US6233210B1 - Optical drive error tracking method and apparatus - Google Patents
Optical drive error tracking method and apparatus Download PDFInfo
- Publication number
- US6233210B1 US6233210B1 US09/169,368 US16936898A US6233210B1 US 6233210 B1 US6233210 B1 US 6233210B1 US 16936898 A US16936898 A US 16936898A US 6233210 B1 US6233210 B1 US 6233210B1
- Authority
- US
- United States
- Prior art keywords
- electronic circuit
- optical
- signal
- signals
- error signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/09—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
- G11B7/0901—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
Definitions
- the present invention relates generally to retrieving information from an optical disk. More specifically, the invention relates to a new method for generating a tracking error signal for any ablative, phase pit or phase change type of media such as compact disk (CD) or digital video disk (DVD). Still more specifically, the invention generates a tracking error signal by using a differential amplitude reading from a quad photodetector, or multiple pixel detector.
- optical disks for storing information has become popular in recent years and a number of products are commercially available, including compact audio disks, and digital video disks. Originally, these devices were read only memory devices, such as the music and personal computer CD players, but more recently, recordable compact disks have emerged in the marketplace. Despite the many different formats and options available in optical disk technology, there are considerable pressures to have standards which enable optical disk players to work with all data formats, and all manufacturers' products widely interchangable.
- An optical disk system 100 includes semiconductor diode laser 102 that is typically used to generate laser beam 104 .
- Miniature optics 106 collimates and steers laser beam 104 .
- a movable, controllable lens 108 focuses laser beam 104 to a focused spot, also referred to as beam spot, and position on a spinning optical storage disk 110 , which is connected to a variable speed motor 112 .
- Light reflected from optical storage disk 110 is routed to both detector 114 and a position sensitive detector, such as a quad photodetector 116 .
- Detector 114 and quad photodetector 116 may be one single unit instead of the two units shown in FIG. 1
- Electronic data for the data channel is routed through read channel 118 into a servo controller/decoder 120 .
- the electronic signals from quad photodetector are routed through preamplifier 122 , and a servo preprocessor 124 , into servo controller/decoder 120 .
- These electronics generate an error signal which, through a power amplifier 126 and servo control motor 128 adjust the position of lens 108 in the vertical and horizontal directions in order to keep laser beam 104 aligned in focus and on track.
- these optical disk memory devices operate by bouncing light emitted from a semiconductor diode laser off an inhomogeneous reflective surface of a spinning optical disk. The reflected light is then routed to a detector, which outputs an electronic signal that is processed to recover the stored digital data.
- the laser beam is nominally stationary, however, the laser assembly is slid along the radius of the disk being read. Furthermore, fine adjustments of the beam focal spot and position are made based on a feedback signal that drives an electromechanical armature.
- the data is encoded on the disk in a variety of ways, including ablative, phase pit or phase change type of coding.
- the optical disk rotates, often at high speeds, and this gives rise to a time signal, or time vector of digital data.
- a single speed compact disk rotates at several hundred revolutions per minute (rpm). Because it is desirable to provide a constant time spacing between data readings, a constant linear velocity is maintained as the data is read from the disk. Thus the precise rotational speed depends on the portion of the disk being read. For example, typical rotational speeds for a single speed compact disk are 200 rpm at the outermost track and 450 rpm at the innermost track.
- Faster microprocessors, as well as an overall improvement in control technology have enabled disk drives that operate at multiples of the original single speed CD player.
- a 6 ⁇ (six times single speed) CD player rotates at speeds up to 2700 rpm when reading the innermost track.
- Advantages of higher speeds include shorter data acquisition time, and error checking for misread data points.
- optical beam alignment tolerances, and their error correction become more challenging. Further, it is highly desirable for any processing protocols, and error correction methods, to be general across all data formats.
- a tracking error signal generator includes three light receptors for receiving three optical signals reflected from a recorded medium and for generating respective three electrical output signals.
- the three light beams impinge upon the recorded medium along a line having a predetermined angle with respect to a recorded track.
- the outer two spots sandwich the inner, data reading spot, and line up with the inside and outside edges of the data track.
- the difference in power between the outer beams is compared to generate the tracking error signal.
- the tracking error signal is set to the difference between the first and third output signals.
- the three spot tracking technique is no longer suitable for generating error tracking signals which are independent of data format.
- Differential phase tracking error overcomes the limitation of data format.
- the quad photodetector 116 of FIG. 1 is used in the following manner. If the pit is left of the beam spot, the beam spot appears on quadrant A of quad photodetector 116 first and then on quadrant D. In this situation, the pit leaves quadrant A and then leaves quadrant D. The modulation of the output from these elements in quad photodetector 116 will have (quadrant A+quadrant C) ahead of (quadrant B+quadrant D) in the time domain.
- differential phase tracking error signal that may be used to drive servo control motor 128 in FIG. 1 to realign the laser beam onto the optical disk data track.
- a limitation of differential phase tracking error signal generation is that it is dependent on the specific data pattern, and hence proves to be more effective with certain formats than with others.
- the present invention uses a photodetector with at least four active areas to sense the reflected laser beam.
- a differential amplitude tracking error signal is generated by comparing the signal strength in the different active area.
- a quad photodetector is used to detect reflections from a spot generated by a laser beam directed onto a surface containing optical data.
- the signals from the diagonal elements of the quad cell are summed. These sums are then fed through differential amplifier circuitry. Sample and hold circuitry is used to form a suitable tracking error signal. Additional circuitry and filtering algorithms can be used to extend and improve the technique where necessary and justified.
- a position photodetector with more than four elements will give information on beam shape, astigmatism or ellipticity, which may then be used to recollimate or refocus the laser beam.
- the differential amplitude tracking error signal is somewhat dependent on overall signal strength, the laser power may be monitored, through amplitude peak detection, quad sum monitoring, or back facet sampling for examples. The quad signals may then be normalized by this power level measurement to reduce the dependence on signal amplitude.
- FIG. 1 is a block diagram schematic which illustrates the components and connections of a known optical disk system
- FIG. 2 is and illustration of pit positioning relative to beam spots for a quad photodetector and outputs for the photodetector in accordance with a preferred embodiment of the present invention
- FIG. 3 are graphs of examples of time data traces for quad photodetector signals in a compact disk application
- FIG. 4 are graphs of examples of time data traces for quad photodetector signals in a digital video disk application
- FIG. 5 is a circuit schematic of a preferred embodiment for processing a differential amplitude tracking error signal
- FIG. 6 is a graph of tracking error signals for compact disk data
- FIG. 7 is a graph of tracking error signals for digital video disk data
- FIG. 8 is a simplified machine operations chart showing a method of generating a differential amplitude tracking error signal
- FIG. 9 is a system schematic showing the use of the differential amplitude tracking error signal device or method in a optical storage disk read system.
- the present invention provides an improved optical storage disk player.
- An improved method and apparatus for obtaining a tracking error signal for an optical disk player is disclosed which is general across the various data formats found in CD audio disks, CD-ROM, and digital video disks. Differences in data formats include different track spacings, size and shape of features, quality, or uniformity of recording, and type of format, including ablative, phase pit or phase change type of coding.
- the processes and circuits described below may be implemented within an optical disk system, such as optical disk system 100 in FIG. 1 .
- the reflective pattern that is observed by the quad detector will be a function where the pit is located relative to the center of the spot.
- the diagonal quad photodetectors will see the same intensity patterns. The difference between the diagonal ((1a+1c) ⁇ (1b+1d) will equal zero. If the pit is scanned down one side of the spot, one side of the diagonals in the quad photodetectors will see the pit first while the second set of diagonals will see the pit later.
- the present invention generates a differential amplitude tracking (DAT error signal) by sampling the amplitude difference between the diagonal pairs of quad signals when the sum signal passes through the mid amplitude point in either direction. This midpoint is at the edge points of any pit.
- DAT error signal differential amplitude tracking
- FIGS. 2A and 2B pit positioning relative to beam spots for a quad photodetector and outputs for the photodetector is illustrated in accordance with a preferred embodiment of the present invention.
- a top view of a 2 ⁇ 2 sensor or quad photodetector 200 and position light beam 206 for three cases of alignment of a laser beam spot relative to pits in an optical storage track is depicted in accordance with a preferred embodiment of the present invention.
- Quad photodetector 200 has sensors or active regions in the depicted example. These regions are also referred to as “quadrants”.
- pit 204 is located at the center of beam spot 206 on quad photodetector 200 , which has active regions 200 a , 200 b , 200 c , and 200 d . Each of the active regions generates a signal having an amplitude with signal A being generated by active element 200 a , signal B being generated by active element 200 b , signal C beam generated by active element 200 c , and signal D being generated by active element 200 d .
- the relation between beam spot 206 and pit 204 are shown for times t1 through t5 in case 202 a in FIG. 2 A. Also shown in case 202 a in FIG.
- DAT is positive when pit 208 is left of spot 206 and DAT is negative when pit 210 is right of spot 206 .
- DAT is zero. The same is true for negative track/hold and positive track/hold graphs.
- pit 208 is positioned off to the left of beam spot 206 .
- Photodetector outputs are shown for the various quadrants along with DAT, negative track/hold, and positive track/hold graphs for the situation in which the pit is off to the left of a beam spot.
- pit 210 is located off to the right of beam spot 206 .
- Corresponding photodetector outputs various combinations of quadrants are shown for this particular situation for times t1 through t5.
- DAT, negative track/hold, and positive track/hold graphs are depicted.
- the electronic signals from active elements 200 a , 200 b , 200 c , and 200 d in quad photodetector 200 are summed.
- the diagonal sum signals are (A+C) and (B+D).
- the time varying amplitudes of these signals from the active elements are compared to generate an error signal.
- the beam spot from the laser beam is well aligned to the track and the sum diagonal signals are identical as a function of time.
- the laser beam is misaligned to the left in case 202 b and to the right in case 202 c .
- the amplitudes of the sum diagonal signals in these cases are compared to give a correction signal which returns the laser beam into alignment as shown in case 202 a.
- the position sensor light detector may include more than 2 ⁇ 2 elements.
- 3 ⁇ 3, 4 ⁇ 4, 2 ⁇ 3 or 2 ⁇ 4 elements may be employed.
- the additional data available may be used for beam spot astigmatism or ellipticity correction, for faster tracking correction, or for more precise tracking correction.
- FIG. 3 are examples of time data traces for quad photodetectors signals in a compact disk application is depicted in accordance with a preferred embodiment of the present invention.
- Graph 302 shows long term behavior of signals A, B, C and D, as the signal level goes through a minimum by doing a one track seek.
- Graph 304 shows the same data in the region of the minimum on an expanded horizontal scale.
- Graph 306 is shown the diagonal sum signals (A+C) and (B+D).
- example time data traces for quad photodetectors signals in a digital video disk (DVD) application are depicted in accordance with a preferred embodiment of the present invention.
- Graph 402 shows long term behavior of signals A, B, C, and D from active elements 202 a , 202 b , 202 c , and 202 d , respectively, as the signal level goes through a minimum by doing a one track seek.
- Graph 404 shows the same data in the region of the minimum on an expanded horizontal scale.
- Graph 406 is shown the diagonal sum signals, (A+C) and (B+D).
- FIG. 5 a circuit schematic of a differential amplitude tracking error signal circuit for an optical storage disk reader is depicted in accordance with a preferred embodiment of the present invention.
- a comparator circuit 502 is coupled in parallel with two differential amplifiers 504 and 506 . These amplifiers are connected to sample and hold circuitry 508 and sample and hold circuitry 510 . Filtering circuitry 512 is included at the final stage, and may be distributed throughout the circuit.
- the electronic signals from the quad photodetector 116 diagonals, A and C are summed, and the electronic signals from the quad photodetector 116 diagonals, B and D are summed and comprise the input to the circuit of FIG. 5 .
- Signals from the active elements (A+C) and (B+D) are routed to comparator circuit 502 to generate a sum polarity signal which enables, or triggers the sample and hold circuitry 508 or sample and hold circuitry 510 depending on the polarity of the comparator output.
- signals (A+C) and (B+D) are routed to differential amplifier 504 and differential amplifier 506 in reciprocal manner so that the diagonal sum signal in the positive input of one differential amplifier is the negative input of the other differential amplifier.
- these components may be implemented using wide bandwidth video differential amplifiers integrated with a sample and hold circuit.
- the outputs of the differential amplifiers are inputs to triggered sample and hold circuits.
- the outputs of the sample and hold stages are tied together and filtered to form the differential amplitude tracking (DAT) error signal.
- DAT error signal is used to control a servo in the optical disk system to bring the spot generated by the laser beam back to the center of the quad photodetector that indicates that the aligmnent is back on the track of the optical storage disk.
- a mathematical formulation of the operation of the circuit is useful in further explaining the DAT error signal generated in accordance with a preferred embodiment of the present invention.
- the signals from the four diagonals, A, B, C and D, in the quad photodetector are summed and low pass filtered to produce a FilterSum signal as a function of time.
- this formula may be written in discrete time form as,
- FilterSum[ n ] [FilterSum[ n ⁇ 1]*( t c ⁇ 1)+ A[n]+B[n]+C[n]+D[n]]/t c
- This FilterSum signal is routed into a comparator that may be modeled by the output SumPolarity signal,
- This SumPolarity signal triggers the sample and hold circuitry. So long as this SumPolarity signal is unchanged, the differential amplitude tracking error signal will remain unchanged. If the SumPolarity signal has changed, then the differential amplitude tracking error signal will change to a value proportional to the strength of (A+C) ⁇ (B+D), the difference between the diagonal components. If the SumPolarity signal changes from negative to positive then the differential amplitude tracking error signal will be proportional to the negative of (A+C) ⁇ (B+D). If this SumPolarity signal changes from positive to negative, the differential amplitude tracking error signal will be proportional to (A+C) ⁇ (B+D). Otherwise, the DAT signal is held. Mathematically, this condition for DATES, the differential amplitude tracking error signal, may be written, for example, as
- DATES[ n ] [( A[n]+C[n ]) ⁇ ( B[n]+D[n ]) if SumPolarity[ n] ⁇ 0 and SumPolarity[ n ] ⁇ SumPolarity[ n ⁇ 1]
- the DATES signal will be low pass filtered.
- this formula for the low pass DATES, LPDATES may be written in discrete time form as,
- LPDATES[ n] ⁇ fraction (1/t c +L ) ⁇ DATES[ n ]+(LPDATES[ n ⁇ 1]( t c ⁇ 1)) ⁇
- FIG. 6 a graph of differential amplitude tracking error signal 602 during a one track seek of the present invention for the compact disk data of FIG. 3 and a graph of differential phase tracking error signal 604 of prior art for the same data. It will be evident to those skilled in the art that the read laser beam alignment servo motor will track in a similar manner when either signal is applied.
- FIG. 7 a graph of differential amplitude tracking error signal 702 during a one track seek of the present invention for the digital video disk data of FIG. 4 and a graph of differential phase tracking error signal 704 of prior art for the same data. It will be evident to those skilled in the art that the read laser beam alignment servo motor will track in a similar manner when either signal is applied.
- FIG. 8 a simplified machine operations flowchart showing a process for generating a differential amplitude tracking error signal is depicted in accordance with a preferred embodiment of the present invention.
- the flowchart assumes a starting point at the quad photodetector 116 .
- the quad photodetector data is acquired (step 802 ) summed (step 804 ) and filtered (step 806 ).
- the filtered signal is compared to its past average value (step 808 ) to ascertain the polarity of the sum signal.
- the result is the SumPolarity signal (step 810 ).
- the differences of the diagonal elements of the quad photodetector are determined (step 812 ).
- step 814 These differences are amplified (step 814 ) and sent to a sample and hold (step 816 ). This difference data is sampled when SumPolarity signal 810 determined in step 810 changes in step 816 . Low pass filtering is performed (step 818 ) in order to generate the differential amplitude tracking error signal, LPDATES (step 820 ).
- FIG. 9 a system schematic showing the use of the differential amplitude tracking error signal device or method in an optical storage disk read system 900 in accordance with a preferred embodiment of the present invention.
- optical disk 110 is supported and rotated by spindle motor 901 .
- a beam spot is formed by light focus on optical disk 110 from laser and optics 902 .
- Adjustable steering device 904 is used to adjust the light beam from laser and optics 902 .
- the adjustment mechanism of the adjustable steering device 904 is connected to the error generating digital or analog electronics 906 also includes a sensor for detecting reflections from the beam spot formed on optical disk 110 . Included in the error generating electronics 906 may be circuitry similar to that shown in FIG. 5, or a digital signal processor implementation of a process similar to that shown in FIG. 8 .
- the present invention provides an improved method and apparatus for generating an error signal in a optical disk system.
- the present invention provides this advantage through the generation of a DAT error signal that is used for any ablative phase pit or phase change type of media, such as CD and DVD media.
- this DAT error signal is generated using a quad photodetector.
- the DAT error signal generated by the present invention provides an error signal that is independent of the data pattern on the optical media.
Landscapes
- Optical Recording Or Reproduction (AREA)
Abstract
Description
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/169,368 US6233210B1 (en) | 1998-10-09 | 1998-10-09 | Optical drive error tracking method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/169,368 US6233210B1 (en) | 1998-10-09 | 1998-10-09 | Optical drive error tracking method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US6233210B1 true US6233210B1 (en) | 2001-05-15 |
Family
ID=22615375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/169,368 Expired - Lifetime US6233210B1 (en) | 1998-10-09 | 1998-10-09 | Optical drive error tracking method and apparatus |
Country Status (1)
Country | Link |
---|---|
US (1) | US6233210B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6339565B1 (en) * | 1999-03-31 | 2002-01-15 | Lsi Logic Corporation | Non-linear center-error generator for DVD servo control |
US6614734B1 (en) * | 1999-03-16 | 2003-09-02 | Stmicroelectronics Sa | Process and device for controlling an incident optical beam for reading a track of information on a dynamic medium |
US20030174594A1 (en) * | 2002-03-13 | 2003-09-18 | Mempile Inc. | Method for tracking data in an optical storage medium |
US20050162996A1 (en) * | 2002-03-11 | 2005-07-28 | Mempile Inc. | Method and apparatus for retrieving information from a 3d storage medium |
US20080046958A1 (en) * | 2001-08-28 | 2008-02-21 | Music Choice | System and method for providing an interactive, visual complement to an audio program |
US20080219130A1 (en) * | 2003-08-14 | 2008-09-11 | Mempile Inc. C/O Phs Corporate Services, Inc. | Methods and Apparatus for Formatting and Tracking Information for Three-Dimensional Storage Medium |
US7430158B1 (en) | 2004-12-13 | 2008-09-30 | Chris Tanner | Music player with adjustable pitch controller |
US8441903B2 (en) | 2011-08-17 | 2013-05-14 | Lsi Corporation | Optical disk playback device with prescan functionality for early detection of surface imperfections |
CN105425676A (en) * | 2015-12-11 | 2016-03-23 | 浙江师范大学 | Embedded photoelectric signal processing and control system and usage method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5138593A (en) | 1987-08-18 | 1992-08-11 | Yamaha Corporation | Vibration control for an optical pickup actuator driving device |
US5138594A (en) | 1990-04-20 | 1992-08-11 | International Business Machines Corporation | Reducing amplitude variations of optical disk readback signals and increasing reliability of track-crossing counts |
US5140577A (en) * | 1989-04-24 | 1992-08-18 | Sony Corporation | Tracking error signal generating circuit for a multichannel type optical disc player |
US5164932A (en) | 1990-09-28 | 1992-11-17 | International Business Machines Corporation | Acquiring a best focus using a focus signal offset |
US5329508A (en) * | 1991-11-01 | 1994-07-12 | Olympus Optical Co., Ltd. | Regenerating device for optical recording medium in which overlapping regions are read out by a light beam in a time sharing manner to provide servo control of the positional relationship between the light beam and the medium |
US5367513A (en) | 1993-11-05 | 1994-11-22 | International Business Machines Corporation | Focus and tracking servo decoupling system |
US5504726A (en) | 1993-04-23 | 1996-04-02 | International Business Machines Corporation | Method and apparatus for calibrating focus and tracking error signals in an optical drive with measuring offsets during track jumps |
US5642341A (en) | 1994-09-20 | 1997-06-24 | Ricoh Corporation | CD ROM apparatus for improved tracking and signal sensing |
US5724325A (en) | 1995-08-07 | 1998-03-03 | Samsung Electronics Co., Ltd. | Method for reducing lead in time in an optical disk recording or reproducing apparatus capable of processing data for multiple types of disks |
-
1998
- 1998-10-09 US US09/169,368 patent/US6233210B1/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5138593A (en) | 1987-08-18 | 1992-08-11 | Yamaha Corporation | Vibration control for an optical pickup actuator driving device |
US5140577A (en) * | 1989-04-24 | 1992-08-18 | Sony Corporation | Tracking error signal generating circuit for a multichannel type optical disc player |
US5138594A (en) | 1990-04-20 | 1992-08-11 | International Business Machines Corporation | Reducing amplitude variations of optical disk readback signals and increasing reliability of track-crossing counts |
US5164932A (en) | 1990-09-28 | 1992-11-17 | International Business Machines Corporation | Acquiring a best focus using a focus signal offset |
US5329508A (en) * | 1991-11-01 | 1994-07-12 | Olympus Optical Co., Ltd. | Regenerating device for optical recording medium in which overlapping regions are read out by a light beam in a time sharing manner to provide servo control of the positional relationship between the light beam and the medium |
US5504726A (en) | 1993-04-23 | 1996-04-02 | International Business Machines Corporation | Method and apparatus for calibrating focus and tracking error signals in an optical drive with measuring offsets during track jumps |
US5367513A (en) | 1993-11-05 | 1994-11-22 | International Business Machines Corporation | Focus and tracking servo decoupling system |
US5642341A (en) | 1994-09-20 | 1997-06-24 | Ricoh Corporation | CD ROM apparatus for improved tracking and signal sensing |
US5724325A (en) | 1995-08-07 | 1998-03-03 | Samsung Electronics Co., Ltd. | Method for reducing lead in time in an optical disk recording or reproducing apparatus capable of processing data for multiple types of disks |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6614734B1 (en) * | 1999-03-16 | 2003-09-02 | Stmicroelectronics Sa | Process and device for controlling an incident optical beam for reading a track of information on a dynamic medium |
US6339565B1 (en) * | 1999-03-31 | 2002-01-15 | Lsi Logic Corporation | Non-linear center-error generator for DVD servo control |
US20080046958A1 (en) * | 2001-08-28 | 2008-02-21 | Music Choice | System and method for providing an interactive, visual complement to an audio program |
EP2045804A1 (en) | 2002-03-11 | 2009-04-08 | Mempile Inc. | Method and apparatus for retrieving information from a 3D storage medium |
US20050162996A1 (en) * | 2002-03-11 | 2005-07-28 | Mempile Inc. | Method and apparatus for retrieving information from a 3d storage medium |
US7269118B2 (en) | 2002-03-11 | 2007-09-11 | Mempile Inc. | Method and apparatus for retrieving information from a 3D storage medium |
US20070297316A1 (en) * | 2002-03-11 | 2007-12-27 | Mempile Inc. | Method and apparatus for retrieving information from a 3d storage medium |
US6865142B2 (en) | 2002-03-13 | 2005-03-08 | Mempile Inc. | Method for tracking data in an optical storage medium |
US20030174594A1 (en) * | 2002-03-13 | 2003-09-18 | Mempile Inc. | Method for tracking data in an optical storage medium |
US20080219130A1 (en) * | 2003-08-14 | 2008-09-11 | Mempile Inc. C/O Phs Corporate Services, Inc. | Methods and Apparatus for Formatting and Tracking Information for Three-Dimensional Storage Medium |
US7430158B1 (en) | 2004-12-13 | 2008-09-30 | Chris Tanner | Music player with adjustable pitch controller |
US8441903B2 (en) | 2011-08-17 | 2013-05-14 | Lsi Corporation | Optical disk playback device with prescan functionality for early detection of surface imperfections |
CN105425676A (en) * | 2015-12-11 | 2016-03-23 | 浙江师范大学 | Embedded photoelectric signal processing and control system and usage method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6493296B1 (en) | Optical disc inclination detecting method, optical pickup device, and optical disc device | |
EP0116467B1 (en) | Optical disc players | |
KR100280859B1 (en) | Optical head transfer circuit, optical head and reproducing apparatus introducing the same circuit | |
US6233210B1 (en) | Optical drive error tracking method and apparatus | |
US4799206A (en) | Tracking control apparatus for recording disc reproducing apparatus | |
US8068393B2 (en) | Optical disc apparatus including a divided photodetector | |
US7567489B2 (en) | Light detector, optical pickup, and optical disc apparatus | |
US5210731A (en) | Information processing apparatus with missing pulse detection and correction | |
JP2003248942A (en) | Optical disk device | |
JP2693608B2 (en) | Information recording disk playing device | |
JP3087034B2 (en) | Zero crossing level matching device and method | |
KR0165597B1 (en) | Disk tilt detection device of optic disk reproducing system | |
JPS63164026A (en) | Information processor | |
US6946634B2 (en) | Optical pickup device | |
JP2785815B2 (en) | Optical disk drive | |
KR100624266B1 (en) | Method for controlling track servo of holographic rom disk | |
JPH06282853A (en) | Optical disc device | |
JPH0916981A (en) | Optical disk device | |
JPH08339550A (en) | Adjusting method for control circuit for optical disk driving device | |
JPH0793771A (en) | Optical recording/reproducing device | |
JP2001266385A (en) | Tilt detecting method and optical disk device using the method | |
JPH07182664A (en) | Method for detecting position of optical pickup and its objective lens | |
JP2004171688A (en) | Defect detection method, defect detection circuit, and optical disk drive | |
JPH067107B2 (en) | Defect detection device for information recording disc | |
JPH0676328A (en) | Focus servo control circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LSI LOGIC CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHELL, DAVID L.;REEL/FRAME:009514/0307 Effective date: 19981008 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LSI CORPORATION;AGERE SYSTEMS LLC;REEL/FRAME:032856/0031 Effective date: 20140506 |
|
AS | Assignment |
Owner name: LSI CORPORATION, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:LSI LOGIC CORPORATION;REEL/FRAME:033102/0270 Effective date: 20070406 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:035390/0388 Effective date: 20140814 |
|
AS | Assignment |
Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 Owner name: LSI CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047022/0620 Effective date: 20180509 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE AND EFFECTIVE DATE PREVIOUSLY RECORDED ON REEL 047022 FRAME 0620. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047185/0643 Effective date: 20180509 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE PREVIOUSLY RECORDED ON REEL 047185 FRAME 0643. ASSIGNOR(S) HEREBY CONFIRMS THE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047476/0845 Effective date: 20180905 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE OF MERGER PREVIOUSLY RECORDED AT REEL: 047185 FRAME: 0643. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECTIVE MERGER;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:047959/0296 Effective date: 20180905 |