US6210158B1 - Method and apparatus for firing ceramic compact - Google Patents

Method and apparatus for firing ceramic compact Download PDF

Info

Publication number
US6210158B1
US6210158B1 US09/069,872 US6987298A US6210158B1 US 6210158 B1 US6210158 B1 US 6210158B1 US 6987298 A US6987298 A US 6987298A US 6210158 B1 US6210158 B1 US 6210158B1
Authority
US
United States
Prior art keywords
firing
furnace
stage
firing tube
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/069,872
Inventor
Toshinori Kawahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to US09/069,872 priority Critical patent/US6210158B1/en
Application granted granted Critical
Publication of US6210158B1 publication Critical patent/US6210158B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0075Charging or discharging vertically, e.g. through a bottom opening

Definitions

  • the present invention relates to a method and apparatus for firing ceramic compacts used in electronic parts.
  • FIG. 4 is a cross-sectional view of the batch firing apparatus 1 a , provided with a furnace 2 a having a firing space 3 a for green ceramic compacts therein.
  • the furnace 2 a comprises a furnace wall 4 a including a ceiling and a side wall, a stage 10 a as a hearth, a heater 5 a provided along the furnace wall 4 a in the furnace 2 a , a gas inlet pipe 6 a and a gas outlet pipe 7 a provided in the ceiling of the furnace.
  • a lift 9 a is provided under the stage 10 a for raising and lowering the stage 10 a .
  • the furnace 2 a is supported by legs 11 a.
  • a method for firing a green ceramic compact comprises the steps of: placing a casing containing a green ceramic compact into a firing tube made of a highly heat-conductive material so as to substantially close the casing; firing the green ceramic compact in a furnace; cooling the fired ceramic compact by directly exposing the outer surface of the firing tube to open air; and removing the casing from the firing tube.
  • a firing apparatus for a green ceramic compact comprises: a furnace which may be provided with a hearth comprising a first stage and a second stage, each being independently movable; and a firing tube in the furnace with a given space from the side wall of the furnace, the top of said firing tube perhaps being fixed to the ceiling of said furnace, the bottom end of the firing tube capable of being placed on the first stage loaded with a casing containing the green ceramic compact so as to substantially close the casing, the firing tube having a space for firing the green ceramic compact therein and being formed from a highly heat-conductive material.
  • cooling of the fired ceramic compact is performed by directly exposing the outer surface of the firing tube to open air after the casing containing the ceramic compact is loaded in the firing tube made of a highly heat-conductive material so as to substantially seal the casing away from open air.
  • the firing space atmosphere in the firing tube is not disturbed by the open air but after the ceramic compact is fired, the firing tube is, and thus cooling can be stably achieved.
  • FIG. 1A is a longitudinal sectional view of an apparatus for firing a ceramic compact in accordance with an embodiment of the present invention.
  • FIG. 1B is a horizontal sectional view taken from line A—A of FIG. 1A;
  • FIG. 2 is a longitudinal sectional view for illustrating the cooling step of the fired ceramic compact in the apparatus set forth in FIG. 1;
  • FIG. 3 is a longitudinal sectional view for illustrating the step for removing the fired ceramic compact from the apparatus set forth in FIG. 1;
  • FIG. 4 is a longitudinal sectional view of a prior art apparatus for firing a ceramic compact.
  • FIG. 1A is a longitudinal sectional view of a batch firing apparatus 1 as an embodiment in accordance with the present invention
  • FIG. 1B is a horizontal sectional view taken from line A—A of FIG. 1B.
  • a heater 5 set forth in FIG. 1A is omitted in FIG. 1 B.
  • the firing apparatus 1 includes a furnace 2 and a firing tube 14 which is provided on the ceiling of the furnace 2 and has a firing space 3 for firing a ceramic compact.
  • the furnace includes a furnace wall 4 including a ceiling and a side wall, a hearth comprising a first stage 10 and a second stage 12 , a heater 5 provided in the furnace 4 along the inner firing tube 14 , a gas inlet pipe 6 and a gas outlet pipe 7 .
  • the first stage 10 is located in the center of the furnace 2 and the second stage 12 is a ring tightly provided along the periphery of the first stage 10 without openings to seal in the heat during a firing.
  • the first and second stages 10 and 12 move independently from each other.
  • the gas inlet and outlet pipes 6 and 7 are provided in the ceiling of the firing tube 14 .
  • the composition of the gas e.g., a gas selected from N, H, H 2 O, O, and the like
  • the firing tube 14 is provided in the furnace 2 so as to have a given space the furnace wall 4 and the side wall of the firing tube 14 .
  • the top end of the firing tube 14 is tightly fixed to the ceiling of the furnace 2 by a sealing means.
  • a casing 8 containing a green ceramic compact is loaded on the first stage 10 and is enclosed by the bottom end of the firing tube 14 and the first stage 10 so as to not form a gap between them.
  • the firing tube 14 is formed from a highly heat-conductive material, for example, alumina and silicon carbide. Silicon carbide is preferably used due to its high heat conductivity and high mechanical strength.
  • the first and second stages 10 and 12 of the hearth are provided with lifts 9 and 15 so that the first and second stages 10 and 12 can rise and fall independently of each other.
  • the furnace 2 is supported by legs 11 .
  • the casing 8 containing many green ceramic compacts is loaded on the first stage 10 and placed in the firing tube 14 in the furnace 2 by means of the lift 9 .
  • the casing 8 is thereby enclosed in the firing space 3 in the firing tube 14 .
  • the second stage 12 is also raised by means of the lift 15 so as to close the furnace 2 .
  • the heater 5 is energized to heat the firing space 3 , and a given gas is fed through the gas inlet and outlet pipes 6 and 7 to fire the green ceramic compacts.
  • the second stage 12 After firing, the second stage 12 is lowered along the X direction set forth in FIG. 2 by means of the lift 15 while still enclosing the firing tube 14 .
  • the space 13 between the furnace wall 4 and the firing tube 14 is exposed to open air by an opening formed by such movement of the second stage 12 and thus the firing tube 14 is directly exposed to open air.
  • the fired ceramic compacts, as well as the firing tube 14 are cooled by open air introduced through the opening.
  • cool air may be fed past the outside of the firing tube 14 with a fan.
  • the fired ceramic compacts are cooled to around room temperature in such a manner.
  • the first stage 10 is lowered along the X direction set forth in FIG. 3 by means of the lift 9 , the casing 8 containing the fired ceramic compacts is unloaded from the first stage 10 , and the fired ceramic compacts are removed from the casing 8 .
  • the firing space atmosphere is considerably homogeneous even when open air is introduced in the furnace 2 to rapidly cool the fired ceramic compacts.
  • electronic parts made of such ceramic compacts exhibit stable and excellent electric characteristics.
  • the firing space 3 in the firing tube 14 may be enclosed to an extent that the atmosphere in the firing space 3 is not disturbed by open air introduction in the furnace 2 .
  • the firing method in accordance with the present invention will be explained in more detail with reference to a monolithic ceramic capacitor of 100 nF capacitance having a length of 1.6 mm, a width of 0.8 mm and a thickness of 0.8 mm.
  • a firing apparatus 1 set forth above having a firing tube 14 made of silicon carbide, an alumina, casing containing many green ceramic compacts was loaded onto the first stage 10 .
  • the green ceramic compacts were fired in the firing tube 14 at a maximum firing temperature of 1,300° C., and then the inside of the furnace 2 was cooled as is. Then, the second stage was lowered to introduce open air into the furnace 2 .
  • the fired ceramic compacts were, thereby, cooled from 1,000° C.
  • the atmosphere of the firing space 3 in the firing tube 14 can be stably and rapidly cooled without disturbance by the open air.
  • the firing apparatus 1 in accordance with the present invention is not limited to the embodiments set forth above and thus can be modified within the scope of the present invention.
  • the stage 12 is vertically movable in the embodiments set forth above, a horizontally movable stage may also be used.
  • the shapes of the furnace and the firing space are not limited to being cylindrical as shown in FIG. 1, and other shapes such as a prism or other rectilinear shapes may be employed.
  • the shape of the firing tube 14 is also not limited to a cylinder, and may be, for example, prismatic or other rectilinear shape.
  • the first stage 10 and the second stage 12 are not limited to being circular and a circular ring, and may be, for example, rectangular and a rectangular ring, respectively.
  • the second stage 12 may have an appropriate shape independent of the shape of the first stage 10 as long as the second stage 12 is provided so as to tightly close the casing 8 .
  • the casing 8 loaded on the first stage 10 is made of alumina in the embodiments set forth above, other materials such as zirconia may be also used.
  • the method and apparatus of the present invention are applicable to any ceramic electronic parts formed by firing green ceramic compacts other than monolithic ceramic capacitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

A firing apparatus for a green ceramic compact including: a furnace; and a firing tube provided in the furnace with a given space from the side wall of the furnace. The bottom end of the firing tube can be placed on a first stage loaded with a casing containing the green ceramic compact so as to substantially close the casing, the firing tube having a space for firing the green ceramic compact therein and being formed from a highly heat-conductive material.

Description

This application is a divisional of application Ser. No. 08/821,644, filed Mar. 20, 1997.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and apparatus for firing ceramic compacts used in electronic parts.
2. Description of the Related Art
In mass production of ceramic electronic parts and the like, green ceramic compacts are generally fired using a batch firing apparatus 1 a such as set forth in FIG. 4. FIG. 4 is a cross-sectional view of the batch firing apparatus 1 a, provided with a furnace 2 a having a firing space 3 a for green ceramic compacts therein. The furnace 2 a comprises a furnace wall 4 a including a ceiling and a side wall, a stage 10 a as a hearth, a heater 5 a provided along the furnace wall 4 a in the furnace 2 a, a gas inlet pipe 6 a and a gas outlet pipe 7 a provided in the ceiling of the furnace. Further, a lift 9 a is provided under the stage 10 a for raising and lowering the stage 10 a. The furnace 2 a is supported by legs 11 a.
In the firing process of green ceramic compacts using the firing apparatus 1 a, a casing 8 a including many green ceramic compacts is put on the stage 10 a and placed in the firing space 3 a in the furnace 2 a. The firing space 3 a is heated with the heater 5 a to fire the green ceramic compacts while supplying a given gas through the gas inlet and outlet pipes 6 a and 7 a. After the furnace 2 a is cooled to a predetermined temperature, the stage is 10 a lowered with the lift 9 a to remove the fired ceramic compacts.
Since cooling in the furnace 2 a of the ceramic compacts, which is fired at a high temperature, to room temperature requires a long time period, it is proposed in order to achieve faster cooling that the stage 10 a be lowered with the lift 9 a while the fired ceramic compacts having a high temperature are cooled by direct exposure to the open air.
However, such rapid cooling of fired ceramic compacts results in deterioration and fluctuation of electric characteristics of electronic parts comprising ceramic compacts due to the unstable cooling atmosphere.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method and apparatus for firing ceramic compacts in which rapid cooling of fired ceramic compacts can be achieved in a stabilized cooling atmosphere.
In accordance with the present invention, a method for firing a green ceramic compact comprises the steps of: placing a casing containing a green ceramic compact into a firing tube made of a highly heat-conductive material so as to substantially close the casing; firing the green ceramic compact in a furnace; cooling the fired ceramic compact by directly exposing the outer surface of the firing tube to open air; and removing the casing from the firing tube.
In accordance with a second aspect of the present invention, a firing apparatus for a green ceramic compact comprises: a furnace which may be provided with a hearth comprising a first stage and a second stage, each being independently movable; and a firing tube in the furnace with a given space from the side wall of the furnace, the top of said firing tube perhaps being fixed to the ceiling of said furnace, the bottom end of the firing tube capable of being placed on the first stage loaded with a casing containing the green ceramic compact so as to substantially close the casing, the firing tube having a space for firing the green ceramic compact therein and being formed from a highly heat-conductive material.
In accordance with the method and apparatus for firing a ceramic compact of the present invention, cooling of the fired ceramic compact is performed by directly exposing the outer surface of the firing tube to open air after the casing containing the ceramic compact is loaded in the firing tube made of a highly heat-conductive material so as to substantially seal the casing away from open air. In such cooling of the fired ceramic compact, the firing space atmosphere in the firing tube is not disturbed by the open air but after the ceramic compact is fired, the firing tube is, and thus cooling can be stably achieved.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a longitudinal sectional view of an apparatus for firing a ceramic compact in accordance with an embodiment of the present invention, and
FIG. 1B is a horizontal sectional view taken from line A—A of FIG. 1A;
FIG. 2 is a longitudinal sectional view for illustrating the cooling step of the fired ceramic compact in the apparatus set forth in FIG. 1;
FIG. 3 is a longitudinal sectional view for illustrating the step for removing the fired ceramic compact from the apparatus set forth in FIG. 1; and
FIG. 4 is a longitudinal sectional view of a prior art apparatus for firing a ceramic compact.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will now be illustrated with reference to the embodiments set forth in the drawings.
FIG. 1A is a longitudinal sectional view of a batch firing apparatus 1 as an embodiment in accordance with the present invention, and FIG. 1B is a horizontal sectional view taken from line A—A of FIG. 1B. A heater 5 set forth in FIG. 1A is omitted in FIG. 1B.
The firing apparatus 1 includes a furnace 2 and a firing tube 14 which is provided on the ceiling of the furnace 2 and has a firing space 3 for firing a ceramic compact. The furnace includes a furnace wall 4 including a ceiling and a side wall, a hearth comprising a first stage 10 and a second stage 12, a heater 5 provided in the furnace 4 along the inner firing tube 14, a gas inlet pipe 6 and a gas outlet pipe 7. The first stage 10 is located in the center of the furnace 2 and the second stage 12 is a ring tightly provided along the periphery of the first stage 10 without openings to seal in the heat during a firing. The first and second stages 10 and 12 move independently from each other.
The gas inlet and outlet pipes 6 and 7 are provided in the ceiling of the firing tube 14. The composition of the gas (e.g., a gas selected from N, H, H2O, O, and the like) used depends on what characteristics are desired in the fired ceramic compacts. The firing tube 14 is provided in the furnace 2 so as to have a given space the furnace wall 4 and the side wall of the firing tube 14. The top end of the firing tube 14 is tightly fixed to the ceiling of the furnace 2 by a sealing means. A casing 8 containing a green ceramic compact is loaded on the first stage 10 and is enclosed by the bottom end of the firing tube 14 and the first stage 10 so as to not form a gap between them. The firing tube 14 is formed from a highly heat-conductive material, for example, alumina and silicon carbide. Silicon carbide is preferably used due to its high heat conductivity and high mechanical strength. The first and second stages 10 and 12 of the hearth are provided with lifts 9 and 15 so that the first and second stages 10 and 12 can rise and fall independently of each other. The furnace 2 is supported by legs 11.
Next, a method for firing a green ceramic compact using the apparatus 1 set forth above will be illustrated with reference to FIGS. 1 and 2.
The casing 8 containing many green ceramic compacts is loaded on the first stage 10 and placed in the firing tube 14 in the furnace 2 by means of the lift 9. The casing 8 is thereby enclosed in the firing space 3 in the firing tube 14. The second stage 12 is also raised by means of the lift 15 so as to close the furnace 2. Then, the heater 5 is energized to heat the firing space 3, and a given gas is fed through the gas inlet and outlet pipes 6 and 7 to fire the green ceramic compacts.
After firing, the second stage 12 is lowered along the X direction set forth in FIG. 2 by means of the lift 15 while still enclosing the firing tube 14. The space 13 between the furnace wall 4 and the firing tube 14 is exposed to open air by an opening formed by such movement of the second stage 12 and thus the firing tube 14 is directly exposed to open air. Thus, the fired ceramic compacts, as well as the firing tube 14, are cooled by open air introduced through the opening. In order to shorten the cooling time, cool air may be fed past the outside of the firing tube 14 with a fan. The fired ceramic compacts are cooled to around room temperature in such a manner.
Then, the first stage 10 is lowered along the X direction set forth in FIG. 3 by means of the lift 9, the casing 8 containing the fired ceramic compacts is unloaded from the first stage 10, and the fired ceramic compacts are removed from the casing 8.
In the method for firing green ceramic compacts, the firing space atmosphere is considerably homogeneous even when open air is introduced in the furnace 2 to rapidly cool the fired ceramic compacts. Thus, electronic parts made of such ceramic compacts exhibit stable and excellent electric characteristics. The firing space 3 in the firing tube 14 may be enclosed to an extent that the atmosphere in the firing space 3 is not disturbed by open air introduction in the furnace 2.
The firing method in accordance with the present invention will be explained in more detail with reference to a monolithic ceramic capacitor of 100 nF capacitance having a length of 1.6 mm, a width of 0.8 mm and a thickness of 0.8 mm. Using the firing apparatus 1 set forth above having a firing tube 14 made of silicon carbide, an alumina, casing containing many green ceramic compacts was loaded onto the first stage 10. The green ceramic compacts were fired in the firing tube 14 at a maximum firing temperature of 1,300° C., and then the inside of the furnace 2 was cooled as is. Then, the second stage was lowered to introduce open air into the furnace 2. The fired ceramic compacts were, thereby, cooled from 1,000° C. to room temperature at a cooling rate of approximately 10° C./min. The first stage 10 was lowered, the casing 8 was unloaded from the first stage 10, and the fired ceramic compacts were removed from the casing 8. Monolithic ceramic capacitors were obtained in such a manner.
For comparison, green ceramic compacts were fired as in set forth above with the prior art apparatus 1 a set forth in FIG. 4, the stage 10 a was lowered at a high temperature of 1,000° C. to directly expose the fired ceramic compacts to open air, and the fired ceramic compacts were cooled at a cooling rate of 10° C./min. Prior art monolithic ceramic capacitors were obtained in such a manner.
Each 100 of the monolithic ceramic capacitors obtained by the methods in accordance with the present invention and based on the prior art were subjected to evaluation of change in electrostatic capacitance. As a result, it was found that the monolithic ceramic capacitors obtained from the prior art method have a high change variance (CV) value in electrostatic capacitance of 13.8%, whereas the monolithic ceramic capacitors obtained from the method in accordance with the present invention have a low change variance (CV) value of 4.9%.
Accordingly, the atmosphere of the firing space 3 in the firing tube 14 can be stably and rapidly cooled without disturbance by the open air.
The firing apparatus 1 in accordance with the present invention is not limited to the embodiments set forth above and thus can be modified within the scope of the present invention. For example, although the stage 12 is vertically movable in the embodiments set forth above, a horizontally movable stage may also be used.
The shapes of the furnace and the firing space are not limited to being cylindrical as shown in FIG. 1, and other shapes such as a prism or other rectilinear shapes may be employed. The shape of the firing tube 14 is also not limited to a cylinder, and may be, for example, prismatic or other rectilinear shape. Moreover, the first stage 10 and the second stage 12 are not limited to being circular and a circular ring, and may be, for example, rectangular and a rectangular ring, respectively. The second stage 12 may have an appropriate shape independent of the shape of the first stage 10 as long as the second stage 12 is provided so as to tightly close the casing 8.
Although the casing 8 loaded on the first stage 10 is made of alumina in the embodiments set forth above, other materials such as zirconia may be also used.
Further, the method and apparatus of the present invention are applicable to any ceramic electronic parts formed by firing green ceramic compacts other than monolithic ceramic capacitors.

Claims (10)

What is claimed is:
1. A firing apparatus for firing a green ceramic compact, comprising:
a furnace; and
a firing tube being disposed in said furnace with a given space between an inside side wall of said furnace and an outside side wall of said firing tube, wherein said firing tube includes an opening adapted to be loaded with a casing containing said green ceramic compact so as to substantially close said casing within said firing tube and wherein said furnace includes a hearth disposed in a passage of said furnace, the hearth selectively permitting and restricting exposure of said firing tube to ambient air while simultaneously preventing exposure of said casing to ambient air.
2. A firing apparatus in accordance with claim 1, wherein said hearth includes a first movable stage moving said hearth to contact said firing tube thereby preventing exposure of said casing to ambient air.
3. A firing apparatus in accordance with claim 2, wherein a bottom of said firing tube in said furnace contacts a top surface of said first stage so as to substantially enclose said casing.
4. A firing apparatus in accordance with claim 1, wherein said hearth includes a first stage and a second stage, each being independently movable, said first movable stage movably engaging said hearth with said firing tube and said second movable stage selectively opening and closing said passage formed between said first stage and said furnace inside side wall.
5. A firing apparatus in accordance with claim 1, wherein said firing tube is fixed at one end to said furnace.
6. A firing apparatus in accordance with claim 1, wherein said firing tube includes a highly heat-conductive material.
7. A firing apparatus in accordance with claim 1, wherein a top of said firing tube is fixed to a ceiling of said furnace.
8. A firing apparatus for a green ceramic compact, comprising:
a furnace including a hearth, said hearth comprising a first stage and a second stage, each being independently movable; and
a firing tube provided in said furnace with a given space from a side wall of said furnace, a top of said firing tube being fixed to a ceiling of said furnace, a bottom end of said firing tube being placed on said first stage loaded with a casing containing said green ceramic compact so as to substantially prevent exposure of said casing to ambient air, said firing tube having a space for firing said green ceramic compact therein and being formed from a highly heat-conductive material, and said second stage for selectively closing a passage between said sidewall of said furnace and said first stage.
9. A firing apparatus for firing a green ceramic compact, comprising:
a furnace; and
a firing tube disposed in said furnace with a given space between an inside side wall of said furnace and an outside side wall of said firing tube, wherein said firing tube includes an opening adapted to be loaded with a casing containing said green ceramic compact so as to substantially close said casing within said firing tube and wherein said furnace includes a hearth disposed in a passage of the furnace, the hearth selectively permitting and restricting exposure of said firing tube to ambient air while simultaneously preventing exposure of said casing to ambient air,
said hearth including a first stage and a second stage, each being independently movable,
wherein said firing tube is fixed at one end to said furnace, and wherein a top end of said firing tube is fixed to a ceiling of said furnace, a bottom end of said firing tube is designed to come into contact with said first stage so as to substantially enclose said casing, said firing tube being formed from a highly heat-conductive material.
10. A firing apparatus in accordance with claim 9, wherein said second stage is movable to close said passage of said furnace.
US09/069,872 1996-03-22 1998-04-30 Method and apparatus for firing ceramic compact Expired - Lifetime US6210158B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/069,872 US6210158B1 (en) 1996-03-22 1998-04-30 Method and apparatus for firing ceramic compact

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP08066454A JP3109433B2 (en) 1996-03-22 1996-03-22 Method and apparatus for firing ceramic molded body
JP8-66454 1996-03-22
US08/821,644 US5804132A (en) 1996-03-22 1997-03-20 Method for firing ceramic product
US09/069,872 US6210158B1 (en) 1996-03-22 1998-04-30 Method and apparatus for firing ceramic compact

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/821,644 Division US5804132A (en) 1996-03-22 1997-03-20 Method for firing ceramic product

Publications (1)

Publication Number Publication Date
US6210158B1 true US6210158B1 (en) 2001-04-03

Family

ID=13316244

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/821,644 Expired - Lifetime US5804132A (en) 1996-03-22 1997-03-20 Method for firing ceramic product
US09/069,872 Expired - Lifetime US6210158B1 (en) 1996-03-22 1998-04-30 Method and apparatus for firing ceramic compact

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/821,644 Expired - Lifetime US5804132A (en) 1996-03-22 1997-03-20 Method for firing ceramic product

Country Status (3)

Country Link
US (2) US5804132A (en)
JP (1) JP3109433B2 (en)
SG (1) SG71022A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600533A (en) * 1994-06-23 1997-02-04 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor having an anti-reducing agent
JP4695379B2 (en) * 2004-10-28 2011-06-08 黒崎播磨株式会社 Elevating type firing furnace
JP7356297B2 (en) * 2019-09-05 2023-10-04 株式会社トクヤマ Nitriding reactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948949A (en) 1957-09-26 1960-08-16 Schuffler Julius Method of firing ceramic tubes suspended in a shaft oven
US3867093A (en) * 1972-10-05 1975-02-18 Jurid Werke Gmbh Heat treating apparatus
US4582681A (en) 1981-10-24 1986-04-15 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus for hot isostatic pressing
US5221201A (en) * 1990-07-27 1993-06-22 Tokyo Electron Sagami Limited Vertical heat treatment apparatus
US5352395A (en) 1992-07-17 1994-10-04 Phillips Petroleum Company Carbon and ceramic-containing layers for use in sintering of silicon nitride article
US5429497A (en) 1991-08-08 1995-07-04 Murata Manufacturing Co., Ltd. Apparatus for sintering ceramic formed bodies
US5567152A (en) * 1994-04-12 1996-10-22 Tokyo Electron Limited Heat processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948949A (en) 1957-09-26 1960-08-16 Schuffler Julius Method of firing ceramic tubes suspended in a shaft oven
US3867093A (en) * 1972-10-05 1975-02-18 Jurid Werke Gmbh Heat treating apparatus
US4582681A (en) 1981-10-24 1986-04-15 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus for hot isostatic pressing
US5221201A (en) * 1990-07-27 1993-06-22 Tokyo Electron Sagami Limited Vertical heat treatment apparatus
US5429497A (en) 1991-08-08 1995-07-04 Murata Manufacturing Co., Ltd. Apparatus for sintering ceramic formed bodies
US5352395A (en) 1992-07-17 1994-10-04 Phillips Petroleum Company Carbon and ceramic-containing layers for use in sintering of silicon nitride article
US5567152A (en) * 1994-04-12 1996-10-22 Tokyo Electron Limited Heat processing apparatus

Also Published As

Publication number Publication date
JP3109433B2 (en) 2000-11-13
JPH09255438A (en) 1997-09-30
SG71022A1 (en) 2000-03-21
US5804132A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US6753506B2 (en) System and method of fast ambient switching for rapid thermal processing
US6341935B1 (en) Wafer boat having improved wafer holding capability
KR101018259B1 (en) Method of heating a substrate in a variable temperature process using a fixed temperature chuck
US7651569B2 (en) Pedestal for furnace
US6210158B1 (en) Method and apparatus for firing ceramic compact
US20030221623A1 (en) Fabricating a semiconductor device
US3940245A (en) Convection shield for isostatic bonding apparatus
JP3121122B2 (en) Heat treatment method
US5746591A (en) Semiconductor furnace for reducing particulates in a quartz tube and boat
JP3233055B2 (en) Batch type heat treatment furnace
US6031207A (en) Sintering kiln
JPH10141861A (en) Butch type heat treatment furnace
JP2557137B2 (en) Heating equipment for semiconductor manufacturing
JPH035838Y2 (en)
JPH0538036Y2 (en)
JP2002025995A (en) Vertical heat treatment equipment
JP3875322B2 (en) Vacuum heat treatment furnace
WO2001082342A1 (en) Gas assisted rapid thermal annealing
JPS63114118A (en) Supporting device of press-bonding heater for forming thin film
JPH0694371A (en) Batch type firing furnace
JPH03217785A (en) Batch type calcining furnace
JPH04268186A (en) Burning furnace
JPH01174889A (en) Method and apparatus for sintering ceramics
JPH04222387A (en) Continuous tunnel kiln
JPH11307611A (en) Heat-treating method of heating furnace and work

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12