US6639930B2 - Multi-level closed loop resonators and method for fabricating same - Google Patents

Multi-level closed loop resonators and method for fabricating same Download PDF

Info

Publication number
US6639930B2
US6639930B2 US10/043,548 US4354802A US6639930B2 US 6639930 B2 US6639930 B2 US 6639930B2 US 4354802 A US4354802 A US 4354802A US 6639930 B2 US6639930 B2 US 6639930B2
Authority
US
United States
Prior art keywords
resonator
waveguide
substrate
coupling
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/043,548
Other versions
US20020154674A1 (en
Inventor
Giora Griffel
Raymond J. Menna
Joseph H. Abeles
John C. Connolly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Princeton Lightwave LLC
Original Assignee
Princeton Lightwave LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Princeton Lightwave LLC filed Critical Princeton Lightwave LLC
Priority to US10/043,548 priority Critical patent/US6639930B2/en
Assigned to PRINCETON LIGHTWAVE, INC. reassignment PRINCETON LIGHTWAVE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABELES, JOSEPH H., MENNA, RAYMOND J., CONNOLLY, JOHN C., GRIFFEL, GIORA
Publication of US20020154674A1 publication Critical patent/US20020154674A1/en
Application granted granted Critical
Publication of US6639930B2 publication Critical patent/US6639930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present invention relates to closed-loop ring resonators and methods for fabricating the same.
  • DWDM Dense Wavelength Division Multiplexing
  • photonic circuits When combined with other components small diameter low loss passive and active ring resonators, on the order of ⁇ 200 ⁇ m, enable the fabrication of sophisticated photonic integrated circuits that take full advantage of two-dimensional (2-D) chip layouts. With the development of robust fabrication methods, such photonic circuits may include composite linking and switching systems, local oscillator distribution, and true-delay signal distribution at wavelengths of 1.3 and 1.55 ⁇ m to name a few.
  • R 3 Lasers R 3 Ls
  • conventional, shallow-etched Ridge-WaveGuide (RWG) circular structures are limited to large diameters, on the order of ⁇ 300 ⁇ m, due to excessive bending loss.
  • the low index difference between the guiding channel core and its surrounding of RWG structures causes a significant evanescent portion of a guided mode, which cannot propagate at group velocities exceeding
  • c is the speed of light in vacuum and n eff the effective refractive index of the mode to radiate.
  • n eff the effective refractive index of the mode to radiate.
  • Coupling into deeply etched laser structures has been achieved by using either Y-junction or MultiMode Interference (MMI) couplers.
  • MMI MultiMode Interference
  • deeply etched R 3 Ls have also demonstrated large threshold current values, in excess of 170 mA.
  • Vertical walls etched through an epitaxial waveguide have also been used in small diameter passive ring structures, on the order of ⁇ 10 ⁇ m, to allow negligible waveguide bending and scattering loss.
  • strong confinement caused by deep etching undesirably requires sub-micrometer lateral separation between the ring and coupled waveguides to achieve adequate coupling and requires fabrication tolerances of ⁇ 10/+20 nm.
  • a closed-loop ring resonator including a closed loop formed on a substrate and including at least one coupling region having a first effective depth and at least one other region having a second effective depth, wherein the first and second depths are different.
  • FIG. 1 illustrates a top-view of a Racetrack Ring Resonator (R 3 );
  • FIG. 2 illustrates a schematic cross-section diagram of a closed loop Racetrack Ring Resonator laser (R 3 L) taken at the coupling region between the ring and a waveguide section according to one aspect of the present invention
  • FIG. 3 illustrates an output power characteristic of R 3 L's with coupling lengths ranging from 50 to 200 ⁇ m
  • FIG. 1 A design for closed-loop ring resonator coupling that uses conventional photolithography and exhibits improved control over coupling strength is presented.
  • the present invention will be described as it relates to an InGaAsP ring resonator waveguide in the form of a Racetrack Ring Resonator (R 3 ) placed between two straight input/output waveguides as shown in FIG. 1 .
  • R 3 Racetrack Ring Resonator
  • the present invention is equally applicable to other closed-loop shapes, as well as other types of devices, such as passive devices including filters for example.
  • FIG. 1 therein is illustrated a portion of an R 3 configuration 10 according to one aspect of the present invention.
  • the configuration 10 includes a closed loop 20 and waveguides 30 , 40 .
  • Waveguides 30 , 40 are evanescently coupled to the closed loop 20 using coupling portions 22 , 24 of the closed-loop 20 , respectively.
  • Such a configuration is suitable for photonics switching and signal processing as well.
  • the closed-loop 20 illustrated therein takes the form of an elongated ring, or racetrack. Curved portions 26 of the closed-loop 20 interconnect coupling regions 22 , 24 .
  • deep etching is utilized to advantageously reduce bending loss at the curved sections 26 , but is avoided at the gap between the straight sections of the loop 20 and the input/output waveguides, i.e. the coupling regions 22 , 24 , where it may interfere with coupling into and out of the waveguides 30 , 40 .
  • a shallower etch which defines the coupling regions 22 , 24 is halted before removing the epitaxial waveguiding layers according to another aspect of the present invention.
  • This multi-level etching technique is essentially a modification of the MMI method that provides better control of the coupling in deeply etched structures where, due to the large index contrast, a large number of modes participate in the interaction.
  • the curved sections of the loop 20 i.e. the curved portions 26 , whose first-order lateral mode cutoff radius is 250 ⁇ m, discriminate in favor of single lateral mode operation.
  • the depth of etching in the coupling region determines whether that region is a directional coupler, having only two lateral modes participating in the coupling, or a modified MMI coupler where more than two lateral modes determine the power splitting.
  • t 1, 2 are the coupling coefficients of the upper and lower coupling regions 22 , 24 respectively
  • ⁇ a, c are the propagation constants in the curved sections 26 and straight sections 22 , 24 of the closed loop 20 , respectively
  • L a is the total length of the curved sections 26
  • a is the radius of the ring
  • L c the length of each straight section 22 , 24 .
  • a ring resonator such as 10 is analogous to a Fabry-Perot (FP) resonator. That is, at zero gain the spectrum is characterized by Lorentzian-like transmission peaks at resonance with a free spectral range (FSR) of c n eff a ⁇ L a + 2 ⁇ n eff c ⁇ L c .
  • FSR free spectral range
  • the couplers play a role analogous to FP mirrors.
  • FIG. 2 there is shown a schematic cross-section diagram of the configuration 10 taken at the coupling region between the ring 20 and a waveguide section 30 , 40 according to one aspect of the present invention.
  • the structure of FIG. 2 generally includes a substrate 100 , formed of InP for example.
  • a waveguide and quantum wells 110 including layer 102 and 108 which comprise the core of the waveguide.
  • Both layers 102 and 108 have a higher refractive index than their surrounding surface of the device and the shoulder 106 .
  • Layer 118 is the cap layer fabricated from a highly conductive p+ material.
  • Numeral 104 references an area of the layer where quantum wells are located.
  • a typical quantum well can be conventionally 70 ⁇ -100 ⁇ thick.
  • Areas 112 and 116 are of the same material and function as the cladding layer of the optical waveguide and are both the p or n side of the formed diode junction. These areas have a lower refractive index than the core areas.
  • Layer 114 could be placed anywhere between the top 118 surface of the device and the shoulder 106 .
  • Layer 118 is the cap layer fabricated from a highly conductive p+ material.
  • etched levels 130 , 140 are shown, in the particular case of FIG. 2, 2 levels are shown. This is referred to herein as “bi-level” etching. Of course, additional levels can be formed.
  • the etched level designated 130 defines the waveguides 30 , 40 and closed loop 20 in general.
  • the etched level designated 140 defines the coupling region between the waveguides 30 , 40 and the closed loop 20 .
  • the depth of the etched levels 130 , 140 is different. This defines the bi-level etching. It should be understood that the deeper etched level 130 is described herein for purposes of more deeply defining an outer wall 27 of the curved regions or portion 26 of the closed loop 20 , as that is where most losses due to bending occur (FIG. 1 ).
  • the etched level 140 does not enter the waveguide 110 , that is it stops short of reaching thereinto. This results in a multimode waveguide. If the etched level 140 is extended into the waveguide 110 a 2-mode directional coupler can be advantageously achieved.
  • the fabrication involves several steps not normally used in conjunction with conventional RWG laser processing. These include: 1) liftoff metal deposition of closely spaced lines and 2) both shallow and deep etching with no feature undercutting. For the coupling channel between parallel waveguides as is illustrated in FIG. 2, an asymmetric structure is fabricated.
  • the waveguiding geometry is first defined by H 2 /CH 4 reactive ion etching (RIE), timed to remove the p-type cladding layer and reveal the upper surface of the waveguide structure.
  • RIE reactive ion etching
  • the coupling region is coated with a second dielectric layer. Smooth side-walls extending through the waveguide structure are etched, except in the coupling region protected by the second dielectric layer.
  • a bend radius of 150 ⁇ m is combined with four different coupler lengths of 50, 100, 150, and 200 ⁇ m, positioned at the center of the straight section of the racetrack, which is 50 ⁇ m longer.
  • the width of ridges throughout the structure is 2.5 ⁇ m and the gap between resonator and coupling waveguides is 2 ⁇ m.
  • the coupling waveguides, which extend beyond the racetrack ring resonator, are cleaved, and output facets optically coated to ⁇ 3% reflectivity.
  • FIG. 1 illustrates a top-view showing the racetrack resonator and the straight coupling waveguides.
  • Biasing electrodes are provided separately for the ring resonator 10 and the portion of each of the two coupling waveguides 20 , 30 extending from the resonator 10 to the autoregressive-coated facet. The latter are biased approximately to transparency to facilitate laser characterization. The remaining portion of the coupling waveguides 20 , 30 extending toward the rear facet are bent and flared to cut down the effective reflectivity from the unused facet. These sections can be also reverse-biased to further reduce parasitic reflectivity.
  • Continuous-wave (CW) room-temperature relative L-I characteristics of devices having all four L c values are shown in FIG. 3 . These indicate threshold currents varying from 66 mA for the 50 and 150 ⁇ m coupling region devices to 72 mA for the 100 and 200 ⁇ m devices. These threshold currents are more than a factor of two lower than the lowest-threshold InP ring lasers previously reported. It is believed that this dramatically improved threshold performance is attributable to the multi-level, in the illustrated case bi-level, etched R 3 L design. The corresponding threshold current densities range between 2.145 kA/cm 2 for the 200- ⁇ m coupler to 2.53 kA/cm 2 for the50- ⁇ m coupler. These values are within a factor of two to three of threshold current densities of world-record RWG FP lasers with similar dimensions and fabricated from similar material. Changing the bias level of the straight coupling waveguides has a negligible effect on the threshold current.
  • the small dependence of the threshold current on the coupling length indicates that the loss in the cavity is governed mostly by mechanisms other than the output coupling, such as scattering due to wall roughness, bending loss, or modal transition from the curved to the straight section and from the deeply etched to the shallow etched transition regions.
  • Passive measurements of the devices were taken at longer wavelength using temperature tuned InGaAsP DFB laser operating at 1.655-1.659 ⁇ m. Depth of modulation of about 20% was observed with finesse of 2.5. Coupling efficiency of 20% and effective distributed loss, combining bending, mode matching and scattering loss, of 15.1 [cm ⁇ 1 ] were calculated.
  • the CW spectrum of an R 3 L with 100- ⁇ m-long couplers is shown in FIG. 4 . It exhibits single longitudinal mode operation with a side-mode suppression ration better than 26 dB. Many ring laser modes are clearly visible as noise peaks below that level. Single mode lasing is obtained up to nearly twice threshold. As shown in FIG. 5, at 140 mA, the spectrum abruptly changes to a broad spectrum of the same ring laser modes, suggestive of passively mode locked self pulsation. The separation of these modes was observed to match and scale inversely with the circumference of the racetrack 20 .
  • an InGaAsP closed-loop ring resonator device such as an R 3 L laser employing a novel multi-level etched structure, such as a bi-level etched structure, which can be defined by conventional photolithography and incorporates low-loss curved waveguides and lateral couplers.
  • a novel multi-level etched structure such as a bi-level etched structure
  • it exhibits a threshold current of 66 mA, which is the lowest value of any InP ring resonator laser reported to date. It operates in a single mode to nearly twice the threshold with a 26-dB side-mode suppression ratio.
  • This novel fabrication technique can be also be applied to the construction of passive ring resonators devices such as filters, modulators, routers, and detectors, for example.

Abstract

A closed-loop ring resonator including a closed loop formed on a substrate and including at least one coupling region having a first effective depth and at least one other region having a second effective depth, wherein the first and second depths are different.

Description

CROSS-REFERENCE TO RELATED APPLICATION(S)
This application claims the benefit of U.S. Provisional Application Serial No. 60/260,941 filed on Jan. 11, 2001.
GOVERNMENT INTEREST
This work was supported in part by the Air Force Rome Labs under Grant SBIR F-30602-97 and in part by the National Science Foundation (NSF) under GrantECS-9634617. The government may have certain rights in this invention
FIELD OF THE INVENTION
The present invention relates to closed-loop ring resonators and methods for fabricating the same.
BACKGROUND OF THE INVENTION
Evanescently coupled closed-loop ring resonators in general, and Racetrack Ring Resonators (R3s) or elongated loops in particular, offer several interesting features for applications such as Dense Wavelength Division Multiplexing (DWDM) and RF photonics. Lacking reflectors, fabrication of the same is generally free of lapping, cleaving, facet etching and coating, or of concerns arising from high mirror power density. Spectral characteristics of the same can be conventionally determined using well known photolithography techniques, and single wavelength operation can be achieved without gratings. When combined with other components small diameter low loss passive and active ring resonators, on the order of <200 μm, enable the fabrication of sophisticated photonic integrated circuits that take full advantage of two-dimensional (2-D) chip layouts. With the development of robust fabrication methods, such photonic circuits may include composite linking and switching systems, local oscillator distribution, and true-delay signal distribution at wavelengths of 1.3 and 1.55 μm to name a few.
Previous efforts have been carried out to demonstrate R3 Lasers (R3Ls) in both AlGaAs and InGaAsP material systems and using different coupling schemes. Undesirably, conventional, shallow-etched Ridge-WaveGuide (RWG) circular structures are limited to large diameters, on the order of ≧300 μm, due to excessive bending loss. The low index difference between the guiding channel core and its surrounding of RWG structures causes a significant evanescent portion of a guided mode, which cannot propagate at group velocities exceeding
c/neff
where c is the speed of light in vacuum and neff the effective refractive index of the mode to radiate. Even for large-diameter shallow-etched structures, significant bending loss is evidenced by large threshold currents ranging from 106 to 150 mA.
Coupling into deeply etched laser structures has been achieved by using either Y-junction or MultiMode Interference (MMI) couplers. In spite of the reduced bending loss, deeply etched R3Ls have also demonstrated large threshold current values, in excess of 170 mA. Vertical walls etched through an epitaxial waveguide have also been used in small diameter passive ring structures, on the order of ≦10 μm, to allow negligible waveguide bending and scattering loss. However, strong confinement caused by deep etching undesirably requires sub-micrometer lateral separation between the ring and coupled waveguides to achieve adequate coupling and requires fabrication tolerances of −10/+20 nm. Furthermore, when used as a highly transmissive filter, coupling coefficients in and out of the ring resonator must be nearly identical, undesirably tightening fabrication constraints even further. Reliance on sub-micrometer features and tolerances entails significant impediments to achieving a robust manufacture-able technology that lends itself to large-scale integration and mass productive of ring resonator based photonic circuits.
It is an object of the present invention to overcome these prior art limitations and provide an improved closed-loop ring resonator and method for manufacturing the same.
SUMMARY OF INVENTION
A closed-loop ring resonator including a closed loop formed on a substrate and including at least one coupling region having a first effective depth and at least one other region having a second effective depth, wherein the first and second depths are different.
BRIEF DESCRIPTION OF THE FIGURES
Various other objects, features and advantages of the invention will become more apparent by reading the following detailed description of the invention in conjunction with the drawings, which are shown by way of example only, wherein:
FIG. 1 illustrates a top-view of a Racetrack Ring Resonator (R3);
FIG. 2 illustrates a schematic cross-section diagram of a closed loop Racetrack Ring Resonator laser (R3L) taken at the coupling region between the ring and a waveguide section according to one aspect of the present invention;
FIG. 3 illustrates an output power characteristic of R3L's with coupling lengths ranging from 50 to 200 μm;
FIG. 4 illustrates a lasing spectra of a R3L at a drive current I=110 mA, showing single mode operation; and,
FIG. 5 illustrates a lasing spectra of a R3L at a drive current I=140 mA, showing a nonlinear change to a broad spectrum.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
A design for closed-loop ring resonator coupling that uses conventional photolithography and exhibits improved control over coupling strength is presented. The present invention will be described as it relates to an InGaAsP ring resonator waveguide in the form of a Racetrack Ring Resonator (R3) placed between two straight input/output waveguides as shown in FIG. 1. It should be clearly understood that the present invention is equally applicable to other closed-loop shapes, as well as other types of devices, such as passive devices including filters for example. Referring still to FIG. 1, therein is illustrated a portion of an R3 configuration 10 according to one aspect of the present invention. The configuration 10 includes a closed loop 20 and waveguides 30, 40. Waveguides 30, 40 are evanescently coupled to the closed loop 20 using coupling portions 22, 24 of the closed-loop 20, respectively. Such a configuration is suitable for photonics switching and signal processing as well. Referring still to FIG. 1, the closed-loop 20 illustrated therein takes the form of an elongated ring, or racetrack. Curved portions 26 of the closed-loop 20 interconnect coupling regions 22, 24.
According to an aspect of the present invention, deep etching is utilized to advantageously reduce bending loss at the curved sections 26, but is avoided at the gap between the straight sections of the loop 20 and the input/output waveguides, i.e. the coupling regions 22, 24, where it may interfere with coupling into and out of the waveguides 30, 40. There, a shallower etch which defines the coupling regions 22, 24 is halted before removing the epitaxial waveguiding layers according to another aspect of the present invention. This multi-level etching technique is essentially a modification of the MMI method that provides better control of the coupling in deeply etched structures where, due to the large index contrast, a large number of modes participate in the interaction. It is important to note that although a straight section of the deeply etched waveguide can support higher-order lateral modes, the curved sections of the loop 20, i.e. the curved portions 26, whose first-order lateral mode cutoff radius is 250 μm, discriminate in favor of single lateral mode operation. Moreover, the depth of etching in the coupling region determines whether that region is a directional coupler, having only two lateral modes participating in the coupling, or a modified MMI coupler where more than two lateral modes determine the power splitting.
The issues of coupling strength and coupling efficiency are of utmost importance to the performance of R3Ls, like many other optical devices. They not only affect power extraction efficiency, but introduce intracavity loss that, in laser structures, increases the threshold current. The electromagnetic field transmitted from the input 30 to the output 40 coupling waveguide of FIG. 1 through the resonator 20, is given by E o E i = t 1 t 2 exp [ - ( β a L c + 2 β c L c ) ] 1 - r 1 r 2 exp [ - 2 ( β a L a + 2 β c L c ) ]
Figure US06639930-20031028-M00001
where t1, 2 are the coupling coefficients of the upper and lower coupling regions 22, 24 respectively, βa, c are the propagation constants in the curved sections 26 and straight sections 22, 24 of the closed loop 20, respectively, La is the total length of the curved sections 26, a is the radius of the ring, and Lc the length of each straight section 22, 24. r1, 2 represent the fraction of incident field which is not transmitted from one waveguide to the other 30, 40 in the coupling region 22, 24, where it can be shown, using the coupled-mode formalism and power conservation, that /r1, 2/2+/t1, 2/2=1.
This transmission function reveals that a ring resonator such as 10 is analogous to a Fabry-Perot (FP) resonator. That is, at zero gain the spectrum is characterized by Lorentzian-like transmission peaks at resonance with a free spectral range (FSR) of c n eff a L a + 2 n eff c L c .
Figure US06639930-20031028-M00002
The couplers play a role analogous to FP mirrors. To obtain unity transmission at resonance with zero gain the coupling coefficients should be equal, i.e., t1=t2, which for the case of deeply etched structure predicates extremely tight fabrication constraints.
Referring now also to FIG. 2, there is shown a schematic cross-section diagram of the configuration 10 taken at the coupling region between the ring 20 and a waveguide section 30, 40 according to one aspect of the present invention. The structure of FIG. 2 generally includes a substrate 100, formed of InP for example. Upon the substrate 100 is formed a waveguide and quantum wells 110 including layer 102 and 108 which comprise the core of the waveguide. Both layers 102 and 108 have a higher refractive index than their surrounding surface of the device and the shoulder 106. Layer 118 is the cap layer fabricated from a highly conductive p+ material. Numeral 104 references an area of the layer where quantum wells are located. A typical quantum well can be conventionally 70 Å-100 Å thick. Areas 112 and 116 are of the same material and function as the cladding layer of the optical waveguide and are both the p or n side of the formed diode junction. These areas have a lower refractive index than the core areas. Layer 114 could be placed anywhere between the top 118 surface of the device and the shoulder 106. Layer 118 is the cap layer fabricated from a highly conductive p+ material.
Still referring to FIG. 2, multiple etched levels 130, 140 are shown, in the particular case of FIG. 2, 2 levels are shown. This is referred to herein as “bi-level” etching. Of course, additional levels can be formed. The etched level designated 130 defines the waveguides 30,40 and closed loop 20 in general. The etched level designated 140 defines the coupling region between the waveguides 30, 40 and the closed loop 20. The depth of the etched levels 130, 140 is different. This defines the bi-level etching. It should be understood that the deeper etched level 130 is described herein for purposes of more deeply defining an outer wall 27 of the curved regions or portion 26 of the closed loop 20, as that is where most losses due to bending occur (FIG. 1). Of course, other particular configurations which effectively increase the depth of the outer walls 27 can be used to accomplish the same results. That is, deep etching is required mainly along and in the vicinity of the outer wall of the curved section of the ring resonator, whereas shallower etching levels can be prescribed to other regions of the device including, but not limited to the coupling region between the straight sections of the R3 and the input/output waveguides.
It should also be noted that in the case illustrated by FIG. 2, the etched level 140 does not enter the waveguide 110, that is it stops short of reaching thereinto. This results in a multimode waveguide. If the etched level 140 is extended into the waveguide 110 a 2-mode directional coupler can be advantageously achieved.
Still referring to FIG. 2, the Organo-Metallic Chemical Vapor Deposition (OMCVD)-grown epistructure shown therein includes three compressively strained InGaAsP quantum wells imbedded in a 70-nm waveguide structure of two compositions with bandgap energy Eg=1.13 and 1.00 eV. Cladding layers are InP. The fabrication involves several steps not normally used in conjunction with conventional RWG laser processing. These include: 1) liftoff metal deposition of closely spaced lines and 2) both shallow and deep etching with no feature undercutting. For the coupling channel between parallel waveguides as is illustrated in FIG. 2, an asymmetric structure is fabricated. The waveguiding geometry is first defined by H2/CH4 reactive ion etching (RIE), timed to remove the p-type cladding layer and reveal the upper surface of the waveguide structure. Next, the coupling region is coated with a second dielectric layer. Smooth side-walls extending through the waveguide structure are etched, except in the coupling region protected by the second dielectric layer.
A bend radius of 150 μm is combined with four different coupler lengths of 50, 100, 150, and 200 μm, positioned at the center of the straight section of the racetrack, which is 50 μm longer. The width of ridges throughout the structure is 2.5 μm and the gap between resonator and coupling waveguides is 2 μm. The coupling waveguides, which extend beyond the racetrack ring resonator, are cleaved, and output facets optically coated to ≈3% reflectivity. FIG. 1 illustrates a top-view showing the racetrack resonator and the straight coupling waveguides. Biasing electrodes are provided separately for the ring resonator 10 and the portion of each of the two coupling waveguides 20, 30 extending from the resonator 10 to the autoregressive-coated facet. The latter are biased approximately to transparency to facilitate laser characterization. The remaining portion of the coupling waveguides 20, 30 extending toward the rear facet are bent and flared to cut down the effective reflectivity from the unused facet. These sections can be also reverse-biased to further reduce parasitic reflectivity.
Continuous-wave (CW) room-temperature relative L-I characteristics of devices having all four Lc values are shown in FIG. 3. These indicate threshold currents varying from 66 mA for the 50 and 150 μm coupling region devices to 72 mA for the 100 and 200 μm devices. These threshold currents are more than a factor of two lower than the lowest-threshold InP ring lasers previously reported. It is believed that this dramatically improved threshold performance is attributable to the multi-level, in the illustrated case bi-level, etched R3L design. The corresponding threshold current densities range between 2.145 kA/cm2 for the 200-μm coupler to 2.53 kA/cm2 for the50-μm coupler. These values are within a factor of two to three of threshold current densities of world-record RWG FP lasers with similar dimensions and fabricated from similar material. Changing the bias level of the straight coupling waveguides has a negligible effect on the threshold current.
The small dependence of the threshold current on the coupling length indicates that the loss in the cavity is governed mostly by mechanisms other than the output coupling, such as scattering due to wall roughness, bending loss, or modal transition from the curved to the straight section and from the deeply etched to the shallow etched transition regions. Passive measurements of the devices were taken at longer wavelength using temperature tuned InGaAsP DFB laser operating at 1.655-1.659 μm. Depth of modulation of about 20% was observed with finesse of 2.5. Coupling efficiency of 20% and effective distributed loss, combining bending, mode matching and scattering loss, of 15.1 [cm−1] were calculated.
The CW spectrum of an R3L with 100-μm-long couplers is shown in FIG. 4. It exhibits single longitudinal mode operation with a side-mode suppression ration better than 26 dB. Many ring laser modes are clearly visible as noise peaks below that level. Single mode lasing is obtained up to nearly twice threshold. As shown in FIG. 5, at 140 mA, the spectrum abruptly changes to a broad spectrum of the same ring laser modes, suggestive of passively mode locked self pulsation. The separation of these modes was observed to match and scale inversely with the circumference of the racetrack 20.
In other words, the present discussion presents an InGaAsP closed-loop ring resonator device, such as an R3L laser employing a novel multi-level etched structure, such as a bi-level etched structure, which can be defined by conventional photolithography and incorporates low-loss curved waveguides and lateral couplers. In the particular case of the illustrated R3L, it exhibits a threshold current of 66 mA, which is the lowest value of any InP ring resonator laser reported to date. It operates in a single mode to nearly twice the threshold with a 26-dB side-mode suppression ratio. This novel fabrication technique can be also be applied to the construction of passive ring resonators devices such as filters, modulators, routers, and detectors, for example.
Although the invention has been described and pictured in a preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form, has been made only by way of example, and that numerous changes in the details of construction and combination and arrangement of parts may be made without departing from the spirit and scope of the invention as hereinafter claimed. It is intended that the patent shall cover by suitable expression in the appended claims, whatever features of patentable novelty exist in the invention disclosed.

Claims (15)

What is claimed is:
1. A closed-loop ring resonator comprising:
a closed loop ring formed on a substrate defined by grooves within said substrate, said ring comprising:
at least one coupling region having a first effective depth; and
at least one non-coupling region having a second effective depth operative to reduce bending loss, said first and second effective depths being the depths of said grooves defining said resonator wherein said first effective depth is shallower than said second effective depth.
2. The resonator of claim 1, further comprising
at least one waveguide formed within a given proximity of said coupling region.
3. The resonator according to claim 1 wherein the substrate is formed from InP.
4. The resonator according to claim 1, further including a first waveguide located on said substrate and positioned to enable coupling of a signal propagating in said first waveguide to said resonator.
5. The resonator according to claim 4 further comprising a second waveguide located on said substrate at a position opposite to said first waveguide and positioned to enable coupling of a signal propagating in said resonator to said second waveguide.
6. The resonator according to claim 5 wherein said waveguides are cleaved having output facets.
7. The resonator according to claim 5 wherein said first and second waveguides are evanescently coupled to said resonator.
8. The resonator according to claim 7 wherein said first and second waveguides are linear waveguides parallel to one another and each positioned at an opposite side of said closed loop resonator.
9. The resonator according to claim 1 wherein said resonator is a multi level etched structure.
10. The resonator of claim 1 wherein the resonator is a racetrack ring resonator.
11. A method for fabricating a closed loop resonator, comprising the steps of:
forming a waveguide on a substrate,
forming quantum wells including a first and a second layer on said substrate to form a waveguide core,
forming additional layers on said first and second layers,
forming a cladding layer on said substrate,
etching said substrate to define a first waveguide structure with another etch not extending into the waveguide region defining a resonator, whereby etched depth levels of said other etch is different than the depth level of said waveguide structure to increase coupling between signals from said waveguide to said another etch region.
12. The method according to claim 11 wherein said substrate is formed of InP.
13. The method according to claim 11 wherein said quantum wells are between 70 to 100 Angstroms thick.
14. The method according to claim 13, wherein said first and second layers are P+layers.
15. The method according to claim 13 wherein said quantum wells are compressively strained InGaAsP quantum wells.
US10/043,548 2001-01-11 2002-01-11 Multi-level closed loop resonators and method for fabricating same Expired - Fee Related US6639930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/043,548 US6639930B2 (en) 2001-01-11 2002-01-11 Multi-level closed loop resonators and method for fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26094101P 2001-01-11 2001-01-11
US10/043,548 US6639930B2 (en) 2001-01-11 2002-01-11 Multi-level closed loop resonators and method for fabricating same

Publications (2)

Publication Number Publication Date
US20020154674A1 US20020154674A1 (en) 2002-10-24
US6639930B2 true US6639930B2 (en) 2003-10-28

Family

ID=22991286

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/043,548 Expired - Fee Related US6639930B2 (en) 2001-01-11 2002-01-11 Multi-level closed loop resonators and method for fabricating same

Country Status (2)

Country Link
US (1) US6639930B2 (en)
WO (1) WO2002087031A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037341A1 (en) * 2002-08-21 2004-02-26 Tan Michael R. Laser utilizing a microdisk resonator
US20070060984A1 (en) * 2005-09-09 2007-03-15 Webb James S Apparatus and method for optical stimulation of nerves and other animal tissue
US20080077198A1 (en) * 2006-09-21 2008-03-27 Aculight Corporation Miniature apparatus and method for optical stimulation of nerves and other animal tissue
US7883536B1 (en) 2007-01-19 2011-02-08 Lockheed Martin Corporation Hybrid optical-electrical probes
US8012189B1 (en) 2007-01-11 2011-09-06 Lockheed Martin Corporation Method and vestibular implant using optical stimulation of nerves
US8160696B2 (en) 2008-10-03 2012-04-17 Lockheed Martin Corporation Nerve stimulator and method using simultaneous electrical and optical signals
WO2013025964A1 (en) * 2011-08-18 2013-02-21 Opel, Inc. Optical closed loop microresonator and thyristor memory device
US8475506B1 (en) 2007-08-13 2013-07-02 Lockheed Martin Corporation VCSEL array stimulator apparatus and method for light stimulation of bodily tissues
US8498699B2 (en) 2008-10-03 2013-07-30 Lockheed Martin Company Method and nerve stimulator using simultaneous electrical and optical signals
US8652187B2 (en) 2010-05-28 2014-02-18 Lockheed Martin Corporation Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
US8709078B1 (en) 2011-08-03 2014-04-29 Lockheed Martin Corporation Ocular implant with substantially constant retinal spacing for transmission of nerve-stimulation light
US8744570B2 (en) 2009-01-23 2014-06-03 Lockheed Martin Corporation Optical stimulation of the brainstem and/or midbrain, including auditory areas
US8747447B2 (en) 2011-07-22 2014-06-10 Lockheed Martin Corporation Cochlear implant and method enabling enhanced music perception
US8929973B1 (en) 2005-10-24 2015-01-06 Lockheed Martin Corporation Apparatus and method for characterizing optical sources used with human and animal tissues
US8945197B1 (en) 2005-10-24 2015-02-03 Lockheed Martin Corporation Sight-restoring visual prosthetic and method using infrared nerve-stimulation light
US8956396B1 (en) 2005-10-24 2015-02-17 Lockheed Martin Corporation Eye-tracking visual prosthetic and method
US8996131B1 (en) 2006-09-28 2015-03-31 Lockheed Martin Corporation Apparatus and method for managing chronic pain with infrared light sources and heat
US9082637B2 (en) 2012-08-17 2015-07-14 The University Of Connecticut Optoelectronic integrated circuit
US9281059B2 (en) 2012-08-17 2016-03-08 Opel Solar, Inc. Thyristor memory cell integrated circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050047708A1 (en) * 2003-08-26 2005-03-03 Kelvin Ma Optical interconnect and method for making the same
JP2014123044A (en) * 2012-12-21 2014-07-03 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit and fabrication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239598A (en) * 1987-11-20 1993-08-24 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Electro-optic waveguide device
US6009115A (en) * 1995-05-25 1999-12-28 Northwestern University Semiconductor micro-resonator device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239598A (en) * 1987-11-20 1993-08-24 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Electro-optic waveguide device
US6009115A (en) * 1995-05-25 1999-12-28 Northwestern University Semiconductor micro-resonator device

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040037341A1 (en) * 2002-08-21 2004-02-26 Tan Michael R. Laser utilizing a microdisk resonator
US20070060984A1 (en) * 2005-09-09 2007-03-15 Webb James S Apparatus and method for optical stimulation of nerves and other animal tissue
US7736382B2 (en) 2005-09-09 2010-06-15 Lockheed Martin Corporation Apparatus for optical stimulation of nerves and other animal tissue
US8985119B1 (en) 2005-09-09 2015-03-24 Lockheed Martin Corporation Method and apparatus for optical stimulation of nerves and other animal tissue
US8945197B1 (en) 2005-10-24 2015-02-03 Lockheed Martin Corporation Sight-restoring visual prosthetic and method using infrared nerve-stimulation light
US8956396B1 (en) 2005-10-24 2015-02-17 Lockheed Martin Corporation Eye-tracking visual prosthetic and method
US8929973B1 (en) 2005-10-24 2015-01-06 Lockheed Martin Corporation Apparatus and method for characterizing optical sources used with human and animal tissues
US20080077198A1 (en) * 2006-09-21 2008-03-27 Aculight Corporation Miniature apparatus and method for optical stimulation of nerves and other animal tissue
US7988688B2 (en) 2006-09-21 2011-08-02 Lockheed Martin Corporation Miniature apparatus and method for optical stimulation of nerves and other animal tissue
US8506613B2 (en) 2006-09-21 2013-08-13 Lockheed Martin Corporation Miniature method and apparatus for optical stimulation of nerves and other animal tissue
US8996131B1 (en) 2006-09-28 2015-03-31 Lockheed Martin Corporation Apparatus and method for managing chronic pain with infrared light sources and heat
US9061135B1 (en) 2006-09-28 2015-06-23 Lockheed Martin Corporation Apparatus and method for managing chronic pain with infrared and low-level light sources
US8317848B1 (en) 2007-01-11 2012-11-27 Lockheed Martin Corporation Vestibular implant and method for optical stimulation of nerves
US8551150B1 (en) 2007-01-11 2013-10-08 Lockheed Martin Corporation Method and system for optical stimulation of nerves
US8012189B1 (en) 2007-01-11 2011-09-06 Lockheed Martin Corporation Method and vestibular implant using optical stimulation of nerves
US8632577B1 (en) 2007-01-19 2014-01-21 Lockheed Martin Corporation Hybrid optical-electrical probes for stimulation of nerve or other animal tissue
US8357187B1 (en) 2007-01-19 2013-01-22 Lockheed Martin Corporation Hybrid optical-electrical probes for stimulation of nerve or other animal tissue
US7883536B1 (en) 2007-01-19 2011-02-08 Lockheed Martin Corporation Hybrid optical-electrical probes
US8475506B1 (en) 2007-08-13 2013-07-02 Lockheed Martin Corporation VCSEL array stimulator apparatus and method for light stimulation of bodily tissues
US9011509B2 (en) 2007-11-30 2015-04-21 Lockheed Martin Corporation Individually optimized performance of optically stimulating cochlear implants
US9011508B2 (en) 2007-11-30 2015-04-21 Lockheed Martin Corporation Broad wavelength profile to homogenize the absorption profile in optical stimulation of nerves
US8998914B2 (en) 2007-11-30 2015-04-07 Lockheed Martin Corporation Optimized stimulation rate of an optically stimulating cochlear implant
US8160696B2 (en) 2008-10-03 2012-04-17 Lockheed Martin Corporation Nerve stimulator and method using simultaneous electrical and optical signals
US8498699B2 (en) 2008-10-03 2013-07-30 Lockheed Martin Company Method and nerve stimulator using simultaneous electrical and optical signals
US8744570B2 (en) 2009-01-23 2014-06-03 Lockheed Martin Corporation Optical stimulation of the brainstem and/or midbrain, including auditory areas
US8968376B2 (en) 2010-05-28 2015-03-03 Lockheed Martin Corporation Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
US8864806B2 (en) 2010-05-28 2014-10-21 Lockheed Martin Corporation Optical bundle apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
US8792978B2 (en) 2010-05-28 2014-07-29 Lockheed Martin Corporation Laser-based nerve stimulators for, E.G., hearing restoration in cochlear prostheses and method
US8652187B2 (en) 2010-05-28 2014-02-18 Lockheed Martin Corporation Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
US8747447B2 (en) 2011-07-22 2014-06-10 Lockheed Martin Corporation Cochlear implant and method enabling enhanced music perception
US8834545B2 (en) 2011-07-22 2014-09-16 Lockheed Martin Corporation Optical-stimulation cochlear implant with electrode(s) at the apical end for electrical stimulation of apical spiral ganglion cells of the cochlea
US8894697B2 (en) 2011-07-22 2014-11-25 Lockheed Martin Corporation Optical pulse-width modulation used in an optical-stimulation cochlear implant
US8840654B2 (en) 2011-07-22 2014-09-23 Lockheed Martin Corporation Cochlear implant using optical stimulation with encoded information designed to limit heating effects
US8709078B1 (en) 2011-08-03 2014-04-29 Lockheed Martin Corporation Ocular implant with substantially constant retinal spacing for transmission of nerve-stimulation light
US20160091738A1 (en) * 2011-08-18 2016-03-31 The University Of Connecticut Optical Closed Loop Microresonator and Thyristor Memory Device
US20140241660A1 (en) * 2011-08-18 2014-08-28 Geoff W. Taylor Optical closed loop microresonator and thyristor memory device
US9188798B2 (en) * 2011-08-18 2015-11-17 Opel Solar, Inc. Optical closed loop microresonator and thyristor memory device
WO2013025964A1 (en) * 2011-08-18 2013-02-21 Opel, Inc. Optical closed loop microresonator and thyristor memory device
US9684192B2 (en) 2011-08-18 2017-06-20 Opel Solar, Inc. Optical closed loop microresonator and thyristor memory device
US9684193B2 (en) * 2011-08-18 2017-06-20 Opel Solar, Inc. Optical closed loop microresonator and thyristor memory device
US9082637B2 (en) 2012-08-17 2015-07-14 The University Of Connecticut Optoelectronic integrated circuit
US9281059B2 (en) 2012-08-17 2016-03-08 Opel Solar, Inc. Thyristor memory cell integrated circuit
US9401400B2 (en) 2012-08-17 2016-07-26 The University Of Connecticut Single electron transistor device
US9490321B2 (en) 2012-08-17 2016-11-08 The University Of Connecticut Optoelectronic integrated circuit

Also Published As

Publication number Publication date
US20020154674A1 (en) 2002-10-24
WO2002087031B1 (en) 2003-03-06
WO2002087031A3 (en) 2003-01-23
WO2002087031A2 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US6639930B2 (en) Multi-level closed loop resonators and method for fabricating same
US6381380B1 (en) Twin waveguide based design for photonic integrated circuits
Griffel et al. Low-threshold InGaAsP ring lasers fabricated using bi-level dry etching
US5699378A (en) Optical comb filters used with waveguide, laser and manufacturing method of same
US6198863B1 (en) Optical filters
EP0469789B1 (en) Optical branching waveguide
US9036968B2 (en) Adiabatic mode-profile conversion by selective oxidation for photonic integrated circuit
JP3244115B2 (en) Semiconductor laser
US8306072B2 (en) Semiconductor laser device
US6205163B1 (en) Single-transverse-mode 1×N multi-mode interferometer type semiconductor laser device
EP1366547B1 (en) Improvements in or relating to lasers
Bian et al. InP-based passive ring-resonator-coupled lasers
JPWO2006016453A1 (en) Semiconductor laser, semiconductor optical amplifier, and optical communication device
Yoon et al. Monolithically integrated tunable laser using double-ring resonators with a tilted multimode interference coupler
WO2022254682A1 (en) Semiconductor optical device
US11921298B2 (en) Spot-size converter
Kim et al. Rectangular ring lasers based on total reflection mirrors and three waveguide couplers
Uppal et al. Study of 1.3-/spl mu/m tapered waveguide spotsize transformers
CN111817131A (en) Semiconductor integrated optical device and method of manufacturing semiconductor integrated optical device
Davanço et al. Broadband Photonic Crystal Passive Filters for Monolithically Integrated InP Photonic Integrated Circuits
WO1991003760A1 (en) Optically coupled waveguides
Takeuchi et al. Bend Losses of Miniature Single Mode GaAs/AlGaAs Waveguides
Davanco et al. Broadband photonic crystal passive filters for integrated InP photonic integrated circuits
JPH07283473A (en) Wavelength variable semiconductor laser

Legal Events

Date Code Title Description
AS Assignment

Owner name: PRINCETON LIGHTWAVE, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRIFFEL, GIORA;MENNA, RAYMOND J.;ABELES, JOSEPH H.;AND OTHERS;REEL/FRAME:012857/0801;SIGNING DATES FROM 20020401 TO 20020408

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20111028