US6220385B1 - Steering system - Google Patents
Steering system Download PDFInfo
- Publication number
- US6220385B1 US6220385B1 US09/402,627 US40262700A US6220385B1 US 6220385 B1 US6220385 B1 US 6220385B1 US 40262700 A US40262700 A US 40262700A US 6220385 B1 US6220385 B1 US 6220385B1
- Authority
- US
- United States
- Prior art keywords
- clutch
- steering
- steering system
- force
- vehicle wheels
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/001—Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
- B62D5/003—Backup systems, e.g. for manual steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/80—Exterior conditions
- B60G2400/84—Atmospheric conditions
- B60G2400/841—Wind
Definitions
- the present invention relates to a steering system for a motor vehicle which is not trackbound and whose steered vehicle wheels are operationally connected in normal operation to a steering handle or a steering handwheel via an electronic control arrangement which continuously checks for correct functioning and controls a steering actuator, connected with the steered vehicle wheels so as to adjust them for steering, and connected for this purpose to a steering angle desired-value sensor actuated by the steering handle or the steering handwheel and to a steering angle actual-value sensor actuated by the steered vehicle wheels.
- the control arrangement preferably also controls a hand-force setter connected to the steering handle or the steering handwheel so as to simulate a steering resistance, and for this purpose is connected to a hand-force desired-value sensor detecting transmitted forces between the steering actuator and steered vehicle wheels, and to a hand-force actual-value sensor detecting transmitted forces between the hand-force setter and steering handwheel, in the case of abnormal operation or emergency operation are mechanically positively coupled to the steering handle or the steering handwheel for the purpose of steering adjustment by the closure of a clutch open in normal operation, in a mechanical steering gear arrangement arranged between the steering handle or steering handwheel and steered vehicle wheels.
- DE 39 19 990 A1 discloses a steering system in which automatic steering corrections can be performed, for example in the case of a side wind.
- DE 37 14 833 A1 relates to a power steering system with a hydraulic and electric servomotor, the electric servomotor being switched to act via a clutch in the event of failure of the hydraulic servomotor.
- Steering systems which operate using the “steer by wire” concept, at least in the case of normal operation, are being developed for future motor vehicles. Such systems offer the basic advantage that they are suitable for the most diverse vehicles without design modifications, at least with regard to the control arrangement and the associated sensor system. On the one hand, it is possible by means of appropriate programming to implement virtually any transmission ratio between the stroke of the steering handle and the steering angle change of the steered vehicle wheels. It is, moreover, possible to connect the control arrangement to additional sensors in order automatically to take account of or compensate parameters, for example side wind influences, to be prescribed.
- an operating mode for abnormal operation or emergency operation is automatically switched on.
- this mode of operation it is then possible to provide positive coupling between the steering handle and steered vehicle wheels, with the result that the steering system operates in principle like a conventional steering system, although the mechanical steering column customary in conventional steering systems can, if appropriate, be replaced by other mechanical systems or else by hydraulic, in particular hydrostatic, systems.
- the steering system switches over automatically to abnormal operation or emergency operation when during normal operation a signal for the open state of the clutch vanishes and/or a signal for a closed or closing clutch occurs.
- the clutch is continuously subjected to a closing force, that is to say continuously forced into its closed state, and can be opened against the closing force by an actuator, rendered effective only by the supply of energy.
- a particularly high degree of safety is ensured in that the steering handle and steered vehicle wheels are positively coupled to one another, and abnormal operation or emergency operation is switched on as soon as the sensor system “notices” that no unambiguous signal for an open clutch is present in normal operation.
- FIG. 1 is a schematic representation of the overall steering system of the present invention
- FIG. 2 is a cross-sectional longitudinal view through a gear arrangement having a pinion, a gear rack and a clutch assigned to the pinion, and
- FIG. 3 is a schematic representation similar to FIG. 1 but of an embodiment in which an electromagnetically actuated clutch is provided instead of a hydraulic clutch actuation.
- a motor vehicle (not represented in more detail) has steerable front wheels 1 which are coupled to one another via steering rods 2 and a rack 3 in such a way that the steering can be adjusted.
- the rack 3 has a part 3 ′ which is constructed as a gear rack and meshes with a pinion 4 , as well as a part 3 ′′ constructed as the piston rod of a double-acting hydraulic piston-cylinder unit 5 .
- the pinion 4 is connected to one side of a clutch 6 which operates in a force-close and/or self-close manner and is continuously loaded in the closing direction by a spring unit 7 , and can be opened or held open against the force of the spring unit 7 by feeding hydraulic medium into a hydraulic displacer unit 8 .
- the other side of the clutch 6 is connected in drive terms to a steering handwheel 10 via a preferably articulated shaft 9 .
- the pressure in the displacer unit 8 can be monitored by a pressure sensor 108 .
- a non-self-locking electric motor 11 Arranged in parallel with the steering handwheel 10 is a non-self-locking electric motor 11 which is positively coupled mechanically to the shaft 9 , is capable of operating as a pure force generator when the motor shaft is restrained, and whose purpose is explained below. Furthermore, there is arranged on the shaft 9 or between parts of the shaft 9 or between the steering handwheel 10 and the shaft 9 a torque sensor 12 whose signals reproduce the hand force effective on the steering handwheel 10 .
- an angle sensor 13 which undertakes the function of a steering angle desired-value sensor in a way represented below.
- a sensor 14 Provided on the side of the clutch 6 assigned to the steerable front wheels 1 is a sensor 14 whose signals reproduce the actual value of the steering angle of the front wheels 1 .
- the sensor 14 can, for example, detect the stroke of the rack 3 analogous to the actual value of the steering angle.
- a sensor 15 is assigned to the clutch 6 detects the operational state of the clutch 6 , provision preferably being made for the signals of the sensor 15 to indicate whether the displacer unit 8 adopts its state assigned to the open position of the clutch 6 .
- the displacer unit 8 can be connected via a switchover valve 16 to a relatively unpressurized reservoir 17 or a hydraulic accumulator 18 whose pressure is detected by a pressure sensor 118 .
- the switchover valve 16 normally assumes the position represented in FIG. 1 and, by applying current to its operating magnet, it is possible for it to be switched over into the position connecting the accumulator 18 to the displacer unit 8 .
- a pressure-limiting valve 19 leading to the reservoir 17 is provided to safeguard the accumulator 18 .
- a non-return valve 20 which is open only when flow is in the direction of the accumulator 18 , and a control valve 21 can be used to connect the accumulator 18 to the pressure side of a hydraulic pump 22 which, depending on the position of the control valve 21 , is connected on the pressure side either to the accumulator 18 or to a level-controlling system 23 (not represented in more detail) by way of which the ground clearance of the vehicle can be varied or controlled.
- the two sides of the piston-cylinder unit 5 can be connected to one another via a normally open shutoff valve 24 in such a way that the piston-cylinder unit 5 is switched to freewheeling operation in all circumstances.
- the shutoff valve 24 is brought into its closed position by applying current to its operating magnet.
- the piston-cylinder unit 5 is connected to two connections of a control valve 25 which is connected via two further connections to the reservoir 17 and, respectively, to the pressure side of a further hydraulic pump 26 .
- the piston-cylinder unit 5 In the represented position normally adopted by the control valve 25 , the piston-cylinder unit 5 is switched to freewheeling.
- the control valve 25 can be controlled in such a way that when the pump 26 is operating a greater or lesser pressure difference occurs between the two sides of the piston-cylinder unit 5 , and the piston-cylinder unit 5 generates an appropriate actuating force in one direction or the other.
- the pressure difference, and thus the actuating force can be detected with the aid of pressure sensors 29 , 30 on both sides of the unit 5 .
- An electronic regulating or control arrangement 28 is connected on the input side to a pressure sensor 27 which detects the hydraulic pressure on the pressure side of the pump 26 , and to the sensors 12 to 15 , 29 and 30 , as well as sensors 108 and 118 .
- the control arrangement 28 controls the electric motor 11 and the operating magnets of the valves 16 , 21 , 24 and 25 as well as, as the case may be, the pump 22 .
- the steering of the front wheels 1 is actuated by using the steering handwheel 10 to actuate the angle sensor 13 , which relays to the control arrangement 28 a signal reproducing the steering angle desired value.
- the control arrangement 28 receives from the sensor 14 a signal reproducing the steering angle actual value.
- the control arrangement 28 carries out a desired/actual value comparison and controls the control valve 25 as a function thereof.
- the control arrangement 28 applies current to the operating magnet of the shutoff valve 24 so that the shutoff valve 24 assumes its closed position, the actuation of the control valve 25 of the piston-cylinder unit 5 produces a greater or lesser actuating force with a controllable sense of direction in such a way that the desired/actual value deviation is compensated and the actual value of the steering angle at the front wheels 1 corresponds to the steering angle desired value prescribed by the steering handwheel via the angular resolver 13 .
- the signals of the pressure sensors 29 , 30 assigned to the two sides of the piston-cylinder unit 5 can be used to detect the amount and direction of the pressure difference present between these two sides.
- This pressure difference is a variable analogous to the steering and disturbing forces active at the front wheels 1 .
- the control arrangement 28 now prescribes in correlation with these steering and disturbing forces a desired value for the hand force which can be felt at the steering handwheel 10 , the actual value of which can be determined by the control arrangement from the signals of the torque sensor 12 .
- the electric motor 11 is controlled as a function of a desired/actual value comparison, so that the hand force which can be felt at the steering handwheel 10 is varied as a result in accordance with the steering and disturbing forces active at the steered front wheels 1 .
- the control arrangement 28 continuously checks itself and also the system parts cooperating with it for correct functioning, the plausibility of the signals of the various sensors also being monitored.
- the operating magnets of the valves 16 , 21 as well as 24 and 25 are switched off-circuit.
- the result of this is, on one hand, that the displacer unit 8 of the clutch 6 is depressurized, and the clutch 6 closes. Consequently, the steering handwheel 10 and the steerable front wheels 1 are positively coupled to one another mechanically for the purpose of steering adjustment.
- the shutoff valve 24 which is now open, or the valve 25 , which is in an open middle position, ensure that the piston-cylinder unit 5 is switched hydraulically to freewheeling.
- the normal operation of the steering system is terminated, for example, whenever the pressure, detected by the sensor 118 , of the accumulator 18 drops below a threshold value.
- a threshold value there is the risk that the clutch 6 can no longer be opened or held open reliably by feeding pressure into the displacer unit 8 , and that an undefined state will be set up. Consequently, it is preferably provided that the valve 16 is switched into the position represented or is held in the position represented when the sensor 118 signals a pressure below the threshold value. This amounts to the same thing as the operating magnet of the valve 16 being switched, or remaining, off-circuit electrically.
- the electric motor 11 can now be used as servomotor: the signals of the torque sensor 12 , if present, specify the hand force active at the steering handwheel 10 . Depending on this hand force, the electric motor 11 can be controlled by the controller 28 so as to achieve a greater or lesser reduction in the hand forces required for the respective steering maneuvers.
- the piston-cylinder unit 5 can also be operated as a servomotor when the clutch 6 is closed, that is in the case of mechanical positive coupling of the steering handwheel 10 and steered front wheels 1 .
- the electromagnet of the shutoff valve 24 must have current applied in conjunction with closure of this valve, and the control valve 25 must be actuated as a function of the signals of the torque sensor 12 by the controller 28 in such a way that the piston-cylinder unit 5 produces an actuating force which reduces the hand force respectively required at the steering handwheel 11 .
- FIG. 2 shows a particularly preferred embodiment of the clutch 6 which is accommodated, together with the pinion 4 and the meshing part of the gear rack 3 ′ in a common housing arrangement.
- the gear rack 3 ′ is displaceably guided in a part 31 ′ of a housing 31 which also holds the pinion 4 , meshing with the gear rack 3 ′, and the bearings 32 , 33 thereof.
- the pinion 4 On the side of the bearing 32 averted from the pinion 4 , the pinion 4 is adjoined in one piece by a pinion shaft 34 to whose free end an axial extension 34 ′ is attached.
- the end region, adjacent to the extension 34 ′, of the pinion shaft 34 is of eccentric construction, for example provided with axial webs, with the result that the pinion shaft 34 can be coupled securely as regards rotation to inner plates of the clutch 6 which can be displaced axially on the eccentric section.
- a shaft 35 which is connected securely as regards rotation to the shaft 9 (not represented in FIG. 2) shown in FIG. 1 .
- the shaft 35 is mounted radially and axially in the housing part 31 ′′ with the aid of bearings 36 , 37 , the axial bearing 37 preventing a leftward displacement of the shaft 35 , and the left-hand bearing 36 preventing in conjunction with a snap ring arranged on the shaft 35 and an annular stage on the housing part 31 ′′, a rightward displacement of the shaft 35 .
- the shaft 35 holds in a bell-like end region on the right side in FIG. 2 a radial bearing 38 with the aid of which the pinion shaft 34 is radially mounted, via its extension 34 ′, on the shaft 35 .
- the right-hand end of the shaft 35 is formed by a hollow wheel 35 ′ which is integrally formed on it and surrounds the plates of the clutch 6 radially on the outside, and is connected to the outer plates of this clutch securely as regards rotation but in an axially movable fashion.
- a hollow wheel 35 ′ Arranged for this purpose in the hollow wheel 35 ′ is an axial slot 35 ′′ in which the outer plates engage with corresponding radial extensions. If appropriate, it is also possible for multiply arranged slots 35 ′′ to cooperate with radial extensions, arranged in a corresponding multiple fashion, on the outer plates.
- annular space 39 Constructed in the housing part 31 ′ is an annular space 39 which surrounds a cylindrical sleeve 390 and can be connected via a hydraulic connection 40 to the valve 16 shown in FIG. 1 .
- This annular space 39 is sealed at the left-hand end in FIG. 2 by a sealing ring 41 which shuts off the gap between the housing part 31 ′ and the sleeve 390 .
- the other end, open at the front face, of the annular space 39 is sealed by a cylindrical piston 42 which is sealed with respect to the inner circumferential surface of the sleeve 390 at a section having a smaller outside diameter by a piston packing 43 , and is sealed at a section having a larger outside diameter with respect to the inner circumferential surface of the housing part 31 ′ with the aid of a further piston packing 44 .
- the cylindrical piston 42 is forced to the left in FIG. 2 by an annular cup-spring pack 45 which is arranged concentrically with the pinion shaft 34 .
- the cup-spring pack 45 is supported axially on an abutment ring 46 which is arranged inside an annular stage in the interior of the housing part 31 ′ and serves, moreover, to retain the outer bearing shell of the bearing 32 of the pinion 4 axially inside an annular stage of the housing part 31 ′.
- the other end of the cup-spring pack 45 is clamped against an annular stage on the inner circumference of the cylindrical piston 42 .
- an axial bearing 47 Arranged on the end face, on the left in FIG. 2, of the cylindrical piston 42 are an axial bearing 47 as well as a thrust plate 48 which is separated from the cylindrical piston 42 by the axial bearing 47 and, in the case of an unpressurized annular space 39 transmits the thrusts exerted by the cup-spring pack 45 on the cylindrical piston 42 to the plate pack of the clutch 6 .
- the outer and inner plates of the clutch 6 are forced firmly against one another axially and the clutch 6 is closed, the axial thrusts exerted on the clutch 6 being transferred to the housing part 31 ′′ via the axial bearing 37 .
- the control arrangement 28 can communicate with further sensors and/or computers (not represented) in order to take account of additional parameters.
- the clutch 6 is opened counter to the force of the closing spring 7 by a non-self-locking electromagnet unit 208 as soon as an appropriate electric current is applied to this unit 208 .
- the control arrangement 28 comprises a measuring circuit 280 with the aid of which parameters of the current applied to the electromagnet unit 208 can be detected, for example the electric voltage and current intensity of the electric supply current led to the electromagnet unit 208 as well as, if appropriate, the inductance of the electromagnet unit 208 .
- control circuit 28 can interpret this as a signal for the fact that the clutch 6 is being held in the open position by the electromagnet unit 208 . It is possible, in addition, for a signal of the sensor 15 for an open clutch to be present.
- the steering system is immediately switched over to abnormal operation or emergency operation in which the electric power supply of the electromagnet unit 208 is interrupted or switched off, and the clutch 6 correspondingly assumes its state closed by the spring 7 .
- the invention is not limited to steering systems having steering handwheels. Fundamentally, instead of a steering handwheel it is also possible in principle for any steering handle, for example a joystick, to be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Steering Mechanism (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19805015 | 1998-02-07 | ||
DE19805015A DE19805015C1 (en) | 1998-02-07 | 1998-02-07 | Steering control for non-rail vehicle with jointed wheels |
PCT/EP1999/000683 WO1999039967A1 (en) | 1998-02-07 | 1999-02-02 | Steering system |
Publications (1)
Publication Number | Publication Date |
---|---|
US6220385B1 true US6220385B1 (en) | 2001-04-24 |
Family
ID=7857031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/402,627 Expired - Lifetime US6220385B1 (en) | 1998-02-07 | 1999-02-02 | Steering system |
Country Status (5)
Country | Link |
---|---|
US (1) | US6220385B1 (en) |
EP (1) | EP0981473B1 (en) |
JP (1) | JP3477649B2 (en) |
DE (2) | DE19805015C1 (en) |
WO (1) | WO1999039967A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030146037A1 (en) * | 2002-02-05 | 2003-08-07 | Ratko Menjak | Hand wheel actuator |
US6612393B2 (en) * | 2001-01-17 | 2003-09-02 | Daimlerchrysler Ag | Steering system for motor vehicles |
US20050039450A1 (en) * | 2001-11-23 | 2005-02-24 | Uwe Wietzel | Hydraulic servo-assisted steering system for vehicles and a controlling method for a steering system of this type |
US20050155809A1 (en) * | 2004-01-20 | 2005-07-21 | Krzesicki Richard M. | Mechanical clutch coupling back-up for electric steering system |
US6923290B1 (en) * | 2003-09-11 | 2005-08-02 | Sauer-Danfoss, Inc. | Closed circuit steering circuit for mobile vehicle |
US20050229592A1 (en) * | 2004-04-20 | 2005-10-20 | Toyoda Koki Kabushiki Kaisha | Variable gear ratio hydraulic power steering device |
US20050274565A1 (en) * | 2004-06-09 | 2005-12-15 | Greenwell Randall G | Steer by wire motor control algorithm |
US20050280389A1 (en) * | 2004-06-18 | 2005-12-22 | Yohei Koike | Motor-driven power steering apparatus |
US7174987B2 (en) * | 2003-10-16 | 2007-02-13 | Visteon Global Technologies, Inc. | End of travel feature for steer by wire vehicle |
EP1795429A1 (en) * | 2005-11-29 | 2007-06-13 | Nissan Motor Company Limited | Vehicle steering |
US20070131472A1 (en) * | 2003-11-11 | 2007-06-14 | Wolfgang Pfeiffer | Method for triggering a coupling unit |
US20070205040A1 (en) * | 2006-03-01 | 2007-09-06 | Nissan Motor Co., Ltd. | Vehicle steering control apparatus and method |
US20100147618A1 (en) * | 2008-12-16 | 2010-06-17 | Nissan Motor Co., Ltd. | Steering control apparatus |
US20140066254A1 (en) * | 2012-09-04 | 2014-03-06 | Toyota Jidosha Kabushiki Kaisha | Steering system |
CN103909969A (en) * | 2014-03-03 | 2014-07-09 | 杭州世宝汽车方向机有限公司 | Intelligent steering control device and control method thereof |
US20140345965A1 (en) * | 2013-05-22 | 2014-11-27 | Jtekt Corporation | Power steering system |
US9308933B2 (en) * | 2014-05-30 | 2016-04-12 | Jaguar Land Rover Limited | Oscillatory feedback through vehicle steering |
US9919732B2 (en) | 2016-05-06 | 2018-03-20 | Dura Operating, Llc | Control assembly for a vehicle steer-by-wire system |
US11326976B2 (en) | 2018-02-12 | 2022-05-10 | Steering Solutions Ip Holding Corporation | In-vehicle seal integrity verification system |
WO2022247381A1 (en) * | 2021-05-28 | 2022-12-01 | 比亚迪股份有限公司 | Clutch device and vehicle steering system having same, and vehicle |
US11897657B2 (en) | 2019-05-07 | 2024-02-13 | Schoeller Allibert Gmbh | Container having a support plate which has projections |
US12071178B2 (en) | 2018-10-09 | 2024-08-27 | Thyssenkrupp Presta Ag | Plain bearing for a coupling rod of a steer-by-wire steering gear |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19841101C2 (en) * | 1998-09-09 | 2000-06-21 | Daimler Chrysler Ag | Steering system for non-track-bound motor vehicles |
DE19962945A1 (en) * | 1999-12-24 | 2001-04-26 | Daimler Chrysler Ag | Arrangement for operating travel direction indicating unit of motor vehicle and its driver side operable steering handle and front wheels can be decoupled from each other and input signals |
DE10015922B4 (en) * | 2000-03-30 | 2006-05-24 | Daimlerchrysler Ag | steering system |
US6655490B2 (en) | 2000-08-11 | 2003-12-02 | Visteon Global Technologies, Inc. | Steer-by-wire system with steering feedback |
US6681881B2 (en) | 2000-08-11 | 2004-01-27 | Visteon Global Technologies, Inc. | Steer-by-wire system with first and second steering actuators |
DE10046168A1 (en) * | 2000-09-19 | 2002-03-28 | Zf Lenksysteme Gmbh | Road vehicle steering system with steer-by-wire function has actuator providing steering reaction force and mechanical servo-assisted back-up system |
DE10048697A1 (en) * | 2000-09-30 | 2002-04-18 | Bosch Gmbh Robert | Steer-by-wire steering installation for vehicles has hydro-pump driven by steering wheel and in steer-by-wire operation, steering adjuster is driven by electric motor and assisted hydraulically |
DE10103642A1 (en) * | 2001-01-27 | 2002-08-01 | Zahnradfabrik Friedrichshafen | Actuator for steer-by-wire steering system with dry-running clutch and transmission and part of clutch integrated in transmission |
DE10157548A1 (en) * | 2001-11-23 | 2003-06-05 | Zf Lenksysteme Gmbh | Hydraulic servo-assisted steering system for motor vehicles stores actual valve characteristic curves in groups while preparing flow characteristic curves for a magnetic actuator in a converter to match the valve curves |
DE10157527A1 (en) * | 2001-11-23 | 2003-06-05 | Zf Lenksysteme Gmbh | Hydraulic servo-assisted steering system for motor vehicles stores actual valve characteristic curves in groups while preparing flow characteristic curves for a magnetic actuator in a converter to match the valve curves |
DE20202940U1 (en) | 2002-02-23 | 2002-06-27 | FABA Transportgeräte GmbH & Co. KG, 52222 Stolberg | Truck |
DE10207913A1 (en) * | 2002-02-23 | 2003-05-22 | Zf Lenksysteme Gmbh | Steering system for motor vehicle, has coupling gears between two steering systems with claw type self locking teeth |
DE10341157A1 (en) | 2003-09-06 | 2005-04-14 | Thyssenkrupp Automotive Ag | Safety coupling for steering systems |
DE102008002176A1 (en) | 2008-06-03 | 2009-12-10 | Zf Lenksysteme Gmbh | Actuator for steer-by-wire steering system for steering angle adjustment of steerable wheels of vehicle, has servo motor for driving axially displaceable component in drive housing, where device is formed in drive housing |
JP2015189346A (en) * | 2014-03-28 | 2015-11-02 | Ntn株式会社 | Unit for vehicle steering system |
DE102014017172B4 (en) * | 2014-11-20 | 2016-07-28 | Audi Ag | Method for operating an automatic transmission device and corresponding automatic transmission device |
DE102019102069A1 (en) * | 2019-01-28 | 2020-07-30 | Bayerische Motoren Werke Aktiengesellschaft | Switchable clutch for a steer-by-wire steering system, steer-by-wire steering system, method for operation and vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3580352A (en) * | 1969-01-21 | 1971-05-25 | Gen Motors Corp | Steering torque servo |
US4940105A (en) * | 1987-03-20 | 1990-07-10 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Steering gear for a vehicle |
US5236335A (en) * | 1990-12-25 | 1993-08-17 | Nippondenso Co., Ltd. | Front-wheel steering system |
US5511629A (en) * | 1993-02-16 | 1996-04-30 | Daimler-Benz Ag | Motor vehicle steering system |
DE19540956C1 (en) | 1995-11-03 | 1997-03-06 | Daimler Benz Ag | Servo-assisted steering for motor vehicle |
US6138788A (en) * | 1997-12-11 | 2000-10-31 | Daimlerchrysler Ag | Vehicle steering system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB885108A (en) * | 1959-01-08 | 1961-12-20 | Gen Motors Corp | Improved road vehicle steering system |
DE6902284U (en) * | 1969-01-20 | 1969-06-19 | Rectus Appbau Walter Klein | QUICK-RELEASE COUPLING FOR COMPRESSED GAS, IN PARTICULAR COMPRESSED AIR PIPES. |
JPH01502578A (en) * | 1986-05-14 | 1989-09-07 | ツァーンラートファブリーク、フリードリッヒスハーフェン、アクチエンゲゼルシャフト | Automotive power steering device |
JP2694344B2 (en) * | 1988-06-17 | 1997-12-24 | 株式会社豊田中央研究所 | Vehicle steering angle control device |
WO1990012724A1 (en) * | 1989-04-26 | 1990-11-01 | Group Lotus Plc | Vehicle steering systems |
DE19546733C1 (en) * | 1995-12-14 | 1997-03-27 | Daimler Benz Ag | Hydraulic servo steering for motor vehicle |
-
1998
- 1998-02-07 DE DE19805015A patent/DE19805015C1/en not_active Expired - Fee Related
-
1999
- 1999-02-02 DE DE59901436T patent/DE59901436D1/en not_active Expired - Fee Related
- 1999-02-02 US US09/402,627 patent/US6220385B1/en not_active Expired - Lifetime
- 1999-02-02 EP EP99907483A patent/EP0981473B1/en not_active Expired - Lifetime
- 1999-02-02 WO PCT/EP1999/000683 patent/WO1999039967A1/en active IP Right Grant
- 1999-02-02 JP JP53998899A patent/JP3477649B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3580352A (en) * | 1969-01-21 | 1971-05-25 | Gen Motors Corp | Steering torque servo |
US4940105A (en) * | 1987-03-20 | 1990-07-10 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Steering gear for a vehicle |
US5236335A (en) * | 1990-12-25 | 1993-08-17 | Nippondenso Co., Ltd. | Front-wheel steering system |
US5511629A (en) * | 1993-02-16 | 1996-04-30 | Daimler-Benz Ag | Motor vehicle steering system |
DE19540956C1 (en) | 1995-11-03 | 1997-03-06 | Daimler Benz Ag | Servo-assisted steering for motor vehicle |
US6076627A (en) * | 1995-11-03 | 2000-06-20 | Daimlerchrysler Ag | Power steering for motor vehicles |
US6138788A (en) * | 1997-12-11 | 2000-10-31 | Daimlerchrysler Ag | Vehicle steering system |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6612393B2 (en) * | 2001-01-17 | 2003-09-02 | Daimlerchrysler Ag | Steering system for motor vehicles |
US20050039450A1 (en) * | 2001-11-23 | 2005-02-24 | Uwe Wietzel | Hydraulic servo-assisted steering system for vehicles and a controlling method for a steering system of this type |
US7044046B2 (en) | 2001-11-23 | 2006-05-16 | Zf Lenksysteme Gmbh | Hydraulic servo-assisted steering system for vehicles and a controlling method for a steering system of this type |
US20030146037A1 (en) * | 2002-02-05 | 2003-08-07 | Ratko Menjak | Hand wheel actuator |
US6799654B2 (en) * | 2002-02-05 | 2004-10-05 | Delphi Technologies, Inc. | Hand wheel actuator |
US6923290B1 (en) * | 2003-09-11 | 2005-08-02 | Sauer-Danfoss, Inc. | Closed circuit steering circuit for mobile vehicle |
US7174987B2 (en) * | 2003-10-16 | 2007-02-13 | Visteon Global Technologies, Inc. | End of travel feature for steer by wire vehicle |
US20070131472A1 (en) * | 2003-11-11 | 2007-06-14 | Wolfgang Pfeiffer | Method for triggering a coupling unit |
US7581617B2 (en) * | 2003-11-11 | 2009-09-01 | Robert Bosch Gmbh | Method for triggering a coupling unit |
US20050155809A1 (en) * | 2004-01-20 | 2005-07-21 | Krzesicki Richard M. | Mechanical clutch coupling back-up for electric steering system |
US20050229592A1 (en) * | 2004-04-20 | 2005-10-20 | Toyoda Koki Kabushiki Kaisha | Variable gear ratio hydraulic power steering device |
EP1588923A3 (en) * | 2004-04-20 | 2005-11-30 | Toyoda Koki Kabushiki Kaisha | Variable gear ratio hydraulic power steering device |
US7306070B2 (en) | 2004-04-20 | 2007-12-11 | Jtekt Corporation | Variable gear ratio hydraulic power steering device |
US20050274565A1 (en) * | 2004-06-09 | 2005-12-15 | Greenwell Randall G | Steer by wire motor control algorithm |
WO2006001950A1 (en) * | 2004-06-09 | 2006-01-05 | General Motors Corporation | Steer by wire motor control algorithm |
US20050280389A1 (en) * | 2004-06-18 | 2005-12-22 | Yohei Koike | Motor-driven power steering apparatus |
US7080711B2 (en) * | 2004-06-18 | 2006-07-25 | Showa Corporation | Motor-driven power steering apparatus |
US20070144815A1 (en) * | 2005-11-29 | 2007-06-28 | Nissan Motor Co., Ltd. | Vehicle steering controller and method |
EP1795429A1 (en) * | 2005-11-29 | 2007-06-13 | Nissan Motor Company Limited | Vehicle steering |
CN1974295B (en) * | 2005-11-29 | 2010-06-16 | 日产自动车株式会社 | Vehicle steering control device and method |
US8418800B2 (en) * | 2005-11-29 | 2013-04-16 | Nissan Motor Co., Ltd. | Vehicle steering controller and method |
US20070205040A1 (en) * | 2006-03-01 | 2007-09-06 | Nissan Motor Co., Ltd. | Vehicle steering control apparatus and method |
US7708108B2 (en) * | 2006-03-01 | 2010-05-04 | Nissan Motor Co., Ltd. | Vehicle steering control apparatus and method |
US20100147618A1 (en) * | 2008-12-16 | 2010-06-17 | Nissan Motor Co., Ltd. | Steering control apparatus |
US20140066254A1 (en) * | 2012-09-04 | 2014-03-06 | Toyota Jidosha Kabushiki Kaisha | Steering system |
US9446755B2 (en) * | 2012-09-04 | 2016-09-20 | Toyota Jidosha Kabushiki Kaisha | Steering system |
US20140345965A1 (en) * | 2013-05-22 | 2014-11-27 | Jtekt Corporation | Power steering system |
US9511796B2 (en) * | 2013-05-22 | 2016-12-06 | Jtekt Corporation | Power steering system |
CN103909969A (en) * | 2014-03-03 | 2014-07-09 | 杭州世宝汽车方向机有限公司 | Intelligent steering control device and control method thereof |
US9308933B2 (en) * | 2014-05-30 | 2016-04-12 | Jaguar Land Rover Limited | Oscillatory feedback through vehicle steering |
US9919732B2 (en) | 2016-05-06 | 2018-03-20 | Dura Operating, Llc | Control assembly for a vehicle steer-by-wire system |
US11326976B2 (en) | 2018-02-12 | 2022-05-10 | Steering Solutions Ip Holding Corporation | In-vehicle seal integrity verification system |
DE102019103113B4 (en) | 2018-02-12 | 2023-09-21 | Steering Solutions Ip Holding Corporation | SEAL INTEGRITY VERIFICATION SYSTEM AND ELECTRIC POWER STEERING SYSTEM |
US12071178B2 (en) | 2018-10-09 | 2024-08-27 | Thyssenkrupp Presta Ag | Plain bearing for a coupling rod of a steer-by-wire steering gear |
US11897657B2 (en) | 2019-05-07 | 2024-02-13 | Schoeller Allibert Gmbh | Container having a support plate which has projections |
WO2022247381A1 (en) * | 2021-05-28 | 2022-12-01 | 比亚迪股份有限公司 | Clutch device and vehicle steering system having same, and vehicle |
Also Published As
Publication number | Publication date |
---|---|
DE19805015C1 (en) | 1999-07-08 |
JP2001506563A (en) | 2001-05-22 |
JP3477649B2 (en) | 2003-12-10 |
EP0981473A1 (en) | 2000-03-01 |
EP0981473B1 (en) | 2002-05-15 |
DE59901436D1 (en) | 2002-06-20 |
WO1999039967A1 (en) | 1999-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6220385B1 (en) | Steering system | |
US6213246B1 (en) | Electrically actuated vehicle steering system | |
US6244371B1 (en) | Steering system for non-track-bound motor vehicles | |
US5862878A (en) | Hydraulic power steering system | |
JP4122472B2 (en) | Vehicle steering system and control method thereof | |
US6209677B1 (en) | Steering system for non-tracked motor vehicles | |
US6279675B1 (en) | Steering system for non-tracked motor vehicles | |
US6285936B1 (en) | Steering system for a vehicle | |
GB2306928A (en) | Power steering for motor vehicles | |
KR100373870B1 (en) | Hydraulic power steering with a closed centre | |
US20030141134A1 (en) | Steer-by-wire steering apparatus with actuatable mechanism | |
US5953978A (en) | Hydraulic power steering system | |
GB2309675A (en) | Electronic controlled steering system with hydraulic power assistance for motor vehicles | |
GB2341587A (en) | Improvement to steering stop 'feel' in a 'steer-by-wire' system | |
JP2000190859A (en) | Steering system for automobile | |
US6367575B1 (en) | Motor vehicle steering system | |
KR20010020205A (en) | Power steering with hydraulic power assistance | |
JPS59128054A (en) | Four-wheel steering gear of vehicle | |
US6945350B2 (en) | Steering apparatus for turning multiple sets of steerable vehicle wheels | |
GB2306927A (en) | Power steering for motor vehicles | |
US20040149509A1 (en) | Steering device | |
JP2003261055A (en) | Steering apparatus for vehicle | |
US20220402545A1 (en) | Steering gear apparatus for a motor vehicle | |
JPH0714121Y2 (en) | Safety device for vehicle four-wheel steering system | |
JPS62241774A (en) | Failure compensating device for front/rear wheel-steered vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIMLERCHRYSLER AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOHNER, HUBERT;MOSER, MARTIN;REEL/FRAME:010580/0817 Effective date: 19991008 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: BURANI CONSULTING LIMITED LIABILITY COMPANY, DELAW Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAIMLER AG;REEL/FRAME:027624/0585 Effective date: 20111219 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CHEMTRON RESEARCH LLC, DELAWARE Free format text: MERGER;ASSIGNOR:BURANI CONSULTING LIMITED LIABILITY COMPANY;REEL/FRAME:037273/0458 Effective date: 20150826 |