US6551290B1 - Catheter for target specific drug delivery - Google Patents

Catheter for target specific drug delivery Download PDF

Info

Publication number
US6551290B1
US6551290B1 US09/540,444 US54044400A US6551290B1 US 6551290 B1 US6551290 B1 US 6551290B1 US 54044400 A US54044400 A US 54044400A US 6551290 B1 US6551290 B1 US 6551290B1
Authority
US
United States
Prior art keywords
opening
restrictor
distal end
catheter
medical catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/540,444
Inventor
Dennis D. Elsberry
Chris Christiansen
Mary M. Morris
Douglas Owen Hankner
Robert Cushing Hamlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US09/540,444 priority Critical patent/US6551290B1/en
Priority to US09/625,751 priority patent/US6945969B1/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELSBERRY, DENNIS D., HAMLEN, ROBERT CUSHING, CHRISTIANSEN, CHRIS, HANKNER, DOUGLAS OWEN, MORRIS, MARY M.
Priority to IE20010197A priority patent/IE20010197A1/en
Priority to FR0103777A priority patent/FR2806918B1/en
Priority to DE10113983A priority patent/DE10113983A1/en
Priority to CH00541/01A priority patent/CH695136A5/en
Publication of US6551290B1 publication Critical patent/US6551290B1/en
Application granted granted Critical
Priority to US10/828,688 priority patent/US7153292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/0069Tip not integral with tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0057Catheters delivering medicament other than through a conventional lumen, e.g. porous walls or hydrogel coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M27/00Drainage appliance for wounds or the like, i.e. wound drains, implanted drains
    • A61M27/002Implant devices for drainage of body fluids from one part of the body to another
    • A61M27/006Cerebrospinal drainage; Accessories therefor, e.g. valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation

Definitions

  • This invention relates to medical catheters for target specific drug delivery.
  • Medical therapies may require the targeting of the therapy to a targeted patient site to maximize the therapeutic benefit and/or minimizing adverse effects to other organs or tissues outside the targeted patient site.
  • U.S. Pat. No. 3,640,269 describes a fluid delivery assembly having two flexible fluid-impermeable tubes open at one end and provided with an enlarged flexible permeable bag at the delivery segment.
  • This bag is comprised of a membrane having uniform porosity less than 0.5 microns and having a water permeability of at least 60 mL/minute/cm as a description of fluid permeability. While this design is capable of uniform fluid delivery to tissues adjacent to the permeable bag, a disadvantage of this assembly is its inability to be specifically targeted to a patient site due to the flexible distal bag.
  • a new medical catheter has now been discovered that provides uniform distribution of therapeutic agents to a targeted patient site.
  • the medical catheter of the present invention has a unique structure that permits it to be accurately placed so that it can uniformly distribute therapeutic agents to the targeted patient site.
  • the catheter has at least two distal ends, and a proximal end joined to the two distal ends via a connector, such as a “Y” connector having three legs.
  • a connector such as a “Y” connector having three legs.
  • the two distal ends and the proximal end are each located at a separate ends of the legs of the connector.
  • restrictors are placed in each leg of the connector.
  • a restrictor is a structure that provides a significant pressure drop when fluid flows through that structure.
  • the restrictors of the present invention provide structure to balance the flow for a multiple catheter system.
  • the restrictors can be made of any suitable material, e.g. a powder material such as sintered metal powder.
  • diffusers are placed at the distal ends.
  • a diffuser is a structure that diffuses and delivers a therapeutic agent over a large surface area as opposed to a single point source.
  • the diffusers and restrictors which are in each leg having a distal end, are separated from each other.
  • the diffuser is at the tip of each distal end, and the each restrictor is upstream of the distal end.
  • This construction is particularly useful for delivery of drugs via multiple catheter ends. For example, drug delivery to the two different hemispheres of the brain may be achieved, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictor(s) upstream of the distal ends, rather than at the distal ends as are the diffusers.
  • the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the restrictor structure for biostability.
  • a restrictor is placed upstream of the Y connector as well, so that there is a restrictor in all three legs of the catheter joined by the Y connector.
  • This construction provides additional benefits. For example, having the restrictor upstream of the Y connector acts as a pre-filter, and thus removes any particulates prior to the Y connector.
  • This pre-filter function reduces particulates to the restrictors downstream of the Y connector, thus reducing the potential for different pressure drops and flow rates through the restrictors downstream of the Y connector, and ultimately the flow rate of the delivered drug through the diffusers at the distal ends.
  • this embodiment eliminates the possibility for insertion of a catheter where only one restrictor is downstream of the Y connector, and one restrictor is upstream of the Y connector.
  • the catheter of the present invention comprises a rigid assembly having a rigid tube for positioning the distal end of the catheter near a targeted patient site or sites.
  • the distal end of the catheter has a rigid porous delivery segment having a porosity less than 0.50 microns for achieving homogenous delivery to the targeted patient site.
  • the catheter of the present invention has a rigid assembly having an open tube having a distal end, the distal end having sintered metal powder, for example, metal microspheres to provide uniform porosity of the delivery segment.
  • the distal end comprises at least one uniform surface made of sintered metal powder.
  • the sintered metal powder can be made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum.
  • the rigid assembly functions as both a diffuser and a restrictor.
  • the sintered metal rigid assembly of this embodiment can be fabricated using a single cavity carbon mold, and a mold insert.
  • the sintered metal rigid assembly can be fabricated using powdered metal and pyrogenic sintering, such as high pressure plus pyrogenic sintering.
  • Sintered metal rigid assemblies can be positioned at the distal ends of separate legs of a catheter for placement at multiple patient targets. The distal ends can each join to a connector (e.g., a “Y” connector) for connection to a single therapy source.
  • a connector e.g., a “Y” connector
  • the sintered metal rigid assembly of this embodiment unctions as both a fluid restrictor and a fluid diffuser.
  • the diffuser and restrictor functions can be combined, as in a membrane tip, or separated, with the restrictor being upstream of the diffuser in each leg of the catheter.
  • a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
  • An objective of the present invention is to provide for multiple catheter ends for drug delivery arising from a single pump source.
  • the present invention provides a catheter construction that provides desired distribution in a targeted area of the patient, such as giving medications intraparenchymally into tissue.
  • Drug delivery by the present invention can be to an organ, and uniform distribution to that organ may be desired.
  • Another objective of the present invention is to provide a catheter to diffuse a therapeutic agent over a larger surface area than from a single point source. This structure results in a decrease in fluid flux and reduces potential for damaging tissue near the infusion site. In order for equal or near equal bilateral drug delivery to occur, two distal ends are required since fluid delivered from one distal end to a target site at one hemisphere will not deliver fluid to the other hemisphere.
  • the present invention can be used for many drug delivery applications, including but not limited, to intraparenchymal or tissue infusion (such as brain tissue infusion), intrathecal drug delivery and intracerebral ventricular (ICV) drug delivery, or any drug infusion into a fluid filled space or to a tumor.
  • intraparenchymal or tissue infusion such as brain tissue infusion
  • intrathecal drug delivery and intracerebral ventricular (ICV) drug delivery
  • ICV intracerebral ventricular
  • FIG. 1 illustrates the catheter of the present invention, as implanted in a preferred location of the human body, and for drug delivery to each side of a patient's brain.
  • FIG. 2 is a top view of the catheter of the present invention as implanted and which provides drug delivery to the two hemispheres of a patient's brain.
  • FIG. 3A illustrates an embodiment of the catheter of the present invention in combination with device 20 .
  • FIG. 3B illustrates another embodiment of the catheter of the present invention in combination with device 20 .
  • FIG. 3C illustrates another embodiment of the catheter of the present invention in combination with device 20 , this embodiment having two diffuser and restrictor distal catheter segments.
  • FIG. 3D illustrates another embodiment of the present invention in combination with device 20 , this embodiment having more than two diffuser and restrictor distal catheter segments.
  • FIG. 4A illustrates another embodiment of the catheter of the present invention in combination with device 20 , this embodiment having a separate restrictor placed between each diffuser distal catheter segment and connector 50 .
  • FIG. 4B illustrates another embodiment of the present invention in combination with device 20 , this embodiment having multiple connectors 50 , and multiple diffuser distal catheter segments with separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50 .
  • FIG. 5A illustrates another embodiment of the catheter of the present invention in combination with device 20 , this embodiment having separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50 , and a restrictor 90 placed between proximal end 24 and the first connector 50 downstream of proximal end 24 .
  • FIG. 5B shows the same structure as FIG. 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24 .
  • catheter 22 has a proximal end 24 , and distal ends 26 and 26 ′.
  • Distal ends 26 and 26 ′ are connected to catheter 22 , which splits at a “Y” connector 50 .
  • Distal end 26 is positioned in the right anterior cerebral cortex 16
  • distal end 26 ′ is positioned in the left anterior cerebral cortex 16 ′.
  • Proximal end 24 is attached device 20 , which can be an implantable infusion pump. While two distal ends are shown, the present invention can have one or more than two distal ends.
  • catheter 22 has a catheter portion 10 downstream of device 20 and upstream of connector 50 .
  • Catheter portion 10 preferably comprises an elongated tubular wall 30 defining a central lumen 32 .
  • catheter 22 begins at proximal end 24 and terminates at distal end 26 .
  • distal end 26 has a catheter tip 34 .
  • Proximal end 24 defines an opening 17 .
  • Lumen 32 is defined by tubular wall 30 .
  • Tubular wall 30 terminates at end 36 .
  • catheter tip 34 is attached to tubular wall 30 .
  • Catheter tip 34 has a lumen 38 to receive a drug from lumen 32 , which can receive a drug pumped from device 20 .
  • the length of the portion of catheter tip 34 that is exposed to patient tissue is represented by a distance “x”.
  • catheter 22 of the present invention comprises a rigid assembly having a rigid tubular wall 30 for positioning the distal end 26 of the catheter 22 near a targeted patient site, the distal end 26 having a rigid porous portion or drug delivery segment 60 made of a sintered microsphere material having a porosity less than 0.50 microns for achieving homogenous delivery to the targeted patient site.
  • rigid porous drug delivery segment 60 comprises sintered metal microspheres to provide uniform porosity.
  • delivery segment 60 can also be referred to as a combination diffuser and restrictor.
  • delivery segment 60 restricts flow of a fluid containing a therapeutic drug and also diffuses that fluid so that the fluid is distributed to and emitted from the outer surface of delivery segment 60 that is exposed to a targeted patient site.
  • the sintered metal powder of the delivery segment 60 defines multiple pores or porous openings 25 .
  • the sintered metal powder is made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum.
  • the sintered rigid metal assemblies can be fabricated using a single cavity carbon mold, and a mold insert.
  • the rigid metal assembly can be pressed into a green part using high pressure and sintered using heat to convert the green part to a fused structure (i.e, without carbon molds).
  • Microspheres can be compressed together in each mold with pyrogenic processing.
  • a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
  • the desired porosity of the sintered porous tip can be selected upon the diameter of the metal powder spheres used in the mold fabrication process.
  • the maximal dimensional distance between adjacent microspheres i.e., pore size
  • microsphere diameter is directly related to microsphere diameter, and is preferably as follows:
  • Mircrosphere Diameter Maximal Dimensional Distance 40 microns Less than 6.2 microns 30 microns Less than 4.7 microns 20 microns Less than 3.1 microns 10 microns Less than 1.6 microns 5 microns Less than 0.8 microns 3 microns Less than 0.5 microns 2 microns Less than 0.3 microns
  • the maximal dimensional space is less than ideal since compression during the sintering process reduces dimension.
  • the distal end has a porous tip or a closed end, wherein the catheter tip is preferably composed of porous material such as polysulfone hollow fiber, manufactured by Amicon, although polyethylene, polyamides, polypropylene and expanded polytetrafluoroethlyene (ePTFE) are also suitable, and is preferable porous along its entire length to enable indomethacin to flow into the hippocampus, and the preferred pore size is approximately ranged between 0.1-0.2 microns. See Col. 5, line 64 through Col. 6, line 4 of U.S. Pat. No. 5,846,220.
  • porous material such as polysulfone hollow fiber, manufactured by Amicon, although polyethylene, polyamides, polypropylene and expanded polytetrafluoroethlyene (ePTFE) are also suitable, and is preferable porous along its entire length to enable indomethacin to flow into the hippocampus, and the preferred pore size is approximately ranged between 0.1-0.2 microns
  • the present invention differs from U.S. Pat. No. 5,846,220, because, among other things, the present invention has much larger pore sizes, i.e., about 0.3 to 6.2 microns, and the porous material in the present invention is preferably made from sintered metal microspheres.
  • FIG. 3 B Another embodiment is shown in FIG. 3 B. This embodiment is similar to FIG. 3A, except that there is a side opening 29 defined in distal end 26 , and delivery segment 60 is positioned at side opening 29 . Alternatively, delivery segment 60 can be positioned over or under side opening 29 , relative to tubular wall 30 . Side opening 29 can be incorporated into other embodiments shown and/or described herein.
  • FIG. 3C is similar to FIG. 3A, except there are two distal ends, 26 and 26 ′, two drug delivery segments 60 , and two legs 80 and 80 ′ connected to a connector 50 and corresponding distal ends 26 and 26 ′.
  • This embodiment can be referred to as a catheter having two difflilser/restrictor catheter segments. This embodiment can be used to deliver a drug to two targeted patient sites.
  • FIG. 3 D An alternative embodiment is shown in FIG. 3 D.
  • This embodiment is the same as that shown in FIG. 3C, except that there are more than one connector 50 , and more than two distal ends (in this embodiment, two distal ends 26 and two distal ends 26 ′, for a total of four distal ends), more than two delivery segment portions 60 , more than one catheter portion 10 , and more than two distal tips 34 having lumens 38 to receive a drug from lumens 32 . While four distal ends are shown, the present invention can have any number of distal ends as may be desired for drug delivery to targeted patient sites.
  • Connectors 50 are used to connect the proximal end 24 to catheter portions 10 and catheter portions 10 to legs 80 and 80 ′.
  • This embodiment can be referred to as catheter having multiple diffuser/restrictor catheter segments. This embodiment can be used to deliver a drug to more than two patient sites.
  • FIG. 4 A Another embodiment of the present invention is shown in FIG. 4 A.
  • This embodiment has many of the same elements previously described for other embodiments, and in particular, the embodiment shown in FIG. 3 C.
  • the embodiment shown in FIG. 4A has a catheter 22 having at least two distal ends 26 and 26 ′, and catheter portion or leg 10 joined to each distal end with a connector 50 .
  • restrictors 70 and 70 ′ are placed in each legs 80 and 80 ′, which are downstream of connector 50 .
  • Restrictors 70 and 70 ′ can be made of any suitable material, including but not limited to, e.g. sintered metal powder, which is previously described above, or a material that provides a small diameter fluid path or capillary tubes.
  • the drug delivery segment (i.e., diffuser) 60 and restrictors 70 and 71 ′ are separated from each other.
  • the drug delivery segment 60 is at tip 34 of each of the distal ends 26 and 26 ′, and the restrictors 70 and 71 ′ are upstream of distal ends 26 and 26 ′, respectively.
  • This construction is particularly useful for delivery of drugs via multiple (more than one) catheter ends.
  • drug delivery to the two different hemispheres of the brain may be desired, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictors upstream of the distal ends, rather than at the distal ends as are the diffusers.
  • the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the structure of the restrictor for biocompatibility.
  • FIG. 4 B An alternative embodiment is shown in FIG. 4 B.
  • This embodiment is the same as that shown in FIG. 4A, except that there is more than one connector 50 , more than two distal ends (in this embodiment, two distal ends 26 , and two distal ends 26 ′ for a total of.four distal ends), more than two delivery segment portions 60 , more than one catheter portion 10 , more than one leg 80 , more than one leg 80 ′, and more than two distal tips 34 having a lumen 38 to receive a drug from lumen 32 .
  • the connectors 50 are used to connect catheter portions 10 to the proximal end 24 .
  • This embodiment can be used to deliver a drug to more than two targeted patient sites.
  • FIG. 5A shows the same structure as FIG. 4A, except that in this other embodiment of the present invention, a restrictor 90 is placed upstream of connector 50 as well, so that there is a restrictor in legs 80 , 80 ′ and catheter portion 10 of the catheter 22 joined by connector 50 .
  • This construction provides additional benefits. For example, having the restrictor 90 upstream of the connector 50 acts as a pre-filter, and thus removes any particulates prior to connector 50 .
  • This pre-filter function reduces particulates to the restrictors 70 and 70 ′ downstream of connector 50 , thus reducing the potential for different pressure drops and flow rates through the restrictors 70 and 70 ′ downstream of connector 50 , and ultimately the flow rate of the delivered drug through the diffusers or delivery segments 60 at the distal ends.
  • this embodiment eliminates the possibility for incorrect insertion of a catheter where only one restrictor is downstream of connector, and one restrictor is upstream of connector 50 , and one leg 80 or 80 ′ not having a restrictor.
  • FIG. 5B shows the same structure as FIG. 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24 , to deliver a drug to more than two targeted patient sites.
  • the drug fluid is pushing through many small pores of the drug delivery segment 60 , and restrictors 70 , 70 ′ and 90 are of substantially equal flow resistance, and thus the delivered drug fluid follows a tortuous path.
  • the sum of the resistance to flow through multiple catheter distal ends is preferably equal so that equal flow is through the multiple catheter distal ends is obtained.
  • the structures described above and shown in FIGS. 4A, 4 B, 5 A, and 5 B provide substantially equal flow through multiple catheter distal ends. Further discussion about the drug delivery segment (i.e. diffuser) and the fluid restrictor is set forth below.
  • the diffuser i.e., the drug delivery segment 60 shown in FIGS. 4A, 4 B, 5 A and 5 B, can comprise any suitable structure.
  • the diffuser can comprise material having laser drilled holes having 0.001-0.005 inches diameter, and about 20-100 holes per diffuser.
  • the most distal of forty holes having 0.005 inches in diameter should have 76% of the flow compared to the most proximal hole (total flow 1 microliters/minute).
  • the distal hole should have 99.95% of the flow compared to the proximal hole.
  • porous materials such as sintered metal, sintered polyethylene, or porous PTFE (i.e., Teflon) have diffuser capability.
  • these structures are good diffusers at flow rates of about 1 microliter/minute to about 20 microliters/minute.
  • a permeability constant of less than about 30,000 and a bubble point of less than about 10 psi is preferred.
  • Fluid Restrictor To balance the flow into each hemisphere of the patient's brain, resistance to fluid flow in each leg of the catheter must be significant compared to the resistance at the tissue interface. If the restrictor creates a pressure drop of about 2-10 psi for a flow rate of about 10 microliters/minute, variation in interstitial pressure (less than 0.5 psi) will not create an imbalance of flow in the two catheter legs for a desired flow rate of about 1-10 microliters/minute. For this pressure drop, the material for the restrictor must be very tortuous and have a significant length (i.e. thickness). For the restrictor material, a permeability constant of less than about 5,000 and a bubble point of less than about 10 psi is preferred.
  • the dimensions and materials are not limited to those typically considered acceptable for intraparenchymal implant.
  • Acceptable materials for restrictors given the larger lengths possible outside the brain are sintered porous metals, and sintered and/or porous polymers.
  • Methods of manufacture and materials for the restrictors of the present invention include, but are not limited to, thin sheet filter (e.g., polyethersulfone or polypropylene, from Pall Corporation (East Hills, N.Y.)), polycarbonate membrane (from Osmonics, Inc. (Minnetonka, Minn.)), polyvinylidine fluoride from Millipore Corporation (Bedford, Mass.)), depth filters from sintered metal (from Mott, Inc.
  • thin sheet filter e.g., polyethersulfone or polypropylene, from Pall Corporation (East Hills, N.Y.)
  • polycarbonate membrane from Osmonics, Inc. (Minnetonka, Minn.)
  • polyvinylidine fluoride from Millipore Corporation
  • the restrictor is a depth filter since it does not have disadvantages that the other materials may have.
  • Sheet membranes have a disadvantage in that they have very small pores that may be prone to clogging and require a high pressure to pass air through the wet membrane (i.e., bubble point).
  • Orifice-type retrictors have the disadvantage of pressure drop that is extremely sensitive to diameter, thereby making it difficult and expensive to match two retrictors of this type to achieve substantially equal flow.
  • the restrictor should provide a large pressure drop.
  • the pressure drop can be expressed by Darcy's Law.
  • catheter restrictor at proximal end (not distal) of catheter to provide greater device flexibility, i.e., reduce the number of joint, bonds, components for distal catheter segment.
  • the present invention provides for multiple catheter ends for drug delivery. More specifically, the present invention provides for multiple catheter ends, e.g. at least two, into the brain of patient, and even more specifically, into the two different hemispheres of the brain, with each catheter end supplied with therapeutic drugs by the same pump, and with the fluid flow of the therapeutic agent being substantially equal between the two catheter ends.
  • the present invention also provides a catheter to diffuse a therapeutic agent over a large surface area than from a single point source.
  • the benefits of this structure is that it decreases the fluid flux and reduces the change of damaging patient tissue.
  • two catheters are required. It is usually desirable to have equal flow in both catheters to deliver equal amounts of drug to both brain hemispheres.
  • the present invention can be used for many drug delivery applications, including but not limited to intraparenchymal tissue delivery, intrathecal drug delivery, and intra-cerebral ventricular (ICV) drug delivery.
  • intraparenchymal tissue delivery intrathecal drug delivery
  • intra-cerebral ventricular (ICV) drug delivery ICV
  • the present invention can be used to infuse a cytostatic agent into a malignant mass located in a variety of places in the body, or infuse a nerve growth factor into the intrathecal space of the spinal column, or to treat Alzheimer's disease by infusing indomethacin or other drug into a patient's hippocampus. Accordingly, the techniques and structures described and illustrated herein should be understood to be illustrative only and not limiting upon the scope of the present invention.

Abstract

A medical catheter comprising a proximal end having an opening for fluid containing a therapeutic drug, a distal end, the distal end defining at least one opening, and a porous portion covering the opening defined by the distal end. In one embodiment, the medical catheter comprises a proximal end having an opening for fluid containing a therapeutic drug, at least two distal ends. the proximal end connected to the two distal ends with a connector, the distal ends each defining at least, one opening, a diffuser covering the opening of each distal end, and a separate restrictor downstream of the connector and upstream of each distal end to provide substantially equal flow through each distal end. An additional restrictor can also be placed upstream of the connector. In another embodiment, a combination diffuser and restrictor covers the opening of each distal end.

Description

FIELD OF INVENTION
This invention relates to medical catheters for target specific drug delivery.
BACKGROUND OF THE INVENTION
Medical therapies may require the targeting of the therapy to a targeted patient site to maximize the therapeutic benefit and/or minimizing adverse effects to other organs or tissues outside the targeted patient site.
Huss & Reinhardt, U.S. Pat. No. 4,968,306 describes an elongated catheter assembly for intravascular delivery of intravenous therapeutic fluids. This assembly has a distal end having multiple pores which is sheathed by an outer proximal segment for variable exposure of delivery surface area by sliding the distal segment from the outer proximal sheath. A disadvantage of this assembly is that it results in a lack of homogeneity of pore placement and pore number for fluid discharge, which indicates a pore size of 2-20 microns.
Delgado, U.S. Pat. No. 3,640,269 describes a fluid delivery assembly having two flexible fluid-impermeable tubes open at one end and provided with an enlarged flexible permeable bag at the delivery segment. This bag is comprised of a membrane having uniform porosity less than 0.5 microns and having a water permeability of at least 60 mL/minute/cm as a description of fluid permeability. While this design is capable of uniform fluid delivery to tissues adjacent to the permeable bag, a disadvantage of this assembly is its inability to be specifically targeted to a patient site due to the flexible distal bag.
Thus, there is a need for a device that provides uniform distribution of therapeutic agents to a targeted patient site or multiple targets sites. There is also a need for a device that provides this uniform distribution, yet has sufficient rigidity for accurate placement of the device so that it can deliver therapeutic agents to the targeted patient site or multiple sites.
SUMMARY OF THE INVENTION
A new medical catheter has now been discovered that provides uniform distribution of therapeutic agents to a targeted patient site. Moreover, the medical catheter of the present invention has a unique structure that permits it to be accurately placed so that it can uniformly distribute therapeutic agents to the targeted patient site.
In a one embodiment of the present invention, the catheter has at least two distal ends, and a proximal end joined to the two distal ends via a connector, such as a “Y” connector having three legs. Thus, the two distal ends and the proximal end are each located at a separate ends of the legs of the connector. Preferably, restrictors are placed in each leg of the connector. A restrictor is a structure that provides a significant pressure drop when fluid flows through that structure. The restrictors of the present invention provide structure to balance the flow for a multiple catheter system. The restrictors can be made of any suitable material, e.g. a powder material such as sintered metal powder. In this embodiment, diffusers are placed at the distal ends. A diffuser is a structure that diffuses and delivers a therapeutic agent over a large surface area as opposed to a single point source. In this embodiment, the diffusers and restrictors, which are in each leg having a distal end, are separated from each other. Preferably, the diffuser is at the tip of each distal end, and the each restrictor is upstream of the distal end. This construction is particularly useful for delivery of drugs via multiple catheter ends. For example, drug delivery to the two different hemispheres of the brain may be achieved, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictor(s) upstream of the distal ends, rather than at the distal ends as are the diffusers. In this embodiment of the present invention the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the restrictor structure for biostability.
In another embodiment of the present invention, a restrictor is placed upstream of the Y connector as well, so that there is a restrictor in all three legs of the catheter joined by the Y connector. This construction provides additional benefits. For example, having the restrictor upstream of the Y connector acts as a pre-filter, and thus removes any particulates prior to the Y connector. This pre-filter function reduces particulates to the restrictors downstream of the Y connector, thus reducing the potential for different pressure drops and flow rates through the restrictors downstream of the Y connector, and ultimately the flow rate of the delivered drug through the diffusers at the distal ends. In addition, this embodiment eliminates the possibility for insertion of a catheter where only one restrictor is downstream of the Y connector, and one restrictor is upstream of the Y connector.
In another embodiment, the catheter of the present invention comprises a rigid assembly having a rigid tube for positioning the distal end of the catheter near a targeted patient site or sites. the distal end of the catheter has a rigid porous delivery segment having a porosity less than 0.50 microns for achieving homogenous delivery to the targeted patient site. More specifically, in this embodiment, the catheter of the present invention has a rigid assembly having an open tube having a distal end, the distal end having sintered metal powder, for example, metal microspheres to provide uniform porosity of the delivery segment. In this embodiment, the distal end comprises at least one uniform surface made of sintered metal powder. Preferably, the sintered metal powder can be made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum. In this embodiment, the rigid assembly functions as both a diffuser and a restrictor. The sintered metal rigid assembly of this embodiment can be fabricated using a single cavity carbon mold, and a mold insert. Alternatively, the sintered metal rigid assembly can be fabricated using powdered metal and pyrogenic sintering, such as high pressure plus pyrogenic sintering. Sintered metal rigid assemblies can be positioned at the distal ends of separate legs of a catheter for placement at multiple patient targets. The distal ends can each join to a connector (e.g., a “Y” connector) for connection to a single therapy source. The sintered metal rigid assembly of this embodiment unctions as both a fluid restrictor and a fluid diffuser. Thus, the diffuser and restrictor functions can be combined, as in a membrane tip, or separated, with the restrictor being upstream of the diffuser in each leg of the catheter.
When it is desired for the sintered metal powder to be radiopaque, a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
An objective of the present invention is to provide for multiple catheter ends for drug delivery arising from a single pump source. The present invention provides a catheter construction that provides desired distribution in a targeted area of the patient, such as giving medications intraparenchymally into tissue. Drug delivery by the present invention can be to an organ, and uniform distribution to that organ may be desired. It is a further objective of the present invention to provide for multiple catheter ends, at least two, into the brain of patient, and more specifically, into the two different hemispheres of the brain, with each catheter end supplied with therapeutic drugs by the same pump, and with the fluid flow of the therapeutic agent being substantially equal between the two catheter ends. It is usually desirable to have equal amounts of drug delivered to both brain hemispheres.
Another objective of the present invention is to provide a catheter to diffuse a therapeutic agent over a larger surface area than from a single point source. This structure results in a decrease in fluid flux and reduces potential for damaging tissue near the infusion site. In order for equal or near equal bilateral drug delivery to occur, two distal ends are required since fluid delivered from one distal end to a target site at one hemisphere will not deliver fluid to the other hemisphere.
The present invention can be used for many drug delivery applications, including but not limited, to intraparenchymal or tissue infusion (such as brain tissue infusion), intrathecal drug delivery and intracerebral ventricular (ICV) drug delivery, or any drug infusion into a fluid filled space or to a tumor.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates the catheter of the present invention, as implanted in a preferred location of the human body, and for drug delivery to each side of a patient's brain.
FIG. 2 is a top view of the catheter of the present invention as implanted and which provides drug delivery to the two hemispheres of a patient's brain.
FIG. 3A illustrates an embodiment of the catheter of the present invention in combination with device 20.
FIG. 3B illustrates another embodiment of the catheter of the present invention in combination with device 20.
FIG. 3C illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having two diffuser and restrictor distal catheter segments.
FIG. 3D illustrates another embodiment of the present invention in combination with device 20, this embodiment having more than two diffuser and restrictor distal catheter segments.
FIG. 4A illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having a separate restrictor placed between each diffuser distal catheter segment and connector 50.
FIG. 4B illustrates another embodiment of the present invention in combination with device 20, this embodiment having multiple connectors 50, and multiple diffuser distal catheter segments with separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50.
FIG. 5A illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50, and a restrictor 90 placed between proximal end 24 and the first connector 50 downstream of proximal end 24.
FIG. 5B shows the same structure as FIG. 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As shown in FIGS. 1 and 2, in an embodiment of the present invention, catheter 22 has a proximal end 24, and distal ends 26 and 26′. Distal ends 26 and 26′ are connected to catheter 22, which splits at a “Y” connector 50. Distal end 26 is positioned in the right anterior cerebral cortex 16, and distal end 26′ is positioned in the left anterior cerebral cortex 16′. Proximal end 24 is attached device 20, which can be an implantable infusion pump. While two distal ends are shown, the present invention can have one or more than two distal ends.
As further shown in the embodiment depicted in FIG. 2, catheter 22 has a catheter portion 10 downstream of device 20 and upstream of connector 50.
Combined Diffuser/Restrictor
As shown in FIG. 3A, where there is only one distal end 26, and there is no connector 50. Catheter portion 10 preferably comprises an elongated tubular wall 30 defining a central lumen 32. In this embodiment, catheter 22 begins at proximal end 24 and terminates at distal end 26. In this embodiment, distal end 26 has a catheter tip 34. Proximal end 24 defines an opening 17. Lumen 32 is defined by tubular wall 30. Tubular wall 30 terminates at end 36. In this embodiment, catheter tip 34 is attached to tubular wall 30. Catheter tip 34 has a lumen 38 to receive a drug from lumen 32, which can receive a drug pumped from device 20. Throughout this disclosure, the length of the portion of catheter tip 34 that is exposed to patient tissue is represented by a distance “x”.
In this embodiment, catheter 22 of the present invention comprises a rigid assembly having a rigid tubular wall 30 for positioning the distal end 26 of the catheter 22 near a targeted patient site, the distal end 26 having a rigid porous portion or drug delivery segment 60 made of a sintered microsphere material having a porosity less than 0.50 microns for achieving homogenous delivery to the targeted patient site. In this embodiment, rigid porous drug delivery segment 60 comprises sintered metal microspheres to provide uniform porosity. Thus, a drug can be pumped from device 20, through opening 17, through lumen 32, through lumen 38, and through porous drug delivery segment 60 to a targeted patient site. In the embodiment shown in FIG. 3A, delivery segment 60 can also be referred to as a combination diffuser and restrictor. In other words, delivery segment 60 restricts flow of a fluid containing a therapeutic drug and also diffuses that fluid so that the fluid is distributed to and emitted from the outer surface of delivery segment 60 that is exposed to a targeted patient site.
In this embodiment, the sintered metal powder of the delivery segment 60 defines multiple pores or porous openings 25. Preferably, the sintered metal powder is made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum.
The sintered rigid metal assemblies can be fabricated using a single cavity carbon mold, and a mold insert. Alternatively, the rigid metal assembly can be pressed into a green part using high pressure and sintered using heat to convert the green part to a fused structure (i.e, without carbon molds). Microspheres can be compressed together in each mold with pyrogenic processing.
When it is desired for the sintered metal powder to be radiopaque, a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
The desired porosity of the sintered porous tip can be selected upon the diameter of the metal powder spheres used in the mold fabrication process. In this embodiment, the maximal dimensional distance between adjacent microspheres (i.e., pore size) is directly related to microsphere diameter, and is preferably as follows:
Mircrosphere
Diameter Maximal Dimensional Distance (i.e. Pore Size)
40 microns Less than 6.2 microns
30 microns Less than 4.7 microns
20 microns Less than 3.1 microns
10 microns Less than 1.6 microns
5 microns Less than 0.8 microns
3 microns Less than 0.5 microns
2 microns Less than 0.3 microns
In actual practice, the maximal dimensional space is less than ideal since compression during the sintering process reduces dimension.
In U.S. Pat. No. 5,846,220 (assigned to Medtronic), which is incorporated herein by reference, a therapeutic method for treatment of Alzheimer's disease is disclosed. In U.S. Pat. No. 5,846,220, the distal end has a porous tip or a closed end, wherein the catheter tip is preferably composed of porous material such as polysulfone hollow fiber, manufactured by Amicon, although polyethylene, polyamides, polypropylene and expanded polytetrafluoroethlyene (ePTFE) are also suitable, and is preferable porous along its entire length to enable indomethacin to flow into the hippocampus, and the preferred pore size is approximately ranged between 0.1-0.2 microns. See Col. 5, line 64 through Col. 6, line 4 of U.S. Pat. No. 5,846,220.
The present invention differs from U.S. Pat. No. 5,846,220, because, among other things, the present invention has much larger pore sizes, i.e., about 0.3 to 6.2 microns, and the porous material in the present invention is preferably made from sintered metal microspheres.
Another embodiment is shown in FIG. 3B. This embodiment is similar to FIG. 3A, except that there is a side opening 29 defined in distal end 26, and delivery segment 60 is positioned at side opening 29. Alternatively, delivery segment 60 can be positioned over or under side opening 29, relative to tubular wall 30. Side opening 29 can be incorporated into other embodiments shown and/or described herein.
Another embodiment is shown in FIG. 3C. FIG. 3C is similar to FIG. 3A, except there are two distal ends, 26 and 26′, two drug delivery segments 60, and two legs 80 and 80′ connected to a connector 50 and corresponding distal ends 26 and 26′. This embodiment can be referred to as a catheter having two difflilser/restrictor catheter segments. This embodiment can be used to deliver a drug to two targeted patient sites.
An alternative embodiment is shown in FIG. 3D. This embodiment is the same as that shown in FIG. 3C, except that there are more than one connector 50, and more than two distal ends (in this embodiment, two distal ends 26 and two distal ends 26′, for a total of four distal ends), more than two delivery segment portions 60, more than one catheter portion 10, and more than two distal tips 34 having lumens 38 to receive a drug from lumens 32. While four distal ends are shown, the present invention can have any number of distal ends as may be desired for drug delivery to targeted patient sites. Connectors 50 are used to connect the proximal end 24 to catheter portions 10 and catheter portions 10 to legs 80 and 80′. This embodiment can be referred to as catheter having multiple diffuser/restrictor catheter segments. This embodiment can be used to deliver a drug to more than two patient sites.
Separate Diffuser and Restrictor
Another embodiment of the present invention is shown in FIG. 4A. This embodiment has many of the same elements previously described for other embodiments, and in particular, the embodiment shown in FIG. 3C. The embodiment shown in FIG. 4A has a catheter 22 having at least two distal ends 26 and 26′, and catheter portion or leg 10 joined to each distal end with a connector 50. Further, restrictors 70 and 70′ are placed in each legs 80 and 80′, which are downstream of connector 50. Restrictors 70 and 70′ can be made of any suitable material, including but not limited to, e.g. sintered metal powder, which is previously described above, or a material that provides a small diameter fluid path or capillary tubes. In this embodiment, the drug delivery segment (i.e., diffuser) 60 and restrictors 70 and 71′ are separated from each other. The drug delivery segment 60 is at tip 34 of each of the distal ends 26 and 26′, and the restrictors 70 and 71′ are upstream of distal ends 26 and 26′, respectively. This construction is particularly useful for delivery of drugs via multiple (more than one) catheter ends. For example, drug delivery to the two different hemispheres of the brain may be desired, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictors upstream of the distal ends, rather than at the distal ends as are the diffusers. In this embodiment of the present invention the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the structure of the restrictor for biocompatibility.
An alternative embodiment is shown in FIG. 4B. This embodiment is the same as that shown in FIG. 4A, except that there is more than one connector 50, more than two distal ends (in this embodiment, two distal ends 26, and two distal ends 26′ for a total of.four distal ends), more than two delivery segment portions 60, more than one catheter portion 10, more than one leg 80, more than one leg 80′, and more than two distal tips 34 having a lumen 38 to receive a drug from lumen 32. The connectors 50 are used to connect catheter portions 10 to the proximal end 24. This embodiment can be used to deliver a drug to more than two targeted patient sites.
FIG. 5A shows the same structure as FIG. 4A, except that in this other embodiment of the present invention, a restrictor 90 is placed upstream of connector 50 as well, so that there is a restrictor in legs 80, 80′ and catheter portion 10 of the catheter 22 joined by connector 50. This construction provides additional benefits. For example, having the restrictor 90 upstream of the connector 50 acts as a pre-filter, and thus removes any particulates prior to connector 50. This pre-filter function reduces particulates to the restrictors 70 and 70′ downstream of connector 50, thus reducing the potential for different pressure drops and flow rates through the restrictors 70 and 70′ downstream of connector 50, and ultimately the flow rate of the delivered drug through the diffusers or delivery segments 60 at the distal ends. In addition, this embodiment eliminates the possibility for incorrect insertion of a catheter where only one restrictor is downstream of connector, and one restrictor is upstream of connector 50, and one leg 80 or 80′ not having a restrictor.
FIG. 5B shows the same structure as FIG. 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24, to deliver a drug to more than two targeted patient sites.
In accordance with the embodiments shown in FIGS. 4A, 4B, 5A, and 5B, the drug fluid is pushing through many small pores of the drug delivery segment 60, and restrictors 70, 70′ and 90 are of substantially equal flow resistance, and thus the delivered drug fluid follows a tortuous path. In these embodiments, the sum of the resistance to flow through multiple catheter distal ends is preferably equal so that equal flow is through the multiple catheter distal ends is obtained. The structures described above and shown in FIGS. 4A, 4B, 5A, and 5B provide substantially equal flow through multiple catheter distal ends. Further discussion about the drug delivery segment (i.e. diffuser) and the fluid restrictor is set forth below.
Fluid Diffuser—Fluid modeling reveals that distribution of fluid flow will occur with multiple small holes in simple silicone or polyurethane catheters. The diffuser, i.e., the drug delivery segment 60 shown in FIGS. 4A, 4B, 5A and 5B, can comprise any suitable structure. For example, the diffuser can comprise material having laser drilled holes having 0.001-0.005 inches diameter, and about 20-100 holes per diffuser. In one embodiment, the most distal of forty holes having 0.005 inches in diameter should have 76% of the flow compared to the most proximal hole (total flow 1 microliters/minute). For holes that are 0.001 inches in diameter, the distal hole should have 99.95% of the flow compared to the proximal hole. In addition, many porous materials such as sintered metal, sintered polyethylene, or porous PTFE (i.e., Teflon) have diffuser capability. Thus, these structures are good diffusers at flow rates of about 1 microliter/minute to about 20 microliters/minute. For the diffuser material, a permeability constant of less than about 30,000 and a bubble point of less than about 10 psi is preferred.
Fluid Restrictor—To balance the flow into each hemisphere of the patient's brain, resistance to fluid flow in each leg of the catheter must be significant compared to the resistance at the tissue interface. If the restrictor creates a pressure drop of about 2-10 psi for a flow rate of about 10 microliters/minute, variation in interstitial pressure (less than 0.5 psi) will not create an imbalance of flow in the two catheter legs for a desired flow rate of about 1-10 microliters/minute. For this pressure drop, the material for the restrictor must be very tortuous and have a significant length (i.e. thickness). For the restrictor material, a permeability constant of less than about 5,000 and a bubble point of less than about 10 psi is preferred. Since the restrictor is separated from the diffuser in this embodiment, the dimensions and materials are not limited to those typically considered acceptable for intraparenchymal implant. Acceptable materials for restrictors given the larger lengths possible outside the brain are sintered porous metals, and sintered and/or porous polymers. Methods of manufacture and materials for the restrictors of the present invention include, but are not limited to, thin sheet filter (e.g., polyethersulfone or polypropylene, from Pall Corporation (East Hills, N.Y.)), polycarbonate membrane (from Osmonics, Inc. (Minnetonka, Minn.)), polyvinylidine fluoride from Millipore Corporation (Bedford, Mass.)), depth filters from sintered metal (from Mott, Inc. (Farmington, Conn.)), sintered polyethylene (from Porex Surgical (College Park)), sintered glass (from Robu Glasfilter-Gerate GmbH (Hattert, Germany)), orifice sapphire, and/or capillary tubes. Preferably, the restrictor is a depth filter since it does not have disadvantages that the other materials may have. Sheet membranes have a disadvantage in that they have very small pores that may be prone to clogging and require a high pressure to pass air through the wet membrane (i.e., bubble point). Orifice-type retrictors have the disadvantage of pressure drop that is extremely sensitive to diameter, thereby making it difficult and expensive to match two retrictors of this type to achieve substantially equal flow.
The restrictor should provide a large pressure drop. The pressure drop can be expressed by Darcy's Law. Darcy's Law is as follows: K = - F μ T A · delta P
Figure US06551290-20030422-M00001
where K=permeability constant
F=flow rate
μ=viscosity for the fluid
T=thickness of porous path
A=surface area
delta P=pressure delta
The conflicting requirements of the large surface area for a diffuser and a large pressure drop for the restrictor can be met by having separate structure for each of these functions.
Separating the restrictors from the diffusers, and placing the restrictors up stream of the diffusers results in the resistance to flow at the distal ends to be insignificant to the overall resistance to flow, and the fluid flow through multiple catheters is substantially equal.
An example is that for a “Y” catheter, if the resistance to flow through a first diffuser has a relative value of 1, and the resistance to flow through a second diffuser has a relative value of 2, then twice as much flow will go through the first diffuser.
On the other hand, if restrictors with a relative resistance value of 100 are placed up stream of the first and second diffusers, so that the overall resistance to flow through the first diffuser has a relative value of 101, and the overall resistance to flow through a second diffuser has a relative value of 102, then the flow through the first and second diffusers will be substantially equal. Equal restriction of fluid flow through each leg is the key to substantially equal fluid flow through each leg.
The features provided by this embodiment include:
1. Separate diffuser and restrictor features for bilateral intraparenchymal drug delivery catheter.
2. Use of simple diffusers that have insufficient tortuosity of the porous structure to make acceptable restrictors.
3. Use of multiple small holes (less than 0.005 inches in diameter; created with a laser) as a fluid diffuser.
4. Location of catheter restrictor at proximal end (not distal) of catheter to provide greater device flexibility, i.e., reduce the number of joint, bonds, components for distal catheter segment.
5. Capability to control flow in the brain catheter with changes in catheter design/materials not directly implanted in the brain tissues.
Thus, the present invention provides for multiple catheter ends for drug delivery. More specifically, the present invention provides for multiple catheter ends, e.g. at least two, into the brain of patient, and even more specifically, into the two different hemispheres of the brain, with each catheter end supplied with therapeutic drugs by the same pump, and with the fluid flow of the therapeutic agent being substantially equal between the two catheter ends.
The present invention also provides a catheter to diffuse a therapeutic agent over a large surface area than from a single point source. The benefits of this structure is that it decreases the fluid flux and reduces the change of damaging patient tissue. In order for equal or near equal bilateral drug delivery to occur, two catheters are required. It is usually desirable to have equal flow in both catheters to deliver equal amounts of drug to both brain hemispheres.
The present invention can be used for many drug delivery applications, including but not limited to intraparenchymal tissue delivery, intrathecal drug delivery, and intra-cerebral ventricular (ICV) drug delivery.
Many modifications and variations may be made in the techniques and structures described and illustrated herein without departing from the spirit and scope of the present invention. For example, the present invention can be used to infuse a cytostatic agent into a malignant mass located in a variety of places in the body, or infuse a nerve growth factor into the intrathecal space of the spinal column, or to treat Alzheimer's disease by infusing indomethacin or other drug into a patient's hippocampus. Accordingly, the techniques and structures described and illustrated herein should be understood to be illustrative only and not limiting upon the scope of the present invention.

Claims (19)

We claim:
1. A medical catheter comprising:
a proximal end having an opening for fluid containing a therapeutic drug,
at least two distal ends, the distal ends connected in parallel to the proximal end via a branched connector, the distal ends each defining at least one opening to deliver the therapeutic drug from each distal end to a corresponding target site within a patient,
a diffuser covering the opening of each distal end, and
a restrictor between the branched connector and each distal end to provide substantially equal and parallel flow through each distal end.
2. The medical catheter of claim 1 wherein the opening defined by the at least one distal end is a side opening.
3. The medical catheter of claim 1 further having a restrictor upstream of the connector.
4. The medical catheter of claim 3 wherein the restrictor upstream of the connector comprises material defining pores ranging in diameter size from about 0.3 to 6.2 microns.
5. The medical catheter of claim 3 wherein the restrictor upstream of the connector comprises a radiopaque material.
6. The medical catheter of claim 3 wherein the restrictor upstream of the connector comprises tungsten, tantalum, or titanium.
7. The medical catheter of claim 1 wherein the diffusers define pores ranging in diameter size from about 0.3 to 6.2 microns.
8. The medical catheter of claim 1 wherein at least one diffuser comprises a radiopaque material.
9. The medical catheter of claim 1 wherein the diffusers comprise a sintered metal microsphere portion.
10. The medical catheter of claim 1 wherein the diffusers comprise tungsten, tantalum. or titanium.
11. The medical catheter of claim 1 wherein the restrictor comprises material defining pores ranging in diameter size from about 0.3 to 6.2 microns.
12. The medical catheter of claim 1 wherein the restrictor comprises a radiopaque material.
13. The medical catheter of claim 1 wherein the restrictor comprises tungsten, tantalum, or titanium.
14. A medical catheter comprising:
a proximal end having an opening for fluid containing a therapeutic drug,
at least two distal ends, the distal ends connected to the proximal end via a branched connector, the distal ends each defining at least one opening,
a diffuser covering the opening of each distal end, and
a restrictor between the branched connector and each distal end to provide substantially equal flow through each distal end,
the diffisers defining pores ranging in diameter size from about 0.3 to 6.2 microns.
15. A medical catheter comprising:
a proximal end having an opening for fluid containing a therapeutic drug,
at least two distal ends, the distal ends connected to the proximal end via a branched connector, the distal ends each defining at least one opening,
a diffuser covering the opening of each distal end, and
a restrictor between the branched connector and each distal end to provide substantially equal flow through each distal end,
the diffusers comprising a sintered metal microsphere portion.
16. A medical catheter comprising:
a proximal end having an opening for fluid containing a therapeutic drug,
at least two distal ends, the distal ends connected to the proximal end via a branched connector, the distal ends each defining at least one opening,
a diffuser covering the opening of each distal end, and
a restrictor between the branched connector and each distal end to provide substantially equal flow through each distal end,
the restrictor comprising material defining pores ranging in size from about 0.3 to 6.2 microns.
17. A medical catheter comprising:
a proximal end having an opening for fluid containing a therapeutic drug,
at least two distal ends, the distal ends connected to the proximal end via a branched connector, the distal ends each defining at least one opening,
a diffuser covering the opening of each distal end, and
a first restrictor between the branched connector and each distal end to provide substantially equal flow through each distal end,
a second restrictor upstream of the connector,
the second restrictor comprising material defining pores ranging in size from about 0.3 to 6.2 microns.
18. A medical catheter comprising:
a tubular wall and a longitudinal axis,
a proximal end having an opening for fluid containing a therapeutic drug,
a distal end, the distal end defining at least one side opening in the tubular wall of the catheter, and
a porous portion covering the side opening defined by the distal end, wherein the porous portion comprises sintered metal microspheres.
19. The medical catheter of claim 18 wherein the porous portion defines pores ranging in diameter size from about 0.3 to 6.2 microns, wherein the porous portion comprises a radiopaque material.
US09/540,444 2000-03-31 2000-03-31 Catheter for target specific drug delivery Expired - Lifetime US6551290B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/540,444 US6551290B1 (en) 2000-03-31 2000-03-31 Catheter for target specific drug delivery
US09/625,751 US6945969B1 (en) 2000-03-31 2000-07-26 Catheter for target specific drug delivery
IE20010197A IE20010197A1 (en) 2000-03-31 2001-03-02 Catheter for Target Specific Drug Delivery
FR0103777A FR2806918B1 (en) 2000-03-31 2001-03-20 CATHETER FOR THE SPECIFIC ADMINISTRATION OF A MEDICINAL PRODUCT
DE10113983A DE10113983A1 (en) 2000-03-31 2001-03-22 Catheter for targeted drug administration
CH00541/01A CH695136A5 (en) 2000-03-31 2001-03-23 Catheter for targeted delivery of a drug at a specific site.
US10/828,688 US7153292B2 (en) 2000-03-31 2004-04-21 Catheter for target specific drug delivery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/540,444 US6551290B1 (en) 2000-03-31 2000-03-31 Catheter for target specific drug delivery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/625,751 Continuation-In-Part US6945969B1 (en) 2000-03-31 2000-07-26 Catheter for target specific drug delivery

Publications (1)

Publication Number Publication Date
US6551290B1 true US6551290B1 (en) 2003-04-22

Family

ID=24155497

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/540,444 Expired - Lifetime US6551290B1 (en) 2000-03-31 2000-03-31 Catheter for target specific drug delivery

Country Status (5)

Country Link
US (1) US6551290B1 (en)
CH (1) CH695136A5 (en)
DE (1) DE10113983A1 (en)
FR (1) FR2806918B1 (en)
IE (1) IE20010197A1 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030032942A1 (en) * 2001-07-26 2003-02-13 Felix Theeuwes Local concentration management system
US20030199831A1 (en) * 2002-04-23 2003-10-23 Morris Mary M. Catheter anchor system and method
US20040162255A1 (en) * 2002-11-26 2004-08-19 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US20040199128A1 (en) * 2000-03-31 2004-10-07 Medtronic, Inc. Catheter for target specific drug delivery
US20040220518A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Drug solution density adjustment systems and methods
US20040220132A1 (en) * 2002-11-26 2004-11-04 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US20040243101A1 (en) * 2002-07-02 2004-12-02 Gillis Edward M. Minimally invasive drug delivery catheter
US20050015117A1 (en) * 2002-09-06 2005-01-20 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US20050021008A1 (en) * 2002-09-06 2005-01-27 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US20050033372A1 (en) * 2002-09-06 2005-02-10 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the left and the right sacral nerves
US20050075624A1 (en) * 2003-10-02 2005-04-07 Medtronic, Inc. Pressure sensing in implantable medical devices
US20050113877A1 (en) * 2003-03-31 2005-05-26 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudenal and associated nerves, and the optional delivery of drugs in association therewith
US20050137577A1 (en) * 2002-12-23 2005-06-23 Heruth Kenneth T. Catheters with tracking elements and permeable membranes
US20050137134A1 (en) * 2003-02-24 2005-06-23 North Bristol N.H.S. Trust Method of treating Parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US20050137578A1 (en) * 2002-12-23 2005-06-23 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
US20050245858A1 (en) * 2004-04-22 2005-11-03 Miesel Keith A Branching catheter systems with diagnostic components
US20050245867A1 (en) * 2004-04-22 2005-11-03 Olsen James M Pressure relief methods in a medical catheter system
US20060046960A1 (en) * 2004-09-02 2006-03-02 Mckay William F Controlled and directed local delivery of anti-inflammatory compositions
US20060046961A1 (en) * 2004-09-02 2006-03-02 Mckay William F Controlled and directed local delivery of anti-inflammatory compositions
US20060178328A1 (en) * 2002-11-26 2006-08-10 Medtronic Inc. Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US20060217324A1 (en) * 2005-01-24 2006-09-28 Juergen Soutschek RNAi modulation of the Nogo-L or Nogo-R gene and uses thereof
US20060229573A1 (en) * 2005-04-08 2006-10-12 Mckinley Medical L.L.L.P. Adjustable infusion catheter
US20060253068A1 (en) * 2005-04-20 2006-11-09 Van Bilsen Paul Use of biocompatible in-situ matrices for delivery of therapeutic cells to the heart
US20060282040A1 (en) * 2001-02-23 2006-12-14 Stryker Corporation Infusion assembly that simultaneously delivers therapeutic fluid to plural body sites
US20070044161A1 (en) * 2005-07-21 2007-02-22 Juergen Soutschek RNAi modulation of the Rho-A gene in research models
US20070099860A1 (en) * 2005-10-28 2007-05-03 Sah Dinah W Compositions and methods for inhibiting expression of huntingtin gene
US20070105806A1 (en) * 2005-11-04 2007-05-10 Dinah Sah Compositions and methods for inhibiting expression of Nav1.8 gene
US20070161590A1 (en) * 2005-06-28 2007-07-12 Medtronic, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20070167389A1 (en) * 2003-11-25 2007-07-19 Kaemmerer William F Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US20070253994A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Intraspinal Drug Delivery Methods and Devices To Alleviate Chronic Pelvic Pain
US20070261126A1 (en) * 2005-05-06 2007-11-08 Kaemmerer William F Methods and sequences to suppress primate huntington gene expression in vivo
US20070270782A1 (en) * 2006-04-06 2007-11-22 Miesel Keith A Systems and methods of identifying catheter malfunctions using pressure sensing
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
US20080119789A1 (en) * 2006-11-21 2008-05-22 Kaemmerer William F Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US20080119787A1 (en) * 2006-11-21 2008-05-22 Kaemmerer William F Microsyringe for pre-packaged delivery of pharmaceuticals
US20080124379A1 (en) * 2006-11-03 2008-05-29 Kaemmerer William F Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
US7427280B2 (en) 2002-09-06 2008-09-23 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US20080243074A1 (en) * 2007-03-30 2008-10-02 Miesel Keith A Catheter malfunction determinations using physiologic pressure
US20080277065A1 (en) * 2007-05-08 2008-11-13 Brett Moody Hand-Held Labeling Apparatus Having Accessory Storage
US20080280843A1 (en) * 2006-05-24 2008-11-13 Van Bilsen Paul Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20090036988A1 (en) * 2007-08-03 2009-02-05 Peckham Steven M Method of using an anti-growth matrix as a barrier for cell attachment and osteo-inductive factors
US20090202604A1 (en) * 2008-04-18 2009-08-13 Medtronic, Inc. Benzodiazepine Formulation in a Polyorthoester Carrier
US20090202436A1 (en) * 2008-04-18 2009-08-13 Medtronic, Inc. Bupivacaine Formulation in a Polyorthoester Carrier
US20090263456A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Methods and Compositions for Reducing Preventing and Treating Adhesives
WO2009129494A2 (en) 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Alpha and beta adrenergic receptor agonists for treatment of pain and/or inflammation
WO2009129433A2 (en) 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of degenerative disc disease
US20090263441A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Drug depots having diffreent release profiles for reducing, preventing or treating pain and inflammation
US20100008981A1 (en) * 2005-05-06 2010-01-14 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US20100069841A1 (en) * 2003-10-02 2010-03-18 Medtronic, Inc. Determining catheter status
US20100120900A1 (en) * 2005-06-28 2010-05-13 Medtronic, Inc. Methods And Sequences To Preferentially Suppress Expression of Mutated Huntingtin
US20100168607A1 (en) * 2003-10-02 2010-07-01 Medtronic, Inc. Determining catheter status
US20100217196A1 (en) * 2009-01-21 2010-08-26 Nelson Brian D Catheter systems having flow restrictors
WO2011014882A1 (en) 2009-07-31 2011-02-03 Medtronic, Inc. CONTINUOUS SUBCUTANEOUS ADMINISTRATION OF INTERFERON-α TO HEPATITIS C INFECTED PATIENTS
WO2011159930A2 (en) 2010-06-16 2011-12-22 Medtronic, Inc. Damping systems for stabilizing medications in drug delivery devices
US20120283186A1 (en) * 2009-12-30 2012-11-08 Adams Patent Corporation Therapeutic agent delivery apparatus and process
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US8475505B2 (en) 2008-08-13 2013-07-02 Smed-Ta/Td, Llc Orthopaedic screws
CN103272299A (en) * 2013-05-31 2013-09-04 李�根 Under-scalp embedded guide sac for intracerebral multi-point injection
US8957198B2 (en) 2003-02-03 2015-02-17 Medtronic, Inc. Compositions, devices and methods for treatment of Huntington's disease through intracranial delivery of sirna
US9044537B2 (en) 2007-03-30 2015-06-02 Medtronic, Inc. Devices and methods for detecting catheter complications
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US9358056B2 (en) 2008-08-13 2016-06-07 Smed-Ta/Td, Llc Orthopaedic implant
US9409003B2 (en) 2012-12-07 2016-08-09 Cook Medical Technologies, LLC System for reducing local discomfort
US9539382B2 (en) 2013-03-12 2017-01-10 Medtronic, Inc. Stepped catheters with flow restrictors and infusion systems using the same
US9550045B2 (en) 2011-01-28 2017-01-24 Medtronic, Inc. Repositionable therapy delivery element anchor
US9561354B2 (en) 2008-08-13 2017-02-07 Smed-Ta/Td, Llc Drug delivery implants
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9891296B2 (en) 2013-09-13 2018-02-13 MRI Interventions, Inc. Intrabody fluid transfer devices, systems and methods
US10105485B2 (en) 2010-04-16 2018-10-23 MRI Interventions, Inc. MRI surgical systems including MRI-compatible surgical cannulae for transferring a substance to and/or from a patient
US10384048B2 (en) 2014-07-25 2019-08-20 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
USD865950S1 (en) 2017-03-24 2019-11-05 Allergan, Inc. Syringe device
US10478603B2 (en) 2014-07-25 2019-11-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
WO2019232035A1 (en) * 2018-05-31 2019-12-05 University Of Virginia Patent Foundation Distribution system for flow control of infusate from branch catheters to selected site
US10549081B2 (en) 2016-06-23 2020-02-04 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10576247B2 (en) 2016-02-17 2020-03-03 MRI Interventions, Inc. Intrabody surgical fluid transfer assemblies with adjustable exposed cannula to needle tip length, related systems and methods
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
US10792427B2 (en) 2014-05-13 2020-10-06 Allergan, Inc. High force injection devices
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US10952961B2 (en) 2015-07-23 2021-03-23 Novaflux, Inc. Implants and constructs including hollow fibers
US11000658B2 (en) 2014-05-18 2021-05-11 Awair, Inc. Device to reduce discomfort in the upper airway
US11022664B2 (en) 2018-05-09 2021-06-01 Clearpoint Neuro, Inc. MRI compatible intrabody fluid transfer systems and related devices and methods
US11185641B2 (en) 2014-10-01 2021-11-30 Allergan, Inc. Devices for injection and dosing
US11253237B2 (en) 2018-05-09 2022-02-22 Clearpoint Neuro, Inc. MRI compatible intrabody fluid transfer systems and related devices and methods
US11684750B2 (en) 2019-10-08 2023-06-27 Clearpoint Neuro, Inc. Extension tube assembly and related medical fluid transfer systems and methods
US11684719B2 (en) 2013-05-23 2023-06-27 Allergan, Inc. Methods of treatment using a syringe extrusion accessory
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7270679B2 (en) * 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469578A (en) 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3640269A (en) 1969-10-24 1972-02-08 Jose M R Delgado Fluid-conducting instrument insertable in living organisms
US3817248A (en) 1972-11-06 1974-06-18 Alza Corp Self powered device for delivering beneficial agent
US4186745A (en) 1976-07-30 1980-02-05 Kauzlarich James J Porous catheters
US4863441A (en) 1987-07-17 1989-09-05 Minnesota Mining And Manufacturing Company Venous return catheter
US4947842A (en) 1988-09-22 1990-08-14 Medical Engineering And Development Institute, Inc. Method and apparatus for treating tissue with first and second modalities
US4989601A (en) 1988-05-02 1991-02-05 Medical Engineering & Development Institute, Inc. Method, apparatus, and substance for treating tissue having neoplastic cells
JPH0341967A (en) 1989-07-11 1991-02-22 Olympus Optical Co Ltd Gradual drug releasing device
US5087244A (en) 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US5181659A (en) 1989-01-07 1993-01-26 Mitsui Petrochemical Industries, Ltd. Synthetic resin seamless tube with black portion(s) and through-holes therein
EP0564321A2 (en) 1992-04-01 1993-10-06 B. Braun Celsa Drug injecting device
US5257979A (en) 1992-07-27 1993-11-02 Ravindar Jagpal Instrument for catheterization
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
WO1996033761A1 (en) 1995-04-28 1996-10-31 Medtronic, Inc. Intraparenchymal infusion catheter system
US5695479A (en) 1993-11-01 1997-12-09 Jagpal; Ravindar Instrument, system, kit and method for catheterization procedures
WO1998015315A1 (en) 1996-10-07 1998-04-16 Proxima Therapeutics Inc. Inflatable devices for tumor treatment
US5782797A (en) 1996-06-06 1998-07-21 Scimed Life Systems, Inc. Therapeutic infusion device
US5810760A (en) 1996-08-08 1998-09-22 Thomas Jefferson University Cerebral edema solute catheter and method of draining cerebral edema
US5823996A (en) 1996-02-29 1998-10-20 Cordis Corporation Infusion balloon catheter
US5848987A (en) 1996-04-30 1998-12-15 Medtronic, Inc. Microtextured catheter and method for preventing catheter fluid reflux
US5858003A (en) 1994-10-20 1999-01-12 Children's Medical Center Corporation Systems and methods for promoting tissue growth
US5957901A (en) 1997-10-14 1999-09-28 Merit Medical Systems, Inc. Catheter with improved spray pattern for pharmaco-mechanical thrombolysis therapy
US6017323A (en) 1997-04-08 2000-01-25 Target Therapeutics, Inc. Balloon catheter with distal infusion section
US6030358A (en) 1997-08-08 2000-02-29 Odland; Rick Matthew Microcatheter and method for site specific therapy
US6050986A (en) 1997-12-01 2000-04-18 Scimed Life Systems, Inc. Catheter system for the delivery of a low volume liquid bolus

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469578A (en) 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3640269A (en) 1969-10-24 1972-02-08 Jose M R Delgado Fluid-conducting instrument insertable in living organisms
US3817248A (en) 1972-11-06 1974-06-18 Alza Corp Self powered device for delivering beneficial agent
US4186745A (en) 1976-07-30 1980-02-05 Kauzlarich James J Porous catheters
US4863441A (en) 1987-07-17 1989-09-05 Minnesota Mining And Manufacturing Company Venous return catheter
US4989601A (en) 1988-05-02 1991-02-05 Medical Engineering & Development Institute, Inc. Method, apparatus, and substance for treating tissue having neoplastic cells
US4947842A (en) 1988-09-22 1990-08-14 Medical Engineering And Development Institute, Inc. Method and apparatus for treating tissue with first and second modalities
US5181659A (en) 1989-01-07 1993-01-26 Mitsui Petrochemical Industries, Ltd. Synthetic resin seamless tube with black portion(s) and through-holes therein
US5087244A (en) 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
JPH0341967A (en) 1989-07-11 1991-02-22 Olympus Optical Co Ltd Gradual drug releasing device
EP0564321A2 (en) 1992-04-01 1993-10-06 B. Braun Celsa Drug injecting device
US5257979A (en) 1992-07-27 1993-11-02 Ravindar Jagpal Instrument for catheterization
US5695479A (en) 1993-11-01 1997-12-09 Jagpal; Ravindar Instrument, system, kit and method for catheterization procedures
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5858003A (en) 1994-10-20 1999-01-12 Children's Medical Center Corporation Systems and methods for promoting tissue growth
WO1996033761A1 (en) 1995-04-28 1996-10-31 Medtronic, Inc. Intraparenchymal infusion catheter system
US6093180A (en) 1995-04-28 2000-07-25 Medtronic, Inc. Intraparenchymal infusion catheter system
US5823996A (en) 1996-02-29 1998-10-20 Cordis Corporation Infusion balloon catheter
US5848987A (en) 1996-04-30 1998-12-15 Medtronic, Inc. Microtextured catheter and method for preventing catheter fluid reflux
US5782797A (en) 1996-06-06 1998-07-21 Scimed Life Systems, Inc. Therapeutic infusion device
US5810760A (en) 1996-08-08 1998-09-22 Thomas Jefferson University Cerebral edema solute catheter and method of draining cerebral edema
WO1998015315A1 (en) 1996-10-07 1998-04-16 Proxima Therapeutics Inc. Inflatable devices for tumor treatment
US6017323A (en) 1997-04-08 2000-01-25 Target Therapeutics, Inc. Balloon catheter with distal infusion section
US6030358A (en) 1997-08-08 2000-02-29 Odland; Rick Matthew Microcatheter and method for site specific therapy
US5957901A (en) 1997-10-14 1999-09-28 Merit Medical Systems, Inc. Catheter with improved spray pattern for pharmaco-mechanical thrombolysis therapy
US6050986A (en) 1997-12-01 2000-04-18 Scimed Life Systems, Inc. Catheter system for the delivery of a low volume liquid bolus

Cited By (196)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040199128A1 (en) * 2000-03-31 2004-10-07 Medtronic, Inc. Catheter for target specific drug delivery
US7153292B2 (en) * 2000-03-31 2006-12-26 Medtronic, Inc. Catheter for target specific drug delivery
US20060282040A1 (en) * 2001-02-23 2006-12-14 Stryker Corporation Infusion assembly that simultaneously delivers therapeutic fluid to plural body sites
US7722574B2 (en) * 2001-02-23 2010-05-25 Stryker Corporation Infusion assembly that simultaneously delivers therapeutic fluid to plural body sites
US7438701B2 (en) * 2001-07-26 2008-10-21 Durect Corporation Local concentration management system
US20030032942A1 (en) * 2001-07-26 2003-02-13 Felix Theeuwes Local concentration management system
US20080004572A1 (en) * 2002-04-23 2008-01-03 Medtronic, Inc. Catheter anchor system and method
US7270650B2 (en) 2002-04-23 2007-09-18 Medtronic, Inc. Catheter anchor system and method
US20030199831A1 (en) * 2002-04-23 2003-10-23 Morris Mary M. Catheter anchor system and method
US7090661B2 (en) 2002-04-23 2006-08-15 Medtronic, Inc. Catheter anchor system and method
US7517337B2 (en) 2002-04-23 2009-04-14 Medtronic, Inc. Catheter anchor system and method
US20050107744A1 (en) * 2002-04-23 2005-05-19 Medtronic, Inc. Catheter anchor system and method
US20050101915A1 (en) * 2002-04-23 2005-05-12 Medtronic, Inc. Catheter anchor system and method
US20040243101A1 (en) * 2002-07-02 2004-12-02 Gillis Edward M. Minimally invasive drug delivery catheter
US20050015117A1 (en) * 2002-09-06 2005-01-20 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US7427280B2 (en) 2002-09-06 2008-09-23 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by delivering drugs to various nerves or tissues
US20050033372A1 (en) * 2002-09-06 2005-02-10 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the left and the right sacral nerves
US7328069B2 (en) 2002-09-06 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US7276057B2 (en) 2002-09-06 2007-10-02 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US7369894B2 (en) 2002-09-06 2008-05-06 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US20080183236A1 (en) * 2002-09-06 2008-07-31 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US9272140B2 (en) 2002-09-06 2016-03-01 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the sacral and/or pudendal nerves
US20050021008A1 (en) * 2002-09-06 2005-01-27 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by drug delivery to the pudendal and sacral nerves
US20060190046A9 (en) * 2002-09-06 2006-08-24 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of the left and the right sacral nerves
US20060122659A9 (en) * 2002-09-06 2006-06-08 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves
US8415319B2 (en) 2002-11-26 2013-04-09 Medtronic, Inc. Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US20040162255A1 (en) * 2002-11-26 2004-08-19 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7605249B2 (en) 2002-11-26 2009-10-20 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US8618069B2 (en) 2002-11-26 2013-12-31 Medtronic, Inc. Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US20100063134A1 (en) * 2002-11-26 2010-03-11 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of sirna
US20090060987A1 (en) * 2002-11-26 2009-03-05 Kaemmerer William F Devices, systems and methods for improving memory and/or cognitive function through brain delivery of sirna
US8058251B2 (en) 2002-11-26 2011-11-15 Kaemmerer William F Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US8119611B2 (en) 2002-11-26 2012-02-21 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of SIRNA
US7618948B2 (en) 2002-11-26 2009-11-17 Medtronic, Inc. Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
US20060178328A1 (en) * 2002-11-26 2006-08-10 Medtronic Inc. Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US20040220132A1 (en) * 2002-11-26 2004-11-04 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US7829694B2 (en) 2002-11-26 2010-11-09 Medtronic, Inc. Treatment of neurodegenerative disease through intracranial delivery of siRNA
US20040220545A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Method of delivering drugs to specific regions of the spinal cord
US8246602B2 (en) 2002-12-23 2012-08-21 Medtronic, Inc. Catheters with tracking elements and permeable membranes
US20050137577A1 (en) * 2002-12-23 2005-06-23 Heruth Kenneth T. Catheters with tracking elements and permeable membranes
US20040220546A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Reduction of inflammatory mass with spinal catheters
US20040220552A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Implantable drug delivery systems and methods
US7662140B2 (en) 2002-12-23 2010-02-16 Medtronic, Inc. Method of delivering drug to brain via spinal cord
US8216177B2 (en) 2002-12-23 2012-07-10 Medtronic, Inc. Implantable drug delivery systems and methods
US20050137578A1 (en) * 2002-12-23 2005-06-23 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US20040220544A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Method of delivering drug to brain via spinal cord
US20040220543A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Trailing system for evaluation of the efficacy of the treatment
US8043281B2 (en) 2002-12-23 2011-10-25 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US20040220547A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc Multiple infusion section catheters, systems, and methods
US20040220518A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Drug solution density adjustment systems and methods
US20040220548A1 (en) * 2002-12-23 2004-11-04 Medtronic, Inc. Permeable membrane catheters, systems, and methods
US8137334B2 (en) 2002-12-23 2012-03-20 Medtronic, Inc. Reduction of inflammatory mass with spinal catheters
US8957198B2 (en) 2003-02-03 2015-02-17 Medtronic, Inc. Compositions, devices and methods for treatment of Huntington's disease through intracranial delivery of sirna
US20050137134A1 (en) * 2003-02-24 2005-06-23 North Bristol N.H.S. Trust Method of treating Parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US8946151B2 (en) 2003-02-24 2015-02-03 Northern Bristol N.H.S. Trust Frenchay Hospital Method of treating Parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US8946152B2 (en) 2003-02-24 2015-02-03 Amgen Inc. Method of treating parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US7328068B2 (en) 2003-03-31 2008-02-05 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith
US20050113877A1 (en) * 2003-03-31 2005-05-26 Medtronic, Inc. Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudenal and associated nerves, and the optional delivery of drugs in association therewith
US20100168607A1 (en) * 2003-10-02 2010-07-01 Medtronic, Inc. Determining catheter status
US20050075624A1 (en) * 2003-10-02 2005-04-07 Medtronic, Inc. Pressure sensing in implantable medical devices
US7320676B2 (en) 2003-10-02 2008-01-22 Medtronic, Inc. Pressure sensing in implantable medical devices
US7955319B2 (en) 2003-10-02 2011-06-07 Medtronic, Inc. Pressure sensing in implantable medical devices
US20110208163A1 (en) * 2003-10-02 2011-08-25 Medtronic, Inc. Pressure Sensing in Implantable Medical Devices
US20080009837A1 (en) * 2003-10-02 2008-01-10 Medtronic, Inc. Pressure sensing in implantable medical devices
US10357620B2 (en) 2003-10-02 2019-07-23 Medtronic, Inc. Determining catheter status
US9033920B2 (en) 2003-10-02 2015-05-19 Medtronic, Inc. Determining catheter status
US20100069841A1 (en) * 2003-10-02 2010-03-18 Medtronic, Inc. Determining catheter status
US9138537B2 (en) 2003-10-02 2015-09-22 Medtronic, Inc. Determining catheter status
US7732591B2 (en) 2003-11-25 2010-06-08 Medtronic, Inc. Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US20070167389A1 (en) * 2003-11-25 2007-07-19 Kaemmerer William F Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna
US8467875B2 (en) 2004-02-12 2013-06-18 Medtronic, Inc. Stimulation of dorsal genital nerves to treat urologic dysfunctions
US20050208090A1 (en) * 2004-03-18 2005-09-22 Medtronic, Inc. Methods and systems for treatment of neurological diseases of the central nervous system
WO2005105200A1 (en) * 2004-04-22 2005-11-10 Medtronic, Inc. Branching catheter systems with diagnostic components
US7763007B2 (en) 2004-04-22 2010-07-27 Medtronic, Inc. Diagnostic methods for branching catheter systems
US7217251B2 (en) 2004-04-22 2007-05-15 Medtronic, Inc. Pressure relief methods in a medical catheter system
US7513884B2 (en) 2004-04-22 2009-04-07 Medtronic, Inc. Branching catheter systems with diagnostic components
WO2005105199A1 (en) * 2004-04-22 2005-11-10 Medtronic, Inc. Diagnostic methods for branching catheter systems
US20050245887A1 (en) * 2004-04-22 2005-11-03 Olsen James M Catheter systems having flow restrictors
US7766860B2 (en) * 2004-04-22 2010-08-03 Medtronic, Inc. Catheter systems having flow restrictors
US20050245858A1 (en) * 2004-04-22 2005-11-03 Miesel Keith A Branching catheter systems with diagnostic components
US20050245867A1 (en) * 2004-04-22 2005-11-03 Olsen James M Pressure relief methods in a medical catheter system
US20050241387A1 (en) * 2004-04-22 2005-11-03 Miesel Keith A Diagnostic methods for branching catheter systems
US20060046960A1 (en) * 2004-09-02 2006-03-02 Mckay William F Controlled and directed local delivery of anti-inflammatory compositions
US20060046961A1 (en) * 2004-09-02 2006-03-02 Mckay William F Controlled and directed local delivery of anti-inflammatory compositions
US20060217324A1 (en) * 2005-01-24 2006-09-28 Juergen Soutschek RNAi modulation of the Nogo-L or Nogo-R gene and uses thereof
US20060229573A1 (en) * 2005-04-08 2006-10-12 Mckinley Medical L.L.L.P. Adjustable infusion catheter
US20060253068A1 (en) * 2005-04-20 2006-11-09 Van Bilsen Paul Use of biocompatible in-situ matrices for delivery of therapeutic cells to the heart
US7902352B2 (en) 2005-05-06 2011-03-08 Medtronic, Inc. Isolated nucleic acid duplex for reducing huntington gene expression
US20100008981A1 (en) * 2005-05-06 2010-01-14 Medtronic, Inc. Methods and sequences to suppress primate huntington gene expression
US20100325746A9 (en) * 2005-05-06 2010-12-23 Kaemmerer William F Methods and sequences to suppress primate huntington gene expression in vivo
US8258112B2 (en) 2005-05-06 2012-09-04 Medtronic, Inc Methods and sequences to suppress primate huntington gene Expression
US20070261126A1 (en) * 2005-05-06 2007-11-08 Kaemmerer William F Methods and sequences to suppress primate huntington gene expression in vivo
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US20100120900A1 (en) * 2005-06-28 2010-05-13 Medtronic, Inc. Methods And Sequences To Preferentially Suppress Expression of Mutated Huntingtin
US20070161590A1 (en) * 2005-06-28 2007-07-12 Medtronic, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US7772200B2 (en) 2005-07-21 2010-08-10 Alnylam Pharmaceuticals, Inc. iRNA agents targeted to the Rho-A gene
US20110071209A1 (en) * 2005-07-21 2011-03-24 Alnylam Pharmaceuticals, Inc. RNAi Modulation of the RHO-A Gene and Uses Thereof
US20070044161A1 (en) * 2005-07-21 2007-02-22 Juergen Soutschek RNAi modulation of the Rho-A gene in research models
US20070042984A1 (en) * 2005-07-21 2007-02-22 Juergen Soutschek RNAi modulation of the Rho-A gene and uses thereof
US7749978B2 (en) 2005-10-28 2010-07-06 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Huntingtin gene
US20080221055A1 (en) * 2005-10-28 2008-09-11 Alnylam Pharmaceuticals, Inc., A Delaware Corporation Compositions and methods for inhibiting expression of huntingtin gene
US20070099860A1 (en) * 2005-10-28 2007-05-03 Sah Dinah W Compositions and methods for inhibiting expression of huntingtin gene
US7320965B2 (en) 2005-10-28 2008-01-22 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Huntingtin gene
US8314075B2 (en) 2005-10-28 2012-11-20 Alynylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of huntingtin gene
US20070105806A1 (en) * 2005-11-04 2007-05-10 Dinah Sah Compositions and methods for inhibiting expression of Nav1.8 gene
US7582745B2 (en) 2005-11-04 2009-09-01 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of Nav1.8 gene
US8317770B2 (en) 2006-04-06 2012-11-27 Medtronic, Inc. Systems and methods of identifying catheter malfunctions using pressure sensing
US20070270782A1 (en) * 2006-04-06 2007-11-22 Miesel Keith A Systems and methods of identifying catheter malfunctions using pressure sensing
US20070253994A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Intraspinal Drug Delivery Methods and Devices To Alleviate Chronic Pelvic Pain
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20080280843A1 (en) * 2006-05-24 2008-11-13 Van Bilsen Paul Methods and kits for linking polymorphic sequences to expanded repeat mutations
US20080039415A1 (en) * 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders
US9375440B2 (en) 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US8324367B2 (en) 2006-11-03 2012-12-04 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US20080124379A1 (en) * 2006-11-03 2008-05-29 Kaemmerer William F Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity
US20080119787A1 (en) * 2006-11-21 2008-05-22 Kaemmerer William F Microsyringe for pre-packaged delivery of pharmaceuticals
US7819842B2 (en) 2006-11-21 2010-10-26 Medtronic, Inc. Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US20080119789A1 (en) * 2006-11-21 2008-05-22 Kaemmerer William F Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites
US7988668B2 (en) 2006-11-21 2011-08-02 Medtronic, Inc. Microsyringe for pre-packaged delivery of pharmaceuticals
US20080171906A1 (en) * 2007-01-16 2008-07-17 Everaerts Frank J L Tissue performance via hydrolysis and cross-linking
US20080243074A1 (en) * 2007-03-30 2008-10-02 Miesel Keith A Catheter malfunction determinations using physiologic pressure
US9044537B2 (en) 2007-03-30 2015-06-02 Medtronic, Inc. Devices and methods for detecting catheter complications
US8323244B2 (en) 2007-03-30 2012-12-04 Medtronic, Inc. Catheter malfunction determinations using physiologic pressure
US20080277065A1 (en) * 2007-05-08 2008-11-13 Brett Moody Hand-Held Labeling Apparatus Having Accessory Storage
US9034042B2 (en) 2007-08-03 2015-05-19 Warsaw Orthopedic, Inc. Method of using an anti-growth matrix as a barrier for cell attachment and osteo-inductive factors
US20090036988A1 (en) * 2007-08-03 2009-02-05 Peckham Steven M Method of using an anti-growth matrix as a barrier for cell attachment and osteo-inductive factors
US8092541B2 (en) 2007-08-03 2012-01-10 Warsaw Orthopedic, Inc. Method of using an anti-growth matrix as a barrier for cell attachment and osteo-inductive factors
US8470360B2 (en) 2008-04-18 2013-06-25 Warsaw Orthopedic, Inc. Drug depots having different release profiles for reducing, preventing or treating pain and inflammation
US8475823B2 (en) 2008-04-18 2013-07-02 Medtronic, Inc. Baclofen formulation in a polyorthoester carrier
WO2009129433A2 (en) 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Alpha adrenergic receptor agonists for treatment of degenerative disc disease
US9265733B2 (en) 2008-04-18 2016-02-23 Warsaw Orthopedic, Inc. Drug depots having different release profiles for reducing, preventing or treating pain and inflammation
WO2009129494A2 (en) 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Alpha and beta adrenergic receptor agonists for treatment of pain and/or inflammation
US8940315B2 (en) 2008-04-18 2015-01-27 Medtronic, Inc. Benzodiazepine formulation in a polyorthoester carrier
US20090202436A1 (en) * 2008-04-18 2009-08-13 Medtronic, Inc. Bupivacaine Formulation in a Polyorthoester Carrier
US20090202604A1 (en) * 2008-04-18 2009-08-13 Medtronic, Inc. Benzodiazepine Formulation in a Polyorthoester Carrier
US20090208554A1 (en) * 2008-04-18 2009-08-20 Medtronic, Inc. Baclofen Formulation in a Polyorthoester Carrier
US8956642B2 (en) 2008-04-18 2015-02-17 Medtronic, Inc. Bupivacaine formulation in a polyorthoester carrier
US8968767B2 (en) 2008-04-18 2015-03-03 Warsaw Orthopedic, Inc. Drug depots having different release profiles for reducing, preventing or treating pain and inflammation
US20090263441A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Drug depots having diffreent release profiles for reducing, preventing or treating pain and inflammation
US20090263456A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Methods and Compositions for Reducing Preventing and Treating Adhesives
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9561354B2 (en) 2008-08-13 2017-02-07 Smed-Ta/Td, Llc Drug delivery implants
US10357298B2 (en) 2008-08-13 2019-07-23 Smed-Ta/Td, Llc Drug delivery implants
US8702767B2 (en) 2008-08-13 2014-04-22 Smed-Ta/Td, Llc Orthopaedic Screws
US10349993B2 (en) 2008-08-13 2019-07-16 Smed-Ta/Td, Llc Drug delivery implants
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US9358056B2 (en) 2008-08-13 2016-06-07 Smed-Ta/Td, Llc Orthopaedic implant
US8475505B2 (en) 2008-08-13 2013-07-02 Smed-Ta/Td, Llc Orthopaedic screws
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US11426291B2 (en) 2008-08-13 2022-08-30 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
US20100217196A1 (en) * 2009-01-21 2010-08-26 Nelson Brian D Catheter systems having flow restrictors
US8784360B2 (en) 2009-01-21 2014-07-22 Medtronic, Inc. Catheter systems having flow restrictors
WO2011014882A1 (en) 2009-07-31 2011-02-03 Medtronic, Inc. CONTINUOUS SUBCUTANEOUS ADMINISTRATION OF INTERFERON-α TO HEPATITIS C INFECTED PATIENTS
US20120283186A1 (en) * 2009-12-30 2012-11-08 Adams Patent Corporation Therapeutic agent delivery apparatus and process
US10709882B2 (en) * 2009-12-30 2020-07-14 Kenneth Adams Medicine Professional Corporation Therapeutic agent delivery apparatus and process
US10105485B2 (en) 2010-04-16 2018-10-23 MRI Interventions, Inc. MRI surgical systems including MRI-compatible surgical cannulae for transferring a substance to and/or from a patient
US10569013B2 (en) 2010-04-16 2020-02-25 MRI Interventions, Inc. MRI-compatible surgical cannulae for transferring a substance to and/or from a patient
US11793933B2 (en) 2010-04-16 2023-10-24 Clearpoint Neuro, Inc. MRI-compatible surgical cannulae for transferring a substance to and/or from a patient
WO2011159930A2 (en) 2010-06-16 2011-12-22 Medtronic, Inc. Damping systems for stabilizing medications in drug delivery devices
US9550045B2 (en) 2011-01-28 2017-01-24 Medtronic, Inc. Repositionable therapy delivery element anchor
US9744340B2 (en) 2012-12-07 2017-08-29 Cook Medical Technologies Llc System for reducing local discomfort
US9409003B2 (en) 2012-12-07 2016-08-09 Cook Medical Technologies, LLC System for reducing local discomfort
US10363403B2 (en) 2012-12-07 2019-07-30 Cook Medical Technologies Llc System for reducing local discomfort
US11690987B2 (en) 2012-12-07 2023-07-04 Awair, Inc. System for reducing local discomfort
US9539382B2 (en) 2013-03-12 2017-01-10 Medtronic, Inc. Stepped catheters with flow restrictors and infusion systems using the same
US11684719B2 (en) 2013-05-23 2023-06-27 Allergan, Inc. Methods of treatment using a syringe extrusion accessory
CN103272299A (en) * 2013-05-31 2013-09-04 李�根 Under-scalp embedded guide sac for intracerebral multi-point injection
US9891296B2 (en) 2013-09-13 2018-02-13 MRI Interventions, Inc. Intrabody fluid transfer devices, systems and methods
US10792427B2 (en) 2014-05-13 2020-10-06 Allergan, Inc. High force injection devices
US11000658B2 (en) 2014-05-18 2021-05-11 Awair, Inc. Device to reduce discomfort in the upper airway
US11504513B2 (en) 2014-07-25 2022-11-22 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11464958B2 (en) 2014-07-25 2022-10-11 Warsaw Orthopedic, Inc. Drug delivery methods having an occluding member
US10478603B2 (en) 2014-07-25 2019-11-19 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US10384048B2 (en) 2014-07-25 2019-08-20 Warsaw Orthopedic, Inc. Drug delivery device and methods having an occluding member
US11185641B2 (en) 2014-10-01 2021-11-30 Allergan, Inc. Devices for injection and dosing
US10433928B2 (en) 2015-03-10 2019-10-08 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
US10952961B2 (en) 2015-07-23 2021-03-23 Novaflux, Inc. Implants and constructs including hollow fibers
US11759614B2 (en) 2015-11-23 2023-09-19 Warsaw Orthopedic, Inc. Enhanced stylet for drug depot injector
US10576247B2 (en) 2016-02-17 2020-03-03 MRI Interventions, Inc. Intrabody surgical fluid transfer assemblies with adjustable exposed cannula to needle tip length, related systems and methods
US11541207B2 (en) 2016-02-17 2023-01-03 Clearpoint Neuro, Inc. Intrabody surgical fluid transfer assemblies with adjustable exposed cannula to needle tip length, related systems and methods
US11890457B2 (en) 2016-04-08 2024-02-06 Allergan, Inc. Aspiration and injection device
US10596321B2 (en) 2016-04-08 2020-03-24 Allergan, Inc. Aspiration and injection device
US10549081B2 (en) 2016-06-23 2020-02-04 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11413442B2 (en) 2016-06-23 2022-08-16 Warsaw Orthopedic, Inc. Drug delivery device and methods having a retaining member
US11478587B2 (en) 2016-11-08 2022-10-25 Warsaw Orthopedic, Inc. Drug depot delivery system and method
US10434261B2 (en) 2016-11-08 2019-10-08 Warsaw Orthopedic, Inc. Drug pellet delivery system and method
USD865950S1 (en) 2017-03-24 2019-11-05 Allergan, Inc. Syringe device
USD865948S1 (en) 2017-03-24 2019-11-05 Allergan, Inc. Syringe device
USD865949S1 (en) 2017-03-24 2019-11-05 Allergan, Inc. Syringe device
USD866753S1 (en) 2017-03-24 2019-11-12 Allergan, Inc. Syringe device
USD867582S1 (en) 2017-03-24 2019-11-19 Allergan, Inc. Syringe device
US11253237B2 (en) 2018-05-09 2022-02-22 Clearpoint Neuro, Inc. MRI compatible intrabody fluid transfer systems and related devices and methods
US11022664B2 (en) 2018-05-09 2021-06-01 Clearpoint Neuro, Inc. MRI compatible intrabody fluid transfer systems and related devices and methods
US11759566B2 (en) 2018-05-31 2023-09-19 University Of Virginia Patent Foundation Distribution system for flow control of infusate from branch catheters to selected site
WO2019232035A1 (en) * 2018-05-31 2019-12-05 University Of Virginia Patent Foundation Distribution system for flow control of infusate from branch catheters to selected site
US11684750B2 (en) 2019-10-08 2023-06-27 Clearpoint Neuro, Inc. Extension tube assembly and related medical fluid transfer systems and methods

Also Published As

Publication number Publication date
DE10113983A1 (en) 2001-12-20
CH695136A5 (en) 2005-12-30
FR2806918A1 (en) 2001-10-05
FR2806918B1 (en) 2005-04-22
IE20010197A1 (en) 2002-03-20

Similar Documents

Publication Publication Date Title
US6551290B1 (en) Catheter for target specific drug delivery
US6945969B1 (en) Catheter for target specific drug delivery
EP1305074A2 (en) Catheter for target specific drug delivery
US7069634B1 (en) Method for manufacturing a catheter
US11833325B2 (en) Sprinkler cannula
US6093180A (en) Intraparenchymal infusion catheter system
US6893429B2 (en) Convection enhanced delivery catheter to treat brain and other tumors
US6056725A (en) Therapeutic method for treatment of alzheimer's disease
US6974448B2 (en) Method for convection enhanced delivery catheter to treat brain and other tumors
US7189222B2 (en) Therapeutic method of treatment of alzheimer's disease
US9539382B2 (en) Stepped catheters with flow restrictors and infusion systems using the same
CA2371798C (en) Composite drug delivery catheter
JP4604022B2 (en) Portable device for the administration of fluids to tissues and tumors by a delivery-enhanced delivery method
JP6498670B2 (en) Systems and methods for drug delivery, therapy, and monitoring
US8784360B2 (en) Catheter systems having flow restrictors
US8246602B2 (en) Catheters with tracking elements and permeable membranes
EP0536296A1 (en) Method and catheter for intravascular drug delivery
AU1958301A (en) Catheter with stylet lumen
AU5545496A (en) Bioretentive filtered infusion catheter
WO2001008725A1 (en) An apparatus for pharmaceutical delivery and the use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ELSBERRY, DENNIS D.;CHRISTIANSEN, CHRIS;MORRIS, MARY M.;AND OTHERS;REEL/FRAME:011387/0102;SIGNING DATES FROM 20000426 TO 20000503

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12