US6586206B1 - Methods for making recombinant proteins using apoptosis inhibitors - Google Patents
Methods for making recombinant proteins using apoptosis inhibitors Download PDFInfo
- Publication number
- US6586206B1 US6586206B1 US09/668,924 US66892400A US6586206B1 US 6586206 B1 US6586206 B1 US 6586206B1 US 66892400 A US66892400 A US 66892400A US 6586206 B1 US6586206 B1 US 6586206B1
- Authority
- US
- United States
- Prior art keywords
- protein
- cell
- cell culture
- interest
- culture media
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229940088872 Apoptosis inhibitor Drugs 0.000 title claims abstract description 96
- 239000000158 apoptosis inhibitor Substances 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 93
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 title claims abstract description 14
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 title claims abstract description 14
- 238000004113 cell culture Methods 0.000 claims abstract description 54
- 230000006907 apoptotic process Effects 0.000 claims abstract description 39
- 210000004027 cell Anatomy 0.000 claims description 254
- 108090000623 proteins and genes Proteins 0.000 claims description 210
- 102000004169 proteins and genes Human genes 0.000 claims description 143
- 239000013598 vector Substances 0.000 claims description 82
- 239000006143 cell culture medium Substances 0.000 claims description 46
- 230000014509 gene expression Effects 0.000 claims description 43
- 230000035899 viability Effects 0.000 claims description 33
- 238000012258 culturing Methods 0.000 claims description 27
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 22
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 claims description 20
- 230000003833 cell viability Effects 0.000 claims description 16
- 210000004962 mammalian cell Anatomy 0.000 claims description 14
- 230000010474 transient expression Effects 0.000 claims description 14
- 102000004039 Caspase-9 Human genes 0.000 claims description 12
- 108090000566 Caspase-9 Proteins 0.000 claims description 12
- 230000001131 transforming effect Effects 0.000 claims description 12
- 230000001939 inductive effect Effects 0.000 claims description 10
- 229940123169 Caspase inhibitor Drugs 0.000 claims description 6
- 241000699802 Cricetulus griseus Species 0.000 claims description 6
- 210000001672 ovary Anatomy 0.000 claims description 6
- 239000004017 serum-free culture medium Substances 0.000 claims description 3
- 230000003115 biocidal effect Effects 0.000 claims 1
- 230000001976 improved effect Effects 0.000 abstract description 5
- 238000000338 in vitro Methods 0.000 abstract description 3
- 235000018102 proteins Nutrition 0.000 description 109
- 238000001890 transfection Methods 0.000 description 35
- 239000001963 growth medium Substances 0.000 description 32
- 230000030833 cell death Effects 0.000 description 25
- 239000002609 medium Substances 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 24
- 230000000694 effects Effects 0.000 description 24
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 20
- 102100029855 Caspase-3 Human genes 0.000 description 15
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 102000011727 Caspases Human genes 0.000 description 13
- 108010076667 Caspases Proteins 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 13
- 108090000397 Caspase 3 Proteins 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 230000012010 growth Effects 0.000 description 10
- 235000015097 nutrients Nutrition 0.000 description 10
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 10
- 239000011573 trace mineral Substances 0.000 description 10
- 235000013619 trace mineral Nutrition 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 108700012411 TNFSF10 Proteins 0.000 description 9
- 102100024598 Tumor necrosis factor ligand superfamily member 10 Human genes 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 239000000306 component Substances 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 102000005962 receptors Human genes 0.000 description 9
- 108020003175 receptors Proteins 0.000 description 9
- 108700032588 Baculovirus p35 Proteins 0.000 description 8
- 108090000426 Caspase-1 Proteins 0.000 description 8
- 230000003698 anagen phase Effects 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 210000004748 cultured cell Anatomy 0.000 description 8
- 239000013604 expression vector Substances 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- 102000004091 Caspase-8 Human genes 0.000 description 7
- 108090000538 Caspase-8 Proteins 0.000 description 7
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 7
- 230000001640 apoptogenic effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 239000012096 transfection reagent Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 238000001262 western blot Methods 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 102100035904 Caspase-1 Human genes 0.000 description 6
- 102000016911 Deoxyribonucleases Human genes 0.000 description 6
- 108010053770 Deoxyribonucleases Proteins 0.000 description 6
- 102100026693 FAS-associated death domain protein Human genes 0.000 description 6
- 102100030698 Interleukin-12 subunit alpha Human genes 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 230000010261 cell growth Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- -1 or NT-6) Proteins 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 230000010473 stable expression Effects 0.000 description 6
- 238000010257 thawing Methods 0.000 description 6
- 102000000412 Annexin Human genes 0.000 description 5
- 108050008874 Annexin Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 101000911074 Homo sapiens FAS-associated death domain protein Proteins 0.000 description 5
- 102000004877 Insulin Human genes 0.000 description 5
- 108090001061 Insulin Proteins 0.000 description 5
- 101710187743 Tumor necrosis factor receptor superfamily member 1A Proteins 0.000 description 5
- 102100033732 Tumor necrosis factor receptor superfamily member 1A Human genes 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- HKSZLNNOFSGOKW-UHFFFAOYSA-N ent-staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 HKSZLNNOFSGOKW-UHFFFAOYSA-N 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 108010027775 interleukin-1beta-converting enzyme inhibitor Proteins 0.000 description 5
- 239000006166 lysate Substances 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 229920001184 polypeptide Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 229950010131 puromycin Drugs 0.000 description 5
- HKSZLNNOFSGOKW-FYTWVXJKSA-N staurosporine Chemical compound C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1[C@H]1C[C@@H](NC)[C@@H](OC)[C@]4(C)O1 HKSZLNNOFSGOKW-FYTWVXJKSA-N 0.000 description 5
- CGPUWJWCVCFERF-UHFFFAOYSA-N staurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3CNC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(OC)O1 CGPUWJWCVCFERF-UHFFFAOYSA-N 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 description 5
- 101150074155 DHFR gene Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 101000793880 Homo sapiens Caspase-3 Proteins 0.000 description 4
- 101100369992 Homo sapiens TNFSF10 gene Proteins 0.000 description 4
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 4
- 102100029268 Neurotrophin-3 Human genes 0.000 description 4
- 108090000099 Neurotrophin-4 Proteins 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- RTKIYFITIVXBLE-UHFFFAOYSA-N Trichostatin A Natural products ONC(=O)C=CC(C)=CC(C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-UHFFFAOYSA-N 0.000 description 4
- 102100031988 Tumor necrosis factor ligand superfamily member 6 Human genes 0.000 description 4
- 108050002568 Tumor necrosis factor ligand superfamily member 6 Proteins 0.000 description 4
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 101150055276 ced-3 gene Proteins 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000002354 daily effect Effects 0.000 description 4
- 230000003203 everyday effect Effects 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000012679 serum free medium Substances 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 3
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 3
- 108010025020 Nerve Growth Factor Proteins 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 229960003669 carbenicillin Drugs 0.000 description 3
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 108020001096 dihydrofolate reductase Proteins 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 238000011532 immunohistochemical staining Methods 0.000 description 3
- 230000006882 induction of apoptosis Effects 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 2
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 2
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 2
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 2
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 2
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 2
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 2
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 241000700626 Cowpox virus Species 0.000 description 2
- 102000005927 Cysteine Proteases Human genes 0.000 description 2
- 108010005843 Cysteine Proteases Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 102000010170 Death domains Human genes 0.000 description 2
- 108050001718 Death domains Proteins 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 2
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 2
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 2
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 2
- 101000610605 Homo sapiens Tumor necrosis factor receptor superfamily member 10A Proteins 0.000 description 2
- 101000610604 Homo sapiens Tumor necrosis factor receptor superfamily member 10B Proteins 0.000 description 2
- 101000610602 Homo sapiens Tumor necrosis factor receptor superfamily member 10C Proteins 0.000 description 2
- 101000610609 Homo sapiens Tumor necrosis factor receptor superfamily member 10D Proteins 0.000 description 2
- 101000597785 Homo sapiens Tumor necrosis factor receptor superfamily member 6B Proteins 0.000 description 2
- 101000850748 Homo sapiens Tumor necrosis factor receptor type 1-associated DEATH domain protein Proteins 0.000 description 2
- 102000001483 Initiator Caspases Human genes 0.000 description 2
- 108010054031 Initiator Caspases Proteins 0.000 description 2
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 2
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 2
- 108010008212 Integrin alpha4beta1 Proteins 0.000 description 2
- 102100025390 Integrin beta-2 Human genes 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 101100335081 Mus musculus Flt3 gene Proteins 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 101100007739 Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) crmA gene Proteins 0.000 description 2
- 108090000742 Neurotrophin 3 Proteins 0.000 description 2
- 102000003683 Neurotrophin-4 Human genes 0.000 description 2
- 102100033857 Neurotrophin-4 Human genes 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 101800004937 Protein C Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 2
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 2
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 2
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 2
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 2
- 102400000827 Saposin-D Human genes 0.000 description 2
- 101800001700 Saposin-D Proteins 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 2
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 2
- 101150006914 TRP1 gene Proteins 0.000 description 2
- 102000036693 Thrombopoietin Human genes 0.000 description 2
- 108010041111 Thrombopoietin Proteins 0.000 description 2
- 102100033571 Tissue-type plasminogen activator Human genes 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 102100040113 Tumor necrosis factor receptor superfamily member 10A Human genes 0.000 description 2
- 102100040112 Tumor necrosis factor receptor superfamily member 10B Human genes 0.000 description 2
- 102100040115 Tumor necrosis factor receptor superfamily member 10C Human genes 0.000 description 2
- 102100040110 Tumor necrosis factor receptor superfamily member 10D Human genes 0.000 description 2
- 102100035284 Tumor necrosis factor receptor superfamily member 6B Human genes 0.000 description 2
- 102100033081 Tumor necrosis factor receptor type 1-associated DEATH domain protein Human genes 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 229940112869 bone morphogenetic protein Drugs 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000006721 cell death pathway Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 239000003900 neurotrophic factor Substances 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 229960000856 protein c Drugs 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000003146 transient transfection Methods 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108010059616 Activins Proteins 0.000 description 1
- 102000005606 Activins Human genes 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 108090000672 Annexin A5 Proteins 0.000 description 1
- 102000004121 Annexin A5 Human genes 0.000 description 1
- 101800001288 Atrial natriuretic factor Proteins 0.000 description 1
- 102400001282 Atrial natriuretic peptide Human genes 0.000 description 1
- 101800001890 Atrial natriuretic peptide Proteins 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 102100031092 C-C motif chemokine 3 Human genes 0.000 description 1
- 101710155856 C-C motif chemokine 3 Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 108010009575 CD55 Antigens Proteins 0.000 description 1
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 1
- 102400000113 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- 108010049207 Death Domain Receptors Proteins 0.000 description 1
- 102000009058 Death Domain Receptors Human genes 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108010035533 Drosophila Proteins Proteins 0.000 description 1
- 108700007861 Drosophila rpr Proteins 0.000 description 1
- 241000588914 Enterobacter Species 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 108010077716 Fas-Associated Death Domain Protein Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 1
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102000006771 Gonadotropins Human genes 0.000 description 1
- 108010086677 Gonadotropins Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000003964 Histone deacetylase Human genes 0.000 description 1
- 108090000353 Histone deacetylase Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000798130 Homo sapiens Tumor necrosis factor receptor superfamily member 11B Proteins 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 102100022297 Integrin alpha-X Human genes 0.000 description 1
- 102000008607 Integrin beta3 Human genes 0.000 description 1
- 108010020950 Integrin beta3 Proteins 0.000 description 1
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 description 1
- 102000004083 Lymphotoxin-alpha Human genes 0.000 description 1
- 108090000542 Lymphotoxin-alpha Proteins 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102000009571 Macrophage Inflammatory Proteins Human genes 0.000 description 1
- 108010009474 Macrophage Inflammatory Proteins Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100030173 Muellerian-inhibiting factor Human genes 0.000 description 1
- 101710122877 Muellerian-inhibiting factor Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 108090000028 Neprilysin Proteins 0.000 description 1
- 102000003729 Neprilysin Human genes 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 108090000095 Neurotrophin-6 Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 102000009658 Peptidylprolyl Isomerase Human genes 0.000 description 1
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 108010004434 Primatone RL Proteins 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 241000588769 Proteus <enterobacteria> Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 102100022419 RPA-interacting protein Human genes 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 102000004879 Racemases and epimerases Human genes 0.000 description 1
- 108090001066 Racemases and epimerases Proteins 0.000 description 1
- 108091036333 Rapid DNA Proteins 0.000 description 1
- 102400000834 Relaxin A chain Human genes 0.000 description 1
- 101800000074 Relaxin A chain Proteins 0.000 description 1
- 102400000610 Relaxin B chain Human genes 0.000 description 1
- 101710109558 Relaxin B chain Proteins 0.000 description 1
- 108090000783 Renin Proteins 0.000 description 1
- 102100028255 Renin Human genes 0.000 description 1
- 108090000829 Ribosome Inactivating Proteins Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 102000008847 Serpin Human genes 0.000 description 1
- 108050000761 Serpin Proteins 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 102100022831 Somatoliberin Human genes 0.000 description 1
- 101710142969 Somatoliberin Proteins 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000011923 Thyrotropin Human genes 0.000 description 1
- 108010061174 Thyrotropin Proteins 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 108050006955 Tissue-type plasminogen activator Proteins 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 102000011117 Transforming Growth Factor beta2 Human genes 0.000 description 1
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 1
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 101800000304 Transforming growth factor beta-2 Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102100032236 Tumor necrosis factor receptor superfamily member 11B Human genes 0.000 description 1
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 1
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000488 activin Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000001455 anti-clotting effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000007640 basal medium Substances 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 108010006025 bovine growth hormone Proteins 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- NSQLIUXCMFBZME-MPVJKSABSA-N carperitide Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 NSQLIUXCMFBZME-MPVJKSABSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 101150112018 ced-4 gene Proteins 0.000 description 1
- 101150039936 ced-9 gene Proteins 0.000 description 1
- 239000012930 cell culture fluid Substances 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013000 chemical inhibitor Substances 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 108700001680 des-(1-3)- insulin-like growth factor 1 Proteins 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- HQPMKSGTIOYHJT-UHFFFAOYSA-N ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CC(O)CO HQPMKSGTIOYHJT-UHFFFAOYSA-N 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229940028334 follicle stimulating hormone Drugs 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012595 freezing medium Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 239000002622 gonadotropin Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002607 hemopoietic effect Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000000893 inhibin Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 102000028416 insulin-like growth factor binding Human genes 0.000 description 1
- 108091022911 insulin-like growth factor binding Proteins 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012007 large scale cell culture Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 229940066294 lung surfactant Drugs 0.000 description 1
- 239000003580 lung surfactant Substances 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 230000004898 mitochondrial function Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 229940032018 neurotrophin 3 Drugs 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 108010087851 prorelaxin Proteins 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000003001 serine protease inhibitor Substances 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000007727 signaling mechanism Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- MFBOGIVSZKQAPD-UHFFFAOYSA-M sodium butyrate Chemical compound [Na+].CCCC([O-])=O MFBOGIVSZKQAPD-UHFFFAOYSA-M 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 108010042974 transforming growth factor beta4 Proteins 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/81—Protease inhibitors
- C07K14/8107—Endopeptidase (E.C. 3.4.21-99) inhibitors
- C07K14/8139—Cysteine protease (E.C. 3.4.22) inhibitors, e.g. cystatin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/38—Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6472—Cysteine endopeptidases (3.4.22)
- C12N9/6475—Interleukin 1-beta convertase-like enzymes (3.4.22.10; 3.4.22.36; 3.4.22.63)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/36—Lipids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/90—Serum-free medium, which may still contain naturally-sourced components
- C12N2500/92—Medium free of human- or animal-derived components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/48—Regulators of apoptosis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/02—Cells for production
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- the present invention relates generally to improved methods of making recombinant proteins using one or more apoptosis inhibitors.
- Control of cell numbers in mammals is believed to be determined, in part, by a balance between cell proliferation and cell death.
- One form of cell death sometimes referred to as necrotic cell death, is typically characterized as a pathologic form of cell death resulting from some trauma or cellular injury.
- physiologic form of cell death which usually proceeds in an orderly or controlled manner. This orderly or controlled form of cell death is often referred to as “apoptosis” [see, e.g., Barr et al., Bio/Technology, 12:487-493 (1994);
- McG et al. Science, 267:1445-1449 (1995)].
- Apoptotic cell death naturally occurs in many physiological processes, including embryonic development and clonal selection in the immune system [Itoh et al., Cell, 66:233-243 (1991)].
- the apoptosis or cell death program contains at least three important elements—activators, inhibitors, and effectors; in C. elegans, these elements are encoded respectively by three genes, Ced-4 4, Ced-9 and Ced-3 [Steller, Science, 267:1445 (1995); Chinnaiyan et al., Science, 275:1122-1126 (1997); Wang et al., Cell, 90:1-20 (1997)].
- Two of the TNFR family members, TNFR1 and Fas/Apo1 (CD95) can activate apoptotic cell death [Chinnaiyan and Dixit, Current Biology, 6:555-62 (1996); Fraser and Evan, Cell; 85:781-784 (1996)].
- TNFR1 is also known to mediate activation of the transcription factor, NF-KB [Tartaglia et al., Cell, 74:845-853 (1993); Hsu et al., Cell, 84:299-308 (1996)].
- these two receptors share homology in their intracellular domain (ICD) in an oligomerization interface known as the death domain [Tartaglia et al., supra; Nagata, Cell, 88:355 (1997)].
- Death domains are also found in several metazoan proteins that regulate apoptosis, namely, the Drosophila protein, Reaper, and the mammalian proteins referred to as FADD/MORT1, TRADD, and RIP [Cleaveland and Ihle, Cell, 81:479-482 (1995)].
- TNFR1 and CD95 are believed to recruit FADD into a death-inducing signaling complex.
- CD95 purportedly binds FADD directly, while TNFR1 binds FADD indirectly via TRADD [Chinnaiyan et al., Cell, 81:505-512 (1995); Boldin et al., J. Biol. Chem., 270:387-391 (1995); Hsu et al., supra; Chinnaiyan et al., J. Biol. Chem., 271:4961-4965 (1996)].
- FADD serves as an adaptor protein which recruits the Ced-3-related protease, MACH-alpha/FLICE (caspase 8), into the death signaling complex [Boldin et al., Cell, 85:803-815 (1996); Muzio et al., Cell, 85:817-827 (1996)].
- MACH-alpha/FLICE appears to be the trigger that sets off a cascade of apoptotic proteases, including the interleukin-1beta converting enzyme (ICE) and CPP32/Yama, which may execute some critical aspects of the cell death programme [Fraser and Evan, supra].
- programmed cell death involves the activity of members of a family of cysteine proteases related to the C. elegans cell death gene, ced-3, and to the mammalian IL-1-converting enzyme, ICE.
- the activity of the ICE and CPP32/Yama proteases can be inhibited by the product of the cowpox virus gene, crmA [Ray et al., Cell, 69:597-604 (1992); Tewari et al., Cell, 81:801-809 (1995)].
- CrmA can inhibit TNFR1- and CD95-induced cell death [Enari et al., Nature, 375:78-81 (1995); Tewari et al., J. Biol. Chem., 270:3255-3260 (1995)].
- NF-KB is the prototype of a family of dimeric transcription factors whose subunits contain conserved Rel regions [Verma et al., Genes Develop., 9:2723-2735 (1996); Baldwin, Ann. Rev. Immunol., 14:649-681 (1996)].
- NF-KB In its latent form, NF-KB is complexed with members of the IKB inhibitor family; upon inactivation of the IKB in response to certain stimuli, released NF-KB translocates to the nucleus where it binds to specific DNA sequences and activates gene transcription.
- the present invention is based on Applicants' findings that employing one or more apoptosis inhibitor(s) in recombinant cell culturing and protein production can markedly reduce apoptosis in the cell culture and improve recombinant protein production techniques.
- the methods disclosed in present application are useful, for example, in prolonging cell viability in cell cultures or improving or enhancing yield of the recombinant proteins from the cell cultures. Further improvements provided by the invention are described in detail below.
- the invention provides a method of making recombinant proteins using one or more apoptosis inhibitors.
- the method includes the steps of (a) providing a vector comprising a gene encoding an apoptosis inhibitor, (b) providing a vector comprising a gene encoding a protein of interest, (c) providing a host cell, (d) transforming or transfecting the host cell with the vectors referred to in steps (a) and (b), (e) providing cell culture media, (f) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (g) recovering or purifying the protein of interest from the host cells and/or the cell culture media.
- the method further includes the step of admixing an additional apoptosis inhibitor into the culture media.
- the respective genes encoding the apoptosis inhibitor and the protein of interest may be inserted into a single vector (e.g., co-transfected in a single vector), or alternatively, be inserted into two separate vectors.
- the respective genes encoding the apoptosis inhibitor and the protein of interest are inserted into two separate vectors, each vector having a different type of selection marker from the other vector.
- the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
- the gene encoding the apoptosis inhibitor comprises a gene encoding the caspase-9-DN protein or baculovirus p35.
- the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell comprising DNA encoding an apoptosis inhibitor, (c) transforming or transfecting the host cell(s) with the vector referred to in step (a), (d) providing cell culture media, (e) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (f) recovering or purifying the protein of interest from the host cells and/or cell culture media.
- the gene encoding the apoptosis inhibitor may be stably integrated into the genome of the host cell.
- the method includes the further step of admixing an additional apoptosis inhibitor molecule into the culture media.
- the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
- the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell, (c) transforming or transfecting the host cell with the vector referred to in step (a), (d) providing cell culture media, (e) providing an apoptosis inhibitor, (f) admixing the apoptosis inhibitor into the culture media, (g) culturing the host cell(s) in the culture media under conditions sufficient to express the protein of interest, and (h) recovering or purifying the protein of interest from the host cells and/or the cell culture media.
- the method provides for transient expression of the protein of interest.
- the method includes the steps of (a) providing a vector comprising a gene encoding an apoptosis inhibitor, (b) providing a vector comprising a gene encoding a protein of interest, (c) providing a host cell, (d) transforming or transfecting the host cell with the vectors referred to in steps (a) and (b), (e) providing cell culture media, (f) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (g) freezing and subsequently thawing the host cells and/or the cell culture media.
- the method further includes the step of admixing an additional apoptosis inhibitor into the culture media in steps (e) or (f).
- the respective genes encoding the apoptosis inhibitor and the protein of interest may be inserted into a single vector, or alternatively, be inserted into two separate vectors.
- the respective genes encoding the apoptosis inhibitor and the protein of interest are inserted into two separate vectors, each vector having a different type of selection marker from the other vector.
- the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
- the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell comprising DNA encoding an apoptosis inhibitor, (c) transforming or transfecting the host cell(s) with the vector referred to in step (a), (d) providing cell culture media, (e) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (f) freezing and subsequently thawing the host cells and/or cell culture media.
- the gene encoding the apoptosis inhibitor may be stably integrated into the genome of the host cell.
- the method includes the further step of admixing an additional apoptosis inhibitor molecule into the culture media.
- the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
- the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell, (c) transforming or transfecting the host cell with the vector referred to in step (a), (d) providing cell culture media, (e) providing an apoptosis inhibitor, (f) admixing the apoptosis inhibitor into the culture media, (g) culturing the host cell(s) in the culture media under conditions sufficient to express the protein of interest, and (h) freezing and subsequently thawing the host cells and/or the cell culture media.
- the method provides for transient expression of the protein of interest.
- the invention provides for improved transfection methods wherein use of one or more apoptosis inhibitor(s) and increased concentrations of transfection reagent can be employed to increase transfection efficiency.
- the invention provides a protein of interest produced in accordance with any of the methods described herein.
- the protein of interest may comprise a mammalian protein or non-mammalian protein, and may optionally comprise a receptor or a ligand.
- the protein of interest will comprise a protein which itself is capable of inducing apoptosis in mammalian or non-mammalian cells in vitro or in vivo, such as Apo-2 ligand/TRAIL, Fas ligand, or TNF-alpha.
- FIG. 1A shows a graph illustrating cell viability of CHO cells grown in a 2 liter bioreactor. The data show that the cells grown in bioreactors may begin to lose viability as early as day 3, often followed by a dramatic drop in viability on the following day(s).
- FIG. 1B shows a graph illustrating the results of three apoptosis assays performed on the CHO cells (referred to in FIG. 1 A and Example 1): caspase-3 activation, DNA fragmentation and annexin/PI binding (plasma membrane (“PM”) changes). Activation of caspases was first detected on day 3, the day that drop in viability was detected (FIG. 1 A).
- FIG. 2 shows a Western blot analysis of lysates from caspase-9-DN transfected clones.
- a clone transfected with a mpsv vector (alone) was used as a control.
- the blot was probed with rabbit anti-caspase-9 antiserum (Pharmingen) and developed using chemiluminescence.
- FIG. 3 shows the results of an assay wherein caspase-9-DN clones 2 and 14, as well as controls (E25 untransfected cells and mpsv vector transfected cells) were incubated with an apoptosis inducer, staurosporine (1 micromolar). Samples were taken and cells were analyzed for the % of viable cells.
- FIG. 4 shows an analysis of caspase-3 activity or cell samples taken at 24 hours post-induction with 1 micromolar staurosporine.
- FIGS. 5-8 show assay results of caspase-9-DN expressing clones 2 and 14, as well as controls, scaled up and seeded at 1 million cells/ml in a 2 liter bioreactor. Samples were taken daily and were analyzed for viability (FIG. 5 ), viable cell count (FIG. 6 ), activity of caspase-3 (FIG. 7) and the concentration of the protein of interest (E25 antibody) secreted into the medium (FIG. 8 ).
- FIGS. 9-10 show assay results of CHO cells seeded in 60 mm dishes and exposed to caspase inhibitor, z-VAD-fmk (added to the cell culture at 100 micromolar concentration, 48 hours after seeding). The z-VAD-fmk inhibitor was added to the culture every 24 hours thereafter. Samples were taken every day and analyzed for caspase-3 activity (FIG. 9) and the % viable cells (FIG. 10 ).
- FIGS. 11-12 show assay results of a Baculovirus p35 expressing clone grown in a 2 liter bioreactor and assayed daily for cell viability (FIG. 11) and caspase-3 activity (FIG. 12 ).
- the control is a clone transfected with a vector, cpc.
- FIG. 13 shows a bar diagram of the effects of various concentrations of the transfection reagent, DMRIE-C, on cell viability.
- FIG. 14 shows a comparison of total and viable transfection efficiencies obtained for caspase-9-DN clone 14 and controls, CHO DP12 cells and E25 antibody expressing CHO DP12 cells.
- FIG. 15 shows a comparison of the specific productivity (as measured in Dnase titer/total LDH) obtained for caspase-9-DN clone 14 and controls, CHO DP12 cells and E25 antibody expressing CHO DP12 cells.
- FIG. 16 shows a comparison of the DNase titer obtained for caspase-9-DN clone 14 and controls, CHO DP12 cells and E25 antibody expressing CHO DP12 cells.
- FIGS. 17 and 18 show viability and titers of caspase-9-DN and E25 control grown in 2 liter bioreactors with temperature shift, concentrated medium and a feed.
- FIGS. 19 and 20 show viability and viable cell count of cultures of E25 control and caspase-9-DN clone 14 seeded into spinners from frozen vials. Data were obtained by trypan blue exclusion.
- FIGS. 21 and 22 show viability and E25 titers of cultures of E25 control cells and caspase-9-DN clone 14 upon induction of expression by butyrate.
- apoptosis inhibitor is used herein to refer to a molecule or substance whose expression or presence in an in vitro cell culture provides a reduction or inhibition of apoptosis in the cultured cells, or provides resistance of the cultured cells to apoptotic stimuli.
- the apoptosis inhibitor may comprise a protein or protein-like molecule, or an organic or inorganic molecule.
- the apoptosis inhibitor may be present (and/or function) intracellularly, extracellularly, or at the cell surface (membrane) of the cultured cells.
- apoptosis inhibitors contemplated by the present invention include, but are not limited to, the caspase-9 dominant negative (caspase-9-DN) mutant, bcl-2, baculovirus p35, caspase-9S (Seol,D. W. et al., J. Biol. Chem., 274, 2072-2076 (1999)), crmA, z-VAD-fmk, z-DEVD-fmk, B-D-fmk, and z-YVAD-fmk, and variants therof.
- the apoptosis inhibitor is one which acts upon one or more caspases located downstream in the intracellular cell death pathway of the cell, such as caspase-3.
- the apoptosis inhibitor will, in an effective amount, decrease or reduce apoptosis in a cell culture by at least 50%, preferably, by at least 75%, more preferably, by at least 85%, and even more preferably, by at least 95%, as compared to a control cell culture which contains no such apoptosis inhibitor.
- Apoptosis or apoptotic activity in such cell cultures can be measured and determined using assays such as described herein.
- the apoptosis inhibitor in an effective amount, will enhance or increase yield of the recombinant protein of interest by at least 1-fold, and preferably by at least 2-fold, as compared to a control cell culture which contains no such apoptosis inhibitor.
- the apoptosis inhibitor in an effective amount, will enhance or increase transfection efficiency in transient transfections, preferably by at least 1-fold and more preferably, by at least 2-fold, as compared to a control cell culture which contains no such apoptosis inhibitor.
- protein of interest refers to any protein which may be useful for research, diagnostic or therapeutic purposes.
- the protein of interest may comprise a mammalian protein or non-mammalian protein, and may optionally comprise a receptor or a ligand.
- Exemplary proteins of interest include, but are not limited to, molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone;.
- thyroid stimulating hormone lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; members of the TNF and TNF receptor (TNFR) family, like tumor necrosis factor-alpha and -beta, CD40 ligand, Apo-2 ligand/TRAIL, DR4, DR5, DcR1, DcR2, DcR3, OPG, Fas ligand; enkephalinase; RANTES (regulated on activation normally T-cell
- a protein of interest will comprise a protein which itself is capable of inducing apoptosis in mammalian or non-mammalian cells in vitro or in vivo, such as Apo-2 ligand/TRAIL, Fas ligand, or TNF-alpha.
- Isolated when used to describe the various proteins of interest disclosed herein, means protein that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with research, diagnostic or therapeutic uses for the protein of interest, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes.
- the protein will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain.
- Isolated protein includes protein in situ within recombinant cells, since at least one component of the protein of interest's natural environment will not be present. Ordinarily, however, isolated protein will be prepared by at least one purification step.
- control sequences refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism.
- the control sequences that are suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site.
- Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
- Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence.
- DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide;
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or
- a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.
- “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordace with conventional practice.
- cell As used herein, the expressions “cell”, “cell line”, and “cell culture” are used interchangeably and all such designations include progeny. Thus, the terms “transformants” and “transfectants” include the primary subject cell and cultures derived therefrom without regard for the number of transfers.
- “Growth phase” of the cell culture refers to the period of exponential cell growth (the log phase) where cells are generally rapidly dividing. During this phase, cells are cultured for a period of time, usually between 1-4 days, and under such conditions that cell growth is maximized. The determination of the growth cycle for the host cell can be determined for the particular host cell envisioned without undue experimentation. “Period of time and under such conditions that cell growth is maximized” and the like, refer to those culture conditions that, for a particular cell line, are determined to be optimal for cell growth and division.
- cells are cultured in nutrient medium containing the necessary additives generally at about 30-40° C., preferably about 37° C., in a humidified, controlled atmosphere, such that optimal growth is achieved for the particular cell line.
- Cells are maintained in the growth phase for a period of about between one and four days, usually between two to three days.
- Transition phase of the cell culture refers to the period of time during which culture conditions for the production phase are engaged. During the transition phase environmental factors such as pH, ion concentration, and temperature may shifted from growth conditions to production conditions.
- “Production phase” of the cell culture refers to the period of time during which cell growth has reached a plateau. During the production phase, logarithmic cell growth has ended and protein production is primary. During this period of time the medium is generally supplemented to support continued protein production and to achieve the desired protein product.
- the term “expression” or “expresses” is used herein to refer to transcription and translation occurring within a host cell.
- the level of expression of a product gene in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present in the cell or the amount of the protein encoded by the product gene that is produced by the cell.
- mRNA transcribed from a product gene is desirably quantitated by northern hybridization. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, pp. 7.3-7.57 (Cold Spring Harbor Laboratory Press, 1989).
- Protein encoded by a product gene can be quantitated either by assaying for the biological activity of the protein or by employing assays that are independent of such activity, such as western blotting or radioimmunoassay using antibodies that are capable of reacting with the protein. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, pp. 18.1-18.88 (Cold Spring Harbor Laboratory Press, 1989).
- apoptosis and “apoptotic activity” are used in a broad sense and refer to the orderly or controlled form of cell death in mammalian or non-mammalian cells that is typically accompanied by one or more characteristic cell changes, including condensation of cytoplasm, loss of plasma membrane microvilli, activation of caspase(s), segmentation of the nucleus, degradation of chromosomal DNA or loss of mitochondrial function. This activity can be determined and measured, for instance, by cell viability assays, FACS analysis, annexin V binding, or DNA electrophoresis such as is known in the art and described further herein.
- Cells grown in cell culture may begin to lose viability within days of initiating the culture. Loss of cell viability can particularly be problematic when culturing cells in relatively large, batch scale cultures or bioreactors. For instance, CHO cells grown in batch culture can begin to lose cell viability as early as Day 4 after which a rapid decline in viability can continue until the culture is terminated. The mechanism by which such cultured cells die may be either through necrosis or apoptosis. Using TUNEL and Annexin/PI binding assays, Applicants discovered that approximately 80% of some CHO cells grown in batch culture may die by apoptosis rather than through necrosis. As described herein, Applicants have surprisingly found methods which allow a marked reduction of such apoptosis.
- the methods disclosed in the present application have a variety of applications and improvements for recombinant protein production.
- Applicants have found the use of one or more apoptosis inhibitors in the methods of the invention may protect against potential adverse effects of agents like butyrate or TSA included in the cell culture.
- the methods herein can enhance quality of the expressed and recovered protein of interest. The quality of the expressed and recovered protein of interest may be evaluated using techniques known in the art, such as SDS-PAGE, etc.
- proteins are often capable of degrading the product quality or function of the desired recombinant protein(s) being expressed, for instance, by undesired cleavage, carbohydrate modification (glycoprotein modification)[Wittwer A., and Howard, S. C., Biochem., 29:4175-4180 (1990); Hart, Curr. Op. Cell Biol., 4:1017-1023 (1992); Goochee, et al., Bio/Technology, 9:1347-1355 (1991)], or protein structure modification (such as folding or aggregation).
- carbohydrate modification glycoprotein modification
- the present methods can decrease the number or presence of such adverse proteases in the culture media and protect the expressed protein of interest against proteolytic degradation.
- the methods herein can further be employed to increase transfection efficiency and viability of cells during transfection.
- Reagents used in various transfection techniques such as Lipofectamine or DMRIE-C (Gibco) can be relatively toxic to the cells when used in higher concentrations.
- the use of higher concentrations of transfection reagents would be particularly helpful to achieve higher transfection efficiencies.
- the expression of apoptosis inhibitor and/or the addition of apoptosis inhibitor directly to the cell culture medium can be used to reduce or inhibit cell death even when such higher concentrations of a transfection reagent are selected.
- the use of apoptosis inhibitor in this manner can result in higher transfection efficiency and higher yield of the recombinant protein of interest.
- proteins of interest which are proteins that, themselves, induce apoptosis.
- proteins like Apo-2 ligand/TRAIL or Fas ligand, can trigger apoptosis when expressed in cells.
- the presence of apoptosis inhibitor(s), in accordance with the present methods, may block such apoptotic activity and allow for improved expression of the protein of interest.
- the methods can be used to increase the viability of cells undergoing freezing/storage/thawing procedures. During these procedures generally cells can lose viability.
- the presence of apoptosis inhibitor(s) expressed in cells (or added to the cell culture media) can provide for increased cell viability and aid in reducing or eliminating the variability in cell viabilities between aliquots or vials of cells.
- the DNA encoding the protein of interest may be obtained from a variety of sources, for instance, from any cDNA library prepared from tissue believed to possess its mRNA and to express it at a detectable level.
- the gene encoding the protein of interest may also be obtained from a genomic library or by oligonucleotide synthesis. Screening such a cDNA or genomic library with a selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989).
- An alternative means to isolate the gene encoding the protein of interest is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].
- the methods of the present invention contemplate the use of a single apoptosis inhibitor-encoding gene as well as the use of a combination of two or more apoptosis inhibitor-encoding genes.
- the expression of two or more types of apoptosis inhibitor(s) in a host cell may be beneficial in controlling apoptosis in the cell culture.
- One skilled in the art can monitor the quantity or amount of apoptosis inhibitor being expressed by the host cells, such as by a Western blot analysis using an antibody that recognizes the apoptosis inhibitor.
- the quantity or amount of apoptosis inhibitor, as well as the timing of its expression can be regulated or monitored, for instance, by choosing a vector with an inducible promoter.
- apoptosis inhibitor molecules may act upon different intracellular components of the signaling pathway which leads to cell death.
- the pathways involved in cell death comprise a family of cysteine proteases, called caspases, that are related to the mammalian interleukin-1 beta converting enzyme (caspase-1) and to Ced-3, the product of a gene of C. elegans. It is believed that such caspase molecules can act at at least two different levels.
- Initiator caspases are typically “upstream” molecules that are activated in response to stimuli indicating that the cell has been stressed, damaged, or received some form of signal to initiate cell death by apoptosis.
- caspase-8 An example of such an upstream caspase is caspase-8. Initiator caspases can then, in turn, cleave and activate another family of “downstream” caspases, such as caspase-3. Depending upon the nature of the apoptotic stimulus as well as the cell type, only a portion of the signaling pathway may be involved in the signaling mechanism and execution of cell death. For example, certain apoptosis inhibitors, such as CrmA, are believed to act upon caspases, such as caspase-8, located upstream and are usually directly activated by death receptor binding to ligand. Other apoptosis inhibitors are believed to act upon other caspases located downstream in the intracellular signaling pathway.
- inhibitors of those molecule(s) that are effectively engaged (such as actively engaged in the signal transmission) in the cell death apparatus in a selected cell will be effective as apoptosis inhibitors, as described herein.
- Applicants do note, however, that those skilled in the art will understand that in such signaling pathways, there is point at which the cell is “committed” to cell death, and once the signaling pathway has transmitted a signal(s) to the point where the cell is committed to cell death, apoptosis inhibitor molecules, like those described herein, may not be effective in inhibiting or preventing the apoptosis of the “committed” cell.
- the cytokine response modifier, CrmA is a 38 kDa serpin identified from cowpox virus that has been reported to inhibit apoptosis in several systems [Gagliardini et al., Science, 263:826-828 (1994); Tewari et al., J. Biol. Chem., 270:3255-3260 (1995)]. CrmA has been evaluated as an inhibitor of caspase-1 and caspase-8 [Nicholson et al., Nature, 376:37-43 (1995); Zhou et al., J. Biol. Chem., 272:7797-7800 (1997)].
- the nucleic acids encoding the protein of interest and the apoptosis inhibitor may be inserted into replicable vector(s) for expression.
- Various vectors are publicly available.
- the vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence, each of which is described below.
- a signal sequence an origin of replication
- marker genes e.g., an enhancer element, a promoter
- transcription termination sequence each of which is described below.
- Optional signal sequences, origins of replication, marker genes, enhancer elements and transcription terminator sequences that may be employed are known in the art and described in further detail in WO97/25428.
- the gene encoding the apoptosis inhibitor and the gene encoding the protein of interest may be inserted into a single vector (co-transfected), or be inserted into two separate or different vectors. Preferably, the respective genes are inserted into two separate vectors. Each such vector will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, puromycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
- selectable markers for mammalian cells are those that enable the identification of cells competent to take up the encoding nucleic acid, such as DHFR or thymidine kinase.
- An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980).
- a suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)].
- the trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].
- a first vector comprising an apoptosis inhibitor gene and a second vector comprising a gene encoding the protein of interest it is preferred that the first and second vector carry different selection markers.
- a vector comprising the apoptosis inhibitor gene might carry a selection gene to confer ampicillin resistance while the vector comprising the gene encoding the protein of interest might carry a selection gene to confer methotrexate resistance.
- Expression vectors usually also contain a promoter that is recognized by the host organism and is operably linked to the inserted nucleic acid sequence(s) described above. Promoters are untranslated sequences located upstream (5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of a particular nucleic acid sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to the encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector.
- Promoters suitable for use with prokaryotic and eukaryotic hosts are known in the art, and are described in further detail in WO97/25428.
- transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired protein encoded by the expression vector [Sambrook et al., supra].
- Transient expression systems comprising a suitable expression vector and a host cell, allow for the convenient positive identification of proteins encoded by cloned DNAs, as well as for the rapid screening of such proteins for desired biological or physiological properties.
- Host cells are transfected or transformed with the above-described expression vectors for production of the protein of interest and cultured in nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
- Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO 4 and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell. As described above, the use of an apoptosis inhibitor gene (or adding an apoptosis inhibitor molecule directly to the culture media) may improve transfection efficiency. It is believed that use of such apoptosis inhibitor(s) will allow for use of increased amounts of transfection reagents, such as Lipofectamine or DMRIE-C (as described in the Examples below).
- transfection reagents such as Lipofectamine or DMRIE-C (as described in the Examples below).
- Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells.
- the calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers.
- Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published Jun. 29, 1989.
- plants may be transfected using ultrasound treatment as described in WO 91/00358 published Jan. 10, 1991.
- DNA into cells such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used.
- polycations e.g., polybrene, polyornithine.
- Suitable host cells for expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells.
- Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli.
- Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,53 7 ); E.
- coli strain W3110 ATCC 27,325) and K5 772 (ATCC 53,635); Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as P. aeruginosa, and Streptomyces.
- Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as P. aeruginosa, and Streptomyces.
- eukaryotic microbes such as filamentous fungi or yeast are suitable.
- Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.
- Suitable host cells may be derived from multicellular organisms.
- invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells.
- useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci.
- dp12.CHO EP 307,247 published Mar. 15, 1989
- mouse sertoli cells TM4, Mather, Biol. Reprod., 23:243-251 (1980)
- human lung cells W138, ATCC CCL 75
- human liver cells Hep G2, HB 8065
- mouse mammary tumor MMT 060562, ATCC CCL51.
- the selection of the appropriate host cell is deemed to be within the skill in the art.
- Prokaryotic cells used to produce the protein of interest may be cultured in suitable culture media as described generally in Sambrook et al., supra. Particular forms of culture media that may be employed for culturing CHO are described further in the Examples below.
- Mammalian host cells used to produce the protein of interest may be cultured in a variety of culture media. Suitable culture conditions for mammalian cells are well known in the art (J. Immunol. Methods (1983)56:221-234) or can be easily determined by the skilled artisan (see, for example, Animal Cell Culture: A Practical ApDroach 2nd Ed., Rickwood, D. and Hames, B. D., eds. Oxford University Press, New York (1992)), and vary according to the particular host cell selected.
- Examples of commercially available culture media include Ham's F10 (Sigma), Minimal Essential Medium (“MEM”, Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium (“DMEM”, Sigma).
- any of the media described in Ham and Wallace,(1979) Meth. Enz., 58:44; Barnes and Sato,(1980) Anal. Biochem., 102:255; U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 5,122,469 or 4,560,655; International Publication Nos. WO 90/03430; and WO 87/00195 may be used.
- Any such media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as GentamycinTM drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art.
- the culture conditions such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
- the amount of apoptosis inhibitor added directly, or admixed, to the culture media will depend on various factors, for instance, the type of apoptosis inhibitor molecule being employed, the type of host cell, culture conditions, etc. Determining the desired concentration of apoptosis inhibitor to be added to the culture media is within the skill in the art and can be ascertained empirically without undue experimentation. Preferably, an effective amount or desired concentration of apoptosis inhibitor added directly to the culture media is such that the apoptosis inhibitor penetrates into the host cell. The skilled artisan will readily appreciate that different apoptosis inhibitors may have different abilities to penetrate into the host cell, and therefore, one should choose a concentration which allows for such penetration into the host cell.
- apoptosis inhibitor There will typically be an upper range of concentration of apoptosis inhibitor which may not be desirable as the concentration approaches a range which is adverse or toxic to the host cells.
- concentration approaches a range which is adverse or toxic to the host cells.
- z-VAD-fmk can inhibit apoptosis when added to cell cultures at a concentration of about 100 micromolar.
- a variety of apoptosis inhibitor compounds such as z-VAD-fmk, z-DEVD-fmk, B-D-fmk, and z-YVAD-fmk are available from vendors, such as Pharmingen and Enzyme Systems, Livermore, Calif.
- the apoptosis inhibitor may be added directly into the culture media.
- the apoptosis inhibitor may be added at any point during the culturing of the cells.
- the apoptosis inhibitor is added to the culture media at the beginning (at the time of initiating, day 0) of the cell culturing process.
- such an apoptosis inhibitor would be added to the culture media during the culturing of the cells but prior to the point when induction of apoptosis occurs; typically, induction of apoptosis can be observed in large scale cell cultures on about day 3 or day 4 of the culture, and therefore, the apoptosis inhibitor will preferably be added prior to day 3 or day 4.
- a desired quantity of apoptosis inhibitor is added throughout, or for the duration of, the cell culture, for instance, on a daily basis for the entire fermentation.
- the apoptosis inhibitor could be added at day 0, and every 24 hours thereafter until the culture is terminated.
- the selected host cell is a CHO cell, preferably, a dp12.CHO cell
- the selected culture medium contains a basal medium component such as a DMEM/HAM F-12 based formulation (for composition of DMEM and HAM F12 media and especially serum free media, see culture media formulations in American Type Culture Collection Catalogue of Cell Lines and Hybridomas, Sixth Edition, 1988, pages 346-349) (the formulation of medium as described in U.S. Pat. No.
- 5,122,469 are particularly appropriate) with modified concentrations of some components such as amino acids, salts, sugar, and vitamins, and optionally containing glycine, hypoxanthine, and thymidine; recombinant human insulin, hydrolyzed peptone, such as Primatone HS or Primatone RL (Sheffield, England), or the equivalent; a cell protective agent, such as Pluronic F68 or the equivalent pluronic polyol; Gentamycin; and trace elements.
- the selected cell culture media is serum free.
- the proteins of interest may be produced by growing the host cells under a variety of cell culture conditions. For instance, cell culture procedures for the large or small scale production of proteins are potentially useful within the context of the present invention. Procedures including, but not limited to, a fluidized bed bioreactor, hollow fiber bioreactor, roller bottle culture, or stirred tank bioreactor system may be used, in the later two systems, with or without microcarriers, and operated alternatively in a batch, fed-batch, or continuous mode.
- the cell culture of the present invention is performed in a stirred tank bioreactor system and a fed batch culture procedure is employed.
- the size of the bioreactors are sufficiently large to produce the desired amount of protein of interest, such as 1,000 Liter or 12,000 Liter sizes, but are not limited to such sizes as much smaller (i.e., 2 Liter, 400 Liter) or larger (i.e., 25,000 Liter, 50,000 Liter) bioreactor vessels may be appropriate.
- the mammalian host cells and culture medium are supplied to a culturing vessel initially and additional culture nutrients are fed, continuously or in discrete increments, to the culture during culturing, with or without periodic cell and/or product harvest before termination of culture.
- the fed batch culture can include, for example, a semi-continuous fed batch culture, wherein periodically whole culture (including cells and medium) is removed and replaced by fresh medium.
- Fed batch culture is distinguished from simple batch culture in which all components for cell culturing (including the cells and all culture nutrients) are supplied to the culturing vessel at the start of the culturing process.
- Fed batch culture can be further distinguished from perfusion culturing insofar as the supernate is not removed from the culturing vessel during the process but at the termination of the culture process (in perfusion culturing, the cells are restrained in the culture by, e.g., filtration, encapsulation, anchoring to microcarriers etc. and the culture medium is continuously or intermittently introduced and removed from the culturing vessel).
- the cultured cells may be propagated according to any scheme or routine that may be suitable for the particular host cell and the particular production plan contemplated. Therefore, the present invention contemplates a single step or multiple step culture procedure.
- a single step culture the host cells are inoculated into a culture environment and the method steps of the instant invention are employed during a single production phase of the cell culture.
- a multi-stage culture is envisioned.
- cells may be cultivated in a number of steps or phases. For instance, cells may be grown in a first step or growth phase culture wherein cells, possibly removed from storage, are inoculated into a medium suitable for promoting growth and high viability. The cells may be maintained in the growth phase for a suitable period of time by the addition of fresh medium to the host cell culture.
- fed batch or continuous cell culture conditions are devised to enhance growth of the mammalian cells in the growth phase of the cell culture.
- cells are grown under conditions and for a period of time that is maximized for growth.
- Culture conditions such as temperature, pH, dissolved oxygen (dO 2 ) and the like, are those used with the particular host and will be apparent to the ordinarily skilled artisan.
- the pH is adjusted to a level between about 6.5 and 7.5 using either an acid (e.g., CO 2 ) or a base (e.g., Na 2 CO 3 or NaOH).
- a suitable temperature range for culturing mammalian cells such as CHO cells is between about 30 to 38° C. and preferably about 37° C. and a suitable dO 2 is between 5-90% of air saturation.
- the cells may be used to inoculate a production phase or step of the cell culture.
- the production phase or step may be continuous with the inoculation or growth phase or step.
- the cell culture environment during the production phase of the cell culture is controlled.
- the concentration of apoptosis inhibitor in the culture medium can be manipulated such that the desired content and quality of the protein of interest is achieved and maintained in the resulting cell culture fluid.
- the production phase of the cell culture is preceded by a transition phase of the cell culture in which expression of or addition of apoptosis inhibitor(s) for the production phase of the cell culture are engaged.
- Concentrations of apoptosis inhibitor(s) are preferably monitored in connection with other process parameters such as the osmolality of the production phase since osmolality can affect the cell specific productivity.
- butyrate in any of the above-described methods, it is contemplated that it may be desirable to include a desired amount of agent like butyrate or TSA in the cell culture medium.
- agent like butyrate or TSA
- Various forms of butyrate and its salts are known in the art, such as butyric acid and sodium butyrate, and are publicly available from sources such as Sigma Chemical Co. Butyrate has been reported in the literature to enhance the productivity and protein expression of cell cultures [Arts et al., Biochem J., 310:171-176 (1995); Gorman et al., Nucleic Acids Res., 11:7631-7648 (1983); Krugh, Mol. Cell.
- Trichostatin A is an inhibitor of histone deacetylase and may act similarly to butyrate in enhancing the productivity and protein expression in cell cultures [Medina et al., Cancer Research, 57:3697-3707 (1997)]. Although butyrate has some positive effects on protein expression, it is also appreciated in the art that at certain concentrations, butyrate can induce apoptosis in the cultured cells and thereby decrease viability of the culture as well as viable cell density [Hague et al., Int. J.
- a desired amount of butyrate or TSA may be added to the cell culture at the onset of the production phase and more preferably, may be added to the cell culture after a temperature shift has been implemented.
- Butyrate or TSA can be added in a desired amount determined empirically by those skilled in the art, but preferably, butyrate is added to the cell culture at a concentration of about 1 to about 25 mM, and more preferably, at a concentration of about 1 to about 6 mM.
- Expression of the protein of interest may be measured in a sample directly, for example, by ELISA, conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe.
- Various labels may be employed, most commonly radioisotopes, and particularly 32 p.
- other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide.
- the biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionucleotides, fluorescers or enzymes.
- labels such as radionucleotides, fluorescers or enzymes.
- antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.
- the antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
- Gene expression may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product.
- immunohistochemical staining techniques a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like.
- Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal.
- the culture medium or lysate may be centrifuged to remove particulate cell debris.
- the protein of interest thereafter is purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cationexchange resin such as DEAE; chromatography on protein A Sepharose columns, chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; and gel filtration using, for example, Sephadex G-75.
- the recovered or purified protein of interest will typically be analyzed by one or more of the following methods: SDS-polyacrylamide gel electrophoresis, HPLC, mass spectrometry of a tryptic digest, glycoprotein analysis and activity assays.
- the cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements.
- Cells were grown at 37° C. with agitation set at 275 rpm. pH was kept at 7.2 and was automatically adjusted throughout the experiment. Bioreactors were sparged with a mixture of oxygen and air. This is a model system that mimics the conditions during large-scale production of therapeutic proteins.
- FIG. 1A shows cell viability as determined (by Trypan blue exclusion) over the course of 5 days.
- FIG. 1B shows that loss of cell viability over the 5 day period in culture was the result of apoptosis.
- caspase-9-DN caspase-9-dominant negative
- caspase-9-DN/pcDNA3 construct was digested with 5 U of HindIII and 5 U of XbaI with 2 ul of buffer B (Boehringer Mannheim) in a total volume of 20 ul for 1 hour at 37° C. After incubation, 1 ul of 1 mM dNTPs (Clontech) and 0.2 U of Klenow polymerase (Boehringer Mannheim) was added to each reaction and the incubation was continued for an additional 15 minutes at 37° C.
- MaxEfficiency DH5alfa competent cells (Gibco BRL) were transformed with 2 ul ligation mixture according to manufacturer's instructions. Transformed cells were then plated on carbenicillin containing LB plates. Colonies were randomly picked and analyzed by restriction digest to identify a colony containing the correct construct. Colony #30 was chosen for further work.
- E25 producing CHO DP12 cells [as designated throughout the present application, “E25” refers to the transfected CHO cells expressing a humanized monoclonal antibody against human IgE; see Presta et al., J. Immunology, 151:2623-2632 (1993)] were chosen for transfection with mpsv/caspase-9-DN and mpsv vector. Transfection was done using LipofectAMINE Plus Reagent (Gibco BRL) and was performed as follows:
- E25 cells grown in suspension were plated on 60 mm tissue culture dishes (1 million cells/plate) 24 hours prior to transfection in a serum-containing medium.
- DNA for transfection was quantified spectrophotometrically. Two ug of DNA was mixed with 250 ul serum-free medium and 8 ul of Plus reagent and incubated for 15 minutes at room temperature. Twelve ul of reagent were mixed with 250 ul of serum-free medium and directly added to the mixture followed by incubation for15 minutes at room temperature. The medium on top of the cells was replaced with 5 ml of fresh serum-free medium and the transfection mixture was added to the dish. Three hours post-transfection, medium was replaced with a serum-containing medium.
- each transfected dish was split into 5 dishes and a selection pressure was applied by the addition of 5 ug/ml puromycin.
- Transfected clones (resistant to puromycin) began to appear about two weeks after transfection.
- Several clones were chosen for analysis of caspase-9-DN expression by Western blotting.
- the membrane was probed with rabbit anti-caspase-9 serum (Pharmingen) followed by HRP conjugated goat-anti-rabbit antiserum and developed using ECL Western Blotting detection Reagent (Amersham). Clones with high as well as low expression of caspase-9-DN (clones 2 and 14) were selected for further characterization. See FIG. 2 .
- Clones 2 and 14 expressing low and high levels of caspase-9-DN were adapted to growth in serum-free medium in spinners. Clones were seeded in spinners at 1 million cells/ml and an apoptosis inducing agent, staurosporine (Sigma), was added at 1 uM final concentration. Aliquots of culture were analyzed for apoptosis by several assays: annexin/PI (Chemicon) to measure the % of apoptotic cells and by caspase-3 activity (Clontech) according to manufacturer's instructions. See FIGS. 3 and 4.
- the cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Cells were grown at 37° C. with agitation set at 275 rpm. pH was kept at 7.2 and was automatically adjusted throughout the experiment. Bioreactors were sparged with a mixture of oxygen and air. This is a model system that mimics the conditions during large-scale production of therapeutic proteins.
- the results show stable expression of caspase-9-DN in CHO cells expressing E25.
- the stable expression resulted in a resistance of the cells to an apoptosis inducing agent, staurosporine.
- the resistance was proportional to the expression levels of caspase-9-DN.
- the high expessing clone 14 showed dramatically prolonged viability and viable cell count compared with the lower expressing clone 2, which showed only a moderate prolongation of viability and viable cell count. Prolongation of viability is reflected in the delayed onset of caspase-3 activation in clone 14 compared with the controls. Unexpected results were obtained in the assay for the amount of E25 antibody secreted into the medium.
- caspase-9-DN clone 14 resulted in superior prolongation of viability in the bioreactor than clone 2, clone 14 produced less protein of interest (E25 antibody). The data suggested that high expression of apoptosis inhibitor may not concomitantly delay cell death and increase yield of the protein of interest.
- a cell culture was similarly run as described above with the exception of the following changes: (1) caspase-9-expressing clone 14 and E25 control cells were seeded at 1 million cells/ml; and (2) the medium was a serum free, concentrated medium (used to enhance nutrient supply in the medium) based on DMEM/Ham F-12 with insulin and trace elements.
- the cell cultures were grown for 1 day at 37° C. and then temperature shifted to 33° C. On the third day, the pH of the cultures was shifted from pH 7.15 to pH 7.0, and the cultures were fed with concentrated DMEM/Ham F-12, glucose and protein hydrolysate medium in order to supply enough nutrients to support optimal growth.
- FIGS. 17 and 18 The results are shown in FIGS. 17 and 18. As illustrated in the graphs, caspase-9-DN expression resulted in prolongation of viability and increase in viable cell densities, as well as higher titers of the protein of interest (E25 antibody) as compared to the control. Under the conditions of fed-batch culture where nutrients were not limiting, the data showed that prolongation of viability and increase in viable cell densities were accompanied by a marked increase in product titer.
- CHO (dhfr+) cells grown in suspension were seeded at 1 million cells/ml in 60 mm tissue culture dishes.
- the cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Viability of the culture on day 0 was 96%.
- Two plates were analyzed each day for viability by Trypan Blue exclusion and by annexin/PI binding (Clontech) and for viable cell density. The experiment was carried out for 10 days.
- a chemical inhibitor of caspases, z-VAD-fmk (Enzyme Systems Products) was dissolved in DMSO to make a 100 mM (1000 ⁇ ) stock and 4 ul was added to a 60 mm dish containing 4 ml of culture.
- the inhibitor was added 48 hours after the start of the experiment (prior to the onset of apoptosis) and a new aliquot of the z-VAD-fmk inhibitor was added every 24 hours. Controls were cultures without any addition and cultures with the addition of DMSO only.
- the chemical compound, z-VAD-fmk is a caspase inhibitor and when added to the culture at 100 uM concentration, resulted in an inhibition of caspase-3 activity and prolongation of cell viability.
- Baculovirus p35 cDNA was cut out of the pcDNA 3 vector (Invitrogen) with the same restriction enzymes. An aliquot of each reaction was analyzed by electrophoresis in 1% agarose gel containing ethidium bromide. Bands corresponding to the linearized CPC vector (9.7 kbp) and p35 cDNA (0.9 kbp) were cut out of the gel and isolated using GeneClean (Bio 101, Inc.) according to manufacturer's instructions.
- T4 ligation buffer 50 ng of vector and 25 ng of p35 cDNA were mixed with 10 ul of T4 ligation buffer and 1 ul T4 DNA ligase (Rapid DNA Ligation Kit, Boehringer Mannheim) in 20 ul total reaction volume. The reaction was incubated for 5 minutes at room temperature.
- baculovirus p35 in CHO cells: CHO (dhfr+) cells grown in a DMEM/Ham F-12 media containing 2% fetal bovine serum (Gibco), recombinant human insulin and trace elements were plated 48 hours prior to transfection at 2 million cells/100 m tissue culture dish. LipofectAMINE Plus Reagent (Gibco BRL) was used for transfection and was performed according to manufacturer's instructions. CHO cells were transfected with a p35 /CPC construct and CPC vector alone as a control.
- transfected plate of each type was harvested 24 hours after transfection to assay the level of p35 expression in transient transfectants (Western blotting using anti-p35 rabbit polyclonal serum at 1:1000 dilution). Other tranfected plates were grown further and selection pressure (5 ug/ml puromycin) was applied 48 hours post-transfection. About two weeks later colonies resistant to puromycin developed and were adapted to serum free growth and scaled up for further analysis.
- the cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Cells were grown at 37° C. with agitation set at 275 rpm. pH was kept at 7.2 and was automatically adjusted throughout the experiment. Bioreactors were sparged with a mixture of oxygen and air. This is a model system that mimics the conditions during large-scale production of therapeutic proteins. Samples were taken every day to measure the following parameters: cell viability, cell density, apoptosis, caspase-3 activation, glucose consumption, osmolality and lactate production.
- Serum free adapted CHO DP12 cells were seeded at 1.5 million cells/ml in untreated 12 well tissue culture plates in medium based on DMEM/HAM F-12 with modified concentrations of some components and containing recombinant human insulin, trace elements and serum. Transfection was performed using DMRIE-C (Gibco BRL) according to manufacturer's instructions. Caspase-9-DN expressing clone 14 was transfected next to controls which were CHO DP12 cells and E25 cells (CHO DP12, expressing E25).
- Red shifted GFP expressing vector (Quantum Biotechnologies Inc.) was co-transfected with a DNase expressing vector [Shak, S. et al., (1990), Proc Natl. Acad. Sci USA, 87:9188-9192)]. 24 hours post-transfection, propidium iodide was added to an aliquot of the culture and total and viable transfection efficiencies were assayed by flow cytometry on FACSCalibur (Becton Dickinson). Five days after transfection, a sample of the medium was subjected for DNase titer analysis using ELISA.
- transfection reagent in our experiment DMRIE-C, can be toxic to cells when used at higher concentrations (above 6 ul).
- caspase-9-DN clone 14 shows (in all concentrations of DMRIE-C tested) higher total and viable transfection efficiencies than controls.
- the transfection efficiency of clone 14 increased with the amount of transfection reagent and reached maximum at 12 ul of DMRIE-C, at which concentration both controls already started to show a decrease in transfection efficiency. It is possible that transfection efficiency of clone 14 will increase even further when higher than currently tested amount of DMRIE-C is used.
- the increase in transfection efficiency of clone 14 was reflected in the specific productivity (DNase titer/total LDH) of the culture and in DNase titer (FIGS. 15, 16 ), both of which were increased up to four-fold compared with the controls.
- 2 ⁇ 10 7 cells of caspase-9-DN expressing clone 14 and E25 control cells were frozen in a freezing medium (1 g/L methylcellulose in modified DMEM/Ham F-12 and 10% DMSO) and stored at ⁇ 80° C. for an extended period of time.
- a freezing medium (1 g/L methylcellulose in modified DMEM/Ham F-12 and 10% DMSO)
- vials of frozen cells were taken out of the freezer, thawed at 37° C. and added to a spinner with a pre-warmed growth medium (modified DMEM/Ham F-12). Cells were cultured for 8 days and assayed for viability and viable cell density.
- FIGS. 19 and 20 The results indicate that caspase-9-DN expressing cells maintained higher viability and viable cell count than the control E25 cells. Thus, expression of caspase-9-DN in the CHO cells had a beneficial effect on viability and viable cell densities upon thawing the frozen cell cultures.
- FIGS. 21 and 22 The results are shown in FIGS. 21 and 22.
- the results showed that E25 control cells lose viability more rapidly than caspase-9-DN expressing cells (see FIG. 21, day 7 and day 9). This is reflected in the titers of protein of interest.
- Titers shown in FIG. 22 indicate that caspase-9-DN cells gave higher titers than 0 butyrate addition in cultures with 1 ,2 ,3 and 5 mM butyrate.
- titers of E25 controls improved with only 1 and 2 mM butyrate.
- caspase-9-DN expression protects cells from adverse effects of butyrate and can result in extended viability and higher titers.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Virology (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention provided improved methods of making and producing recombinant proteins in in vitro cultures of host cells using apoptosis inhibitors. The use of one or more apoptosis inhibitors in the methods can reduce apoptosis in the cell cultures and markedly improve yield of the desired recombinant proteins.
Description
This is a non-provisional application claiming priority under Section 119(e) to provisional application no. 60/156,232, filed Sep. 27, 1999, the contents of which are incorporated herein by reference.
The present invention relates generally to improved methods of making recombinant proteins using one or more apoptosis inhibitors.
Control of cell numbers in mammals is believed to be determined, in part, by a balance between cell proliferation and cell death. One form of cell death, sometimes referred to as necrotic cell death, is typically characterized as a pathologic form of cell death resulting from some trauma or cellular injury. In contrast, there is another, “physiologic” form of cell death which usually proceeds in an orderly or controlled manner. This orderly or controlled form of cell death is often referred to as “apoptosis” [see, e.g., Barr et al., Bio/Technology, 12:487-493 (1994); Steller et al., Science, 267:1445-1449 (1995)]. Apoptotic cell death naturally occurs in many physiological processes, including embryonic development and clonal selection in the immune system [Itoh et al., Cell, 66:233-243 (1991)].
Control of cell numbers in cell culture and bioreactors is also a balance between cell proliferation and cell death. There have been reports in the literature indicating cell death in bioreactors can be an apoptotic process [Suzuki E., et al., Cytotechnology, 23:55-59 (1997); Al-Rubeai, M. and Singh R. P, Curr. Opin. Biotech, 9:152-156 (1998)]. It has been described that the apoptotic process may be induced by nutrient deprivation [Franek F. and Chládkova-{haeck over (S)}rámková K., Cytotechnology, 18:113-117 (1995); Mercille S. and Massie B., Biotechnol. Bioeng., 44:1140-1154 (1994); Singh R. P., et al., Biotechnol. Bioeng., 44:720-726 (1994)], serum deprivation [Singh R. P., et al., Biotechnol. Bioeng., 44:720-726 (1994); Zanghi A., et al., Biotech. Bioeng., 64:108-119 (1999)] or other controllable parameters of cell culture in bioreactors, but is not controlled fully because of bioreactor mechanics, a lack of full understanding of necessary culture parameters, or other undetermined causes.
As presently understood, the apoptosis or cell death program contains at least three important elements—activators, inhibitors, and effectors; in C. elegans, these elements are encoded respectively by three genes, Ced-4 4, Ced-9 and Ced-3 [Steller, Science, 267:1445 (1995); Chinnaiyan et al., Science, 275:1122-1126 (1997); Wang et al., Cell, 90:1-20 (1997)]. Two of the TNFR family members, TNFR1 and Fas/Apo1 (CD95), can activate apoptotic cell death [Chinnaiyan and Dixit, Current Biology, 6:555-62 (1996); Fraser and Evan, Cell; 85:781-784 (1996)]. TNFR1 is also known to mediate activation of the transcription factor, NF-KB [Tartaglia et al., Cell, 74:845-853 (1993); Hsu et al., Cell, 84:299-308 (1996)]. In addition to some ECD homology, these two receptors share homology in their intracellular domain (ICD) in an oligomerization interface known as the death domain [Tartaglia et al., supra; Nagata, Cell, 88:355 (1997)]. Death domains are also found in several metazoan proteins that regulate apoptosis, namely, the Drosophila protein, Reaper, and the mammalian proteins referred to as FADD/MORT1, TRADD, and RIP [Cleaveland and Ihle, Cell, 81:479-482 (1995)].
Upon ligand binding and receptor clustering, TNFR1 and CD95 are believed to recruit FADD into a death-inducing signaling complex. CD95 purportedly binds FADD directly, while TNFR1 binds FADD indirectly via TRADD [Chinnaiyan et al., Cell, 81:505-512 (1995); Boldin et al., J. Biol. Chem., 270:387-391 (1995); Hsu et al., supra; Chinnaiyan et al., J. Biol. Chem., 271:4961-4965 (1996)]. It has been reported that FADD serves as an adaptor protein which recruits the Ced-3-related protease, MACH-alpha/FLICE (caspase 8), into the death signaling complex [Boldin et al., Cell, 85:803-815 (1996); Muzio et al., Cell, 85:817-827 (1996)]. MACH-alpha/FLICE appears to be the trigger that sets off a cascade of apoptotic proteases, including the interleukin-1beta converting enzyme (ICE) and CPP32/Yama, which may execute some critical aspects of the cell death programme [Fraser and Evan, supra].
It was recently disclosed that programmed cell death involves the activity of members of a family of cysteine proteases related to the C. elegans cell death gene, ced-3, and to the mammalian IL-1-converting enzyme, ICE. The activity of the ICE and CPP32/Yama proteases can be inhibited by the product of the cowpox virus gene, crmA [Ray et al., Cell, 69:597-604 (1992); Tewari et al., Cell, 81:801-809 (1995)]. Recent studies show that CrmA can inhibit TNFR1- and CD95-induced cell death [Enari et al., Nature, 375:78-81 (1995); Tewari et al., J. Biol. Chem., 270:3255-3260 (1995)].
As reviewed recently by Tewari et al., TNFR1, TNFR2 and CD40 modulate the expression of proinflammatory and costimulatory cytokines, cytokine receptors, and cell adhesion molecules through activation of the transcription factor, NF-KB [Tewari et al., Curr. Op. Genet. Develop., 6:39-44 (1996)]. NF-KB is the prototype of a family of dimeric transcription factors whose subunits contain conserved Rel regions [Verma et al., Genes Develop., 9:2723-2735 (1996); Baldwin, Ann. Rev. Immunol., 14:649-681 (1996)]. In its latent form, NF-KB is complexed with members of the IKB inhibitor family; upon inactivation of the IKB in response to certain stimuli, released NF-KB translocates to the nucleus where it binds to specific DNA sequences and activates gene transcription.
For recent reviews of such signaling pathways, see, e.g., Ashkenazi et al., Science, 281:1305-1308 (1998); Nagata, Cell, 88:355-365 (1997).
To date, there have been conflicting reports as to the effects of caspase inhibitors and expression of anti-apoptotic genes on cultured recombinant cells. For instance, Murray et al., Biotech. Bioeng., 51:298-304 (1996) describe that overexpression of bcl-2 in NSO myeloma cells failed to affect the decline phase characteristics of the cultured cells. Other investigators have found, in contrast, that bcl-2 can be effective in preventing different cell lines from death under cell-culture conditions [see, e.g., Itoh et al., Biotechnol. Bioeng., 48:118-122 (1995); Mastrangelo et al., TIBTECH, 16:88-95 (1998); Simpson et al., Biotechnol. Bioeng., 54:1-16 (1997); Singh et al., Biotechnol. Bioeng., 52:166-175 (1996)]. Goswami et al., Biotechnol. Bioeng., 62:632-640 (1999) report that they found that the caspase inhibitor, z-VAD-fmk, was unable to substantially extend the life of a serum-free culture of CHO cells.
The present invention is based on Applicants' findings that employing one or more apoptosis inhibitor(s) in recombinant cell culturing and protein production can markedly reduce apoptosis in the cell culture and improve recombinant protein production techniques. The methods disclosed in present application are useful, for example, in prolonging cell viability in cell cultures or improving or enhancing yield of the recombinant proteins from the cell cultures. Further improvements provided by the invention are described in detail below.
In one embodiment, the invention provides a method of making recombinant proteins using one or more apoptosis inhibitors. The method includes the steps of (a) providing a vector comprising a gene encoding an apoptosis inhibitor, (b) providing a vector comprising a gene encoding a protein of interest, (c) providing a host cell, (d) transforming or transfecting the host cell with the vectors referred to in steps (a) and (b), (e) providing cell culture media, (f) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (g) recovering or purifying the protein of interest from the host cells and/or the cell culture media. Optionally, the method further includes the step of admixing an additional apoptosis inhibitor into the culture media. In the method, the respective genes encoding the apoptosis inhibitor and the protein of interest may be inserted into a single vector (e.g., co-transfected in a single vector), or alternatively, be inserted into two separate vectors. Preferably, the respective genes encoding the apoptosis inhibitor and the protein of interest are inserted into two separate vectors, each vector having a different type of selection marker from the other vector. Optionally, the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor. Optionally, the gene encoding the apoptosis inhibitor comprises a gene encoding the caspase-9-DN protein or baculovirus p35.
In another embodiment, the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell comprising DNA encoding an apoptosis inhibitor, (c) transforming or transfecting the host cell(s) with the vector referred to in step (a), (d) providing cell culture media, (e) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (f) recovering or purifying the protein of interest from the host cells and/or cell culture media. Optionally, the gene encoding the apoptosis inhibitor may be stably integrated into the genome of the host cell. Optionally, the method includes the further step of admixing an additional apoptosis inhibitor molecule into the culture media. Optionally, the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
In another embodiment, the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell, (c) transforming or transfecting the host cell with the vector referred to in step (a), (d) providing cell culture media, (e) providing an apoptosis inhibitor, (f) admixing the apoptosis inhibitor into the culture media, (g) culturing the host cell(s) in the culture media under conditions sufficient to express the protein of interest, and (h) recovering or purifying the protein of interest from the host cells and/or the cell culture media. Optionally, the method provides for transient expression of the protein of interest.
In another embodiment, the method includes the steps of (a) providing a vector comprising a gene encoding an apoptosis inhibitor, (b) providing a vector comprising a gene encoding a protein of interest, (c) providing a host cell, (d) transforming or transfecting the host cell with the vectors referred to in steps (a) and (b), (e) providing cell culture media, (f) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (g) freezing and subsequently thawing the host cells and/or the cell culture media. Optionally, the method further includes the step of admixing an additional apoptosis inhibitor into the culture media in steps (e) or (f). In the method, the respective genes encoding the apoptosis inhibitor and the protein of interest may be inserted into a single vector, or alternatively, be inserted into two separate vectors. Preferably, the respective genes encoding the apoptosis inhibitor and the protein of interest are inserted into two separate vectors, each vector having a different type of selection marker from the other vector. Optionally, the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
In another embodiment, the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell comprising DNA encoding an apoptosis inhibitor, (c) transforming or transfecting the host cell(s) with the vector referred to in step (a), (d) providing cell culture media, (e) culturing the transformed or transfected host cell(s) in the culture media under conditions sufficient to express the protein of interest and the apoptosis inhibitor, and (f) freezing and subsequently thawing the host cells and/or cell culture media. Optionally, the gene encoding the apoptosis inhibitor may be stably integrated into the genome of the host cell. Optionally, the method includes the further step of admixing an additional apoptosis inhibitor molecule into the culture media. Optionally, the method provides for transient expression of the protein of interest and stable or transient expression of the apoptosis inhibitor.
In another embodiment, the method includes the steps of (a) providing a vector comprising a gene encoding a protein of interest, (b) providing a host cell, (c) transforming or transfecting the host cell with the vector referred to in step (a), (d) providing cell culture media, (e) providing an apoptosis inhibitor, (f) admixing the apoptosis inhibitor into the culture media, (g) culturing the host cell(s) in the culture media under conditions sufficient to express the protein of interest, and (h) freezing and subsequently thawing the host cells and/or the cell culture media. Optionally, the method provides for transient expression of the protein of interest.
In a still further embodiment, the invention provides for improved transfection methods wherein use of one or more apoptosis inhibitor(s) and increased concentrations of transfection reagent can be employed to increase transfection efficiency.
In an even further embodiment, the invention provides a protein of interest produced in accordance with any of the methods described herein. The protein of interest may comprise a mammalian protein or non-mammalian protein, and may optionally comprise a receptor or a ligand. In one embodiment of the invention, the protein of interest will comprise a protein which itself is capable of inducing apoptosis in mammalian or non-mammalian cells in vitro or in vivo, such as Apo-2 ligand/TRAIL, Fas ligand, or TNF-alpha.
FIG. 1A shows a graph illustrating cell viability of CHO cells grown in a 2 liter bioreactor. The data show that the cells grown in bioreactors may begin to lose viability as early as day 3, often followed by a dramatic drop in viability on the following day(s).
FIG. 1B shows a graph illustrating the results of three apoptosis assays performed on the CHO cells (referred to in FIG. 1A and Example 1): caspase-3 activation, DNA fragmentation and annexin/PI binding (plasma membrane (“PM”) changes). Activation of caspases was first detected on day 3, the day that drop in viability was detected (FIG. 1A).
FIG. 2 shows a Western blot analysis of lysates from caspase-9-DN transfected clones. A clone transfected with a mpsv vector (alone) was used as a control. The blot was probed with rabbit anti-caspase-9 antiserum (Pharmingen) and developed using chemiluminescence.
FIG. 3 shows the results of an assay wherein caspase-9- DN clones 2 and 14, as well as controls (E25 untransfected cells and mpsv vector transfected cells) were incubated with an apoptosis inducer, staurosporine (1 micromolar). Samples were taken and cells were analyzed for the % of viable cells.
FIG. 4 shows an analysis of caspase-3 activity or cell samples taken at 24 hours post-induction with 1 micromolar staurosporine.
FIGS. 5-8 show assay results of caspase-9- DN expressing clones 2 and 14, as well as controls, scaled up and seeded at 1 million cells/ml in a 2 liter bioreactor. Samples were taken daily and were analyzed for viability (FIG. 5), viable cell count (FIG. 6), activity of caspase-3 (FIG. 7) and the concentration of the protein of interest (E25 antibody) secreted into the medium (FIG. 8).
FIGS. 9-10 show assay results of CHO cells seeded in 60 mm dishes and exposed to caspase inhibitor, z-VAD-fmk (added to the cell culture at 100 micromolar concentration, 48 hours after seeding). The z-VAD-fmk inhibitor was added to the culture every 24 hours thereafter. Samples were taken every day and analyzed for caspase-3 activity (FIG. 9) and the % viable cells (FIG. 10).
FIGS. 11-12 show assay results of a Baculovirus p35 expressing clone grown in a 2 liter bioreactor and assayed daily for cell viability (FIG. 11) and caspase-3 activity (FIG. 12). The control is a clone transfected with a vector, cpc.
FIG. 13 shows a bar diagram of the effects of various concentrations of the transfection reagent, DMRIE-C, on cell viability.
FIG. 14 shows a comparison of total and viable transfection efficiencies obtained for caspase-9-DN clone 14 and controls, CHO DP12 cells and E25 antibody expressing CHO DP12 cells.
FIG. 15 shows a comparison of the specific productivity (as measured in Dnase titer/total LDH) obtained for caspase-9-DN clone 14 and controls, CHO DP12 cells and E25 antibody expressing CHO DP12 cells.
FIG. 16 shows a comparison of the DNase titer obtained for caspase-9-DN clone 14 and controls, CHO DP12 cells and E25 antibody expressing CHO DP12 cells.
FIGS. 17 and 18 show viability and titers of caspase-9-DN and E25 control grown in 2 liter bioreactors with temperature shift, concentrated medium and a feed.
FIGS. 19 and 20 show viability and viable cell count of cultures of E25 control and caspase-9-DN clone 14 seeded into spinners from frozen vials. Data were obtained by trypan blue exclusion.
FIGS. 21 and 22 show viability and E25 titers of cultures of E25 control cells and caspase-9-DN clone 14 upon induction of expression by butyrate.
The term “apoptosis inhibitor” is used herein to refer to a molecule or substance whose expression or presence in an in vitro cell culture provides a reduction or inhibition of apoptosis in the cultured cells, or provides resistance of the cultured cells to apoptotic stimuli. The apoptosis inhibitor may comprise a protein or protein-like molecule, or an organic or inorganic molecule. The apoptosis inhibitor may be present (and/or function) intracellularly, extracellularly, or at the cell surface (membrane) of the cultured cells. Particular apoptosis inhibitors contemplated by the present invention include, but are not limited to, the caspase-9 dominant negative (caspase-9-DN) mutant, bcl-2, baculovirus p35, caspase-9S (Seol,D. W. et al., J. Biol. Chem., 274, 2072-2076 (1999)), crmA, z-VAD-fmk, z-DEVD-fmk, B-D-fmk, and z-YVAD-fmk, and variants therof. Preferably, the apoptosis inhibitor is one which acts upon one or more caspases located downstream in the intracellular cell death pathway of the cell, such as caspase-3. Optionally, the apoptosis inhibitor will, in an effective amount, decrease or reduce apoptosis in a cell culture by at least 50%, preferably, by at least 75%, more preferably, by at least 85%, and even more preferably, by at least 95%, as compared to a control cell culture which contains no such apoptosis inhibitor. Apoptosis or apoptotic activity in such cell cultures can be measured and determined using assays such as described herein. Optionally, the apoptosis inhibitor, in an effective amount, will enhance or increase yield of the recombinant protein of interest by at least 1-fold, and preferably by at least 2-fold, as compared to a control cell culture which contains no such apoptosis inhibitor. Optionally, the apoptosis inhibitor, in an effective amount, will enhance or increase transfection efficiency in transient transfections, preferably by at least 1-fold and more preferably, by at least 2-fold, as compared to a control cell culture which contains no such apoptosis inhibitor.
The term “protein of interest” refers to any protein which may be useful for research, diagnostic or therapeutic purposes. The protein of interest may comprise a mammalian protein or non-mammalian protein, and may optionally comprise a receptor or a ligand. Exemplary proteins of interest include, but are not limited to, molecules such as renin; a growth hormone, including human growth hormone and bovine growth hormone; growth hormone releasing factor; parathyroid hormone;. thyroid stimulating hormone; lipoproteins; alpha-1-antitrypsin; insulin A-chain; insulin B-chain; proinsulin; follicle stimulating hormone; calcitonin; luteinizing hormone; glucagon; clotting factors such as factor VIIIC, factor IX, tissue factor, and von Willebrands factor; anti-clotting factors such as Protein C; atrial natriuretic factor; lung surfactant; a plasminogen activator, such as urokinase or human urine or tissue-type plasminogen activator (t-PA); bombesin; thrombin; hemopoietic growth factor; members of the TNF and TNF receptor (TNFR) family, like tumor necrosis factor-alpha and -beta, CD40 ligand, Apo-2 ligand/TRAIL, DR4, DR5, DcR1, DcR2, DcR3, OPG, Fas ligand; enkephalinase; RANTES (regulated on activation normally T-cell expressed and secreted); human macrophage inflammatory protein (MIP-1-alpha); a serum albumin such as human serum albumin; Muellerian-inhibiting substance; relaxin A-chain; relaxin B-chain; prorelaxin; mouse gonadotropin-associated peptide; a microbial protein, such as beta-lactamase; DNase; IgE; a cytotoxic T-lymphocyte associated antigen (CTLA), such as CTLA-4; inhibin; activin; vascular endothelial growth factor (VEGF); receptors for hormones or growth factors; protein A or D; rheumatoid factors; a neurotrophic factor such as bone-derived neurotrophic factor (BDNF), neurotrophin-3, -4, -5, or -6 (NT-3, NT-4, NT-5, or NT-6), or a nerve growth factor such as NGF-β; platelet-derived growth factor (PDGF); fibroblast growth factor such as aFGF and bFGF; epidermal growth factor (EGF); transforming growth factor (TGF) such as TGF-alpha and TGF-beta, including TGF-β1, TGF-β2, TG-β3, TGF-β4, or TGF-β5; insulin-like growth factor-I and -II (IGF-I and IGF-II); des(1-3)-IGF-I (brain IGF-I), insulin-like growth factor binding proteins; CD proteins such as CD3, CD4, CD8, CD19 and CD20; erythropoietin; osteoinductive factors; immunotoxins; a bone morphogenetic protein (BMP); an interferon such as interferon-alpha, -beta, and -gamma; colony stimulating factors (CSFs), e.g., M-CSF, GM-CSF, and G-CSF; thrombopoietin (TPO); interleukins (ILs), e.g., IL-1 to IL-10; superoxide dismutase; T-cell receptors; surface membrane proteins; decay accelerating factor; viral antigen such as, for example, a portion of the AIDS envelope, gp120; transport proteins; homing receptors; addressins; regulatory proteins; integrins such as CD11a, CD11b, CD11c, CD18, an ICAM, VLA-4 and VCAM; a tumor associated antigen such as HER2, HER3 or HER4 receptor; and variants and/or fragments of any of the above-listed polypeptides; as well as antibodies against various protein antigens like CD proteins such as CD3, CD4, CD8, CD19, CD20 and CD34; members of the ErbB receptor family such as the EGF receptor, HER2, HER3 or HER4 receptor; cell adhesion molecules such as LFA-1, Mac1, p150.95, VLA-4, ICAM-1, VCAM and αv/β3 integrin including either α or β subunits thereof (e.g. anti-CD11a, anti-CD18 or anti-CD11b antibodies); growth factors such as VEGF; IgE; blood group antigens; flk2/flt3 receptor; obesity (OB) receptor; mpl receptor; CTLA-4; protein C; an Apo-2L receptor such as Apo-2 (DR5), DR4, DcR1, DcR2, DcR3; and variants and/or fragments of the above-identified antibodies etc. In one embodiment of the invention, a protein of interest will comprise a protein which itself is capable of inducing apoptosis in mammalian or non-mammalian cells in vitro or in vivo, such as Apo-2 ligand/TRAIL, Fas ligand, or TNF-alpha.
“Isolated,” when used to describe the various proteins of interest disclosed herein, means protein that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with research, diagnostic or therapeutic uses for the protein of interest, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the protein will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated protein includes protein in situ within recombinant cells, since at least one component of the protein of interest's natural environment will not be present. Ordinarily, however, isolated protein will be prepared by at least one purification step.
The term “control sequences” refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.
Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordace with conventional practice.
As used herein, the expressions “cell”, “cell line”, and “cell culture” are used interchangeably and all such designations include progeny. Thus, the terms “transformants” and “transfectants” include the primary subject cell and cultures derived therefrom without regard for the number of transfers.
“Growth phase” of the cell culture refers to the period of exponential cell growth (the log phase) where cells are generally rapidly dividing. During this phase, cells are cultured for a period of time, usually between 1-4 days, and under such conditions that cell growth is maximized. The determination of the growth cycle for the host cell can be determined for the particular host cell envisioned without undue experimentation. “Period of time and under such conditions that cell growth is maximized” and the like, refer to those culture conditions that, for a particular cell line, are determined to be optimal for cell growth and division. During the growth phase, cells are cultured in nutrient medium containing the necessary additives generally at about 30-40° C., preferably about 37° C., in a humidified, controlled atmosphere, such that optimal growth is achieved for the particular cell line. Cells are maintained in the growth phase for a period of about between one and four days, usually between two to three days.
“Transition phase” of the cell culture refers to the period of time during which culture conditions for the production phase are engaged. During the transition phase environmental factors such as pH, ion concentration, and temperature may shifted from growth conditions to production conditions.
“Production phase” of the cell culture refers to the period of time during which cell growth has reached a plateau. During the production phase, logarithmic cell growth has ended and protein production is primary. During this period of time the medium is generally supplemented to support continued protein production and to achieve the desired protein product.
The term “expression” or “expresses” is used herein to refer to transcription and translation occurring within a host cell. The level of expression of a product gene in a host cell may be determined on the basis of either the amount of corresponding mRNA that is present in the cell or the amount of the protein encoded by the product gene that is produced by the cell. For example, mRNA transcribed from a product gene is desirably quantitated by northern hybridization. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, pp. 7.3-7.57 (Cold Spring Harbor Laboratory Press, 1989). Protein encoded by a product gene can be quantitated either by assaying for the biological activity of the protein or by employing assays that are independent of such activity, such as western blotting or radioimmunoassay using antibodies that are capable of reacting with the protein. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, pp. 18.1-18.88 (Cold Spring Harbor Laboratory Press, 1989).
The terms “apoptosis” and “apoptotic activity” are used in a broad sense and refer to the orderly or controlled form of cell death in mammalian or non-mammalian cells that is typically accompanied by one or more characteristic cell changes, including condensation of cytoplasm, loss of plasma membrane microvilli, activation of caspase(s), segmentation of the nucleus, degradation of chromosomal DNA or loss of mitochondrial function. This activity can be determined and measured, for instance, by cell viability assays, FACS analysis, annexin V binding, or DNA electrophoresis such as is known in the art and described further herein.
Cells grown in cell culture may begin to lose viability within days of initiating the culture. Loss of cell viability can particularly be problematic when culturing cells in relatively large, batch scale cultures or bioreactors. For instance, CHO cells grown in batch culture can begin to lose cell viability as early as Day 4 after which a rapid decline in viability can continue until the culture is terminated. The mechanism by which such cultured cells die may be either through necrosis or apoptosis. Using TUNEL and Annexin/PI binding assays, Applicants discovered that approximately 80% of some CHO cells grown in batch culture may die by apoptosis rather than through necrosis. As described herein, Applicants have surprisingly found methods which allow a marked reduction of such apoptosis.
The methods disclosed in the present application have a variety of applications and improvements for recombinant protein production. First, by prolonging host cell viability in culture (and during fermentation), one skilled in the art can increase production and yield of the protein of interest. This can improve the efficiency of the cell culture run and result in marked cost savings. Further, Applicants have found the use of one or more apoptosis inhibitors in the methods of the invention may protect against potential adverse effects of agents like butyrate or TSA included in the cell culture. Also, the methods herein can enhance quality of the expressed and recovered protein of interest. The quality of the expressed and recovered protein of interest may be evaluated using techniques known in the art, such as SDS-PAGE, etc. The occurrence of cell death in recombinant cell cultures oftentimes results in the release of various active proteins from the dying cells, such as proteases [Lao, M., et al., Cytotechnology, 22: 43-52 (1996); Teige, M., et al., J. Biotechnol., 34:101-105 (1994)], glycosidases such as sialidase or β-galactosidase [Gramer M. J. and Goochee C. F., Biotechnol. Prog., 9:366-373 (1999)], or proline isomerase [Schmid, Current Biology, 5:933-944 (1995)]. These and other such proteins are often capable of degrading the product quality or function of the desired recombinant protein(s) being expressed, for instance, by undesired cleavage, carbohydrate modification (glycoprotein modification)[Wittwer A., and Howard, S. C., Biochem., 29:4175-4180 (1990); Hart, Curr. Op. Cell Biol., 4:1017-1023 (1992); Goochee, et al., Bio/Technology, 9:1347-1355 (1991)], or protein structure modification (such as folding or aggregation). By decreasing or inhibiting apoptosis in the cell culture, the present methods can decrease the number or presence of such adverse proteases in the culture media and protect the expressed protein of interest against proteolytic degradation.
The methods herein can further be employed to increase transfection efficiency and viability of cells during transfection. Reagents used in various transfection techniques, such as Lipofectamine or DMRIE-C (Gibco), can be relatively toxic to the cells when used in higher concentrations. The use of higher concentrations of transfection reagents, however, would be particularly helpful to achieve higher transfection efficiencies. The expression of apoptosis inhibitor and/or the addition of apoptosis inhibitor directly to the cell culture medium can be used to reduce or inhibit cell death even when such higher concentrations of a transfection reagent are selected. The use of apoptosis inhibitor in this manner can result in higher transfection efficiency and higher yield of the recombinant protein of interest.
The methods disclosed can be further used to express proteins of interest which are proteins that, themselves, induce apoptosis. Such proteins like Apo-2 ligand/TRAIL or Fas ligand, can trigger apoptosis when expressed in cells. The presence of apoptosis inhibitor(s), in accordance with the present methods, may block such apoptotic activity and allow for improved expression of the protein of interest.
In addition, the methods can be used to increase the viability of cells undergoing freezing/storage/thawing procedures. During these procedures generally cells can lose viability. The presence of apoptosis inhibitor(s) expressed in cells (or added to the cell culture media) can provide for increased cell viability and aid in reducing or eliminating the variability in cell viabilities between aliquots or vials of cells.
The methods according to the present invention are described in further detail below.
The DNA encoding the protein of interest may be obtained from a variety of sources, for instance, from any cDNA library prepared from tissue believed to possess its mRNA and to express it at a detectable level. The gene encoding the protein of interest may also be obtained from a genomic library or by oligonucleotide synthesis. Screening such a cDNA or genomic library with a selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding the protein of interest is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].
Various proteins of interest have been specifically referred to above and their respective gene sequences are generally known and publicly available.
Genes encoding various apoptosis inhibitors have also been described in the literature [see e.g., Clem R. J. et al., Science, 254, 1388-1390 (1991); Duan, H. et al., J. Biol. Chemistry, 271, 16720-16724 (1996); Pan, G. et al., J. Biol. Chemistry, 273, 5841-5845 (1998); Vaux, D. L. et al., Science, 258, 1955-1957 (1998); Tsujimoto et al., Proc. Natl. Acad. Sci., 83:5214-5218 (1986)]. The methods of the present invention contemplate the use of a single apoptosis inhibitor-encoding gene as well as the use of a combination of two or more apoptosis inhibitor-encoding genes. Potentially, the expression of two or more types of apoptosis inhibitor(s) in a host cell may be beneficial in controlling apoptosis in the cell culture. One skilled in the art can monitor the quantity or amount of apoptosis inhibitor being expressed by the host cells, such as by a Western blot analysis using an antibody that recognizes the apoptosis inhibitor. The quantity or amount of apoptosis inhibitor, as well as the timing of its expression, can be regulated or monitored, for instance, by choosing a vector with an inducible promoter.
When selecting an apoptosis inhibitor for use in the claimed methods, those skilled in the art will appreciate that various apoptosis inhibitor molecules may act upon different intracellular components of the signaling pathway which leads to cell death. The pathways involved in cell death comprise a family of cysteine proteases, called caspases, that are related to the mammalian interleukin-1 beta converting enzyme (caspase-1) and to Ced-3, the product of a gene of C. elegans. It is believed that such caspase molecules can act at at least two different levels. Initiator caspases are typically “upstream” molecules that are activated in response to stimuli indicating that the cell has been stressed, damaged, or received some form of signal to initiate cell death by apoptosis. An example of such an upstream caspase is caspase-8. Initiator caspases can then, in turn, cleave and activate another family of “downstream” caspases, such as caspase-3. Depending upon the nature of the apoptotic stimulus as well as the cell type, only a portion of the signaling pathway may be involved in the signaling mechanism and execution of cell death. For example, certain apoptosis inhibitors, such as CrmA, are believed to act upon caspases, such as caspase-8, located upstream and are usually directly activated by death receptor binding to ligand. Other apoptosis inhibitors are believed to act upon other caspases located downstream in the intracellular signaling pathway. Thus, it is is presently believed that inhibitors of those molecule(s) that are effectively engaged (such as actively engaged in the signal transmission) in the cell death apparatus in a selected cell will be effective as apoptosis inhibitors, as described herein. Applicants do note, however, that those skilled in the art will understand that in such signaling pathways, there is point at which the cell is “committed” to cell death, and once the signaling pathway has transmitted a signal(s) to the point where the cell is committed to cell death, apoptosis inhibitor molecules, like those described herein, may not be effective in inhibiting or preventing the apoptosis of the “committed” cell.
The cytokine response modifier, CrmA, is a 38 kDa serpin identified from cowpox virus that has been reported to inhibit apoptosis in several systems [Gagliardini et al., Science, 263:826-828 (1994); Tewari et al., J. Biol. Chem., 270:3255-3260 (1995)]. CrmA has been evaluated as an inhibitor of caspase-1 and caspase-8 [Nicholson et al., Nature, 376:37-43 (1995); Zhou et al., J. Biol. Chem., 272:7797-7800 (1997)]. In some studies conducted by Applicants, it was observed that overexpression of CrmA in CHO dhfr+cells was unable to substantially delay cell death in the environment of a bioreactor. This result suggested that in this particular CHO cell system selected by Applicants, neither caspase-1 nor caspase-8 were actively involved in the cell death pathway of those particular cultured cells. Accordingly, to achieve the desired effects described herein, it is preferred to select an apoptosis inhibitor molecule which acts downstream in the selected host cell's cell death signaling pathway, but prior to the point where the cell has been committed to cell death.
The nucleic acids (e.g., cDNA or genomic DNA) encoding the protein of interest and the apoptosis inhibitor may be inserted into replicable vector(s) for expression. Various vectors are publicly available. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence, each of which is described below. Optional signal sequences, origins of replication, marker genes, enhancer elements and transcription terminator sequences that may be employed are known in the art and described in further detail in WO97/25428.
Techniques for inserting such genes into vectors are well known to the skilled artisan and such techniques can be accomplished without undue experimentation. Construction of suitable vectors can employ standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required. Techniques known in the art may be employed. [See, e.g., Messing et al., Nucleic Acids Res., 9:309 (1981); Maxam et al., Methods in Enzymology, 65:499 (1980)].
The gene encoding the apoptosis inhibitor and the gene encoding the protein of interest may be inserted into a single vector (co-transfected), or be inserted into two separate or different vectors. Preferably, the respective genes are inserted into two separate vectors. Each such vector will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, puromycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli.
An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., Proc. Natl. Acad. Sci. USA, 77:4216 (1980). A suitable selection gene for use in yeast is the trp1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., Nature, 282:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)]. The trp1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].
In the methods employing a first vector comprising an apoptosis inhibitor gene and a second vector comprising a gene encoding the protein of interest, it is preferred that the first and second vector carry different selection markers. For example, a vector comprising the apoptosis inhibitor gene might carry a selection gene to confer ampicillin resistance while the vector comprising the gene encoding the protein of interest might carry a selection gene to confer methotrexate resistance.
Expression vectors usually also contain a promoter that is recognized by the host organism and is operably linked to the inserted nucleic acid sequence(s) described above. Promoters are untranslated sequences located upstream (5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of a particular nucleic acid sequence, to which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to the encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector.
Promoters suitable for use with prokaryotic and eukaryotic hosts are known in the art, and are described in further detail in WO97/25428.
Expression vectors that provide for the transient expression of DNA encoding the protein of interest may be employed. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired protein encoded by the expression vector [Sambrook et al., supra]. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of proteins encoded by cloned DNAs, as well as for the rapid screening of such proteins for desired biological or physiological properties.
Host cells are transfected or transformed with the above-described expression vectors for production of the protein of interest and cultured in nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed. Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell. As described above, the use of an apoptosis inhibitor gene (or adding an apoptosis inhibitor molecule directly to the culture media) may improve transfection efficiency. It is believed that use of such apoptosis inhibitor(s) will allow for use of increased amounts of transfection reagents, such as Lipofectamine or DMRIE-C (as described in the Examples below).
Transformation means introducing DNA into an organism so that the DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published Jun. 29, 1989. In addition, plants may be transfected using ultrasound treatment as described in WO 91/00358 published Jan. 10, 1991. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Pat. No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).
Suitable host cells for expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as E. coli. Various E. coli strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635); Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published Apr. 12, 1989), Pseudomonas such as P. aeruginosa, and Streptomyces.
In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism.
Suitable host cells may be derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); dp12.CHO (EP 307,247 published Mar. 15, 1989), mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.
The selection of a particular apoptosis inhibitor to employ with a particular host cell and protein of interest can be made without undue experimentation by one of ordinary skill in the art.
Prokaryotic cells used to produce the protein of interest may be cultured in suitable culture media as described generally in Sambrook et al., supra. Particular forms of culture media that may be employed for culturing CHO are described further in the Examples below. Mammalian host cells used to produce the protein of interest may be cultured in a variety of culture media. Suitable culture conditions for mammalian cells are well known in the art (J. Immunol. Methods (1983)56:221-234) or can be easily determined by the skilled artisan (see, for example, Animal Cell Culture: A Practical ApDroach 2nd Ed., Rickwood, D. and Hames, B. D., eds. Oxford University Press, New York (1992)), and vary according to the particular host cell selected.
Examples of commercially available culture media include Ham's F10 (Sigma), Minimal Essential Medium (“MEM”, Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium (“DMEM”, Sigma). In addition, any of the media described in Ham and Wallace,(1979) Meth. Enz., 58:44; Barnes and Sato,(1980) Anal. Biochem., 102:255; U.S. Pat. Nos. 4,767,704; 4,657,866; 4,927,762; 5,122,469 or 4,560,655; International Publication Nos. WO 90/03430; and WO 87/00195 may be used. Any such media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as Gentamycin™ drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. The necessary growth factors for a particular cell are readily determined empirically without undue experimentation, as described for example in Mammalian Cell Culture (Mather, J. P. ed., Plenum Press, N.Y. (1984), and Barnes and Sato, (1980) Cell, 22:649.
Other methods, vectors, and host cells suitable for adaptation to the synthesis of the protein of interest in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058. In general, principles, protocols, and practical techniques for maximizing the productivity of mammalian cell cultures can be found in Mammalian Cell Biotechnology: A Practical Approach, M. Butler, ed. (IRL Press, 1991).
The amount of apoptosis inhibitor added directly, or admixed, to the culture media will depend on various factors, for instance, the type of apoptosis inhibitor molecule being employed, the type of host cell, culture conditions, etc. Determining the desired concentration of apoptosis inhibitor to be added to the culture media is within the skill in the art and can be ascertained empirically without undue experimentation. Preferably, an effective amount or desired concentration of apoptosis inhibitor added directly to the culture media is such that the apoptosis inhibitor penetrates into the host cell. The skilled artisan will readily appreciate that different apoptosis inhibitors may have different abilities to penetrate into the host cell, and therefore, one should choose a concentration which allows for such penetration into the host cell. There will typically be an upper range of concentration of apoptosis inhibitor which may not be desirable as the concentration approaches a range which is adverse or toxic to the host cells. As described in the Examples below, Applicants have found that z-VAD-fmk can inhibit apoptosis when added to cell cultures at a concentration of about 100 micromolar. A variety of apoptosis inhibitor compounds such as z-VAD-fmk, z-DEVD-fmk, B-D-fmk, and z-YVAD-fmk are available from vendors, such as Pharmingen and Enzyme Systems, Livermore, Calif.
The apoptosis inhibitor may be added directly into the culture media. The apoptosis inhibitor may be added at any point during the culturing of the cells. Optionally, the apoptosis inhibitor is added to the culture media at the beginning (at the time of initiating, day 0) of the cell culturing process. Preferably, such an apoptosis inhibitor would be added to the culture media during the culturing of the cells but prior to the point when induction of apoptosis occurs; typically, induction of apoptosis can be observed in large scale cell cultures on about day 3 or day 4 of the culture, and therefore, the apoptosis inhibitor will preferably be added prior to day 3 or day 4. Optionally, a desired quantity of apoptosis inhibitor is added throughout, or for the duration of, the cell culture, for instance, on a daily basis for the entire fermentation. As an example, for a 5 day culture, the apoptosis inhibitor could be added at day 0, and every 24 hours thereafter until the culture is terminated.
In one embodiment of the invention, the selected host cell is a CHO cell, preferably, a dp12.CHO cell, and the selected culture medium contains a basal medium component such as a DMEM/HAM F-12 based formulation (for composition of DMEM and HAM F12 media and especially serum free media, see culture media formulations in American Type Culture Collection Catalogue of Cell Lines and Hybridomas, Sixth Edition, 1988, pages 346-349) (the formulation of medium as described in U.S. Pat. No. 5,122,469 are particularly appropriate) with modified concentrations of some components such as amino acids, salts, sugar, and vitamins, and optionally containing glycine, hypoxanthine, and thymidine; recombinant human insulin, hydrolyzed peptone, such as Primatone HS or Primatone RL (Sheffield, England), or the equivalent; a cell protective agent, such as Pluronic F68 or the equivalent pluronic polyol; Gentamycin; and trace elements. Preferably, the selected cell culture media is serum free.
The proteins of interest may be produced by growing the host cells under a variety of cell culture conditions. For instance, cell culture procedures for the large or small scale production of proteins are potentially useful within the context of the present invention. Procedures including, but not limited to, a fluidized bed bioreactor, hollow fiber bioreactor, roller bottle culture, or stirred tank bioreactor system may be used, in the later two systems, with or without microcarriers, and operated alternatively in a batch, fed-batch, or continuous mode.
In a preferred embodiment, the cell culture of the present invention is performed in a stirred tank bioreactor system and a fed batch culture procedure is employed. In the preferred bioreactor system, the size of the bioreactors are sufficiently large to produce the desired amount of protein of interest, such as 1,000 Liter or 12,000 Liter sizes, but are not limited to such sizes as much smaller (i.e., 2 Liter, 400 Liter) or larger (i.e., 25,000 Liter, 50,000 Liter) bioreactor vessels may be appropriate. In the preferred fed batch culture, the mammalian host cells and culture medium are supplied to a culturing vessel initially and additional culture nutrients are fed, continuously or in discrete increments, to the culture during culturing, with or without periodic cell and/or product harvest before termination of culture. The fed batch culture can include, for example, a semi-continuous fed batch culture, wherein periodically whole culture (including cells and medium) is removed and replaced by fresh medium. Fed batch culture is distinguished from simple batch culture in which all components for cell culturing (including the cells and all culture nutrients) are supplied to the culturing vessel at the start of the culturing process. Fed batch culture can be further distinguished from perfusion culturing insofar as the supernate is not removed from the culturing vessel during the process but at the termination of the culture process (in perfusion culturing, the cells are restrained in the culture by, e.g., filtration, encapsulation, anchoring to microcarriers etc. and the culture medium is continuously or intermittently introduced and removed from the culturing vessel).
Further, the cultured cells may be propagated according to any scheme or routine that may be suitable for the particular host cell and the particular production plan contemplated. Therefore, the present invention contemplates a single step or multiple step culture procedure. In a single step culture, the host cells are inoculated into a culture environment and the method steps of the instant invention are employed during a single production phase of the cell culture. Alternatively, a multi-stage culture is envisioned. In the multi-stage culture, cells may be cultivated in a number of steps or phases. For instance, cells may be grown in a first step or growth phase culture wherein cells, possibly removed from storage, are inoculated into a medium suitable for promoting growth and high viability. The cells may be maintained in the growth phase for a suitable period of time by the addition of fresh medium to the host cell culture.
According to a preferred aspect of the invention, fed batch or continuous cell culture conditions are devised to enhance growth of the mammalian cells in the growth phase of the cell culture. In the growth phase, cells are grown under conditions and for a period of time that is maximized for growth. Culture conditions, such as temperature, pH, dissolved oxygen (dO2) and the like, are those used with the particular host and will be apparent to the ordinarily skilled artisan. Generally, the pH is adjusted to a level between about 6.5 and 7.5 using either an acid (e.g., CO2) or a base (e.g., Na2CO3 or NaOH). A suitable temperature range for culturing mammalian cells such as CHO cells is between about 30 to 38° C. and preferably about 37° C. and a suitable dO2 is between 5-90% of air saturation.
At a particular stage the cells may be used to inoculate a production phase or step of the cell culture. Alternatively, as described above, the production phase or step may be continuous with the inoculation or growth phase or step.
According to the present invention, the cell culture environment during the production phase of the cell culture is controlled. According to the steps of the presently disclosed methods, the concentration of apoptosis inhibitor in the culture medium can be manipulated such that the desired content and quality of the protein of interest is achieved and maintained in the resulting cell culture fluid. In a preferred aspect, the production phase of the cell culture is preceded by a transition phase of the cell culture in which expression of or addition of apoptosis inhibitor(s) for the production phase of the cell culture are engaged. Concentrations of apoptosis inhibitor(s) are preferably monitored in connection with other process parameters such as the osmolality of the production phase since osmolality can affect the cell specific productivity.
In any of the above-described methods, it is contemplated that it may be desirable to include a desired amount of agent like butyrate or TSA in the cell culture medium. Various forms of butyrate and its salts are known in the art, such as butyric acid and sodium butyrate, and are publicly available from sources such as Sigma Chemical Co. Butyrate has been reported in the literature to enhance the productivity and protein expression of cell cultures [Arts et al., Biochem J., 310:171-176 (1995); Gorman et al., Nucleic Acids Res., 11:7631-7648 (1983); Krugh, Mol. Cell. Biochem., 42:65-82 (1982); Lamotte et al., Cytotechnology, 29:55-64 (1999); Chotigeat et al., Cytotechnology, 15:217-221 (1994)]. Trichostatin A (TSA) is an inhibitor of histone deacetylase and may act similarly to butyrate in enhancing the productivity and protein expression in cell cultures [Medina et al.,Cancer Research, 57:3697-3707 (1997)]. Although butyrate has some positive effects on protein expression, it is also appreciated in the art that at certain concentrations, butyrate can induce apoptosis in the cultured cells and thereby decrease viability of the culture as well as viable cell density [Hague et al., Int. J. Cancer, 55:498-505 (1993); Calabresse et al., Biochim. Biophys. Res. Comm., 195:31-38 (1993); Fillipovich et al., Biochim. Biophys. Res. Comm., 198:257-265 (1994); Medina et al., Cancer Research, 57:3697-3707 (1997)]. In the methods of the present invention, a desired amount of butyrate or TSA may be added to the cell culture at the onset of the production phase and more preferably, may be added to the cell culture after a temperature shift has been implemented. Butyrate or TSA can be added in a desired amount determined empirically by those skilled in the art, but preferably, butyrate is added to the cell culture at a concentration of about 1 to about 25 mM, and more preferably, at a concentration of about 1 to about 6 mM.
Expression of the protein of interest may be measured in a sample directly, for example, by ELISA, conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe. Various labels may be employed, most commonly radioisotopes, and particularly 32p. However, other techniques may also be employed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionucleotides, fluorescers or enzymes. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like.
Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal.
It is usually necessary to recover or purify the protein of interest from recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous. As a first step, the culture medium or lysate may be centrifuged to remove particulate cell debris. The protein of interest thereafter is purified from contaminant soluble proteins and polypeptides, with the following procedures being exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cationexchange resin such as DEAE; chromatography on protein A Sepharose columns, chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; and gel filtration using, for example, Sephadex G-75.
The recovered or purified protein of interest will typically be analyzed by one or more of the following methods: SDS-polyacrylamide gel electrophoresis, HPLC, mass spectrometry of a tryptic digest, glycoprotein analysis and activity assays.
The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.
All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.
Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, unless otherwise indicated, is the American Type Culture Collection, Manassas, Va.
Serum free adapted, CHO (dhfr+) cells were scaled up and seeded at 1 million cells/ml in 2 liter bioreactors (n=2). The cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Cells were grown at 37° C. with agitation set at 275 rpm. pH was kept at 7.2 and was automatically adjusted throughout the experiment. Bioreactors were sparged with a mixture of oxygen and air. This is a model system that mimics the conditions during large-scale production of therapeutic proteins.
Samples were taken every day to measure the following parameters: cell viability, caspase activity (Clontech), DNA fragmentation and annexin/PI binding (Chemicon). FIG. 1A shows cell viability as determined (by Trypan blue exclusion) over the course of 5 days. FIG. 1B shows that loss of cell viability over the 5 day period in culture was the result of apoptosis.
Expression construct: C-terminal FLAG-tagged caspase-9-dominant negative (“caspase-9-DN”) cDNA (Duan, H. et al., J. Biol. Chemistry, 271, 16720-16724 (1996); Pan, G. et al., J. Biol. Chemistry, 273, 5841-5845 (1998)) was subcloned in a mpsv splice donor as further described: 2 ug of mpsv vector (Genentech, Inc.) was digested with 5 U of EcoRI and 5 U of BamHI (Boehringer Mannheim) and 2 ul of buffer A (Boehringer Mannheim) in a total volume of 20 ul for 1 hour at 37° C. 2 ug of caspase-9-DN/pcDNA3 construct was digested with 5 U of HindIII and 5 U of XbaI with 2 ul of buffer B (Boehringer Mannheim) in a total volume of 20 ul for 1 hour at 37° C. After incubation, 1 ul of 1 mM dNTPs (Clontech) and 0.2 U of Klenow polymerase (Boehringer Mannheim) was added to each reaction and the incubation was continued for an additional 15 minutes at 37° C.
Aliquots of each digest were analyzed by 1% agarose gel electrophoresis. 1.2 kbp caspase-9-DN cDNA and linearized 9.7 kbp mpsv vector were cut out of the gel and the DNA was purified using GeneClean (Bio101, Inc.) according to the manufacturer's instructions.
Ligation of caspase-9-DN and mpsv vector: 50 ng of vector and 42 ng of insert were ligated in 10 ul 2×ligation buffer and 1 ul T4 DNA ligase in 20 ul total volume at room temperature for 5 minutes (Boehringer Mannheim).
Transformation: MaxEfficiency DH5alfa competent cells (Gibco BRL) were transformed with 2 ul ligation mixture according to manufacturer's instructions. Transformed cells were then plated on carbenicillin containing LB plates. Colonies were randomly picked and analyzed by restriction digest to identify a colony containing the correct construct. Colony # 30 was chosen for further work.
Transfection: E25 producing CHO DP12 cells [as designated throughout the present application, “E25” refers to the transfected CHO cells expressing a humanized monoclonal antibody against human IgE; see Presta et al., J. Immunology, 151:2623-2632 (1993)] were chosen for transfection with mpsv/caspase-9-DN and mpsv vector. Transfection was done using LipofectAMINE Plus Reagent (Gibco BRL) and was performed as follows:
E25 cells grown in suspension were plated on 60 mm tissue culture dishes (1 million cells/plate) 24 hours prior to transfection in a serum-containing medium. DNA for transfection was quantified spectrophotometrically. Two ug of DNA was mixed with 250 ul serum-free medium and 8 ul of Plus reagent and incubated for 15 minutes at room temperature. Twelve ul of reagent were mixed with 250 ul of serum-free medium and directly added to the mixture followed by incubation for15 minutes at room temperature. The medium on top of the cells was replaced with 5 ml of fresh serum-free medium and the transfection mixture was added to the dish. Three hours post-transfection, medium was replaced with a serum-containing medium. 24 hours post-transfection, each transfected dish was split into 5 dishes and a selection pressure was applied by the addition of 5 ug/ml puromycin. Transfected clones (resistant to puromycin) began to appear about two weeks after transfection. Several clones were chosen for analysis of caspase-9-DN expression by Western blotting.
Western blot analysis: Selected clones were picked and transferred into a 24 well plate. When confluent, cells from each well were rinsed with PBS and lysed for 3 minutes in 100 ul lysis buffer (3% NP 40 in PBS). The lysates were centrifuged for 3 minutes at 12,000×g. Supernatant was collected, mixed with an equal volume of reducing 2×SDS loading buffer (Novex) and boiled for 3 minutes. Samples were stored at −20° C. Aliquots of the lysates were subjected to a protein assay to determine the total protein concentration using Micro BCA Protein Assay Reagent Kit (Pierce).
Aliquots of lysates corresponding to 3 ug of total protein were loaded on a 10% SDS Tris-glycine gel (Novex) and ran for 1½ hours. Proteins were transferred to an Immobilon-P transfer Membrane according to manufacturer's directions.
The membrane was probed with rabbit anti-caspase-9 serum (Pharmingen) followed by HRP conjugated goat-anti-rabbit antiserum and developed using ECL Western Blotting detection Reagent (Amersham). Clones with high as well as low expression of caspase-9-DN (clones 2 and 14) were selected for further characterization. See FIG. 2.
Induction of apoptosis with staurosporine: Clones 2 and 14 expressing low and high levels of caspase-9-DN (respectively) were adapted to growth in serum-free medium in spinners. Clones were seeded in spinners at 1 million cells/ml and an apoptosis inducing agent, staurosporine (Sigma), was added at 1 uM final concentration. Aliquots of culture were analyzed for apoptosis by several assays: annexin/PI (Chemicon) to measure the % of apoptotic cells and by caspase-3 activity (Clontech) according to manufacturer's instructions. See FIGS. 3 and 4.
The effect of caspase-9-DN expression on viability in 2 liter bioreactors: Serum free adapted, caspase-9- DN expressing clones 2 and 14, a vector control and untransfected E25 cells were scaled up and seeded at 1 million cells/ml in 2 liter bioreactors (n=2). The cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Cells were grown at 37° C. with agitation set at 275 rpm. pH was kept at 7.2 and was automatically adjusted throughout the experiment. Bioreactors were sparged with a mixture of oxygen and air. This is a model system that mimics the conditions during large-scale production of therapeutic proteins.
Samples were taken every day to measure the following parameters: cell viability, cell density, apoptosis, caspase-3 activation, glucose consumption, osmolality, lactate production and E25 titers. See FIGS. 5-8.
The results show stable expression of caspase-9-DN in CHO cells expressing E25. The stable expression resulted in a resistance of the cells to an apoptosis inducing agent, staurosporine. The resistance was proportional to the expression levels of caspase-9-DN. In the environment of a bioreactor, the high expessing clone 14 showed dramatically prolonged viability and viable cell count compared with the lower expressing clone 2, which showed only a moderate prolongation of viability and viable cell count. Prolongation of viability is reflected in the delayed onset of caspase-3 activation in clone 14 compared with the controls. Unexpected results were obtained in the assay for the amount of E25 antibody secreted into the medium. Although caspase-9-DN clone 14 resulted in superior prolongation of viability in the bioreactor than clone 2, clone 14 produced less protein of interest (E25 antibody). The data suggested that high expression of apoptosis inhibitor may not concomitantly delay cell death and increase yield of the protein of interest.
However, in another 2 liter bioreactor assay, a cell culture was similarly run as described above with the exception of the following changes: (1) caspase-9-expressing clone 14 and E25 control cells were seeded at 1 million cells/ml; and (2) the medium was a serum free, concentrated medium (used to enhance nutrient supply in the medium) based on DMEM/Ham F-12 with insulin and trace elements. The cell cultures were grown for 1 day at 37° C. and then temperature shifted to 33° C. On the third day, the pH of the cultures was shifted from pH 7.15 to pH 7.0, and the cultures were fed with concentrated DMEM/Ham F-12, glucose and protein hydrolysate medium in order to supply enough nutrients to support optimal growth.
The results are shown in FIGS. 17 and 18. As illustrated in the graphs, caspase-9-DN expression resulted in prolongation of viability and increase in viable cell densities, as well as higher titers of the protein of interest (E25 antibody) as compared to the control. Under the conditions of fed-batch culture where nutrients were not limiting, the data showed that prolongation of viability and increase in viable cell densities were accompanied by a marked increase in product titer.
CHO (dhfr+) cells grown in suspension were seeded at 1 million cells/ml in 60 mm tissue culture dishes. The cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Viability of the culture on day 0 was 96%. Two plates were analyzed each day for viability by Trypan Blue exclusion and by annexin/PI binding (Clontech) and for viable cell density. The experiment was carried out for 10 days. A chemical inhibitor of caspases, z-VAD-fmk (Enzyme Systems Products) was dissolved in DMSO to make a 100 mM (1000×) stock and 4 ul was added to a 60 mm dish containing 4 ml of culture. The inhibitor was added 48 hours after the start of the experiment (prior to the onset of apoptosis) and a new aliquot of the z-VAD-fmk inhibitor was added every 24 hours. Controls were cultures without any addition and cultures with the addition of DMSO only.
The results are shown in FIGS. 9-10.
The chemical compound, z-VAD-fmk, is a caspase inhibitor and when added to the culture at 100 uM concentration, resulted in an inhibition of caspase-3 activity and prolongation of cell viability.
Expression construct: The baculovirus p35 cDNA (Beidler, D. et al., J. Biol. Chemistry, 270,16526-16528 (1995); Clem, R. J. et al., Science, 254, 1388-1390 (1991)) was subcloned from a pcDNA3 vector (Invitrogen) into a CPC splice donor vector as follows: 2 ug of CPC vector (Genentech, Inc.) was linearized by digestion in 25 ul containing 7 U of EcoRI and 7 U of XbaI in High buffer (Boehringer Mannheim) for 2 hours at 37° C. Baculovirus p35 cDNA was cut out of the pcDNA 3 vector (Invitrogen) with the same restriction enzymes. An aliquot of each reaction was analyzed by electrophoresis in 1% agarose gel containing ethidium bromide. Bands corresponding to the linearized CPC vector (9.7 kbp) and p35 cDNA (0.9 kbp) were cut out of the gel and isolated using GeneClean (Bio 101, Inc.) according to manufacturer's instructions.
Ligation: 50 ng of vector and 25 ng of p35 cDNA were mixed with 10 ul of T4 ligation buffer and 1 ul T4 DNA ligase (Rapid DNA Ligation Kit, Boehringer Mannheim) in 20 ul total reaction volume. The reaction was incubated for 5 minutes at room temperature.
Transformation: 100 ul of Max Efficiency DH5alfa Competent cells (Boehringer Mannheim) were mixed with 2 ul of ligation mixture and incubated on ice for 30 minutes. Cells were heat-shocked for 45 seconds at 42° C. followed by incubation on ice for 2 minutes. 0.9 ml of LB medium was added to the cells and incubated for 1 hour at 37° C. with agitation. 100 ul of transformed cells were plated on LB agar plate with carbenicillin. Four clones were randomly picked and were grown overnight in 4 ml of LB+carbenicillin. The plasmid was isolated from these colonies using QIAprep Spin Miniprep Kit (Qiagen) according to manufacturer's instructions. Isolated plasmids were subjected to an analytical digest to confirm the correct construct.
Expression of baculovirus p35 in CHO cells: CHO (dhfr+) cells grown in a DMEM/Ham F-12 media containing 2% fetal bovine serum (Gibco), recombinant human insulin and trace elements were plated 48 hours prior to transfection at 2 million cells/100 m tissue culture dish. LipofectAMINE Plus Reagent (Gibco BRL) was used for transfection and was performed according to manufacturer's instructions. CHO cells were transfected with a p35 /CPC construct and CPC vector alone as a control. One transfected plate of each type was harvested 24 hours after transfection to assay the level of p35 expression in transient transfectants (Western blotting using anti-p35 rabbit polyclonal serum at 1:1000 dilution). Other tranfected plates were grown further and selection pressure (5 ug/ml puromycin) was applied 48 hours post-transfection. About two weeks later colonies resistant to puromycin developed and were adapted to serum free growth and scaled up for further analysis.
The effect of p35 expression on viability in 2 liter bioreactors: The serum free adapted clone expressing p35 and a vector control were scaled up and seeded at 1 million cells/ml in 2 liter bioreactors (n=2). The cell culture media was a serum-free DMEM/Ham F-12 based medium containing recombinant human insulin and trace elements. Cells were grown at 37° C. with agitation set at 275 rpm. pH was kept at 7.2 and was automatically adjusted throughout the experiment. Bioreactors were sparged with a mixture of oxygen and air. This is a model system that mimics the conditions during large-scale production of therapeutic proteins. Samples were taken every day to measure the following parameters: cell viability, cell density, apoptosis, caspase-3 activation, glucose consumption, osmolality and lactate production.
The results are shown in FIGS. 11-12.
The results indicate that the apoptosis inhibitor, baculovirus p35, when expressed in CHO cells results in prolongation of viability in the environment of the bioreactor.
Serum free adapted CHO DP12 cells were seeded at 1.5 million cells/ml in untreated 12 well tissue culture plates in medium based on DMEM/HAM F-12 with modified concentrations of some components and containing recombinant human insulin, trace elements and serum. Transfection was performed using DMRIE-C (Gibco BRL) according to manufacturer's instructions. Caspase-9-DN expressing clone 14 was transfected next to controls which were CHO DP12 cells and E25 cells (CHO DP12, expressing E25).
Red shifted GFP expressing vector (Quantum Biotechnologies Inc.) was co-transfected with a DNase expressing vector [Shak, S. et al., (1990), Proc Natl. Acad. Sci USA, 87:9188-9192)]. 24 hours post-transfection, propidium iodide was added to an aliquot of the culture and total and viable transfection efficiencies were assayed by flow cytometry on FACSCalibur (Becton Dickinson). Five days after transfection, a sample of the medium was subjected for DNase titer analysis using ELISA.
The data indicated (FIG. 13) that transfection reagent, in our experiment DMRIE-C, can be toxic to cells when used at higher concentrations (above 6 ul). In FIG. 14, caspase-9-DN clone 14 shows (in all concentrations of DMRIE-C tested) higher total and viable transfection efficiencies than controls. The transfection efficiency of clone 14 increased with the amount of transfection reagent and reached maximum at 12 ul of DMRIE-C, at which concentration both controls already started to show a decrease in transfection efficiency. It is possible that transfection efficiency of clone 14 will increase even further when higher than currently tested amount of DMRIE-C is used. The increase in transfection efficiency of clone 14 was reflected in the specific productivity (DNase titer/total LDH) of the culture and in DNase titer (FIGS. 15, 16), both of which were increased up to four-fold compared with the controls.
2×107 cells of caspase-9-DN expressing clone 14 and E25 control cells were frozen in a freezing medium (1 g/L methylcellulose in modified DMEM/Ham F-12 and 10% DMSO) and stored at −80° C. for an extended period of time. On the day of the experiment, vials of frozen cells were taken out of the freezer, thawed at 37° C. and added to a spinner with a pre-warmed growth medium (modified DMEM/Ham F-12). Cells were cultured for 8 days and assayed for viability and viable cell density.
The results are shown in FIGS. 19 and 20. The results indicate that caspase-9-DN expressing cells maintained higher viability and viable cell count than the control E25 cells. Thus, expression of caspase-9-DN in the CHO cells had a beneficial effect on viability and viable cell densities upon thawing the frozen cell cultures.
The following study was conducted to examine whether caspase-9-DN expression affects resistance of the cells to potential adverse effects of butyrate.
Caspase-9-DN expressing clone 14 and E25 control cells were seeded at 1×106 cells/ml in 60 mm tissue culture dishes. Each dish contained 4 ml of culture medium. Cultures were grown at 37° C. in concentrated medium based on DMEM/Ham F-12 with insulin and trace elements. Cultures were temperature shifted to 33° C. on the second day and butyrate was added on the third day at varying final concentrations (0, 1, 2, 3, 5, 10 mM) (n=2). Viability of the cultures and titers were assayed daily.
The results are shown in FIGS. 21 and 22. The results showed that E25 control cells lose viability more rapidly than caspase-9-DN expressing cells (see FIG. 21, day 7 and day 9). This is reflected in the titers of protein of interest. Titers shown in FIG. 22 indicate that caspase-9-DN cells gave higher titers than 0 butyrate addition in cultures with 1 ,2 ,3 and 5 mM butyrate. On the other hand, titers of E25 controls improved with only 1 and 2 mM butyrate. The results suggest that caspase-9-DN expression protects cells from adverse effects of butyrate and can result in extended viability and higher titers.
Claims (21)
1. A method of making recombinant proteins using one or more apoptosis inhibitors, comprising the steps of:
(a) providing a vector comprising a gene encoding caspase-9 dominant negative protein,
(b) providing a vector comprising a gene encoding a protein of interest,
(c) providing a Chinese hamster ovary (CHO) host cell,
(d) transforming or transfecting the host cell with the vector of steps (a) and (b),
(e) providing cell culture media,
(f) culturing the transformed or transfected host cell in the cell culture media under conditions sufficient for expression of the protein of interest and the caspase-9 dominant negative protein, and optionally
(g) recovering or purifying the protein of interest from the host cell and/or the cell culture media.
2. The method of claim 1 further comprising the step of admixing an additional apoptosis inhibitor into the cell culture media in steps (e) or (f).
3. The method of claim 1 wherein the vector of step (a) and the vector of step (b) are the same vector.
4. The method of claim 1 wherein the vectors of steps (a) and (b) are two separate vectors.
5. The method of claim 4 wherein the vectors of steps (a) and (b) comprise different antibiotic resistance selection markers.
6. The method of claim 1 wherein the host cells are cultured under conditions for transient expression of the protein of interest.
7. The method of claim 1 wherein the protein of interest comprises a protein which is capable of inducing apoptosis in a mammalian or non-mammalian cell.
8. The method of claim 1 wherein said cell culture media is serum-free media.
9. The method of claim 1 wherein said cell culture media comprises butyrate.
10. The method of claim 1 wherein after step (f), the host cell(s) and/or cell culture media is frozen and subsequently thawed.
11. A method of making recombinant proteins using one or more apoptosis inhibitors, comprising the steps of:
(a) providing a vector comprising a gene encoding a protein of interest,
(b) providing a Chinese hamster ovary (CHO) host cell comprising a gene encoding caspase-9 dominant negative protein,
(c) transforming or transfecting the host cell with the vector of step (a),
(d) providing cell culture media,
(e) culturing the transformed or transfected host cell in the cell culture media under conditions sufficient for expression of the protein of interest and the caspase-9 dominant negative protein and optionally
(f) recovering or purifying the protein of interest from the host cell and/or cell culture media.
12. The method of claim 11 wherein the gene encoding the caspase-9 dominant negative protein is stably integrated into the genome of the host cell.
13. The method of claim 11 further comprising the step of admixing an additional apoptosis inhibitor molecule into the cell culture media in steps (d) or (e).
14. The method of claim 11 wherein said cell culture media comprises butyrate.
15. The method of claim 11 wherein after step (e), the host cell(s) and/or cell culture media is frozen and subsequently thawed.
16. A method of making recombinant proteins using one or more apoptosis inhibitors, comprising the steps of:
(a) providing a vector comprising a gene encoding a protein of interest,
(b) providing a Chinese hamster ovary (CHO) host cell,
(c) transforming or transfecting the host cell with the vector of step (a),
(d) providing cell culture media,
(e) providing an amount of caspase inhibitor z-VAD-fmk,
(f) admixing the caspase inhibitor into the cell culture media,
(g) culturing the host cell in the cell culture media under conditions sufficient for expression of the protein of interest, and optionally
(h) recovering or purifying the protein of interest from the host cell and/or the cell culture media.
17. The method of claim 16 wherein after step (g), the host cell(s) and/or cell culture media is frozen and subsequently thawed.
18. A method of increasing yield of a protein of interest in a cell culture, comprising the steps of:
(a) providing a vector comprising a gene encoding caspase-9 dominant negative protein,
(b) providing a vector comprising a gene encoding a protein of interest,
(c) providing a Chinese hamster ovary (CHO) host cell,
(d) transforming or transfecting the host cell with the vector of steps (a) and (b),
(e) providing cell culture media,
(f) culturing the transformed or transfected host cell in the cell culture media under conditions sufficient for expression of the protein of interest and an amount of the caspase-9 dominant negative protein which is effective in increasing yield of the protein of interest, and optionally
(g) recovering or purifying the protein of interest from the host cell and/or the cell culture media.
19. The method of claim 18 wherein said cell culture media is serum-free media.
20. The method of claim 18 wherein after step (f), the host cell(s) and/or cell culture media is frozen and subsequently thawed.
21. A method of prolonging host cell viability in a cell culture, comprising the steps of:
(a) providing a vector comprising a gene encoding caspase-9 dominant negative protein,
(b) providing a vector comprising a gene encoding a protein of interest,
(c)providing a Chinese hamster ovary (CHO) host cell,
(d) transforming or transfecting the host cell with the vector of steps (a) and (b),
(e) providing cell culture media,
(f) culturing the transformed or transfected host cell in the cell culture media under conditions sufficient for expression of the protein of interest and an amount of caspase-9 dominant negative protein which is effective for prolonging viability of the host cells in the cell culture, and optionally
(g) recovering or purifying the protein of interest from the host cell and/or the cell culture media.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/668,924 US6586206B1 (en) | 1999-09-27 | 2000-09-25 | Methods for making recombinant proteins using apoptosis inhibitors |
| US10/607,882 US20040002139A1 (en) | 1999-09-27 | 2003-06-27 | Methods for making recombinant proteins using apoptosis inhibitors |
| US11/454,670 US20070004009A1 (en) | 1999-09-27 | 2006-06-15 | Methods for making recombinant proteins using apoptosis inhibitors |
| US12/592,606 US20100087624A1 (en) | 1999-09-27 | 2009-11-30 | Methods for making recombinant proteins using apoptosis inhibitors |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15623299P | 1999-09-27 | 1999-09-27 | |
| US09/668,924 US6586206B1 (en) | 1999-09-27 | 2000-09-25 | Methods for making recombinant proteins using apoptosis inhibitors |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/607,882 Continuation US20040002139A1 (en) | 1999-09-27 | 2003-06-27 | Methods for making recombinant proteins using apoptosis inhibitors |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6586206B1 true US6586206B1 (en) | 2003-07-01 |
Family
ID=22558684
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/668,924 Expired - Lifetime US6586206B1 (en) | 1999-09-27 | 2000-09-25 | Methods for making recombinant proteins using apoptosis inhibitors |
| US10/607,882 Abandoned US20040002139A1 (en) | 1999-09-27 | 2003-06-27 | Methods for making recombinant proteins using apoptosis inhibitors |
| US11/454,670 Abandoned US20070004009A1 (en) | 1999-09-27 | 2006-06-15 | Methods for making recombinant proteins using apoptosis inhibitors |
| US12/592,606 Abandoned US20100087624A1 (en) | 1999-09-27 | 2009-11-30 | Methods for making recombinant proteins using apoptosis inhibitors |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/607,882 Abandoned US20040002139A1 (en) | 1999-09-27 | 2003-06-27 | Methods for making recombinant proteins using apoptosis inhibitors |
| US11/454,670 Abandoned US20070004009A1 (en) | 1999-09-27 | 2006-06-15 | Methods for making recombinant proteins using apoptosis inhibitors |
| US12/592,606 Abandoned US20100087624A1 (en) | 1999-09-27 | 2009-11-30 | Methods for making recombinant proteins using apoptosis inhibitors |
Country Status (12)
| Country | Link |
|---|---|
| US (4) | US6586206B1 (en) |
| EP (2) | EP1650307B1 (en) |
| JP (1) | JP2003510087A (en) |
| AT (2) | ATE313634T1 (en) |
| AU (1) | AU7614600A (en) |
| CA (1) | CA2384880C (en) |
| DE (2) | DE60044690D1 (en) |
| DK (2) | DK1220934T3 (en) |
| ES (2) | ES2254230T3 (en) |
| IL (2) | IL148512A0 (en) |
| PT (1) | PT1650307E (en) |
| WO (1) | WO2001023592A2 (en) |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030064510A1 (en) * | 2001-07-10 | 2003-04-03 | Idec Pharmaceuticals Corporation | Inhibition of apoptosis process and improvement of cell performance |
| US20040014218A1 (en) * | 2002-01-05 | 2004-01-22 | Lee Gyun Min | Dhfr-deficient cho cell line transfected with an anti-apoptotic gene, method for preparation thereof, and method for producing target protein using the same |
| US20060063231A1 (en) * | 2004-09-16 | 2006-03-23 | Sangamo Biosciences, Inc. | Compositions and methods for protein production |
| US20060110793A1 (en) * | 2004-07-23 | 2006-05-25 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US20060263809A1 (en) * | 2005-04-05 | 2006-11-23 | The Rgents Of The University Of California | Method for sensitive measure of low level apoptosis in cells |
| US20070015250A1 (en) * | 2004-07-23 | 2007-01-18 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| WO2006071200A3 (en) * | 2004-12-30 | 2007-01-25 | Agency Science Tech & Res | Chinese hamster apoptosis-related genes |
| US20070092947A1 (en) * | 2005-10-20 | 2007-04-26 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| WO2007015691A3 (en) * | 2004-07-23 | 2009-04-02 | Immunomedics Inc | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US20090111143A1 (en) * | 2004-07-23 | 2009-04-30 | Immunomedics, Inc. | Methods and Compositions for Mammalian Cell Lines for Transfection and Protein Expression in Serum-Free Medium |
| US20100049284A1 (en) * | 2008-05-15 | 2010-02-25 | The Catholic University Of America | Use of heat to treat biological systems exposed to damaging radiation |
| US20100087624A1 (en) * | 1999-09-27 | 2010-04-08 | Genentech, Inc. | Methods for making recombinant proteins using apoptosis inhibitors |
| US20100173359A1 (en) * | 2007-07-13 | 2010-07-08 | Ladine James R | Enhanced biotherapeutic production using inhibitory rna |
| AU2005333513B2 (en) * | 2004-07-23 | 2011-06-02 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US20110269233A1 (en) * | 2008-09-15 | 2011-11-03 | Laetitia Malphettes | Compositions and methods for regulating cell osmolarity |
| JP2019510513A (en) * | 2015-04-03 | 2019-04-18 | デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド | Compositions and methods for genome editing of B cells |
| US10618951B1 (en) | 2009-02-20 | 2020-04-14 | Ventria Biosciences Inc. | Cell culture media containing combinations of proteins |
| CN112080439A (en) * | 2020-07-30 | 2020-12-15 | 浙江工业大学 | Application of human apoptosis regulatory protein Bcl-2 in increasing yield of saccharomyces cerevisiae nerolidol |
| WO2022036232A3 (en) * | 2020-08-14 | 2022-06-09 | Bristol-Myers Squibb Company | Method of making protein |
Families Citing this family (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7405038B1 (en) | 2000-03-03 | 2008-07-29 | Boyce Thompson Institute For Plant Research, Inc. | Stable cell lines resistant to apoptosis and nutrient stress and methods of making same |
| US7829306B2 (en) | 2003-10-24 | 2010-11-09 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Protein highly producing recombinant animal cell, method for preparing the same, and method for mass-producing protein using the same |
| MX346523B (en) | 2006-09-13 | 2017-03-23 | Abbvie Inc | Cell culture improvements. |
| US8911964B2 (en) | 2006-09-13 | 2014-12-16 | Abbvie Inc. | Fed-batch method of making human anti-TNF-alpha antibody |
| JP5283044B2 (en) * | 2007-10-09 | 2013-09-04 | 国立大学法人広島大学 | Vector and its use for highly amplifying target genes extrachromosomally |
| WO2009106488A1 (en) * | 2008-02-25 | 2009-09-03 | Novozymes A/S | Method for increasing expression yield of a protein of interest |
| NZ592097A (en) | 2008-10-20 | 2013-01-25 | Abbott Lab | Viral inactivation during purification of il-12 and il-18 antibodies |
| WO2010141039A1 (en) * | 2008-10-20 | 2010-12-09 | Abbott Laboratories | Isolation and purification of antibodies using protein a affinity chromatography |
| US9062106B2 (en) | 2011-04-27 | 2015-06-23 | Abbvie Inc. | Methods for controlling the galactosylation profile of recombinantly-expressed proteins |
| US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
| US9334319B2 (en) | 2012-04-20 | 2016-05-10 | Abbvie Inc. | Low acidic species compositions |
| WO2013158273A1 (en) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Methods to modulate c-terminal lysine variant distribution |
| WO2013176754A1 (en) | 2012-05-24 | 2013-11-28 | Abbvie Inc. | Novel purification of antibodies using hydrophobic interaction chromatography |
| WO2014022102A1 (en) * | 2012-08-01 | 2014-02-06 | Amgen Inc. | Methods of using anti-apoptotic compounds to modulate one or more properties of a cell culture |
| US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
| HK1211981A1 (en) | 2012-09-02 | 2016-06-03 | Abbvie Inc. | Methods to control protein heterogeneity |
| WO2014143205A1 (en) | 2013-03-12 | 2014-09-18 | Abbvie Inc. | Human antibodies that bind human tnf-alpha and methods of preparing the same |
| WO2014151878A2 (en) | 2013-03-14 | 2014-09-25 | Abbvie Inc. | Methods for modulating protein glycosylation profiles of recombinant protein therapeutics using monosaccharides and oligosacharides |
| WO2014159579A1 (en) | 2013-03-14 | 2014-10-02 | Abbvie Inc. | MUTATED ANTI-TNFα ANTIBODIES AND METHODS OF THEIR USE |
| US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
| DE102013206438A1 (en) | 2013-04-11 | 2014-10-16 | Bühler Motor GmbH | Permanent magnet rotor for an electronically commutated DC motor |
| SG11201602060XA (en) | 2013-09-23 | 2016-04-28 | Wolf Wilson Mfg Corp | Improved methods of genetically modifying animal cells |
| US9598667B2 (en) | 2013-10-04 | 2017-03-21 | Abbvie Inc. | Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins |
| US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
| US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
| US8946395B1 (en) | 2013-10-18 | 2015-02-03 | Abbvie Inc. | Purification of proteins using hydrophobic interaction chromatography |
| US20150139988A1 (en) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Glycoengineered binding protein compositions |
| PL3166401T3 (en) * | 2014-07-09 | 2021-01-25 | F. Hoffmann-La Roche Ag | Ph adjustment to improve thaw recovery of cell banks |
| CN111349615B (en) * | 2018-12-24 | 2024-08-13 | 上海细胞治疗集团股份有限公司 | Method for preparing cell over-expressing exogenous gene |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993016192A1 (en) | 1992-02-11 | 1993-08-19 | The Wellcome Foundation Limited | Humanised antibody against hepatitis |
| WO1997044444A1 (en) | 1996-05-23 | 1997-11-27 | Institut National De La Recherche Agronomique | Immortalized avian cell lines |
| WO1997044443A1 (en) | 1996-05-23 | 1997-11-27 | Merial | Immortal avian cells |
| WO1998010778A1 (en) | 1996-09-12 | 1998-03-19 | Idun Pharmaceuticals, Inc. | INHIBITION OF APOPTOSIS USING INTERLEUKIN-1β-CONVERTING ENZYME (ICE)/CED-3 FAMILY INHIBITORS |
| WO1998035986A1 (en) | 1997-02-13 | 1998-08-20 | Immunex Corporation | Receptor that binds trail |
| WO2001018185A1 (en) | 1999-09-08 | 2001-03-15 | Genetrol Biotherapeutics, Inc. | High level cytokine production with enhanced cell viability |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2971218B2 (en) * | 1991-12-04 | 1999-11-02 | 協和醗酵工業株式会社 | Uricase gene and method for producing uricase |
| JPH09163983A (en) * | 1995-08-30 | 1997-06-24 | Hisamitsu Pharmaceut Co Inc | Efficient production of useful substance by apoptosis inhibition and cell |
| US5876923A (en) * | 1996-07-26 | 1999-03-02 | Arch Development Corporation | Herpes simplex virus ICP4 as an inhibitor of apoptosis |
| US6855544B1 (en) * | 1999-04-15 | 2005-02-15 | Crucell Holland B.V. | Recombinant protein production in a human cell |
| ES2254230T3 (en) * | 1999-09-27 | 2006-06-16 | Genentech, Inc. | MANUFACTURING PROCEDURE FOR RECOMBINANT PROTEINS USING APOPTOSIS INHIBITORS. |
-
2000
- 2000-09-25 ES ES00965426T patent/ES2254230T3/en not_active Expired - Lifetime
- 2000-09-25 DE DE60044690T patent/DE60044690D1/en not_active Expired - Lifetime
- 2000-09-25 DK DK00965426T patent/DK1220934T3/en active
- 2000-09-25 AT AT00965426T patent/ATE313634T1/en active
- 2000-09-25 ES ES05020550T patent/ES2346659T3/en not_active Expired - Lifetime
- 2000-09-25 AT AT05020550T patent/ATE474052T1/en active
- 2000-09-25 EP EP05020550A patent/EP1650307B1/en not_active Expired - Lifetime
- 2000-09-25 IL IL14851200A patent/IL148512A0/en unknown
- 2000-09-25 PT PT05020550T patent/PT1650307E/en unknown
- 2000-09-25 WO PCT/US2000/026352 patent/WO2001023592A2/en active IP Right Grant
- 2000-09-25 DE DE60025015T patent/DE60025015T2/en not_active Expired - Lifetime
- 2000-09-25 EP EP00965426A patent/EP1220934B1/en not_active Expired - Lifetime
- 2000-09-25 CA CA2384880A patent/CA2384880C/en not_active Expired - Lifetime
- 2000-09-25 US US09/668,924 patent/US6586206B1/en not_active Expired - Lifetime
- 2000-09-25 DK DK05020550.9T patent/DK1650307T3/en active
- 2000-09-25 JP JP2001526974A patent/JP2003510087A/en active Pending
- 2000-09-25 AU AU76146/00A patent/AU7614600A/en not_active Abandoned
-
2002
- 2002-03-05 IL IL148512A patent/IL148512A/en active IP Right Grant
-
2003
- 2003-06-27 US US10/607,882 patent/US20040002139A1/en not_active Abandoned
-
2006
- 2006-06-15 US US11/454,670 patent/US20070004009A1/en not_active Abandoned
-
2009
- 2009-11-30 US US12/592,606 patent/US20100087624A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993016192A1 (en) | 1992-02-11 | 1993-08-19 | The Wellcome Foundation Limited | Humanised antibody against hepatitis |
| WO1997044444A1 (en) | 1996-05-23 | 1997-11-27 | Institut National De La Recherche Agronomique | Immortalized avian cell lines |
| WO1997044443A1 (en) | 1996-05-23 | 1997-11-27 | Merial | Immortal avian cells |
| WO1998010778A1 (en) | 1996-09-12 | 1998-03-19 | Idun Pharmaceuticals, Inc. | INHIBITION OF APOPTOSIS USING INTERLEUKIN-1β-CONVERTING ENZYME (ICE)/CED-3 FAMILY INHIBITORS |
| WO1998035986A1 (en) | 1997-02-13 | 1998-08-20 | Immunex Corporation | Receptor that binds trail |
| US6072047A (en) | 1997-02-13 | 2000-06-06 | Immunex Corporation | Receptor that binds trail |
| WO2001018185A1 (en) | 1999-09-08 | 2001-03-15 | Genetrol Biotherapeutics, Inc. | High level cytokine production with enhanced cell viability |
Non-Patent Citations (62)
Cited By (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100087624A1 (en) * | 1999-09-27 | 2010-04-08 | Genentech, Inc. | Methods for making recombinant proteins using apoptosis inhibitors |
| US20030064510A1 (en) * | 2001-07-10 | 2003-04-03 | Idec Pharmaceuticals Corporation | Inhibition of apoptosis process and improvement of cell performance |
| US7604989B2 (en) | 2001-07-10 | 2009-10-20 | Johns Hopkins University | Inhibition of apoptosis process and improvement of cell performance |
| US20040014218A1 (en) * | 2002-01-05 | 2004-01-22 | Lee Gyun Min | Dhfr-deficient cho cell line transfected with an anti-apoptotic gene, method for preparation thereof, and method for producing target protein using the same |
| US20090111143A1 (en) * | 2004-07-23 | 2009-04-30 | Immunomedics, Inc. | Methods and Compositions for Mammalian Cell Lines for Transfection and Protein Expression in Serum-Free Medium |
| US7531327B2 (en) * | 2004-07-23 | 2009-05-12 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US8771987B2 (en) | 2004-07-23 | 2014-07-08 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| US8569054B2 (en) | 2004-07-23 | 2013-10-29 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| US8372603B2 (en) | 2004-07-23 | 2013-02-12 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| JP2012254084A (en) * | 2004-07-23 | 2012-12-27 | Immunomedics Inc | Method and composition for increasing longevity and originated protein yield of cell culture |
| US8153433B1 (en) | 2004-07-23 | 2012-04-10 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| WO2007015691A3 (en) * | 2004-07-23 | 2009-04-02 | Immunomedics Inc | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US8889410B2 (en) | 2004-07-23 | 2014-11-18 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| US20070015250A1 (en) * | 2004-07-23 | 2007-01-18 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US7537930B2 (en) * | 2004-07-23 | 2009-05-26 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| US20090253179A1 (en) * | 2004-07-23 | 2009-10-08 | Immunomedics, Inc. | Mammalian Cell Lines for Increasing Longevity and Protein Yield from a Cell Culture |
| US20060110793A1 (en) * | 2004-07-23 | 2006-05-25 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US7608425B2 (en) | 2004-07-23 | 2009-10-27 | Immunomedics, Inc. | Methods for protein expression in mammalian cells in serum-free medium |
| US8076140B2 (en) | 2004-07-23 | 2011-12-13 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from a cell culture |
| US20100311162A1 (en) * | 2004-07-23 | 2010-12-09 | Immunomedics, Inc. | Mammalian Cell Lines for Increasing Longevity and Protein Yield from a Cell Culture |
| US20110236404A1 (en) * | 2004-07-23 | 2011-09-29 | Immunomedics, Inc. | Methods for Protein Expression in Mammalian Cells in Serum-Free Medium |
| US7785880B2 (en) | 2004-07-23 | 2010-08-31 | Immunomedics, Inc. | Mammalian cell lines for increasing longevity and protein yield from cell culture |
| AU2005333513B2 (en) * | 2004-07-23 | 2011-06-02 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US20060063231A1 (en) * | 2004-09-16 | 2006-03-23 | Sangamo Biosciences, Inc. | Compositions and methods for protein production |
| EP2298890A1 (en) | 2004-12-30 | 2011-03-23 | Agency for Science, Technology and Research | Chinese hamster apoptosis-related genes |
| AU2005322686B2 (en) * | 2004-12-30 | 2012-01-19 | Agency For Science, Technology And Research | Chinese hamster apoptosis-related genes |
| EP2298887A1 (en) | 2004-12-30 | 2011-03-23 | Agency for Science, Technology and Research | Chinese hamster apoptosis-related genes |
| EP2298889A1 (en) | 2004-12-30 | 2011-03-23 | Agency for Science, Technology and Research | Chinese hamster apoptosis-related genes |
| US7846894B2 (en) | 2004-12-30 | 2010-12-07 | Agency For Science, Technology And Research | Chinese hamster apoptosis-related genes |
| US20110129927A1 (en) * | 2004-12-30 | 2011-06-02 | Agency For Science, Technology And Research | Chinese hamster apoptosis-related genes |
| WO2006071200A3 (en) * | 2004-12-30 | 2007-01-25 | Agency Science Tech & Res | Chinese hamster apoptosis-related genes |
| EP2298888A1 (en) | 2004-12-30 | 2011-03-23 | Agency for Science, Technology and Research | Chinese hamster apoptosis-related genes |
| US20080295190A1 (en) * | 2004-12-30 | 2008-11-27 | Chee Furng Wong | Chinese hamster apoptosis-related genes |
| EP1997890A1 (en) | 2004-12-30 | 2008-12-03 | Agency for Science, Technology and Research | Chinese hamster apoptosis-related genes |
| US20060263809A1 (en) * | 2005-04-05 | 2006-11-23 | The Rgents Of The University Of California | Method for sensitive measure of low level apoptosis in cells |
| CN101273121B (en) * | 2005-07-25 | 2012-07-04 | 免疫医疗公司 | Improved methods and compositions for increasing longevity and protein yield from a cell culture |
| WO2007015848A3 (en) * | 2005-07-25 | 2007-10-04 | Immunomedics Inc | Improved methods and compositions for increasing longevity and protein yield from a cell culture |
| US20070092947A1 (en) * | 2005-10-20 | 2007-04-26 | Immunomedics, Inc. | Methods and compositions for increasing longevity and protein yield from a cell culture |
| US8273722B2 (en) * | 2007-07-13 | 2012-09-25 | Dharmacon, Inc. | Enhanced biotherapeutic production using inhibitory RNA |
| US20100173359A1 (en) * | 2007-07-13 | 2010-07-08 | Ladine James R | Enhanced biotherapeutic production using inhibitory rna |
| US20100049284A1 (en) * | 2008-05-15 | 2010-02-25 | The Catholic University Of America | Use of heat to treat biological systems exposed to damaging radiation |
| US20110269233A1 (en) * | 2008-09-15 | 2011-11-03 | Laetitia Malphettes | Compositions and methods for regulating cell osmolarity |
| US10100319B2 (en) | 2008-09-15 | 2018-10-16 | Genentech, Inc. | Compositions and methods for regulating cell osmolarity |
| US11279939B2 (en) | 2008-09-15 | 2022-03-22 | Genentech, Inc. | Compositions and methods for regulating cell osmolarity |
| US10618951B1 (en) | 2009-02-20 | 2020-04-14 | Ventria Biosciences Inc. | Cell culture media containing combinations of proteins |
| US10981974B2 (en) | 2009-02-20 | 2021-04-20 | Ventria Bioscience Inc. | Cell culture media containing combinations of proteins |
| US11492389B1 (en) | 2009-02-20 | 2022-11-08 | Ventria Biosciences Inc. | Cell culture media containing combinations of proteins |
| US12286467B2 (en) | 2009-02-20 | 2025-04-29 | Invitria, Inc. | Cell culture media containing combinations of proteins |
| JP2019510513A (en) * | 2015-04-03 | 2019-04-18 | デイナ ファーバー キャンサー インスティチュート,インコーポレイテッド | Compositions and methods for genome editing of B cells |
| CN112080439A (en) * | 2020-07-30 | 2020-12-15 | 浙江工业大学 | Application of human apoptosis regulatory protein Bcl-2 in increasing yield of saccharomyces cerevisiae nerolidol |
| WO2022036232A3 (en) * | 2020-08-14 | 2022-06-09 | Bristol-Myers Squibb Company | Method of making protein |
Also Published As
| Publication number | Publication date |
|---|---|
| US20100087624A1 (en) | 2010-04-08 |
| PT1650307E (en) | 2010-10-21 |
| EP1220934B1 (en) | 2005-12-21 |
| CA2384880C (en) | 2010-09-21 |
| WO2001023592A3 (en) | 2001-12-20 |
| WO2001023592A2 (en) | 2001-04-05 |
| DE60025015T2 (en) | 2006-08-03 |
| DE60044690D1 (en) | 2010-08-26 |
| DK1650307T3 (en) | 2010-10-04 |
| EP1220934A2 (en) | 2002-07-10 |
| ATE474052T1 (en) | 2010-07-15 |
| EP1650307A3 (en) | 2006-05-03 |
| ES2346659T3 (en) | 2010-10-19 |
| IL148512A (en) | 2011-04-28 |
| AU7614600A (en) | 2001-04-30 |
| DK1220934T3 (en) | 2006-05-08 |
| ES2254230T3 (en) | 2006-06-16 |
| EP1650307B1 (en) | 2010-07-14 |
| IL148512A0 (en) | 2002-09-12 |
| CA2384880A1 (en) | 2001-04-05 |
| EP1650307A2 (en) | 2006-04-26 |
| US20070004009A1 (en) | 2007-01-04 |
| ATE313634T1 (en) | 2006-01-15 |
| US20040002139A1 (en) | 2004-01-01 |
| JP2003510087A (en) | 2003-03-18 |
| HK1091228A1 (en) | 2007-01-12 |
| DE60025015D1 (en) | 2006-01-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6586206B1 (en) | Methods for making recombinant proteins using apoptosis inhibitors | |
| DE69832970T2 (en) | HUMANIZED ANTIBODIES AND METHOD FOR THEIR MANUFACTURE | |
| US12286467B2 (en) | Cell culture media containing combinations of proteins | |
| Butler | Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals | |
| JP2020124216A (en) | Process for manipulating the level of glycan content of glycoproteins | |
| US20050272124A1 (en) | Polypeptide production in animal cell culture | |
| US20220267448A1 (en) | Cell culture methods and compositions for antibody production | |
| KR20130056853A (en) | Methods & compositions for improving protein production | |
| AU2009201482B2 (en) | Methods for making recombinant proteins using apoptosis inhibitors | |
| KR100982922B1 (en) | Glutamine-auxothrophic human cells capable of producing proteins and capable of growing in a glutamine-free medium | |
| HK1091228B (en) | Methods for making recombinant proteins using apoptosis inhibitors | |
| CN116194570A (en) | Methods for producing therapeutic proteins | |
| KR101714860B1 (en) | Chemically defined cell culture media additive |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GENENTECH, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DIXIT, VISHVA;HAMILTON, ROBERT W.;VAN DE GOOR, JANA;REEL/FRAME:011194/0001;SIGNING DATES FROM 20000928 TO 20001003 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |