US6435148B1 - Switchable support element - Google Patents

Switchable support element Download PDF

Info

Publication number
US6435148B1
US6435148B1 US09/946,566 US94656601A US6435148B1 US 6435148 B1 US6435148 B1 US 6435148B1 US 94656601 A US94656601 A US 94656601A US 6435148 B1 US6435148 B1 US 6435148B1
Authority
US
United States
Prior art keywords
housing
slide
support element
bore
outer housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/946,566
Other versions
US20020038636A1 (en
Inventor
Michael Haas
Bodo Rörig
Dieter Schmidt
Joachim Seitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INA Waelzlager Schaeffler OHG
Original Assignee
INA Waelzlager Schaeffler OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INA Waelzlager Schaeffler OHG filed Critical INA Waelzlager Schaeffler OHG
Priority to US09/946,566 priority Critical patent/US6435148B1/en
Assigned to INA WALZLAGER SCHAEFFLER OHG reassignment INA WALZLAGER SCHAEFFLER OHG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAAS, MICHAEL, RORIG, BODO, SCHMIDT, DIETER, SEITZ, JOACHIM
Publication of US20020038636A1 publication Critical patent/US20020038636A1/en
Application granted granted Critical
Publication of US6435148B1 publication Critical patent/US6435148B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor

Definitions

  • the invention concerns a switchable support element for a finger lever of a valve train of an internal combustion engine, said support element being installed in a cylinder head of an internal combustion engine and comprising an outer housing, an inner element, a slide and a housing for the slide, said outer housing being installed in a reception of the cylinder head and receiving the inner element for axial displacement, a bore provided in the inner element and a bore provided in the outer housing being aligned to each other in a relative axial position, the slide being at least partially displaceable out of the housing into said bores for coupling the inner element to the outer housing, and the housing being seated in the cylinder head with an inner end adjacent the bore of the outer housing.
  • a support element of the pre-cited type considered to be generic is known from DE 44 22 340 A1.
  • This support element is likewise switchable but for the purpose of coupling, it is intersected axially beneath its clearance compensation element by a slide. At its end facing away from the support element, the slide extends in a separate housing in the cylinder head. To effect coupling, an end of the slide extends fully through the support element.
  • This document further discloses a so-called lost motion spring that acts on an inner element of the support element axially beneath the slide.
  • a drawback of the aforesaid support element is that it has a relatively large design height. It must be noted that the clearance compensation element with the slide and the lost motion spring are stacked one on top of the other. Design space problems can arise from the fact that the support element intersects cooling water or gas exchange canals or the like that may be located in this region. It is further noted that the support element cannot be supplied together with the housing for the slide because these are separate components. Due to the separate mounting of the housing for the slide in the cylinder head, misalignments between the slide and the bores provided in the support element for coupling purposes can also occur.
  • the object of the invention is therefore to provide a switchable support element of the pre-cited type in which the mentioned drawbacks are eliminated.
  • the inner end of the housing comprises an annular extension that is installed in the bore of the outer housing, or that the inner end of the housing is connected to the outer housing by a flange, and the slide is adapted to be operated electromagnetically while being configured as an actuator rod with an armature plate.
  • this object is achieved by a hydraulically displaceable slide and by the fact that the inner end of the housing comprises an annular extension that is installed in the bore of the outer housing, or that the inner end of the housing is connected to the outer housing by a flange.
  • the bores of the inner element and the outer housing extend in radial direction, and the bore of the inner element is made as a pocket bore.
  • this support element does not require more design space than non-switchable support elements so that it can be easily adapted to cylinder heads of conventional design, or, to put it differently, the support element has a shorter length than switchable prior art solutions. This is accomplished on the one hand by the fact that the hitherto used stacked construction is avoided by configuring the bore in the inner element as a pocket bore.
  • a simple form of loading the slide through means arranged laterally in the cylinder head is provided.
  • the slide and the housing can be supplied together with the switchable support element because the housing can be connected in advance to the outer housing through its annular extension. All that is then required is to provide a longitudinal recess at a suitable location in the cylinder head for inserting the housing.
  • a hydraulic clearance compensation element known per se, is installed in the support element.
  • mechanical or hydraulic clearance adjusting measures at other locations in the valve drive can be dispensed with.
  • the slide comprises an armature plate that may be formed integrally therewith and likewise extend in the housing.
  • the slide is displaced hydraulically in at least one direction of displacement, it may be displaced in the opposite direction by the force of a spring means such as at least one compression spring or also by a hydraulic medium.
  • a spring means such as at least one compression spring or also by a hydraulic medium.
  • the hydraulic medium is routed out of the cylinder head adjacent the housing into a pressure chamber situated in front of a pressure plate of the slide.
  • annular extension of the housing is made as a separate component. This can be of advantage from the fabrication and assembly point of view.
  • a simple way of connecting the annular extension to the housing is to make a snap connection using a locking ring. But a force-locked or positive engagement is also conceivable for this purpose.
  • FIGS. 1 to 4 cross-sections through the switchable support element and the housing, FIGS. 1, 2 showing an electromagnetically displaceable slide and, FIGS. 3, 4 showing a hydraulically displaceable slide;
  • FIG. 5 a housing in the cylinder head, whose annular extension is made separately;
  • FIG. 6 an alternative way of connecting the housing to the outer housing through a flange.
  • FIGS. 1 to 4 disclose a switchable support element 1 with a laterally arranged housing 2 .
  • the basic structure of this support element is known in the technical field (see also DE 44 22 340 A1).
  • the support element 1 has an outer housing 3 that is fixedly installed in a reception 4 of a roughly indicated cylinder head 5 .
  • An axially displaceable inner element 6 is received in the outer housing 3 .
  • the inner element 6 may comprise a hydraulic clearance compensation element 7 (not explicitly illustrated).
  • the inner element 6 comprises a head for supporting one end of a finger lever.
  • Each of the outer housing 3 and the inner element 6 comprises a bore 9 , 8 .
  • the bore 8 in the inner element 6 is made as a pocket bore, while the bore 9 in the outer housing 3 is configured as a through-bore.
  • the two bores 8 , 9 are aligned to each other in one relative axial position of the inner element 6 and the outer housing 3 . This relative position is defined by an axially extended state of the inner element 6 relative to the outer housing 3 for accomplishing a complete lift of the gas exchange valve actuated by the finger lever.
  • the bush-like housing 2 extends in the cylinder head 5 at a right angle to the longitudinal axis of the support element 1 and the inner end 10 of the housing 2 directly adjoins the outer housing 3 .
  • the housing 2 comprises an annular extension 11 that is, for example, pressed into the bore 9 .
  • a slide 12 extends in the housing 2 and, thus, laterally in the cylinder head 5 .
  • the slide 12 couples the inner element 6 to the outer housing 3 .
  • the slide 12 extends at the most up to a point immediately in front of the bore 8 of the inner element 6 .
  • the slide 12 is displaced partially into the bore 8 of the inner element 6 during a base circle phase of a cam by which the finger lever is actuated.
  • FIGS. 1 and 2 show electromagnet modes of displacing the slide 12 , each in a different direction.
  • the slide 12 is displaced in its coupling direction by the force of an electromagnet 13 positioned in the housing 2 .
  • an armature plate 14 connected to an end of the slide 12 is displaced toward the electromagnet 13 .
  • the coupling of the outer housing 3 to the inner element 6 is realized by the displacement of the slide 12 into the bore 8 .
  • This movement of displacement is effected against the force of a spring means 15 (FIG. 1) that is configured in the present case as a compression spring and surrounds the slide 12 .
  • the electromagnet 13 is deenergized so that the force of the spring means 15 re-displaces the slide 12 into the housing 2 .
  • FIG. 2 shows that, in contrast to FIG. 1, the displacement of the slide 12 in coupling direction is effected by the force of a spring means 16 such as a compression spring, and in uncoupling direction, by the force of an electromagnet 17 .
  • An armature plate 18 is arranged on one side of the annular extension 11 .
  • FIGS. 3 and 4 show hydraulic modes of displacing the slide 12 .
  • the slide 12 can be displaced in its coupling direction by a hydraulic medium applied to its pressure plate 19 .
  • a return displacement is again achieved by the force of at least one spring means 20 such as a compression spring.
  • FIG. 4 shows that the displacement of the slide 12 into its uncoupling position is realized by applying hydraulic medium pressure to its pressure plate 19 a , and its displacement into the coupling position, by the force of a spring means 21 such as a compression spring.
  • FIG. 5 shows that the annular extension 11 of the housing 2 can also be made separately.
  • This annular extension then has on its outer peripheral surface, an annular groove 22 in which a locking ring 23 extends. Through this locking ring 23 , a snap connection 24 is made between the housing 2 and the annular extension 11 .
  • FIG. 6 shows that the housing 2 can also be connected to the outer housing 3 by a flange 25 .
  • the flange 25 is arranged so that it does not intersect any cooling water or gas exchange canals and the like that may be present and that it does not impede the operation of the support element 1 .
  • a particular advantage of the invention is that, due to the lateral arrangement of the slide 12 in the housing 2 , the overall height of the support element 1 is essentially not as large as that of prior art non-switchable support elements. At the same time, the connection of the annular extension 11 to the outer housing 3 results in an excellent positional correspondence of the slide 12 to the bores 8 , 9 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A switchable support element (1) requiring only a small design space. For this purpose, a slide (12) that serves to couple an inner element (6) to an outer housing (3) in the support element (1) is positioned laterally in a housing (2) arranged in the cylinder head (5). At the same time, a bore (8) in the inner element (6) for the slide (12) is made as a pocket bore, the housing (2) being seated through an annular extension (11) directly in a bore (9) of the outer housing (3). The slide (12) can be displaced electromagnetically or hydraulically in at least

Description

This application claims priority from provisional application No. 60/237,301, filed Oct. 2, 2000.
FIELD OF THE INVENTION
The invention concerns a switchable support element for a finger lever of a valve train of an internal combustion engine, said support element being installed in a cylinder head of an internal combustion engine and comprising an outer housing, an inner element, a slide and a housing for the slide, said outer housing being installed in a reception of the cylinder head and receiving the inner element for axial displacement, a bore provided in the inner element and a bore provided in the outer housing being aligned to each other in a relative axial position, the slide being at least partially displaceable out of the housing into said bores for coupling the inner element to the outer housing, and the housing being seated in the cylinder head with an inner end adjacent the bore of the outer housing.
BACKGROUND OF THE INVENTION
A support element of the pre-cited type considered to be generic is known from DE 44 22 340 A1. This support element is likewise switchable but for the purpose of coupling, it is intersected axially beneath its clearance compensation element by a slide. At its end facing away from the support element, the slide extends in a separate housing in the cylinder head. To effect coupling, an end of the slide extends fully through the support element. This document further discloses a so-called lost motion spring that acts on an inner element of the support element axially beneath the slide.
A drawback of the aforesaid support element is that it has a relatively large design height. It must be noted that the clearance compensation element with the slide and the lost motion spring are stacked one on top of the other. Design space problems can arise from the fact that the support element intersects cooling water or gas exchange canals or the like that may be located in this region. It is further noted that the support element cannot be supplied together with the housing for the slide because these are separate components. Due to the separate mounting of the housing for the slide in the cylinder head, misalignments between the slide and the bores provided in the support element for coupling purposes can also occur.
OBJECT OF THE INVENTION
The object of the invention is therefore to provide a switchable support element of the pre-cited type in which the mentioned drawbacks are eliminated.
SUMMARY OF THE INVENTION
The invention achieves this object by the fact that the inner end of the housing comprises an annular extension that is installed in the bore of the outer housing, or that the inner end of the housing is connected to the outer housing by a flange, and the slide is adapted to be operated electromagnetically while being configured as an actuator rod with an armature plate.
In an alternative solution, this object is achieved by a hydraulically displaceable slide and by the fact that the inner end of the housing comprises an annular extension that is installed in the bore of the outer housing, or that the inner end of the housing is connected to the outer housing by a flange.
In a particularly preferred embodiment according to one of the dependent claims, the bores of the inner element and the outer housing extend in radial direction, and the bore of the inner element is made as a pocket bore.
In this way, a support element is created in which the initially cited drawbacks are eliminated. Essentially, this support element does not require more design space than non-switchable support elements so that it can be easily adapted to cylinder heads of conventional design, or, to put it differently, the support element has a shorter length than switchable prior art solutions. This is accomplished on the one hand by the fact that the hitherto used stacked construction is avoided by configuring the bore in the inner element as a pocket bore.
On the other hand, a simple form of loading the slide through means arranged laterally in the cylinder head is provided. If required, the slide and the housing can be supplied together with the switchable support element because the housing can be connected in advance to the outer housing through its annular extension. All that is then required is to provide a longitudinal recess at a suitable location in the cylinder head for inserting the housing. However, it is also conceivable to have a separate housing and insert it laterally into the cylinder head and connect it to the outer housing through its annular extension.
Due to the preferred press fit between the annular extension and the outer housing the possible prior art alignment errors between the housing, and thus between the slide and the bores in the support element are effectively avoided.
Advantageously, according to a further embodiment of the invention, a hydraulic clearance compensation element, known per se, is installed in the support element. Thus, mechanical or hydraulic clearance adjusting measures at other locations in the valve drive can be dispensed with.
Further dependent claims relate to alternative modes of operating the slide. For example, this can be loaded electromagnetically in at least one direction of displacement. However, it is also conceivable to load the slide electromagnetically in both its directions of displacement. For this, the slide comprises an armature plate that may be formed integrally therewith and likewise extend in the housing.
For the electromagnetic or hydraulic displacement of the slide in at least one direction, pressurelessly locked or unlocked configurations, such as are known per se in the technical field, are also conceivable.
If, as alternatively proposed, the slide is displaced hydraulically in at least one direction of displacement, it may be displaced in the opposite direction by the force of a spring means such as at least one compression spring or also by a hydraulic medium. Appropriately, the hydraulic medium is routed out of the cylinder head adjacent the housing into a pressure chamber situated in front of a pressure plate of the slide.
It is both conceivable and provided for by the invention to make the annular extension of the housing as a separate component. This can be of advantage from the fabrication and assembly point of view. A simple way of connecting the annular extension to the housing is to make a snap connection using a locking ring. But a force-locked or positive engagement is also conceivable for this purpose.
In place of the aforesaid press fit between the annular extension and the outer housing, it can also be advantageous to connect the housing to the outer housing through a flange.
BRIEF DESCRIPTION OF THE DRAWING
The invention will now be described more closely with reference to the drawing which shows in:
FIGS. 1 to 4, cross-sections through the switchable support element and the housing, FIGS. 1, 2 showing an electromagnetically displaceable slide and, FIGS. 3, 4 showing a hydraulically displaceable slide;
FIG. 5, a housing in the cylinder head, whose annular extension is made separately; and
FIG. 6, an alternative way of connecting the housing to the outer housing through a flange.
DETAILED DESCRIPTION OF THE DRAWINGS
FIGS. 1 to 4 disclose a switchable support element 1 with a laterally arranged housing 2. The basic structure of this support element is known in the technical field (see also DE 44 22 340 A1). The support element 1 has an outer housing 3 that is fixedly installed in a reception 4 of a roughly indicated cylinder head 5. An axially displaceable inner element 6 is received in the outer housing 3. The inner element 6 may comprise a hydraulic clearance compensation element 7 (not explicitly illustrated). The inner element 6 comprises a head for supporting one end of a finger lever.
Each of the outer housing 3 and the inner element 6 comprises a bore 9, 8. The bore 8 in the inner element 6 is made as a pocket bore, while the bore 9 in the outer housing 3 is configured as a through-bore. The two bores 8, 9 are aligned to each other in one relative axial position of the inner element 6 and the outer housing 3. This relative position is defined by an axially extended state of the inner element 6 relative to the outer housing 3 for accomplishing a complete lift of the gas exchange valve actuated by the finger lever.
As can be seen further in FIGS. 1 to 4, the bush-like housing 2 extends in the cylinder head 5 at a right angle to the longitudinal axis of the support element 1 and the inner end 10 of the housing 2 directly adjoins the outer housing 3. In the region of its inner end 10, the housing 2 comprises an annular extension 11 that is, for example, pressed into the bore 9.
A slide 12 extends in the housing 2 and, thus, laterally in the cylinder head 5. For switching on the support element 1, the slide 12 couples the inner element 6 to the outer housing 3. In the switched-off state, the slide 12 extends at the most up to a point immediately in front of the bore 8 of the inner element 6. For switching on the support element 1, the slide 12 is displaced partially into the bore 8 of the inner element 6 during a base circle phase of a cam by which the finger lever is actuated.
FIGS. 1 and 2 show electromagnet modes of displacing the slide 12, each in a different direction. In FIG. 1, the slide 12 is displaced in its coupling direction by the force of an electromagnet 13 positioned in the housing 2. When the electromagnet 13 is energized, an armature plate 14 connected to an end of the slide 12 is displaced toward the electromagnet 13. In this way, the coupling of the outer housing 3 to the inner element 6 is realized by the displacement of the slide 12 into the bore 8. This movement of displacement is effected against the force of a spring means 15 (FIG. 1) that is configured in the present case as a compression spring and surrounds the slide 12. For uncoupling, the electromagnet 13 is deenergized so that the force of the spring means 15 re-displaces the slide 12 into the housing 2.
FIG. 2 shows that, in contrast to FIG. 1, the displacement of the slide 12 in coupling direction is effected by the force of a spring means 16 such as a compression spring, and in uncoupling direction, by the force of an electromagnet 17. An armature plate 18 is arranged on one side of the annular extension 11.
FIGS. 3 and 4 show hydraulic modes of displacing the slide 12. As can be seen in FIG. 3, the slide 12 can be displaced in its coupling direction by a hydraulic medium applied to its pressure plate 19. A return displacement is again achieved by the force of at least one spring means 20 such as a compression spring.
As an alternative to FIG. 3, FIG. 4 shows that the displacement of the slide 12 into its uncoupling position is realized by applying hydraulic medium pressure to its pressure plate 19 a, and its displacement into the coupling position, by the force of a spring means 21 such as a compression spring.
It goes without saying that it is conceivable and within the scope of the invention to displace the slide in both its directions of displacement by electromagnetic means or exclusively by hydraulic oil pressure.
FIG. 5 shows that the annular extension 11 of the housing 2 can also be made separately. This annular extension then has on its outer peripheral surface, an annular groove 22 in which a locking ring 23 extends. Through this locking ring 23, a snap connection 24 is made between the housing 2 and the annular extension 11.
Finally, FIG. 6 shows that the housing 2 can also be connected to the outer housing 3 by a flange 25. Advantageously, the flange 25 is arranged so that it does not intersect any cooling water or gas exchange canals and the like that may be present and that it does not impede the operation of the support element 1.
A particular advantage of the invention is that, due to the lateral arrangement of the slide 12 in the housing 2, the overall height of the support element 1 is essentially not as large as that of prior art non-switchable support elements. At the same time, the connection of the annular extension 11 to the outer housing 3 results in an excellent positional correspondence of the slide 12 to the bores 8, 9.
Reference Numerals
1 Support element
2 Housing
3 Outer housing
4 Reception
5 Cylinder head
6 Inner element
7 Hydraulic clearance compensation element
8 Bore
9 Bore
10 Inner end
11 Annular extension
12 Slide
13 Electromagnet
14 Armature plate
15 Spring means
16 Spring means
17 Electromagnet
18 Armature plate
19 Pressure plate
20 Spring means
21 Spring means
22 Annular groove
23 Locking ring
24 Snap connection
25 Flange

Claims (8)

What is claimed is:
1. A switchable support element (1) for a finger lever of a valve train of an internal combustion engine, said support element (1) being installed in a cylinder head of an internal combustion engine and comprising an outer housing (3), an inner element (6), a slide (12) and a housing (2) for the slide (12), said outer housing (3) being installed in a reception (4) of the cylinder head (5) and receiving the inner element (6) for axial displacement, a bore (8) provided in the inner element (6) and a bore (9) provided in the outer housing (3) being aligned to each other in a relative axial position, the slide (12) being at least partially displaceable out of the housing (2) into said bores (8, 9) for coupling the inner element (6) to the outer housing (3), and the housing (2) being seated in the cylinder head (5) with an inner end (10) adjacent the bore (9) of the outer housing (3), characterized in that the inner end (10) of the housing (2) comprises an annular extension (11) that is installed in the bore (9) of the outer housing (3), or that the inner end (10) of the housing (2) is connected to the outer housing (3) by a flange (25), and the slide (12) is adapted to be operated electromagnetically while being configured as an actuator rod with an armature plate (14, 18) (FIGS. 1, 2, 6).
2. A support element according to the preamble of claim 1, wherein said slide (12) is hydraulically displaceable and configured as a piston rod with a pressure plate (19, 19 a).
3. A support element according to claim 1, characterized in that the bores (8, 9) of the, inner element (6) and the outer housing (3) extend in radial direction, and the bore (8) of the inner element (6) is made as a pocket bore.
4. A support element according to claim 3, characterized in that a hydraulic clearance compensation element (7) is installed in the inner element (6), and an axial line of the bore (8) of the inner element (6) intersects the clearance compensation element (7).
5. A support element according to claim 1, characterized in that the slide (12) is displaceable in uncoupling direction by the force of at least one spring means (15, 20) including a compression spring and in coupling direction, by the force of an electromagnet (13) or by a hydraulic medium.
6. A support element according to claim 1, characterized in that the slide (12) is displaceable in coupling direction by the force of at least one spring means (16, 21) including a compression spring and in uncoupling direction, by the force of an electromagnet (17) or by a hydraulic medium.
7. A support element according to claim 1, characterized in that the annular extension (11) is made separately from the housing (2) (FIG. 5).
8. A support element according to claim 7, characterized in that on an end nearer the housing (2), the annular extension (11) comprises an annular groove (22) having a locking ring (23) through which the housing (2) forms a snap connection (24) with the annular extension (11).
US09/946,566 2000-10-02 2001-09-05 Switchable support element Expired - Fee Related US6435148B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/946,566 US6435148B1 (en) 2000-10-02 2001-09-05 Switchable support element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23730100P 2000-10-02 2000-10-02
US09/946,566 US6435148B1 (en) 2000-10-02 2001-09-05 Switchable support element

Publications (2)

Publication Number Publication Date
US20020038636A1 US20020038636A1 (en) 2002-04-04
US6435148B1 true US6435148B1 (en) 2002-08-20

Family

ID=26930535

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/946,566 Expired - Fee Related US6435148B1 (en) 2000-10-02 2001-09-05 Switchable support element

Country Status (1)

Country Link
US (1) US6435148B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099806A (en) * 1990-07-10 1992-03-31 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve system for automobile engine
DE4422340A1 (en) * 1993-07-14 1995-01-19 Bayerische Motoren Werke Ag Shut-off device for an internal combustion engine lifting valve
US5655487A (en) * 1993-12-17 1997-08-12 Ina Walzlager Schaeffler Kg Switchable support element
US5720244A (en) * 1995-01-11 1998-02-24 Ina Walzlager Schaeffler Kg Switchable support element
US6321704B1 (en) * 1999-02-23 2001-11-27 Eaton Corporation Hydraulically actuated latching valve deactivation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099806A (en) * 1990-07-10 1992-03-31 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve system for automobile engine
DE4422340A1 (en) * 1993-07-14 1995-01-19 Bayerische Motoren Werke Ag Shut-off device for an internal combustion engine lifting valve
US5655487A (en) * 1993-12-17 1997-08-12 Ina Walzlager Schaeffler Kg Switchable support element
US5720244A (en) * 1995-01-11 1998-02-24 Ina Walzlager Schaeffler Kg Switchable support element
US6321704B1 (en) * 1999-02-23 2001-11-27 Eaton Corporation Hydraulically actuated latching valve deactivation

Also Published As

Publication number Publication date
US20020038636A1 (en) 2002-04-04

Similar Documents

Publication Publication Date Title
US5875748A (en) Device and method for operating a valve drive of an internal combustion engine
US7207303B2 (en) Switching element
US5775203A (en) High pressure fuel pump assembly
US5655487A (en) Switchable support element
US6901894B2 (en) Finger lever of a valve train of an internal combustion engine
US7174869B2 (en) Switchable finger lever of a valve train of an internal combustion engine
US5762035A (en) Electromagnetic cylinder valve actuator having a valve lash adjuster
US6247433B1 (en) Switchable cam follower
US5669342A (en) Device for simultaneous actuation of at least two gas exchange valves
US7246587B2 (en) Deactivating element for a valve train of an internal combustion engine
US6053133A (en) Tappet for an internal combustion engine valve drive
US6135074A (en) Tappet for the valve gear mechanism of an internal combustion engine
KR19980081752A (en) Valve drive device of internal combustion engine
US6314927B1 (en) Support element for a finger lever of a valve gear of an internal combustion engine
US20120304953A1 (en) Switchable pressure supply device
US6425358B1 (en) Switchable support element
CN113669124A (en) Rocker device for a valve train of an internal combustion engine
US6701879B2 (en) Internal combustion engine
US7299778B2 (en) Switchable cam follower
US6435148B1 (en) Switchable support element
US20040144350A1 (en) Connectable bucket tappet
US6220213B1 (en) Rocker arm installed in a cylinder head of a valve train of an internal combustion engine
US6223706B1 (en) Tappet for the valve gear of an internal combustion engine
US5746165A (en) Valve drive of an internal combustion engine
US5636604A (en) Tappet for a valve drive of an internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: INA WALZLAGER SCHAEFFLER OHG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAAS, MICHAEL;RORIG, BODO;SCHMIDT, DIETER;AND OTHERS;REEL/FRAME:012159/0341

Effective date: 20010828

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100820