgtct caacatgggt aaggggtggg gg |
#tggagggg 1200 |
agtgtgtgca gcgtttttac ctaggcacca tcatttaatg tgacagtgtt ca |
#gtaaacaa 1260 |
atcagttggc aggcaccaga agaagaatgg attgtatgtc aagattttac tt |
#ggcattga 1320 |
gtagtttttt tcaatagtag gtaattcctt agagatacag tatacctggc aa |
#ttcacaaa 1380 |
tagccattga acaaatgtgt gggtttttaa aaattatata catatatgag tt |
#gcctatat 1440 |
ttgctattca aaattttgta aatatgcaaa tcagctttat aggtttatta ca |
#agtttttt 1500 |
aggattcttt tggggaagag tcataattct tttgaaaata accatgaata ca |
#cttacagt 1560 |
taggatttgt ggtaaggtac ctctcaacat taccaaaatc atttctttag ag |
#ggaaggaa 1620 |
taatcattca aatgaacttt aaaaaagcaa atttcatgca ctgattaaaa ta |
#ggattatt 1680 |
ttaaatacaa aaggcatttt atatgaatta taaactgaag agcttaaaga ta |
#gttacaaa 1740 |
atacaaaagt tcaacctctt acaataagct aaacgcaatg tcatttttaa aa |
#agaaggac 1800 |
ttagggtgtc gttttcacat atgacaatgt tgcatttatg atgcagtttc aa |
#gtaccaaa 1860 |
acgttgaatt gatgatgcag ttttcatata tcgagatgtt cgctcgtgca gt |
#actgttgg 1920 |
ttaaatgaca atttatgtgg attttgcatg taatacacag tgagacacag ta |
#attttatc 1980 |
taaattacag tgcagtttag ttaatctatt aatactgact cagtgtctgc ct |
#ttaaatat 2040 |
aaatgatatg ttgaaaactt aaggaagcaa atgctacata tatgcaatat aa |
#aatagtaa 2100 |
tgtgatgctg atgctgttaa ccaaagggca gaataaataa gcaaaatgcc aa |
#aaggggtc 2160 |
ttaattgaaa tgaaaattta attttgtttt taaaatattg tttatcttta tt |
#tattttgt 2220 |
ggtaatatag taagtttttt tagaagacaa ttttcataac ttgataaatt at |
#agttttgt 2280 |
ttgttagaaa agttgctctt aaaagatgta aatagatgac aaacgatgta aa |
#taattttg 2340 |
taagaggctt caaaatgttt atacgtggaa acacacctac atgaaaagca ga |
#aatcggtt 2400 |
gctgttttgc ttctttttcc ctcttatttt tgtattgtgg tcatttccta tg |
#caaataat 2460 |
ggagcaaaca gctgtatagt tgtagaattt tttgagagaa tgagatgttt at |
#atattaac 2520 |
gacaattttt tttttggaaa ataaaaagtg cctaaaagac aaaaaaaaaa aa |
# 2572 |
<210> SEQ ID NO 74 |
<211> LENGTH: 219 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 021667CD1 |
<400> SEQUENCE: 74 |
Met Pro Ser Ser Thr Asn Gln Thr Ala Ala Me |
#t Asp Thr Leu Asn |
1 5 |
# 10 |
# 15 |
Val Ser Met Ser Ala Ala Met Ala Gly Leu As |
#n Thr His Thr Ser |
20 |
# 25 |
# 30 |
Ala Val Pro Gln Thr Ala Val Lys Gln Phe Gl |
#n Gly Met Pro Pro |
35 |
# 40 |
# 45 |
Cys Thr Tyr Thr Met Pro Ser Gln Phe Leu Pr |
#o Gln Gln Ala Thr |
50 |
# 55 |
# 60 |
Tyr Phe Pro Pro Ser Pro Pro Ser Ser Glu Pr |
#o Gly Ser Pro Asp |
65 |
# 70 |
# 75 |
Arg Gln Ala Glu Met Leu Gln Asn Leu Thr Pr |
#o Pro Pro Ser Tyr |
80 |
# 85 |
# 90 |
Ala Ala Thr Ile Ala Ser Lys Leu Ala Ile Hi |
#s Asn Pro Asn Leu |
95 |
# 100 |
# 105 |
Pro Thr Thr Leu Pro Val Asn Ser Gln Asn Il |
#e Gln Pro Val Arg |
110 |
# 115 |
# 120 |
Tyr Asn Arg Arg Ser Asn Pro Asp Leu Glu Ly |
#s Arg Arg Ile His |
125 |
# 130 |
# 135 |
Tyr Cys Asp Tyr Pro Gly Cys Thr Lys Val Ty |
#r Thr Lys Ser Ser |
140 |
# 145 |
# 150 |
His Leu Lys Ala His Leu Arg Thr His Thr Gl |
#y Glu Lys Pro Tyr |
155 |
# 160 |
# 165 |
Lys Cys Thr Trp Glu Gly Cys Asp Trp Arg Ph |
#e Ala Arg Ser Asp |
170 |
# 175 |
# 180 |
Glu Leu Thr Arg His Tyr Arg Lys His Thr Gl |
#y Ala Lys Pro Phe |
185 |
# 190 |
# 195 |
Gln Cys Gly Val Cys Asn Arg Ser Phe Ser Ar |
#g Ser Asp His Leu |
200 |
# 205 |
# 210 |
Ala Leu His Met Lys Arg His Gln Asn |
215 |
<210> SEQ ID NO 75 |
<211> LENGTH: 5325 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 224855.4 |
<221> NAME/KEY: unsure |
<222> LOCATION: 1500-1699 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 75 |
acctcgcact ctcagtttca ccgctcgatc ttgggaccca ccgctgccct ca |
#gctccgag 60 |
tccagggcga gtgcagagca gagcgggcgg aggaccccgg gcgcgggcgc gg |
#acggcacg 120 |
cggggcatga acctggaggg cggcggccga ggcggagagt tcggcatgag cg |
#cggtgagc 180 |
tgcggcaacg ggaagctccg ccagtggctg atcgaccaga tcgacagcgg ca |
#agtacccc 240 |
gggctggtgt gggagaacga ggagaagagc atcttccgca tcccctggaa gc |
#acgcgggc 300 |
aagcaggact acaaccgcga ggaggacgcc gcgctcttca aggcttgggc ac |
#tgtttaaa 360 |
ggaaagttcc gagaaggcat cgacaagccg gaccctccca cctggaagac gc |
#gcctgcgg 420 |
tgcgctttga acaagagcaa tgactttgag gaactggttg agcggagcca gc |
#tggacatc 480 |
tcagacccgt acaaagtgta caggattgtt cctgagggag ccaaaaaagg ag |
#ccaagcag 540 |
ctcaccctgg aggacccgca gatgtccatg agccacccct acaccatgac aa |
#cgccttac 600 |
ccttcgctcc cagcccaggt tcacaactac atgatgccac ccctcgaccg aa |
#gctggagg 660 |
gactacgtcc cggatcagcc acacccggaa atcccgtacc aatgtcccat ga |
#cgtttgga 720 |
ccccgcggcc accactggca aggcccagct tgtgaaaatg gttgccaggt ga |
#caggaacc 780 |
ttttatgctt gtgccccacc tgagtcccag gctcccggag tccccacaga gc |
#caagcata 840 |
aggtctgccg aagccttggc gttctcagac tgccggctgc acatctgcct gt |
#actaccgg 900 |
gaaatcctcg tgaaggagct gaccacgtcc agccccgagg gctgccggat ct |
#cccatgga 960 |
catacgtatg acgccagcaa cctggaccag gtcctgttcc cctacccaga gg |
#acaatggc 1020 |
cagaggaaaa acattgagaa gctgctgagc cacctggaga ggggcgtggt cc |
#tctggatg 1080 |
gcccccgacg ggctctatgc gaaaagactg tgccagagca ggatctactg gg |
#acgggccc 1140 |
ctggcgctgt gcaacgaccg gcccaacaaa ctggagagag accagacctg ca |
#agctcttt 1200 |
gacacacagc agttcttgtc agagctgcaa gcgtttgctc accacggccg ct |
#ccctgcca 1260 |
agattccagg tgactctatg ctttggagag gagtttccag accctcagag gc |
#aaagaaag 1320 |
ctcatcacag ctcacgtaga acctctgcta gccagacaac tatattattt tg |
#ctcaacaa 1380 |
aacagtggac atttcctgag gggctacgat ttaccagaac acatcagcaa tc |
#cagaagat 1440 |
taccacagat ctatccgcca ttcctctatt caagaatgaa aaatgtcaag at |
#gagtgggn 1500 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1560 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1620 |
nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nn |
#nnnnnnnn 1680 |
nnnnnnnnnn nnnnnnnnnc attgtaaata tttgacttta gtgaaagcgt cc |
#aattgact 1740 |
gcgcctctta ctgttttgag gaactcagaa gtggagattt cagttcagcg gt |
#tgaggaga 1800 |
attgcggcga gacaagcatg gaaaatcagt gacatctgat tggcagatga gc |
#ttatttca 1860 |
aaaggaaggg tggctttgca ttttcttgtg ttctgtagac tgccatcatt ga |
#tgatcact 1920 |
gtgaaaattg accaagtgat gtgtttacat ttactgaaat gcgctcttta at |
#ttgttgta 1980 |
gattaggtct tgctggaaga cagagaaaac ttgcctttca gtattgacac tg |
#actagagt 2040 |
gatgactgct tgtaggtatg tctgtgccat ttctcaggga agtaagatgt aa |
#attgaaga 2100 |
agcctcacac gtaaaagaaa tgtattaatg tatgtaggag ctgcagttct tg |
#tggaagac 2160 |
acttgctgag tgaaggaaat gaatctttga ctgaagccgt gcctgtagcc tt |
#ggggaggc 2220 |
ccatccccca cctgccagcg gtttcctggt gtgggtccct ctgccccacc ct |
#ccttccca 2280 |
ttggctttct ctccttggcc tttcctggaa gccagttagt aaacttccta tt |
#ttcttgag 2340 |
tcaaaaaaca tgagcgctac tcttggatgg gacatttttg tctgtcctac aa |
#tctagtaa 2400 |
tgtctaagta atggttaagt tttcttgttt ctgcatcttt ttgaccctca tt |
#ctttagag 2460 |
atgctaaaat tcttcgcata aagaagaaga aattaaggaa cataaatctt aa |
#tacttgaa 2520 |
ctgttgccct tctgtccaag tacttaacta tctgttccct tcctctgtgc ca |
#cgctcctc 2580 |
tgtttgtttg gctgtccagc gatcagccat ggcgacacta aaggaggagg ag |
#ccggggac 2640 |
tcccaggctg gagagcactg ccaggaccca ccactggaag caggatggag ct |
#gactacgg 2700 |
aactgcacac tcagtgggct gtttctgctt atttcatctg ttctatgctt cc |
#tcgtgcca 2760 |
attatagttt gacagggcct taaaattact tggctttttc caaatgcttc ta |
#tttataga 2820 |
atcccaaaga cctccacttg cttaagtata cctatcactt acatttttgt gg |
#ttttgaga 2880 |
aagtacagca gtagactggg gcgtcacctc caggccgttt ctcatactac ag |
#gatattta 2940 |
ctattactcc caggatcagc agaagattgc gtagctctca aatgtgtgtt cc |
#tgcttttc 3000 |
taatggatat tttaaattca ttcaacaagc acctagtaag tgcctgctgt at |
#ccctacat 3060 |
tacacagttc agcctttatc aagcttagtg agcagtgagc actgaaacat ta |
#ttttttaa 3120 |
tgtttaaaaa gtttctaata ttaaagtcag aatattaata caattaatat ta |
#atattaac 3180 |
tacagaaaag acaaacagta gagaacagca aaaaaataaa aaggatctcc tt |
#ttttccca 3240 |
gcccaaattc tcctctctaa aagtgtccac aagaaggggt gtttattctt cc |
#aacacatt 3300 |
tcacttttct gtaaatatac ataaacttaa aaagaaaacc tcatggagtc at |
#cttgcaca 3360 |
cactttcatg cagtgctctt tgtagctaac agtgaagatt tacctcgttc tg |
#ctcagagg 3420 |
ccttgctgtg gagctccact gccatgtacc cagtagggtt tgacatttca tt |
#agccatgc 3480 |
aacatggata tgtattgggc agcagactgt gtttcgtgaa ctgcagtgat gt |
#atacatct 3540 |
tatagatgca aagtattttg gggtatatta tcctaaggga agataaagat ga |
#tattaaga 3600 |
actgctgttt cacggggccc ttacctgtga ccctctttgc tgaagaatat tt |
#aaccccac 3660 |
acagcacttt caaagaagct gtcttggaag tctgtctcag gagcaccctg tc |
#ttcttaat 3720 |
tctccaagcg gatgctccat ttcaattgct ttgtgacttc ttcttctttg tt |
#tttttaaa 3780 |
tattatgctg ctttaacagt ggagctgaat tttctggaaa atgcttcttg gc |
#tggggcca 3840 |
ctacctcctt tcctatcttt acatctatgt gtatgttgac tttttaaaat tc |
#tgagtgat 3900 |
ccagggtatg acctagggaa tgaactagct atgaaatact cagggttagg aa |
#tcctagca 3960 |
cttgtctcag gactctgaaa aggaacggct tcctcattcc ttgtcttgat aa |
#agtggaat 4020 |
tggcaaacta gaatttagtt tgtactcagt ggacagtgct gttgaagatt tg |
#aggacttg 4080 |
ttaaagagca ctgggtcata tggaaaaaat gtatgtgtct cccaggtgca tt |
#tcttggtt 4140 |
tatgtcttgt tcttgagatt ttgtatattt aggaaaacct caagcagtaa tt |
#aatatctc 4200 |
ctggaacact atagagaacc aagtgaccga ctcatttaca actgaaacct ag |
#gaagcccc 4260 |
tgagtcctga gcgaaaacag gagagttagt cgccctacag gaaacccagc ta |
#gactattg 4320 |
ggtatgaact aaaaagagac tgtgccatgg tgagaaaaat gtaaaatcct ac |
#agtggaat 4380 |
gagcagccct tacagtgttg ttaccaccaa gggcaggtag gtattagtgt tt |
#gaaaaagc 4440 |
tggtctttga gcgagggcat aaatacagct agccccaggg gtggaacaac tc |
#tgggagtc 4500 |
ttgggtactc gcacctcttg gctttgttga tgctccgcca ggaaggccac tt |
#gtgtgtgc 4560 |
gtgtcagtta cttttttagt aacaattcag atccagtgta aacttccgtt ca |
#ttgctctc 4620 |
cagtcacatg cccccacttc cccacaggtg aaagtttttc tgaaagtgtt gg |
#gattggtt 4680 |
aaggtcttta tttgtattac gtatctcccc aagtcctctg tggccagctg cg |
#tctgtctg 4740 |
aatggtgcgt gaaggctctc agaccttaca caccattttg taagttatgt tt |
#tacatgcc 4800 |
ccgtttttga gactgatctc gatgcaggtg gatctccttg agatcctgat ag |
#cctgttac 4860 |
aggaatgaag taaaggtcag ttttttttgt attgattttc acagctttga gg |
#aacatgca 4920 |
taagaaatgt agctgaagta gagggggcgt gagagaaggg ccaggccggc ag |
#gccaaccc 4980 |
tcctccaatg gaaattcccg tgttgcttca aactgagaca gatgggactt aa |
#caggcaat 5040 |
ggggtccact tccccctctt cagcatcccc cgtaccccac tttctgctga aa |
#gaactgcc 5100 |
agcaggtagg accccagagg cccccaaatg aaagcttgaa tttcccctac tg |
#gctctgcg 5160 |
ttttgctgag atctgtagga aaggatgctt cacaaactga ggtagataat gc |
#tatgctgt 5220 |
cgttggtata catcatgaat ttttatgtaa attgctctgc aaagcaaatt ga |
#tatgtttg 5280 |
ataaatttat gtttttaggt aaataaaaac ttttaaaaag ttgtt |
# 5325 |
<210> SEQ ID NO 76 |
<211> LENGTH: 2278 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1518310CB1 |
<400> SEQUENCE: 76 |
ggctcctctc cccgactcgg agcccctcgg cggcgcccgg cccaggaccc gc |
#ctaggagc 60 |
gcaggagccc cagcgcagag accccaacgc cgagaccccc gccccggccc cg |
#ccgcgctt 120 |
cctcccgacg cagagcaaac cgcccagagt agaagatgga ttggggcacg ct |
#gcagacga 180 |
tcctgggggg tgtgaacaaa cactccacca gcattggaaa gatctggctc ac |
#cgtcctct 240 |
tcatttttcg cattatgatc ctcgttgtgg ctgcaaagga ggtgtgggga ga |
#tgagcagg 300 |
ccgactttgt ctgcaacacc ctgcagccag gctgcaagaa cgtgtgctac ga |
#tcactact 360 |
tccccatctc ccacatccgg ctatgggccc tgcagctgat cttcgtgtcc ac |
#gccagcgc 420 |
tcctagtggc catgcacgtg gcctaccgga gacatgagaa gaagaggaag tt |
#catcaagg 480 |
gggagataaa gagtgaattt aaggacatcg aggagatcaa aacccagaag gt |
#ccgcatcg 540 |
aaggctccct gtggtggacc tacacaagca gcatcttctt ccgggtcatc tt |
#cgaagccg 600 |
ccttcatgta cgtcttctat gtcatgtacg acggcttctc catgcagcgg ct |
#ggtgaagt 660 |
gcaacgcctg gccttgtccc aacactgtgg actgctttgt gtcccggccc ac |
#ggagaaga 720 |
ctgtcttcac agtgttcatg attgcagtgt ctggaatttg catcctgctg aa |
#tgtcactg 780 |
aattgtgtta tttgctaatt agatattgtt ctgggaagtc aaaaaagcca gt |
#ttaacgca 840 |
ttgcccagtt gttagattaa gaaatagaca gcatgagagg gatgaggcaa cc |
#cgtgctca 900 |
gctgtcaagg ctcagtcgct agcatttccc aacacaaaga ttctgacctt aa |
#atgcaacc 960 |
atttgaaacc cctgtaggcc tcaggtgaaa ctccagatgc cacaatggag ct |
#ctgctccc 1020 |
ctaaagcctc aaaacaaagg cctaattcta tgcctgtctt aattttcttt ca |
#cttaagtt 1080 |
agttccactg agaccccagg ctgttagggg ttattggtgt aaggtacttt ca |
#tattttaa 1140 |
acagaggata tcggcatttg tttctttctc tgaggacaag agaaaaaagc ca |
#ggttccac 1200 |
agaggacaca gagaaggttt gggtgtcctc ctggggttct ttttgccaac tt |
#tccccacg 1260 |
ttaaaggtga acattggttc tttcatttgc tttggaagtt ttaatctcta ac |
#agtggaca 1320 |
aagttaccag tgccttaaac tctgttacac tttttggaag tgaaaacttt gt |
#agtatgat 1380 |
aggttatttt gatgtaaaga tgttctggat accattatat gttccccctg tt |
#tcagaggc 1440 |
tcagattgta atatgtaaat ggtatgtcat tcgctactat gatttaattt ga |
#aatatggt 1500 |
cttttggtta tgaatacttt gcagcacagc tgagaggctg tctgttgtat tc |
#attgtggt 1560 |
catagcacct aacaacattg tagcctcaat cgagtgagac agactagaag tt |
#cctagtga 1620 |
tggcttatga tagcaaatgg cctcatgtca aatatttaga tgtaattttg tg |
#taagaaat 1680 |
acagactgga tgtaccacca actactacct gtaatgacag gcctgtccaa ca |
#catctccc 1740 |
ttttccatga ctgtggtagc cagcatcgga aagaacgctg atttaaagag gt |
#cgcttggg 1800 |
aattttattg acacagtacc atttaatggg gaggacaaaa tggggcaggg ga |
#gggagaag 1860 |
tttctgtcgt taaaaacaga tttggaaaga ctggactcta aattctgttg at |
#taaagatg 1920 |
agctttgtct acttcaaaag tttgtttgct taccccttca gcctccaatt tt |
#ttaagtga 1980 |
aaatataact aataacatgt gaaaagaata gaagctaagg tttagataaa ta |
#ttgagcag 2040 |
atctatagga agattgaacc tgaatattgc cattatgctt gacatggttt cc |
#aaaaaatg 2100 |
gtactccaca tacttcagtg agggtaagta ttttcctgtt gtcaagaata gc |
#attgtaaa 2160 |
agcattttgt aataataaag aatagcttta atgatatgct tgtaactaaa at |
#aattttgt 2220 |
aatgtatcaa atacatttaa aacattaaaa tataatctct atagtaacga ac |
#agaaaa 2278 |
<210> SEQ ID NO 77 |
<211> LENGTH: 226 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1518310CD1 |
<400> SEQUENCE: 77 |
Met Asp Trp Gly Thr Leu Gln Thr Ile Leu Gl |
#y Gly Val Asn Lys |
1 5 |
# 10 |
# 15 |
His Ser Thr Ser Ile Gly Lys Ile Trp Leu Th |
#r Val Leu Phe Ile |
20 |
# 25 |
# 30 |
Phe Arg Ile Met Ile Leu Val Val Ala Ala Ly |
#s Glu Val Trp Gly |
35 |
# 40 |
# 45 |
Asp Glu Gln Ala Asp Phe Val Cys Asn Thr Le |
#u Gln Pro Gly Cys |
50 |
# 55 |
# 60 |
Lys Asn Val Cys Tyr Asp His Tyr Phe Pro Il |
#e Ser His Ile Arg |
65 |
# 70 |
# 75 |
Leu Trp Ala Leu Gln Leu Ile Phe Val Ser Th |
#r Pro Ala Leu Leu |
80 |
# 85 |
# 90 |
Val Ala Met His Val Ala Tyr Arg Arg His Gl |
#u Lys Lys Arg Lys |
95 |
# 100 |
# 105 |
Phe Ile Lys Gly Glu Ile Lys Ser Glu Phe Ly |
#s Asp Ile Glu Glu |
110 |
# 115 |
# 120 |
Ile Lys Thr Gln Lys Val Arg Ile Glu Gly Se |
#r Leu Trp Trp Thr |
125 |
# 130 |
# 135 |
Tyr Thr Ser Ser Ile Phe Phe Arg Val Ile Ph |
#e Glu Ala Ala Phe |
140 |
# 145 |
# 150 |
Met Tyr Val Phe Tyr Val Met Tyr Asp Gly Ph |
#e Ser Met Gln Arg |
155 |
# 160 |
# 165 |
Leu Val Lys Cys Asn Ala Trp Pro Cys Pro As |
#n Thr Val Asp Cys |
170 |
# 175 |
# 180 |
Phe Val Ser Arg Pro Thr Glu Lys Thr Val Ph |
#e Thr Val Phe Met |
185 |
# 190 |
# 195 |
Ile Ala Val Ser Gly Ile Cys Ile Leu Leu As |
#n Val Thr Glu Leu |
200 |
# 205 |
# 210 |
Cys Tyr Leu Leu Ile Arg Tyr Cys Ser Gly Ly |
#s Ser Lys Lys Pro |
215 |
# 220 |
# 225 |
Val |
<210> SEQ ID NO 78 |
<211> LENGTH: 445 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 098533.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 406, 413 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 78 |
ggcaaggcca gtggctccgc cgctgggtcc gctgcccttt actttcagtc ag |
#cctggggc 60 |
ggtgtcctct cctacagaag tcctgagcgg ccttccacgt ggccggccct cg |
#agtccgtc 120 |
cgccccgacc cttcgtagtc ccgaaaccgc ccccctggct aaggtctctt tc |
#ccccaggc 180 |
tgcttccttt ctccttgctt ttttcccacc ttttttgtta ctgaccaagg tg |
#aatccttt 240 |
ccttaacaaa tcggcttaaa gcaagctaac tcagttacaa tacagtagaa ct |
#gtacttaa 300 |
aaaaaaaaga aacgtgaatc taaccgttac gtcagaaaaa aaaatcttaa at |
#tagacgaa 360 |
tttcaaacag tgcttaacac atcgcagagc atttgcagtt atttgnatca cg |
#ncttttga 420 |
aacaccttta tgctgtaaat agagc |
# |
# 445 |
<210> SEQ ID NO 79 |
<211> LENGTH: 5227 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 410785.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 4928, 4934, 4939, 4944, 4973, 4 |
#992 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 79 |
cacaagacct ggaattgaca ggactcccaa ctagtacaat gacagaagat aa |
#ggtcactg 60 |
ggaccctggt tttcactgtc atcactgctg tgctgggttc cttccagttt gg |
#atatgaca 120 |
ttggtgtgat caatgcacct caacaggtaa taatatctca ctatagacat gt |
#tttgggtg 180 |
ttccactgga tgaccgaaaa gctatcaaca actatgttat caacagtaca ga |
#tgaactgc 240 |
ccacaatctc atactcaatg aacccaaaac caaccccttg ggctgaggaa ga |
#gactgtgg 300 |
cagctgctca actaatcacc atgctctggt ccctgtctgt atccagcttt gc |
#agttggtg 360 |
gaatgactgc atcattcttt ggtgggtggc ttggggacac acttggaaga at |
#caaagcca 420 |
tgttagtagc aaacattctg tcattagttg gagctctctt gatggggttt tc |
#aaaattgg 480 |
gaccatctca tatacttata attgctggaa gaagcatatc aggactatat tg |
#tgggctaa 540 |
tttcaggcct ggttcctatg tatatcggtg aaattgctcc aaccgctctc ag |
#gggagcac 600 |
ttggcacttt tcatcagctg gccatcgtca cgggcattct tattagtcag at |
#tattggtc 660 |
ttgaatttat cttgggcaat tatgatctgt ggcacatctt gcttggcctg tc |
#tggtgtgc 720 |
gagccatcct tcagtctctg ctactctttt tctgtccaga aagccccaga ta |
#cctttaca 780 |
tcaagttaga tgaggaagtc aaagcaaaac aaagcttgaa aagactcaga gg |
#atatgatg 840 |
atgtcaccaa agatattaat gaaatgagaa aagaaagaga agaagcatcg ag |
#tgagcaga 900 |
aagtctctat aattcagctc ttcaccaatt ccagctaccg acagcctatt ct |
#agtggcac 960 |
tgatgctgca tgtggctcag caattttccg gaatcaatgg cattttttac ta |
#ctcaacca 1020 |
gcatttttca gacggctggt atcagcaaac ctgtttatgc aaccattgga gt |
#tggcgctg 1080 |
taaacatggt tttcactgct gtctctgtat tccttgtgga gaaggcaggg cg |
#acgttctc 1140 |
tctttctaat tggaatgagt gggatgtttg tttgtgccat cttcatgtca gt |
#gggacttg 1200 |
tgctgctgaa taagttctct tggactgagt tactgtgagc atgatagcca tc |
#ttcctctt 1260 |
tgtcagcttc tttgaaattg ggccaggccc gatcccctgg ttcatggtgg ct |
#gagttttt 1320 |
cagtcaagga ccacgtcctg ctgctttagc aatagctgca ttcagcaatt gg |
#acctgcaa 1380 |
tttcattgta gctctgtgtt tccagtacat tgcggacttc tgtggacctt at |
#gtgttttt 1440 |
cctctttgct ggagtgctcc tggcctttac cctgtttaca ttttttaaag tt |
#ccagaaac 1500 |
caaaggaaag tcttttgagg aaattgctgc agaattccaa aagaagagtg gc |
#tcagccca 1560 |
caggccaaaa gctgctgtag aaatgaaatt cctaggagct acagagactg tg |
#taaaaaaa 1620 |
aaaccctgct ttttgacatg aacagaaaca ataagggaac cgtctgtttt ta |
#aatgatga 1680 |
ttccttgagc attttatatc cacatcttta agtattgttt tatttttatg tg |
#ctctcatc 1740 |
agaaatgtca tcaaatatta ccaaaaaagt atttttttaa gttagagaat at |
#atttttga 1800 |
tggtaagact gtaattaagt aaaccaaaaa ggctagttta ttttgttaaa ct |
#aaagggca 1860 |
ggtggttcta atatttttag ctctgttctt tataacaagg ttcttctaaa at |
#tgaagaga 1920 |
tttcaacata tcattttttt aacacataac tagaaacctg aggatgcaac aa |
#atatttat 1980 |
atatttgaat atcattaaat tggaattttc ttacccatat atcttatgtt aa |
#aggagata 2040 |
tggctagtgg caataagttc catgttaaaa tagacaactc ttccatttat tg |
#cactcagc 2100 |
ttttttcttg agtactagaa tttgtatttt gcttaaaatt ttacttttgt tc |
#tgtatttt 2160 |
catgtggaat ggattataga gtatactaaa aaatgtctat agagaaaaac tt |
#tcattttt 2220 |
ggtaggctta tcaaaatctt tcagcactca gaaaagaaaa ccattttagt tc |
#ctttattt 2280 |
aatggccaaa tggtttttgc aagatttaac actaaaaagg tttcacctga tc |
#atatagcg 2340 |
tgggttatca gttaacatta acatctatta taaaaccatg ttgattccct tc |
#tggtacaa 2400 |
tcctttgagt tatagtttgc tttgcttttt aattgaggac agcctggttt tc |
#acatacac 2460 |
tcaaacatca tgagtcagac atttggtata ttacctcaat tcctaataag tt |
#tgatcaat 2520 |
ctaatgtaag aaaatttgaa gtaaaggatt gatcactttg ttaaaaatat tt |
#tctgaatt 2580 |
attatgtctc aaaataagtt gaaaaggtag ggtttgagga ttcctgagtg tg |
#ggcttctg 2640 |
aaacttcata aatgttcagc ttcagacttt tatcaaaatc cctatttaat tt |
#tcctggaa 2700 |
agactgattg ttttatggtg tgttcctaac ataaaataat cgtctccttt ga |
#catttcct 2760 |
tctttgtctt agctgtatac agattctagc caaactattc tatggccatt ac |
#taacacgc 2820 |
attgtacact atctatctgc ctttacctac ataggcaaat tggaaataca ca |
#gatgatta 2880 |
aacagacttt agcttacagt caattttaca attatggaaa tatagttctg at |
#gggtccca 2940 |
aaagcttagc agggtgctaa cgtatctcta ggctgttttc tccaccaact gg |
#agcactga 3000 |
tcaatccttc ttatgtttgc tttaatgtgt attgaagaaa agcacttttt aa |
#aaagtact 3060 |
ctttaagagt gaaataatta aaaaccactg aacatttgct ttgttttcta aa |
#gttgttca 3120 |
catatatgta atttagcagt ccaaagaaca agaaattgtt tcttttcagt gt |
#gatttgtt 3180 |
tttcatttgg gccaatttgg gataaactat tttcacttgg gatttcagga ta |
#cagtcaaa 3240 |
ataagcttaa ataactcagg acatctttgt gctaaactgt gaactctgga ca |
#aaaataga 3300 |
gagtctctga atagggcagg agcaggaaaa tggctcctgg gtggctcttg ta |
#tgcttctt 3360 |
caggatgctg atggcctttg ggaagcccag tgtaaacaat gataaaggag ct |
#taacactt 3420 |
ttataggtga tacatgtgat ttaatcaaat cactattcct gatctcattt ac |
#taacagaa 3480 |
taaagtggta aatatttaaa ttaaaaattc caaagaccac ttttaagtgc tt |
#cttcacta 3540 |
ttttgactgg cccacaaaca ccagaaattc agaccctgaa gttttctgcc tc |
#agagaaat 3600 |
ttaagtacct tatattgttc cccttctaca actttttcct tgcagagata ca |
#tgtgagtt 3660 |
gacaagaaac attaaaggga aataagaaga agctgataaa gctttatagg ag |
#gaccaaag 3720 |
aactagctta ctataataaa aaaattttaa gtcttcaagg gtatacatca ta |
#ataaaaaa 3780 |
taaaattgac agtaattaat taaatttaat cccagggaaa ttagatgtga at |
#ttgaacac 3840 |
ctaactttcc atgtactctc tcatttttgt ggaagtgttt ctatactcta at |
#gcctttac 3900 |
aaatgtgatt tttctcttag ctcgtttgaa gtatgagaat tagagttttt gg |
#tctcgcat 3960 |
tcacctgcta catctaggat tgcccactgt catgactccc agggaaaagg tc |
#ctatctta 4020 |
gcttcctcct ccctactttc ctctacatgg tcagcactgt aatgtagcta ag |
#atatagta 4080 |
aggcattgct ccctccccct acacttcaag gagttcacag tctaatgggg ag |
#ttcaggaa 4140 |
ggccagagta ttaatatccc catctgtgtc ttttgccttc catgaacctg gg |
#ttttgagc 4200 |
cctctcttgt aaaatgggca cagtaatatt acctacctca gggagttgtg ag |
#gattaaac 4260 |
atgaagtgct aagcatagtg cctggtacaa agacagtact caataagtgc ta |
#cctaaaac 4320 |
tagtattcat agcaatactg ttaggataaa gaattatcat atatgagata gt |
#tccaaatt 4380 |
tttgtttttt taaaaaaaaa agagttttat aagttcaaga taatattttc tt |
#acttcaaa 4440 |
gaaacaatct cacaacgagg gaatggtaag aatcaggaga gattactaac ct |
#ggcagagg 4500 |
agctatcaca atcacaaagg tggtttttcc agggcacggc tcatccatta ca |
#ctccagat 4560 |
gtgctgaccc ctgccatttc cccaaatgtg ggaaacccaa ctgcacagtt tg |
#tagtagtg 4620 |
ggtgactgtg ttcatgcgct cccctgaaaa caacaacaac aacaaagaat ca |
#gaagagat 4680 |
actaggctat ctaattccta aatccaaacc tgatatttct aagtaagatt at |
#aagaattt 4740 |
ttattgcatt ttctgaattt gcttttgcat aagttatgtt atttttacag gg |
#tctatatt 4800 |
actattattt cttagaataa tactaattat aaaacaaaat tctgtatatc ac |
#atttaaat 4860 |
gtaatttaat agaattataa tcacaagaca agaccaaact ttgtgtgata at |
#cctcagta 4920 |
attgcganag gggnatatnc atgnaggcca gcatacatgc ataaactact tc |
#ntattgct 4980 |
aggctaattg tnccatatgt agcaaataca gcagttcagc aatatcttgt gc |
#ttacaggg 5040 |
tcctaagcag aggtgatgag tcaagtgtaa atatatatat atattttttt at |
#ttttcatg 5100 |
gcaattgtat attagtaacc tggggagaaa aggtttattg acaaccactc tg |
#atccatct 5160 |
gctgctattt ttactgctaa tttggtgcac attaaaaaga atgatcatga aa |
#agatatta 5220 |
ctttgag |
# |
# |
# 5227 |
<210> SEQ ID NO 80 |
<211> LENGTH: 1199 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1089210.1 |
<400> SEQUENCE: 80 |
aaggaaacag gatctgctta gtgaaagaag tggcaagcaa tggatcccaa at |
#atcagcgt 60 |
gtagagctaa atgatggtca cttcatgccc gtattgggat ttggcaccta tg |
#cacctcca 120 |
gaggttccga ggaacagagc tgtggaggtc accaaattag caatagaagc tg |
#gcttccgc 180 |
catattgatt ctgcttattt atacaataat gaggagcagg ttggactggc ca |
#tccgaagc 240 |
aagattgcag atggcagtgt gaagagagaa gacatattct acacttcaaa gc |
#tttggtgc 300 |
actttctttc aaccacagat ggtccaacca gccttggaaa gctcactgaa aa |
#aactttaa 360 |
ctggactatg ttgacctcta tcttcttcat ttcccaatgg ctctcaagcc ag |
#gtgagacg 420 |
ccactaccaa aagatgaaaa tggaaaagta atattcgaca cagtggatct ct |
#ctgccaca 480 |
tgggaggtca tggagaagtg taaggatgca ggattggcca agtccatcgg gg |
#tgtcaaac 540 |
ttcaactgca ggcagctgga gatgatcctc aacaagccag gactcaagta ca |
#agcctgtc 600 |
tgcaaccagg tagaatgtca tccttacctc aaccagagca aactgctgga tt |
#tctgcaag 660 |
tcaaaagaca ttgttctggt tgcccacagt gctctgggaa cccaacgaca ta |
#aactatgg 720 |
gtggacccaa actccccagt tcttttggag gacccagttc tttgtgcctt ag |
#caaagaaa 780 |
cacaaacgaa ccccagccct gattgccctg cgctaccagc tgcagcgtgg gg |
#ttgtggtc 840 |
ctggccaaga gctacaatga gcagcggatc agagagaaca tccaggtttt tg |
#aattccag 900 |
ttgacatcag agggatatga aagttctaga tggtctaaac agaaattatc ga |
#tatgttgt 960 |
catggatttt cttatggacc atcctgatta tccattttca gatgaatatt ag |
#catagagg 1020 |
gtgttgcacg acatctagca gaaggccctg tgtgtggatg gtgatgcaga gg |
#atgtctct 1080 |
atgctggtga ctggacacac ggcctctggt taaatccctc ccctcctgct tg |
#gcaacttc 1140 |
agctagctag atatatccat ggtccagaaa gcaaacataa taaattttta tc |
#ttgaagt 1199 |
<210> SEQ ID NO 81 |
<211> LENGTH: 807 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 333453.6 |
<221> NAME/KEY: unsure |
<222> LOCATION: 32, 35, 166 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 81 |
gaacaagact ccgtcaaaaa aaaaaaaatt gnttnggaac ctggttctgg aa |
#tcggcttg 60 |
aatcattcca gcctttcata cttatagctg tgtggccttg ggcaacttac tt |
#aactttat 120 |
ctataaaatg gggacaatag cttctcttcc tcatagcatg gttgtnagga tt |
#agatgaag 180 |
ttctcagtgg gcattcctgt aagctctagg gagatgttag ctgttactaa tg |
#tttggcac 240 |
catgacaaat gattagatgg aactttggag caattaataa tacaaattaa aa |
#taagggga 300 |
caaagccagc caaggagaaa agtaaaagat ccaagaatag gggcatataa tg |
#gctttatt 360 |
tttccttgag tctagtgtga ttctaacacc tgagtccaac cattcattat gt |
#aggtccgt 420 |
atcctctcct gttcttttcc tctcatcctg ggtaccagac agaaggaaaa ac |
#tgaaacaa 480 |
atgatgagtc ggctcccttt ctttccttcc atggtggcta tttaggtggc tg |
#atttatga 540 |
agaacctgga tttcagggtg ttcctttcat cctggaacct ggtgaatacc ct |
#gacttgtc 600 |
cttctgggat acagaagcag cgtacattgg atccatgcgg cctctgaaaa tg |
#gtaaaaat 660 |
gaaatccaaa tgtccttgtg gtgattcttt gtcagcttga cgtggtaatt ca |
#cagggtgt 720 |
gactttgaag caataaagct gacttttaag acacaaattt gtagtagatt gg |
#acctattg 780 |
ctcaatacaa atcatggaaa gcataac |
# |
# 807 |
<210> SEQ ID NO 82 |
<211> LENGTH: 764 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 365070.1 |
<400> SEQUENCE: 82 |
acgaagcagc tgactgtgca tcacgcagtc acaatattgt ttttagggtg ag |
#ggtggagg 60 |
actgtgtgtc cgtggattac tcctcctgct ggtggattgc agatgcatta tt |
#aggtcata 120 |
ctggctagaa tgcagctttt ctcccaccat aacatgaaaa cagtgtaaga ac |
#atagggtg 180 |
ctttgtgcat agcccttctc tatgtaagca gccatggcag tcattaaaga ga |
#aaggagta 240 |
gctttgacat taagctcccc agatccctgc tgctcatact tctggcaagg gg |
#ttcccctc 300 |
tctcatgcat gaacaggggc atccaaaata agaagctctc cattctgtgg tg |
#gggaaagc 360 |
ggagagggga gtgggtgaag ctgggaaagt aaaggcagca cgttacagaa gg |
#aagaaagg 420 |
aagccagtaa ctgagggccc actgcctgcc cggccctggg ccaggccctc aa |
#cagaagcc 480 |
atctcattta agccctgcaa ccaatgagat gcacgtcatc attggctctt ac |
#agacaaga 540 |
aaactagact cagaggggct gagtccacat cccagacagc tcactgcaga ca |
#caggtgga 600 |
gtggttccta caagacatcc agttttaaca acaaaagagt tattgaaatg ca |
#tgggtaga 660 |
aattgaacca ggaaaatcag taaagtgatt gtaaaaaaga aggactagct tg |
#cctggaga 720 |
tgatgtttct tgcttttgga aaaaaaaaaa aggtctctga aatt |
# |
#764 |
<210> SEQ ID NO 83 |
<211> LENGTH: 1325 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 365070.3 |
<221> NAME/KEY: unsure |
<222> LOCATION: 1242 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 83 |
gcgctgctgg cggccccggc ggccgggcgt gctgcctgca agatgtccgt gc |
#gccgcggc 60 |
cggcggccgg cgcggccggg gacccgcctc tcctggctgc tgtgctgcag cg |
#ccctgctg 120 |
tccccggccg cgggctacgt gatcgtgagc tccgtgtctt gggccgtcac ca |
#acgaggtg 180 |
gacgaggagc tggacagcgc ctccactgag gaggctatgc ccgcgctgct ag |
#aggattcg 240 |
ggcagcatct ggcagcaaag cttccccgcc tctgcccaca aggaggacgc gc |
#acctgcgg 300 |
ccccgggcgg gcgccgcccg ggccaggccg ccccccgcgc cacccgggat gt |
#tctcctac 360 |
cggcgcgagg gcggccagac ggccagtgcg cccccgggcc ctagactgcg cg |
#ccgccacc 420 |
gcccgctccc tggcccatgc cagcgtctgg ggctgcctgg ccaccgtgtc ca |
#cccacaag 480 |
aagatccaag gactgccatt tgggaactgc ctgcccgtca gtgatggccc ct |
#tcaacaat 540 |
agcactggga ttcctttctt ctacatgaca gccaaggacc ccgtggtggc tg |
#atctgatg 600 |
aagaacccca tggcctcgct gatgctgcca gaatcagaag gggagttctg ca |
#gaaaaaac 660 |
atcgttgatc cggaagatcc ccgatgtgtc cagttaacgc tcactggcca ga |
#tgatcgca 720 |
gtgtctccag aagaagtaga atttgccaag caagccatgt tttcaaggca cc |
#cagggatg 780 |
aggaagtggc ctcgtcaata tgaatggttc tttatgaaga tgaggataga ac |
#atatctgg 840 |
cttcagaaat ggtatggagg cgcatccagt atttcaaggg aggaatattt ca |
#aagcagtt 900 |
cccagaaagg cctgatggag tgagaagaaa gtccttggtg tttgcactta aa |
#taaaaacc 960 |
ttttcagtga tgcagccaga cagctattga ccactgtctc tttgttgaag gg |
#ttcatagc 1020 |
agccctgcca tccctgcagc agaatgagag agggtgaaca gggaactcta tg |
#ctagattt 1080 |
gagattaaag tggtcatttg cagatctcca actcacacag atacttcacg ta |
#gatagtct 1140 |
ttattccatt gtattcaatc cagactcatc gattcagaaa tcatataata gc |
#tggtggtc 1200 |
aaaatgacat gttgagatca ttgttgtttc attgtttaag gnaaaaaaaa aa |
#tgcctgta 1260 |
cctacaatgt gattgctttg tattgtgaga gtatcttgtt gcttgctctg cc |
#aaatgcag 1320 |
tcttg |
# |
# |
# 1325 |
<210> SEQ ID NO 84 |
<211> LENGTH: 3663 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 413921.2 |
<400> SEQUENCE: 84 |
gtgcgctagg ctccggactc cgcggcgcag actggcacct cgcagtctcc cc |
#aggtccgc 60 |
ccagcagccg cgcttcagcc agaatactgg gatcttcagt ggcaggagga gt |
#aatcagaa 120 |
gacggagatg aattttaaca ctattttgga ggagattctt attaaaaggt ca |
#cagcagaa 180 |
aaagaagaca tcgcccttaa actacaaaga gagacttttt gtacttacaa ag |
#tccatgct 240 |
aacctactat gagggtcgag cagagaagaa atacagaaag gggtttattg at |
#gtttcaaa 300 |
aatcaagtgt gtggaaatag tgaagaatga tgatggtgtc attccctgtc aa |
#aataagta 360 |
tccatttcag gttgttcatg atgctaacac actttacatt tttgcaccta gt |
#ccacaaag 420 |
cagggacctg tgggtgaaga agttaaaaga agaaataaag aacaacaata at |
#attatgat 480 |
taaatatcat cctaaattct ggacagatgg aagttatcag tgttgtagac aa |
#actgaaaa 540 |
attagcaccc ggatgtgaaa aatacaatct ttttgagagc agtataagaa aa |
#gcactacc 600 |
tccagcacca gaaacaaaga agcgaaggcc tcccccacca attccactag aa |
#gaagaaga 660 |
taatagtgaa gaaatcgttg tagccatgta tgatttccaa gcagcagaag ga |
#catgatct 720 |
cagattagag agaggccaag agtatctcat tttagaaaag aatgatgtgc at |
#tggtggag 780 |
agcaagagat aaatatggga atgaaggata tatcccaagt aattacgtaa cg |
#ggaaagaa 840 |
atcaaacaac ttagatcaat atgaatggta ttgcagaaat atgaatagaa gc |
#aaggcaga 900 |
gcaactcctc cgcagtgaag ataaagaagg tggttttatg gtaagggatt cc |
#agtcaacc 960 |
aggcttgtac acagtctccc tttataccaa gtttggagga gaaggttcat cg |
#ggttttag 1020 |
gcattatcat ataaaggaaa caacaacatc tccaaagaag tattacctag ct |
#gaaaaaca 1080 |
tgcttttggc tccattcctg agattattga atatcataag cacaatgcag ca |
#ggacttgt 1140 |
caccaggctt cggtacccag ttagtgtgaa agggaagaat gcacccacca ct |
#gcaggatt 1200 |
cagctatgag aaatgggaga ttaacccttc agaactgacc tttatgaggg aa |
#ttgggaag 1260 |
tggactgttt ggagtggtga ggcttggcaa atggcgagcc cagtacaaag tc |
#gcaatcaa 1320 |
agctattcgg gaaggtgcaa tgtgcgagga ggactttata gaagaagcta aa |
#gtgatgat 1380 |
gaagctgaca cacccgaagt tagtgcagct ttatggtgtg tgcacccagc ag |
#aaaccaat 1440 |
atacattgtt actgagttca tggaaagggg ctgccttctg aatttcctcc ga |
#cagagaca 1500 |
aggtcatttc agtagagacg tactgctgag catgtgtcag gatgtgtgtg aa |
#gggatgga 1560 |
gtatctggag agaaacagct tcatccacag agatctggct gccagaaatt gt |
#ctagtaag 1620 |
tgaggcggga gttgtaaaag tatctgattt tggaatggcc aggtatgttc tg |
#gatgatca 1680 |
gtacacaagt tcttctggtg ctaagtttcc tgtgaagtgg tgtccacctg aa |
#gtgtttaa 1740 |
ttacagccgc ttcagcagca aatcagatgt ctggtcattt ggtgttttaa tg |
#tgggaagt 1800 |
attcacggaa ggcagaatgc cttttgaaaa atacaccaat tatgaagtgg ta |
#accatggt 1860 |
tactcgaggc caccgactct accagccgaa gttggcgtcc aactatgtgt at |
#gaggtgat 1920 |
gctgagatgt tggcaggaga aaccagaggg aaggccttct ttcgaagatc tg |
#ctgcgcac 1980 |
aatagatgaa ctagttgaat gtgaagaaac ttttggaaga taagtgatgt gt |
#gaccagtg 2040 |
gctcccagat tcccaagcac aaggaaggat gggcattttg tggcttttaa tt |
#tattgagc 2100 |
acttggacat gtagatcatt ttacttatac agtggaaaca cataaataat tt |
#gcttctag 2160 |
accagcctct gtctagactt gcttctagac agaatctccc agagtgtgga aa |
#tgttgcct 2220 |
tagaaatggt gattaaaatc actcatttct attcattcct caggcacttg ag |
#tgacagtt 2280 |
gtttaccagg cactgtgtgt agccccaggg tttggccatt caggggtgca ca |
#catgggac 2340 |
catgttagct gatgccagtt gaaggccagg gtatttggga aggggaaggg ta |
#ttagagtc 2400 |
atgaccaagc aacccttctt tttccctttg acttctacag aaatctgggc ct |
#gagacatt 2460 |
gtctacaatt gggttctaga tacatcagga acccatcttg gataaataaa ta |
#cctatctt 2520 |
ttgttttgaa aacatctcag ttttcaagac tgctcttagt attacatgaa ca |
#atatttgt 2580 |
atgctgtata tattgtaaat atatataata tataaagtta tatatttatg ag |
#aaacacga 2640 |
attgtctttt aattgaaact tttaatcctg tagtatagga gttcaccttc tt |
#aggactag 2700 |
agactgtgcc ttatagctgt taattcattt ccccctgaac atcaaatatg cc |
#tgaagaga 2760 |
agaaagtcta gattcttcta tgagtaacgc cccctcctca ctcaggtaaa tg |
#tgtctggg 2820 |
gatgcctgtc cagcttaacc acgtgcattt ggcctatgta atcctgccca tg |
#gtggccgc 2880 |
agctaatcag aatcagatgg aaaattaaac cgggtaatct acttctaagc ct |
#taagaata 2940 |
ttccctggga cacagacact ataattggaa gtgctgagct ctggggcaga ag |
#gatcaggt 3000 |
gaccttcgca acaaagtttg cccccacctc acataggacc cggaagcagc ct |
#gagctgtg 3060 |
gcggaggatc caggaagcta cggagagaag cagccagcat ggtgttccgt gc |
#ctcccgga 3120 |
cgtttttcag gaggcctggt tggacttggg ttcctggatg gtgggattgt tg |
#tacagcct 3180 |
ctcaggagac cctgctgtca agactgtgtg tgtggatttc tcacccttag aa |
#gctctact 3240 |
aagacatcaa cggaattagg gccttccttt ttgccttgtg agcgccaagg aa |
#aagaaact 3300 |
atctcggtca cgtgagcgcc agcgaaaaga aactgtatca gtcatccaga ga |
#ccgtttat 3360 |
tgcccaacac gttattcttg ctgttggtgg ggtaactagc cgaggaagac ac |
#agcgcctt 3420 |
cccttcagga gttgcgtctc ctctgcaggc cacgatggtc tgctctggag ca |
#ttgggtga 3480 |
acacacaggc tggctgctct gggcagcgcc ttcactctga ccctggagaa cc |
#atttcatt 3540 |
tcatcctggt cagtctagag tctgtgcacc aggcagtcca tccactgaag gc |
#tgtgttta 3600 |
ttcttttcct gtgcccctca taaatggaag aaagtaaact gcttatcccg ag |
#ccttaaaa 3660 |
aaa |
# |
# |
# 3663 |
<210> SEQ ID NO 85 |
<211> LENGTH: 1344 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 336615.1 |
<400> SEQUENCE: 85 |
ggaggaggag gcagctacgg tgataaagaa gagcaatcaa aagggcaaag cc |
#aaaggaaa 60 |
aggcaaaaag aaagcgaagg aggagagggc cccgtctccc cccgtggagg tg |
#gacgaacc 120 |
ccgggagttt gtgctccggc ctgcccccca gggccgcacg gtgcgctgcc gg |
#ctgacccg 180 |
ggacaaaaag ggcatggatc gaggcatgta tccctcctac ttcctgcacc tg |
#gacacgga 240 |
gaagaaggtg ttcctcttgg ctggcaggaa acgaaaacgg agcaagacag cc |
#aattacct 300 |
catctccatc gaccctacca atctgtcccg aggaggggag aatttcatcg gg |
#aagctgag 360 |
gtccaacctc ctggggaacc gcttcacggt ctttgacaac gggcagaacc ca |
#cagcgtgg 420 |
gtacagcact aatgtggcaa gccttcggca ggagctggca gctgtgatct at |
#gaaaccaa 480 |
cgtgctgggc ttccgtggcc cccggcgcat gaccgtcatc attcctggca tg |
#agtgcgga 540 |
gaacgagagg gtccccatcc ggccccgaaa tgctagtgac ggcctgctgg tg |
#cgctggca 600 |
gaacaagacg ctggagagcc tcatagaact gcacaacaag ccacctgtct gg |
#aacgatga 660 |
cagtggctcc tacaccctca acttccaagg ccgggtcacc caggcctcag tc |
#aagaactt 720 |
ccagattgtc cacgctgatg accccgacta tatcgtgctg cagttcggcc gc |
#gtggcgga 780 |
ggacgccttc accctagact accggtaccc gctgtgcgcc ctgcaggcct tc |
#gccatcgc 840 |
cctctccagt ttcgacggga agctggcctg cgagtgaccc cagcagcccc tc |
#agcgcccc 900 |
cagagcccgt cagcgtgggg gaaaggattc agtggaggct ggcagggtcc ct |
#ccagcaaa 960 |
gctcccgcgg aaaactgctc ctgtgtcggg gctgacctct cactgcctct cg |
#gtgacctc 1020 |
cgtcctctcc ccagcctggc acaggccgag gcaggaggag cccggacggc gg |
#gtaggacg 1080 |
gagatgaaga acatctggag ttggagccgc acatctggtc tcggagctcg cc |
#tgcgccgc 1140 |
tgtgcccccc tcctccccgc gccccagtca cttcctgtcc gggagcagta gt |
#cattgttg 1200 |
ttttaacctc ccctctcccc gggaccgcgc tagggctccg aggagctggg gc |
#gggctagg 1260 |
aggagggggt aggtgatggg ggacgagggc caggcaccca catccccaat aa |
#agccgcgt 1320 |
ccttgtgcaa aaaaaaaaaa aagg |
# |
# 1344 |
<210> SEQ ID NO 86 |
<211> LENGTH: 3156 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2733282CB1 |
<400> SEQUENCE: 86 |
gttcaggaag aaaccatctg catccatatt gaaaacctga cacaatgtat gc |
#agcaggct 60 |
cagtgtgagt gaactggagg cttctctaca acatgaccca aaggagcatt gc |
#aggtccta 120 |
tttgcaacct gaagtttgtg actctcctgg ttgccttaag ttcagaactc cc |
#attcctgg 180 |
gagctggagt acagcttcaa gacaatgggt ataatggatt gctcattgca at |
#taatcctc 240 |
aggtacctga gaatcagaac ctcatctcaa acattaagga aatgataact ga |
#agcttcat 300 |
tttacctatt taatgctacc aagagaagag tatttttcag aaatataaag at |
#tttaatac 360 |
ctgccacatg gaaagctaat aataacagca aaataaaaca agaatcatat ga |
#aaaggcaa 420 |
atgtcatagt gactgactgg tatggggcac atggagatga tccatacacc ct |
#acaataca 480 |
gagggtgtgg aaaagaggga aaatacattc atttcacacc taatttccta ct |
#gaatgata 540 |
acttaacagc tggctacgga tcacgaggcc gagtgtttgt ccatgaatgg gc |
#ccacctcc 600 |
gttggggtgt gttcgatgag tataacaatg acaaaccttt ctacataaat gg |
#gcaaaatc 660 |
aaattaaagt gacaaggtgt tcatctgaca tcacaggcat ttttgtgtgt ga |
#aaaaggtc 720 |
cttgccccca agaaaactgt attattagta agctttttaa agaaggatgc ac |
#ctttatct 780 |
acaatagcac ccaaaatgca actgcatcaa taatgttcat gcaaagttat ct |
#ctgtggtg 840 |
aaatttgtaa tgccagtacc cacaaccaag aagcaccaaa cctacagaac ca |
#gatgtgca 900 |
gcctcagaag tgcatgggat gtaatcacag actctgctga ctttcaccac ag |
#ctttccca 960 |
tgaacgggac tgagcttcca cctcctccca cattctcgct tgtagaggct gg |
#tgacaaag 1020 |
tggtctgttt agtgctggat gtgtccagca agatggcaga ggctgacaga ct |
#ccttcaac 1080 |
tacaacaagc cgcagaattt tatttgatgc agattgttga aattcatacc tt |
#cgtgggca 1140 |
ttgccagttt cgacagcaaa ggagagatca gagcccagct acaccaaatt aa |
#cagcaatg 1200 |
atgatcgaaa gttgctggtt tcatatctgc ccaccactgt atcagctaaa ac |
#agacatca 1260 |
gcatttgttc agggcttaag aaaggatttg aggtggttga aaaactgaat gg |
#aaaagctt 1320 |
atggctctgt gatgatatta gtgaccagcg gagatgataa gcttcttggc aa |
#ttgcttac 1380 |
ccactgtgct cagcagtggt tcaacaattc actccattgc cctgggttca tc |
#tgcagccc 1440 |
caaatctgga ggaattatca cgtcttacag gaggtttaaa gttctttgtt cc |
#agatatat 1500 |
caaactccaa tagcatgatt gatgctttca gtagaatttc ctctggaact gg |
#agacattt 1560 |
tccagcaaca tattcagctt gaaagtacag gtgaaaatgt caaacctcac ca |
#tcaattga 1620 |
aaaacacagt gactgtggat aatactgtgg gcaacgacac tatgtttcta gt |
#tacgtggc 1680 |
aggccagtgg tcctcctgag attatattat ttgatcctga tggacgaaaa ta |
#ctacacaa 1740 |
ataattttat caccaatcta acttttcgga cagctagtct ttggattcca gg |
#aacagcta 1800 |
agcctgggca ctggacttac accctgaaca atacccatca ttctctgcaa gc |
#cctgaaag 1860 |
tgacagtgac ctctcgcgcc tccaactcag ctgtgccccc agccactgtg ga |
#agcctttg 1920 |
tggaaagaga cagcctccat tttcctcatc ctgtgatgat ttatgccaat gt |
#gaaacagg 1980 |
gattttatcc cattcttaat gccactgtca ctgccacagt tgagccagag ac |
#tggagatc 2040 |
ctgttacgct gagactcctt gatgatggag caggtgctga tgttataaaa aa |
#tgatggaa 2100 |
tttactcgag gtattttttc tcctttgctg caaatggtag atatagcttg aa |
#agtgcatg 2160 |
tcaatcactc tcccagcata agcaccccag cccactctat tccagggagt ca |
#tgctatgt 2220 |
atgtaccagg ttacacagca aacggtaata ttcagatgaa tgctccaagg aa |
#atcagtag 2280 |
gcagaaatga ggaggagcga aagtggggct ttagccgagt cagctcagga gg |
#ctcctttt 2340 |
cagtgctggg agttccagct ggcccccacc ctgatgtgtt tccaccatgc aa |
#aattattg 2400 |
acctggaagc tgtaaaagta gaagaggaat tgaccctatc ttggacagca cc |
#tggagaag 2460 |
actttgatca gggccaggct acaagctatg aaataagaat gagtaaaagt ct |
#acagaata 2520 |
tccaagatga ctttaacaat gctattttag taaatacatc aaagcgaaat cc |
#tcagcaag 2580 |
ctggcatcag ggagatattt acgttctcac cccaaatttc cacgaatgga cc |
#tgaacatc 2640 |
agccaaatgg agaaacacat gaaagccaca gaatttatgt tgcaatacga gc |
#aatggata 2700 |
ggaactcctt acagtctgct gtatctaaca ttgcccaggc gcctctgttt at |
#tcccccca 2760 |
attctgatcc tgtacctgcc agagattatc ttatattgaa aggagtttta ac |
#agcaatgg 2820 |
gtttgatagg aatcatttgc cttattatag ttgtgacaca tcatacttta ag |
#caggaaaa 2880 |
agagagcaga caagaaagag aatggaacaa aattattata aataaatatc ca |
#aagtgtct 2940 |
tccttcttag atataagacc catggccttc gactacaaaa acatactaac aa |
#agtcaaat 3000 |
taacatcaaa actgtattaa aatgcattga gtttttgtac aatacagata ag |
#atttttac 3060 |
atggtagatc aacaaattct ttttgggggt agattagaaa acccttacac tt |
#tggctatg 3120 |
aacaaataat aaaaattatt ctttaaaaaa aaaaaa |
# |
# 3156 |
<210> SEQ ID NO 87 |
<211> LENGTH: 942 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2733282CD1 |
<400> SEQUENCE: 87 |
Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cy |
#s Asn Leu Lys Phe |
1 5 |
# 10 |
# 15 |
Val Thr Leu Leu Val Ala Leu Ser Ser Glu Le |
#u Pro Phe Leu Gly |
20 |
# 25 |
# 30 |
Ala Gly Val Gln Leu Gln Asp Asn Gly Tyr As |
#n Gly Leu Leu Ile |
35 |
# 40 |
# 45 |
Ala Ile Asn Pro Gln Val Pro Glu Asn Gln As |
#n Leu Ile Ser Asn |
50 |
# 55 |
# 60 |
Ile Lys Glu Met Ile Thr Glu Ala Ser Phe Ty |
#r Leu Phe Asn Ala |
65 |
# 70 |
# 75 |
Thr Lys Arg Arg Val Phe Phe Arg Asn Ile Ly |
#s Ile Leu Ile Pro |
80 |
# 85 |
# 90 |
Ala Thr Trp Lys Ala Asn Asn Asn Ser Lys Il |
#e Lys Gln Glu Ser |
95 |
# 100 |
# 105 |
Tyr Glu Lys Ala Asn Val Ile Val Thr Asp Tr |
#p Tyr Gly Ala His |
110 |
# 115 |
# 120 |
Gly Asp Asp Pro Tyr Thr Leu Gln Tyr Arg Gl |
#y Cys Gly Lys Glu |
125 |
# 130 |
# 135 |
Gly Lys Tyr Ile His Phe Thr Pro Asn Phe Le |
#u Leu Asn Asp Asn |
140 |
# 145 |
# 150 |
Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg Va |
#l Phe Val His Glu |
155 |
# 160 |
# 165 |
Trp Ala His Leu Arg Trp Gly Val Phe Asp Gl |
#u Tyr Asn Asn Asp |
170 |
# 175 |
# 180 |
Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Il |
#e Lys Val Thr Arg |
185 |
# 190 |
# 195 |
Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cy |
#s Glu Lys Gly Pro |
200 |
# 205 |
# 210 |
Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Le |
#u Phe Lys Glu Gly |
215 |
# 220 |
# 225 |
Cys Thr Phe Ile Tyr Asn Ser Thr Gln Asn Al |
#a Thr Ala Ser Ile |
230 |
# 235 |
# 240 |
Met Phe Met Gln Ser Tyr Leu Cys Gly Glu Il |
#e Cys Asn Ala Ser |
245 |
# 250 |
# 255 |
Thr His Asn Gln Glu Ala Pro Asn Leu Gln As |
#n Gln Met Cys Ser |
260 |
# 265 |
# 270 |
Leu Arg Ser Ala Trp Asp Val Ile Thr Asp Se |
#r Ala Asp Phe His |
275 |
# 280 |
# 285 |
His Ser Phe Pro Met Asn Gly Thr Glu Leu Pr |
#o Pro Pro Pro Thr |
290 |
# 295 |
# 300 |
Phe Ser Leu Val Glu Ala Gly Asp Lys Val Va |
#l Cys Leu Val Leu |
305 |
# 310 |
# 315 |
Asp Val Ser Ser Lys Met Ala Glu Ala Asp Ar |
#g Leu Leu Gln Leu |
320 |
# 325 |
# 330 |
Gln Gln Ala Ala Glu Phe Tyr Leu Met Gln Il |
#e Val Glu Ile His |
335 |
# 340 |
# 345 |
Thr Phe Val Gly Ile Ala Ser Phe Asp Ser Ly |
#s Gly Glu Ile Arg |
350 |
# 355 |
# 360 |
Ala Gln Leu His Gln Ile Asn Ser Asn Asp As |
#p Arg Lys Leu Leu |
365 |
# 370 |
# 375 |
Val Ser Tyr Leu Pro Thr Thr Val Ser Ala Ly |
#s Thr Asp Ile Ser |
380 |
# 385 |
# 390 |
Ile Cys Ser Gly Leu Lys Lys Gly Phe Glu Va |
#l Val Glu Lys Leu |
395 |
# 400 |
# 405 |
Asn Gly Lys Ala Tyr Gly Ser Val Met Ile Le |
#u Val Thr Ser Gly |
410 |
# 415 |
# 420 |
Asp Asp Lys Leu Leu Gly Asn Cys Leu Pro Th |
#r Val Leu Ser Ser |
425 |
# 430 |
# 435 |
Gly Ser Thr Ile His Ser Ile Ala Leu Gly Se |
#r Ser Ala Ala Pro |
440 |
# 445 |
# 450 |
Asn Leu Glu Glu Leu Ser Arg Leu Thr Gly Gl |
#y Leu Lys Phe Phe |
455 |
# 460 |
# 465 |
Val Pro Asp Ile Ser Asn Ser Asn Ser Met Il |
#e Asp Ala Phe Ser |
470 |
# 475 |
# 480 |
Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gl |
#n Gln His Ile Gln |
485 |
# 490 |
# 495 |
Leu Glu Ser Thr Gly Glu Asn Val Lys Pro Hi |
#s His Gln Leu Lys |
500 |
# 505 |
# 510 |
Asn Thr Val Thr Val Asp Asn Thr Val Gly As |
#n Asp Thr Met Phe |
515 |
# 520 |
# 525 |
Leu Val Thr Trp Gln Ala Ser Gly Pro Pro Gl |
#u Ile Ile Leu Phe |
530 |
# 535 |
# 540 |
Asp Pro Asp Gly Arg Lys Tyr Tyr Thr Asn As |
#n Phe Ile Thr Asn |
545 |
# 550 |
# 555 |
Leu Thr Phe Arg Thr Ala Ser Leu Trp Ile Pr |
#o Gly Thr Ala Lys |
560 |
# 565 |
# 570 |
Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Th |
#r His His Ser Leu |
575 |
# 580 |
# 585 |
Gln Ala Leu Lys Val Thr Val Thr Ser Arg Al |
#a Ser Asn Ser Ala |
590 |
# 595 |
# 600 |
Val Pro Pro Ala Thr Val Glu Ala Phe Val Gl |
#u Arg Asp Ser Leu |
605 |
# 610 |
# 615 |
His Phe Pro His Pro Val Met Ile Tyr Ala As |
#n Val Lys Gln Gly |
620 |
# 625 |
# 630 |
Phe Tyr Pro Ile Leu Asn Ala Thr Val Thr Al |
#a Thr Val Glu Pro |
635 |
# 640 |
# 645 |
Glu Thr Gly Asp Pro Val Thr Leu Arg Leu Le |
#u Asp Asp Gly Ala |
650 |
# 655 |
# 660 |
Gly Ala Asp Val Ile Lys Asn Asp Gly Ile Ty |
#r Ser Arg Tyr Phe |
665 |
# 670 |
# 675 |
Phe Ser Phe Ala Ala Asn Gly Arg Tyr Ser Le |
#u Lys Val His Val |
680 |
# 685 |
# 690 |
Asn His Ser Pro Ser Ile Ser Thr Pro Ala Hi |
#s Ser Ile Pro Gly |
695 |
# 700 |
# 705 |
Ser His Ala Met Tyr Val Pro Gly Tyr Thr Al |
#a Asn Gly Asn Ile |
710 |
# 715 |
# 720 |
Gln Met Asn Ala Pro Arg Lys Ser Val Gly Ar |
#g Asn Glu Glu Glu |
725 |
# 730 |
# 735 |
Arg Lys Trp Gly Phe Ser Arg Val Ser Ser Gl |
#y Gly Ser Phe Ser |
740 |
# 745 |
# 750 |
Val Leu Gly Val Pro Ala Gly Pro His Pro As |
#p Val Phe Pro Pro |
755 |
# 760 |
# 765 |
Cys Lys Ile Ile Asp Leu Glu Ala Val Lys Va |
#l Glu Glu Glu Leu |
770 |
# 775 |
# 780 |
Thr Leu Ser Trp Thr Ala Pro Gly Glu Asp Ph |
#e Asp Gln Gly Gln |
785 |
# 790 |
# 795 |
Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Se |
#r Leu Gln Asn Ile |
800 |
# 805 |
# 810 |
Gln Asp Asp Phe Asn Asn Ala Ile Leu Val As |
#n Thr Ser Lys Arg |
815 |
# 820 |
# 825 |
Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Ph |
#e Thr Phe Ser Pro |
830 |
# 835 |
# 840 |
Gln Ile Ser Thr Asn Gly Pro Glu His Gln Pr |
#o Asn Gly Glu Thr |
845 |
# 850 |
# 855 |
His Glu Ser His Arg Ile Tyr Val Ala Ile Ar |
#g Ala Met Asp Arg |
860 |
# 865 |
# 870 |
Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Al |
#a Gln Ala Pro Leu |
875 |
# 880 |
# 885 |
Phe Ile Pro Pro Asn Ser Asp Pro Val Pro Al |
#a Arg Asp Tyr Leu |
890 |
# 895 |
# 900 |
Ile Leu Lys Gly Val Leu Thr Ala Met Gly Le |
#u Ile Gly Ile Ile |
905 |
# 910 |
# 915 |
Cys Leu Ile Ile Val Val Thr His His Thr Le |
#u Ser Arg Lys Lys |
920 |
# 925 |
# 930 |
Arg Ala Asp Lys Lys Glu Asn Gly Thr Lys Le |
#u Leu |
935 |
# 940 |
<210> SEQ ID NO 88 |
<211> LENGTH: 1121 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 399161.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 1070 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 88 |
caggcgggag caccgtgcct ggcccagatg gatttttaaa tatcacctgt tc |
#atattgtt 60 |
taaaatagat acaactaaaa cagctttgag gcatacagga actctacaga ta |
#aggaggac 120 |
catttcataa tgataaaggg cttatctcac caagaaggca gtcacactta cg |
#tttttatg 180 |
tatttgttga agagtcccaa tgtatttaaa gcaaaaataa gcaactacaa ag |
#agaaagat 240 |
acaaatccat gatcaaagtg aggaattttc acacacatcg tagtaactga tg |
#gaatgagt 300 |
caatgaaaaa ttagtgagga aatagaagat ttggacagca caacaaatgg cc |
#taggagaa 360 |
catttagaat gttgccttcg atgcttaaga atacatattc ttttcaaaag aa |
#aacccaga 420 |
acagcctggc aggagagata ccatcatcat gaaggtgatt ttcccagagc tg |
#ggcttatc 480 |
cattgcattc tggatgtgct gacgcctgtg gttttcccaa atgtgggaaa ct |
#ggactgca 540 |
taatttgtgg tagtggggga ctatgttcgt gttctctcct ggtgtttaaa at |
#taaaaaaa 600 |
aaaaaacttt attaaaggca cagaacatta ataaaaattg acaataaact gg |
#gctattaa 660 |
gtaaattgca acaatttcca gaggtttgaa atgatacaga gtatgttttc tg |
#accacagt 720 |
acagttaaac taggaatata acaaaaagat aactagggat atgtgtggat at |
#tgcatacc 780 |
tctaagtaac ccttgggatg agaaagaaat tacaatggaa attagaaaat at |
#cttgaata 840 |
atgaaaatac aatatatgta agcttgtaga attcagctta ttaaatgcat at |
#tttagaaa 900 |
gaaggaaagg ctgaaaatca gtgagcaaag ccttccatct caagaaatag aa |
#aaagaata 960 |
tagaaggaag gaattaatat ttttaaagaa gcactaattt acaagaataa tt |
#aaatagaa 1020 |
aagaagttgt cattaggaag gatcaataaa gctagaagct tgttatttgn aa |
#agacttgt 1080 |
aaatgtggta aatcacaagt aacgtacgta gatgaaaagg g |
# |
# 1121 |
<210> SEQ ID NO 89 |
<211> LENGTH: 721 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 339638.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 266 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 89 |
gtggcccaca gcgaactaga gaaacaaaag gagagtcttt taccccctgg ag |
#ttatcgcc 60 |
atcagcaaac tgagagctgc ctctcttcct ctccctgccc tgtgtctgtc tc |
#cacctcct 120 |
tccctctcat ccttgctctt tcccttttct ctttatcccc cgcccccttt ct |
#ttctcttc 180 |
ctcctttctc ctcccaggga ccaaagggag aagggagagc cgagaaagtg gc |
#cctgccat 240 |
cccctactgg aataaccgcc gccgcngccc catcactggt ggccacatcc ct |
#tctaattt 300 |
gtagtggtgg gtttctttcc ttgaagagca gggtactttt aaacagatag ag |
#gtaatggg 360 |
aggattaata ttcataggta agtccaaacg gaaaatgttt agcttcctta ca |
#ccaaaggt 420 |
ctgctgtgtc tgagattaca ctaagttcaa gcaacatcat gtcagtgaag aa |
#gccattag 480 |
ctgcaggaac acactgagaa gtgagggagc ctgtctacca gaaggaaatg ga |
#gctaggat 540 |
ctttgcaaac tgctgagtag agaggagagg acgagtaaat gagacagacg ga |
#aaagagct 600 |
ggaagagaga gactccttta tggcacattt ttatcctgag atttccaagc at |
#tttatata 660 |
tattgcatgg taaagaggaa ttgaaatagc caaaagaaat gaactaaaat ga |
#aaagggag 720 |
g |
# |
# |
# 721 |
<210> SEQ ID NO 90 |
<211> LENGTH: 538 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 697785CB1 |
<400> SEQUENCE: 90 |
cccacgcgtc cggtggagtc ttctgacagc tggtgcgcct gcccgggaac at |
#cctcctgg 60 |
actcaatcat ggcttgtggt ctggtcgcca gcaacctgaa tctcaaacct gg |
#agagtgcc 120 |
ttcgagtgcg aggcgaggtg gctcctgacg ctaagagctt cgtgctgaac ct |
#gggcaaag 180 |
acagcaacaa cctgtgcctg cacttcaacc ctcgcttcaa cgcccacggc ga |
#cgccaaca 240 |
ccatcgtgtg caacagcaag gacggcgggg cctgggggac cgagcagcgg ga |
#ggctgtct 300 |
ttcccttcca gcctggaagt gttgcagagg tgtgcatcac cttcgaccag gc |
#caacctga 360 |
ccgtcaagct gccagatgga tacgaattca agttccccaa ccgcctcaac ct |
#ggaggcca 420 |
tcaactacat ggcagctgac ggtgacttca agatcaaatg tgtggccttt ga |
#ctgaaatc 480 |
agccagccca tggcccccaa taaaggcagc tgcctctgct ccctctgaaa aa |
#aaaaaa 538 |
<210> SEQ ID NO 91 |
<211> LENGTH: 135 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 697785CD1 |
<400> SEQUENCE: 91 |
Met Ala Cys Gly Leu Val Ala Ser Asn Leu As |
#n Leu Lys Pro Gly |
1 5 |
# 10 |
# 15 |
Glu Cys Leu Arg Val Arg Gly Glu Val Ala Pr |
#o Asp Ala Lys Ser |
20 |
# 25 |
# 30 |
Phe Val Leu Asn Leu Gly Lys Asp Ser Asn As |
#n Leu Cys Leu His |
35 |
# 40 |
# 45 |
Phe Asn Pro Arg Phe Asn Ala His Gly Asp Al |
#a Asn Thr Ile Val |
50 |
# 55 |
# 60 |
Cys Asn Ser Lys Asp Gly Gly Ala Trp Gly Th |
#r Glu Gln Arg Glu |
65 |
# 70 |
# 75 |
Ala Val Phe Pro Phe Gln Pro Gly Ser Val Al |
#a Glu Val Cys Ile |
80 |
# 85 |
# 90 |
Thr Phe Asp Gln Ala Asn Leu Thr Val Lys Le |
#u Pro Asp Gly Tyr |
95 |
# 100 |
# 105 |
Glu Phe Lys Phe Pro Asn Arg Leu Asn Leu Gl |
#u Ala Ile Asn Tyr |
110 |
# 115 |
# 120 |
Met Ala Ala Asp Gly Asp Phe Lys Ile Lys Cy |
#s Val Ala Phe Asp |
125 |
# 130 |
# 135 |
<210> SEQ ID NO 92 |
<211> LENGTH: 866 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 399785.1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 18 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 92 |
acgagacgag cacccgtngg gggctggagc accccgcgcg ctcccctggc ga |
#gagggagg 60 |
gtcgtggctc ggcccctgct cagacaaagg ctgggaggcg ggagacatgc ac |
#ttcccctt 120 |
ccttttcagc caggcgcgcg ctgataccag gcccacgtca gctatttttg ga |
#gcctttta 180 |
cacgacagct ggaggagcgt cctttttaat tttccccttt tgtttggccg cc |
#cccacccc 240 |
caccccttcg ccttcatcgc tgcacttgag gctccatcct ggggcctctc ct |
#tgacttga 300 |
cctgccttgg caggcacatg ccctccctgc ctggctcact cgccgcagag ac |
#ctggcagc 360 |
ccgcgcaaaa tgtcactttg cggaatcgtt cccacggctt ctgggtaccc tt |
#agttccct 420 |
gcttagggag ggaagacagt agtcgggtcg taataagcaa gacttagccc ga |
#gcctccgt 480 |
tgccaacgca ggctgccttg cttggcgtgt gggcatcggc ctgccccctc ac |
#cctggcta 540 |
cccaacacag ctacaaaagg cagggaacaa tgtaggtccc ttggccctgc ct |
#aatgcctg 600 |
ttgccatgga aacccctatc ctaatctggc caggagcccc ttgcagtgag cc |
#aggagagt 660 |
gaggaagagg ggatggggcc cgctggcctg aacctggcca gaggaggtaa tg |
#gttaaccg 720 |
gattgtggga gcagctgact agagccgggg gggtagggag gcttgggccc ca |
#gtcctacc 780 |
ttccctgcca aggagaaagg ggcatgtctg cttttgtacc tctgggaatc ta |
#cctcaggg 840 |
atctgcccaa caactcccag gttcca |
# |
# 866 |
<210> SEQ ID NO 93 |
<211> LENGTH: 1274 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 002455.1 |
<400> SEQUENCE: 93 |
gcggccgcca gcttgcaaag ccgaagtctg gccgcgctct tcgactcgct gc |
#gccacgtc 60 |
cccgggggtg ccgagccggc ggggggtgag tggtctgcgc cggcggccgc gc |
#taggaggt 120 |
gcgggcactt gggggcgccg ggaaggggaa cttggcagcc ccgcgggggc ca |
#cgggcgat 180 |
cccaggggcc aggaaggtcc cgctgcgggc acgcaatctg cctccgtcct tc |
#ttcacgga 240 |
gccgtcccgg gcaggcggcg gcgggtgtgg cccgtcgggg ccggacgtga gc |
#ttgggcga 300 |
cctggagaag ggcgcggagg ccgtggagtt ctttgagctg ctggggcccg ac |
#tacggcgc 360 |
cggcacggag gcggcagtct tgcttgccgc cgagcctctc gacgtgttcc cc |
#gccggagc 420 |
ctccgtactg cggggacccc cggagctgga gcccggcctc tttgagccgc cg |
#ccggcagt 480 |
ggtgggaaac ctactgtacc ccgagccctg gagcgtcccg ggctgctccc cg |
#accaaaaa 540 |
gagccccctg actgcccccc gcggcggctt gaccttgaac gagcccttga gc |
#cccctgta 600 |
ccccgccgct gcggattctc ccggcgggga ggacgggcgg ggccatttgg cc |
#tctttcgc 660 |
ccccttcttt ccagactgcg ccctgccccc gacgccgccg ccccatcagg tg |
#tcctacga 720 |
ttacagcgcg ggctacagcc gcaccgccta ttccagcctt tggagatccg ac |
#ggggtttg 780 |
ggaaggggcg ccgggggagg agggggcgca ccgggactga cttcgaggca cg |
#cttccctt 840 |
cattagagac ggctgtggag agcgccgcgc ctccgtgggt ttctcctaaa tc |
#tgaagaac 900 |
gatgggaaaa tgcacgtgga gatgaaacca gatttttaaa aattcaatta at |
#aaaagcaa 960 |
ycttcagaaaa aagagatgaa gacgagttgg ggattgttta atcacaacct c |
#aagtgttaa 1020 |
aacaaaaaca aacaaacacg tttgtaggtt cttactggac cagaggagtc aa |
#gaaaccaa 1080 |
gatggtttgg ggtatggggt ggggacggca aaaggggtaa gagctggctt ct |
#gtagccac 1140 |
ctgtcccttc tatttttcag cgaaggtcag tgtatttagt gtaattaccc ct |
#tctaaaca 1200 |
gtgtcctagt ccctcccttc cctctccttg agtgcatttt gaattaaagc ct |
#atattgaa 1260 |
aaaaaaaaaa aagg |
# |
# |
# 1274 |
<210> SEQ ID NO 94 |
<211> LENGTH: 924 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1382920.38 |
<400> SEQUENCE: 94 |
atctagaact accgagagtc gtcggggttt cctgcttcaa cagtgcttgg ac |
#ggaacccg 60 |
gcgctcgttc cccaccccgg ccggccgccc atagccagcc ctccgtcacc tc |
#ttcaccgc 120 |
accctcggac tgccccaagg cccccgccgc cgctccagcg ccgcgcagcc ac |
#cgccgccg 180 |
ccgcctcctt tccttagtcg ccgccatgac gaccgcgtcc acctgcgcag gt |
#gccgccag 240 |
aactaccacc aggactcaga ggccgccatc aaccgccaga tcaacctgga gc |
#tctacgcc 300 |
tcctacgttt acctgtccat gtcttactac tttgaccgcg atgatgtggc tt |
#tgaagaac 360 |
tttgccaaat actttcttca ccaatctcat gaggagaggg aacatgctga ga |
#aactgatg 420 |
aagctgcaga accaacgagg tggccgaatc ttccttcagg atatcaagaa ac |
#cagactgt 480 |
gatgactggg agagcgggct gaatgcaatg gagtgtgcat tacatttgga aa |
#aaaatgtg 540 |
aatcagtcac tactggaact gcacaaactg gccactgaca aaaatgaccc cc |
#atttgtgt 600 |
gacttcattg agacacatta cctgaatgag caggtgaaag ccatcaaaga at |
#tgggtgac 660 |
cacgtgacca acttgcgcaa gatgggagcg cccgaatctg gcttggcgga at |
#atctcttt 720 |
gacaagcaca ccctgggaga cagtgataat gaaagctaag cctcgggcta at |
#ttccccat 780 |
agccgtgggg tgactttcct ggtcaccaag gcagtgcatg catgttgggg tt |
#tcctttac 840 |
cttttctata agttgtacca aaacatccac ttaagttctt tgatttgtac ca |
#ttccttca 900 |
aataaagaaa tttggtaccc aaaa |
# |
# 924 |
<210> SEQ ID NO 95 |
<211> LENGTH: 634 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 334749.1 |
<400> SEQUENCE: 95 |
gacgcccatc aatgaacaaa caagattccc actgtcccat ctcctatcca gt |
#gaaacaca 60 |
gccaacttga taatttgtgc agggaaagac tctgtttagc ttataccttg aa |
#cctaaggg 120 |
aaattaaatt gcacattttc tgttcctggc taatcttctg aataatgtac tg |
#aacacagt 180 |
aggagttaag aattaaaaat acctgtctgc agtttcagaa acaatcacac ac |
#aaaatatt 240 |
tgtttatttc cagactgatg aaagactgaa tttttggtct catgtattta ct |
#gtattgtt 300 |
tcatatattt atctatatgc tttggctgta ttaacttgtt gaaatagttt gt |
#ggttcttt 360 |
atatttagct tttataaata attgaaaatc taatgaatgc ttacttaata ac |
#caatctaa 420 |
actggggact tcaaacatag ggagtcaagt aatctggttg tgtaataaat aa |
#gcaagttg 480 |
ttatctttca ggctgagggc atatcaacca agctaaaaga cgtgtgtgta tt |
#aaaaaaaa 540 |
aaaaaagtct accaaaccac catatgatat ccaaggttaa ctatatagga gg |
#tctaataa 600 |
cattcagaag gtgctagatg aatataccaa aaac |
# |
# 634 |
<210> SEQ ID NO 96 |
<211> LENGTH: 579 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 041764.1 |
<400> SEQUENCE: 96 |
gaaaaaccat ataatggagg aaggccttgc cccaaactgg accatgtcaa cc |
#aggcacag 60 |
gtgtatgagg ttgtcccatg ccacagtgac tgcaaccagt acctatgggt ca |
#cagagccc 120 |
tggagcatct gcaaggtgac ctttgtgaat atgcgggaga actgtggaga gg |
#gcgtgcaa 180 |
acccgaaaag tgagatgcat gcagaataca gcagatggcc cttctgaaca tg |
#tagaggat 240 |
tacctctgtg acccagaaga gatgcccctg ggctctagag tgtgcaaatt ac |
#catgccct 300 |
gaggactgtg tgatatctga atggggtcca tggacccaat gtgttttgcc tt |
#gcaatcaa 360 |
agcagtttcc ggcaaaggtc agctgatccc atcagacaac cagctgatga ag |
#gaagatct 420 |
tgccctaatg ctgttgagaa agaaccctgt aacctgaaca aaaactgcta cc |
#actatgat 480 |
tataatgtaa cagactggag tacatgtcag ctgagtgaga aggcagtttg tg |
#gaaatgga 540 |
ataaaaacaa ggatgttgga ttgtgttcga agtgatggc |
# |
# 579 |
<210> SEQ ID NO 97 |
<211> LENGTH: 10432 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2700132CB1 |
<400> SEQUENCE: 97 |
tggttcgaca agtggccttg cgggccggat cgtcccagtg gaagagttgt aa |
#atttgctt 60 |
ctggccttcc cctacggatt atacctggcc ttcccctacg gattatactc aa |
#cttactgt 120 |
ttagaaaatg tggcccacga gacgcctggt tactatcaaa aggagcgggg tc |
#gacggtcc 180 |
ccactttccc ctgagcctca gcacctgctt gtttggaagg ggtattgaat gt |
#gacatccg 240 |
tatccagctt cctgttgtgt caaaacaaca ttgcaaaatt gaaatccatg ag |
#caggaggc 300 |
aatattacat aatttcagtt ccacaaatcc aacacaagta aatgggtctg tt |
#attgatga 360 |
gcctgtacgg ctaaaacatg gagatgtaat aactattatt gatcgttcct tc |
#aggtatga 420 |
aaatgaaagt cttcagagtg gaaggaagtc aactgaattt ccaagaaaaa ta |
#cgtgaaca 480 |
ggagccagca cgtcgtgtct caagatctag cttctcttct gaccctgatg ag |
#aaagctca 540 |
agattccaag gcctattcaa aaatcactga aggaaaagtt tcaggaaatc ct |
#caggtaca 600 |
tatcaagaat gtcaaagaag acagtaccgc agatgactca aaagacagtg tt |
#gctcaggg 660 |
aacaactaat gttcattcct cagaacatgc tggacgtaat ggcagaaatg ca |
#gctgatcc 720 |
catttctggg gattttaaag aaatttccag cgttaaatta gtgagccgtt at |
#ggagaatt 780 |
gaagtctgtt cccactacac aatgtcttga caatagcaaa aaaaatgaat ct |
#cccttttg 840 |
gaagctttat gagtcagtga agaaagagtt ggatgtaaaa tcacaaaaag aa |
#aatgtcct 900 |
acagtattgt agaaaatctg gattacaaac tgattacgca acagagaaag aa |
#agtgctga 960 |
ytggtttacag ggggagaccc aactgttggt ctcgcgtaag tcaagaccaa a |
#atctggtgg 1020 |
gagcggccac gctgtggcag agcctgcttc acctgaacaa gagcttgacc ag |
#aacaaggg 1080 |
gaagggaaga gacgtggagt ctgttcagac tcccagcaag gctgtgggcg cc |
#agctttcc 1140 |
tctctatgag ccggctaaaa tgaagacccc tgtacaatat tcacagcaac aa |
#aattctcc 1200 |
acaaaaacat aagaacaaag acctgtatac tactggtaga agagaatctg tg |
#aatctggg 1260 |
taaaagtgaa ggcttcaagg ctggtgataa aactcttact cccaggaagc tt |
#tcaactag 1320 |
aaatcgaaca ccagctaaag ttgaagatgc agctgactct gccactaagc ca |
#gaaaatct 1380 |
ctcttccaaa accagaggaa gtattcctac agatgtggaa gttctgccta cg |
#gaaactga 1440 |
aattcacaat gagccatttt taactctgtg gctcactcaa gttgagagga ag |
#atccaaaa 1500 |
ggattccctc agcaagcctg agaaattggg cactacagct ggacagatgt gc |
#tctgggtt 1560 |
acctggtctt agttcagttg atatcaacaa ctttggtgat tccattaatg ag |
#agtgaggg 1620 |
aatacctttg aaaagaaggc gtgtgtcctt tggtgggcac ctaagacctg aa |
#ctatttga 1680 |
tgaaaacttg cctcctaata cgcctctcaa aaggggagaa gccccaacca aa |
#agaaagtc 1740 |
tctggtaatg cacactccac ctgtcctgaa gaaaatcatc aaggaacagc ct |
#caaccatc 1800 |
aggaaaacaa gagtcaggtt cagaaatcca tgtggaagtg aaggcacaaa gc |
#ttggttat 1860 |
aagccctcca gctcctagtc ctaggaaaac tccagttgcc agtgatcaac gc |
#cgtaggtc 1920 |
ctgcaaaaca gcccctgctt ccagcagcaa atctcagaca gaggttccta ag |
#agaggagg 1980 |
agaaagagtg gcaacctgcc ttcaaaagag agtgtctatc agccgaagtc aa |
#catgatat 2040 |
tttacagatg atatgttcca aaagaagaag tggtgcttcg gaagcaaatc tg |
#attgttgc 2100 |
aaaatcatgg gcagatgtag taaaacttgg tgcaaaacaa acacaaacta aa |
#gtcataaa 2160 |
acatggtcct caaaggtcaa tgaacaaaag gcaaagaaga cctgctactc ca |
#aagaagcc 2220 |
tgtgggcgaa gttcacagtc aatttagtac aggccacgca aactctcctt gt |
#accataat 2280 |
aatagggaaa gctcatactg aaaaagtaca tgtgcctgct cgaccctaca ga |
#gtgctcaa 2340 |
caacttcatt tccaaccaaa aaatggactt taaggaagat ctttcaggaa ta |
#gctgaaat 2400 |
gttcaagacc ccagtgaagg agcaaccgca gttgacaagc acatgtcaca tc |
#gctatttc 2460 |
aaattcagag aatttgcttg gaaaacagtt tcaaggaact gattcaggag aa |
#gaacctct 2520 |
gctccccacc tcagagagtt ttggaggaaa tgtgttcttc agtgcacaga at |
#gcagcaaa 2580 |
acagccatct gataaatgct ctgcaagccc tcccttaaga cggcagtgta tt |
#agagaaaa 2640 |
tggaaacgta gcaaaaacgc ccaggaacac ctacaaaatg acttctctgg ag |
#acaaaaac 2700 |
ttcagatact gagacagagc cttcaaaaac agtatccact gtaaacaggt ca |
#ggaaggtc 2760 |
tacagagttc aggaatatac agaagctacc tgtggaaagt aagagtgaag aa |
#acaaatac 2820 |
agaaattgtt gagtgcatcc taaaaagagg tcagaaggca acactactac aa |
#caaaggag 2880 |
agaaggagag atgaaggaaa tagaaagacc ttttgagaca tataaggaaa at |
#attgaatt 2940 |
aaaagaaaac gatgaaaaga tgaaagcaat gaagagatca agaacttggg gg |
#cagaaatg 3000 |
tgcaccaatg tctgacctga cagacctcaa gagcttgcct gatacagaac tc |
#atgaaaga 3060 |
cacggcacgt ggccagaatc tcctccaaac ccaagatcat gccaaggcac ca |
#aagagtga 3120 |
gaaaggcaaa atcactaaaa tgccctgcca gtcattacaa ccagaaccaa ta |
#aacacccc 3180 |
aacacacaca aaacaacagt tgaaggcatc cctggggaaa gtaggtgtga aa |
#gaagagct 3240 |
cctagcagtc ggcaagttca cacggacgtc aggggagacc acgcacacgc ac |
#agagagcc 3300 |
agcaggagat ggcaagagca tcagaacgtt taaggagtct ccaaagcaga tc |
#ctggaccc 3360 |
agcagcccgt gtaactggaa tgaagaagtg gccaagaacg cctaaggaag ag |
#gcccagtc 3420 |
actagaagac ctggctggct tcaaagagct cttccagaca ccaggtccct ct |
#gaggaatc 3480 |
aatgactgat gagaaaacta ccaaaatagc ctgcaaatct ccaccaccag aa |
#tcagtgga 3540 |
cactccaaca agcacaaagc aatggcctaa gagaagtctc aggaaagcag at |
#gtagagga 3600 |
agaattctta gcactcagga aactaacacc atcagcaggg aaagccatgc tt |
#acgcccaa 3660 |
accagcagga ggtgatgaga aagacattaa agcatttatg ggaactccag tg |
#cagaaact 3720 |
ggacctggca ggaactttac ctggcagcaa aagacagcta cagactccta ag |
#gaaaaggc 3780 |
ccaggctcta gaagacctgg ctggctttaa agagctcttc cagactcctg gt |
#cacaccga 3840 |
ggaattagtg gctgctggta aaaccactaa aataccctgc gactctccac ag |
#tcagaccc 3900 |
agtggacacc ccaacaagca caaagcaacg acccaagaga agtatcagga aa |
#gcagatgt 3960 |
agagggagaa ctcttagcgt gcaggaatct aatgccatca gcaggcaaag cc |
#atgcacac 4020 |
gcctaaacca tcagtaggtg aagagaaaga catcatcata tttgtgggaa ct |
#ccagtgca 4080 |
gaaactggac ctgacagaga acttaaccgg cagcaagaga cggccacaaa ct |
#cctaagga 4140 |
agaggcccag gctctggaag acctgactgg ctttaaagag ctcttccaga cc |
#cctggtca 4200 |
tactgaagaa gcagtggctg ctggcaaaac tactaaaatg ccctgcgaat ct |
#tctccacc 4260 |
agaatcagca gacaccccaa caagcacaag aaggcagccc aagacacctt tg |
#gagaaaag 4320 |
ggacgtacag aaggagctct cagccctgaa gaagctcaca cagacatcag gg |
#gaaaccac 4380 |
acacacagat aaagtaccag gaggtgagga taaaagcatc aacgcgttta gg |
#gaaactgc 4440 |
aaaacagaaa ctggacccag cagcaagtgt aactggtagc aagaggcacc ca |
#aaaactaa 4500 |
ggaaaaggcc caacccctag aagacctggc tggctggaaa gagctcttcc ag |
#acaccagt 4560 |
atgcactgac aagcccacga ctcacgagaa aactaccaaa atagcctgca ga |
#tcacaacc 4620 |
agacccagtg gacacaccaa caagctccaa gccacagtcc aagagaagtc tc |
#aggaaagt 4680 |
ggacgtagaa gaagaattct tcgcactcag gaaacgaaca ccatcagcag gc |
#aaagccat 4740 |
gcacacaccc aaaccagcag taagtggtga gaaaaacatc tacgcattta tg |
#ggaactcc 4800 |
agtgcagaaa ctggacctga cagagaactt aactggcagc aagagacggc ta |
#caaactcc 4860 |
taaggaaaag gcccaggctc tagaagacct ggctggcttt aaagagctct tc |
#cagacacg 4920 |
aggtcacact gaggaatcaa tgactaacga taaaactgcc aaagtagcct gc |
#aaatcttc 4980 |
acaaccagac ctagacaaaa acccagcaag ctccaagcga cggctcaaga ca |
#tccctggg 5040 |
gaaagtgggc gtgaaagaag agctcctagc agttggcaag ctcacacaga ca |
#tcaggaga 5100 |
gactacacac acacacacag agccaacagg agatggtaag agcatgaaag ca |
#tttatgga 5160 |
gtctccaaag cagatcttag actcagcagc aagtctaact ggcagcaaga gg |
#cagctgag 5220 |
aactcctaag ggaaagtctg aagtccctga agacctggcc ggcttcatcg ag |
#ctcttcca 5280 |
gacaccaagt cacactaagg aatcaatgac taatgaaaaa actaccaaag ta |
#tcctacag 5340 |
agcttcacag ccagacctag tggacacccc aacaagctcc aagccacagc cc |
#aagagaag 5400 |
tctcaggaaa gcagacactg aagaagaatt tttagcattt aggaaacaaa cg |
#ccatcagc 5460 |
aggcaaagcc atgcacacac ccaaaccagc agtaggtgaa gagaaagaca tc |
#aacacgtt 5520 |
tttgggaact ccagtgcaga aactggacca gccaggaaat ttacctggca gc |
#aatagacg 5580 |
gctacaaact cgtaaggaaa aggcccaggc tctagaagaa ctgactggct tc |
#agagagct 5640 |
tttccagaca ccatgcactg ataaccccac gactgatgag aaaactacca aa |
#aaaatact 5700 |
ctgcaaatct ccgcaatcag acccagcgga caccccaaca aacacaaagc aa |
#cggcccaa 5760 |
gagaagcctc aagaaagcag acgtagagga agaattttta gcattcagga aa |
#ctaacacc 5820 |
atcagcaggc aaagccatgc acacgcctaa agcagcagta ggtgaagaga aa |
#gacatcaa 5880 |
cacatttgtg gggactccag tggagaaact ggacctgcta ggaaatttac ct |
#ggcagcaa 5940 |
gagacggcca caaactccta aagaaaaggc caaggctcta gaagatctgg ct |
#ggcttcaa 6000 |
agagctcttc cagacaccag gtcacactga ggaatcaatg accgatgaca aa |
#atcacaga 6060 |
agtatcctgc aaatctccac aaccagaccc agtcaaaacc ccaacaagct cc |
#aagcaacg 6120 |
actcaagata tccttgggga aagtaggtgt gaaagaagag gtcctaccag tc |
#ggcaagct 6180 |
cacacagacg tcagggaaga ccacacagac acacagagag acagcaggag at |
#ggaaagag 6240 |
catcaaagcg tttaaggaat ctgcaaagca gatgctggac ccagcaaact at |
#ggaactgg 6300 |
gatggagagg tggccaagaa cacctaagga agaggcccaa tcactagaag ac |
#ctggccgg 6360 |
cttcaaagag ctcttccaga caccagacca cactgaggaa tcaacaactg at |
#gacaaaac 6420 |
taccaaaata gcctgcaaat ctccaccacc agaatcaatg gacactccaa ca |
#agcacaag 6480 |
gaggcggccc aaaacacctt tggggaaaag ggatatagtg gaagagctct ca |
#gccctgaa 6540 |
gcagctcaca cagaccacac acacagacaa agtaccagga gatgaggata aa |
#ggcatcaa 6600 |
cgtgttcagg gaaactgcaa aacagaaact ggacccagca gcaagtgtaa ct |
#ggtagcaa 6660 |
gaggcagcca agaactccta agggaaaagc ccaaccccta gaagacttgg ct |
#ggcttgaa 6720 |
agagctcttc cagacaccaa tatgcactga caagcccacg actcatgaga aa |
#actaccaa 6780 |
aatagcctgc agatctccac aaccagaccc agtgggtacc ccaacaatct tc |
#aagccaca 6840 |
gtccaagaga agtctcagga aagcagacgt agaggaagaa tccttagcac tc |
#aggaaacg 6900 |
aacaccatca gtagggaaag ctatggacac acccaaacca gcaggaggtg at |
#gagaaaga 6960 |
catgaaagca tttatgggaa ctccagtgca gaaattggac ctgccaggaa at |
#ttacctgg 7020 |
cagcaaaaga tggccacaaa ctcctaagga aaaggcccag gctctagaag ac |
#ctggctgg 7080 |
cttcaaagag ctcttccaga caccaggcac tgacaagccc acgactgatg ag |
#aaaactac 7140 |
caaaatagcc tgcaaatctc cacaaccaga cccagtggac accccagcaa gc |
#acaaagca 7200 |
acggcccaag agaaacctca ggaaagcaga cgtagaggaa gaatttttag ca |
#ctcaggaa 7260 |
acgaacacca tcagcaggca aagccatgga cacaccaaaa ccagcagtaa gt |
#gatgagaa 7320 |
aaatatcaac acatttgtgg aaactccagt gcagaaactg gacctgctag ga |
#aatttacc 7380 |
tggcagcaag agacagccac agactcctaa ggaaaaggct gaggctctag ag |
#gacctggt 7440 |
tggcttcaaa gaactcttcc agacaccagg tcacactgag gaatcaatga ct |
#gatgacaa 7500 |
aatcacagaa gtatcctgta aatctccaca gccagagtca ttcaaaacct ca |
#agaagctc 7560 |
caagcaaagg ctcaagatac ccctggtgaa agtggacatg aaagaagagc cc |
#ctagcagt 7620 |
cagcaagctc acacggacat caggggagac tacgcaaaca cacacagagc ca |
#acaggaga 7680 |
tagtaagagc atcaaagcgt ttaaggagtc tccaaagcag atcctggacc ca |
#gcagcaag 7740 |
tgtaactggt agcaggaggc agctgagaac tcgtaaggaa aaggcccgtg ct |
#ctagaaga 7800 |
cctggttgac ttcaaagagc tcttctcagc accaggtcac actgaagagt ca |
#atgactat 7860 |
tgacaaaaac acaaaaattc cctgcaaatc tcccccacca gaactaacag ac |
#actgccac 7920 |
gagcacaaag agatgcccca agacacgtct caggaaagaa gtaaaagagg ag |
#ctctcagc 7980 |
agttgagagg ctcacgcaaa catcagggca aagcacacac acacacaaag aa |
#ccagcaag 8040 |
cggtgatgag ggcatcaaag tattgaagca acgtgcaaag aagaaaccaa ac |
#ccagtaga 8100 |
agaggaaccc agcaggagaa ggccaagagc acctaaggaa aaggcccaac cc |
#ctggaaga 8160 |
cctggccggc ttcacagagc tctctgaaac atcaggtcac actcaggaat ca |
#ctgactgc 8220 |
tggcaaagcc actaaaatac cctgcgaatc tcccccacta gaagtggtag ac |
#accacagc 8280 |
aagcacaaag aggcatctca ggacacgtgt gcagaaggta caagtaaaag aa |
#gagccttc 8340 |
agcagtcaag ttcacacaaa catcagggga aaccacggat gcagacaaag aa |
#ccagcagg 8400 |
tgaagataaa ggcatcaaag cattgaagga atctgcaaaa cagacaccgg ct |
#ccagcagc 8460 |
aagtgtaact ggcagcagga gacggccaag agcacccagg gaaagtgccc aa |
#gccataga 8520 |
agacctagct ggcttcaaag acccagcagc aggtcacact gaagaatcaa tg |
#actgatga 8580 |
caaaaccact aaaataccct gcaaatcatc accagaacta gaagacaccg ca |
#acaagctc 8640 |
aaagagacgg cccaggacac gtgcccagaa agtagaagtg aaggaggagc tg |
#ttagcagt 8700 |
tggcaagctc acacaaacct caggggagac cacgcacacc gacaaagagc cg |
#gtaggtga 8760 |
gggcaaaggc acgaaagcat ttaagcaacc tgcaaagcgg aagctggacg ca |
#gaagatgt 8820 |
aattggcagc aggagacagc caagagcacc taaggaaaag gcccaacccc tg |
#gaagatct 8880 |
ggccagcttc caagagctct ctcaaacacc aggccacact gaggaactgg ca |
#aatggtgc 8940 |
tgctgatagc tttacaagcg ctccaaagca aacacctgac agtggaaaac ct |
#ctaaaaat 9000 |
atccagaaga gttcttcggg cccctaaagt agaacccgtg ggagacgtgg ta |
#agcaccag 9060 |
agaccctgta aaatcacaaa gcaaaagcaa cacttccctg cccccactgc cc |
#ttcaagag 9120 |
gggaggtggc aaagatggaa gcgtcacggg aaccaagagg ctgcgctgca tg |
#ccagcacc 9180 |
agaggaaatt gtggaggagc tgccagccag caagaagcag agggttgctc cc |
#agggcaag 9240 |
aggcaaatca tccgaacccg tggtcatcat gaagagaagt ttgaggactt ct |
#gcaaaaag 9300 |
aattgaacct gcggaagagc tgaacagcaa cgacatgaaa accaacaaag ag |
#gaacacaa 9360 |
attacaagac tcagtccctg aaaataaggg aatatccctg cgctccagac gc |
#caaaataa 9420 |
gactgaggca gaacagcaaa taactgaggt ctttgtatta gcagaaagaa ta |
#gaaataaa 9480 |
cagaaatgaa aagaagccca tgaagacctc cccagagatg gacattcaga at |
#ccagatga 9540 |
tggagcccgg aaacccatac ctagagacaa agtcactgag aacaaaaggt gc |
#ttgaggtc 9600 |
tgctagacag aatgagagct cccagcctaa ggtggcagag gagagcggag gg |
#cagaagag 9660 |
tgcgaaggtt ctcatgcaga atcagaaagg gaaaggagaa gcaggaaatt ca |
#gactccat 9720 |
gtgcctgaga tcaagaaaga caaaaagcca gcctgcagca agcactttgg ag |
#agcaaatc 9780 |
tgtgcagaga gtaacgcgga gtgtcaagag gtgtgcagaa aatccaaaga ag |
#gctgagga 9840 |
caatgtgtgt gtcaagaaaa taagaaccag aagtcatagg gacagtgaag at |
#atttgaca 9900 |
gaaaaatcga actgggaaaa atataataaa gttagttttg tgataagttc ta |
#gtgcagtt 9960 |
tttgtcataa attacaagtg aattctgtaa gtaaggctgt cagtctgctt aa |
#gggaagaa 10020 |
aactttggat ttgctgggtc tgaatcggct tcataaactc cactgggagc ac |
#tgctgggc 10080 |
tcctggactg agaatagttg aacaccgggg gctttgtgaa ggagtctggg cc |
#aaggtttg 10140 |
ccctcagctt tgcagaatga agccttgagg tctgtcacca cccacagcca cc |
#ctacagca 10200 |
gccttaactg tgacacttgc cacactgtgt cgtcgtttgt ttgcctatgt cc |
#tccagggc 10260 |
acggtggcag gaacaactat cctcgtctgt cccaacactg agcaggcact cg |
#gtaaacac 10320 |
gaatgaatgg atgagcgcac ggatgaatgg agcttacaga tctgtctttc ca |
#atggccgg 10380 |
ggggatttgg tccccaaatt aaggctattg gacatctgca caggacagtc ta |
# 10432 |
<210> SEQ ID NO 98 |
<211> LENGTH: 3256 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 2700132CD1 |
<400> SEQUENCE: 98 |
Met Trp Pro Thr Arg Arg Leu Val Thr Ile Ly |
#s Arg Ser Gly Val |
1 5 |
# 10 |
# 15 |
Asp Gly Pro His Phe Pro Leu Ser Leu Ser Th |
#r Cys Leu Phe Gly |
20 |
# 25 |
# 30 |
Arg Gly Ile Glu Cys Asp Ile Arg Ile Gln Le |
#u Pro Val Val Ser |
35 |
# 40 |
# 45 |
Lys Gln His Cys Lys Ile Glu Ile His Glu Gl |
#n Glu Ala Ile Leu |
50 |
# 55 |
# 60 |
His Asn Phe Ser Ser Thr Asn Pro Thr Gln Va |
#l Asn Gly Ser Val |
65 |
# 70 |
# 75 |
Ile Asp Glu Pro Val Arg Leu Lys His Gly As |
#p Val Ile Thr Ile |
80 |
# 85 |
# 90 |
Ile Asp Arg Ser Phe Arg Tyr Glu Asn Glu Se |
#r Leu Gln Ser Gly |
95 |
# 100 |
# 105 |
Arg Lys Ser Thr Glu Phe Pro Arg Lys Ile Ar |
#g Glu Gln Glu Pro |
110 |
# 115 |
# 120 |
Ala Arg Arg Val Ser Arg Ser Ser Phe Ser Se |
#r Asp Pro Asp Glu |
125 |
# 130 |
# 135 |
Lys Ala Gln Asp Ser Lys Ala Tyr Ser Lys Il |
#e Thr Glu Gly Lys |
140 |
# 145 |
# 150 |
Val Ser Gly Asn Pro Gln Val His Ile Lys As |
#n Val Lys Glu Asp |
155 |
# 160 |
# 165 |
Ser Thr Ala Asp Asp Ser Lys Asp Ser Val Al |
#a Gln Gly Thr Thr |
170 |
# 175 |
# 180 |
Asn Val His Ser Ser Glu His Ala Gly Arg As |
#n Gly Arg Asn Ala |
185 |
# 190 |
# 195 |
Ala Asp Pro Ile Ser Gly Asp Phe Lys Glu Il |
#e Ser Ser Val Lys |
200 |
# 205 |
# 210 |
Leu Val Ser Arg Tyr Gly Glu Leu Lys Ser Va |
#l Pro Thr Thr Gln |
215 |
# 220 |
# 225 |
Cys Leu Asp Asn Ser Lys Lys Asn Glu Ser Pr |
#o Phe Trp Lys Leu |
230 |
# 235 |
# 240 |
Tyr Glu Ser Val Lys Lys Glu Leu Asp Val Ly |
#s Ser Gln Lys Glu |
245 |
# 250 |
# 255 |
Asn Val Leu Gln Tyr Cys Arg Lys Ser Gly Le |
#u Gln Thr Asp Tyr |
260 |
# 265 |
# 270 |
Ala Thr Glu Lys Glu Ser Ala Asp Gly Leu Gl |
#n Gly Glu Thr Gln |
275 |
# 280 |
# 285 |
Leu Leu Val Ser Arg Lys Ser Arg Pro Lys Se |
#r Gly Gly Ser Gly |
290 |
# 295 |
# 300 |
His Ala Val Ala Glu Pro Ala Ser Pro Glu Gl |
#n Glu Leu Asp Gln |
305 |
# 310 |
# 315 |
Asn Lys Gly Lys Gly Arg Asp Val Glu Ser Va |
#l Gln Thr Pro Ser |
320 |
# 325 |
# 330 |
Lys Ala Val Gly Ala Ser Phe Pro Leu Tyr Gl |
#u Pro Ala Lys Met |
335 |
# 340 |
# 345 |
Lys Thr Pro Val Gln Tyr Ser Gln Gln Gln As |
#n Ser Pro Gln Lys |
350 |
# 355 |
# 360 |
His Lys Asn Lys Asp Leu Tyr Thr Thr Gly Ar |
#g Arg Glu Ser Val |
365 |
# 370 |
# 375 |
Asn Leu Gly Lys Ser Glu Gly Phe Lys Ala Gl |
#y Asp Lys Thr Leu |
380 |
# 385 |
# 390 |
Thr Pro Arg Lys Leu Ser Thr Arg Asn Arg Th |
#r Pro Ala Lys Val |
395 |
# 400 |
# 405 |
Glu Asp Ala Ala Asp Ser Ala Thr Lys Pro Gl |
#u Asn Leu Ser Ser |
410 |
# 415 |
# 420 |
Lys Thr Arg Gly Ser Ile Pro Thr Asp Val Gl |
#u Val Leu Pro Thr |
425 |
# 430 |
# 435 |
Glu Thr Glu Ile His Asn Glu Pro Phe Leu Th |
#r Leu Trp Leu Thr |
440 |
# 445 |
# 450 |
Gln Val Glu Arg Lys Ile Gln Lys Asp Ser Le |
#u Ser Lys Pro Glu |
455 |
# 460 |
# 465 |
Lys Leu Gly Thr Thr Ala Gly Gln Met Cys Se |
#r Gly Leu Pro Gly |
470 |
# 475 |
# 480 |
Leu Ser Ser Val Asp Ile Asn Asn Phe Gly As |
#p Ser Ile Asn Glu |
485 |
# 490 |
# 495 |
Ser Glu Gly Ile Pro Leu Lys Arg Arg Arg Va |
#l Ser Phe Gly Gly |
500 |
# 505 |
# 510 |
His Leu Arg Pro Glu Leu Phe Asp Glu Asn Le |
#u Pro Pro Asn Thr |
515 |
# 520 |
# 525 |
Pro Leu Lys Arg Gly Glu Ala Pro Thr Lys Ar |
#g Lys Ser Leu Val |
530 |
# 535 |
# 540 |
Met His Thr Pro Pro Val Leu Lys Lys Ile Il |
#e Lys Glu Gln Pro |
545 |
# 550 |
# 555 |
Gln Pro Ser Gly Lys Gln Glu Ser Gly Ser Gl |
#u Ile His Val Glu |
560 |
# 565 |
# 570 |
Val Lys Ala Gln Ser Leu Val Ile Ser Pro Pr |
#o Ala Pro Ser Pro |
575 |
# 580 |
# 585 |
Arg Lys Thr Pro Val Ala Ser Asp Gln Arg Ar |
#g Arg Ser Cys Lys |
590 |
# 595 |
# 600 |
Thr Ala Pro Ala Ser Ser Ser Lys Ser Gln Th |
#r Glu Val Pro Lys |
605 |
# 610 |
# 615 |
Arg Gly Gly Glu Arg Val Ala Thr Cys Leu Gl |
#n Lys Arg Val Ser |
620 |
# 625 |
# 630 |
Ile Ser Arg Ser Gln His Asp Ile Leu Gln Me |
#t Ile Cys Ser Lys |
635 |
# 640 |
# 645 |
Arg Arg Ser Gly Ala Ser Glu Ala Asn Leu Il |
#e Val Ala Lys Ser |
650 |
# 655 |
# 660 |
Trp Ala Asp Val Val Lys Leu Gly Ala Lys Gl |
#n Thr Gln Thr Lys |
665 |
# 670 |
# 675 |
Val Ile Lys His Gly Pro Gln Arg Ser Met As |
#n Lys Arg Gln Arg |
680 |
# 685 |
# 690 |
Arg Pro Ala Thr Pro Lys Lys Pro Val Gly Gl |
#u Val His Ser Gln |
695 |
# 700 |
# 705 |
Phe Ser Thr Gly His Ala Asn Ser Pro Cys Th |
#r Ile Ile Ile Gly |
710 |
# 715 |
# 720 |
Lys Ala His Thr Glu Lys Val His Val Pro Al |
#a Arg Pro Tyr Arg |
725 |
# 730 |
# 735 |
Val Leu Asn Asn Phe Ile Ser Asn Gln Lys Me |
#t Asp Phe Lys Glu |
740 |
# 745 |
# 750 |
Asp Leu Ser Gly Ile Ala Glu Met Phe Lys Th |
#r Pro Val Lys Glu |
755 |
# 760 |
# 765 |
Gln Pro Gln Leu Thr Ser Thr Cys His Ile Al |
#a Ile Ser Asn Ser |
770 |
# 775 |
# 780 |
Glu Asn Leu Leu Gly Lys Gln Phe Gln Gly Th |
#r Asp Ser Gly Glu |
785 |
# 790 |
# 795 |
Glu Pro Leu Leu Pro Thr Ser Glu Ser Phe Gl |
#y Gly Asn Val Phe |
800 |
# 805 |
# 810 |
Phe Ser Ala Gln Asn Ala Ala Lys Gln Pro Se |
#r Asp Lys Cys Ser |
815 |
# 820 |
# 825 |
Ala Ser Pro Pro Leu Arg Arg Gln Cys Ile Ar |
#g Glu Asn Gly Asn |
830 |
# 835 |
# 840 |
Val Ala Lys Thr Pro Arg Asn Thr Tyr Lys Me |
#t Thr Ser Leu Glu |
845 |
# 850 |
# 855 |
Thr Lys Thr Ser Asp Thr Glu Thr Glu Pro Se |
#r Lys Thr Val Ser |
860 |
# 865 |
# 870 |
Thr Val Asn Arg Ser Gly Arg Ser Thr Glu Ph |
#e Arg Asn Ile Gln |
875 |
# 880 |
# 885 |
Lys Leu Pro Val Glu Ser Lys Ser Glu Glu Th |
#r Asn Thr Glu Ile |
890 |
# 895 |
# 900 |
Val Glu Cys Ile Leu Lys Arg Gly Gln Lys Al |
#a Thr Leu Leu Gln |
905 |
# 910 |
# 915 |
Gln Arg Arg Glu Gly Glu Met Lys Glu Ile Gl |
#u Arg Pro Phe Glu |
920 |
# 925 |
# 930 |
Thr Tyr Lys Glu Asn Ile Glu Leu Lys Glu As |
#n Asp Glu Lys Met |
935 |
# 940 |
# 945 |
Lys Ala Met Lys Arg Ser Arg Thr Trp Gly Gl |
#n Lys Cys Ala Pro |
950 |
# 955 |
# 960 |
Met Ser Asp Leu Thr Asp Leu Lys Ser Leu Pr |
#o Asp Thr Glu Leu |
965 |
# 970 |
# 975 |
Met Lys Asp Thr Ala Arg Gly Gln Asn Leu Le |
#u Gln Thr Gln Asp |
980 |
# 985 |
# 990 |
His Ala Lys Ala Pro Lys Ser Glu Lys Gly Ly |
#s Ile Thr Lys Met |
995 |
# 1000 |
# 1005 |
Pro Cys Gln Ser Leu Gln Pro Glu Pro Ile As |
#n Thr Pro Thr His |
1010 |
# 1015 |
# 1020 |
Thr Lys Gln Gln Leu Lys Ala Ser Leu Gly Ly |
#s Val Gly Val Lys |
1025 |
# 1030 |
# 1035 |
Glu Glu Leu Leu Ala Val Gly Lys Phe Thr Ar |
#g Thr Ser Gly Glu |
1040 |
# 1045 |
# 1050 |
Thr Thr His Thr His Arg Glu Pro Ala Gly As |
#p Gly Lys Ser Ile |
1055 |
# 1060 |
# 1065 |
Arg Thr Phe Lys Glu Ser Pro Lys Gln Ile Le |
#u Asp Pro Ala Ala |
1070 |
# 1075 |
# 1080 |
Arg Val Thr Gly Met Lys Lys Trp Pro Arg Th |
#r Pro Lys Glu Glu |
1085 |
# 1090 |
# 1095 |
Ala Gln Ser Leu Glu Asp Leu Ala Gly Phe Ly |
#s Glu Leu Phe Gln |
1100 |
# 1105 |
# 1110 |
Thr Pro Gly Pro Ser Glu Glu Ser Met Thr As |
#p Glu Lys Thr Thr |
1115 |
# 1120 |
# 1125 |
Lys Ile Ala Cys Lys Ser Pro Pro Pro Glu Se |
#r Val Asp Thr Pro |
1130 |
# 1135 |
# 1140 |
Thr Ser Thr Lys Gln Trp Pro Lys Arg Ser Le |
#u Arg Lys Ala Asp |
1145 |
# 1150 |
# 1155 |
Val Glu Glu Glu Phe Leu Ala Leu Arg Lys Le |
#u Thr Pro Ser Ala |
1160 |
# 1165 |
# 1170 |
Gly Lys Ala Met Leu Thr Pro Lys Pro Ala Gl |
#y Gly Asp Glu Lys |
1175 |
# 1180 |
# 1185 |
Asp Ile Lys Ala Phe Met Gly Thr Pro Val Gl |
#n Lys Leu Asp Leu |
1190 |
# 1195 |
# 1200 |
Ala Gly Thr Leu Pro Gly Ser Lys Arg Gln Le |
#u Gln Thr Pro Lys |
1205 |
# 1210 |
# 1215 |
Glu Lys Ala Gln Ala Leu Glu Asp Leu Ala Gl |
#y Phe Lys Glu Leu |
1220 |
# 1225 |
# 1230 |
Phe Gln Thr Pro Gly His Thr Glu Glu Leu Va |
#l Ala Ala Gly Lys |
1235 |
# 1240 |
# 1245 |
Thr Thr Lys Ile Pro Cys Asp Ser Pro Gln Se |
#r Asp Pro Val Asp |
1250 |
# 1255 |
# 1260 |
Thr Pro Thr Ser Thr Lys Gln Arg Pro Lys Ar |
#g Ser Ile Arg Lys |
1265 |
# 1270 |
# 1275 |
Ala Asp Val Glu Gly Glu Leu Leu Ala Cys Ar |
#g Asn Leu Met Pro |
1280 |
# 1285 |
# 1290 |
Ser Ala Gly Lys Ala Met His Thr Pro Lys Pr |
#o Ser Val Gly Glu |
1295 |
# 1300 |
# 1305 |
Glu Lys Asp Ile Ile Ile Phe Val Gly Thr Pr |
#o Val Gln Lys Leu |
1310 |
# 1315 |
# 1320 |
Asp Leu Thr Glu Asn Leu Thr Gly Ser Lys Ar |
#g Arg Pro Gln Thr |
1325 |
# 1330 |
# 1335 |
Pro Lys Glu Glu Ala Gln Ala Leu Glu Asp Le |
#u Thr Gly Phe Lys |
1340 |
# 1345 |
# 1350 |
Glu Leu Phe Gln Thr Pro Gly His Thr Glu Gl |
#u Ala Val Ala Ala |
1355 |
# 1360 |
# 1365 |
Gly Lys Thr Thr Lys Met Pro Cys Glu Ser Se |
#r Pro Pro Glu Ser |
1370 |
# 1375 |
# 1380 |
Ala Asp Thr Pro Thr Ser Thr Arg Arg Gln Pr |
#o Lys Thr Pro Leu |
1385 |
# 1390 |
# 1395 |
Glu Lys Arg Asp Val Gln Lys Glu Leu Ser Al |
#a Leu Lys Lys Leu |
1400 |
# 1405 |
# 1410 |
Thr Gln Thr Ser Gly Glu Thr Thr His Thr As |
#p Lys Val Pro Gly |
1415 |
# 1420 |
# 1425 |
Gly Glu Asp Lys Ser Ile Asn Ala Phe Arg Gl |
#u Thr Ala Lys Gln |
1430 |
# 1435 |
# 1440 |
Lys Leu Asp Pro Ala Ala Ser Val Thr Gly Se |
#r Lys Arg His Pro |
1445 |
# 1450 |
# 1455 |
Lys Thr Lys Glu Lys Ala Gln Pro Leu Glu As |
#p Leu Ala Gly Trp |
1460 |
# 1465 |
# 1470 |
Lys Glu Leu Phe Gln Thr Pro Val Cys Thr As |
#p Lys Pro Thr Thr |
1475 |
# 1480 |
# 1485 |
His Glu Lys Thr Thr Lys Ile Ala Cys Arg Se |
#r Gln Pro Asp Pro |
1490 |
# 1495 |
# 1500 |
Val Asp Thr Pro Thr Ser Ser Lys Pro Gln Se |
#r Lys Arg Ser Leu |
1505 |
# 1510 |
# 1515 |
Arg Lys Val Asp Val Glu Glu Glu Phe Phe Al |
#a Leu Arg Lys Arg |
1520 |
# 1525 |
# 1530 |
Thr Pro Ser Ala Gly Lys Ala Met His Thr Pr |
#o Lys Pro Ala Val |
1535 |
# 1540 |
# 1545 |
Ser Gly Glu Lys Asn Ile Tyr Ala Phe Met Gl |
#y Thr Pro Val Gln |
1550 |
# 1555 |
# 1560 |
Lys Leu Asp Leu Thr Glu Asn Leu Thr Gly Se |
#r Lys Arg Arg Leu |
1565 |
# 1570 |
# 1575 |
Gln Thr Pro Lys Glu Lys Ala Gln Ala Leu Gl |
#u Asp Leu Ala Gly |
1580 |
# 1585 |
# 1590 |
Phe Lys Glu Leu Phe Gln Thr Arg Gly His Th |
#r Glu Glu Ser Met |
1595 |
# 1600 |
# 1605 |
Thr Asn Asp Lys Thr Ala Lys Val Ala Cys Ly |
#s Ser Ser Gln Pro |
1610 |
# 1615 |
# 1620 |
Asp Leu Asp Lys Asn Pro Ala Ser Ser Lys Ar |
#g Arg Leu Lys Thr |
1625 |
# 1630 |
# 1635 |
Ser Leu Gly Lys Val Gly Val Lys Glu Glu Le |
#u Leu Ala Val Gly |
1640 |
# 1645 |
# 1650 |
Lys Leu Thr Gln Thr Ser Gly Glu Thr Thr Hi |
#s Thr His Thr Glu |
1655 |
# 1660 |
# 1665 |
Pro Thr Gly Asp Gly Lys Ser Met Lys Ala Ph |
#e Met Glu Ser Pro |
1670 |
# 1675 |
# 1680 |
Lys Gln Ile Leu Asp Ser Ala Ala Ser Leu Th |
#r Gly Ser Lys Arg |
1685 |
# 1690 |
# 1695 |
Gln Leu Arg Thr Pro Lys Gly Lys Ser Glu Va |
#l Pro Glu Asp Leu |
1700 |
# 1705 |
# 1710 |
Ala Gly Phe Ile Glu Leu Phe Gln Thr Pro Se |
#r His Thr Lys Glu |
1715 |
# 1720 |
# 1725 |
Ser Met Thr Asn Glu Lys Thr Thr Lys Val Se |
#r Tyr Arg Ala Ser |
1730 |
# 1735 |
# 1740 |
Gln Pro Asp Leu Val Asp Thr Pro Thr Ser Se |
#r Lys Pro Gln Pro |
1745 |
# 1750 |
# 1755 |
Lys Arg Ser Leu Arg Lys Ala Asp Thr Glu Gl |
#u Glu Phe Leu Ala |
1760 |
# 1765 |
# 1770 |
Phe Arg Lys Gln Thr Pro Ser Ala Gly Lys Al |
#a Met His Thr Pro |
1775 |
# 1780 |
# 1785 |
Lys Pro Ala Val Gly Glu Glu Lys Asp Ile As |
#n Thr Phe Leu Gly |
1790 |
# 1795 |
# 1800 |
Thr Pro Val Gln Lys Leu Asp Gln Pro Gly As |
#n Leu Pro Gly Ser |
1805 |
# 1810 |
# 1815 |
Asn Arg Arg Leu Gln Thr Arg Lys Glu Lys Al |
#a Gln Ala Leu Glu |
1820 |
# 1825 |
# 1830 |
Glu Leu Thr Gly Phe Arg Glu Leu Phe Gln Th |
#r Pro Cys Thr Asp |
1835 |
# 1840 |
# 1845 |
Asn Pro Thr Thr Asp Glu Lys Thr Thr Lys Ly |
#s Ile Leu Cys Lys |
1850 |
# 1855 |
# 1860 |
Ser Pro Gln Ser Asp Pro Ala Asp Thr Pro Th |
#r Asn Thr Lys Gln |
1865 |
# 1870 |
# 1875 |
Arg Pro Lys Arg Ser Leu Lys Lys Ala Asp Va |
#l Glu Glu Glu Phe |
1880 |
# 1885 |
# 1890 |
Leu Ala Phe Arg Lys Leu Thr Pro Ser Ala Gl |
#y Lys Ala Met His |
1895 |
# 1900 |
# 1905 |
Thr Pro Lys Ala Ala Val Gly Glu Glu Lys As |
#p Ile Asn Thr Phe |
1910 |
# 1915 |
# 1920 |
Val Gly Thr Pro Val Glu Lys Leu Asp Leu Le |
#u Gly Asn Leu Pro |
1925 |
# 1930 |
# 1935 |
Gly Ser Lys Arg Arg Pro Gln Thr Pro Lys Gl |
#u Lys Ala Lys Ala |
1940 |
# 1945 |
# 1950 |
Leu Glu Asp Leu Ala Gly Phe Lys Glu Leu Ph |
#e Gln Thr Pro Gly |
1955 |
# 1960 |
# 1965 |
His Thr Glu Glu Ser Met Thr Asp Asp Lys Il |
#e Thr Glu Val Ser |
1970 |
# 1975 |
# 1980 |
Cys Lys Ser Pro Gln Pro Asp Pro Val Lys Th |
#r Pro Thr Ser Ser |
1985 |
# 1990 |
# 1995 |
Lys Gln Arg Leu Lys Ile Ser Leu Gly Lys Va |
#l Gly Val Lys Glu |
2000 |
# 2005 |
# 2010 |
Glu Val Leu Pro Val Gly Lys Leu Thr Gln Th |
#r Ser Gly Lys Thr |
2015 |
# 2020 |
# 2025 |
Thr Gln Thr His Arg Glu Thr Ala Gly Asp Gl |
#y Lys Ser Ile Lys |
2030 |
# 2035 |
# 2040 |
Ala Phe Lys Glu Ser Ala Lys Gln Met Leu As |
#p Pro Ala Asn Tyr |
2045 |
# 2050 |
# 2055 |
Gly Thr Gly Met Glu Arg Trp Pro Arg Thr Pr |
#o Lys Glu Glu Ala |
2060 |
# 2065 |
# 2070 |
Gln Ser Leu Glu Asp Leu Ala Gly Phe Lys Gl |
#u Leu Phe Gln Thr |
2075 |
# 2080 |
# 2085 |
Pro Asp His Thr Glu Glu Ser Thr Thr Asp As |
#p Lys Thr Thr Lys |
2090 |
# 2095 |
# 2100 |
Ile Ala Cys Lys Ser Pro Pro Pro Glu Ser Me |
#t Asp Thr Pro Thr |
2105 |
# 2110 |
# 2115 |
Ser Thr Arg Arg Arg Pro Lys Thr Pro Leu Gl |
#y Lys Arg Asp Ile |
2120 |
# 2125 |
# 2130 |
Val Glu Glu Leu Ser Ala Leu Lys Gln Leu Th |
#r Gln Thr Thr His |
2135 |
# 2140 |
# 2145 |
Thr Asp Lys Val Pro Gly Asp Glu Asp Lys Gl |
#y Ile Asn Val Phe |
2150 |
# 2155 |
# 2160 |
Arg Glu Thr Ala Lys Gln Lys Leu Asp Pro Al |
#a Ala Ser Val Thr |
2165 |
# 2170 |
# 2175 |
Gly Ser Lys Arg Gln Pro Arg Thr Pro Lys Gl |
#y Lys Ala Gln Pro |
2180 |
# 2185 |
# 2190 |
Leu Glu Asp Leu Ala Gly Leu Lys Glu Leu Ph |
#e Gln Thr Pro Ile |
2195 |
# 2200 |
# 2205 |
Cys Thr Asp Lys Pro Thr Thr His Glu Lys Th |
#r Thr Lys Ile Ala |
2210 |
# 2215 |
# 2220 |
Cys Arg Ser Pro Gln Pro Asp Pro Val Gly Th |
#r Pro Thr Ile Phe |
2225 |
# 2230 |
# 2235 |
Lys Pro Gln Ser Lys Arg Ser Leu Arg Lys Al |
#a Asp Val Glu Glu |
2240 |
# 2245 |
# 2250 |
Glu Ser Leu Ala Leu Arg Lys Arg Thr Pro Se |
#r Val Gly Lys Ala |
2255 |
# 2260 |
# 2265 |
Met Asp Thr Pro Lys Pro Ala Gly Gly Asp Gl |
#u Lys Asp Met Lys |
2270 |
# 2275 |
# 2280 |
Ala Phe Met Gly Thr Pro Val Gln Lys Leu As |
#p Leu Pro Gly Asn |
2285 |
# 2290 |
# 2295 |
Leu Pro Gly Ser Lys Arg Trp Pro Gln Thr Pr |
#o Lys Glu Lys Ala |
2300 |
# 2305 |
# 2310 |
Gln Ala Leu Glu Asp Leu Ala Gly Phe Lys Gl |
#u Leu Phe Gln Thr |
2315 |
# 2320 |
# 2325 |
Pro Gly Thr Asp Lys Pro Thr Thr Asp Glu Ly |
#s Thr Thr Lys Ile |
2330 |
# 2335 |
# 2340 |
Ala Cys Lys Ser Pro Gln Pro Asp Pro Val As |
#p Thr Pro Ala Ser |
2345 |
# 2350 |
# 2355 |
Thr Lys Gln Arg Pro Lys Arg Asn Leu Arg Ly |
#s Ala Asp Val Glu |
2360 |
# 2365 |
# 2370 |
Glu Glu Phe Leu Ala Leu Arg Lys Arg Thr Pr |
#o Ser Ala Gly Lys |
2375 |
# 2380 |
# 2385 |
Ala Met Asp Thr Pro Lys Pro Ala Val Ser As |
#p Glu Lys Asn Ile |
2390 |
# 2395 |
# 2400 |
Asn Thr Phe Val Glu Thr Pro Val Gln Lys Le |
#u Asp Leu Leu Gly |
2405 |
# 2410 |
# 2415 |
Asn Leu Pro Gly Ser Lys Arg Gln Pro Gln Th |
#r Pro Lys Glu Lys |
2420 |
# 2425 |
# 2430 |
Ala Glu Ala Leu Glu Asp Leu Val Gly Phe Ly |
#s Glu Leu Phe Gln |
2435 |
# 2440 |
# 2445 |
Thr Pro Gly His Thr Glu Glu Ser Met Thr As |
#p Asp Lys Ile Thr |
2450 |
# 2455 |
# 2460 |
Glu Val Ser Cys Lys Ser Pro Gln Pro Glu Se |
#r Phe Lys Thr Ser |
2465 |
# 2470 |
# 2475 |
Arg Ser Ser Lys Gln Arg Leu Lys Ile Pro Le |
#u Val Lys Val Asp |
2480 |
# 2485 |
# 2490 |
Met Lys Glu Glu Pro Leu Ala Val Ser Lys Le |
#u Thr Arg Thr Ser |
2495 |
# 2500 |
# 2505 |
Gly Glu Thr Thr Gln Thr His Thr Glu Pro Th |
#r Gly Asp Ser Lys |
2510 |
# 2515 |
# 2520 |
Ser Ile Lys Ala Phe Lys Glu Ser Pro Lys Gl |
#n Ile Leu Asp Pro |
2525 |
# 2530 |
# 2535 |
Ala Ala Ser Val Thr Gly Ser Arg Arg Gln Le |
#u Arg Thr Arg Lys |
2540 |
# 2545 |
# 2550 |
Glu Lys Ala Arg Ala Leu Glu Asp Leu Val As |
#p Phe Lys Glu Leu |
2555 |
# 2560 |
# 2565 |
Phe Ser Ala Pro Gly His Thr Glu Glu Ser Me |
#t Thr Ile Asp Lys |
2570 |
# 2575 |
# 2580 |
Asn Thr Lys Ile Pro Cys Lys Ser Pro Pro Pr |
#o Glu Leu Thr Asp |
2585 |
# 2590 |
# 2595 |
Thr Ala Thr Ser Thr Lys Arg Cys Pro Lys Th |
#r Arg Leu Arg Lys |
2600 |
# 2605 |
# 2610 |
Glu Val Lys Glu Glu Leu Ser Ala Val Glu Ar |
#g Leu Thr Gln Thr |
2615 |
# 2620 |
# 2625 |
Ser Gly Gln Ser Thr His Thr His Lys Glu Pr |
#o Ala Ser Gly Asp |
2630 |
# 2635 |
# 2640 |
Glu Gly Ile Lys Val Leu Lys Gln Arg Ala Ly |
#s Lys Lys Pro Asn |
2645 |
# 2650 |
# 2655 |
Pro Val Glu Glu Glu Pro Ser Arg Arg Arg Pr |
#o Arg Ala Pro Lys |
2660 |
# 2665 |
# 2670 |
Glu Lys Ala Gln Pro Leu Glu Asp Leu Ala Gl |
#y Phe Thr Glu Leu |
2675 |
# 2680 |
# 2685 |
Ser Glu Thr Ser Gly His Thr Gln Glu Ser Le |
#u Thr Ala Gly Lys |
2690 |
# 2695 |
# 2700 |
Ala Thr Lys Ile Pro Cys Glu Ser Pro Pro Le |
#u Glu Val Val Asp |
2705 |
# 2710 |
# 2715 |
Thr Thr Ala Ser Thr Lys Arg His Leu Arg Th |
#r Arg Val Gln Lys |
2720 |
# 2725 |
# 2730 |
Val Gln Val Lys Glu Glu Pro Ser Ala Val Ly |
#s Phe Thr Gln Thr |
2735 |
# 2740 |
# 2745 |
Ser Gly Glu Thr Thr Asp Ala Asp Lys Glu Pr |
#o Ala Gly Glu Asp |
2750 |
# 2755 |
# 2760 |
Lys Gly Ile Lys Ala Leu Lys Glu Ser Ala Ly |
#s Gln Thr Pro Ala |
2765 |
# 2770 |
# 2775 |
Pro Ala Ala Ser Val Thr Gly Ser Arg Arg Ar |
#g Pro Arg Ala Pro |
2780 |
# 2785 |
# 2790 |
Arg Glu Ser Ala Gln Ala Ile Glu Asp Leu Al |
#a Gly Phe Lys Asp |
2795 |
# 2800 |
# 2805 |
Pro Ala Ala Gly His Thr Glu Glu Ser Met Th |
#r Asp Asp Lys Thr |
2810 |
# 2815 |
# 2820 |
Thr Lys Ile Pro Cys Lys Ser Ser Pro Glu Le |
#u Glu Asp Thr Ala |
2825 |
# 2830 |
# 2835 |
Thr Ser Ser Lys Arg Arg Pro Arg Thr Arg Al |
#a Gln Lys Val Glu |
2840 |
# 2845 |
# 2850 |
Val Lys Glu Glu Leu Leu Ala Val Gly Lys Le |
#u Thr Gln Thr Ser |
2855 |
# 2860 |
# 2865 |
Gly Glu Thr Thr His Thr Asp Lys Glu Pro Va |
#l Gly Glu Gly Lys |
2870 |
# 2875 |
# 2880 |
Gly Thr Lys Ala Phe Lys Gln Pro Ala Lys Ar |
#g Lys Leu Asp Ala |
2885 |
# 2890 |
# 2895 |
Glu Asp Val Ile Gly Ser Arg Arg Gln Pro Ar |
#g Ala Pro Lys Glu |
2900 |
# 2905 |
# 2910 |
Lys Ala Gln Pro Leu Glu Asp Leu Ala Ser Ph |
#e Gln Glu Leu Ser |
2915 |
# 2920 |
# 2925 |
Gln Thr Pro Gly His Thr Glu Glu Leu Ala As |
#n Gly Ala Ala Asp |
2930 |
# 2935 |
# 2940 |
Ser Phe Thr Ser Ala Pro Lys Gln Thr Pro As |
#p Ser Gly Lys Pro |
2945 |
# 2950 |
# 2955 |
Leu Lys Ile Ser Arg Arg Val Leu Arg Ala Pr |
#o Lys Val Glu Pro |
2960 |
# 2965 |
# 2970 |
Val Gly Asp Val Val Ser Thr Arg Asp Pro Va |
#l Lys Ser Gln Ser |
2975 |
# 2980 |
# 2985 |
Lys Ser Asn Thr Ser Leu Pro Pro Leu Pro Ph |
#e Lys Arg Gly Gly |
2990 |
# 2995 |
# 3000 |
Gly Lys Asp Gly Ser Val Thr Gly Thr Lys Ar |
#g Leu Arg Cys Met |
3005 |
# 3010 |
# 3015 |
Pro Ala Pro Glu Glu Ile Val Glu Glu Leu Pr |
#o Ala Ser Lys Lys |
3020 |
# 3025 |
# 3030 |
Gln Arg Val Ala Pro Arg Ala Arg Gly Lys Se |
#r Ser Glu Pro Val |
3035 |
# 3040 |
# 3045 |
Val Ile Met Lys Arg Ser Leu Arg Thr Ser Al |
#a Lys Arg Ile Glu |
3050 |
# 3055 |
# 3060 |
Pro Ala Glu Glu Leu Asn Ser Asn Asp Met Ly |
#s Thr Asn Lys Glu |
3065 |
# 3070 |
# 3075 |
Glu His Lys Leu Gln Asp Ser Val Pro Glu As |
#n Lys Gly Ile Ser |
3080 |
# 3085 |
# 3090 |
Leu Arg Ser Arg Arg Gln Asn Lys Thr Glu Al |
#a Glu Gln Gln Ile |
3095 |
# 3100 |
# 3105 |
Thr Glu Val Phe Val Leu Ala Glu Arg Ile Gl |
#u Ile Asn Arg Asn |
3110 |
# 3115 |
# 3120 |
Glu Lys Lys Pro Met Lys Thr Ser Pro Glu Me |
#t Asp Ile Gln Asn |
3125 |
# 3130 |
# 3135 |
Pro Asp Asp Gly Ala Arg Lys Pro Ile Pro Ar |
#g Asp Lys Val Thr |
3140 |
# 3145 |
# 3150 |
Glu Asn Lys Arg Cys Leu Arg Ser Ala Arg Gl |
#n Asn Glu Ser Ser |
3155 |
# 3160 |
# 3165 |
Gln Pro Lys Val Ala Glu Glu Ser Gly Gly Gl |
#n Lys Ser Ala Lys |
3170 |
# 3175 |
# 3180 |
Val Leu Met Gln Asn Gln Lys Gly Lys Gly Gl |
#u Ala Gly Asn Ser |
3185 |
# 3190 |
# 3195 |
Asp Ser Met Cys Leu Arg Ser Arg Lys Thr Ly |
#s Ser Gln Pro Ala |
3200 |
# 3205 |
# 3210 |
Ala Ser Thr Leu Glu Ser Lys Ser Val Gln Ar |
#g Val Thr Arg Ser |
3215 |
# 3220 |
# 3225 |
Val Lys Arg Cys Ala Glu Asn Pro Lys Lys Al |
#a Glu Asp Asn Val |
3230 |
# 3235 |
# 3240 |
Cys Val Lys Lys Ile Arg Thr Arg Ser His Ar |
#g Asp Ser Glu Asp |
3245 |
# 3250 |
# 3255 |
Ile |
<210> SEQ ID NO 99 |
<211> LENGTH: 826 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 211881.1 |
<400> SEQUENCE: 99 |
cttaaaacct gacatccttc atgttagcta acctttataa tctctttgga tg |
#tagtaaat 60 |
ttttagtatt ttttagattg aatttgtatc atatttgcta gcaaattgag ta |
#taaagagt 120 |
agcatatttt tactacagat gtattatttt aactaacaaa ggcatattat ac |
#attttttt 180 |
catatataaa ctttggaata ggattttaca gtaacttaag ttttttattt ct |
#acccatgt 240 |
gtcaaagttt tatgctaaat tctgaataga atagttgtaa ctcccactct gg |
#gtatttta 300 |
tttattttaa acagttctag tattgtttcc tgtgaatttt ttccagggat tg |
#ctactttc 360 |
tgcactattc attagaccaa gagcatttca ccaaatactt aaaacttaaa aa |
#tttttaaa 420 |
cttttccaaa tttgattaaa aggataacat attctaaagg tattcaatat tt |
#ttacttat 480 |
ctctgaaaaa cttaatcaca taaaagcata cattttacac atacagctct ct |
#ccatcttc 540 |
cacaatagat taagacataa aacataacca gtatttttga aaagccccct ta |
#actggcat 600 |
gcttcttact gaaattatca taaaaggttc gtatgagaaa ggattccaga at |
#atccctta 660 |
attgtgttgt agcttatgca tttctattta ttttatacat tatttaattc at |
#gtgagtta 720 |
cttacctggc agggaagata tgatcaccaa ggtgcctttc acattcattg ca |
#ctctggat 780 |
gtgctgaccc ctgcaatttc cccaaatggg ggaagctcaa ctgcat |
# 826 |
<210> SEQ ID NO 100 |
<211> LENGTH: 1498 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 409895.2 |
<400> SEQUENCE: 100 |
agctaatgtg ttacattaga atcacctcgg ggaggccctg ggtgcccttc tc |
#agccctcc 60 |
ctccggaggc tgctgaagcc cagcaaagcc ggagtcagag aacaatgtcc gc |
#ctgagggc 120 |
agggctgggc tgggctggcc ttctggccct atctgctccg tgcccaaccc ag |
#cgccccgc 180 |
acagtcggag ctttgtaaat acgaggtgac tgtctgccta caaactttgt aa |
#acatcact 240 |
tgaaatggcc gcagggtatt gcgacatggc cataccacta tttgtttgct at |
#tgaatttg 300 |
tacttccctg ccttactttt gctattgcaa accatgctgt cactaaggtc tt |
#catgcaca 360 |
cagttgtgtc ttggtcagat gatatgtttc taccaatttt aattgtgttt ct |
#ttccacct 420 |
gggacacaca gctctctggg ccccagggct gggtcatcag cacaccctgc tg |
#ctgctgtt 480 |
cagatctgca tcctggtccc gcttggtccc acagtgagaa cgctttgcta tc |
#acatgggc 540 |
aggctctgag agccctgccg gcctggcctt ctcaaagaag acctgagagc tt |
#gggaccca 600 |
agcagagagg aagaacaggg ctcagggtgc ttgctccatg ctcgctccac ac |
#ctggggct 660 |
caaccctggc tttccccggc tccctgtgtg acttcagggc aggtcccttg gg |
#ccctctgg 720 |
gccttatcat cttcatctgt aacagggcga tgcctctgcc gtgtctggtg gt |
#gttgagga 780 |
gttcctgttt gtgtaagcag ctagttcagt gccagcacga gatgggaggc cc |
#atgaagtt 840 |
agcagtgcac aaaaaataga gcaaagactg gatgcatttc ctgagaacaa cc |
#atcactgt 900 |
aaagcacttt acaaatccaa agacaacccc cggcaaaaac tcaaaatgaa ac |
#tccctctc 960 |
gcagagcaca attccaattc gctctaaaaa cattacaagt tagttcatgt ca |
#tgccagat 1020 |
agctgaaggc agctcacaag ttcttaaggc caggaatgcc atgtgtctgc ta |
#tgcacagc 1080 |
tggccctggc cctgagcctg aatgacagca aaggtgacgc agatgtgggt gc |
#cctgctcc 1140 |
tgcccagcag cagtgcttgg tggaggctga ggccctgcac aggcaccctc ac |
#tgctgacc 1200 |
ttgagcctct ctctcctcta gagtggaaaa gacaaggatg ccgtggataa at |
#tgctcaag 1260 |
gacctggacg ccaatggaga tgcccaggtg gacttcagtg agttcatcgt gt |
#tcgtggct 1320 |
gcaatcacgt ctgcctgtca caagtacttt gagaaggcag gactcaaatg at |
#gccctgga 1380 |
gatgtcacag attcctggca gagccatggt cccaggcttc ccaaaagtgt tt |
#gttggcaa 1440 |
ttattcccct aggctgagcc tgctcatgta cctctgatta ataaatgctt at |
#gaaatg 1498 |
<210> SEQ ID NO 101 |
<211> LENGTH: 860 |
<212> TYPE: DNA |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1422432CB1 |
<221> NAME/KEY: unsure |
<222> LOCATION: 205 |
<223> OTHER INFORMATION: a, t, c, g, or othe |
#r |
<400> SEQUENCE: 101 |
agagcaaaga ctggatgcat ttcctgagaa caaccatcac tgtaaagcac tt |
#tacaaatc 60 |
caaagacaac ccccggcaaa aactcaaaat gaaactccct ctcgcagagc ac |
#aattccaa 120 |
ttcgctctaa aaacattaca agttagttca tgtcatgcca gatagctgaa gg |
#cagctcac 180 |
aagttcttaa ggccaggaat gccangtgtc tgctatgcac agctggccct gg |
#ccctgagc 240 |
ctgaatgaca gcaaaggtga cgcagatgtg ggtgccctgc tcctgcccag ca |
#gcagtgct 300 |
tggtggaggc tgaggccctg cacaggcacc ctcactgctg accttgagcc tc |
#tctctcct 360 |
ctcaagaggc tgccagtggg acattttctc ggccctgcca gcccccagga gg |
#aaggtggg 420 |
tctgaatcta gcaccatgac ggaactagag acagccatgg gcatgatcat ag |
#acgtcttt 480 |
tcccgatatt cgggcagcga gggcagcacg cagaccctga ccaaggggga gc |
#tcaaggtg 540 |
ctgatggaga aggagctacc aggcttcctg cagagtggaa aagacaagga tg |
#ccgtggat 600 |
aaattgctca aggacctgga cgccaatgga gatgcccagg tggacttcag tg |
#agttcatc 660 |
gtgttcgtgg ctgcaatcac gtctgcctgt cacaagtact ttgagaaggc ag |
#gactcaaa 720 |
tgatgccctg gagatgtcac agattcctgg cagagccatg gtcccaggct tc |
#ccaaaagt 780 |
gtttgttggc aattattccc ctaggctgag cctgctcatg tacctctgat ta |
#ataaatgc 840 |
ttatgaaatg aaaaaaaaaa |
# |
# |
#860 |
<210> SEQ ID NO 102 |
<211> LENGTH: 95 |
<212> TYPE: PRT |
<213> ORGANISM: Homo sapiens |
<220> FEATURE: |
<221> NAME/KEY: misc_feature |
<223> OTHER INFORMATION: Incyte ID No: 1422432CD1 |
<400> SEQUENCE: 102 |
Met Thr Glu Leu Glu Thr Ala Met Gly Met Il |
#e Ile Asp Val Phe |
1 5 |
# 10 |
# 15 |
Ser Arg Tyr Ser Gly Ser Glu Gly Ser Thr Gl |
#n Thr Leu Thr Lys |
20 |
# 25 |
# 30 |
Gly Glu Leu Lys Val Leu Met Glu Lys Glu Le |
#u Pro Gly Phe Leu |
35 |
# 40 |
# 45 |
Gln Ser Gly Lys Asp Lys Asp Ala Val Asp Ly |
#s Leu Leu Lys Asp |
50 |
# 55 |
# 60 |
Leu Asp Ala Asn Gly Asp Ala Gln Val Asp Ph |
#e Ser Glu Phe Ile |
65 |
# 70 |
# 75 |
Val Phe Val Ala Ala Ile Thr Ser Ala Cys Hi |
#s Lys Tyr Phe Glu |
80 |
# 85 |
# 90 |
Lys Ala Gly Leu Lys |
95 |
Claims (9)
1. A combination comprising a plurality of cDNAs that are differentially expressed in prostate cancer, wherein the plurality of cDNAs consist of SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75, 76, 78-86, 88-90, 92-97, 99-101 or a plurality of cDNAs consisting of the complements thereof.
2. The combination of claim 1 , wherein each of the cDNAs is differentially regulated between non-metastatic and metastatic prostate cancer, consisting of SEQ ID NOs:1-3, 5, 6, 8, 10-15, 17-19, 21, 23-28, 30, 32, 34-36, 38, 40, 42-45, 47-50, 52, 53, 55, 56, 58-65, 67, 68, 70-73, 75.
3. The combination of claim 1 , wherein each of the cDNAs is differentially regulated between prostate cancer and normal prostate, consisting of SEQ ID NOs:76, 78-86, 88-90, 92-97, 99-101.
4. The combination of claim 1 , wherein the cDNAs are immobilized on a substrate.
5. A high throughput method for detecting differential expression of one or more cDNAs in a sample containing nucleic acids, the method comprising:
(a) hybridizing the substrate of claim 4 with nucleic acids of the sample, thereby forming one or more hybridization complexes;
(b) detecting the hybridization complexes; and
(c) comparing the hybridization complexes with those of a standard, wherein differences between the standard and sample hybridization complexes indicate differential expression of cDNAs in the sample.
6. The method of claim 5 , wherein the nucleic acids of the sample are amplified prior to hybridization.
7. The method of claim 5 , wherein the sample is from a subject with prostate cancer and comparison with a standard defines an early, mid, or late stage of that disease.
8. A high throughput method of screening a plurality of molecules or compounds to identify a ligand which specifically binds a cDNA, the method comprising:
(a) combining the composition of claim 1 with the plurality of molecules or compounds under conditions to allow specific binding; and
(b) detecting specific binding between each cDNA and at least one molecule or compound, thereby identifying a ligand that specifically binds to each cDNA.
9. The method of claim 8 wherein the plurality of molecules or compounds are selected from DNA molecules, RNA molecules, peptide nucleic acid molecules, mimetics, peptides, transcription factors, repressors, and regulatory proteins.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/919,172 US6673545B2 (en) | 2000-07-28 | 2001-07-30 | Prostate cancer markers |
US10/752,986 US20040253609A1 (en) | 2000-07-28 | 2004-01-06 | Prostate cancer markers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22246900P | 2000-07-28 | 2000-07-28 | |
US09/919,172 US6673545B2 (en) | 2000-07-28 | 2001-07-30 | Prostate cancer markers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/752,986 Continuation US20040253609A1 (en) | 2000-07-28 | 2004-01-06 | Prostate cancer markers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020119463A1 US20020119463A1 (en) | 2002-08-29 |
US6673545B2 true US6673545B2 (en) | 2004-01-06 |
Family
ID=26916826
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/919,172 Expired - Fee Related US6673545B2 (en) | 2000-07-28 | 2001-07-30 | Prostate cancer markers |
US10/752,986 Abandoned US20040253609A1 (en) | 2000-07-28 | 2004-01-06 | Prostate cancer markers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/752,986 Abandoned US20040253609A1 (en) | 2000-07-28 | 2004-01-06 | Prostate cancer markers |
Country Status (1)
Country | Link |
---|---|
US (2) | US6673545B2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020156263A1 (en) * | 2000-10-05 | 2002-10-24 | Huei-Mei Chen | Genes expressed in breast cancer |
US20030017516A1 (en) * | 2001-06-26 | 2003-01-23 | Trustees Of Tufts College | Targeting tumor cell antigens: antibodies useful for the diagnosis, prognosis, and treatment of cancer |
US20030027188A1 (en) * | 2001-06-05 | 2003-02-06 | Lori Friedman | SLC7s as modifiers of the p53 pathway and methods of use |
US20060093606A1 (en) * | 2004-07-20 | 2006-05-04 | Genentech, Inc. | Compositions and methods of using angiopoietin-like 4 protein |
US20060093607A1 (en) * | 2004-07-20 | 2006-05-04 | Genentech, Inc. | Inhibitors of angiopoietin-like 4 protein, combinations, and their use |
US20060240022A1 (en) * | 2002-10-18 | 2006-10-26 | Atugen Ag | Factor involved in metastasis and uses thereof |
US20100172877A1 (en) * | 2009-01-08 | 2010-07-08 | Yale University | Compositions and methods of use of an oncolytic vesicular stomatitis virus |
WO2011032003A1 (en) | 2009-09-10 | 2011-03-17 | Yale University | Immunization to reduce neurotoxicity during treatment with cytolytic viruses |
WO2011056993A1 (en) | 2009-11-04 | 2011-05-12 | Yale University | Compositions and methods for treating cancer with attenuated oncolytic viruses |
US8084200B2 (en) | 2002-11-15 | 2011-12-27 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
WO2013019730A1 (en) * | 2011-07-29 | 2013-02-07 | The Washington University | Antibodies to tip-1 and grp78 |
US8604185B2 (en) | 2004-07-20 | 2013-12-10 | Genentech, Inc. | Inhibitors of angiopoietin-like 4 protein, combinations, and their use |
US8617521B2 (en) | 2001-11-09 | 2013-12-31 | Vanderbilt University | Phage antibodies to radiation-inducible neoantigens |
US8765097B2 (en) | 2001-10-03 | 2014-07-01 | Washington University | Ligands to radiation-induced molecules |
WO2014186798A1 (en) | 2013-05-17 | 2014-11-20 | Amplimmune, Inc. | Receptors for b7-h4 |
WO2015058111A1 (en) | 2013-10-17 | 2015-04-23 | The Brigham And Women's Hospital, Inc. | Cationic nanoparticles for co-delivery of nucleic acids and thereapeutic agents |
WO2016168197A1 (en) | 2015-04-15 | 2016-10-20 | Yale University | Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof |
WO2017095751A1 (en) | 2015-12-02 | 2017-06-08 | Partikula Llc | Compositions and methods for modulating cancer cell metabolism |
WO2017173453A1 (en) | 2016-04-01 | 2017-10-05 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
WO2018053434A1 (en) | 2016-09-16 | 2018-03-22 | The Johns Hopkins University | Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery |
WO2018112470A1 (en) | 2016-12-16 | 2018-06-21 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
WO2018196782A1 (en) | 2017-04-27 | 2018-11-01 | The University Of Hong Kong | Use of hcn inhibitors for treatment of cancer |
WO2018237109A1 (en) | 2017-06-23 | 2018-12-27 | Yale University | Nanomaterials with enhanced drug delivery efficiency |
US10238581B2 (en) | 2014-05-09 | 2019-03-26 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
US10449261B2 (en) | 2014-07-24 | 2019-10-22 | Washington University | Compositions targeting radiation-induced molecules and methods of use thereof |
US11352436B2 (en) | 2017-02-10 | 2022-06-07 | Washington University | Antibodies to TIP1 and methods of use thereof |
WO2023010060A2 (en) | 2021-07-27 | 2023-02-02 | Novab, Inc. | Engineered vlrb antibodies with immune effector functions |
WO2023108083A2 (en) | 2021-12-08 | 2023-06-15 | Yale University | Nanoparticle immunogenic compositions and vaccination methods |
WO2023147552A1 (en) | 2022-01-28 | 2023-08-03 | University Of Georgia Research Foundation, Inc. | Radiosensitizing compositions and methods of use thereof |
US11918695B2 (en) | 2014-05-09 | 2024-03-05 | Yale University | Topical formulation of hyperbranched polymer-coated particles |
WO2024050524A1 (en) | 2022-09-01 | 2024-03-07 | University Of Georgia Research Foundation, Inc. | Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death |
WO2024112867A1 (en) | 2022-11-23 | 2024-05-30 | University Of Georgia Research Foundation, Inc. | Compositions and methods of use thereof for increasing immune responses |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6737514B1 (en) | 1998-12-22 | 2004-05-18 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of lung cancer |
US7258860B2 (en) * | 1998-03-18 | 2007-08-21 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of lung cancer |
US7579160B2 (en) | 1998-03-18 | 2009-08-25 | Corixa Corporation | Methods for the detection of cervical cancer |
US6660838B1 (en) | 1998-03-18 | 2003-12-09 | Corixa Corporation | Compounds and methods for therapy and diagnosis of lung cancer |
US7049063B2 (en) | 1998-03-18 | 2006-05-23 | Corixa Corporation | Methods for diagnosis of lung cancer |
US20030194702A1 (en) * | 2000-12-22 | 2003-10-16 | Engelhard Eric K. | Novel compositions and methods for cancer |
US20030119009A1 (en) * | 2001-02-23 | 2003-06-26 | Stuart Susan G. | Genes regulated by MYCN activation |
EP1552293A4 (en) * | 2002-09-10 | 2006-12-06 | Guennadi V Glinskii | Gene segregation and biological sample classification methods |
EP1660526A1 (en) * | 2003-08-29 | 2006-05-31 | The Nottingham Trent University | Gastric and prostate cancer associated antigens |
CA2555866A1 (en) * | 2004-02-16 | 2005-08-25 | Proteosys Ag | Diagnostic markers for cancer |
JP4468989B2 (en) * | 2004-08-16 | 2010-05-26 | クアーク・ファーマスーティカルス、インコーポレイテッド | Use of RTP801 inhibitors for therapy |
CA2632419A1 (en) | 2005-12-06 | 2007-06-14 | Kyowa Hakko Kogyo Co., Ltd. | Genetically recombinant anti-perp antibody |
US20070180545A1 (en) * | 2006-01-19 | 2007-08-02 | Daniel Chelsky | TAT-031 and methods of assessing and treating cancer |
DOP2007000015A (en) | 2006-01-20 | 2007-08-31 | Quark Biotech Inc | THERAPEUTIC USES OF RTP801 INHIBITORS |
WO2008054534A2 (en) | 2006-05-11 | 2008-05-08 | Quark Pharmaceuticals, Inc. | Screening systems utilizing rtp801 |
EP2026843A4 (en) * | 2006-06-09 | 2011-06-22 | Quark Pharmaceuticals Inc | Therapeutic uses of inhibitors of rtp801l |
US8273539B2 (en) * | 2006-09-25 | 2012-09-25 | Mayo Foundation For Medical Education And Research | Extracellular and membrane-associated prostate cancer markers |
US8338109B2 (en) | 2006-11-02 | 2012-12-25 | Mayo Foundation For Medical Education And Research | Predicting cancer outcome |
JP2010518880A (en) * | 2007-02-26 | 2010-06-03 | クアーク・ファーマスーティカルス、インコーポレイテッド | Inhibitors of RTP801 and their use in the treatment of diseases |
WO2008154638A2 (en) * | 2007-06-12 | 2008-12-18 | Board Of Regents, The University Of Texas System | Antagonists of the receptor for advanced glycation end-products (rage) |
US8614311B2 (en) | 2007-12-12 | 2013-12-24 | Quark Pharmaceuticals, Inc. | RTP801L siRNA compounds and methods of use thereof |
EP2806054A1 (en) | 2008-05-28 | 2014-11-26 | Genomedx Biosciences Inc. | Systems and methods for expression-based discrimination of distinct clinical disease states in prostate cancer |
US10407731B2 (en) | 2008-05-30 | 2019-09-10 | Mayo Foundation For Medical Education And Research | Biomarker panels for predicting prostate cancer outcomes |
EP2391379B1 (en) | 2009-01-30 | 2017-08-02 | Alphabeta AB | Compound and method for treatment of alzheimer's disease |
US8785391B2 (en) * | 2010-06-24 | 2014-07-22 | Alphabeta Ab | Compound and method for treatment of alzheimer's disease and familial dementia |
WO2012138284A1 (en) | 2011-04-05 | 2012-10-11 | Alphabeta Ab | Amyloidosis target useful in methods of treatment and for screening of compounds |
US10513737B2 (en) | 2011-12-13 | 2019-12-24 | Decipher Biosciences, Inc. | Cancer diagnostics using non-coding transcripts |
DK3435084T3 (en) | 2012-08-16 | 2023-05-30 | Mayo Found Medical Education & Res | PROSTATE CANCER PROGNOSIS USING BIOMARKERS |
US20170197997A1 (en) * | 2016-01-07 | 2017-07-13 | King Fahd University Of Petroleum And Minerals | Gold(i) complexes with anticancer properties and methods of use thereof |
EP3504348B1 (en) | 2016-08-24 | 2022-12-14 | Decipher Biosciences, Inc. | Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy |
US11208697B2 (en) | 2017-01-20 | 2021-12-28 | Decipher Biosciences, Inc. | Molecular subtyping, prognosis, and treatment of bladder cancer |
US11873532B2 (en) | 2017-03-09 | 2024-01-16 | Decipher Biosciences, Inc. | Subtyping prostate cancer to predict response to hormone therapy |
WO2018189292A1 (en) * | 2017-04-13 | 2018-10-18 | Institut National De La Sante Et De La Recherche Medicale | Biomarkers of castration-resistant prostatic cells |
WO2018205035A1 (en) | 2017-05-12 | 2018-11-15 | Genomedx Biosciences, Inc | Genetic signatures to predict prostate cancer metastasis and identify tumor agressiveness |
US20220260507A1 (en) * | 2019-07-17 | 2022-08-18 | Prosight Ltd. | Method and system for analyzing prostate biopsy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5968784A (en) * | 1997-01-15 | 1999-10-19 | Chugai Pharmaceutical Co., Ltd. | Method for analyzing quantitative expression of genes |
WO2000064479A1 (en) | 1999-04-27 | 2000-11-02 | Antibody Systems, Inc. | Compositions containing tetracyclines for treating hemorrhagic virus infections and other disorders |
-
2001
- 2001-07-30 US US09/919,172 patent/US6673545B2/en not_active Expired - Fee Related
-
2004
- 2004-01-06 US US10/752,986 patent/US20040253609A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5968784A (en) * | 1997-01-15 | 1999-10-19 | Chugai Pharmaceutical Co., Ltd. | Method for analyzing quantitative expression of genes |
WO2000064479A1 (en) | 1999-04-27 | 2000-11-02 | Antibody Systems, Inc. | Compositions containing tetracyclines for treating hemorrhagic virus infections and other disorders |
Non-Patent Citations (15)
Title |
---|
AF005258, GENBANK, Nov. 21, 1997.* * |
AF047855, GENBANK, Feb. 25, 1998.* * |
Attwood, The Babel of Bioinformatics. 2000, Science, vol. 290, No. 5491, pp. 471-473.* * |
Chung T.D., et al., "Characterization of the Role of IL-6 in the Progression of Prostate Cancer", Prostate 38: 199-207 (1999). |
Gerhold et al., It's the genes! EST access to human genome content. 1996, BioEssays, vol. 18, No. 12, pp. 973-981.* * |
Gold, L.I., "The Role for Transforming Growth Factor-beta (TGF-beta)in Human Cancer", Crit Rev Oncog 10(4):303-360 (1999). |
Gold, L.I., "The Role for Transforming Growth Factor-β (TGF-β)in Human Cancer", Crit Rev Oncog 10(4):303-360 (1999). |
Hubert, R.S., et al., "STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors", PNAS, vol. 96, No. 25, 14523-14528 (Dec. 7, 1999). |
Lin, J., et al., "The Phosphatidylinositol 3′-kinase Pathway is a Dominant Growth Factor-Activated Cell Survival Pathway in LNCaP Human Prostate Carcinoma Cells", Cancer Res;59(12):2891-2897, (Jun. 15, 1999). |
Lin, J., et al., "The Phosphatidylinositol 3'-kinase Pathway is a Dominant Growth Factor-Activated Cell Survival Pathway in LNCaP Human Prostate Carcinoma Cells", Cancer Res;59(12):2891-2897, (Jun. 15, 1999). |
Lopez et al., Whole-genome sequence annotation: 'Going wrong with confidence.' 1999, Molecular Microbiology, vol. 32, pp. 881-891.* * |
Putz T., et al., Epideral Growth Factor (EGF) Receptor Blockade Inhibits the Action of EGF, Insulin-like Growth Factor I, and a Protein Kinase A Activator on the Mitogen-activated Protein Kinase Pathway in Prostate Cancer Cell Lines<1>, Cancer Res 59: 227-233 (1999). |
Putz T., et al., Epideral Growth Factor (EGF) Receptor Blockade Inhibits the Action of EGF, Insulin-like Growth Factor I, and a Protein Kinase A Activator on the Mitogen-activated Protein Kinase Pathway in Prostate Cancer Cell Lines1, Cancer Res 59: 227-233 (1999). |
Russell et al., Structural Features can be Unconserved in Proteins with Similar Folds. 1994, Journal of Molecular Biology, vol. 244, pp. 332-350.* * |
Wells et al., The chemokine information source: identification and characterization of novel chemokines using the WorldWideWeb and Expressed Sequence Tag Databases. 1997, Journal of Leukocyte Biology, vol. 61, No. 5, pp. 545-550.* * |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020156263A1 (en) * | 2000-10-05 | 2002-10-24 | Huei-Mei Chen | Genes expressed in breast cancer |
US20030027188A1 (en) * | 2001-06-05 | 2003-02-06 | Lori Friedman | SLC7s as modifiers of the p53 pathway and methods of use |
US20030017516A1 (en) * | 2001-06-26 | 2003-01-23 | Trustees Of Tufts College | Targeting tumor cell antigens: antibodies useful for the diagnosis, prognosis, and treatment of cancer |
US10086073B2 (en) | 2001-10-03 | 2018-10-02 | Washington University | Ligands to radiation-induced molecules |
US9340581B2 (en) | 2001-10-03 | 2016-05-17 | Washington University | Ligands to radiation-induced molecules |
US8765097B2 (en) | 2001-10-03 | 2014-07-01 | Washington University | Ligands to radiation-induced molecules |
US8927288B2 (en) | 2001-11-09 | 2015-01-06 | Vanderbilt University | Phage antibodies to radiation-inducible neoantigens |
US8617521B2 (en) | 2001-11-09 | 2013-12-31 | Vanderbilt University | Phage antibodies to radiation-inducible neoantigens |
US20100285038A1 (en) * | 2002-10-18 | 2010-11-11 | Anke Klippel-Giese | Factor Involved in Metastasis and Uses Thereof |
US20060240022A1 (en) * | 2002-10-18 | 2006-10-26 | Atugen Ag | Factor involved in metastasis and uses thereof |
US8084200B2 (en) | 2002-11-15 | 2011-12-27 | Genentech, Inc. | Compositions and methods for the diagnosis and treatment of tumor |
US8633155B2 (en) | 2004-07-20 | 2014-01-21 | Genentech, Inc. | Methods of using angiopoietin-like 4 protein to stimulate proliferation of pre-adipocytes |
US20070054856A1 (en) * | 2004-07-20 | 2007-03-08 | Hanspeter Gerber | Compositions and methods of using angiopoietin-like 4 protein |
US20100172915A1 (en) * | 2004-07-20 | 2010-07-08 | Hanspeter Gerber | Compositions and methods of using angiopoietin-like 4 protein |
US20060093606A1 (en) * | 2004-07-20 | 2006-05-04 | Genentech, Inc. | Compositions and methods of using angiopoietin-like 4 protein |
US20060093607A1 (en) * | 2004-07-20 | 2006-05-04 | Genentech, Inc. | Inhibitors of angiopoietin-like 4 protein, combinations, and their use |
US20070026002A1 (en) * | 2004-07-20 | 2007-02-01 | Genentech, Inc. | Inhibitors of angiopoietin-like 4 protein, combinations, and their use |
US7371384B2 (en) | 2004-07-20 | 2008-05-13 | Genentech, Inc. | Compositions and methods of using angiopoietin-like 4 protein antibody |
US7740846B2 (en) | 2004-07-20 | 2010-06-22 | Genentech, Inc. | Inhibitors of angiopoietin-like 4 protein, combinations, and their use |
US8604185B2 (en) | 2004-07-20 | 2013-12-10 | Genentech, Inc. | Inhibitors of angiopoietin-like 4 protein, combinations, and their use |
US8481297B2 (en) | 2009-01-08 | 2013-07-09 | Yale University | Compositions and methods of use of an oncolytic vesicular stomatitis virus |
WO2010080909A1 (en) | 2009-01-08 | 2010-07-15 | Yale University | Compositions and methods of use of an oncolytic vesicular stomatitis virus |
US20100172877A1 (en) * | 2009-01-08 | 2010-07-08 | Yale University | Compositions and methods of use of an oncolytic vesicular stomatitis virus |
WO2011032003A1 (en) | 2009-09-10 | 2011-03-17 | Yale University | Immunization to reduce neurotoxicity during treatment with cytolytic viruses |
WO2011056993A1 (en) | 2009-11-04 | 2011-05-12 | Yale University | Compositions and methods for treating cancer with attenuated oncolytic viruses |
US9738725B2 (en) | 2011-07-29 | 2017-08-22 | Washington University | Antibodies to TIP-1 |
WO2013019730A1 (en) * | 2011-07-29 | 2013-02-07 | The Washington University | Antibodies to tip-1 and grp78 |
US10259884B2 (en) | 2011-07-29 | 2019-04-16 | Washington University | Antibodies to GRP78 |
WO2014186798A1 (en) | 2013-05-17 | 2014-11-20 | Amplimmune, Inc. | Receptors for b7-h4 |
WO2015058111A1 (en) | 2013-10-17 | 2015-04-23 | The Brigham And Women's Hospital, Inc. | Cationic nanoparticles for co-delivery of nucleic acids and thereapeutic agents |
US10660828B2 (en) | 2014-05-09 | 2020-05-26 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
EP3721875A1 (en) | 2014-05-09 | 2020-10-14 | Yale University, Inc. | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
EP4331618A2 (en) | 2014-05-09 | 2024-03-06 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
US11364182B2 (en) | 2014-05-09 | 2022-06-21 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
US11896686B2 (en) | 2014-05-09 | 2024-02-13 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
US11826438B2 (en) | 2014-05-09 | 2023-11-28 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
US11918695B2 (en) | 2014-05-09 | 2024-03-05 | Yale University | Topical formulation of hyperbranched polymer-coated particles |
US10238581B2 (en) | 2014-05-09 | 2019-03-26 | Yale University | Hyperbranched polyglycerol-coated particles and methods of making and using thereof |
US10449261B2 (en) | 2014-07-24 | 2019-10-22 | Washington University | Compositions targeting radiation-induced molecules and methods of use thereof |
WO2016168197A1 (en) | 2015-04-15 | 2016-10-20 | Yale University | Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof |
WO2017095751A1 (en) | 2015-12-02 | 2017-06-08 | Partikula Llc | Compositions and methods for modulating cancer cell metabolism |
WO2017173453A1 (en) | 2016-04-01 | 2017-10-05 | The Brigham And Women's Hospital, Inc. | Stimuli-responsive nanoparticles for biomedical applications |
WO2018053434A1 (en) | 2016-09-16 | 2018-03-22 | The Johns Hopkins University | Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery |
US11090391B2 (en) | 2016-09-16 | 2021-08-17 | The Johns Hopkins University | Protein nanocages with enhanced mucus penetration for targeted tissue and intracellular delivery |
WO2018112470A1 (en) | 2016-12-16 | 2018-06-21 | The Brigham And Women's Hospital, Inc. | Co-delivery of nucleic acids for simultaneous suppression and expression of target genes |
US11352436B2 (en) | 2017-02-10 | 2022-06-07 | Washington University | Antibodies to TIP1 and methods of use thereof |
WO2018196782A1 (en) | 2017-04-27 | 2018-11-01 | The University Of Hong Kong | Use of hcn inhibitors for treatment of cancer |
WO2018237109A1 (en) | 2017-06-23 | 2018-12-27 | Yale University | Nanomaterials with enhanced drug delivery efficiency |
WO2023010060A2 (en) | 2021-07-27 | 2023-02-02 | Novab, Inc. | Engineered vlrb antibodies with immune effector functions |
WO2023108083A2 (en) | 2021-12-08 | 2023-06-15 | Yale University | Nanoparticle immunogenic compositions and vaccination methods |
WO2023147552A1 (en) | 2022-01-28 | 2023-08-03 | University Of Georgia Research Foundation, Inc. | Radiosensitizing compositions and methods of use thereof |
WO2024050524A1 (en) | 2022-09-01 | 2024-03-07 | University Of Georgia Research Foundation, Inc. | Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death |
WO2024112867A1 (en) | 2022-11-23 | 2024-05-30 | University Of Georgia Research Foundation, Inc. | Compositions and methods of use thereof for increasing immune responses |
Also Published As
Publication number | Publication date |
---|---|
US20040253609A1 (en) | 2004-12-16 |
US20020119463A1 (en) | 2002-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6673545B2 (en) | Prostate cancer markers | |
RU2721916C2 (en) | Methods for prostate cancer prediction | |
US7705120B2 (en) | Compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer | |
DK2644713T3 (en) | A Method for Diagnosing Neoplasms II | |
AU2012203810B2 (en) | Methods and compositions for the treatment and diagnosis of bladder cancer | |
US6773883B2 (en) | Prognostic classification of endometrial cancer | |
KR101828290B1 (en) | Markers for endometrial cancer | |
AU2012340393B2 (en) | Methods and compositions for the treatment and diagnosis of bladder cancer | |
US20030190640A1 (en) | Genes expressed in prostate cancer | |
US20020156263A1 (en) | Genes expressed in breast cancer | |
US20230416827A1 (en) | Assay for distinguishing between sepsis and systemic inflammatory response syndrome | |
KR20140006898A (en) | Colon cancer gene expression signatures and methods of use | |
CA2430981A1 (en) | Gene expression profiling of primary breast carcinomas using arrays of candidate genes | |
US10900086B1 (en) | Compositions and methods for diagnosing prostate cancer using a gene expression signature | |
CA2403946A1 (en) | Genes expressed in foam cell differentiation | |
US20030065157A1 (en) | Genes expressed in lung cancer | |
AU2020201779B2 (en) | Method for using gene expression to determine prognosis of prostate cancer | |
AU2008203227A1 (en) | Colorectal cancer prognostics | |
US20030013099A1 (en) | Genes regulated by DNA methylation in colon tumors | |
US20030165864A1 (en) | Genes regulated by DNA methylation in tumor cells | |
KR20060087977A (en) | Markers for the diagnosis of lung cancer | |
US20030119009A1 (en) | Genes regulated by MYCN activation | |
US20030175761A1 (en) | Identification of genes whose expression patterns distinguish benign lymphoid tissue and mantle cell, follicular, and small lymphocytic lymphoma | |
US20030175704A1 (en) | Genes expressed in lung cancer | |
WO2015013233A2 (en) | Methods and compositions for the treatment and diagnosis of bladder cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INCYTE GENOMICS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TURNER, CHRISTOPHER M.;FARIS, MARY;REEL/FRAME:012563/0837;SIGNING DATES FROM 20011021 TO 20011120 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20080106 |