US6495666B2 - Polypeptide composing human chimeric antibody - Google Patents

Polypeptide composing human chimeric antibody Download PDF

Info

Publication number
US6495666B2
US6495666B2 US09/764,304 US76430401A US6495666B2 US 6495666 B2 US6495666 B2 US 6495666B2 US 76430401 A US76430401 A US 76430401A US 6495666 B2 US6495666 B2 US 6495666B2
Authority
US
United States
Prior art keywords
antibody
dna
plasmid
ser
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/764,304
Other versions
US20020026036A1 (en
Inventor
Kenya Shitara
Nobuo Hanai
Mamoru Hasegawa
Hiromasa Miyaji
Yoshihisa Kuwana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Kirin Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to US09/764,304 priority Critical patent/US6495666B2/en
Publication of US20020026036A1 publication Critical patent/US20020026036A1/en
Priority to US10/265,713 priority patent/US6965024B2/en
Application granted granted Critical
Publication of US6495666B2 publication Critical patent/US6495666B2/en
Assigned to KYOWA HAKKO KIRIN CO., LTD. reassignment KYOWA HAKKO KIRIN CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KYOWA HAKKO KOGYO CO., LTD.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3084Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/461Igs containing Ig-regions, -domains or -residues form different species
    • C07K16/462Igs containing a variable region (Fv) from one specie and a constant region (Fc) from another
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Definitions

  • This invention relates to a process for the production of humanized chimera antibody.
  • humanized chimera antibody does not cause formation of anti-mouse immunoglobulin antibody in the body of a patient.
  • side effects are reduced or eliminated and half life in blood increases when the chimera antibody is used.
  • Therapeutic effects which are superior to those obtained in the case of using mouse monoclonal antibody can be obtained in the treatment of human cancers and the like.
  • mouse monoclonal antibody When mouse monoclonal antibody is converted into humanized chimera antibody, human anti-mouse immunoglobulin antibody form in minimal amounts if at all, and the half life of the chimera antibody in human blood is six times as long as that of mouse monoclonal antibody (Proc. Natl. Acad. Sci. U.S.A., 86, 4220 (1989)).
  • the Fc region of mouse antibody does not fully activate human complement and human effector cells, in comparison with the Fc region of human antibody.
  • the antitumor activity of mouse monoclonal antibody to ganglioside GD 2 which is effected via human effector cells, is improved when the monoclonal antibody is converted into chimera antibody that has the human antibody Fc region (J. Immunol., 144, 1382-1386 (1990)).
  • Ganglioside is one of the animal cell membrane-constituting glycolipids and is composed of a sugar chain as a hydrophilic side chain, sphingosine as a hydrophobic side chain and fatty acids. It is known that expression of ganglioside varies depending on the type of cells, organs and animal species. In addition, it has been revealed that quantity and quality of the expressed ganglioside change during the canceration process of cells (Cancer Res., 45, 2405 (1985)).
  • gangliosides GD 2 , GD 3 , GM 2 and the like which hardly exist in normal cells were found in the cells of neuroblastoma, lung small cell carcinoma and melanoma belonging to neuroectodermal-origin tumor which is said to be highly malignant (J. Exp. Med., 155, 1133 (1982); J. Biol. Chem., 257, 12752 (1982); Cancer Res., 47, 225 (1987); ibid., 47, 1098 (1987); ibid., 45, 2642 (1985); Proc. Natl. Acad. Sci. U.S.A., 80, 5392 (1983)).
  • Ganglioside GD 3 has been found most frequently in melanoma cells among the neuroectodermal-origin tumors, and anti-ganglioside GD 3 monoclonal antibodies (to be referred to as “anti-GD 3 monoclonal antibody” hereinafter) belonging to the mouse IgM class and IgG class have been reported (Int. J. Cancer, 29, 269 (1982); J. Biol. Chem., 257, 12752 (1982); Cancer Res., 47, 225 (1987); Acta Neuropathol., 79, 317 (1989); Proc. Natl. Acad. Sci. U.S.A., 77, 6114 (1980); J. Exp. Med., 155, 1133 (1982); Proc. Natl. Acad. Sci. U.S.A., 81, 5767 (1984)).
  • KM-641 (FERM BP-3116) disclosed in EP-A-0 493 686 is an anti-GD 3 monoclonal antibody belonging to the mouse IgG3 class, which reacts not only with ganglioside GD 3 but also with ganglioside 3′,8′-LD1 and is possessed of a broad range of antitumor spectrum.
  • KM-641 has stronger binding activities to antigens than anti-GD 3 monoclonal antibody R24 which has been disclosed in J. Exp. Med., 155, 1133 (1982) and it shows strong antitumor activities.
  • mouse monoclonal antibody R24 to the ganglioside GD 3 was once used for the treatment of melanoma, but the administered mouse monoclonal antibody R24 did not fully exert its effect due to the formation of anti-mouse immunoglobulin antibody in the patient's body (Eur. J. Cancer Clin. Oncol., 24, suppl 2, s 65 (1988)).
  • chimera antibody for anti-GD 3 monoclonal antibody would be advantageous in that anti-mouse immunoglobulin antibody does not form in the body, side effects are reduced or eliminated, its half life in blood is prolonged and its antitumor effector effect increases, and thus therapeutic effects of the chimera antibody which are superior to those of mouse monoclonal antibody can be obtained in the treatment of human cancers and the like.
  • Humanized chimera antibody in which constant regions of the heavy chain (to be referred to as “H chain” hereinafter) and the light chain (to be referred to as “L chain” hereinafter) of mouse monoclonal antibody are converted into human constant regions, is produced in animal cells making use of recombinant DNA techniques.
  • Examples of such processes include a process in which humanized chimera antibody is produced using chromosomal DNA as a gene which encodes mouse H chain variable region (to be referred to as “V H ” hereinafter) and L chain variable region (to be referred to as “V L ” hereinafter) (Morrison et al., Proc. Natl. Acad. Sci.
  • Liu et al. discloses a process for the expression of humanized chimera antibody in animal cells, which comprises using an expression vector for animal cells having inserted therein a chimera H chain cDNA obtained by linking mouse V H -encoding cDNA with human C H -encoding cDNA and a chimera L chain cDNA obtained by linking mouse VsL-encoding cDNA with human C L -encoding cDNA.
  • Riechmann et al. have prepared CDR graft antibody by grafting a rat antibody CDR into a human antibody framework and reported that binding activity of the antibody was reduced by the framework conversion and the antibody activity increased when amino acid sequence of the framework was partially changed (Nature, 332, 323 (1988)). Consequently, there is a possibility that the binding activity of humanized chimera antibody is undesirably reduced when the antibody is produced by the mouse Jk5-aided process disclosed by Liu et al.
  • the present invention relates to a process for producing humanized chimera antibody which comprises the steps of:
  • cassette vector by inserting a cDNA coding for human antibody C L into an expression vector for animal cell use and establishing a cloning site in the upstream region of the C L of said cassette vector for inserting a cDNA which encodes nonhuman animal antibody V L ;
  • the cassette vector to be used in the present invention is a vector which is obtained by inserting a cDNA that encodes a constant region of human antibody into an expression vector for animal cell use, in which a cloning site is located in the upstream region of the constant region for inserting a cDNA that encodes a variable region of nonhuman animal antibody.
  • An expression vector for humanized chimera antibody can be constructed easily by inserting a variable region of nonhuman animal antibody into the cloning site of the cassette vector, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of a constant region of human antibody and a base sequence corresponding to the 3′-end side of a variable region of nonhuman animal antibody and is possessed of restriction enzyme recognition sites on its both ends.
  • the present invention also relates to a humanized chimera antibody obtainable by the above-described process, a pharmaceutical composition comprising the humanized chimera antibody and a pharmaceutically acceptable carrier, and a method of treating cancer which comprises administering to a patient a pharmaceutically acceptable amount of said humanized chimera antibody.
  • FIG. 1 shows a restriction enzyme cleavage map of a 9.3 kb XbaI fragment of KM50 cell chromosomal DNA.
  • FIG. 2 shows a construction scheme for plasmid pKMB11.
  • FIG. 3 shows a construction scheme for plasmid pkMD6.
  • FIG. 4 shows a construction scheme for plasmid pEPKMA1.
  • FIG. 5 shows a construction scheme for plasmid pEPKMB1.
  • FIG. 6 shows a construction scheme for plasmid pAGE501.
  • FIG. 7 shows a construction scheme for plasmid pAGE109.
  • FIG. 8 shows a construction scheme for plasmid pAGE502.
  • FIG. 9 shows a construction scheme for plasmid pAGE503.
  • FIG. 10 shows a construction scheme for plasmid pSEd1.
  • FIG. 11 shows a construction scheme for plasmid pSE1D2.
  • FIG. 12 shows a construction scheme for plasmid pIG1SE1d2.
  • FIG. 13 shows a construction scheme for plasmid pIG1SE1d3.
  • FIG. 14 shows a construction scheme for plasmid pIG1SE1d4.
  • FIG. 15 shows a construction scheme for plasmid pPMOL2.
  • FIG. 16 shows a construction scheme for plasmid pPMOL3.
  • FIG. 17 shows a construction scheme for plasmid pchCKA7.
  • FIG. 18 shows a construction scheme for plasmid pchCKB1 (also SEQ ID NO:9).
  • FIG. 19 shows a construction scheme for plasmid pckCKC1.
  • FIG. 20 shows a construction scheme for plasmid pChiIgHB2.
  • FIG. 21 shows a construction scheme for plasmid pChiIgLA1.
  • FIG. 22 shows plasmids pKM641HA3 and pKM641LA2.
  • FIG. 23 shows plasmid pChi641HA1.
  • FIG. 24 shows a construction scheme for plasmid pKM641HE1.
  • FIG. 25 shows a construction scheme for plasmid pKM641HF1.
  • FIG. 26 shows a construction scheme for plasmid pChi641HA1.
  • FIG. 27 shows a construction scheme for plasmid pChi641HAM1.
  • FIG. 28 shows plasmid pChi641LG11.
  • FIG. 29 shows a construction scheme for plasmid pChi641LG11.
  • FIG. 30 shows a construction scheme for plasmid pChi641LGM11.
  • FIG. 31 shows a pattern of SDS-PAGE (4 to 15% gradient gel) of purified anti-GD 3 chimera antibody KM-871 (about 5 ⁇ g/lane) carried out under reductive condition (A) or non-reductive condition (B), where the lanes starting from the left respectively indicate electrophoretic patterns of molecular weight markers, human IgG standard, mouse anti-GD 3 antibody KM-641 and anti-GD 3 chimera antibody KM-871.
  • A reductive condition
  • B non-reductive condition
  • FIG. 32 is a graph showing reactivity of anti-GD 3 chimera antibody KM-871 with ganglioside GD 3 -positive G361 and SK-MEL-28 cells measured by fluorescent antibody technique with the cell number on the ordinate and the fluorescence intensity on the abscissa.
  • a dotted line shows reactivity in the absence of the antibody, while a solid line shows reactivity in the presence of KM-871.
  • FIG. 33 is a graph showing complement-dependent cytotoxicity (CDC) of anti-GD 3 chimera antibody KM-871 and anti-GD 3 mouse antibody KM-641 against ganglioside GD 3 -positive G361 and SK-MEL-28 cells with cytotoxicity on the ordinate and an antibody concentration on the abscissa.
  • a blackened bar shows CDC activity of KM-871, while a striped bar shows that of KM-641.
  • FIG. 34 is a graph showing antibody-dependent cell-mediated cytotoxicity (ADCC) of KM-871 and KM-641 against ganglioside GD 3 -positive cell G361 with a ratio of effector cells to target cells on the ordinate and ADCC activity on the abscissa.
  • a blackened bar shows ADCC activity of KM-871
  • a dotted bar shows ADCC activity of KM-641
  • a striped bar shows control (in the absence of the antibody).
  • PMN means polymorphonuclear leukocyte.
  • FIG. 35 is a graph showing therapeutic effect of KM-871 on transplanted tumors with the tumor size on the ordinate and days after transplantation of tumors on the abscissa, in which closed circle shows effect of anti-Sialyl Le 2 monoclonal antibody AMC-462, open square shows that of KM-641 and open triangle shows that of KM-871.
  • the cassette vector to be used in the present invention is constructed by inserting a cDNA which encodes a human antibody constant region into an expression vector for animal cell use.
  • Essential components in the expression vector for animal cell use include promoter, enhancer, polyA signal, splicing signal, drug resistance gene as a selection marker (e.g., ampicillin resistance gene, etc.) and the like. Any expression vector for animal cell use may be used for this purpose, as long as it can contain and express the cDNA molecule which encodes a human antibody constant reason. For example, pAGE107 (Cytotechnology, 3, 133 (1990)) is useful as such an expression vector.
  • Examples of the promoter and enhancer for use in the expression vector for animal cell use include: SV40 early promoter and enhancer (J.
  • the immunoglobulin H chain promoter and enhancer can be prepared using appropriate antibody-producing hybridoma cells, such as rat hybridoma KM50 cells which produce anti-human serum albumin antibody as disclosed in JP-A-60-258128 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”). The following describes processes for the preparation of the immunoglobulin H chain promoter and enhancer making use of KH50 cells.
  • Each chromosomal DNA is obtained from cultured KM50 cells, and P3X63Ag8U.1 (to be referred to as “P3U1” hereinafter) cells (ATCC CRL1597) which are to be fused with KM50 and rat kidney cells in accordance with the procedure disclosed in Molecular Cloning (2nd. ed., Cold Spring Harbor Laboratory Press, 1989, p9.14).
  • P3U1 P3X63Ag8U.1
  • ATCC CRL1597 P3X63Ag8U.1 cells
  • Plasmid pIg1SE1d4 is an illustrative example of the animal cell expression vector which contains the immunoglobulin H chain promoter and enhancer.
  • a cloning site is established in the upstream region of a human constant region of a cassette vector, for inserting a cDNA which encodes a variable region of nonhuman animal antibody.
  • a cDNA which encodes a variable region of nonhuman animal antibody is inserted into the thus established cloning site, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of a constant region of human antibody and a base sequence corresponding to the 3′-end side of a variable region of nonhuman animal antibody and is possessed of restriction enzyme recognition sites on both of its ends.
  • a humanized chimera antibody expression vector is constructed in which the cDNA coding for human antibody constant region and the cDNA coding for the variable region of nonhuman animal antibody are linked together through the synthetic DNA.
  • the synthetic DNA to be used may be prepared using a DNA synthesizer, based on the base sequence which corresponds to the 5′-end side of a constant region of human antibody and the base sequence that corresponds to the 3′-end side of a variable region of nonhuman animal antibody.
  • Illustrative examples of cloning site-containing cassette vectors include a cassette vector pChiIgHB2 which is used for the construction of an expression vector for the expression of humanized chimera antibody H chain and a cassette vector pChiIgLA2 which is used for the construction of an expression vector for the expression of humanized chimera antibody L chain.
  • a cassette vector for use in the construction of an expression vector for the expression of humanized chimera antibody H chain is constructed, for example, by cutting out a human C H -encoding cDNA-containing fragment, from an ApaI site in the vicinity of the 5′-end of the cDNA to its 3′-end, and inserting the fragment into an appropriate expression vector for animal cell use such as plasmid pIg1SE1d4 or the like. Then, a cloning site is established in the thus constructed cassette vector for inserting a cDNA which encodes a V H of nonhuman animal antibody.
  • a cDNA fragment encoding a nonhuman animal antibody V H which is obtained by digesting a V H -encoding cDNA with an appropriate restriction enzyme, using a synthetic DNA molecule which comprises a base sequence corresponding to the 5′-end side (5′-end to ApaI site) of a human antibody C H and a base sequence corresponding to the 3′-end side of a nonhuman animal antibody V H and is possessed of restriction enzyme recognition sites on both of its ends.
  • a synthetic DNA molecule which comprises a base sequence corresponding to the 5′-end side (5′-end to ApaI site) of a human antibody C H and a base sequence corresponding to the 3′-end side of a nonhuman animal antibody V H and is possessed of restriction enzyme recognition sites on both of its ends.
  • a cassette vector for constructing of an expression vector for the expression for humanized chimera antibody L chain may be constructed for example by introducing an EcoRV site into the vicinity of 5′-end side of a human C L -encoding cDNA by means of mutation, cutting out a fragment from the resulting human cDNA from the EcoRV site to the 3′-end and inserting the fragment into an appropriate expression vector such as plasmid pIg1SE1d4 or the like. Then, a cloning site is established in the thus constructed cassette vector for inserting a cDNA which encodes a nonhuman animal antibody V L .
  • a cDNA fragment encoding a nonhuman animal antibody V L which is obtained by digesting a V L -encoding cDNA with an appropriate restriction enzyme, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side (5′-end to EcoRV site) of a human antibody C L and a base sequence corresponding to the 3′-end side of a nonhuman animal antibody V L and is possessed of restriction enzyme recognition sites on both of its ends.
  • a synthetic DNA which comprises a base sequence corresponding to the 5′-end side (5′-end to EcoRV site) of a human antibody C L and a base sequence corresponding to the 3′-end side of a nonhuman animal antibody V L and is possessed of restriction enzyme recognition sites on both of its ends.
  • cDNAs which encode the human C H and human C L described above are disclosed, for instance, in Cell 22, 197 (1982).
  • Such cDNAs can e prepared from human antibody-producing myeloma cells, humanized monoclonal antibody-producing hybridoma cells, humanized chimera antibody-producing cells (SP2-PC chimera; FEBS Letters, 244, 301 (1989)) and the like, in accordance with known procedures disclosed for instance in Proc. Natl. Acad. Sci. U.S.A. 82, 7025 (1985) and ibid., 79 7025 (1985).
  • cDNA is synthesized using mRNA extracted from the above-described cells, in accordance with the procedure disclosed in Molecular Cloning 2nd. ed.; 1989, p8.1.
  • a library is prepared from the thus synthesized cDNA using a phage vector or a plasmid vector, in accordance with the procedure disclosed in Molecular Cloning 2nd. ed.; 1989, p8.1, 1.53.
  • a recombinant phage or a recombinant plasmid which contains human C H -encoding cDNA or human C L -encoding cDNA is obtained from the thus prepared library using a human antibody constant region or a human antibody variable region as a probe, in accordance with the procedure disclosed in Molecular Cloning 2nd. ed.; 1989, p8.1, 1.53.
  • Base sequences of the human C H -encoding cDNA and the human C L -encoding cDNA are determined in accordance with the procedure disclosed in Molecular Cloning, 2nd. ed.; 1989, p13.1.
  • Introduction of an appropriate restriction enzyme recognition site into the human C L -encoding cDNA may be effected in accordance with the procedure disclosed in Molecular Cloning, 2nd. ed.; 1989, p15.1.
  • cDNAs which encode V H and V L of nonhuman animal antibody, such as mouse anti-GD 3 monoclonal antibody are prepared in the following manner.
  • cDNA is synthesized using mRNA extracted from appropriate hybridoma cells which produce mouse anti-GD 3 monoclonal antibody, such as mouse anti-GD 3 monoclonal antibody KM-641 (FERM BP-3116).
  • a library is prepared from the thus synthesized cDNA using a phage vector or a plasmid vector.
  • a recombinant phage or a recombinant plasmid which contains V H -encoding cDNA or V L -encoding cDNA is obtained from the thus prepared library using a constant region or a variable region of nonhuman antibody, such as mouse antibody, as a probe.
  • Base sequences of the V H -encoding cDNA and the V L -encoding cDNA are determined in accordance with the aforementioned procedure.
  • an expression vector for use in the expression of humanized chimera antibody H chain is constructed by linking the human antibody C H -encoding cDNA with the nonhuman antibody V H -encoding cDNA through the synthetic DNA.
  • a fragment of the V L -encoding cDNA ranging from the 5′-end to an appropriate restriction enzyme site near the 3′-end (to be referred to as “site B” hereinafter), is cut out and inserted into the cloning site of the aforementioned cassette vector, using a synthetic DNA molecule which comprises a base sequence corresponding to the 5′-end side of a human antibody C L and a base sequence corresponding to the 3′-end side (from 3′-end to site B) of a nonhuman animal antibody V L and is possessed of restriction enzyme recognition sites on both of its ends.
  • an expression vector for use in the expression of humanized chimera antibody L chain is constructed by linking the human antibody C L -encoding cDNA with the nonhuman antibody V L -
  • a transformant which is capable of producing humanized chimera antibody is obtained by transforming appropriate host cells with the thus prepared expression vectors for use in the expression of the H chain and L chain of humanized chimera antibody.
  • any type of cells may be used as host cells for use in the introduction of the humanized chimera antibody expression vectors, as long as these cells are capable of expressing the humanized chimera antibody.
  • Illustrative examples of such host cells include mouse SP2/0-Ag14 cells (ATCC CRL1581; to be referred to as “SP2/0 cells” hereinafter), mouse P3X63-Ag8.653 (ATCC CRL1580) and CHO cells which are deficient in dihydrofolate reductase gene (to be referred to as “dhfr” hereinafter) (Urlaub et al., Proc. Natl. Acad. Sci. U.S.A., 77, 4216 (1980)).
  • Introduction of the expression vectors for use in the expression of the H chain and L chain of humanized chimera antibody into host cells may be effected for example by the electroporation technique disclosed in JP-A-2-257891.
  • a transformant capable of producing the humanized chimera antibody may be selected using RPMI1640 medium supplemented with G418 and fetal calf serum, in accordance with the procedure disclosed in JP-A-2-257891.
  • a transformant, KM-871, which produces humanized chimera antibody that reacts with ganglioside GD 3 is an illustrative example of the transformant capable of producing humanized chimera antibody.
  • KM-871 has been deposited on Aug.13, 1991, with Fermentation Research Institute, Agency of Industrial Science and Technology of 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan under the Budapest Treaty, and has been assigned the accession number FERM BP-3512.
  • any medium can be used as long as the desired antibody can be produced and accumulated in the medium.
  • An example of such medium is RPMI1640 medium supplemented with G418 and fetal calf serum.
  • the transformants may be inoculated into 200 ⁇ l to 100 ml of the above-mentioned medium to give a cell concentration of 1 ⁇ 10 5 to 1 ⁇ 10 7 cells/ml and cultivated at 37° C. in a 5% CO 2 incubator for 1 to 7 days.
  • the desired chimera antibody is produced and accumulated in the culture medium.
  • the humanized chimera antibody thus produced can be purified from supernatant fluid of the aforementioned cultured mixture making use of a protein A column (E. Harlow et al., Manual of Antibody Experiments, Cold Spring Harbor Laboratory Press, 1988).
  • Illustrative examples of humanized chimera antibodies obtained in this way include those which react with ganglioside GD 3 , such as humanized chimera antibody KM-871 and the like.
  • Reactivity of humanized chimera antibody is measured by ELISA method.
  • the molecular weight of the H chain, the L chain or the entire molecule of purified humanized chimera antibody is measured by means of polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting method (E. Harlow et al., Manual of Antibody Experiments, Cold Spring Harbor Laboratory Press, 1988) or the like.
  • Binding activity, or avidity, of the humanized chimera antibody to ganglioside GD 3 to a cultured cancer cell line is measured by means of the fluorescent antibody technique, the ELISA method or the like.
  • Complement-dependent cytotoxicity (CDC activity) and antibody-dependent cell-mediated cytotoxicity (ADCC activity) of humanized chimera antibody to a cultured cancer cell line are measured in accordance with the procedures disclosed in Menekigaku Jikken Nyumon, (Manual of Immunological Experiments) Matsuhashi et al., Gakkai Shuppan Center, Japan, 1981).
  • the humanized chimera antibodies according to the present invention can be used alone as an anticancer agent. They may be formulated into an anticancer composition together with at least one pharmaceutically acceptable carrier. For instance, the humanized chimera antibodies are dissolved in physiological saline, an aqueous solution of glucose, lactose or mannitol and the like.
  • the powder of the humanized chimera antibodies for injection can be prepared by lyophilizing the humanized chimera antibodies in accordance with the conventional method and mixing the lyophilized products with sodium chloride.
  • the anticancer composition may further contain additives conventionally used well known in the art of medical preparation, for example, pharmaceutically acceptable salts.
  • the humanized chimera antibodies according to the present invention can be administered in the form of the above-described anticancer composition to mammals including human in a dose of 0.2 to 20 mg/kg/day.
  • the dose may vary depending on the age, condition, etc. of patients.
  • the administration of the anticancer composition can be effected by intraveous injection once a day (single administration or consecutive administration) or intermittently one to three times a week or once every two to three weeks.
  • the antincancer composition is expected to be useful for treating cancer such as melanoma, neuroblastoma and glioma.
  • Chromosomal DNA was prepared in the following manner in accordance with the procedure disclosed in Molecular Cloning, Maniatis et al., 1989, p9.16.
  • 1.2 ⁇ 10 8 KM50 cells, 2 ⁇ 10 8 P3U1 cells (ATCC CRL1597) and 1.6 g of rat kidney were each suspended in 2 ml of a buffer solution (pH 7.5) containing 10 mM Tris-HCl, 150 mM sodium chloride and 10 mM sodium ethylenediaminetetraacetate (to be referred to as “EDTA” hereinafter).
  • EDTA sodium ethylenediaminetetraacetate
  • the resulting mixture was extracted with the same volume of phenol (once), chloroform (twice) and ether (once) in this order, and the extract was dialyzed for 10 hours against a buffer solution (pH 7.5) containing 10 mM Tris-HCl and 1 mM EDTA.
  • a DNA solution was recovered from the dialysis tube and Ribonuclease A (Sigma Chemical Co.) was added thereto to give a final concentration of 20 ⁇ g/ml. After incubating at 37° C. for 6 hours to decompose RNA completely, the resulting solution was mixed with 15 mg of SDS and 1 mg of Proteinase K and incubated at 37° C. for 10 hours.
  • the thus treated solution was extracted with the same volume of phenol, chloroform and ether (twice for each) in this order, and the extract was dialyzed for 10 hours against a buffer solution (pH 7.5) containing of 10 mM Tris-HCl and 1 mM EDTA.
  • the DNA solution was recovered from the dialysis tube and used as a chromosomal DNA sample.
  • a DNA concentration of each sample was determined by measuring the absorbance at 260 nm and, as a result, it was found that 1.6 mg, 1.5 mg and 1.9 mg of chromosomal DNA was obtained from 1.2 ⁇ 10 8 KM50 cells, 2 ⁇ 10 8 P3U1 cells and 1.6 g of rat kidney, respectively.
  • a 3 ⁇ g portion of each of the chromosomal DNA samples obtained in the above step (1) from KM50 cells, P3U1 cells and rat kidney was dissolved in 25 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • Each of the thus prepared solution was mixed with 15 units of XbaI (Takara Shuzo Co., Ltd.; all restriction enzymes used in the following experiments were purchased from the same company) and incubated at 37° C. for 2 hours to cleave the chromosomal DNA at the XbaI site.
  • the reaction mixture was subjected to agarose gel electrophoresis, resulting DNA fragments were transferred to a nitrocellulose filter in accordance with the method of Southern et al. (J. Mol. Biol., 98, 503, (1975)) and then subjected to hybridization in the known method (Kameyama et al., FEBS Letters, 244, 301-306 (1989)) using a mouse JH probe which is disclosed in the FEBS Letters article.
  • a band equivalent to about 9.3 kb was observed only in the DNA sample of KM50 cells. In consequence, it was considered that the XbaI fragment of immunoglobulin DNA found in this band contained the activated immunoglobulin H chain gene derived from KM50 cells.
  • a 60 ⁇ g portion of the 50 cell chromosomal DNA obtained in the above step (2) was dissolved in 250 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 150 units of XbaI and incubated at 37° C. for 2 hours to cleave the chromosomal DNA at the XbaI site.
  • the reaction mixture was subjected to agarose gel electrophoresis and a 9.3 kb-equivalent fraction was recovered as about 2 ⁇ g of 9.3 kb DNA sample of KM50 cells, making use of the DEAE paper method (Maniatis et al., Molecular Cloning, 1989, p6.24).
  • a 3 ⁇ g portion of lambda-ZAP (Stratagene Cloning Systems) to be used as a vector was dissolved in 200 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 50 units of XbaI and incubated at 37° C.
  • the resulting reaction mixture was extracted with phenol-chloroform and then treated with ethanol to precipitate and recover about 3 ⁇ g of DNA.
  • the thus recovered DNA sample was dissolved in a 100 ⁇ l of 100 mM Tris-HCl buffer (pH 7.5), and the resulting solution was mixed with 1 unit of alkaline phosphatase (Takara Shuzo Co., Ltd.) to effect dephosphorylation of restriction enzyme cleavage ends of the vector DNA.
  • the resulting reaction mixture was extracted with phenol-chloroform and then treated with ethanol to precipitate and recover 2 ⁇ g of DNA.
  • the thus recovered DNA sample was dissolved in 10 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5) and 1 mM EDTA to serve as a vector DNA sample.
  • 0.2 ⁇ g of the thus prepared vector DNA sample and 0.2 ⁇ g of the KM50 cell-derived 9.3 kb DNA sample were dissolved in 5 ⁇ l of a buffer solution containing 66 mM Tris-HCl (pH 7.5), 6.6 mM magnesium chloride, 10 mM dithiothreitol (to be referred to as “DTT” hereinafter) and 0.1 mM adenosine triphosphate (to be referred to as “ATP” hereinafter) (to be referred to as “T4 ligase buffer” hereinafter).
  • the resulting solution was mixed with 175 units of T4 DNA ligase (Takara Shuzo Co., Ltd.) and incubated at 4° C. for 3 days.
  • a 2 ⁇ l portion of the resulting reaction mixture was subjected to lambda phage packaging in the known method (Maniatis et al., Molecular Cloning, 1989, p2.95) using GigaPack Gold purchased from Stratagene Cloning Systems.
  • E. coli BB4 cells were infected with this phage to obtain 200,000 phage clones. 100,000 out of these phage clones were fixed on nitrocellulose filters in the known method (Maniatis et al., Molecular Cloning, 1989, p2.112).
  • Restriction enzyme cleavage maps of the two clones obtained in the above step (4) was prepared by digesting them with various restriction enzymes and it was found that completely the same DNA fragment (9.3 kb) has been inserted into these clones (FIG. 1 ).
  • base sequence of a part of the 9.3 kb DNA fragment, which was considered to contain the promoter and variable regions of the rat immunoglobulin H chain was determined in accordance with the Sanger method (Sanger et al., Proc. Natl. Acad. Sci. U.S.A., 74, 5463 (1977); M13 Cloning and Sequencing Handbook, Amersham).
  • SEQ ID NO: 1 a region containing octamer sequences such as ATGCAAAT and TATA box sequences such as TTGAAAA and the like can be regarded as the immunoglobulin promoter region.
  • a 1 ⁇ g portion of the 9.3 kb fragment of the immunoglobulin H chain variable region gene obtained in 1-(5) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of BglII and 10 units of HindIII and incubated at 37° C. for 2 hours to cleave the DNA fragment at the BglII and HindIII sites.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and 0.01 ⁇ g of a DNA fragment containing 0.8 kb immunoglobulin promoter was recovered.
  • a 1 ⁇ g portion of a plasmid pBR322-BglII (Kuwana et al., FEBS Letters, 219, 360 (1987)) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of BglII and 10 units of HindIII and incubated at 37° C. for 2 hours to cleave the plasmid at the BglII and HindIII sites.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis, a DNA fragment of about 4.2 kb was recovered.
  • Plasmid DNA was recovered from the colony to obtain pKM11 as shown in FIG. 2 .
  • the plasmid pKMB11 constructed in the above step (1) was digested with nuclease BAL31 from the NcoI site.
  • a 10 ⁇ g portion of the plasmid pKMB11 was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM potassium chloride.
  • the thus prepared solution was mixed with 30 units of NcoI and incubated at 37° C. for 2 hours to cleave the plasmid at the NcoI site.
  • the resulting reaction mixture was extracted with phenol and chloroform and treated with ethanol.
  • the thus precipitated DNA fragments were dissolved in 100 ⁇ l of BAL31 buffer which contained 20 mM Tris-HCl (pH 8.0), 600 mM sodium chloride, 12 mM calcium chloride, 12 mM magnesium chloride and 1 mM EDTA, and the resulting solution was mixed with 0.25 unit of BAL31 (Bethesda Research Laboratories, Inc. (BRL)) and incubated at 37° C. for 5 seconds. The reaction was stopped by extracting the reaction mixture with phenol. After extraction with chloroform and precipitation with ethanol, 1 ⁇ g of DNA was recovered.
  • BAL31 buffer contained 20 mM Tris-HCl (pH 8.0), 600 mM sodium chloride, 12 mM calcium chloride, 12 mM magnesium chloride and 1 mM EDTA, and the resulting solution was mixed with 0.25 unit of BAL31 (Bethesda Research Laboratories, Inc. (BRL)) and incubated at 37° C. for 5 seconds. The reaction was
  • a 0.1 ⁇ g portion of the thus obtained DNA sample and 0.01 ⁇ g of a synthetic DNA linker SalI were dissolved in 20 ⁇ l of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out in accordance with the method of Scott et al. to isolate an ApR colony. Plasmid DNA was recovered from the colony to obtain pKMD6 as shown in FIG. 3 .
  • the base sequence of the BAL31-digested portion of this plasmid was determined in accordance with the Sanger method and it was found that bases up to the third base (the 303 position base in the SEQ ID NO: 1) upstream from the initiation codon ATG of the immunoglobulin gene.
  • a 1 ⁇ g portion of the 9.3 kb fragment of the immunoglobulin H chain variable region gene obtained in 1-(5) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRV and 10 units of XbaI and incubated at 37° C. for 2 hours to cleave the DNA fragment at the EcoRV and XbaI sites.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and 0.1 ⁇ g of a DNA fragment of about 1 kb containing the immunoglobulin enhancer region was recovered.
  • a 1 ⁇ g portion of the plasmid pKMD6 obtained in the above step (2) was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5) 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of BglII and incubated at 37° C. for 2 hours to cleave the plasmid at the BglII site.
  • the resulting reaction mixture was extracted with phenol and chloroform and precipitated with ethanol.
  • the thus precipitated DNA fragments were dissolved in 40 ⁇ l of DNA polymerase I buffer containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 0.1 mM dATP (deoxyadenosine triphosphate), 0.1 mM dCTP (deoxycytidine triphosphate), 0.1 mM dGTP (deoxyguanosine triphosphate) and 0.1 mM dTTP (deoxythymidine triphosphate).
  • the resulting solution was mixed with 6 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 90 minutes to convert the cohesive 5′-end formed by the BglII digestion into blunt end.
  • the reaction was stopped by extracting the reaction mixture with phenol. After extraction with chloroform and precipitation with ethanol, the resulting DNA fragments were dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 2 hours to cleave the DNA fragment at the HindIII site. The resulting reaction mixture was subjected to agarose gel electrophoresis, 0.1 ⁇ g of a DNA fragment of about 0.8 kb containing the immunoglobulin promoter region was recovered.
  • plasmid pUC18 (Messing, Methods in Enzymology, 101, 20 (1983)) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus Prepared solution was mixed with 10 units of HindIII and 10 units of XbaI and incubated at 37° C. for 2 hours to cleave the plasmid at the HindIII and XbaI sites.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis, 0.1 ⁇ g of a DNA fragment of about 2.7 kb was recovered.
  • a 0.1 ⁇ g portion of the thus obtained pkMD6-derived 0.8 kb DNA fragment, 0.02 ⁇ g of the DNA fragment containing the immunoglobulin enhancer region and 0.1 ⁇ g of the pUC18 fragment were dissolved in 20 ⁇ l of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to isolate an ApR colony. Plasmid DNA was recovered from the colony to obtain pEPKMA1 as shown in FIG. 4 .
  • a 1 ⁇ g portion of the plasmid pEPKMA1 was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of XbaI and incubated at 37° C. for 2 hours to cleave the plasmid at the XbaI site.
  • the resulting reaction mixture was extracted with phenol and chloroform and precipitated with ethanol.
  • the thus precipitated DNA fragments were dissolved in 40 ⁇ l of the aforemetioned DNA polymerase I buffer solution, and the resulting solution was mixed with 6 units of E.
  • SV40 early gene promoter and enhancer regions (to be referred to as “P SE ” hereinafter) of an expression vector pAGE107 for use in the expression of heterologous genes in animal cells (Miyaji et al., Cytotechnology, 3, 133-140 (1990)) were converted into KM50-derived immunoglobulin H chain promoter and enhancer (to be referred to as “P IH ” hereinafter) of pEPKMB1 in the following manner.
  • a 1 ⁇ g portion of the plasmid pAGE107 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 150 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of SalI and 10 units of XhoI and incubated at 37° C. for 2 hours to cleave the plasmid at the SalI and XhoI sites.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and 0.5 ⁇ g of a DNA fragment of about 5.95 kb containing G418 resistance gene was recovered.
  • a 1 ⁇ g portion of the plasmid pEPKMB1 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 150 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of SalI and 10 units of XhoI and incubated at 37° C. for 2 hours to cleave the plasmid at the SalI and XhoI sites.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and 0.1 ⁇ g of a DNA fragment of about 1.7 kb containing immunoglobulin promoter and enhancer regions was recovered.
  • a 2 ⁇ g portion of the expression vector pAGE106 for use in the expression of heterologous genes in animal cells was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of SacI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 ⁇ g of a pAGE106 DNA fragment (4.3 kb) was recovered which contained the SV40 early gene promoter and G418 resistance gene cleaved with EcoRI and SacI.
  • the thus recovered DNA fragment was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution, and the resulting solution was mixed with 5 units of E. coli DNA polymerase I large fragment and incubated at 16° C. for 2 hours to convert the cohesive 3′-end formed by the SacI digestion and the cohesive 5′-end formed by the EcoRI digestion into blunt ends.
  • the resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol.
  • the thus precipitated sample was dissolved in 20 ⁇ l of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 4 hours.
  • transformation of E. coli HB101 was carried out to obtain plasmid pAGE109 as shown in FIG. 7 .
  • Plasmid pAGE502 was constructed in the following manner in order to convert the SV40 promoter and enhancer of pAGE107 into immunoglobulin H chain promoter and enhancer.
  • a 2 ⁇ g portion of the plasmid pAGE107 disclosed in JP-A-3-22979 or EP-A-0 405 285 was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • the resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol.
  • the thus precipitated sample was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of XhoI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 ⁇ g of a pAGE107 DNA fragment of about 5.95 kb was obtained which contained G418 resistance gene and ApR gene cleaved with XhoI and HindIII.
  • a 2 ⁇ g portion of the plasmid pAGE501 obtained in the above step (3) was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 175 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of SalI and incubated at 37° C. for 4 hours.
  • the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 ⁇ g of a pAGE501 DNA a fragment of about 1.8 kb was obtained which contained KM50 immunoglobulin H chain promoter and enhancer genes cleaved with XhoI and SalI.
  • a 2 ⁇ g portion or the plasmid pAGE109 obtained in the above step (4) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of HindIII and 10 units of ClaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 ⁇ g of a pAGE109 DNA fragment of about 1 kb was recovered which contained the poly(A) signal gene of beta-globin and SV40 early genes cleaved with ClaI and HindIII.
  • a 2 ⁇ g portion of the plasmid pAGE502 obtained in the above step (5) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of HindIII and 10 units of ClaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and then to the aforementioned DEAE paper method to recover about 1 ⁇ g of a pAGE502 DNA fragment of about 6.1 kb which contained KM50 immunoglobulin H chain promoter and enhancer genes, ApR gene and G418 resistance gene cleaved with HindIII and ClaI.
  • a dhfr gene was introduced into plasmid pAGE107 in the following manner to construct plasmid pSE1d1.
  • a 2 ⁇ g portion of the plasmid pAGE107 disclosed in JP-A 3-22979 or EP-A-0 405 285 was dissolved in 100 ⁇ l of a buffer solution containing 100 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRI and incubated at 37° C. for 4 hours.
  • the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • the resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol.
  • the thus precipitated sample was dissolved in 30 ⁇ l of a buffer solution which was composed of 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 ⁇ g of a pAGE107 DNA fragment of about 5.6 kb was recovered which contained G418 resistance gene and ApR gene cleaved with EcoRI and HindIII.
  • a 2 ⁇ g portion of a plasmid pSV2-dhfr (Subramani et al., Mol. Cell. Biology, 1, 854 (198)) was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of BglII and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis, about 0.2 ⁇ g of a pSV2-dhfr DNA fragment of about 0.76 kb was recovered which contained dhfr gene cleaved with BglII and HindIII.
  • the HindIII cleavage site was removed from the plasmid pSE1d1 in the following manner to construct plasmid pSE1d2.
  • a 2 ⁇ g portion of the plasmid pSE1d1 obtained in the above step (7) was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours.
  • the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • the dhfr gene was introduced into plasmid pAGE503 in the following manner to construct plasmid pIg1SE1d2.
  • a 2 ⁇ g portion of the plasmid pAGE503 obtained in the above step (6) was dissolved in 100 ⁇ l of a buffer solution containing 100 mM. Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of ClaI and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 ⁇ g of a pAGE503 DNA fragment of about 5.4 kb was recovered which contained the KM50 immunoglobulin H chain promoter and enhancer genes cleaved with ClaI and MluI.
  • a 2 ⁇ g portion of the plasmid pSE1d2 obtained in the above step (8) was dissolved in 100 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of XhoI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 ⁇ g of a pSE1d2 DNA fragment of about 3.8 kb was recovered which contained dhfr gene cleaved with XhoI and MluI.
  • the ApaI cleavage site was removed from the plasmid pIg1SE1d2 in the following manner to construct plasmid pIg1SE1d3.
  • a 2 ⁇ g portion of the plasmid pIg1SE1d2 obtained in, the above step (9) was dissolved in 100 ⁇ l of a buffer solution containing 10 my Tris-HCl (pH 7.5) and 6 mM magnesium chloride.
  • the thus prepared solution was mixed with 10 units of ApaI and incubated at 37° C. for 4 hours.
  • the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 3′-end formed by the ApaI digestion into blunt end.
  • the resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol.
  • the thus precipitated sample was dissolved in 20 ⁇ l of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain plasmid pIg1SE1d3 as shown in FIG. 13 .
  • plasmid pIg1SE1d4 was constructed by inserting the synthetic DNA shown in SEQ ID NO: 5 into the plasmid pIg1SE1d3 in the following manner.
  • a 2 ⁇ g portion of the plasmid pIg1SE1d3 obtained in the above step (10) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of HindIII and 10 units of EcoRI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 ⁇ g of a pIg1SE1d3 DNA fragment of about 9.2 kb was recovered which contained the KM50 immunoglobulin H chain promoter and enhancer genes, ApR gene, G418 resistance gene and dhfr gene cleaved with HindIII and EcoRI.
  • MoLTR Since MoLTR is known to have promoter and enhancer activities (Kuwana et al., Biochem. Biophys. Res. Cons., 149, 960 (1987)), a plasmid pPMOL3 containing MoLTR was prepared in the following manner in order to use MoLTR as cassette vector promoter and enhancer.
  • a 3 ⁇ g portion of the plasmid pPMOL1 disclosed in JP-A 1-63394 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of ClaI and incubated at 37° C. for 4 hours.
  • the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution.
  • the resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C.
  • plasmid pPMOL2 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride, 10 mM sodium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of SmaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and 2 ⁇ g of DNA fragments were recovered.
  • mRNA extraction kit Fast Track (No. K1593-02, available from Invitrogen), 6.2 ⁇ g of mRNA was obtained from 1 ⁇ 10 8 cells of chimera antibody-producing SP2-PC Chimera-1 which has anti-phosphorylcholine activity and is disclosed in FEBS Letters (244, 301-306 (1989)).
  • a 2 ⁇ g portion of the mRNA obtained in the above step (1) was subjected to EcoRI adaptor addition using cDNA Synthesis Kit (No. 27-9260-01, available from Pharmacia) followed by kination.
  • the resulting cDNA solution was subjected to phenol-chloroform extraction and ethanol precipitation to recover 4 ⁇ g of cDNA.
  • the thus recovered cDNA was dissolved in 20 ⁇ l of sterile water, and the resulting solution was subjected to agarose gel electrophoresis to recover about 0.3 ⁇ g of a DNA fragment of about 1.8 kb and about 0.3 ⁇ g of a DNA fragment of about 1.0 kb.
  • a 5 ⁇ g portion of the vector pUC18 was dissolved in 100 ⁇ l of a buffer solution containing 100 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 50 units of EcoRI and incubated at 37° C. for 4 hours to cleave the pUC18 DNA at its EcoRI cleavage site.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation to recover about 3 ⁇ g of a pUC18 DNA fragment cleaved with EcoRI.
  • An EcoRV site was introduced into 5′-end side of the human Ig k chain constant region by means of site-specific mutagenesis using a kit purchased from Promega (Catalogue No. Q6210).
  • a 2 ⁇ g portion of the plasmid pPCVLhCK1 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of KpnI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 ⁇ g of a pPCVLhCK1 DNA fragment of about 0.8 kb was recovered which contained the human immunoglobulin L chain constant region cleaved with EcoRI and KpnI.
  • pSELECT1 a kit available from Promega, Catalogue No. Q6210
  • a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 by sodium chloride was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 by sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of KpnI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 ⁇ g of a pSELECT1 DNA fragment of about 5.7 kb cleaved with EcoRI and KpnI was recovered.
  • 0.1 ⁇ g of the pPCVLhCK1 EcoRI-KpnI fragment (about 0.8 kb) and 0.1 ⁇ g of the pSELECT1 EcoRI-KpnI fragment (about 5.7 kb) obtained above were dissolved in 20 ⁇ l of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli JM109 was carried out to obtain plasmid pchCKA7 as shown in FIG. 17 .
  • the ACC sequence of the human immunoglobulin L chain constant region (12 to 14 position bases from the N-terminal) was converted into GAT in order to construct a plasmid pchCKB1 (FIG. 18) in which an EcoRV site was introduced into the converted site.
  • the EcoRV site of the plasmid pchCKB1 was converted into HindIII cleavage site in the following manner.
  • a 2 ⁇ g portion of the plasmid pchCKB1 obtained above was dissolved in 10 ⁇ l of a buffer solution containing 100 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRI and incubated a 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 ⁇ l of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E.
  • a 2 ⁇ g portion of the plasmid pIg1SEId4 obtained in the aforementioned step 2-(11) was dissolved in 30 ⁇ l of a buffer solution containing 10 mm Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRV and 10 units of ApaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agar-se gel electrophoresis and about 1.5 ⁇ g of a pIg1SEId4 DNA fragment of about 9.2 kb cleaved with EcoRV and ApaI was recovered.
  • a 2 ⁇ g portion of the plasmid pPCVHhCGI1 obtained in the aforementioned step 4-(2) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5) and 6 mM magnesium chloride.
  • the thus prepared solution was mixed with 10 units of ApaI and 10 units of SmaI and incubated at 37° C. for 1 hour.
  • the resulting reaction mixture was subjeced to agarose gel electrophoresis and about 0.2 ⁇ g of a pPCVHhCGI1 DNA fragment of about 1 kb was recovered which contained the human immunoglobulin H chain constant region gene cleaved with ApaI and SmaI.
  • 0.1 ⁇ g of the pIg1SEId4 EcoRV-ApaI fragment (about 9.2 kb) and 0.1 ⁇ g of the pPCVHhCGI1 ApaI-SmaI fragment (about 1 kb) prepared above were dissolved in 20 ⁇ l of the T4 ligase buffer.
  • the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain a plasmid pChiIgHB2 (FIG. 20) as a cassette vector for use in the construction of a humanized chimera antibody H chain expression vector.
  • a 2 ⁇ g portion of the plasmid pIg1SEId4 obtained in the aforementioned step 2-(11) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRV and 10 units of HindIII and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 ⁇ g of a pIg1SEId4 DNA fragment of about 9.2 kb cleaved with EcoRV and HindIII was recovered.
  • a 2 ⁇ g portion of the plasmid pchCKC1 obtained in the aforementioned step 4-(3) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride.
  • the thus prepared solution was mixed with 10 units of EcoRV and 10 units of HindIII and incubated at 37° C. for 1 hour.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 ⁇ g of a pPCVLhCK1 DNA fragment of about 0.6 kb was recovered which contained the human immunoglobulin L chain constant region gene cleaved with EcoRV and HindIII.
  • 0.1 ⁇ g of the pIg1SEId4 EcoRV-HindIII fragment (about 9.2 kb) and 0.1 ⁇ g of the pchCKC1 EcoRV-HindIII fragment (about 0.6 kb) prepared above were dissolved in 20 ⁇ l of the T4 ligase buffer.
  • the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain a plasmid pChiIgLA1 (FIG. 21) as a cassette vector for use in the construction of a humanized chimera antibody L chain expression vector.
  • cDNA having EcoRI adaptor on its 5′-end and Xhol adaptor on its 3′-end was prepared from 3 ⁇ g of the mRNA obtained in the above procedure 1.
  • About 6 ⁇ g of the cDNA was dissolved in 10 ⁇ l of sterile water and subjected to agarose gel electrophoresis to recover 0.1 ⁇ g of an H chain-corresponding cDNA fragment of about 1.8 kb and 0.1 ⁇ g of an L chain-corresponding cDNA fragment of about 1.0 kb.
  • 0.1 ⁇ g of the 1.8 kb cDNA fragment, 0.1 ⁇ g of the 1.0 kb cDNA fragment and 1 ⁇ g of Uni-ZAP XR available from Stratagene Cloning Systems; a preparation obtained by digesting Lambda ZAPII vector with EcoRI and XhoI, followed by treatment with calf intestine alkaline phosphatase) to be used as a vector were dissolved in 11.5 ⁇ l of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 12° C. for 10 hours and then at room temperature for 2 hours.
  • Uni-ZAP XR available from Stratagene Cloning Systems; a preparation obtained by digesting Lambda ZAPII vector with EcoRI and XhoI, followed by treatment with calf intestine alkaline phosphatase
  • a 4 ⁇ l portion of the resulting reaction mixture was subjected to lambda phage packaging using Giga Pack Gold (Stratagene Cloning Systems) in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.95).
  • An E. coli strain PLK-F was infected with the thus packaged product in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.95-107) to obtain an H chain cDNA library and an L chain cDNA library, each containing about 10,000 phage clones.
  • these phage particles were fixed on nitrocellulose filters in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.112).
  • Two 32 P-labeled probes were prepared from an EcoRI fragment of about 6.8 kb containing a mouse immunoglobulin constant region chromosomal gene Cg1 (Roeder et al., Proc. Natl. Acad. Sci. U.S.A., 78, 474 (1981)) and a mouse Ck gene-containing HindIII-BamHI fragment of about 3 kb (Sakano et al., Nature, 280, 288 (1979)). A phage clone which showed strong reaction at 65° C.
  • Immunoglobulin variable region base sequences of the plasmids pKM641HA3 and pM641LA2 obtained in the above procedure 3 were determined by the dideoxy method (Maniatis et al., Molecular Cloning, 1989, p13.42) using Sequenase Version 2.0 DNA Sequencing Kit (United States Biochemical Corporation). The results are shown in SEQ ID NO:7 and SEQ ID NO:9.
  • the plasmid pKM641LA2 was a complete cDNA containing a leader sequence and having a methionine-corresponding sequence which was assumed to be the initiation codon ATG located close to the 5′-end.
  • the plasmid pKM641HA3 did not have such a methionine-corresponding initiation codon-like sequence on its 5′-end side, and its leader sequence was partially deficient.
  • H chain variable region gene obtained by cleaving the plasmid pKM641HA3 variable region at the 5′-end AluI site and 3′-end StyI site was ligated with the cassette vector for use in the construction of the humanized chimera antibody H chain obtained in Example 1 using the synthetic DNA sequences shown in SEQ ID NO:11 and SEQ ID NO:13, thereby constructing a humanized chimera antibody H chain expression vector pchi641HA1 (FIG. 23 ).
  • the DNA shown in SEQ ID NO:13 was synthesized using a DNA synthesizer.
  • This synthetic DNA comprises a base sequence derived from plasmid pKM641HA3 ranging from the 3′-end of its immunoglobulin H chain variable region to a StyI cleavage site in the vicinity of the 3′-end and a base sequence derived from plasmid pAGE28 ranging from the 5′-end of its immunoglobulin H chain constant region to an ApaI cleavage site in the vicinity of the 5′-end.
  • the synthetic DNA has a StyI cleavage site and an ApaI cleavage site on both of its end.
  • the thus synthesized DNA was introduced into the plasmid pKM641HA3 in the following manner.
  • a 3 ⁇ g portion of the plasmid pKM641HA3 was dissolved in 30 ⁇ l of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of StyI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.3 ⁇ g of a DNA fragment of about 0.41 kb was recovered.
  • pAGE28 Mizukami et al., J.
  • a 3 ⁇ g portion of the plasmid pKM641HE1 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.4 ⁇ g of a DNA fragment of about 0.42 kb was recovered.
  • a 0.4 ⁇ g portion of the thus prepared pKM641HE1 EcoRI-ApaI fragment (about 0.42 kb) was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride, 50 mM sodium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of AluI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and about 0.3 ⁇ g of a DNA fragment of about 0.4 kb was recovered.
  • 0.1 ⁇ g of the pKM641HE1 AluI-ApaI fragment (about 0.4 kb) and 0.1 ⁇ g of the pAGE28 EcoRI-ApaI fragment (about 2.45 kb) prepared above and 0.3 ⁇ g of the synthetic DNA of SEQ ID NO:11 were dissolved in 20 ⁇ l of the T4 ligase buffer solution.
  • the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain a plasmid pKM641HF1 as shown in FIG. 25 .
  • immunoglobulin H chain variable region of the thus obtained plasmid pKM641HF1 was introduced into the aforementioned cassette vector pChiIgHB2 in the following manner.
  • a 3 ⁇ g portion of the plasmid pKM641HF1 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.5 ⁇ g of a DNA fragment of about 0.44 kb was recovered.
  • a 3 ⁇ g portion of the pChiIgHB2 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and about 3 ⁇ g of DNA was recovered.
  • 0.1 ⁇ g of the pKM641HF1 EcoRI-ApaI fragment (about 0.44 kb) and 0.1 ⁇ g of the pChiIgHB2 EcoRI-ApaI fragment (about 10.1 kb) prepared above were dissolved in 20 ⁇ l of the T4 ligase buffer.
  • the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain a plasmid pChi641HA1 as shown in FIG. 26 .
  • KM50-derived immunoglobulin H chain promoter and enhancer regions of the thus obtained plasmid pChi641HA1 were converted into MoLTR in the following manner.
  • a 3 ⁇ g portion of the plasmid pChi641HA1 was dissolved in 30 ⁇ l of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of XhoI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 ⁇ g of a DNA fragment of about 8.8 kb was recovered.
  • a 3 ⁇ g portion of the pPMOL3 prepared in procedure 2 of Example 1 was dissolved in 30 ⁇ l of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of XhoI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.3 ⁇ g of a DNA fragment of about 0.63 kb containing MoLTR was recovered.
  • 0.1 ⁇ g of the pChi641HA1 EcoRI-XhoI fragment and 0.1 ⁇ g of the pPMOL3 EcoRI-XhoI fragment prepared above were dissolved in 20 ⁇ l of the T4 ligase buffer solution.
  • the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain a plasmid pChi641HAM1 (FIG. 27) as a KM-641 chimera H chain expression vector.
  • L chain variable region gene obtained by cleaving the plasmid pKM641LA2 variable region gene at its 5′-end EcoRI site and 3′-end HindIII site was ligated with the cassette vector for the expression of chimera L chain, using the synthetic DNA shown in SEQ ID NO: 15, thereby constructing an L chain expression vector pchi641LG11 (FIG. 28 ).
  • the DNA of SEQ ID NO: 8 (see FIG. 29) was synthesized using a DNA synthesizer.
  • This synthetic DNA comprises a base sequence corresponding to a region of the plasmid pKM641LA2 ranging from the 3′-end of the immunoglobulin L chain variable region to a HindIII cleavage site in the vicinity of the 3′-end and a base sequence corresponding to a region of the plasmid pChiIgLA1 ranging from the 5′-end to an EcoRV cleavage site in the vicinity of the 5′-end.
  • it has a HindIII cleavage site and an EcoRV cleavage site on both ends.
  • the thus synthesized DNA was introduced into the plasmid pKM641LA2 in the following manner.
  • a 3 ⁇ g portion of the plasmid pKM641LA2 was dissolved in 30 ⁇ l of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride, 50 mM sodium chloride and 6 mM 2-mercaptoethanol.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of HindIII and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.3 ⁇ g of a DNA fragment of about 0.35 kb was recovered.
  • pChiIgLA1 a 3 ⁇ g portion of pChiIgLA1 was dissolved in 30 ⁇ l of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of EcoRV and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and about 3 ⁇ g of DNA was recovered and dissolved in 10 ⁇ l of the TE solution (a buffer solution containing 10 mM Tris-HCl and 1 mM EDTA (pH 7.5)).
  • 0.1 ⁇ g of the pKM641LA2 EcoRI-HindIII fragment (about 0.35 kb) and 0.1 ⁇ g of the pChiIgLA1 EcoRI-EcoRV fragment (about 9.7 kb) prepared above and 0.3 ⁇ g of the synthetic DNA of SEQ ID NO:15 were dissolved in 20 ⁇ l of the T4 ligase buffer solution. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pChi641LG11 as shown in FIG. 29 .
  • KM50-derived immunoglobulin H chain promoter and enhancer regions of the thus obtained plasmid pChi641LG11 were converted into MoLTR in the following manner.
  • a 3 ⁇ g portion of the plasmid pChi641LG11 was dissolved in 30 ⁇ l of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT.
  • the thus prepared solution was mixed with 10 units of EcoRI and 10 units of XhoI and incubated at 37° C. for 4 hours.
  • the resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 ⁇ g of a DNA fragment of about 8.3 kb was recovered.
  • 0.1 ⁇ g of the pChi641LG11 EcoRI-XhoI fragment and 0.1 ⁇ g of the pPMOL3 EcoRI-XhoI fragment prepared above were dissolved in 20 ⁇ l of the T4 ligase buffer.
  • the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
  • transformation of E. coli HB101 was carried out to obtain a plasmid pChi641LGM11 (FIG. 30) as a KM-641 chimera L chain expression vector.
  • RPMI1640-FCS(10) which has been prepared by supplementing RPMI1640 medium (Nissui Pharmaceutical Co., Ltd.) with 10%
  • the thus prepared cell suspension was distributed in 200 ⁇ l-portions into wells of a 96-well microtiter plate (Flow Laboratories), and the cells were cultured at 37° C. in a CO 2 incubator. After 24 hours of the culturing, G418 (GIBCO) was added to the cell suspension to a final concentration of 0.5 mg/ml, and the culturing was continued for 1 to 2 weeks. When transformant colonies were developed and grown into confluent stages, culture broths were recovered from the wells to measure anti-GD 3 chimera antibody activities by ELISA method in the following manner.
  • a 2 ng portion of GD 3 (available from Iatron) or other type of ganglioside was dissolved in 2 ⁇ l of ethanol solution containing 5 ng of phosphatidylcholine (Sigma Chemical Co.) and 2.5 ng of cholesterol (Sigma Chemical Co.).
  • a 20 ⁇ l portion of the thus prepared solution or the same volume of its dilution solution was distributed into each well of a 96-well microtiter plate (available from Greiner). After air-drying, blocking was effected with PBS containing 1% BSA. To each well was added 50 to 100 ⁇ l of a culture supernatant of a transformant, a purified mouse monoclonal antibody solution or a purified chimera antibody solution. After reaction at 4° C.
  • culture broth of a clone having the highest activity measured by ELISA method contained anti-GD 3 chimera antibody in an amount of about 0.1 ⁇ g/ml.
  • the clone having anti-GD 3 chimera antibody activity was suspended in the aforementioned RPMI1640-FCS(10) medium supplemented with 0.5 mg/ml of G418 and 50 nM of methotrexate (to be referred to as “MTX” hereinafter) to a final cell density of 1-2 ⁇ 10 5 cells/ml.
  • the thus prepared cell suspension was distributed in 2-ml portions into wells of a 24 well plate, and the cells were cultured at 37° C. for 2 to 3 weeks in a CO 2 incubator to induce clones resistant to 50 nM MTX.
  • anti-GD 3 chimera antibody activities in the culture broths were measured by the ELISA method.
  • culture broth of a 50 nM MTX-resistant clone having the highest activity measured by ELISA method contained anti-GD 3 chimera antibody in an amount of about 0.3 ⁇ g/ml.
  • the 50 nM MTX-resistant clone was suspended in the RPMI1640-FCS(10) medium supplemented with 0.5 mg/ml of G418 and 200 nM of MTX to a final cell density of 1-2 ⁇ 10 5 cells/ml.
  • the thus prepared cell suspension was distributed in 2-m portions into wells of a 24 well plate, and the cells were cultured at 37° C. for 2 to 3 weeks in a CO 2 incubator to induce clones resistant to 200 nM MTX.
  • anti-GD 3 chimera antibody activities in the culture broths were measured by the ELISA method.
  • culture broth of a 200 nM MTX-resistant clone having the highest activity measured by ELISA method contained anti-GD 3 chimera antibody in an amount of about 2 ⁇ g/ml.
  • This 200 nM MTX-resistant clone was named transformant KM-871.
  • SDS-PAG SDS-polyacrylamide gel electrophoresis
  • the transformant KM-871 was suspended in GIT medium (Nihon Seiyaku Co., Ltd.) supplemented with 0.5 mg/ml of G418 and 200 nM of MTX to a final cell density of 1-2 ⁇ 10 5 cells/ml.
  • GIT medium Nihon Seiyaku Co., Ltd.
  • the thus prepared cell suspension was distributed in 100-ml portions in 175 cm 2 flasks (available from Greiner), and the cells were cultured at 37° C. for 3 to 5 days in a CO 2 incubator. When the cells were grown into confluent stage, the resulting culture broth (about 900 ml) was recovered and subjected to salting-out with 50% ammonium sulfate.
  • molecular weights of the chimera H chain and the chimera L chain were found to be about 50 kilodaltons and about 25 kilodaltons, respectively, thus confirming expression of the H and L chains having correct molecular weights.
  • molecular weight of the chimera antibody was found to be about 150 kilodaltons which confirmed expression of the correct size antibody consisting of two H chains and two L chains.
  • GM 1 and GD 1a were purified from bovine brain, N-glycolyl GM 2 and N-glycolyl GM 3 from mouse liver, N-acetyl GM 3 from dog erythrocytes and GD 2 from a cultured cell line IMR32 (ATCC CCL127), in accordance with the conventional method (J. Biol. Chem., 263, 10915 (1988)). The results are shown in Table 1.
  • anti-GD 3 chimera antibody KM-871 and mouse anti-GD 3 antibody KM-641 reacted only with GD 3 , thus showing no changes in the reaction specificity by the chimera formation.
  • the cultured human malignant melanoma SK-MEL-28 (ATCC HTB72) and G361 cells (JCRB) both of which produced ganglioside GD 3 were placed in a microtube (Treff) to give a cell number of 1 ⁇ 10 6 cells per tube and washed by centrifugation (1,200 rpm, 5 minutes) with PBS. 50 ⁇ l of anti-GD 3 chimera antibody EM-871 (10 ⁇ g/ml) was added to the microtube and the mixture was allowed to react at 4° C. for 30 minutes.
  • the cells were washed three times by centrifugation (1,200 rpm, 5 minutes) with PBS, then 20 ⁇ l of fluorescein isocyanate-labeled Protein A (Boehringer Mannheim-Yamanouchi, 30-fold diluted) was added and, after stirring, the mixture was allowed to react at 4° C. for 30 minutes. Thereafter, the cells were washed three times by centrifugation (1,200 rpm, 5 minutes) with PBS, further suspended in PBS, and submitted for analysis using FCS-1 flow cell sorter (Nippon Bunko).
  • the results are shown in FIG. 32 .
  • the fluorescence intensity peak for EM-871 showed shifting to the right (increased fluorescence intensity) as compared with the control, indicating that this antibody had reacted directly with ganglioside GD, on the surface of the SK-MEL-28 and G361 cells.
  • Suspensions of the target cells namely SK-MEL-28 cells and G361 cells, in RPMI-1640 medium supplemented with 10% FCS were respectively adjusted to a cell concentration of 1 ⁇ 10 7 cells/ml, Na 2 51 CrO 4 was added to a concentration of 100 ⁇ Ci/1 ⁇ 10 7 cells, reaction was performed at 37° C. for 1 hour and, thereafter, the cells were washed three times with the medium. The cells were allowed to stand in the medium at 4° C. for 30 minutes for spontaneous dissociation and then centrifuged (1,200 rpm, 5 minutes), and the medium was added to adjust the cell concentration to 4 ⁇ 10 6 cells/ml.
  • Serum from three healthy subjects were mixed to sere as a source of human complement.
  • the amount of 51 Cr resulting from spontaneous dissociation was determined by adding to target cells the medium alone in place of the antibody and complement solution and determining the amount of 51 Cr in the supernatant in the same manner as described above.
  • the total amount of free 51 Cr was determined by adding 5 N sodium hydroxide in place of the antibody and complement solution, proceeding as described above, and determining the amount of 51 Cr in the supernatant.
  • the target SK-MEL-28 and G361 cells were prepared in the same manner as described above under 10 (a).
  • the amount of 51 Cr resulting from spontaneous dissociation was determined by adding to target cells the medium alone in place of the antibody and effector cells and measuring the amount of 5 Cr in the supernatant in the same manner as described above.
  • the total amount of free 51 Cr was determined by adding 5 N sodium hydroxide in place of the antibody and effector cells, proceeding as described above, and determining the amount of 51 Cr in the supernatant.
  • the medium was added in place of the antibodies, the procudure mentioned above was followed, and the amount of 51 Cr in the control supernatant was determined for ADCC activity calculation.
  • chimera antibody KM-871 showed strong antibody-dependent cell-mediated cytotoxicity against the G361 cells as compared to mouse antibody KM-641, which indicates that chimera antibody KM-871 would be clinically more useful than mouse antibody K-641.
  • Human malignant melanoma G361 cells (1 ⁇ 10 7 cells) were intracutaneously transplanted to abdominal parts of Balb/c nu/nu mice (5 to 7 aminals/group).
  • Anti-GD 3 chimera antibody KM-871 (100 ⁇ g/animal) was intravenously administered into mice four times starting from the next day of the transplantation of the tumor cells.
  • 100 ⁇ g of anti-GD 3 mouse antibody KM-641 or anti-Sialyl Le a monoclonal antibody AMC-462 (ECACC 86050801) was intravenously administered five times starting from the day of the transplantation.
  • the therapeutic effect on transplanted tumor cells was determined in terms of tumor size (volume) calculated by the following equation.
  • FIG. 35 The results are shown in FIG. 35 .
  • remarkable growth of tumors was observed in the control group to which AMC-462 was administered, while the growth of tumors was significantly suppressed in the group to which KM-641 was administered.
  • KM-871 showed further stronger therapeutic effect so that the establishment of tumors was completely inhibited 65 days after the transplantation.
  • mice was immunized by administering 0.5 ml of the antigen solution obtained in the above step (1) into the caudal vein once every week for 7 weeks.
  • ganglioside GD 3 -positive SK-MEL-28 (ATCC HTB 72) cells (1 ⁇ 10 7 cells) were intraperitoneally administered once every week for three weeks.
  • spleen cells were prepared from each mouse for use in the following cell fusion.
  • a mouse myeloma cell line P3-U1 having 8-azaguanine resistance was cultured in normal medium (RPMI1640 medium containing 10% fetal calf serum (FCS)) to obtain 2 ⁇ 10 7 or more cells for use in the following cell fusion as parent cells.
  • normal medium RPMI1640 medium containing 10% fetal calf serum (FCS)
  • HAT medium prepared by supplementing normal medium with hypoxanthin (10 ⁇ 4 M), thymidine (1.5 ⁇ 10 ⁇ 5 M) and aminopterine (4 ⁇ 10 ⁇ 7 M)
  • HAT medium prepared by supplementing normal medium with hypoxanthin (10 ⁇ 4 M), thymidine (1.5 ⁇ 10 ⁇ 5 M) and aminopterine (4 ⁇ 10 ⁇ 7 M)
  • HAT medium prepared by supplementing normal medium with hypoxanthin (10 ⁇ 4 M), thymidine (1.5 ⁇ 10 ⁇ 5 M) and aminopterine (4 ⁇ 10 ⁇ 7 M)
  • HT medium HAT medium minus aminopterine
  • hybridomas which showed specific reaction with ganglioside GD 3 were selected by enzyme immunoassay or immunohistological evaluation (ABC method). That is, 2 ng of ganglioside GM 3 (purified from dog erythrocytes in accordance with the method of Nores et al., J. Immunol., 139, 3171 (1987)) and 2 ng of ganglioside GD 3 (Iatron) were dissolved in 2 ml ethanol solution containing 5 ng of phosphatidylcholine (Sigma Chemical Co.) and 2.5 ng of cholesterol (Sigma Chemical Co.).
  • the thus prepared solution was distributed in 20- ⁇ l portions into wells of a 96 well microtiter plate (Flow Laboratories), air-dried and then subjected to blocking using 1% BSA-PBS solution.
  • Each of the resulting hybridoma culture supernatant was distributed in 50- ⁇ l portions into the plate wells carrying a ganglioside GD 3 adsorbed and the plate carrying ganglioside GM 3 adsorbed thereon, and the reaction was allowed to proceed at 4° C. for 18 hours.
  • a hybridoma strain capable of producing mouse monoclonal antibody specifically reactive with ganglioside GD 3 but not with ganglioside GM 3 were selected in accordance with the known method (Cancer Res., 46, 4438 (1986)).
  • This mouse monoclonal antibody was named “mouse monoclonal antibody KM-641”, and the hybridoma which produces this antibody was named “hybridoma KM-641”.
  • the hybridoma KM-641 has been deposited on Sep. 27, 1990, with Fermentation Research Institute, Agency of Industrial Science and Technology 1-3, Higashi 1 chome, Tsukuba-shi, Ibaraki, JAPAN, under the Budapest Treaty and has been assigned the designation as FERM BP-3116.
  • the present invention provides a process for the production of humanized chimera antibody wherein the chimera antibody can be produced easily without changing any one of amino acids of its mouse antibody variable region, as well as a humanized chimera antibody specific for ganglioside GD 3 .

Abstract

A humanized chimera antibody, a pharmaceutical composition comprising a humanized chimera antibody and a pharmaceutically acceptable carrier, and a method of treating cancer which comprises administering to a patient a pharmaceutically acceptable amount of the humanized chimera antibody, are disclosed.

Description

This is a divisional of application Ser. No. 09/225,322, filed Jan. 5, 1999, now pending, which in turn is divisional of application Ser. No. 08/454,680, filed May 31, 1995, now U.S. Pat. No. 5,866,692; which is a divisional of Ser. No. 08/408,133, filed Mar. 21, 1995, now U.S. Pat. No. 5,750,078; which is a continuation of Ser. No. 08/292,178, filed Aug. 17, 1994, abandoned; which is a continuation of Ser. No. 07/947,674, filed Sep. 17, 1992, abandoned, the entire content of which is hereby incorporated by reference in this application.
FIELD OF THE INVENTION
This invention relates to a process for the production of humanized chimera antibody. In contrast to mouse monoclonal antibody, humanized chimera antibody does not cause formation of anti-mouse immunoglobulin antibody in the body of a patient. Thus, side effects are reduced or eliminated and half life in blood increases when the chimera antibody is used. Therapeutic effects which are superior to those obtained in the case of using mouse monoclonal antibody can be obtained in the treatment of human cancers and the like.
BACKGROUND OF THE INVENTION
It is known that, when mouse antibodies are administered to humans, they are recognized as foreign substances and cause formation of anti-mouse immunoglobulin antibodies in the human body, and the thus formed antibodies react with the administered mouse antibodies. As a result, side effects occur (J. Clin. Oncol., 2, 881 (1984); Blood, 65, 1349-1363 (1985); J. Natl. Cancer Inst., 80, 932 (1988); Proc. Natl. Acad. Sci. U.S.A., 82, 1242 (1985)), the antibodies are cleared away quickly (J. Nucl. Med., 26, 1011 (1985); Blood, 65, 1349-1363 (1985); J. Natl. Cancer Inst., 80, 937 (1988)) and effects of the antibodies are reduced (J. Immunol., 135, 1530 (1985); Cancer Res., 46, 6489 (1986)). When mouse monoclonal antibody is converted into humanized chimera antibody, human anti-mouse immunoglobulin antibody form in minimal amounts if at all, and the half life of the chimera antibody in human blood is six times as long as that of mouse monoclonal antibody (Proc. Natl. Acad. Sci. U.S.A., 86, 4220 (1989)). In addition, it is probable that the Fc region of mouse antibody does not fully activate human complement and human effector cells, in comparison with the Fc region of human antibody. For example, the antitumor activity of mouse monoclonal antibody to ganglioside GD2, which is effected via human effector cells, is improved when the monoclonal antibody is converted into chimera antibody that has the human antibody Fc region (J. Immunol., 144, 1382-1386 (1990)).
Ganglioside is one of the animal cell membrane-constituting glycolipids and is composed of a sugar chain as a hydrophilic side chain, sphingosine as a hydrophobic side chain and fatty acids. It is known that expression of ganglioside varies depending on the type of cells, organs and animal species. In addition, it has been revealed that quantity and quality of the expressed ganglioside change during the canceration process of cells (Cancer Res., 45, 2405 (1985)). For example, it has been reported that gangliosides GD2, GD3, GM2 and the like which hardly exist in normal cells were found in the cells of neuroblastoma, lung small cell carcinoma and melanoma belonging to neuroectodermal-origin tumor which is said to be highly malignant (J. Exp. Med., 155, 1133 (1982); J. Biol. Chem., 257, 12752 (1982); Cancer Res., 47, 225 (1987); ibid., 47, 1098 (1987); ibid., 45, 2642 (1985); Proc. Natl. Acad. Sci. U.S.A., 80, 5392 (1983)).
Ganglioside GD3 has been found most frequently in melanoma cells among the neuroectodermal-origin tumors, and anti-ganglioside GD3 monoclonal antibodies (to be referred to as “anti-GD3 monoclonal antibody” hereinafter) belonging to the mouse IgM class and IgG class have been reported (Int. J. Cancer, 29, 269 (1982); J. Biol. Chem., 257, 12752 (1982); Cancer Res., 47, 225 (1987); Acta Neuropathol., 79, 317 (1989); Proc. Natl. Acad. Sci. U.S.A., 77, 6114 (1980); J. Exp. Med., 155, 1133 (1982); Proc. Natl. Acad. Sci. U.S.A., 81, 5767 (1984)).
KM-641 (FERM BP-3116) disclosed in EP-A-0 493 686 is an anti-GD3 monoclonal antibody belonging to the mouse IgG3 class, which reacts not only with ganglioside GD3 but also with ganglioside 3′,8′-LD1 and is possessed of a broad range of antitumor spectrum. In addition, KM-641 has stronger binding activities to antigens than anti-GD3 monoclonal antibody R24 which has been disclosed in J. Exp. Med., 155, 1133 (1982) and it shows strong antitumor activities.
The mouse monoclonal antibody R24 to the ganglioside GD3 was once used for the treatment of melanoma, but the administered mouse monoclonal antibody R24 did not fully exert its effect due to the formation of anti-mouse immunoglobulin antibody in the patient's body (Eur. J. Cancer Clin. Oncol., 24, suppl 2, s 65 (1988)).
Consequently, the use of chimera antibody for anti-GD3 monoclonal antibody would be advantageous in that anti-mouse immunoglobulin antibody does not form in the body, side effects are reduced or eliminated, its half life in blood is prolonged and its antitumor effector effect increases, and thus therapeutic effects of the chimera antibody which are superior to those of mouse monoclonal antibody can be obtained in the treatment of human cancers and the like.
Several processes for the production of humanized chimera antibodies are known. Humanized chimera antibody, in which constant regions of the heavy chain (to be referred to as “H chain” hereinafter) and the light chain (to be referred to as “L chain” hereinafter) of mouse monoclonal antibody are converted into human constant regions, is produced in animal cells making use of recombinant DNA techniques. Examples of such processes include a process in which humanized chimera antibody is produced using chromosomal DNA as a gene which encodes mouse H chain variable region (to be referred to as “VH” hereinafter) and L chain variable region (to be referred to as “VL” hereinafter) (Morrison et al., Proc. Natl. Acad. Sci. U.S.A., 81, 6851 (1984); Neuberger et al., Nature, 314, 268 (1985); Nishimura et al., Cancer Res., 47, 999 (1987); Dorai et al., J. Immunol., 139, 4232 (1987); Kameyama et al., FEBS letter, 244, 301 (1989)) and another process in which humanized chimera antibody is produced using cDNA (Gillies et al., J. Immunol. Methods, 125, 191 (1989); Liu et al., published International Application in Japan No. 2-501886). Cloning and base sequence determination of hybridoma cell chromosomal DNA which encodes mouse VH and VL require much time and labor in comparison with those of cDNA that encodes mouse VH and VL. Consequently, the process in which cDNA is used for the production of humanized chimera antibody is more desirable than the chromosomal DNA process.
Gillies et al. have succeeded in expressing humanized chimera antibody in animal cells, making use of an expression vector for animal cells having inserted therein a humanized chimera H chain gene obtained by linking mouse VH-encoding cDNA with human CH-encoding chromosomal DNA, and a humanized chimera L chain gene obtained by linking mouse VL-encoding cDNA with human CL-encoding chromosomal DNA (J. Immunol. Methods, 125, 191 (1989)). However, when an attempt was made to prepare chimera antibodies from several types of antibodies, a problem was found that there were certain chimera antibodies whose L chains could not be expressed without converting leader sequences. In addition, humanized chimera antibody can be produced more simply when cDNA which encodes human CH and CL is used instead of the human CH- and CL-encoding chromosomal DNA.
In published International Application in Japan No. 2-501886, Liu et al. discloses a process for the expression of humanized chimera antibody in animal cells, which comprises using an expression vector for animal cells having inserted therein a chimera H chain cDNA obtained by linking mouse VH-encoding cDNA with human CH-encoding cDNA and a chimera L chain cDNA obtained by linking mouse VsL-encoding cDNA with human CL-encoding cDNA. According to this process, however, it is necessary to alter the Ja portion of the VH-encoding cDNA and the JL portion of the VL-encoding cDNA by means of mutation, because the cDNA which encodes mouse VH or VL is linked with the human CH- or CL-encoding cDNA at the J region in the mouse variable region. In addition, with regard to the chimera L chain prepared using mouse Jk5, leucine which is one of the amino acids of the framework 4 is changed to isoleucine when made into humanized chimera antibody. Although amino acid sequence of complementarity-determining region (to be referred to as “CDR” hereinafter) is especially important for antigen-antibody binding, the amino acid sequence of the framework is also an important factor. For example, Riechmann et al. have prepared CDR graft antibody by grafting a rat antibody CDR into a human antibody framework and reported that binding activity of the antibody was reduced by the framework conversion and the antibody activity increased when amino acid sequence of the framework was partially changed (Nature, 332, 323 (1988)). Consequently, there is a possibility that the binding activity of humanized chimera antibody is undesirably reduced when the antibody is produced by the mouse Jk5-aided process disclosed by Liu et al.
In view of the above, when any mouse antibody is converted into humanized chimera antibody, it has been desired to simply and easily produce humanized chimera antibody in which amino acids of the mouse antibody variable region remain completely unchanged.
OBJECTS OF THE INVENTION
An object of the present invention is to provide a process for the production of humanized chimera antibody by which the chimera antibody is produced easily without changing any of the amino acids of its mouse antibody variable region. Another object of the present invention is to provide a humanized chimera antibody to ganglioside GD3 and a process for the production of such antibody.
SUMMARY OF THE INVENTION
The present invention relates to a process for producing humanized chimera antibody which comprises the steps of:
(1) constructing a cassette vector by inserting a cDNA coding for human antibody CH into an expression vector for animal cell use and establishing a cloning site in the upstream region CH of said cassette vector for inserting a cDNA which encodes nonhuman animal VH;
(2) digesting a cDNA coding for nonhuman animal antibody VH with restriction enzymes;
(3) inserting said cDNA coding for nonhuman animal antibody VH into the cassette vector, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of said human antibody CH and a base sequence corresponding to the 3′-end side of said nonhuman animal antibody VH and is possessed of restriction enzyme recognition sites on both of its ends, thereby constructing a humanized chimera antibody H chain expression vector in which said cDNA coding for human antibody CH and said cDNA coding for nonhuman animal antibody VH are linked together through said synthetic DNA;
(4) constructing a cassette vector by inserting a cDNA coding for human antibody CL into an expression vector for animal cell use and establishing a cloning site in the upstream region of the CL of said cassette vector for inserting a cDNA which encodes nonhuman animal antibody VL;
(5) digesting a cDNA coding for nonhuman animal antibody VL with restriction enzymes;
(6) inserting said cDNA coding for nonhuman animal antibody VL into the cassette vector, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of said human antibody CL and a base sequence corresponding to the 3′-end side of said nonhuman animal antibody VL and is possessed of restriction enzyme recognition sites on both of its ends, thereby constructing a humanized chimera antibody L chain expression vector in watch said cDNA coding for human antibody CL and said cDNA coding for nonhuman animal antibody VL are linked together through said synthetic DNA;
(7) introducing these expression vectors into host cells to obtain a transformant; and
(8) culturing said transformant in an appropriate culture medium, thereby allowing the transformant to produce and accumulate a humanized chimera antibody, and collecting said humanized chimera antibody from the resulting culture broth.
The cassette vector to be used in the present invention is a vector which is obtained by inserting a cDNA that encodes a constant region of human antibody into an expression vector for animal cell use, in which a cloning site is located in the upstream region of the constant region for inserting a cDNA that encodes a variable region of nonhuman animal antibody. An expression vector for humanized chimera antibody can be constructed easily by inserting a variable region of nonhuman animal antibody into the cloning site of the cassette vector, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of a constant region of human antibody and a base sequence corresponding to the 3′-end side of a variable region of nonhuman animal antibody and is possessed of restriction enzyme recognition sites on its both ends.
The present invention also relates to a humanized chimera antibody obtainable by the above-described process, a pharmaceutical composition comprising the humanized chimera antibody and a pharmaceutically acceptable carrier, and a method of treating cancer which comprises administering to a patient a pharmaceutically acceptable amount of said humanized chimera antibody.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a restriction enzyme cleavage map of a 9.3 kb XbaI fragment of KM50 cell chromosomal DNA.
FIG. 2 shows a construction scheme for plasmid pKMB11.
FIG. 3 shows a construction scheme for plasmid pkMD6.
FIG. 4 shows a construction scheme for plasmid pEPKMA1.
FIG. 5 shows a construction scheme for plasmid pEPKMB1.
FIG. 6 shows a construction scheme for plasmid pAGE501.
FIG. 7 shows a construction scheme for plasmid pAGE109.
FIG. 8 shows a construction scheme for plasmid pAGE502.
FIG. 9 shows a construction scheme for plasmid pAGE503.
FIG. 10 shows a construction scheme for plasmid pSEd1.
FIG. 11 shows a construction scheme for plasmid pSE1D2.
FIG. 12 shows a construction scheme for plasmid pIG1SE1d2.
FIG. 13 shows a construction scheme for plasmid pIG1SE1d3.
FIG. 14 shows a construction scheme for plasmid pIG1SE1d4.
FIG. 15 shows a construction scheme for plasmid pPMOL2.
FIG. 16 shows a construction scheme for plasmid pPMOL3.
FIG. 17 shows a construction scheme for plasmid pchCKA7.
FIG. 18 shows a construction scheme for plasmid pchCKB1 (also SEQ ID NO:9).
FIG. 19 shows a construction scheme for plasmid pckCKC1.
FIG. 20 shows a construction scheme for plasmid pChiIgHB2.
FIG. 21 shows a construction scheme for plasmid pChiIgLA1.
FIG. 22 shows plasmids pKM641HA3 and pKM641LA2.
FIG. 23 shows plasmid pChi641HA1.
FIG. 24 shows a construction scheme for plasmid pKM641HE1.
FIG. 25 shows a construction scheme for plasmid pKM641HF1.
FIG. 26 shows a construction scheme for plasmid pChi641HA1.
FIG. 27 shows a construction scheme for plasmid pChi641HAM1.
FIG. 28 shows plasmid pChi641LG11.
FIG. 29 shows a construction scheme for plasmid pChi641LG11.
FIG. 30 shows a construction scheme for plasmid pChi641LGM11.
FIG. 31 shows a pattern of SDS-PAGE (4 to 15% gradient gel) of purified anti-GD3 chimera antibody KM-871 (about 5 μg/lane) carried out under reductive condition (A) or non-reductive condition (B), where the lanes starting from the left respectively indicate electrophoretic patterns of molecular weight markers, human IgG standard, mouse anti-GD3 antibody KM-641 and anti-GD3 chimera antibody KM-871.
FIG. 32 is a graph showing reactivity of anti-GD3 chimera antibody KM-871 with ganglioside GD3-positive G361 and SK-MEL-28 cells measured by fluorescent antibody technique with the cell number on the ordinate and the fluorescence intensity on the abscissa. A dotted line shows reactivity in the absence of the antibody, while a solid line shows reactivity in the presence of KM-871.
FIG. 33 is a graph showing complement-dependent cytotoxicity (CDC) of anti-GD3 chimera antibody KM-871 and anti-GD3 mouse antibody KM-641 against ganglioside GD3-positive G361 and SK-MEL-28 cells with cytotoxicity on the ordinate and an antibody concentration on the abscissa. A blackened bar shows CDC activity of KM-871, while a striped bar shows that of KM-641.
FIG. 34 is a graph showing antibody-dependent cell-mediated cytotoxicity (ADCC) of KM-871 and KM-641 against ganglioside GD3-positive cell G361 with a ratio of effector cells to target cells on the ordinate and ADCC activity on the abscissa. A blackened bar shows ADCC activity of KM-871, a dotted bar shows ADCC activity of KM-641 and a striped bar shows control (in the absence of the antibody). PMN means polymorphonuclear leukocyte.
FIG. 35 is a graph showing therapeutic effect of KM-871 on transplanted tumors with the tumor size on the ordinate and days after transplantation of tumors on the abscissa, in which closed circle shows effect of anti-Sialyl Le2 monoclonal antibody AMC-462, open square shows that of KM-641 and open triangle shows that of KM-871.
DETAILED DESCRIPTION OF THE INVENTION
1. Construction of Cassette Vector
The cassette vector to be used in the present invention is constructed by inserting a cDNA which encodes a human antibody constant region into an expression vector for animal cell use. Essential components in the expression vector for animal cell use include promoter, enhancer, polyA signal, splicing signal, drug resistance gene as a selection marker (e.g., ampicillin resistance gene, etc.) and the like. Any expression vector for animal cell use may be used for this purpose, as long as it can contain and express the cDNA molecule which encodes a human antibody constant reason. For example, pAGE107 (Cytotechnology, 3, 133 (1990)) is useful as such an expression vector. Examples of the promoter and enhancer for use in the expression vector for animal cell use include: SV40 early promoter and enhancer (J. Biochem., 101, 1307 (1987)); LTR promoter and enhancer of Moloney mouse leukemia virus (Biochem. Biophys. Res. Comun., 149, 960 (1987)); and immunoglobulin H chain promoter (Cell, 41, 479 (1985)) and enhancer (Cell, 33, 717 (1983)). The immunoglobulin H chain promoter and enhancer can be prepared using appropriate antibody-producing hybridoma cells, such as rat hybridoma KM50 cells which produce anti-human serum albumin antibody as disclosed in JP-A-60-258128 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”). The following describes processes for the preparation of the immunoglobulin H chain promoter and enhancer making use of KH50 cells.
Each chromosomal DNA is obtained from cultured KM50 cells, and P3X63Ag8U.1 (to be referred to as “P3U1” hereinafter) cells (ATCC CRL1597) which are to be fused with KM50 and rat kidney cells in accordance with the procedure disclosed in Molecular Cloning (2nd. ed., Cold Spring Harbor Laboratory Press, 1989, p9.14). Next, a DNA fragment containing immunoglobulin promoter and enhancer and a gene of the variable region of activated immunoglobulin H chain, in which DNA rearrangement has been induced, is isolated from the chromosomal DNA extracted from KM50 cells, in accordance with the procedure disclosed in FEBS letter 244, 301 (1989). The immunoglobulin promoter and enhancer are cut out from the thus isolated DNA fragment and inserted into the aforementioned expression vector for animal cell use. Plasmid pIg1SE1d4 is an illustrative example of the animal cell expression vector which contains the immunoglobulin H chain promoter and enhancer.
Next, a cloning site is established in the upstream region of a human constant region of a cassette vector, for inserting a cDNA which encodes a variable region of nonhuman animal antibody. Into the thus established cloning site is inserted a cDNA which encodes a variable region of nonhuman animal antibody, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of a constant region of human antibody and a base sequence corresponding to the 3′-end side of a variable region of nonhuman animal antibody and is possessed of restriction enzyme recognition sites on both of its ends. In this way, a humanized chimera antibody expression vector is constructed in which the cDNA coding for human antibody constant region and the cDNA coding for the variable region of nonhuman animal antibody are linked together through the synthetic DNA. The synthetic DNA to be used may be prepared using a DNA synthesizer, based on the base sequence which corresponds to the 5′-end side of a constant region of human antibody and the base sequence that corresponds to the 3′-end side of a variable region of nonhuman animal antibody. Illustrative examples of cloning site-containing cassette vectors include a cassette vector pChiIgHB2 which is used for the construction of an expression vector for the expression of humanized chimera antibody H chain and a cassette vector pChiIgLA2 which is used for the construction of an expression vector for the expression of humanized chimera antibody L chain.
A cassette vector for use in the construction of an expression vector for the expression of humanized chimera antibody H chain is constructed, for example, by cutting out a human CH-encoding cDNA-containing fragment, from an ApaI site in the vicinity of the 5′-end of the cDNA to its 3′-end, and inserting the fragment into an appropriate expression vector for animal cell use such as plasmid pIg1SE1d4 or the like. Then, a cloning site is established in the thus constructed cassette vector for inserting a cDNA which encodes a VH of nonhuman animal antibody. Into the thus established cloning site is then inserted a cDNA fragment encoding a nonhuman animal antibody VH, which is obtained by digesting a VH-encoding cDNA with an appropriate restriction enzyme, using a synthetic DNA molecule which comprises a base sequence corresponding to the 5′-end side (5′-end to ApaI site) of a human antibody CH and a base sequence corresponding to the 3′-end side of a nonhuman animal antibody VH and is possessed of restriction enzyme recognition sites on both of its ends. In this way, an expression vector for use in the expression of humanized chimera antibody H chain is easily obtained without altering amino acid sequence of the expressed VH.
A cassette vector for constructing of an expression vector for the expression for humanized chimera antibody L chain may be constructed for example by introducing an EcoRV site into the vicinity of 5′-end side of a human CL-encoding cDNA by means of mutation, cutting out a fragment from the resulting human cDNA from the EcoRV site to the 3′-end and inserting the fragment into an appropriate expression vector such as plasmid pIg1SE1d4 or the like. Then, a cloning site is established in the thus constructed cassette vector for inserting a cDNA which encodes a nonhuman animal antibody VL. Into the thus established cloning site is then inserted a cDNA fragment encoding a nonhuman animal antibody VL, which is obtained by digesting a VL-encoding cDNA with an appropriate restriction enzyme, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side (5′-end to EcoRV site) of a human antibody CL and a base sequence corresponding to the 3′-end side of a nonhuman animal antibody VL and is possessed of restriction enzyme recognition sites on both of its ends. In this way, an expression vector for use in the expression of humanized chimera antibody L chain is easily obtained without altering amino acid sequence of the expressed VL.
Examples of the cDNAs which encode the human CH and human CL described above are disclosed, for instance, in Cell 22, 197 (1982). Such cDNAs can e prepared from human antibody-producing myeloma cells, humanized monoclonal antibody-producing hybridoma cells, humanized chimera antibody-producing cells (SP2-PC chimera; FEBS Letters, 244, 301 (1989)) and the like, in accordance with known procedures disclosed for instance in Proc. Natl. Acad. Sci. U.S.A. 82, 7025 (1985) and ibid., 79 7025 (1985). That is, cDNA is synthesized using mRNA extracted from the above-described cells, in accordance with the procedure disclosed in Molecular Cloning 2nd. ed.; 1989, p8.1. A library is prepared from the thus synthesized cDNA using a phage vector or a plasmid vector, in accordance with the procedure disclosed in Molecular Cloning 2nd. ed.; 1989, p8.1, 1.53. Next, a recombinant phage or a recombinant plasmid which contains human CH-encoding cDNA or human CL-encoding cDNA is obtained from the thus prepared library using a human antibody constant region or a human antibody variable region as a probe, in accordance with the procedure disclosed in Molecular Cloning 2nd. ed.; 1989, p8.1, 1.53. Base sequences of the human CH-encoding cDNA and the human CL-encoding cDNA are determined in accordance with the procedure disclosed in Molecular Cloning, 2nd. ed.; 1989, p13.1. Introduction of an appropriate restriction enzyme recognition site into the human CL-encoding cDNA, for example insertion of an EcoRV recognition site into a region in the vicinity of the 5′-end of the cDNA, may be effected in accordance with the procedure disclosed in Molecular Cloning, 2nd. ed.; 1989, p15.1.
2. Production of Humanized Chimera Antibody
Firstly, cDNAs which encode VH and VL of nonhuman animal antibody, such as mouse anti-GD3 monoclonal antibody, are prepared in the following manner.
That is, cDNA is synthesized using mRNA extracted from appropriate hybridoma cells which produce mouse anti-GD3 monoclonal antibody, such as mouse anti-GD3 monoclonal antibody KM-641 (FERM BP-3116). A library is prepared from the thus synthesized cDNA using a phage vector or a plasmid vector. Next, a recombinant phage or a recombinant plasmid which contains VH-encoding cDNA or VL-encoding cDNA is obtained from the thus prepared library using a constant region or a variable region of nonhuman antibody, such as mouse antibody, as a probe. Base sequences of the VH-encoding cDNA and the VL-encoding cDNA are determined in accordance with the aforementioned procedure.
A fragment of the VH -encoding cDNA, ranging from the 5′-end to an appropriate restriction enzyme site near the 3′-end (to be referred to as “site A” hereinafter), is cut out and inserted into the cloning site of the aforementioned cassette vector, using a synthetic DNA which comprises a base sequence corresponding to the 5′-end side of a human antibody CH and a base sequence corresponding to the 3′-end side (from 3′-end to site A) of a nonhuman animal antibody VH and is possessed of restriction enzyme recognition sites on both of its ends. In this way, an expression vector for use in the expression of humanized chimera antibody H chain is constructed by linking the human antibody CH-encoding cDNA with the nonhuman antibody VH-encoding cDNA through the synthetic DNA. In the same way, a fragment of the VL-encoding cDNA, ranging from the 5′-end to an appropriate restriction enzyme site near the 3′-end (to be referred to as “site B” hereinafter), is cut out and inserted into the cloning site of the aforementioned cassette vector, using a synthetic DNA molecule which comprises a base sequence corresponding to the 5′-end side of a human antibody CL and a base sequence corresponding to the 3′-end side (from 3′-end to site B) of a nonhuman animal antibody VL and is possessed of restriction enzyme recognition sites on both of its ends. In this way, an expression vector for use in the expression of humanized chimera antibody L chain is constructed by linking the human antibody CL-encoding cDNA with the nonhuman antibody VL-encoding cDNA through the synthetic DNA.
A transformant which is capable of producing humanized chimera antibody is obtained by transforming appropriate host cells with the thus prepared expression vectors for use in the expression of the H chain and L chain of humanized chimera antibody.
Any type of cells may be used as host cells for use in the introduction of the humanized chimera antibody expression vectors, as long as these cells are capable of expressing the humanized chimera antibody. Illustrative examples of such host cells include mouse SP2/0-Ag14 cells (ATCC CRL1581; to be referred to as “SP2/0 cells” hereinafter), mouse P3X63-Ag8.653 (ATCC CRL1580) and CHO cells which are deficient in dihydrofolate reductase gene (to be referred to as “dhfr” hereinafter) (Urlaub et al., Proc. Natl. Acad. Sci. U.S.A., 77, 4216 (1980)).
Introduction of the expression vectors for use in the expression of the H chain and L chain of humanized chimera antibody into host cells may be effected for example by the electroporation technique disclosed in JP-A-2-257891. A transformant capable of producing the humanized chimera antibody may be selected using RPMI1640 medium supplemented with G418 and fetal calf serum, in accordance with the procedure disclosed in JP-A-2-257891. A transformant, KM-871, which produces humanized chimera antibody that reacts with ganglioside GD3 is an illustrative example of the transformant capable of producing humanized chimera antibody. KM-871 has been deposited on Aug.13, 1991, with Fermentation Research Institute, Agency of Industrial Science and Technology of 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki, Japan under the Budapest Treaty, and has been assigned the accession number FERM BP-3512.
For the cultivation of the thus-obtained transformants, any medium can be used as long as the desired antibody can be produced and accumulated in the medium. An example of such medium is RPMI1640 medium supplemented with G418 and fetal calf serum. The transformants may be inoculated into 200 μl to 100 ml of the above-mentioned medium to give a cell concentration of 1×105 to 1×107 cells/ml and cultivated at 37° C. in a 5% CO2 incubator for 1 to 7 days. The desired chimera antibody is produced and accumulated in the culture medium.
Activity of the humanized chimera antibody in the culture broth is measured by enzyme-linked immunosorbent assay (ELISA method; E. Harlow et al., Manual of Antibody Experiments, Cold Spring Harbor Laboratory Press, 1988). Productivity of the humanized chimera antibody in the transformant can be improved making use of a dhfr amplification system in accordance with the procedure disclosed in JP-A-2-257891.
The humanized chimera antibody thus produced can be purified from supernatant fluid of the aforementioned cultured mixture making use of a protein A column (E. Harlow et al., Manual of Antibody Experiments, Cold Spring Harbor Laboratory Press, 1988). Illustrative examples of humanized chimera antibodies obtained in this way include those which react with ganglioside GD3, such as humanized chimera antibody KM-871 and the like.
Reactivity of humanized chimera antibody is measured by ELISA method. The molecular weight of the H chain, the L chain or the entire molecule of purified humanized chimera antibody is measured by means of polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting method (E. Harlow et al., Manual of Antibody Experiments, Cold Spring Harbor Laboratory Press, 1988) or the like.
Binding activity, or avidity, of the humanized chimera antibody to ganglioside GD3 to a cultured cancer cell line is measured by means of the fluorescent antibody technique, the ELISA method or the like. Complement-dependent cytotoxicity (CDC activity) and antibody-dependent cell-mediated cytotoxicity (ADCC activity) of humanized chimera antibody to a cultured cancer cell line are measured in accordance with the procedures disclosed in Menekigaku Jikken Nyumon, (Manual of Immunological Experiments) Matsuhashi et al., Gakkai Shuppan Center, Japan, 1981).
The humanized chimera antibodies according to the present invention can be used alone as an anticancer agent. They may be formulated into an anticancer composition together with at least one pharmaceutically acceptable carrier. For instance, the humanized chimera antibodies are dissolved in physiological saline, an aqueous solution of glucose, lactose or mannitol and the like. The powder of the humanized chimera antibodies for injection can be prepared by lyophilizing the humanized chimera antibodies in accordance with the conventional method and mixing the lyophilized products with sodium chloride. The anticancer composition may further contain additives conventionally used well known in the art of medical preparation, for example, pharmaceutically acceptable salts.
The humanized chimera antibodies according to the present invention can be administered in the form of the above-described anticancer composition to mammals including human in a dose of 0.2 to 20 mg/kg/day. The dose may vary depending on the age, condition, etc. of patients. The administration of the anticancer composition can be effected by intraveous injection once a day (single administration or consecutive administration) or intermittently one to three times a week or once every two to three weeks.
The antincancer composition is expected to be useful for treating cancer such as melanoma, neuroblastoma and glioma.
The following examples and reference examples are provided to further illustrate the present invention. It is to be understood, however, that the examples are for purpose of illustration only and are not to be construed to limit the invention.
EXAMPLE 1
Construction of Cassette Vector
1. Isolation of Promoter and Enhancer Genes of KM50 Cell-derived Immunoglobulin H Chain
(1) Preparation of Chromosomal DNA from KM50 Cells, P3U1 Cells and Rat Kidney
Chromosomal DNA was prepared in the following manner in accordance with the procedure disclosed in Molecular Cloning, Maniatis et al., 1989, p9.16.
1.2×108 KM50 cells, 2×108 P3U1 cells (ATCC CRL1597) and 1.6 g of rat kidney (a kidney sample frozen at −80° C. was smashed thoroughly using a mallet) were each suspended in 2 ml of a buffer solution (pH 7.5) containing 10 mM Tris-HCl, 150 mM sodium chloride and 10 mM sodium ethylenediaminetetraacetate (to be referred to as “EDTA” hereinafter). To this suspension were added 0.8 mg of Proteinase K (Sigma Chemical Co.) and 10 mg of sodium lauryl sulfate (to be referred to as “SDS” hereinafter). After incubation at 37° C. for 10 hours, the resulting mixture was extracted with the same volume of phenol (once), chloroform (twice) and ether (once) in this order, and the extract was dialyzed for 10 hours against a buffer solution (pH 7.5) containing 10 mM Tris-HCl and 1 mM EDTA. A DNA solution was recovered from the dialysis tube and Ribonuclease A (Sigma Chemical Co.) was added thereto to give a final concentration of 20 μg/ml. After incubating at 37° C. for 6 hours to decompose RNA completely, the resulting solution was mixed with 15 mg of SDS and 1 mg of Proteinase K and incubated at 37° C. for 10 hours. The thus treated solution was extracted with the same volume of phenol, chloroform and ether (twice for each) in this order, and the extract was dialyzed for 10 hours against a buffer solution (pH 7.5) containing of 10 mM Tris-HCl and 1 mM EDTA. The DNA solution was recovered from the dialysis tube and used as a chromosomal DNA sample. A DNA concentration of each sample was determined by measuring the absorbance at 260 nm and, as a result, it was found that 1.6 mg, 1.5 mg and 1.9 mg of chromosomal DNA was obtained from 1.2×108 KM50 cells, 2×108 P3U1 cells and 1.6 g of rat kidney, respectively.
(2) Identification of Activated Immunoglobulin H Chain Gene in KM50 Cells by Southern Blotting
A 3 μg portion of each of the chromosomal DNA samples obtained in the above step (1) from KM50 cells, P3U1 cells and rat kidney was dissolved in 25 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. Each of the thus prepared solution was mixed with 15 units of XbaI (Takara Shuzo Co., Ltd.; all restriction enzymes used in the following experiments were purchased from the same company) and incubated at 37° C. for 2 hours to cleave the chromosomal DNA at the XbaI site. The reaction mixture was subjected to agarose gel electrophoresis, resulting DNA fragments were transferred to a nitrocellulose filter in accordance with the method of Southern et al. (J. Mol. Biol., 98, 503, (1975)) and then subjected to hybridization in the known method (Kameyama et al., FEBS Letters, 244, 301-306 (1989)) using a mouse JH probe which is disclosed in the FEBS Letters article. A band equivalent to about 9.3 kb was observed only in the DNA sample of KM50 cells. In consequence, it was considered that the XbaI fragment of immunoglobulin DNA found in this band contained the activated immunoglobulin H chain gene derived from KM50 cells.
(3) Preparation of KM50 Cell Chromosomal DNA Library
A 60 μg portion of the 50 cell chromosomal DNA obtained in the above step (2) was dissolved in 250 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 150 units of XbaI and incubated at 37° C. for 2 hours to cleave the chromosomal DNA at the XbaI site. The reaction mixture was subjected to agarose gel electrophoresis and a 9.3 kb-equivalent fraction was recovered as about 2 μg of 9.3 kb DNA sample of KM50 cells, making use of the DEAE paper method (Maniatis et al., Molecular Cloning, 1989, p6.24). Separately, a 3 μg portion of lambda-ZAP (Stratagene Cloning Systems) to be used as a vector was dissolved in 200 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 50 units of XbaI and incubated at 37° C. for 2 hours to cleave the DNA at the XbaI site. The resulting reaction mixture was extracted with phenol-chloroform and then treated with ethanol to precipitate and recover about 3 μg of DNA. The thus recovered DNA sample was dissolved in a 100 μl of 100 mM Tris-HCl buffer (pH 7.5), and the resulting solution was mixed with 1 unit of alkaline phosphatase (Takara Shuzo Co., Ltd.) to effect dephosphorylation of restriction enzyme cleavage ends of the vector DNA. The resulting reaction mixture was extracted with phenol-chloroform and then treated with ethanol to precipitate and recover 2 μg of DNA. The thus recovered DNA sample was dissolved in 10 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5) and 1 mM EDTA to serve as a vector DNA sample. Next, 0.2 μg of the thus prepared vector DNA sample and 0.2 μg of the KM50 cell-derived 9.3 kb DNA sample were dissolved in 5 μl of a buffer solution containing 66 mM Tris-HCl (pH 7.5), 6.6 mM magnesium chloride, 10 mM dithiothreitol (to be referred to as “DTT” hereinafter) and 0.1 mM adenosine triphosphate (to be referred to as “ATP” hereinafter) (to be referred to as “T4 ligase buffer” hereinafter). The resulting solution was mixed with 175 units of T4 DNA ligase (Takara Shuzo Co., Ltd.) and incubated at 4° C. for 3 days. A 2 μl portion of the resulting reaction mixture was subjected to lambda phage packaging in the known method (Maniatis et al., Molecular Cloning, 1989, p2.95) using GigaPack Gold purchased from Stratagene Cloning Systems. E. coli BB4 cells were infected with this phage to obtain 200,000 phage clones. 100,000 out of these phage clones were fixed on nitrocellulose filters in the known method (Maniatis et al., Molecular Cloning, 1989, p2.112).
(4) Selection of Recombinant DNA Containing a Gene of the Activated (Anti-human Serum Albumin) Immunoglobulin H Chain Variable Region in KM50 Cells
Two clones showing strong reaction with the 32P-labeled mouse JH probe at 65° C. were isolated from the 100,000 phage clones prepared in the above step (3) in accordance with the procedure of Kameyama et al. (FEBS Letters, 44, 301-306, 1989). When the phage DNA was recovered in the conventional manner (Maniatis et al., Molecular Cloning, 1939, p2.118-2.169), it was found that the 9.3 kb XbaI fragment of the KM50 cell-derived chromosomal DNA was incorporated into the phage DNA.
(5) Base Sequence of the Gene of the Activated (Anti-human Serum Albumin) Immunoglobulin H Chain Variable Region in KM50 Cells
Restriction enzyme cleavage maps of the two clones obtained in the above step (4) was prepared by digesting them with various restriction enzymes and it was found that completely the same DNA fragment (9.3 kb) has been inserted into these clones (FIG. 1). Next, base sequence of a part of the 9.3 kb DNA fragment, which was considered to contain the promoter and variable regions of the rat immunoglobulin H chain, was determined in accordance with the Sanger method (Sanger et al., Proc. Natl. Acad. Sci. U.S.A., 74, 5463 (1977); M13 Cloning and Sequencing Handbook, Amersham). In SEQ ID NO: 1, a region containing octamer sequences such as ATGCAAAT and TATA box sequences such as TTGAAAA and the like can be regarded as the immunoglobulin promoter region.
2. Construction of Heterologous Protein Expression Vector Using Promoter and Enhancer of the Activated (Anti-human Serum Albumin) Immunoglobulin H Chain Variable Region in KM50 Cells
(1) Construction of pKMB11
A 1 μg portion of the 9.3 kb fragment of the immunoglobulin H chain variable region gene obtained in 1-(5) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of BglII and 10 units of HindIII and incubated at 37° C. for 2 hours to cleave the DNA fragment at the BglII and HindIII sites. The resulting reaction mixture was subjected to agarose gel electrophoresis and 0.01 μg of a DNA fragment containing 0.8 kb immunoglobulin promoter was recovered. Separately, a 1 μg portion of a plasmid pBR322-BglII (Kuwana et al., FEBS Letters, 219, 360 (1987)) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of BglII and 10 units of HindIII and incubated at 37° C. for 2 hours to cleave the plasmid at the BglII and HindIII sites. The resulting reaction mixture was subjected to agarose gel electrophoresis, a DNA fragment of about 4.2 kb was recovered. A 0.1 μg portion of the thus obtained pBR322-BglII derived DNA fragment of about 4.2 kb and 0.01 μg of the immunoglobulin promoter-containing DNA fragment were dissolved in 20 μl of a T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase (Takara Shuzo Co., Ltd.) and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 (J. Mol. Biol., 41, 459 (1969)) was carried out in accordance with the method of Scott et al. (M. Shigesada, Saibo Kogaku, 2, 616 (1983)) to isolate a colony having ampicillin resistance (to be referred to as “ApR” hereinafter). Plasmid DNA was recovered from the colony to obtain pKM11 as shown in FIG. 2.
(2) Construction of pKMD6
In order to establish an appropriate restriction enzyme recognition site in downstream region of the immunoglobulin promoter, the plasmid pKMB11 constructed in the above step (1) was digested with nuclease BAL31 from the NcoI site. A 10 μg portion of the plasmid pKMB11 was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM potassium chloride. The thus prepared solution was mixed with 30 units of NcoI and incubated at 37° C. for 2 hours to cleave the plasmid at the NcoI site. The resulting reaction mixture was extracted with phenol and chloroform and treated with ethanol. The thus precipitated DNA fragments were dissolved in 100 μl of BAL31 buffer which contained 20 mM Tris-HCl (pH 8.0), 600 mM sodium chloride, 12 mM calcium chloride, 12 mM magnesium chloride and 1 mM EDTA, and the resulting solution was mixed with 0.25 unit of BAL31 (Bethesda Research Laboratories, Inc. (BRL)) and incubated at 37° C. for 5 seconds. The reaction was stopped by extracting the reaction mixture with phenol. After extraction with chloroform and precipitation with ethanol, 1 μg of DNA was recovered. A 0.1 μg portion of the thus obtained DNA sample and 0.01 μg of a synthetic DNA linker SalI were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out in accordance with the method of Scott et al. to isolate an ApR colony. Plasmid DNA was recovered from the colony to obtain pKMD6 as shown in FIG. 3. The base sequence of the BAL31-digested portion of this plasmid was determined in accordance with the Sanger method and it was found that bases up to the third base (the 303 position base in the SEQ ID NO: 1) upstream from the initiation codon ATG of the immunoglobulin gene.
(3) Construction of pEPKMA1, pEPKMB1 and pAGE501
Since original promoter and enhancer of the immunoglobulin gene are separated from each other, it is necessary to construct a vector in which the promoter and enhancer are connected together so that it can be used as a vector for the expression of a heterologous protein. The following manipulation was carried out to construct such vectors.
A 1 μg portion of the 9.3 kb fragment of the immunoglobulin H chain variable region gene obtained in 1-(5) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRV and 10 units of XbaI and incubated at 37° C. for 2 hours to cleave the DNA fragment at the EcoRV and XbaI sites. The resulting reaction mixture was subjected to agarose gel electrophoresis and 0.1 μg of a DNA fragment of about 1 kb containing the immunoglobulin enhancer region was recovered. Separately, a 1 μg portion of the plasmid pKMD6 obtained in the above step (2) was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5) 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of BglII and incubated at 37° C. for 2 hours to cleave the plasmid at the BglII site. The resulting reaction mixture was extracted with phenol and chloroform and precipitated with ethanol. The thus precipitated DNA fragments were dissolved in 40 μl of DNA polymerase I buffer containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 0.1 mM dATP (deoxyadenosine triphosphate), 0.1 mM dCTP (deoxycytidine triphosphate), 0.1 mM dGTP (deoxyguanosine triphosphate) and 0.1 mM dTTP (deoxythymidine triphosphate). The resulting solution was mixed with 6 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 90 minutes to convert the cohesive 5′-end formed by the BglII digestion into blunt end. The reaction was stopped by extracting the reaction mixture with phenol. After extraction with chloroform and precipitation with ethanol, the resulting DNA fragments were dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 2 hours to cleave the DNA fragment at the HindIII site. The resulting reaction mixture was subjected to agarose gel electrophoresis, 0.1 μg of a DNA fragment of about 0.8 kb containing the immunoglobulin promoter region was recovered. Next, a 0.2 μg portion of plasmid pUC18 (Messing, Methods in Enzymology, 101, 20 (1983)) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus Prepared solution was mixed with 10 units of HindIII and 10 units of XbaI and incubated at 37° C. for 2 hours to cleave the plasmid at the HindIII and XbaI sites. The resulting reaction mixture was subjected to agarose gel electrophoresis, 0.1 μg of a DNA fragment of about 2.7 kb was recovered. A 0.1 μg portion of the thus obtained pkMD6-derived 0.8 kb DNA fragment, 0.02 μg of the DNA fragment containing the immunoglobulin enhancer region and 0.1 μg of the pUC18 fragment were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to isolate an ApR colony. Plasmid DNA was recovered from the colony to obtain pEPKMA1 as shown in FIG. 4.
Next, a 1 μg portion of the plasmid pEPKMA1 was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of XbaI and incubated at 37° C. for 2 hours to cleave the plasmid at the XbaI site. The resulting reaction mixture was extracted with phenol and chloroform and precipitated with ethanol. The thus precipitated DNA fragments were dissolved in 40 μl of the aforemetioned DNA polymerase I buffer solution, and the resulting solution was mixed with 6 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 90 minutes to convert the cohesive 5′-end formed by the XbaI digestion into blunt end. The reaction was stopped by extracting the reaction mixture with phenol. After extraction with chloroform and precipitation with ethanol, DNA fragments was recovered. The thus obtained DNA sample and 0.01 μg of a synthetic DNA XhoI linker (Takara Shuzo Co., Ltd.) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to isolate an ApR colony. Plasmid DNA was recovered from the colony to obtain pEPKMB1 as shown in FIG. 5.
Next, SV40 early gene promoter and enhancer regions (to be referred to as “PSE” hereinafter) of an expression vector pAGE107 for use in the expression of heterologous genes in animal cells (Miyaji et al., Cytotechnology, 3, 133-140 (1990)) were converted into KM50-derived immunoglobulin H chain promoter and enhancer (to be referred to as “PIH” hereinafter) of pEPKMB1 in the following manner.
A 1 μg portion of the plasmid pAGE107 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 150 mM sodium chloride. The thus prepared solution was mixed with 10 units of SalI and 10 units of XhoI and incubated at 37° C. for 2 hours to cleave the plasmid at the SalI and XhoI sites. The resulting reaction mixture was subjected to agarose gel electrophoresis and 0.5 μg of a DNA fragment of about 5.95 kb containing G418 resistance gene was recovered. Next, a 1 μg portion of the plasmid pEPKMB1 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 150 mM sodium chloride. The thus prepared solution was mixed with 10 units of SalI and 10 units of XhoI and incubated at 37° C. for 2 hours to cleave the plasmid at the SalI and XhoI sites. The resulting reaction mixture was subjected to agarose gel electrophoresis and 0.1 μg of a DNA fragment of about 1.7 kb containing immunoglobulin promoter and enhancer regions was recovered. A 0.1 μg portion of the thus obtained pAGE107-derived 5.95 kb DNA fragment and 0.02 μg of the DNA fragment containing immunoglobulin promoter and enhancer regions were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to isolate an ApR colony. Plasmid DNA was recovered from the colony to obtain pAGE501 as shown in FIG. 6.
(4) Construction of pAGE109
One of the two EcoRI cleavage sites in plasmid pAGE106 was deleted in the following manner to construct pAGE109.
A 2 μg portion of the expression vector pAGE106 for use in the expression of heterologous genes in animal cells (JP-A 3-22979 or EP-A-0 405 285) was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of SacI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 μg of a pAGE106 DNA fragment (4.3 kb) was recovered which contained the SV40 early gene promoter and G418 resistance gene cleaved with EcoRI and SacI. The thus recovered DNA fragment was dissolved in 40 μl of the DNA polymerase I buffer solution, and the resulting solution was mixed with 5 units of E. coli DNA polymerase I large fragment and incubated at 16° C. for 2 hours to convert the cohesive 3′-end formed by the SacI digestion and the cohesive 5′-end formed by the EcoRI digestion into blunt ends. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 4 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pAGE109 as shown in FIG. 7.
(5) Construction of pAGE502
Plasmid pAGE502 was constructed in the following manner in order to convert the SV40 promoter and enhancer of pAGE107 into immunoglobulin H chain promoter and enhancer.
A 2 μg portion of the plasmid pAGE107 disclosed in JP-A-3-22979 or EP-A-0 405 285 was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the HindIII digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of XhoI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 μg of a pAGE107 DNA fragment of about 5.95 kb was obtained which contained G418 resistance gene and ApR gene cleaved with XhoI and HindIII.
Next, a 2 μg portion of the plasmid pAGE501 obtained in the above step (3) was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 175 mM sodium chloride. The thus prepared solution was mixed with 10 units of SalI and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the SalI digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of XhoI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 μg of a pAGE501 DNA a fragment of about 1.8 kb was obtained which contained KM50 immunoglobulin H chain promoter and enhancer genes cleaved with XhoI and SalI.
Next, 0.1 μg of the thus obtained pAGE107 HindIII-XhoI fragment (about 5.95 kb) and 0.1 μg of the pAGE501 SalI-XhoI fragment (about 1.8 kb) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pAGE502 as shown in FIG. 8.
(6) Construction of pAGE503
One of the two EcoRI cleavage sites in plasmid pAGE502 was deleted in the following manner to construct pAGE503.
A 2 μg portion or the plasmid pAGE109 obtained in the above step (4) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and 10 units of ClaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 μg of a pAGE109 DNA fragment of about 1 kb was recovered which contained the poly(A) signal gene of beta-globin and SV40 early genes cleaved with ClaI and HindIII.
Next, a 2 μg portion of the plasmid pAGE502 obtained in the above step (5) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and 10 units of ClaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and then to the aforementioned DEAE paper method to recover about 1 μg of a pAGE502 DNA fragment of about 6.1 kb which contained KM50 immunoglobulin H chain promoter and enhancer genes, ApR gene and G418 resistance gene cleaved with HindIII and ClaI. Next, 0.1 μg of the thus obtained pAGE109 HindIII-ClaI fragment (about 1 kb) and 0.1 μg of the pAGE-502 HindIII-ClaI fragment (about 6.1 kb) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pAGE503 as shown in FIG. 9.
(7) Construction of pSE1d1
A dhfr gene was introduced into plasmid pAGE107 in the following manner to construct plasmid pSE1d1.
A 2 μg portion of the plasmid pAGE107 disclosed in JP-A 3-22979 or EP-A-0 405 285 was dissolved in 100 μl of a buffer solution containing 100 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRI and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the EcoRI digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 30 μl of a buffer solution which was composed of 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 μg of a pAGE107 DNA fragment of about 5.6 kb was recovered which contained G418 resistance gene and ApR gene cleaved with EcoRI and HindIII.
Next, a 2 μg portion of a plasmid pSV2-dhfr (Subramani et al., Mol. Cell. Biology, 1, 854 (198)) was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of BglII and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the BclII digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis, about 0.2 μg of a pSV2-dhfr DNA fragment of about 0.76 kb was recovered which contained dhfr gene cleaved with BglII and HindIII.
Next, 0.1 μg of the thus obtained pAGE107 HindIII-EcoRI fragment (about 5.6 kb) and 0.1 μg the pSV2-dhfr BglII-HindIII fragment (about 0.76 kb) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pSE1d1 as shown in FIG. 10.
(8) Construction of pSE1d2
The HindIII cleavage site was removed from the plasmid pSE1d1 in the following manner to construct plasmid pSE1d2.
A 2 μg portion of the plasmid pSE1d1 obtained in the above step (7) was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the HindIII digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pSE1d2 as shown in FIG. 11.
(9) Construction of pIg1SE1d2
The dhfr gene was introduced into plasmid pAGE503 in the following manner to construct plasmid pIg1SE1d2.
A 2 μg portion of the plasmid pAGE503 obtained in the above step (6) was dissolved in 100 μl of a buffer solution containing 100 mM. Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of ClaI and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the ClaI digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of MluI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 μg of a pAGE503 DNA fragment of about 5.4 kb was recovered which contained the KM50 immunoglobulin H chain promoter and enhancer genes cleaved with ClaI and MluI.
Next, a 2 μg portion of the plasmid pSE1d2 obtained in the above step (8) was dissolved in 100 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of XhoI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the XhoI digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of MluI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 μg of a pSE1d2 DNA fragment of about 3.8 kb was recovered which contained dhfr gene cleaved with XhoI and MluI.
Next, 1 μg of the thus obtained pAGE503 ClaI-MluI fragment (about 5.4 kb) and 1 μg of the pSEld2 XhoI-MluI fragment (about 3.8 kb) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pIg1SE1d2 as shown in FIG. 12.
(10) Construction of pIg1SE1d3
The ApaI cleavage site was removed from the plasmid pIg1SE1d2 in the following manner to construct plasmid pIg1SE1d3.
A 2 μg portion of the plasmid pIg1SE1d2 obtained in, the above step (9) was dissolved in 100 μl of a buffer solution containing 10 my Tris-HCl (pH 7.5) and 6 mM magnesium chloride. The thus prepared solution was mixed with 10 units of ApaI and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 3′-end formed by the ApaI digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pIg1SE1d3 as shown in FIG. 13.
(11) Construction of pIg1SE1d4
In order to establish a cloning site between HindIII cleavage site and EcoRI cleavage site of the plasmid pIg1SE1d3, plasmid pIg1SE1d4 was constructed by inserting the synthetic DNA shown in SEQ ID NO: 5 into the plasmid pIg1SE1d3 in the following manner.
A 2 μg portion of the plasmid pIg1SE1d3 obtained in the above step (10) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of HindIII and 10 units of EcoRI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 μg of a pIg1SE1d3 DNA fragment of about 9.2 kb was recovered which contained the KM50 immunoglobulin H chain promoter and enhancer genes, ApR gene, G418 resistance gene and dhfr gene cleaved with HindIII and EcoRI.
Next, 0.1 μg of the thus obtained pIg1SE1d3 HindIII-EcoRI fragment (about 9.2 kb) and 10 ng of the synthetic DNA (SEQ ID NO: 2) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli H3101 was carried out to obtain plasmid pIg1SE1d4 as shown in FIG. 14.
3. Preparation of Moloney Mouse Leukemia Virus Long Terminal Repeat (To Be Referred to as “MoLTR” Hereinafter)
Since MoLTR is known to have promoter and enhancer activities (Kuwana et al., Biochem. Biophys. Res. Comun., 149, 960 (1987)), a plasmid pPMOL3 containing MoLTR was prepared in the following manner in order to use MoLTR as cassette vector promoter and enhancer.
A 3 μg portion of the plasmid pPMOL1 disclosed in JP-A 1-63394 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of ClaI and incubated at 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 16° C. for 2 hours to convert the cohesive 5′-end formed by the ClaI digestion into blunt end. The reaction was stopped by phenol extraction, followed by chloroform extraction and ethanol precipitation to recover 2 μg of DNA fragments. The thus precipitated DNA sample and 0.01 μg of a synthetic DNA XhoI linker (Takara Shuzo Co., Ltd.) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to obtain plasmid pPMOL2 as shown in FIG. 15. Next, a 3 μg portion of the thus obtained plasmid pPMOL2 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride, 10 mM sodium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of SmaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and 2 μg of DNA fragments were recovered. The thus recovered DNA sample and 0.01 μg of a synthetic DNA EcoRI linker (Takara Shuzo Co., Ltd.) were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to obtain plasmid pPMOL3 as shown in FIG. 16.
4. Cloning of H Chain Constant Region (Cgl) cDNA and L Chain Constant Region (Ck) cDNA of Human Immunoglobulin IgGl
(1) Preparation of mRNA from Chimera Antibody-producing SP2-PC Chimera-1 cells
Using a mRNA extraction kit, Fast Track (No. K1593-02, available from Invitrogen), 6.2 μg of mRNA was obtained from 1×108 cells of chimera antibody-producing SP2-PC Chimera-1 which has anti-phosphorylcholine activity and is disclosed in FEBS Letters (244, 301-306 (1989)).
(2) Preparation of SP2-PC Chimera-1 cDNA Library and Cloning of Human Immunoglobulin H. Chain Constant Region (Cgl) cDNA and L Chain Constant Region (Ck) cDNA
A 2 μg portion of the mRNA obtained in the above step (1) was subjected to EcoRI adaptor addition using cDNA Synthesis Kit (No. 27-9260-01, available from Pharmacia) followed by kination. The resulting cDNA solution was subjected to phenol-chloroform extraction and ethanol precipitation to recover 4 μg of cDNA. The thus recovered cDNA was dissolved in 20 μl of sterile water, and the resulting solution was subjected to agarose gel electrophoresis to recover about 0.3 μg of a DNA fragment of about 1.8 kb and about 0.3 μg of a DNA fragment of about 1.0 kb.
Next, a 5 μg portion of the vector pUC18 was dissolved in 100 μl of a buffer solution containing 100 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 50 units of EcoRI and incubated at 37° C. for 4 hours to cleave the pUC18 DNA at its EcoRI cleavage site. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation to recover about 3 μg of a pUC18 DNA fragment cleaved with EcoRI.
Next, 0.1 μg of the thus obtained pUC18 EcoRI fragment (about 2.7 kb) and the 1.8 kb and 1.0 kb cDNA fragments (0.1 μg for each) prepared from the SP2-PC Chimera-1 cells were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours.
Using the thus obtained recombinant plasmid DNA, transformation of E. coli LE392 was carried out. About 3,000 colonies thus obtained were fixed on nitrocellulose filters. Two 32P-labeled probes were prepared from human immunoglobulin constant region chromosomal genes (Cgl as an IgGl H chain constant region and Ck as an IgG1 L chain constant region) which have been isolated by Kameyama et al. (FEBS Letters, 244, 301 (1989)). From colonies which showed strong reactions at 65° C. with these probes, one showing strong reaction with Cg1 (pPCVHhCGI1) and the other showing strong reaction with Ck (pPCVLhCK1) were obtained.
(3) Introduction of EcoRV Site Into Human Ig k Chain Constant Region
An EcoRV site was introduced into 5′-end side of the human Ig k chain constant region by means of site-specific mutagenesis using a kit purchased from Promega (Catalogue No. Q6210). A 2 μg portion of the plasmid pPCVLhCK1 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of KpnI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 μg of a pPCVLhCK1 DNA fragment of about 0.8 kb was recovered which contained the human immunoglobulin L chain constant region cleaved with EcoRI and KpnI.
Next, a 2 μg portion of pSELECT1 (a kit available from Promega, Catalogue No. Q6210) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 50 by sodium chloride. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of KpnI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1 μg of a pSELECT1 DNA fragment of about 5.7 kb cleaved with EcoRI and KpnI was recovered.
Next, 0.1 μg of the pPCVLhCK1 EcoRI-KpnI fragment (about 0.8 kb) and 0.1 μg of the pSELECT1 EcoRI-KpnI fragment (about 5.7 kb) obtained above were dissolved in 20 μl of the T4 ligase buffer, and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli JM109 was carried out to obtain plasmid pchCKA7 as shown in FIG. 17.
Next, using the plasmid pchCKA7 thus obtained and the synthetic DNA of SEQ ID NO:6 as mutagenesis primer, the ACC sequence of the human immunoglobulin L chain constant region (12 to 14 position bases from the N-terminal) was converted into GAT in order to construct a plasmid pchCKB1 (FIG. 18) in which an EcoRV site was introduced into the converted site.
Next, the EcoRV site of the plasmid pchCKB1 was converted into HindIII cleavage site in the following manner. A 2 μg portion of the plasmid pchCKB1 obtained above was dissolved in 10 μl of a buffer solution containing 100 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRI and incubated a 37° C. for 4 hours. After subjecting the resulting reaction mixture to phenol-chloroform extraction and ethanol precipitation, the thus recovered sample was dissolved in 40 μl of the DNA polymerase I buffer solution. The resulting solution was mixed with 5 units of E. coli DNA polymerase I Klenow fragment and incubated at 37° C. for 30 minutes to convert the cohesive 5′-end formed by the EcoRI digestion into blunt end. The resulting reaction mixture was extracted with phenol and chloroform and then treated with ethanol. The thus precipitated sample was dissolved in 20 μl of the T4 ligase buffer containing 0.1 μg of HindIII linker (Takara Shuzo Co., Ltd.), and the resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain plasmid pchCKC1 as shown in FIG. 19.
5. Construction of Cassette Vector
(1) Construction of a Cassette Vector for Use in the Construction of Humanized Chimera Antibody H Chain Expression Vector
A 2 μg portion of the plasmid pIg1SEId4 obtained in the aforementioned step 2-(11) was dissolved in 30 μl of a buffer solution containing 10 mm Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRV and 10 units of ApaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agar-se gel electrophoresis and about 1.5 μg of a pIg1SEId4 DNA fragment of about 9.2 kb cleaved with EcoRV and ApaI was recovered.
Next, a 2 μg portion of the plasmid pPCVHhCGI1 obtained in the aforementioned step 4-(2) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5) and 6 mM magnesium chloride. The thus prepared solution was mixed with 10 units of ApaI and 10 units of SmaI and incubated at 37° C. for 1 hour. The resulting reaction mixture was subjeced to agarose gel electrophoresis and about 0.2 μg of a pPCVHhCGI1 DNA fragment of about 1 kb was recovered which contained the human immunoglobulin H chain constant region gene cleaved with ApaI and SmaI.
Next, 0.1 μg of the pIg1SEId4 EcoRV-ApaI fragment (about 9.2 kb) and 0.1 μg of the pPCVHhCGI1 ApaI-SmaI fragment (about 1 kb) prepared above were dissolved in 20 μl of the T4 ligase buffer. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pChiIgHB2 (FIG. 20) as a cassette vector for use in the construction of a humanized chimera antibody H chain expression vector.
(2) Construction of a Cassette Vector for Use in the Construction of Humanized Chimera Antibody L Chain Expression Vector
A 2 μg portion of the plasmid pIg1SEId4 obtained in the aforementioned step 2-(11) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRV and 10 units of HindIII and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 1.5 μg of a pIg1SEId4 DNA fragment of about 9.2 kb cleaved with EcoRV and HindIII was recovered.
Next, a 2 μg portion of the plasmid pchCKC1 obtained in the aforementioned step 4-(3) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 6 mM magnesium chloride and 100 mM sodium chloride. The thus prepared solution was mixed with 10 units of EcoRV and 10 units of HindIII and incubated at 37° C. for 1 hour. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 μg of a pPCVLhCK1 DNA fragment of about 0.6 kb was recovered which contained the human immunoglobulin L chain constant region gene cleaved with EcoRV and HindIII.
Next, 0.1 μg of the pIg1SEId4 EcoRV-HindIII fragment (about 9.2 kb) and 0.1 μg of the pchCKC1 EcoRV-HindIII fragment (about 0.6 kb) prepared above were dissolved in 20 μl of the T4 ligase buffer. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pChiIgLA1 (FIG. 21) as a cassette vector for use in the construction of a humanized chimera antibody L chain expression vector.
EXAMPLE 2
Anti-GD3 Chimera Antibody
1. Preparation of mRNA from a Hybridoma Cell Line Capable of Producing Mouse Anti-GD3 Monoclonal Antibody KM-641
Using a mRNA extraction kit, Fast Track (No. K1593-02, available from Invitrogen), 34 μg of mRNA was prepared from 1×108 cells of a hybridoma cell line which is capable of producing mouse anti-GD3 monoclonal antibody KM-641 prepared by the method described later in Reference Example shown below.
2. Preparation of cDNA Libraries of KM-641 H Chain and L Chain Genes
Using ZAP-cDNA Synthesis Kit (No. sc200400), a cDNA synthesis kit available from Stratagene Cloning Systems, cDNA having EcoRI adaptor on its 5′-end and Xhol adaptor on its 3′-end was prepared from 3 μg of the mRNA obtained in the above procedure 1. About 6 μg of the cDNA was dissolved in 10 μl of sterile water and subjected to agarose gel electrophoresis to recover 0.1 μg of an H chain-corresponding cDNA fragment of about 1.8 kb and 0.1 μg of an L chain-corresponding cDNA fragment of about 1.0 kb. Next, 0.1 μg of the 1.8 kb cDNA fragment, 0.1 μg of the 1.0 kb cDNA fragment and 1 μg of Uni-ZAP XR (available from Stratagene Cloning Systems; a preparation obtained by digesting Lambda ZAPII vector with EcoRI and XhoI, followed by treatment with calf intestine alkaline phosphatase) to be used as a vector were dissolved in 11.5 μl of the T4 ligase buffer, and the resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 12° C. for 10 hours and then at room temperature for 2 hours. A 4 μl portion of the resulting reaction mixture was subjected to lambda phage packaging using Giga Pack Gold (Stratagene Cloning Systems) in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.95). An E. coli strain PLK-F was infected with the thus packaged product in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.95-107) to obtain an H chain cDNA library and an L chain cDNA library, each containing about 10,000 phage clones. Next, these phage particles were fixed on nitrocellulose filters in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.112).
3. Cloning of Monoclonal Antibody KM-641 H Chain and L Chain cDNA
Two 32P-labeled probes were prepared from an EcoRI fragment of about 6.8 kb containing a mouse immunoglobulin constant region chromosomal gene Cg1 (Roeder et al., Proc. Natl. Acad. Sci. U.S.A., 78, 474 (1981)) and a mouse Ck gene-containing HindIII-BamHI fragment of about 3 kb (Sakano et al., Nature, 280, 288 (1979)). A phage clone which showed strong reaction at 65° C. with one of these two probes were obtained from each of the H chain cDNA library and the L chain cDNA library prepared in the above procedure 2 in accordance with the conventional method (Maniatis et al., Molecular Cloning, 1989, p2.108). Next, using ZAP-cDNA Synthesis Kit (No. sc200400), a cDNA synthesis kit of Stratagene Cloning Systems each of the thus obtained phage clones was introduced into plasmid pBluescript to isolate a recombinant plasmid pKM641HA3 containing the KM-641 H chain cDNA and a recombinant plasmid pKM641LA2 containing the KM-641 L chain cDNA. When each of the plasmids pKM641HA3 and pKM641LA2 was digested with EcoRI and XhoI, it was found that cDNA of about 1.6 kb had been inserted into the former plasmid, and cDNA of about 0.9 kb into the latter (FIG. 22).
4. Immunoglobulin Variable Region Base Sequences of KM-641 H Chain cDNA (pKM641HA3) and KM-641 L Chain cDNA (pKM641LA2)
Immunoglobulin variable region base sequences of the plasmids pKM641HA3 and pM641LA2 obtained in the above procedure 3 were determined by the dideoxy method (Maniatis et al., Molecular Cloning, 1989, p13.42) using Sequenase Version 2.0 DNA Sequencing Kit (United States Biochemical Corporation). The results are shown in SEQ ID NO:7 and SEQ ID NO:9. The plasmid pKM641LA2 was a complete cDNA containing a leader sequence and having a methionine-corresponding sequence which was assumed to be the initiation codon ATG located close to the 5′-end. The plasmid pKM641HA3, on the other hand, did not have such a methionine-corresponding initiation codon-like sequence on its 5′-end side, and its leader sequence was partially deficient.
5. Construction of KM-641 Chimera H Chain Expression Vector
H chain variable region gene obtained by cleaving the plasmid pKM641HA3 variable region at the 5′-end AluI site and 3′-end StyI site was ligated with the cassette vector for use in the construction of the humanized chimera antibody H chain obtained in Example 1 using the synthetic DNA sequences shown in SEQ ID NO:11 and SEQ ID NO:13, thereby constructing a humanized chimera antibody H chain expression vector pchi641HA1 (FIG. 23).
Firstly, the DNA shown in SEQ ID NO:13 (see FIG. 23) was synthesized using a DNA synthesizer. This synthetic DNA comprises a base sequence derived from plasmid pKM641HA3 ranging from the 3′-end of its immunoglobulin H chain variable region to a StyI cleavage site in the vicinity of the 3′-end and a base sequence derived from plasmid pAGE28 ranging from the 5′-end of its immunoglobulin H chain constant region to an ApaI cleavage site in the vicinity of the 5′-end. Thus, the synthetic DNA has a StyI cleavage site and an ApaI cleavage site on both of its end. Next, the thus synthesized DNA was introduced into the plasmid pKM641HA3 in the following manner.
A 3 μg portion of the plasmid pKM641HA3 was dissolved in 30 μl of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of StyI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.3 μg of a DNA fragment of about 0.41 kb was recovered. Next, a 3 μg portion of pAGE28 (Mizukami et al., J. Biochem., 101, 1307-1310 (1987)) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 2 μg of a DNA fragment of about 2.45 kb was recovered. Next, 0.1 μg of the pKM641HA3 EcoRI-StyI fragment (about 0.41 kb) and 0.1 μg of the pAGE28 EcoRI-ApaI fragment (about 2.45 kb) prepared above and 0.3 μg of the synthetic DNA of SEQ ID NO:13 were dissolved in 20 μl of the T4 ligase buffer solution. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pKM641HE1 as shown in FIG. 24.
Since the thus constructed plasmid pKM641HE1 lacks a leader sequence, the following attempt was made to supplement the plasmid with the leader sequence using the synthetic DNA of SEQ ID NO:11.
A 3 μg portion of the plasmid pKM641HE1 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.4 μg of a DNA fragment of about 0.42 kb was recovered. Next, a 0.4 μg portion of the thus prepared pKM641HE1 EcoRI-ApaI fragment (about 0.42 kb) was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride, 50 mM sodium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of AluI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and about 0.3 μg of a DNA fragment of about 0.4 kb was recovered.
Next, 0.1 μg of the pKM641HE1 AluI-ApaI fragment (about 0.4 kb) and 0.1 μg of the pAGE28 EcoRI-ApaI fragment (about 2.45 kb) prepared above and 0.3 μg of the synthetic DNA of SEQ ID NO:11 were dissolved in 20 μl of the T4 ligase buffer solution. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pKM641HF1 as shown in FIG. 25.
Next, immunoglobulin H chain variable region of the thus obtained plasmid pKM641HF1 was introduced into the aforementioned cassette vector pChiIgHB2 in the following manner.
A 3 μg portion of the plasmid pKM641HF1 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.5 μg of a DNA fragment of about 0.44 kb was recovered. Next, a 3 μg portion of the pChiIgHB2 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of ApaI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and about 3 μg of DNA was recovered. Next, 0.1 μg of the pKM641HF1 EcoRI-ApaI fragment (about 0.44 kb) and 0.1 μg of the pChiIgHB2 EcoRI-ApaI fragment (about 10.1 kb) prepared above were dissolved in 20 μl of the T4 ligase buffer. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pChi641HA1 as shown in FIG. 26.
Next, KM50-derived immunoglobulin H chain promoter and enhancer regions of the thus obtained plasmid pChi641HA1 were converted into MoLTR in the following manner.
A 3 μg portion of the plasmid pChi641HA1 was dissolved in 30 μl of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of XhoI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 μg of a DNA fragment of about 8.8 kb was recovered. Next, a 3 μg portion of the pPMOL3 prepared in procedure 2 of Example 1 was dissolved in 30 μl of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of XhoI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.3 μg of a DNA fragment of about 0.63 kb containing MoLTR was recovered. Next, 0.1 μg of the pChi641HA1 EcoRI-XhoI fragment and 0.1 μg of the pPMOL3 EcoRI-XhoI fragment prepared above were dissolved in 20 μl of the T4 ligase buffer solution. The resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to obtain a plasmid pChi641HAM1 (FIG. 27) as a KM-641 chimera H chain expression vector.
6. Construction of RM-641 Chimera L Chain Expression Vector
L chain variable region gene obtained by cleaving the plasmid pKM641LA2 variable region gene at its 5′-end EcoRI site and 3′-end HindIII site was ligated with the cassette vector for the expression of chimera L chain, using the synthetic DNA shown in SEQ ID NO: 15, thereby constructing an L chain expression vector pchi641LG11 (FIG. 28).
Firstly, the DNA of SEQ ID NO: 8 (see FIG. 29) was synthesized using a DNA synthesizer. This synthetic DNA comprises a base sequence corresponding to a region of the plasmid pKM641LA2 ranging from the 3′-end of the immunoglobulin L chain variable region to a HindIII cleavage site in the vicinity of the 3′-end and a base sequence corresponding to a region of the plasmid pChiIgLA1 ranging from the 5′-end to an EcoRV cleavage site in the vicinity of the 5′-end. Thus, it has a HindIII cleavage site and an EcoRV cleavage site on both ends. Next, the thus synthesized DNA was introduced into the plasmid pKM641LA2 in the following manner.
A 3 μg portion of the plasmid pKM641LA2 was dissolved in 30 μl of a buffer solution containing 10 mM Tris-HCl (pH 7.5), 7 mM magnesium chloride, 50 mM sodium chloride and 6 mM 2-mercaptoethanol. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of HindIII and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.3 μg of a DNA fragment of about 0.35 kb was recovered. Next, a 3 μg portion of pChiIgLA1 was dissolved in 30 μl of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of EcoRV and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to phenol-chloroform extraction and ethanol precipitation and about 3 μg of DNA was recovered and dissolved in 10 μl of the TE solution (a buffer solution containing 10 mM Tris-HCl and 1 mM EDTA (pH 7.5)). Next, 0.1 μg of the pKM641LA2 EcoRI-HindIII fragment (about 0.35 kb) and 0.1 μg of the pChiIgLA1 EcoRI-EcoRV fragment (about 9.7 kb) prepared above and 0.3 μg of the synthetic DNA of SEQ ID NO:15 were dissolved in 20 μl of the T4 ligase buffer solution. The resulting solution was mixed with 350 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the thus obtained recombinant plasmid DNA, transformation of E. coli HB101 was carried out to obtain a plasmid pChi641LG11 as shown in FIG. 29.
Next, KM50-derived immunoglobulin H chain promoter and enhancer regions of the thus obtained plasmid pChi641LG11 were converted into MoLTR in the following manner.
A 3 μg portion of the plasmid pChi641LG11 was dissolved in 30 μl of a buffer solution containing 50 mM Tris-HCl (pH 7.5), 10 mM magnesium chloride, 50 mM sodium chloride and 1 mM DTT. The thus prepared solution was mixed with 10 units of EcoRI and 10 units of XhoI and incubated at 37° C. for 4 hours. The resulting reaction mixture was subjected to agarose gel electrophoresis and about 0.2 μg of a DNA fragment of about 8.3 kb was recovered. Next, 0.1 μg of the pChi641LG11 EcoRI-XhoI fragment and 0.1 μg of the pPMOL3 EcoRI-XhoI fragment prepared above were dissolved in 20 μl of the T4 ligase buffer. The resulting solution was mixed with 175 units of T4 DNA ligase and incubated at 4° C. for 24 hours. Using the resulting reaction mixture, transformation of E. coli HB101 was carried out to obtain a plasmid pChi641LGM11 (FIG. 30) as a KM-641 chimera L chain expression vector.
7. Expression of Anti-GD3 Chimera Antibody in SP2/0 Cells
Introduction of plasmid into SP2/0 cells was carried out making use of the electroporation technique in accordance with the method of Miyaji et al. (Cytotechnology, 3, 133-140 (1990)).
The plasmids pChi641LG11 and pChi641HA1 (2 μg for each), or the plasmids pChi641LGM11 and pChi641HAM1 (2 μg for each), were simultaneously introduced into 2×106 of SP2/0 cells, and the resulting cells were suspended in 40 ml of RPMI1640-FCS(10) which has been prepared by supplementing RPMI1640 medium (Nissui Pharmaceutical Co., Ltd.) with 10% of FCS, {fraction (1/40)} volume of 7.5% NaHCO3, 3% of 200 mM L-glutamine solution (available from GIBCO) and 0.5% of a penicillin-streptomycin solution (GIBCO, a solution containing 5,000 units/ml of penicillin and 5,000 units/ml of streptomycin). The thus prepared cell suspension was distributed in 200 μl-portions into wells of a 96-well microtiter plate (Flow Laboratories), and the cells were cultured at 37° C. in a CO2 incubator. After 24 hours of the culturing, G418 (GIBCO) was added to the cell suspension to a final concentration of 0.5 mg/ml, and the culturing was continued for 1 to 2 weeks. When transformant colonies were developed and grown into confluent stages, culture broths were recovered from the wells to measure anti-GD3 chimera antibody activities by ELISA method in the following manner.
<Enzyme Immunoassay (ELISA)>
A 2 ng portion of GD3 (available from Iatron) or other type of ganglioside was dissolved in 2 μl of ethanol solution containing 5 ng of phosphatidylcholine (Sigma Chemical Co.) and 2.5 ng of cholesterol (Sigma Chemical Co.). A 20 μl portion of the thus prepared solution or the same volume of its dilution solution was distributed into each well of a 96-well microtiter plate (available from Greiner). After air-drying, blocking was effected with PBS containing 1% BSA. To each well was added 50 to 100 μl of a culture supernatant of a transformant, a purified mouse monoclonal antibody solution or a purified chimera antibody solution. After reaction at 4° C. for 10 hours, each well was washed with PBS and charged with 50 to 100 μl of peroxidase-labeled protein A (Funakoshi Pharmaceutical Co., Ltd.), followed by 1 to 2 hours of reaction at room temperature. After washing with PBS, 50 to 100 μl of ABTS substrate solution prepared by dissolving 550 mg of diammonium 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) in 0.1 M citrate buffer (pH 4.2) and adding 1 μl/ml of hydrogen peroxide to the resulting solution just before its use was added to each well to develop color, and OD415 of the reaction mixture was measured.
Among clones Anus obtained, culture broth of a clone having the highest activity measured by ELISA method contained anti-GD3 chimera antibody in an amount of about 0.1 μg/ml.
The clone having anti-GD3 chimera antibody activity was suspended in the aforementioned RPMI1640-FCS(10) medium supplemented with 0.5 mg/ml of G418 and 50 nM of methotrexate (to be referred to as “MTX” hereinafter) to a final cell density of 1-2×105 cells/ml. The thus prepared cell suspension was distributed in 2-ml portions into wells of a 24 well plate, and the cells were cultured at 37° C. for 2 to 3 weeks in a CO2 incubator to induce clones resistant to 50 nM MTX. When the thus induced clones were grown into confluent stages, anti-GD3 chimera antibody activities in the culture broths were measured by the ELISA method. Among clones thus obtained, culture broth of a 50 nM MTX-resistant clone having the highest activity measured by ELISA method contained anti-GD3 chimera antibody in an amount of about 0.3 μg/ml.
The 50 nM MTX-resistant clone was suspended in the RPMI1640-FCS(10) medium supplemented with 0.5 mg/ml of G418 and 200 nM of MTX to a final cell density of 1-2×105 cells/ml. The thus prepared cell suspension was distributed in 2-m portions into wells of a 24 well plate, and the cells were cultured at 37° C. for 2 to 3 weeks in a CO2 incubator to induce clones resistant to 200 nM MTX. When the thus induced clones were grown into confluent stages, anti-GD3 chimera antibody activities in the culture broths were measured by the ELISA method. Among clones thus obtained, culture broth of a 200 nM MTX-resistant clone having the highest activity measured by ELISA method contained anti-GD3 chimera antibody in an amount of about 2 μg/ml. This 200 nM MTX-resistant clone was named transformant KM-871.
Expression of anti-GD3 chimera antibody protein in the transformant KM-871 was confirmed by SDS-polyacrylamide gel electrophoresis (SDS-PAG) in the following manner.
The transformant KM-871 was suspended in GIT medium (Nihon Seiyaku Co., Ltd.) supplemented with 0.5 mg/ml of G418 and 200 nM of MTX to a final cell density of 1-2×105 cells/ml. The thus prepared cell suspension was distributed in 100-ml portions in 175 cm2 flasks (available from Greiner), and the cells were cultured at 37° C. for 3 to 5 days in a CO2 incubator. When the cells were grown into confluent stage, the resulting culture broth (about 900 ml) was recovered and subjected to salting-out with 50% ammonium sulfate. Using Affigel Protein A MAPS-II Kit (Bio-Rad Laboratories), about 100 μg of purified anti-GD3 chimera antibody KM-871 was obtained. About 5 μg of the thus purified anti-GD3 chimera antibody KM-871 was subjected to electrophoresis in accordance with the conventional method (Laemmli, Nature, 227, 680 (1970)) to check its molecular weigh. The results are shown in FIG. 31. As shown in the figure, under reductive conditions, molecular weights of the chimera H chain and the chimera L chain were found to be about 50 kilodaltons and about 25 kilodaltons, respectively, thus confirming expression of the H and L chains having correct molecular weights. Under non-reductive conditions, molecular weight of the chimera antibody was found to be about 150 kilodaltons which confirmed expression of the correct size antibody consisting of two H chains and two L chains.
8. Reaction Specificity of Anti-GD3 Chimera Antibody KM-871
Reactivities of the anti-GD3 chimera antibody with ganglioside GM1, N-acetyl GM2 (Boehringer-Mannheim Corp. ), N-glycolyl GM2, N-acetyl GM3, N-glycolyl GM3, GD1a, GD1b (Iatron), GD2, GD3 (Iatron), GT1b (Funakoshi Pharmaceutical Co., Ltd.) and GQ1b (Iatron) were measured by the ELISA method. In this instance, GM1 and GD1a were purified from bovine brain, N-glycolyl GM2 and N-glycolyl GM3 from mouse liver, N-acetyl GM3 from dog erythrocytes and GD2 from a cultured cell line IMR32 (ATCC CCL127), in accordance with the conventional method (J. Biol. Chem., 263, 10915 (1988)). The results are shown in Table 1.
TABLE 1
Binding activity of antibody (OD415)
Anti-GD3 chimera Mouse anti-GD3
Ganglioside antibody (0.3 μg/ml antibody (0.4 μg/ml
N-acetyl GM3 0.007 0.006
N-glycolyl GM 3 0 0
N-acetyl GM 2 0 0
N-glycolyl GM 2 0 0
GM 1 0 0
GD 2 0 0
GD3 0.717 1.33
GD 1a 0 0
GD 1b 0 0
GT 1b 0 0
GQ 1b 0 0.16
As shown in Table 1, anti-GD3 chimera antibody KM-871 and mouse anti-GD3 antibody KM-641 reacted only with GD3, thus showing no changes in the reaction specificity by the chimera formation.
9. Reactivity of Anti-GD3 Chimera Antibody KM-871 by Fluorescent Antibody Technique
The cultured human malignant melanoma SK-MEL-28 (ATCC HTB72) and G361 cells (JCRB) both of which produced ganglioside GD3 were placed in a microtube (Treff) to give a cell number of 1×106 cells per tube and washed by centrifugation (1,200 rpm, 5 minutes) with PBS. 50 μl of anti-GD3 chimera antibody EM-871 (10 μg/ml) was added to the microtube and the mixture was allowed to react at 4° C. for 30 minutes. Thereafter, the cells were washed three times by centrifugation (1,200 rpm, 5 minutes) with PBS, then 20 μl of fluorescein isocyanate-labeled Protein A (Boehringer Mannheim-Yamanouchi, 30-fold diluted) was added and, after stirring, the mixture was allowed to react at 4° C. for 30 minutes. Thereafter, the cells were washed three times by centrifugation (1,200 rpm, 5 minutes) with PBS, further suspended in PBS, and submitted for analysis using FCS-1 flow cell sorter (Nippon Bunko).
Control tests without the addition of KM-871 were performed by the same analytical procedure as mentioned above.
The results are shown in FIG. 32. The fluorescence intensity peak for EM-871 showed shifting to the right (increased fluorescence intensity) as compared with the control, indicating that this antibody had reacted directly with ganglioside GD, on the surface of the SK-MEL-28 and G361 cells.
10. In vitro Antitumor Effect of Anti-GD3 Chimera Antibody KM-871 (Complement-dependent Cytotoxicity:CDC)
(a) Preparation of Target Cells
Suspensions of the target cells, namely SK-MEL-28 cells and G361 cells, in RPMI-1640 medium supplemented with 10% FCS were respectively adjusted to a cell concentration of 1×107 cells/ml, Na2 51CrO4 was added to a concentration of 100 μCi/1×107 cells, reaction was performed at 37° C. for 1 hour and, thereafter, the cells were washed three times with the medium. The cells were allowed to stand in the medium at 4° C. for 30 minutes for spontaneous dissociation and then centrifuged (1,200 rpm, 5 minutes), and the medium was added to adjust the cell concentration to 4×106 cells/ml.
(b) Preparation of Complement
Serum from three healthy subjects were mixed to sere as a source of human complement.
(c) CDC Activity Measurement
To U-bottomed 96-well plates was added anti-GD3 chimera antibody KM-871 or anti-GD3 mouse antibody KM-641 to final concentrations within the range of. 0.05 μg/ml to 50 μg/ml. To each well were added 2×105 target cells. Reaction was performed at room temperature for 1 hour. The supernatants were removed by centrifugation (1,200 rpm, 5 minutes), the complement solution prepared as described above under (b) was added in 150-μl portions (final concentration of 15 v/v %), and reaction was performed at 37° C. for 1 hour. After centrifugation (1,200 rpm, 5 minutes), the amount of 51Cr in each supernatant was determined using a γ-counter. The amount of 51Cr resulting from spontaneous dissociation was determined by adding to target cells the medium alone in place of the antibody and complement solution and determining the amount of 51Cr in the supernatant in the same manner as described above. The total amount of free 51Cr was determined by adding 5 N sodium hydroxide in place of the antibody and complement solution, proceeding as described above, and determining the amount of 51Cr in the supernatant.
The CDC activity was calculated as follows: CDC activity ( % ) = Amount of 51 Cr in sample supernatent -           Amount of 51 Cr   resulting from spontaneous              dissociation Total amount of       free 51 Cr -           Amount of 51 Cr resulting from spontaneous             dissociation × 100
Figure US06495666-20021217-M00001
The results are shown in FIG. 33. It was found from the results that chimera antibody KM-871 showed strong cytotoxicity against the SK-MEL-28 and G361 cells as compared to mouse antibody KM-641, which indicates that chimera antibody KM-871 would be clinically more useful than mouse antibody KM-641.
11. In vitro Antitumor Effect of Anti-GD3 Chimera Antibody KM-871 (Antibody-dependent Cell-mediated Cytotoxicity:ADCC)
(a) Preparation of Target Cells
The target SK-MEL-28 and G361 cells were prepared in the same manner as described above under 10 (a).
(b) Preparation of Effector Cells
50 ml of human venous blood was collected, 0.5 ml of heparin sodium (Takeda Chemical Industries, 1,000 units/ml) was added, and the mixture was stirred gently and then centrifuged (1,500 to 1,800 g, 15 minutes) using Polymorphprep (Nycomed Pharma AS). The layer of lymphocytes and polymorphonuclear leukocytes was separated, and the cells were washed three times by centrifugation (1,500 to 1,800 g, 15 minutes) with PRMI-1640 medium and suspended in RPMI-1640 medium supplemented with 10% FCS (5×106 cells/ml) for use as effector cells.
(c) ADCC Activity Measurement
To U-bottomed 96-well plates was added anti-GD3 chimera antibody KM-871 or anti-GD3 mouse antibody KM-641 in 50-μl portions to final concentrations of 10 μg/ml. To each well were added 100 μl of target cells (2×105 cells) and 50 μl of effector cells (5×105 cells) so that the ratio of effector cells to target cells should be 50:1 or 100:1. Reaction was performed at 37° C. for 4 hours, followed by centrifugation (1,200 rpm, 5 minutes). The amount of 51Cr in each supernatant was determined using a γ-counter. The amount of 51Cr resulting from spontaneous dissociation was determined by adding to target cells the medium alone in place of the antibody and effector cells and measuring the amount of 5Cr in the supernatant in the same manner as described above. The total amount of free 51Cr was determined by adding 5 N sodium hydroxide in place of the antibody and effector cells, proceeding as described above, and determining the amount of 51Cr in the supernatant.
The ADCC activity was calculated as follows: ADCC activity ( % ) = Amount of 51 Cr in sample supernatent -       Amount of 51 Cr        resulting from spontaneous dissociation Total amount of       free 51 Cr -       Amount of 51 Cr        resulting from spontaneous dissociation × 100
Figure US06495666-20021217-M00002
As a control, the medium was added in place of the antibodies, the procudure mentioned above was followed, and the amount of 51Cr in the control supernatant was determined for ADCC activity calculation.
The results are shown in FIG. 34. In both cases of using lymphocytes and polymorphonuclear leukocytes as effector cells, chimera antibody KM-871 showed strong antibody-dependent cell-mediated cytotoxicity against the G361 cells as compared to mouse antibody KM-641, which indicates that chimera antibody KM-871 would be clinically more useful than mouse antibody K-641.
12. In vivo Therapeutic Effect of Anti-GD3 Chimera Antibody KM-871 (Therapeutic Effect on Transplanted Tumors)
Human malignant melanoma G361 cells (1×107 cells) were intracutaneously transplanted to abdominal parts of Balb/c nu/nu mice (5 to 7 aminals/group). Anti-GD3 chimera antibody KM-871 (100 μg/animal) was intravenously administered into mice four times starting from the next day of the transplantation of the tumor cells. To the mice of the control group, 100 μg of anti-GD3 mouse antibody KM-641 or anti-Sialyl Lea monoclonal antibody AMC-462 (ECACC 86050801) was intravenously administered five times starting from the day of the transplantation. The therapeutic effect on transplanted tumor cells was determined in terms of tumor size (volume) calculated by the following equation.
Tumor size (mm3)=0.4×a×b 1
a: major axis
b: minor axis
The results are shown in FIG. 35. As shown in FIG. 35, remarkable growth of tumors was observed in the control group to which AMC-462 was administered, while the growth of tumors was significantly suppressed in the group to which KM-641 was administered. KM-871 showed further stronger therapeutic effect so that the establishment of tumors was completely inhibited 65 days after the transplantation.
Reference Example 1
(1) Preparation of Antigen
In 30 ml of chloroform/methanol (2/1) solution were dissolved 5 μg of ganglioside GD3 having NeuAcα2→8NeuAcα2→3Gal sugar chain on its non-reducing end (Iatron), 0.5 μmol of dipalmitoylphosphatidylcholine (Sigma Chemical Co.), 0.5 μmol of cholesterol (Nakalai Tesque), 0.05 μmol of dipalmitoylphosphatidylic acid (Sigma Chemical Co.) and 2.5 μg of Lipid A (Funakoshi Pharmaceutical Co., Ltd.). The thus prepared solution was warmed at 45° C. to remove solvents, thereby obtaining a uniform lipid thin film. After completely removing solvents by sacking the film for 1 hour using a vacuum pump, the resulting film was mixed with 0. 5 ml of PBS solution and stirred at 45° C. to obtain an antigen solution.
(2) Preparation of Antibody-producing Cells
Mice was immunized by administering 0.5 ml of the antigen solution obtained in the above step (1) into the caudal vein once every week for 7 weeks. For further immunization, ganglioside GD3-positive SK-MEL-28 (ATCC HTB 72) cells (1×107 cells) were intraperitoneally administered once every week for three weeks. On the third day after the last administration, spleen cells were prepared from each mouse for use in the following cell fusion.
(3) Preparation of Mouse Myeloma Cells
A mouse myeloma cell line P3-U1 having 8-azaguanine resistance was cultured in normal medium (RPMI1640 medium containing 10% fetal calf serum (FCS)) to obtain 2×107 or more cells for use in the following cell fusion as parent cells.
(4) Preparation of Hybridoma
The spleen cells and myeloma cells obtained in the above steps (2) and (3), respectively, were used in ratio of 10:1 and subjected to cell fusion in accordance with the aforementioned procedure. After culturing at 37° C. for 14 days in HAT medium (prepared by supplementing normal medium with hypoxanthin (10−4 M), thymidine (1.5×10−5 M) and aminopterine (4×10−7 M)) under an atmosphere of 5% CO2, fused cells were selected and cultured in HT medium (HAT medium minus aminopterine). Then, active wells were selected by assaying the antibody titers against ganglioside GD3, and after changing to normal medium, cloning was repeated twice. Thereafter, hybridomas which showed specific reaction with ganglioside GD3 were selected by enzyme immunoassay or immunohistological evaluation (ABC method). That is, 2 ng of ganglioside GM3 (purified from dog erythrocytes in accordance with the method of Nores et al., J. Immunol., 139, 3171 (1987)) and 2 ng of ganglioside GD3 (Iatron) were dissolved in 2 ml ethanol solution containing 5 ng of phosphatidylcholine (Sigma Chemical Co.) and 2.5 ng of cholesterol (Sigma Chemical Co.). The thus prepared solution was distributed in 20-μl portions into wells of a 96 well microtiter plate (Flow Laboratories), air-dried and then subjected to blocking using 1% BSA-PBS solution. Each of the resulting hybridoma culture supernatant was distributed in 50-μl portions into the plate wells carrying a ganglioside GD3 adsorbed and the plate carrying ganglioside GM3 adsorbed thereon, and the reaction was allowed to proceed at 4° C. for 18 hours.
After the reaction, a hybridoma strain capable of producing mouse monoclonal antibody specifically reactive with ganglioside GD3 but not with ganglioside GM3 were selected in accordance with the known method (Cancer Res., 46, 4438 (1986)). This mouse monoclonal antibody was named “mouse monoclonal antibody KM-641”, and the hybridoma which produces this antibody was named “hybridoma KM-641”. The hybridoma KM-641 has been deposited on Sep. 27, 1990, with Fermentation Research Institute, Agency of Industrial Science and Technology 1-3, Higashi 1 chome, Tsukuba-shi, Ibaraki, JAPAN, under the Budapest Treaty and has been assigned the designation as FERM BP-3116.
The present invention provides a process for the production of humanized chimera antibody wherein the chimera antibody can be produced easily without changing any one of amino acids of its mouse antibody variable region, as well as a humanized chimera antibody specific for ganglioside GD3.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention.
19 1 812 DNA Artificial Sequence Description of Artificial Sequence Rat Hybridoma 1 aaagtcagac aactttgtag agtaggttct atcaatccta ctgcaatcca acatcactga 60 ggacaaatgt ttatactgag gaacctggtc ttgtgtgata cgtactttct gtgggaagca 120 gatacgcact ctcatgtggc tcctgaattt cccatcacag aatgatacat cttgagtcct 180 aaaatttaag tacaccatca gtgtcagcac ctggtgagga aatgcaaatc tctcctggat 240 ccacccaacc ttgggttgaa aagccaaagc tgggcctggg tactcactgg tgtgcagcc 299 atg gac agg ctt act tcc tca ttc cta ctg ctg atg gtc cct gca t 345 Met Asp Arg Leu Thr Ser Ser Phe Leu Leu Leu Met Val Pro Ala -19 -15 -10 -5 gtgagtacca aagcttccta agtgatgaac tgttctatcc tcacctgttc aaacctgacc 405 tcctcccctt tgatttctcc acag at gtc ctg tct cag gtt act ctg aaa 455 Tyr Val Leu Ser Gln Val Thr Leu Lys 1 5 gaa tct ggc cct ggg ata ttg cag ccc tcc cag acc ctc agt ctg act 503 Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln Thr Leu Ser Leu Thr 10 15 20 tgc tct ttc tct ggg ttt tca ctg agc act tat ggt atg tgt gtg ggc 551 Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Tyr Gly Met Cys Val Gly 25 30 35 tgg att cgt cag tct tca ggg aag ggt ctg gag tgg ctg gca aac gtt 599 Trp Ile Arg Gln Ser Ser Gly Lys Gly Leu Glu Trp Leu Ala Asn Val 40 45 50 tgg tgg agt gat gct aag tac tac aat cca tct ctg aaa aac cgg ctc 647 Trp Trp Ser Asp Ala Lys Tyr Tyr Asn Pro Ser Leu Lys Asn Arg Leu 55 60 65 aca atc tcc aag gac acc tcc aac aac caa gca ttc ctc aag atc acc 695 Thr Ile Ser Lys Asp Thr Ser Asn Asn Gln Ala Phe Leu Lys Ile Thr 70 75 80 85 aat atg gac act gca gat act gcc ata tac tac tgt gct ggg aga ggg 743 Asn Met Asp Thr Ala Asp Thr Ala Ile Tyr Tyr Cys Ala Gly Arg Gly 90 95 100 gct acg gag ggt ata gtg agc ttt gat tac tgg ggc cac gga gtc atg 791 Ala Thr Glu Gly Ile Val Ser Phe Asp Tyr Trp Gly His Gly Val Met 105 110 115 gtc aca gtc tcc tca ggtaag 812 Val Thr Val Ser Ser 120 2 141 PRT Artificial Sequence Rat hybridoma 2 Met Asp Arg Leu Thr Ser Ser Phe Leu Leu Leu Met Val Pro Ala Tyr 1 5 10 15 Val Leu Ser Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln 20 25 30 Pro Ser Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu 35 40 45 Ser Thr Tyr Gly Met Cys Val Gly Trp Ile Arg Gln Ser Ser Gly Lys 50 55 60 Gly Leu Glu Trp Leu Ala Asn Val Trp Trp Ser Asp Ala Lys Tyr Tyr 65 70 75 80 Asn Pro Ser Leu Lys Asn Arg Leu Thr Ile Ser Lys Asp Thr Ser Asn 85 90 95 Asn Gln Ala Phe Leu Lys Ile Thr Asn Met Asp Thr Ala Asp Thr Ala 100 105 110 Ile Tyr Tyr Cys Ala Gly Arg Gly Ala Thr Glu Gly Ile Val Ser Phe 115 120 125 Asp Tyr Trp Gly His Gly Val Met Val Thr Val Ser Ser 130 135 140 3 19 PRT Artificial Sequence Rat Hybridoma 3 Met Asp Arg Leu Thr Ser Ser Phe Leu Leu Leu Met Val Pro Ala Tyr 1 5 10 15 Val Leu Ser 4 126 PRT Artificial Sequence Rat hybridoma 4 Tyr Val Leu Ser Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu 1 5 10 15 Gln Pro Ser Gln Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser 20 25 30 Leu Ser Thr Tyr Gly Met Cys Val Gly Trp Ile Arg Gln Ser Ser Gly 35 40 45 Lys Gly Leu Glu Trp Leu Ala Asn Val Trp Trp Ser Asp Ala Lys Tyr 50 55 60 Tyr Asn Pro Ser Leu Lys Asn Arg Leu Thr Ile Ser Lys Asp Thr Ser 65 70 75 80 Asn Asn Gln Ala Phe Leu Lys Ile Thr Asn Met Asp Thr Ala Asp Thr 85 90 95 Ala Ile Tyr Tyr Cys Ala Gly Arg Gly Ala Thr Glu Gly Ile Val Ser 100 105 110 Phe Asp Tyr Trp Gly His Gly Val Met Val Thr Val Ser Ser 115 120 125 5 46 DNA Artificial Sequence cDNA KM-641 5 agctgaattc gggcccgata tcaagcttgt cgactctaga ggtacc 46 6 29 DNA Artificial Sequence DNA KM-641 6 gatgaagaca gatatcgcag ccacagttc 29 7 403 DNA Artificial Sequence cDNA KM-641 7 aattcggcac gag ctt gtc ctt gtt ttc aaa ggt gtt cag tgt gaa gtg 49 Leu Val Leu Val Phe Lys Gly Val Gln Cys Glu Val 1 5 10 acg ctg gtg gag tct ggg gga gac ttt gtg aaa cct gga ggg tcc ctg 97 Thr Leu Val Glu Ser Gly Gly Asp Phe Val Lys Pro Gly Gly Ser Leu 15 20 25 aaa gtc tcc tgt gca gcc tct gga ttc gct ttc agt cat tat gcc atg 145 Lys Val Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser His Tyr Ala Met 30 35 40 tct tgg gtt cgc cag act ccg gcg aag agg ctg gaa tgg gtc gca ggt 193 Ser Trp Val Arg Gln Thr Pro Ala Lys Arg Leu Glu Trp Val Ala Gly 45 50 55 60 att agt agt ggt ggt agt ggc acc tac tat tca gac agt gta aag ggc 241 Ile Ser Ser Gly Gly Ser Gly Thr Tyr Tyr Ser Asp Ser Val Lys Gly 65 70 75 cga ttc acc att tcc aga gac aat gcc aag aac acc ctg tac ctg caa 289 Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln 80 85 90 atg cgc agt ctg agg tct gag gac tcg gcc atg tat ttc tgt aca aga 337 Met Arg Ser Leu Arg Ser Glu Asp Ser Ala Met Tyr Phe Cys Thr Arg 95 100 105 gtt aaa ctg gga acc tac tac ttt gac tcc tgg ggc caa ggc acc act 385 Val Lys Leu Gly Thr Tyr Tyr Phe Asp Ser Trp Gly Gln Gly Thr Thr 110 115 120 ctc act gtc tcc tca gct 403 Leu Thr Val Ser Ser Ala 125 130 8 130 PRT Artificial Sequence cDNA KM-641 8 Leu Val Leu Val Phe Lys Gly Val Gln Cys Glu Val Thr Leu Val Glu 1 5 10 15 Ser Gly Gly Asp Phe Val Lys Pro Gly Gly Ser Leu Lys Val Ser Cys 20 25 30 Ala Ala Ser Gly Phe Ala Phe Ser His Tyr Ala Met Ser Trp Val Arg 35 40 45 Gln Thr Pro Ala Lys Arg Leu Glu Trp Val Ala Gly Ile Ser Ser Gly 50 55 60 Gly Ser Gly Thr Tyr Tyr Ser Asp Ser Val Lys Gly Arg Phe Thr Ile 65 70 75 80 Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Arg Ser Leu 85 90 95 Arg Ser Glu Asp Ser Ala Met Tyr Phe Cys Thr Arg Val Lys Leu Gly 100 105 110 Thr Tyr Tyr Phe Asp Ser Trp Gly Gln Gly Thr Thr Leu Thr Val Ser 115 120 125 Ser Ala 130 9 408 DNA Artificial Sequence cDNA KM-641 9 aattcggcac gagtcagcct ggac atg atg tcc tct gct cag ttc ctt ggt 51 Met Met Ser Ser Ala Gln Phe Leu Gly -20 -15 ctc ctg ttg ctc tgt ttt caa ggt acc aga tgt gat atc cag atg aca 99 Leu Leu Leu Leu Cys Phe Gln Gly Thr Arg Cys Asp Ile Gln Met Thr -10 -5 -1 1 5 cag act gca tcc tcc ctg cct gcc tct ctg gga gac aga gtc acc atc 147 Gln Thr Ala Ser Ser Leu Pro Ala Ser Leu Gly Asp Arg Val Thr Ile 10 15 20 agt tgc agt gca agt cag gac att agt aat tat tta aac tgg tat caa 195 Ser Cys Ser Ala Ser Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln 25 30 35 cag aaa cca gat gga act gtt aaa ctc ctg atc ttt tac tca tca aat 243 Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile Phe Tyr Ser Ser Asn 40 45 50 tta cac tcg gga gtc cca tca agg ttc agt ggc ggt ggg tcc ggg aca 291 Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly Gly Gly Ser Gly Thr 55 60 65 gat tat tct ctc acc atc agc aac ctg gag cct gaa gat att gcc act 339 Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Pro Glu Asp Ile Ala Thr 70 75 80 85 tac ttt tgt cat cag tat agt aag ctt ccg tgg acg ttc ggt gga ggc 387 Tyr Phe Cys His Gln Tyr Ser Lys Leu Pro Trp Thr Phe Gly Gly Gly 90 95 100 acc aag ctg gaa atc aaa cgg 408 Thr Lys Leu Glu Ile Lys Arg 105 10 128 PRT Artificial Sequence cDNA KM-641 10 Met Met Ser Ser Ala Gln Phe Leu Gly Leu Leu Leu Leu Cys Phe Gln -20 -15 -10 -5 Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Thr Ala Ser Ser Leu Pro -1 1 5 10 Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Ser Ala Ser Gln Asp 15 20 25 Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val 30 35 40 Lys Leu Leu Ile Phe Tyr Ser Ser Asn Leu His Ser Gly Val Pro Ser 45 50 55 60 Arg Phe Ser Gly Gly Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser 65 70 75 Asn Leu Glu Pro Glu Asp Ile Ala Thr Tyr Phe Cys His Gln Tyr Ser 80 85 90 Lys Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 95 100 105 11 35 DNA Artificial Sequence CDS (9)..(35) cDNA KM-641 11 aattcacc atg gag ttt ggg ctc agc tgg ctt ttt 35 Met Glu Phe Gly Leu Ser Trp Leu Phe 1 5 12 9 PRT Artificial Sequence Description of Artificial Sequence cDNA KM-641 12 Met Glu Phe Gly Leu Ser Trp Leu Phe 1 5 13 42 DNA Artificial Sequence H chain variable region 13 caa ggt acc acg tta act gtc tcc tca gcc tcc acc aag ggc 42 Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly 1 5 10 14 14 PRT Artificial Sequence H chain variable region 14 Gln Gly Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly 1 5 10 15 61 DNA Artificial Sequence CDS (3)..(59) cDNA KM-641 15 ag ctt cca tgg acg ttc ggt gga ggc acc aag ctg gaa atc aaa cga 47 Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 1 5 10 15 act gtg gct gca cc 61 Thr Val Ala Ala 16 19 PRT Artificial Sequence cDNA KM-641 16 Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr 1 5 10 15 Val Ala Ala 17 27 DNA Artificial Sequence pchCKA7 insert 17 aaacgaactg tggctgcacc atctgtc 27 18 130 PRT Artificial Sequence cDNA KM-641 18 Leu Val Leu Val Phe Lys Gly Val Gln Cys Glu Val Thr Leu Val Glu 1 5 10 15 Ser Gly Gly Asp Phe Val Lys Pro Gly Gly Ser Leu Lys Val Ser Cys 20 25 30 Ala Ala Ser Gly Phe Ala Phe Ser His Tyr Ala Met Ser Trp Val Arg 35 40 45 Gln Thr Pro Ala Lys Arg Leu Glu Trp Val Ala Tyr Ile Ser Ser Gly 50 55 60 Gly Ser Gly Thr Tyr Tyr Ser Asp Ser Val Lys Gly Arg Phe Thr Ile 65 70 75 80 Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Arg Ser Leu 85 90 95 Arg Ser Glu Asp Ser Ala Met Tyr Phe Cys Thr Arg Val Lys Leu Gly 100 105 110 Thr Tyr Tyr Phe Asp Ser Trp Gly Gln Gly Thr Thr Leu Thr Val Ser 115 120 125 Ser Ala 130 19 128 PRT Artificial Sequence light chain variable region 19 Met Met Ser Ser Ala Gln Phe Leu Gly Leu Leu Leu Leu Cys Phe Gln 1 5 10 15 Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Thr Ala Ser Ser Leu Pro 20 25 30 Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Ser Ala Ser Gln Asp 35 40 45 Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val 50 55 60 Lys Leu Leu Ile Phe Tyr Ser Ser Asn Leu His Ser Gly Val Pro Ser 65 70 75 80 Arg Phe Ser Gly Gly Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser 85 90 95 Asn Leu Glu Pro Glu Asp Ile Ala Thr Tyr Phe Cys His Gln Tyr Ser 100 105 110 Lys Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 115 120 125

Claims (2)

What is claimed is:
1. A polypeptide comprising the amino acid sequence of residues 11 to 129 defined in SEQ ID NO:18.
2. A polypeptide comprising the amino acid sequence of residues 21 to 127 defined in SEQ ID NO:19.
US09/764,304 1991-09-18 2001-01-19 Polypeptide composing human chimeric antibody Expired - Fee Related US6495666B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/764,304 US6495666B2 (en) 1991-09-18 2001-01-19 Polypeptide composing human chimeric antibody
US10/265,713 US6965024B2 (en) 1991-09-18 2002-10-08 Process for producing humanized chimera antibody

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP23837591 1991-09-18
JP3-238375 1991-09-18
JPHEI-3-238375 1991-09-18
US94767492A 1992-09-17 1992-09-17
US29217894A 1994-08-17 1994-08-17
US08/408,133 US5750078A (en) 1991-09-18 1995-03-21 Process for producing humanized chimera antibody
US08/454,680 US5866692A (en) 1991-09-18 1995-05-31 Process for producing humanized chimera antibody
US09/225,322 US6437098B1 (en) 1991-09-18 1999-01-05 Human chimeric antibody specific for the ganglioside GD3
US09/764,304 US6495666B2 (en) 1991-09-18 2001-01-19 Polypeptide composing human chimeric antibody

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/225,322 Division US6437098B1 (en) 1991-09-18 1999-01-05 Human chimeric antibody specific for the ganglioside GD3

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/265,713 Division US6965024B2 (en) 1991-09-18 2002-10-08 Process for producing humanized chimera antibody

Publications (2)

Publication Number Publication Date
US20020026036A1 US20020026036A1 (en) 2002-02-28
US6495666B2 true US6495666B2 (en) 2002-12-17

Family

ID=17029253

Family Applications (10)

Application Number Title Priority Date Filing Date
US08/408,133 Expired - Lifetime US5750078A (en) 1991-09-18 1995-03-21 Process for producing humanized chimera antibody
US08/454,683 Expired - Lifetime US5807548A (en) 1991-09-18 1995-05-31 Method of treating cancer using a chimera antibody
US08/454,680 Expired - Lifetime US5866692A (en) 1991-09-18 1995-05-31 Process for producing humanized chimera antibody
US09/225,322 Expired - Fee Related US6437098B1 (en) 1991-09-18 1999-01-05 Human chimeric antibody specific for the ganglioside GD3
US09/764,304 Expired - Fee Related US6495666B2 (en) 1991-09-18 2001-01-19 Polypeptide composing human chimeric antibody
US10/166,626 Expired - Fee Related US7045129B2 (en) 1991-09-18 2002-06-12 Method of treating cancer including administering a human chimeric antibody specific for the ganglioside GD3
US10/265,713 Expired - Fee Related US6965024B2 (en) 1991-09-18 2002-10-08 Process for producing humanized chimera antibody
US11/228,206 Abandoned US20070073043A1 (en) 1991-09-18 2005-09-19 Process for producing humanized chimera antibody
US11/228,319 Abandoned US20060058512A1 (en) 1991-09-18 2005-09-19 Process for producing humanized chimera antibody
US11/228,293 Abandoned US20060057139A1 (en) 1991-09-18 2005-10-25 Process for producing humanized chimera antibody

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US08/408,133 Expired - Lifetime US5750078A (en) 1991-09-18 1995-03-21 Process for producing humanized chimera antibody
US08/454,683 Expired - Lifetime US5807548A (en) 1991-09-18 1995-05-31 Method of treating cancer using a chimera antibody
US08/454,680 Expired - Lifetime US5866692A (en) 1991-09-18 1995-05-31 Process for producing humanized chimera antibody
US09/225,322 Expired - Fee Related US6437098B1 (en) 1991-09-18 1999-01-05 Human chimeric antibody specific for the ganglioside GD3

Family Applications After (5)

Application Number Title Priority Date Filing Date
US10/166,626 Expired - Fee Related US7045129B2 (en) 1991-09-18 2002-06-12 Method of treating cancer including administering a human chimeric antibody specific for the ganglioside GD3
US10/265,713 Expired - Fee Related US6965024B2 (en) 1991-09-18 2002-10-08 Process for producing humanized chimera antibody
US11/228,206 Abandoned US20070073043A1 (en) 1991-09-18 2005-09-19 Process for producing humanized chimera antibody
US11/228,319 Abandoned US20060058512A1 (en) 1991-09-18 2005-09-19 Process for producing humanized chimera antibody
US11/228,293 Abandoned US20060057139A1 (en) 1991-09-18 2005-10-25 Process for producing humanized chimera antibody

Country Status (10)

Country Link
US (10) US5750078A (en)
EP (2) EP0533199B1 (en)
JP (1) JP3440104B2 (en)
AT (2) ATE239078T1 (en)
AU (2) AU669124B2 (en)
CA (1) CA2078539C (en)
DE (2) DE69233706T2 (en)
DK (1) DK0533199T3 (en)
ES (1) ES2195995T3 (en)
PT (1) PT533199E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003557A1 (en) * 2005-04-21 2007-01-04 Andres Forero Method for treating cancer using premedication

Families Citing this family (264)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2078539C (en) * 1991-09-18 2005-08-02 Kenya Shitara Process for producing humanized chimera antibody
US5939532A (en) * 1993-09-07 1999-08-17 Kyowa Hakko Kogyo Co., Ltd Humanized antibodies to ganglioside GM2
US6042828A (en) 1992-09-07 2000-03-28 Kyowa Hakko Kogyo Co., Ltd. Humanized antibodies to ganglioside GM2
US5830470A (en) * 1992-09-07 1998-11-03 Kyowa Hakko Kogyo Co., Ltd. Humanized antibodies to ganglioside GM2
US6824777B1 (en) 1992-10-09 2004-11-30 Licentia Ltd. Flt4 (VEGFR-3) as a target for tumor imaging and anti-tumor therapy
US7105159B1 (en) 1992-11-05 2006-09-12 Sloan-Kettering Institute For Cancer Research Antibodies to prostate-specific membrane antigen
WO1995014041A1 (en) * 1993-11-19 1995-05-26 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human medulloblastomatous cell
US6088323A (en) * 1996-07-16 2000-07-11 Sony Corporation Optical disk, optical disk device, and optical disk recording method
WO1999060025A1 (en) * 1998-05-20 1999-11-25 Kyowa Hakko Kogyo Co., Ltd. Gene recombinant antibodies
US6986890B1 (en) * 1996-11-21 2006-01-17 Kyowa Hakko Kogyo Co., Ltd. Anti-human VEGF receptor Flt-1 monoclonal antibody
AU731927B2 (en) 1996-11-21 2001-04-05 Kyowa Hakko Kirin Co., Ltd. Anti-human VEGF receptor F1t-1 monoclonal antibody
US20030170248A1 (en) * 1997-12-23 2003-09-11 Jeffrey R. Stinson Humanized monoclonal antibodies that protect against shiga toxin induced disease
EP2311490A3 (en) 1998-07-13 2011-05-04 Board of Regents, The University of Texas System Uses of antibodies to aminophospholipids for cancer treatment
EP1119371B1 (en) * 1998-10-09 2010-11-24 Vegenics Limited Flt4 (VEGFR-3) AS A TARGET FOR TUMOR IMAGING AND ANTI-TUMOR THERAPY
US7026449B2 (en) * 1999-01-05 2006-04-11 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
ES2420835T3 (en) 1999-04-09 2013-08-27 Kyowa Hakko Kirin Co., Ltd. Procedure to control the activity of immunofunctional molecules
JP4689124B2 (en) * 1999-09-30 2011-05-25 協和発酵キリン株式会社 Human-type complementarity-determining region-grafted antibody against ganglioside GD3 and derivative of antibody against ganglioside GD3
AU4884001A (en) 2000-04-21 2001-11-07 Fuso Pharmaceutical Ind Novel collectins
DK1279677T3 (en) * 2000-04-25 2007-05-07 Otsuka Pharma Co Ltd GD3 mimetic peptides
US6946292B2 (en) * 2000-10-06 2005-09-20 Kyowa Hakko Kogyo Co., Ltd. Cells producing antibody compositions with increased antibody dependent cytotoxic activity
BR0114475A (en) 2000-10-06 2003-12-23 Kyowa Hakko Kogyo Kk Cell for the production of antibody composition
AU2002248372B8 (en) * 2001-01-19 2008-03-20 Vegenics Limited FLT4(VEGFR-3) as a target for tumor imaging and anti-tumor therapy
CA2441863A1 (en) * 2001-03-29 2002-10-10 Kenya Shitara Drugs containing genetically modified antibody against ganglioside gd3
US6820011B2 (en) * 2001-04-11 2004-11-16 The Regents Of The University Of Colorado Three-dimensional structure of complement receptor type 2 and uses thereof
WO2003024191A2 (en) * 2001-09-21 2003-03-27 Raven Biotechnologies, Inc. Antibodies that bind to cancer-associated antigen cytokeratin 8 and methods of use thereof
US7148038B2 (en) * 2001-10-16 2006-12-12 Raven Biotechnologies, Inc. Antibodies that bind to cancer-associated antigen CD46 and methods of use thereof
US20110045005A1 (en) 2001-10-19 2011-02-24 Craig Crowley Compositions and methods for the treatment of tumor of hematopoietic origin
WO2003034903A2 (en) * 2001-10-23 2003-05-01 Psma Development Company, L.L.C. Psma antibodies and protein multimers
US20050215472A1 (en) 2001-10-23 2005-09-29 Psma Development Company, Llc PSMA formulations and uses thereof
JPWO2003084569A1 (en) 2002-04-09 2005-08-11 協和醗酵工業株式会社 Antibody composition-containing medicine
US20040048312A1 (en) * 2002-04-12 2004-03-11 Ronghao Li Antibodies that bind to integrin alpha-v-beta-6 and methods of use thereof
CN1662254A (en) * 2002-05-03 2005-08-31 雷文生物技术公司 ALCAM and ALCAM modulators
US7893218B2 (en) 2003-06-16 2011-02-22 Stowers Institute For Medical Research Antibodies that specifically bind SOST peptides
ES2356444T3 (en) * 2002-06-19 2011-04-08 Raven Biotechnologies, Inc. SPECIFIC INTERIORIZING ANTIBODIES FOR CELLULAR SURFACE DIANA RAAG10.
CN104001181B (en) 2002-07-15 2017-05-10 得克萨斯大学体系董事会 Selected antibody binding to anionic phospholipids and amino phosphatidic and treating and diagnosing application thereof
AU2003284010A1 (en) * 2002-10-04 2004-05-04 Rinat Neuroscience Corp. Methods for treating cardiac arrhythmia and preventing death due to cardiac arrhythmia using ngf antagonists
AU2003304238A1 (en) * 2002-10-08 2005-01-13 Rinat Neuroscience Corp. Methods for treating post-surgical pain by administering an anti-nerve growth factor antagonist antibody and compositions containing the same
UA80447C2 (en) 2002-10-08 2007-09-25 Methods for treating pain by administering nerve growth factor antagonist and opioid analgesic
PL211654B1 (en) 2002-10-08 2012-06-29 Rinat Neuroscience Corp Methods for treating post-surgical pain by admisnistering a nerve growth factor antagonist and compositions containing the same
JP2006519762A (en) * 2002-10-09 2006-08-31 ライナット ニューロサイエンス コーポレイション Methods for treating Alzheimer's disease using antibodies against amyloid β peptide and compositions thereof
EP1629090B1 (en) * 2002-11-06 2014-03-05 iBio, Inc. Expression of foreign sequences in plants using trans-activation system
US7692063B2 (en) * 2002-11-12 2010-04-06 Ibio, Inc. Production of foreign nucleic acids and polypeptides in sprout systems
US7683238B2 (en) * 2002-11-12 2010-03-23 iBio, Inc. and Fraunhofer USA, Inc. Production of pharmaceutically active proteins in sprouted seedlings
US8148608B2 (en) * 2004-02-20 2012-04-03 Fraunhofer Usa, Inc Systems and methods for clonal expression in plants
WO2004043239A2 (en) * 2002-11-13 2004-05-27 Raven Biotechnologies, Inc. Antigen pipa and antibodies that bind thereto
MXPA05005558A (en) 2002-11-26 2005-07-26 Protein Design Labs Inc CHIMERIC AND HUMANIZED ANTIBODIES TO alpha5beta1 INTEGRIN THAT MODULATE ANGIOGENESIS.
US7285268B2 (en) 2002-11-26 2007-10-23 Pdl Biopharma, Inc. Chimeric and humanized antibodies to α5β1 integrin that modulate angiogenesis
US7276589B2 (en) * 2002-11-26 2007-10-02 Pdl Biopharma, Inc. Chimeric and humanized antibodies to α5β1 integrin that modulate angiogenesis
CA2511295A1 (en) * 2002-12-23 2004-07-15 Rinat Neuroscience Corp. Methods for treating taxol-induced sensory neuropathy
US7569364B2 (en) 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
NZ587852A (en) 2002-12-24 2012-02-24 Rinat Neuroscience Corp Anti-NGF antibodies and methods using same
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
EP1594956A4 (en) 2003-02-03 2007-08-01 Fraunhofer Usa Inc System for expression of genes in plants
AU2004213044A1 (en) 2003-02-19 2004-09-02 Rinat Neuroscience Corp. Methods for treating pain by administering a nerve growth factor antagonist and an NSAID and compositions containing the same
US20070014786A1 (en) * 2003-03-20 2007-01-18 Rinat Neuroscience Corp. Methods for treating taxol-induced gut disorder
JP2007524605A (en) * 2003-04-03 2007-08-30 ピーディーエル バイオファーマ,インコーポレイティド Inhibitors of integrin α5β1 and their use for control of tissue granulation
CU23403A1 (en) * 2003-04-23 2009-08-04 Centro Inmunologia Molecular RECOMBINANT ANTIBODIES AND FRAGMENTS RECOGNIZING GANGLIOSIDE N-GLICOLIL GM3 AND ITS USE FOR DIAGNOSIS AND TUMOR TREATMENT
AU2004272972A1 (en) 2003-05-22 2005-03-24 Fraunhofer Usa, Inc. Recombinant carrier molecule for expression, delivery and purification of target polypeptides
US20050232926A1 (en) * 2003-06-06 2005-10-20 Oncomax Acquisition Corp. Antibodies specific for cancer associated antigen SM5-1 and uses thereof
CN1279056C (en) * 2003-06-06 2006-10-11 马菁 Specific antibody of tumor-associated antigen SM5-1 and use thereof
EP1658506A2 (en) * 2003-08-18 2006-05-24 Tethys Bioscience, Inc. Methods for reducing complexity of a sample using small epitope antibodies
NZ545968A (en) * 2003-09-18 2010-01-29 Raven Biotechnologies Inc KID3 and KID3 antibodies that bind thereto
JP4219932B2 (en) 2003-10-01 2009-02-04 協和発酵キリン株式会社 Antibody stabilization method and stabilized solution antibody preparation
CA2551097A1 (en) 2003-12-23 2005-07-14 Rinat Neuroscience Corp. Agonist anti-trkc antibodies and methods using same
CA2560508A1 (en) * 2004-03-24 2005-10-06 Pdl Biopharma, Inc. Use of anti-alpha5beta1 antibodies to inhibit cancer cell proliferation
JP5301152B2 (en) 2004-04-07 2013-09-25 ライナット ニューロサイエンス コーポレイション Method for treating bone cancer pain by administering a nerve growth factor antagonist
US7572895B2 (en) * 2004-06-07 2009-08-11 Raven Biotechnologies, Inc. Transferrin receptor antibodies
ES2673972T3 (en) 2004-07-09 2018-06-26 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Soluble forms of the glycoprotein G of the hendra and nipah viruses
EA016357B1 (en) 2004-07-30 2012-04-30 Ринат Ньюросайенс Корп. Antibodies directed against amyloid-beta peptide and methods using same
EP1846767B1 (en) * 2005-01-12 2012-06-06 MacroGenics West, Inc. Kid31 and antibodies that bind thereto
WO2006083852A2 (en) * 2005-01-31 2006-08-10 Raven Biotechnologies, Inc. Luca2 and antibodies that bind thereto
US20060171952A1 (en) * 2005-02-02 2006-08-03 Mather Jennie P JAM-3 and antibodies that bind thereto
US7674619B2 (en) 2005-02-02 2010-03-09 Mather Jennie P ADAM-9 modulators
AU2006210606B2 (en) 2005-02-03 2012-03-22 Macrogenics West, Inc. Antibodies to Oncostatin M receptor
CN104059150B (en) * 2005-02-04 2018-10-02 宏观基因有限公司 In conjunction with the antibody and its application method of EPHA2
AR054260A1 (en) * 2005-04-26 2007-06-13 Rinat Neuroscience Corp METHODS OF TREATMENT OF DISEASES OF THE LOWER MOTOR NEURONE AND COMPOSITIONS USED IN THE SAME
MY148086A (en) 2005-04-29 2013-02-28 Rinat Neuroscience Corp Antibodies directed against amyloid-beta peptide and methods using same
EP1907425B1 (en) 2005-07-22 2014-01-08 Y's Therapeutics Co., Ltd. Anti-cd26 antibodies and methods of use thereof
KR101446025B1 (en) * 2005-08-03 2014-10-01 아이바이오, 인크. Compositions and methods for production of immunoglobulins
SI3045182T1 (en) 2005-11-14 2018-08-31 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide for treating cluster headache
US8277816B2 (en) * 2006-02-13 2012-10-02 Fraunhofer Usa, Inc. Bacillus anthracis antigens, vaccine compositions, and related methods
CA2642054C (en) * 2006-02-13 2017-11-21 Fraunhofer Usa, Inc. Influenza antigens, vaccine compositions, and related methods
WO2007095320A2 (en) * 2006-02-13 2007-08-23 Fraunhofer Usa, Inc. Hpv antigens, vaccine compositions, and related methods
US7985548B2 (en) * 2006-03-03 2011-07-26 The United States Of America As Represented By The Department Of Health And Human Services Materials and methods directed to asparagine synthetase and asparaginase therapies
EP1996942A1 (en) * 2006-03-10 2008-12-03 Tethys Bioscience, Inc. Multiplex protein fractionation
US8663635B2 (en) * 2006-03-21 2014-03-04 The Regents Of The University Of California N-cadherin: target for cancer diagnosis and therapy
CA2646597A1 (en) * 2006-03-21 2007-09-27 The Regents Of The University Of California N-cadherin and ly6 e: targets for cancer diagnosis and therapy
WO2009124281A2 (en) * 2008-04-04 2009-10-08 The Regents Of The University Of California Novel antibodies against cancer target block tumor growth, angiogenesis and metastasis
US20100278821A1 (en) * 2006-03-21 2010-11-04 The Regents Of The University Of California N-cadherin: target for cancer diagnosis and therapy
US8293245B2 (en) * 2006-04-20 2012-10-23 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Methods and compositions based on Shiga toxin type 1 protein
NZ572561A (en) * 2006-06-07 2012-05-25 Bioalliance Cv Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
CA2668800A1 (en) * 2006-11-08 2008-06-05 Macrogenics West, Inc. Tes7 and antibodies that bind thereto
LT3345607T (en) 2006-12-29 2023-01-10 Ossifi-Mab Llc Methods of altering bone growth by administration of sost or wise antagonist or agonist
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
US20100261640A1 (en) 2007-04-10 2010-10-14 Branco Luis M Soluble and membrane anchored forms of lassa virus subunit proteins
US8778348B2 (en) * 2007-04-28 2014-07-15 Ibio Inc. Trypanosoma antigens, vaccine compositions, and related methods
WO2009009759A2 (en) 2007-07-11 2009-01-15 Fraunhofer Usa, Inc. Yersinia pestis antigens, vaccine compositions, and related methods
NZ583367A (en) 2007-07-16 2012-10-26 Genentech Inc Anti-cd79b antibodies and immunoconjugates and methods of use
CN101802013B (en) 2007-07-16 2014-07-02 健泰科生物技术公司 Humanized anti-CD79b antibodies and immunoconjugates and methods of use
CA2694644A1 (en) * 2007-07-27 2009-02-05 Vanitha Ramakrishnan Pharmaceutical combinations
ES2550757T3 (en) 2007-12-18 2015-11-12 Bioalliance C.V. Antibodies that recognize an epitope containing carbohydrates in CD43 and ACE expressed in cancer cells and methods of use thereof
MX2010008437A (en) 2008-01-31 2010-11-25 Genentech Inc Anti-cd79b antibodies and immunoconjugates and methods of use.
CA2720365C (en) 2008-04-02 2019-01-15 Macrogenics, Inc. Bcr-complex-specific antibodies and methods of using same
WO2009150623A1 (en) 2008-06-13 2009-12-17 Pfizer Inc Treatment of chronic prostatitis
TWI516501B (en) 2008-09-12 2016-01-11 禮納特神經系統科學公司 Pcsk9 antagonists
HUE036126T2 (en) 2008-09-19 2018-06-28 Pfizer Stable liquid antibody formulation
WO2010037046A1 (en) 2008-09-28 2010-04-01 Fraunhofer Usa, Inc. Humanized neuraminidase antibody and methods of use thereof
US8703920B2 (en) * 2008-11-10 2014-04-22 The Regents Of The University Of California Fully human antibodies against N-cadherin
WO2010065544A2 (en) * 2008-12-01 2010-06-10 The Johns Hopkins University Diagnostic and treatment methods for cancer based on immune inhibitors
ES2614803T3 (en) 2009-01-23 2017-06-02 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Methods and compositions based on Shiga toxin type 2 protein
WO2010086828A2 (en) 2009-02-02 2010-08-05 Rinat Neuroscience Corporation Agonist anti-trkb monoclonal antibodies
EP2427479B1 (en) 2009-05-07 2018-11-21 The Regents of The University of California Antibodies and methods of use thereof
WO2010146511A1 (en) 2009-06-17 2010-12-23 Pfizer Limited Treatment of overactive bladder
CN102686610A (en) 2009-06-18 2012-09-19 辉瑞公司 Anti notch-1 antibodies
EP2464661B1 (en) 2009-08-13 2018-01-17 The Johns Hopkins University Methods of modulating immune function with anti-b7-h7cr antibodies
CA2776144C (en) 2009-09-29 2020-10-27 Fraunhofer Usa, Inc. Influenza hemagglutinin antibodies, compositions, and related methods
US20110118178A1 (en) * 2009-11-13 2011-05-19 Sanofi-Aventis Deutschland Gmbh Method of treatment of diabetes type 2 comprising add-on therapy to insulin glargine and metformin
WO2011079283A1 (en) * 2009-12-23 2011-06-30 Bioalliance C.V. Anti-epcam antibodies that induce apoptosis of cancer cells and methods using same
US8298535B2 (en) 2010-02-24 2012-10-30 Rinat Neuroscience Corp. Anti-IL-7 receptor antibodies
SG183847A1 (en) 2010-03-04 2012-10-30 Macrogenics Inc Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof
US8802091B2 (en) 2010-03-04 2014-08-12 Macrogenics, Inc. Antibodies reactive with B7-H3 and uses thereof
KR20120138241A (en) 2010-03-11 2012-12-24 화이자 인코포레이티드 Antibodies with ph dependent antigen binding
RS55042B1 (en) 2010-06-22 2016-12-30 Regeneron Pharma Mice expressing an immunoglobulin hybrid light chain with a human variable region
JP2013533286A (en) 2010-07-30 2013-08-22 セントルイス ユニバーシティ How to treat pain
JP6146913B2 (en) 2010-08-02 2017-06-14 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Mice producing a binding protein containing a VL domain
EP2606067B1 (en) 2010-08-19 2018-02-21 Zoetis Belgium S.A. Anti-ngf antibodies and their use
US9441048B2 (en) * 2010-11-22 2016-09-13 The United States Of America As Represented By The Secretary Of Health And Human Services Antibody for 3′-isoLM1 and 3′,6′-iso-LD1 gangliosides
MX346995B (en) 2010-12-15 2017-04-06 Wyeth Llc Anti-notch1 antibodies.
SG195072A1 (en) 2011-05-21 2013-12-30 Macrogenics Inc Cd3-binding molecules capable of binding to human and non-human cd3
CN103747804B (en) 2011-06-10 2016-08-17 梅尔莎纳医疗公司 Protein-polymer-drug conjugate
SG11201400100SA (en) 2011-09-09 2014-06-27 Univ Osaka Dengue-virus serotype neutralizing antibodies
EP2776470A2 (en) 2011-11-11 2014-09-17 Rinat Neuroscience Corporation Antibodies specific for trop-2 and their uses
DK2793567T3 (en) 2011-12-20 2019-04-15 Regeneron Pharma Humanized light chain mice
WO2013093707A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Human growth hormone receptor antagonist antibodies and methods of use thereof
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
US10114023B2 (en) 2012-04-18 2018-10-30 Massachusetts Institute Of Technology Method of enhancing the efficacy of anti-hepatocyte growth factor receptor breast cancer therapy by administering an inhibitor of menaINV
WO2013184871A1 (en) 2012-06-06 2013-12-12 Zoetis Llc Caninized anti-ngf antibodies and methods thereof
WO2014008263A2 (en) 2012-07-02 2014-01-09 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Paramyxovirus and methods of use
US10189906B2 (en) 2012-11-01 2019-01-29 Max-Delrück-Centrum Für Molekulare Medizin Antibody that binds CD269 (BCMA) suitable for use in the treatment of plasma cell diseases such as multiple myeloma and autoimmune diseases
RU2015115956A (en) 2012-11-09 2017-01-10 Пфайзер Инк. ANTIBODIES SPECIFIC TO THE THROMBOCYTE B GROWTH FACTOR, AND THEIR COMPOSITION AND APPLICATION
JP2016500058A (en) 2012-11-12 2016-01-07 レッドウッド バイオサイエンス, インコーポレイテッド Methods for producing compounds and conjugates
US9310374B2 (en) 2012-11-16 2016-04-12 Redwood Bioscience, Inc. Hydrazinyl-indole compounds and methods for producing a conjugate
CN104870423A (en) 2012-11-16 2015-08-26 加利福尼亚大学董事会 Pictet-spengler ligation for protein chemical modification
WO2014093394A1 (en) 2012-12-10 2014-06-19 Mersana Therapeutics, Inc. Protein-polymer-drug conjugates
WO2014093379A1 (en) 2012-12-10 2014-06-19 Mersana Therapeutics, Inc. Auristatin compounds and conjugates thereof
RS60026B1 (en) 2013-02-18 2020-04-30 Vegenics Pty Ltd Ligand binding molecules and uses thereof
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
EP2968520B1 (en) 2013-03-14 2021-05-12 MacroGenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor
US9302005B2 (en) 2013-03-14 2016-04-05 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
CA2910553A1 (en) 2013-04-30 2014-11-06 Universite De Montreal Novel biomarkers for acute myeloid leukemia
CN105189560A (en) 2013-05-07 2015-12-23 瑞纳神经科学公司 Anti-glucagon receptor antibodies and methods of use thereof
WO2014192915A1 (en) 2013-05-30 2014-12-04 国立大学法人 千葉大学 Inflammatory disease treatment composition including anti-myosin regulatory light-chain polypeptide antibody
TWI623551B (en) 2013-08-02 2018-05-11 輝瑞大藥廠 Anti-cxcr4 antibodies and antibody-drug conjugates
US10259875B2 (en) 2013-10-01 2019-04-16 Mayo Foundation For Medical Education And Research Methods for treating cancer in patients with elevated levels of BIM
KR102355745B1 (en) 2013-10-11 2022-01-26 아사나 바이오사이언시스 엘엘씨 Protein-polymer-drug conjugates
EP3054991B1 (en) 2013-10-11 2019-04-03 Mersana Therapeutics, Inc. Protein-polymer-drug conjugates
WO2015073580A1 (en) 2013-11-13 2015-05-21 Pfizer Inc. Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
JP6745218B2 (en) 2013-11-27 2020-08-26 レッドウッド バイオサイエンス, インコーポレイテッド Methods for producing hydrazinyl-pyrrolo compounds and conjugates
WO2015087187A1 (en) 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
US20150266976A1 (en) 2014-03-21 2015-09-24 Regeneron Pharmaceuticals, Inc. Vl antigen binding proteins exhibiting distinct binding characteristics
AU2015230933B2 (en) 2014-03-21 2020-08-13 Teva Pharmaceuticals International Gmbh Antagonist antibodies directed against calcitonin gene-related peptide and methods using same
RU2016141307A (en) 2014-03-21 2018-04-24 Регенерон Фармасьютикалз, Инк. EXCELLENT HUMAN ANIMALS THAT MAKE SINGLE-DOMAIN BINDING PROTEINS
KR102275513B1 (en) 2014-04-30 2021-07-08 화이자 인코포레이티드 Anti-ptk7 antibody-drug conjugates
WO2015179654A1 (en) 2014-05-22 2015-11-26 Mayo Foundation For Medical Education And Research Distinguishing antagonistic and agonistic anti b7-h1 antibodies
TWI718098B (en) 2014-05-29 2021-02-11 美商宏觀基因股份有限公司 Tri-specific binding molecules and methods of use thereof
CA2947484C (en) 2014-06-06 2023-05-09 Redwood Bioscience, Inc. Anti-her2 antibody-maytansine conjugates and methods of use thereof
TWI693232B (en) 2014-06-26 2020-05-11 美商宏觀基因股份有限公司 Covalently bonded diabodies having immunoreactivity with pd-1 and lag-3, and methods of use thereof
WO2016014530A1 (en) 2014-07-21 2016-01-28 Novartis Ag Combinations of low, immune enhancing. doses of mtor inhibitors and cars
WO2016014148A1 (en) 2014-07-23 2016-01-28 Mayo Foundation For Medical Education And Research Targeting dna-pkcs and b7-h1 to treat cancer
WO2016034968A1 (en) 2014-09-02 2016-03-10 Pfizer Inc. Therapeutic antibody
LT3262071T (en) 2014-09-23 2020-06-25 F. Hoffmann-La Roche Ag Method of using anti-cd79b immunoconjugates
CA2962603A1 (en) 2014-09-26 2016-03-31 Macrogenics, Inc. Bi-specific monovalent diabodies that are capable of binding cd19 and cd3, and uses thereof
CN107108721B (en) 2014-09-29 2021-09-07 杜克大学 Bispecific molecules comprising an HIV-1 envelope targeting arm
RU2017111228A (en) 2014-10-18 2018-11-21 Пфайзер Инк. Anti-IL-7R Antibody Compositions
ES2822228T3 (en) 2014-10-24 2021-04-29 Univ Leland Stanford Junior Compositions and methods for inducing phagocytosis of MHC class I positive cells and counteracting resistance to anti-CD47 / SIRPA
US9982057B2 (en) 2014-11-17 2018-05-29 Pelican Therapeutics, Inc. Human TNFRSF25 antibody
TWI595006B (en) 2014-12-09 2017-08-11 禮納特神經系統科學公司 Anti-pd-1 antibodies and methods of use thereof
WO2016103093A1 (en) 2014-12-23 2016-06-30 Pfizer Inc. Stable aqueous antibody formulation for anti tnf alpha antibodies
CN107250161A (en) 2015-01-26 2017-10-13 宏观基因有限公司 Include the multivalent molecule of DR5 binding structural domains
AU2016210918A1 (en) 2015-01-28 2017-07-13 Pfizer Inc., Stable aqueous anti- vascular endothelial growth factor (VEGF) antibody formulation
WO2016126608A1 (en) 2015-02-02 2016-08-11 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
WO2016149678A1 (en) 2015-03-19 2016-09-22 Regeneron Pharmaceuticals, Inc. Non-human animals that select for light chain variable regions that bind antigen
SI3283106T1 (en) 2015-04-13 2022-04-29 Pfizer Inc. Therapeutic antibodies and their uses
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
TWI773646B (en) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 Lag-3-binding molecules and methods of use thereof
TW201709929A (en) 2015-06-12 2017-03-16 宏觀基因股份有限公司 Combination therapy for the treatment of cancer
US10877045B2 (en) 2015-07-21 2020-12-29 Saint Louis University Compositions and methods for diagnosing and treating endometriosis-related infertility
CA3025896A1 (en) 2015-07-23 2017-01-26 The Regents Of The University Of California Antibodies to coagulation factor xia and uses thereof
MD3456346T2 (en) 2015-07-30 2021-11-30 Macrogenics Inc PD-1 and LAG-3 binding molecules and methods of use thereof
WO2017027392A1 (en) 2015-08-07 2017-02-16 Novartis Ag Treatment of cancer using chimeric cd3 receptor proteins
RU2731202C2 (en) 2015-10-08 2020-08-31 Макродженикс, Инк. Combined therapy for cancer treatment
JP7030689B2 (en) 2015-10-23 2022-03-07 ファイザー インコーポレイティッド Anti-IL-2 antibody and its composition and use
WO2017075045A2 (en) 2015-10-30 2017-05-04 Mayo Foundation For Medical Education And Research Antibodies to b7-h1
US20190209697A1 (en) 2015-11-05 2019-07-11 The Regents Of The University Of California Cells labelled with lipid conjugates and methods of use thereof
EP3380620A1 (en) 2015-11-23 2018-10-03 Novartis AG Optimized lentiviral transfer vectors and uses thereof
UA125611C2 (en) 2015-12-14 2022-05-04 Макродженікс, Інк. Bispecific molecules having immunoreactivity in relation to pd-1 and ctla-4, and methods of their use
ES2944597T3 (en) 2015-12-30 2023-06-22 Novartis Ag Enhanced Efficacy Immune Effector Cell Therapies
JP7078536B2 (en) 2016-01-08 2022-05-31 アルトゥルバイオ, インコーポレイテッド Tetravalent anti-PSGL-1 antibody and its use
TW201936640A (en) 2016-01-21 2019-09-16 美商輝瑞股份有限公司 Antibodies specific for epidermal growth factor receptor variant III and their uses
TW201730212A (en) 2016-02-17 2017-09-01 宏觀基因股份有限公司 ROR1-binding molecules, and methods of use thereof
US10443054B2 (en) 2016-03-06 2019-10-15 Massachusetts Institute Of Technology Methods for identifying and treating invasive/metastatic breast cancers
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
WO2017180813A1 (en) 2016-04-15 2017-10-19 Macrogenics, Inc. Novel b7-h3 binding molecules, antibody drug conjugates thereof and methods of use thereof
CN109641012A (en) 2016-06-07 2019-04-16 马克思-德布鲁克-分子医学中心亥姆霍兹联合会 Chimeric antigen receptor and CAR-T cell in conjunction with BCMA
EP3468998B1 (en) 2016-06-09 2021-12-01 Pelican Therapeutics, Inc. Anti-tnfrsf25 antibodies
KR20230172612A (en) 2016-10-19 2023-12-22 더 스크립스 리서치 인스티튜트 Chimeric antigen receptor effector cell switches with humanized targeting moieties and/or optimized chimeric antigen receptor interacting domains and uses thereof
CN110913891A (en) 2016-12-05 2020-03-24 图兰恩教育基金管理人 Arenavirus monoclonal antibodies and uses
WO2018111340A1 (en) 2016-12-16 2018-06-21 Novartis Ag Methods for determining potency and proliferative function of chimeric antigen receptor (car)-t cells
LT3558391T (en) 2016-12-23 2022-07-11 Immunogen, Inc. Immunoconjugates targeting adam9 and methods of use thereof
MX2019007404A (en) 2016-12-23 2019-09-27 Macrogenics Inc Adam9-binding molecules, and methods of use thereof.
EP3574005B1 (en) 2017-01-26 2021-12-15 Novartis AG Cd28 compositions and methods for chimeric antigen receptor therapy
US20190367600A1 (en) 2017-01-27 2019-12-05 A-Clip Institute, Co., Ltd. Prophylactic and/or therapeutic agent of infectious diseases or inflammatory diseases
EP3577134A1 (en) 2017-01-31 2019-12-11 Novartis AG Treatment of cancer using chimeric t cell receptor proteins having multiple specificities
BR112019017628A2 (en) 2017-02-24 2020-07-07 Macrogenics, Inc. cd137 x ta binding molecule, pharmaceutical compositions, use of cd137 x ta binding molecule, cd137 binding molecule, use of cd137 binding molecule, her2 / neu binding molecule, use of her2 binding molecule / neu, and use of a composition
EP3589647A1 (en) 2017-02-28 2020-01-08 Novartis AG Shp inhibitor compositions and uses for chimeric antigen receptor therapy
JP2020510435A (en) 2017-03-03 2020-04-09 ライナット ニューロサイエンス コーポレイション Anti-GITR antibody and method of using the same
JP2020512825A (en) 2017-04-12 2020-04-30 ファイザー・インク Antibodies with conditional affinity and methods of use thereof
TWI790120B (en) 2017-06-02 2023-01-11 美商輝瑞大藥廠 Antibodies specific for flt3 and their uses
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
CN111094349A (en) 2017-08-23 2020-05-01 马克思-德布鲁克-分子医学中心亥姆霍兹联合会 Chimeric antigen receptor and CAR-T cells binding CXCR5
US20210040205A1 (en) 2017-10-25 2021-02-11 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019084288A1 (en) 2017-10-25 2019-05-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
US20210179709A1 (en) 2017-10-31 2021-06-17 Novartis Ag Anti-car compositions and methods
SI3720279T1 (en) * 2017-12-05 2022-11-30 Regeneron Pharmaceuticals, Inc. Mice having an engineered immunoglobulin lambda light chain and uses thereof
US11795226B2 (en) 2017-12-12 2023-10-24 Macrogenics, Inc. Bispecific CD16-binding molecules and their use in the treatment of disease
US11377500B2 (en) 2018-02-01 2022-07-05 Pfizer Inc. Antibodies specific for CD70 and their uses
KR20200128018A (en) 2018-02-01 2020-11-11 화이자 인코포레이티드 Chimeric antigen receptor targeting CD70
JP7337079B2 (en) 2018-02-15 2023-09-01 マクロジェニクス,インコーポレーテッド Mutant CD3 binding domains and their use in combination therapy for the treatment of disease
BR112020016859A2 (en) 2018-02-28 2020-12-29 Pfizer Inc. IL-15 VARIANTS AND USES OF THE SAME
EP3765499A1 (en) 2018-03-12 2021-01-20 Zoetis Services LLC Anti-ngf antibodies and methods thereof
CN112189018A (en) 2018-04-20 2021-01-05 汉诺威医学院 Chimeric antigen receptor and CAR-T cells that bind to herpes virus antigens
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
WO2019224715A1 (en) 2018-05-23 2019-11-28 Pfizer Inc. Antibodies specific for cd3 and uses thereof
KR20230146098A (en) 2018-05-23 2023-10-18 화이자 인코포레이티드 Antibodies specific for gucy2c and uses thereof
EP3801769A1 (en) 2018-05-25 2021-04-14 Novartis AG Combination therapy with chimeric antigen receptor (car) therapies
WO2019237035A1 (en) 2018-06-08 2019-12-12 Intellia Therapeutics, Inc. Compositions and methods for immunooncology
WO2019234680A1 (en) 2018-06-08 2019-12-12 Pfizer Inc. Methods of treating iron metabolic disease with a neutralizing antibody binding erhythroferrone
MX2020013466A (en) 2018-06-26 2021-04-19 Immunogen Inc Immunoconjugates targeting adam9 and methods of use thereof.
AR116109A1 (en) 2018-07-10 2021-03-31 Novartis Ag DERIVATIVES OF 3- (5-AMINO-1-OXOISOINDOLIN-2-IL) PIPERIDINE-2,6-DIONA AND USES OF THE SAME
CN110760002A (en) * 2018-07-25 2020-02-07 南京金斯瑞生物科技有限公司 Humanized anti-human CTLA4 monoclonal antibody and preparation method and application thereof
TWI821474B (en) 2018-12-07 2023-11-11 大陸商江蘇恆瑞醫藥股份有限公司 Cd3 antibody and its pharmaceutical use thereof
MX2021007392A (en) 2018-12-20 2021-08-24 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives.
KR20210129672A (en) 2019-02-15 2021-10-28 노파르티스 아게 Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
JP2022520811A (en) 2019-02-15 2022-04-01 ノバルティス アーゲー 3- (1-oxo-5- (piperidine-4-yl) isoindoline-2-yl) piperidine-2,6-dione derivative and its use
US20220162291A1 (en) 2019-03-19 2022-05-26 Albert Einstein College Of Medicine Monoclonal antibodies for prevention and treatment of herpes simplex viral infections
WO2020193628A1 (en) 2019-03-25 2020-10-01 Max-Delbrück-Centrum Für Molekulare Medizin In Der Helmholtz-Gemeinschaft Enhancement of cytolytic t-cell activity by inhibiting ebag9
WO2021123902A1 (en) 2019-12-20 2021-06-24 Novartis Ag Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome
JP2023517044A (en) 2020-03-09 2023-04-21 ファイザー・インク Fusion proteins and uses thereof
WO2021207348A1 (en) 2020-04-07 2021-10-14 Albert Einstein College Of Medicine Method of treating and preventing ocular disease with hsv-2 delta gd
WO2021252920A1 (en) 2020-06-11 2021-12-16 Novartis Ag Zbtb32 inhibitors and uses thereof
JP2023531676A (en) 2020-06-23 2023-07-25 ノバルティス アーゲー Dosing Regimens Containing 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione Derivatives
WO2022010798A1 (en) 2020-07-06 2022-01-13 Kiromic BioPharma, Inc. Mesothelin isoform binding molecules and chimeric pd1 receptor molecules, cells containing the same and uses thereof
CA3189291A1 (en) 2020-07-14 2022-01-20 Pfizer Inc. Recombinant vaccinia virus
EP4182346A1 (en) 2020-07-17 2023-05-24 Pfizer Inc. Therapeutic antibodies and their uses
JP2023536164A (en) 2020-08-03 2023-08-23 ノバルティス アーゲー Heteroaryl-substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
AU2021334107A1 (en) 2020-08-24 2023-03-02 Charité - Universitätsmedizin Berlin A chimeric antigen receptor construct encoding a checkpoint inhibitory molecule and an immune stimulatory cytokine and car-expressing cells recognizing CD44v6
AU2021334950A1 (en) 2020-08-24 2023-03-02 Charité - Universitätsmedizin Berlin Chimeric antigen receptor (CAR)-expressing cells recognizing CEA
CA3202233A1 (en) 2020-11-18 2022-05-27 Kiromic BioPharma, Inc. Gamma-delta t cell manufacturing processes and chimeric pd1 receptor molecules
TW202304979A (en) 2021-04-07 2023-02-01 瑞士商諾華公司 USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
AR125468A1 (en) 2021-04-27 2023-07-19 Novartis Ag VIRAL VECTOR PRODUCTION SYSTEM
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258128A (en) 1984-06-06 1985-12-20 Kyowa Hakko Kogyo Co Ltd Rat monoclonal antibody
EP0173494A2 (en) 1984-08-27 1986-03-05 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by DNA splicing and expression
WO1986001533A1 (en) 1984-09-03 1986-03-13 Celltech Limited Production of chimeric antibodies
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0255694A1 (en) 1986-07-30 1988-02-10 Teijin Limited Mouse-human chimera antibody and its components and gene therefor
EP0266663A1 (en) 1986-10-27 1988-05-11 Bristol-Myers Squibb Company Chimeric antibody with specificity to human tumor antigen
EP0267615A2 (en) 1986-11-13 1988-05-18 Sloan-Kettering Institute For Cancer Research Compositions and method for treatment of cancer using monoclonal antibody against GD3 ganglioside together with IL-2
EP0314161A1 (en) 1987-10-28 1989-05-03 Bristol-Myers Squibb Company Human immunoglobulines produced by recombinant DNA techniques
US4849509A (en) 1987-02-20 1989-07-18 The Wistar Institute Monoclonal antibodies against melanoma-associated antigens and hybrid cell lines producing these antibodies
EP0332879A2 (en) 1988-02-19 1989-09-20 Mect Corporation Monoclonal antibody recognizing un-natural ganglioside GD3
WO1991009967A1 (en) 1989-12-21 1991-07-11 Celltech Limited Humanised antibodies
EP0493686A1 (en) 1990-11-30 1992-07-08 Kyowa Hakko Kogyo Co., Ltd. Monoclonal antibodies to glycolipid carbohydrate chains
EP0171496B1 (en) 1984-08-15 1993-05-26 Research Development Corporation of Japan Process for the production of a chimera monoclonal antibody
US5750078A (en) 1991-09-18 1998-05-12 Kyowa Hakko Kogyo Co., Ltd. Process for producing humanized chimera antibody

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258128A (en) 1984-06-06 1985-12-20 Kyowa Hakko Kogyo Co Ltd Rat monoclonal antibody
EP0171496B1 (en) 1984-08-15 1993-05-26 Research Development Corporation of Japan Process for the production of a chimera monoclonal antibody
EP0173494A2 (en) 1984-08-27 1986-03-05 The Board Of Trustees Of The Leland Stanford Junior University Chimeric receptors by DNA splicing and expression
WO1986001533A1 (en) 1984-09-03 1986-03-13 Celltech Limited Production of chimeric antibodies
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0255694A1 (en) 1986-07-30 1988-02-10 Teijin Limited Mouse-human chimera antibody and its components and gene therefor
EP0266663A1 (en) 1986-10-27 1988-05-11 Bristol-Myers Squibb Company Chimeric antibody with specificity to human tumor antigen
EP0267615A2 (en) 1986-11-13 1988-05-18 Sloan-Kettering Institute For Cancer Research Compositions and method for treatment of cancer using monoclonal antibody against GD3 ganglioside together with IL-2
US4849509A (en) 1987-02-20 1989-07-18 The Wistar Institute Monoclonal antibodies against melanoma-associated antigens and hybrid cell lines producing these antibodies
EP0314161A1 (en) 1987-10-28 1989-05-03 Bristol-Myers Squibb Company Human immunoglobulines produced by recombinant DNA techniques
EP0332879A2 (en) 1988-02-19 1989-09-20 Mect Corporation Monoclonal antibody recognizing un-natural ganglioside GD3
WO1991009967A1 (en) 1989-12-21 1991-07-11 Celltech Limited Humanised antibodies
EP0493686A1 (en) 1990-11-30 1992-07-08 Kyowa Hakko Kogyo Co., Ltd. Monoclonal antibodies to glycolipid carbohydrate chains
US5750078A (en) 1991-09-18 1998-05-12 Kyowa Hakko Kogyo Co., Ltd. Process for producing humanized chimera antibody
US5866692A (en) 1991-09-18 1999-02-02 Kyowa Hakko Kogyo Co., Ltd. Process for producing humanized chimera antibody

Non-Patent Citations (31)

* Cited by examiner, † Cited by third party
Title
A. F. LoBuglio et al., "Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response" Proc. Natl. Acad. Sci. USA, 86, 4220, 1989.
A. F. LoBugulio et al., "Phase I Trial of Multiple Large Doses of Murine Monoclonal Antibody CO17-1A" J. Nat. Cancer Institute, 80, 932, 1988.
A. N. Houghton et al., "Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: A phase I trial in patients with malignant melanoa", Proc. Natl. Acad. Sci. USA, 82, 1242, 1985.
B. M. Mueller et al., "Enhancement of Antibody-Dependent Cytotoxicity With A Chimeric Anti-GD2 Antibody" J. Immuno., 144, 1382, 1990.
Barker et al., "Effect of a Chimeric Anti-Ganglioside GC2 Antibody on Cell-mediated Lysis of Human Neuroblastoma Cells", Cancer Research 51(1):1440149 (1991).* *
C.S., Pukel et al., GD3, A Prominent Ganglioside of Human Melanoma J. Exp. Med., 155, 1133, 1982.
E. Nudelman et al., Characterization of a Human Melanoma-associated Ganglioside Antigen Defined by a Monoclonal Antibody, 4.2% J. Biol. Chem. 257, 12752, 1982.
H. Miyaji et al., "Expression of human beta-interferon in Namalwa KJM-1 which was adapted to serum-free medium" Cytotechnology, 3, 133, 1990.* *
H. Sakano et al., "Sequences at the somatic recombination sites of immunoglobulin light-chain genes" Nature, 280, 288, 1979.* *
Harris et al., TiB Tech 11:42-44 1993.* *
J. A. Werkmeister et al., "Fluctuations in the Expression of an Glycolipid Antigen Associated with Differentiation of Melanoma Cells Monitored by a Monoclonal Antibody, Leo Mel 3" Cancer Res. 47, 225, 1987.
K. Kameyama et al., "Convenient plasmid vectors for construction of chimeric mouse/human antibodies" FEBS Letters, 244, 301, 1989.* *
L. Reichmann et al., "Reshaping human antibodies for therapy" Nature, 332, 323, 1988.* *
M. B. Khazaeli et al., "Phase I Trial of Multiple Large Doses of Murine Monoclonal antibody CO17-1A" J. Nat. Cancer Institute, 80, 937, 1987.
M.-Y. Yeh et al.. "A Cell-Surface Antigen Which is Present in the Ganglioside Franction and Shared By Human Melanomas" Int. J. Cancer, 29, 269, 1982.
N. S. Courtenay-Luck et al., "Development of Primary and Secondary Immune Responses to Mouse Monoclonal Antibodies used in the Diagnosis and Therapy of Malignant Neoplasms" Cancer Res. 46, 6489, 1986.
Paul, Fundamental Immunology, Chapter 8, p. 242., 1993. *
Queen et al., PNAS 86:10029-1033 1989.* *
R. O. Dillman et al., "Therapy of Chronic Lymphocytic Leukemia and Cutaneous T-Cell Lymphoma With T101 Monoclonal Antibody" J. Clin. Oncol., 2, 881, 1984.
Ritter et al., "Antibody Response to Immunization with Purified GD3 Ganglioside and GD3 Derivatives (Lactones, Amide and Gangliosidol) in the Mouse", Immunobiol. 182(1):32-43 (1990).* *
S. D. Gillies et al., "High-level expression of chimeric antibodies using adapted cDNA variable region cassettes" J. Immunol. Method, 125 191, 1989.* *
S. L. Morrison et al., "Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains" Proc. Natl. Acad. Sci. USA, 81, 6851, 1984.* *
S. Subramani et al., "Expression of the Mouse Dihydrofolate Reductase Complementary Deoxyribonucleic Acid in Simian Virus 40 Vectors" Mol. Cell. Biol. 1, 854, 1981.* *
Sonnino et al., The Molecular Immunology of Complex Charbohydrates Eds Wu & Adams Plenum Press New York 437-464 1988.* *
T. Mizukami et al., "A New SV40-Based Vector Developed for cDNA Expression in Animal Cells" J. Biochem. 101, 1307, 1987.* *
W. Roeder et al., "Linkage of the four gamma subclass heavy chain genes" Proc. Natl. Acad. Sci. USA, 78 474, 1981.* *
W. Roeder et al., "Linkage of the four γ subclass heavy chain genes" Proc. Natl. Acad. Sci. USA, 78 474, 1981.*
Waldmann Science 252:1657-1661 1991.* *
Y. Kuwana et al., "Expression of Chimeric Receptor Composes of Immunoglobulin-Derived V Resions and T-Cell Receptor-Derived C Regions" Biochem. Biophys. Res. Commun., 149, 960, 1987.* *
Y. Kuwana et al., "Production of the constant domain of murine T-cell receptor beta-chain in Escherichia coli" FEBS Letters, 219, 360, 1987.* *
Y. Kuwana et al., "Production of the constant domain of murine T-cell receptor β-chain in Escherichia coli" FEBS Letters, 219, 360, 1987.*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003557A1 (en) * 2005-04-21 2007-01-04 Andres Forero Method for treating cancer using premedication

Also Published As

Publication number Publication date
DE69233027D1 (en) 2003-06-05
EP1013761B1 (en) 2007-08-08
EP0533199A2 (en) 1993-03-24
DK0533199T3 (en) 2003-08-25
US20070073043A1 (en) 2007-03-29
EP1013761A2 (en) 2000-06-28
ES2195995T3 (en) 2003-12-16
AU691116B2 (en) 1998-05-07
CA2078539C (en) 2005-08-02
US5750078A (en) 1998-05-12
US6965024B2 (en) 2005-11-15
AU2458192A (en) 1993-03-25
EP0533199B1 (en) 2003-05-02
US20030166876A1 (en) 2003-09-04
US5807548A (en) 1998-09-15
EP1013761A3 (en) 2004-11-03
US20060058512A1 (en) 2006-03-16
CA2078539A1 (en) 1993-03-19
JPH05304989A (en) 1993-11-19
US20030095964A1 (en) 2003-05-22
US6437098B1 (en) 2002-08-20
DE69233706D1 (en) 2007-09-20
AU6069496A (en) 1996-10-24
EP0533199A3 (en) 1993-10-06
US7045129B2 (en) 2006-05-16
ATE239078T1 (en) 2003-05-15
US20020026036A1 (en) 2002-02-28
PT533199E (en) 2003-09-30
US5866692A (en) 1999-02-02
JP3440104B2 (en) 2003-08-25
AU669124B2 (en) 1996-05-30
DE69233027T2 (en) 2004-03-11
ATE369424T1 (en) 2007-08-15
US20060057139A1 (en) 2006-03-16
DE69233706T2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
US6495666B2 (en) Polypeptide composing human chimeric antibody
EP0598998B1 (en) Humanized antibodies reacting with the ganglioside GM2
US6872392B2 (en) Humanized antibodies
US5354847A (en) Chimeric antibody with specificity to human tumor antigen
CA2280875C (en) Remedies for lymphocytic tumors
GB2216126A (en) Antibodies to Campath-1
US5939532A (en) Humanized antibodies to ganglioside GM2
JP3565572B2 (en) Humanized antibodies
US20030175281A1 (en) Enhancer for antibody to lymphocytic tumors
Nakamura et al. Humanized antibodies to ganglioside GM 2

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: KYOWA HAKKO KIRIN CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:KYOWA HAKKO KOGYO CO., LTD.;REEL/FRAME:022542/0823

Effective date: 20081001

Owner name: KYOWA HAKKO KIRIN CO., LTD.,JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:KYOWA HAKKO KOGYO CO., LTD.;REEL/FRAME:022542/0823

Effective date: 20081001

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141217