US6205051B1 - Stabilized magnetic memory cell - Google Patents
Stabilized magnetic memory cell Download PDFInfo
- Publication number
- US6205051B1 US6205051B1 US09/522,269 US52226900A US6205051B1 US 6205051 B1 US6205051 B1 US 6205051B1 US 52226900 A US52226900 A US 52226900A US 6205051 B1 US6205051 B1 US 6205051B1
- Authority
- US
- United States
- Prior art keywords
- magnetization
- data storage
- storage layer
- magnetic memory
- memory cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
Definitions
- the present invention pertains to the field of magnetic memories. More particularly, this invention relates to providing a stabilized magnetic memory cell in a magnetic memory.
- a magnetic memory such as a magnetic random access memory (MRAM) typically includes an array of magnetic memory cells.
- Each magnetic memory cell usually includes a data storage layer and a reference layer.
- the data storage layer is usually a layer or film of magnetic material that stores magnetization patterns in orientations that may be altered by the application of external magnetic fields.
- the reference layer is usually a layer of magnetic material in which the magnetization is fixed or “pinned” in a particular direction.
- the magnetization pattern in the data storage layer of a magnetic memory cell typically consists of two distinct regions of magnetization—its interior region and its edge regions.
- the magnetization in the interior region usually aligns with what is commonly referred to as the easy axis of the data storage layer.
- the magnetization in the edge regions tend to align along the corresponding edges.
- the overall orientation of magnetization in the data storage layer of a magnetic memory cell results from the magnetization in the interior region as well as the magnetization in the edge regions.
- the state of a magnetic memory cell depends on the relative orientations of magnetization in its data storage and reference layers.
- a magnetic memory cell is typically in a low resistance state if the overall orientation of magnetization in its data storage layer is parallel to the orientation of magnetization in its reference layer.
- a magnetic memory cell is typically in a high resistance state if the overall orientation of magnetization in its data storage layer is anti-parallel to the orientation of magnetization in its reference layer.
- the logic state of a bit stored in a magnetic memory cell is written by applying external magnetic fields that alter the overall orientation of magnetization in the data storage layer.
- the external magnetic fields may be referred to as switching fields that switch a magnetic memory cell between its high and low resistance states.
- a stabilized magnetic memory cell may be defined as one that remains in its high or low resistance state until switched by a well defined switching field.
- the manufacturing process for a magnetic memory commonly creates surface irregularities near the edges of the data storage layers of individual magnetic memory cells.
- surface irregularities may be caused by inaccuracies in the patterning steps that form the edges of the data storage layers. This effect usually becomes more pronounced as smaller elements are formed at the limit of lithography used to achieve higher storage densities in a magnetic memory.
- surface irregularities may render individual magnetic memory cells unstable. For example, such surface irregularities may cause magnetic patterns in the edge regions of a data storage layer which have unpredictable or random orientations and switching behavior.
- each data storage layer is formed as a rectangle with an elongated dimension along its easy axis.
- Such a structure usually increases easy axis contribution to the resulting orientation of magnetization in the data storage layer in comparison to contributions from the edges.
- such a rectangular configuration usually requires more energy to flip the orientation of magnetization in the data storage layer during write operations, thereby causing increase power consumption in an MRAM that uses such a structure.
- such rectangular magnetic memory cells usually limit the overall memory cell density that may be obtained in an MRAM.
- a stabilized magnetic memory cell including a data storage layer having an interior region and a pair of end regions near a pair of opposing edges of the data storage layer.
- the stabilized magnetic memory cell includes a stabilizing material that pins the magnetization in the end regions to a predetermined direction, thereby eliminating randomly oriented patterns of magnetization in the end regions which results in predictable switching behavior of the magnetic memory cell.
- a method is also disclosed for stabilizing a magnetic memory cell that uses a sequence of write fields to eliminate the randomly oriented patterns of magnetization in the edge regions of the magnetic memory cell.
- FIGS. 1 a - 1 b illustrate one embodiment of a stabilized magnetic memory cell
- FIGS. 2 a - 2 b illustrate the orientations of magnetization in the data storage layer for the two stabilized states of the magnetic memory cell
- FIG. 3 shows a method for stabilizing a magnetic memory cell
- FIG. 4 is a top view of a magnetic memory which includes an array of magnetic memory cells.
- FIGS. 1 a - 1 b illustrate one embodiment of a stabilized magnetic memory cell 40 .
- the magnetic memory cell 40 includes a data storage layer 50 that stores alterable magnetic fields and a reference layer 54 having a pinned orientation of magnetization.
- the magnetic memory cell 40 further includes layers of stabilizing material 55 - 56 which pin the orientation of magnetization in a pair of end regions 57 - 58 near opposing edges of the data storage layer 50 .
- the magnetic memory cell 40 includes a tunnel barrier 52 between the data storage layer 50 and the reference layer 54 .
- This structure of the magnetic memory cell 40 may be referred to as a spin tunneling device in that electrical charge migrates through the tunnel barrier 52 during read operations. This electrical charge migration through the tunnel barrier 52 is due to a phenomenon known as spin tunneling and occurs when a read voltage is applied to the magnetic memory cell 40 .
- a giant magneto-resistive (GMR) structure may be used in the magnetic memory cell 40 .
- FIG. 1 a shows a cross-sectional side view of the magnetic memory cell 40 .
- FIG. 1 b shows a cutaway top view of the magnetic memory cell 40 .
- the end regions 57 - 58 correspond to a pair of opposing edges of the data storage layer 50 which are perpendicular to the easy axis of the data storage layer 50 .
- the easy axis of the data storage layer 50 is parallel to an x axis shown.
- the stabilizing material 55 - 56 pins the orientation of magnetization in the end regions 57 - 58 in a direction which is substantially parallel to a y axis. In an alternative embodiment, the stabilizing material 55 - 56 pins the orientation of magnetization in the end regions 57 - 58 in a direction which is substantially anti-parallel to the y axis.
- the stabilizing material 55 - 56 not only pins the orientation of magnetization in the end regions 57 - 58 but also provides insulation for the edges of the layers 50 - 54 and prevent electrical coupling to conductors which are used to provide read and write access to the magnetic memory cell 40 .
- the stabilizing material 55 - 56 is a nickel-oxide material which provides antiferromagnetic properties to pin the end regions 57 - 58 and provides suitable insulating properties.
- other antiferromagnetic materials such as Fe 2 O 3 or permanent magnet materials may be used for the stabilizing material 55 - 56 .
- the insulating properties of the stabilizing material 55 - 56 may not be needed so materials such as nickel-manganese are suitable.
- the stabilizing material 55 - 56 would serve as conductors for adjacent GMR cells as well as pinning materials for edges of individual GMR cells.
- the dimensions d x and d y are selected to be substantially equal and form a square shape for the data storage layer 50 .
- the square shape of the data storage layer 50 enhances the density that may be obtained in an MRAM in comparison to that which may be obtained when using rectangular memory cells. This is so because for a given minimum feature size more square magnetic memory cells may be formed on a given substrate area than rectangular magnetic memory cells. In other embodiments, rectangular shapes may be used.
- the reference layer 54 may be a permalloy layer such as nickel-iron (NiFe) which is coupled to an antiferromagnetic layer that pins the orientation of magnetization in the permalloy layer.
- the antiferromagnetic material may be iron-manganese (FeMn) or nickel-manganese (NiMn).
- FeMn iron-manganese
- NiMn nickel-manganese
- Alternative materials for the antiferromagnetic material include NiO, TbCo, PtMn, and IrMn.
- FIGS. 2 a - 2 b illustrate the orientations of magnetization in the data storage layer 50 for the two stabilized states of the magnetic memory cell 40 .
- FIG. 2 a shows a first stabilized state
- FIG. 2 b shows a second stabilized state.
- the magnetization in the interior of the data storage layer 50 rotates about the x axis and the easy axis of the data storage layer 50 in response to applied switching fields.
- the magnetization in the interior of the data storage layer 50 are oriented substantially anti-parallel to the x axis in the first stabilized state and are oriented substantially parallel to the x axis in the second stabilized state.
- the magnetic fields in the end regions 57 - 58 are pinned in a direction that is substantially perpendicular to the easy axis of the data storage layer 50 . This prevents one of the first or second stabilized states from being preferred over or more stable than the other.
- FIG. 3 shows a method for stabilizing the magnetic memory cell 40 .
- This method uses a bias field to minimize the small regions of randomly oriented patterns of magnetization in the data storage layer 50 before a switching field is applied.
- the bias field reduces the number of free poles in the side regions of the data storage layer 50 which reduces nucleation sites for undesirable domains.
- the side regions of the data storage layer 50 are the regions near the opposing edges of the data storage layer 50 which are parallel to the easy axis.
- the method for stabilizing the magnetic memory cell 40 which includes steps 100 - 106 is set forth for an example in which the orientation of magnetization in the interior of the data storage layer 40 is substantially in the positive x direction and the orientation of magnetization in the end regions 57 - 58 is in the positive y direction.
- a magnetic field is applied to rotate the magnetization in the end regions 57 - 58 towards a desired direction and to reduce the free poles in the end regions 57 - 58 .
- the desired direction is in the positive y direction.
- the magnetic field applied at step 102 is a field in the positive y direction (H y+ ).
- the reversal of magnetization proceeds by rotation rather than domain nucleation because the magnetization in the side regions of the data storage layer 50 is in the positive x direction at the start of step 102 .
- the H y+ field affects the end regions 57 - 58 as a bias field to reduce the number of free poles and align the magnetization in the end regions 57 - 58 in the positive y direction.
- a magnetic field is applied to rotate the orientation of magnetization in the interior of the data storage layer 50 towards a desired logic state.
- This step writes the magnetic memory cell 40 to its desired first or second logic state of a corresponding bit.
- the orientation of magnetization is rotated to the negative x direction using a field applied in negative x direction (H x ⁇ ).
- H x ⁇ a field applied in negative x direction
- the magnetization in the end regions 57 - 58 and in the side regions of the data storage layer 50 are largely in the positive y direction. Reversal of magnetization is by magnetization rotation rather than domain nucleation.
- the overall magnetization in the data storage layer after step 104 is closest to the negative x direction and the easy axis.
- the magnetic field applied at step 102 is removed.
- the magnetization in the interior region of the data storage layer 50 becomes largely oriented along the x axis.
- the magnetic field applied at step 104 is removed.
- the magnetization in the data storage layer 50 remains in the direction that defined the desired logic state, which in the example 10 is the negative x direction.
- a magnetic field is applied to reduce the free poles in the side regions of the data storage layer 50 .
- the is direction of the magnetic field is determined by reading the current state of the bit.
- the field is applied in the same direction as the current state of the bit.
- the magnetic field applied at step 100 is a field in the positive x direction
- the method steps 100 - 108 may be employed on the magnetic memory cell 40 whether or not the end regions 57 - 58 are pinned as shown in FIGS. 1 a - 1 b.
- FIG. 4 is a top view of a magnetic memory 10 which includes an array of magnetic memory cells comprising the magnetic memory cell 40 along with additional magnetic memory cells 41 - 43 .
- the magnetic memory 10 also includes an array of conductors 20 - 21 and 30 - 31 that enable read and write access to the magnetic memory cells 40 - 43 .
- the conductors 30 - 31 are top conductors and the conductors 20 - 21 are orthogonal bottom conductors.
- Each of the magnetic memory cells 40 - 43 has dimensions d x and d y .
- the magnetic memory cells 40 - 43 are stabilized and their logic states are manipulated by applying electrical currents to the conductors 20 - 21 and 30 - 32 .
- an electrical current applied to the conductor 30 in the +x direction causes a magnetic field (H y+ ) in the data storage layer 50 in the +y direction according to the right-hand rule.
- An electrical current applied to the conductor 30 in the ⁇ x direction causes a magnetic field (H y ⁇ ) in the data storage layer 50 in the ⁇ y direction.
- an electrical current applied to the conductor 20 in the +y direction causes a magnetic field (H x+ ) in the data storage layer 50 in the +x direction
- an electrical current applied to the conductor 20 in the ⁇ y direction causes a magnetic field (H x ⁇ ) in the data storage layer 50 in the ⁇ x direction.
- These induced magnetic fields H x+ , H x ⁇ , H y+ , and H y ⁇ may be used to stabilize and/or write the logic state of the magnetic memory cell 40 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Semiconductor Memories (AREA)
Abstract
A stabilized magnetic memory cell including a data storage layer having an interior region and a pair of end regions near a pair of opposing edges of the data storage layer and a stabilizing material that pins a magnetization in the end regions to a predetermined direction. A method for stabilizing a magnetic memory cell includes the steps of applying a magnetic field that rotates a magnetization in a pair of opposing side regions of a data storage layer of the magnetic memory cell toward a predetermined direction and that reduces free poles in a pair of opposing end regions of the magnetic memory cell, thereby reducing the likelihood of unpredictable switching behavior in the end regions.
Description
This is a divisional of application Ser. No. 09/146,819 filed on Sep. 4, 1998 and now issued as U.S. Pat. No. 6,072,717.
1. Field of Invention
The present invention pertains to the field of magnetic memories. More particularly, this invention relates to providing a stabilized magnetic memory cell in a magnetic memory.
2. Art Background
A magnetic memory such as a magnetic random access memory (MRAM) typically includes an array of magnetic memory cells. Each magnetic memory cell usually includes a data storage layer and a reference layer. The data storage layer is usually a layer or film of magnetic material that stores magnetization patterns in orientations that may be altered by the application of external magnetic fields. The reference layer is usually a layer of magnetic material in which the magnetization is fixed or “pinned” in a particular direction.
The magnetization pattern in the data storage layer of a magnetic memory cell typically consists of two distinct regions of magnetization—its interior region and its edge regions. The magnetization in the interior region usually aligns with what is commonly referred to as the easy axis of the data storage layer. The magnetization in the edge regions tend to align along the corresponding edges. The overall orientation of magnetization in the data storage layer of a magnetic memory cell results from the magnetization in the interior region as well as the magnetization in the edge regions.
Typically, the state of a magnetic memory cell depends on the relative orientations of magnetization in its data storage and reference layers. A magnetic memory cell is typically in a low resistance state if the overall orientation of magnetization in its data storage layer is parallel to the orientation of magnetization in its reference layer. In contrast, a magnetic memory cell is typically in a high resistance state if the overall orientation of magnetization in its data storage layer is anti-parallel to the orientation of magnetization in its reference layer.
Typically, the logic state of a bit stored in a magnetic memory cell is written by applying external magnetic fields that alter the overall orientation of magnetization in the data storage layer. The external magnetic fields may be referred to as switching fields that switch a magnetic memory cell between its high and low resistance states. A stabilized magnetic memory cell may be defined as one that remains in its high or low resistance state until switched by a well defined switching field.
The manufacturing process for a magnetic memory commonly creates surface irregularities near the edges of the data storage layers of individual magnetic memory cells. For example, such surface irregularities may be caused by inaccuracies in the patterning steps that form the edges of the data storage layers. This effect usually becomes more pronounced as smaller elements are formed at the limit of lithography used to achieve higher storage densities in a magnetic memory. Unfortunately, such surface irregularities may render individual magnetic memory cells unstable. For example, such surface irregularities may cause magnetic patterns in the edge regions of a data storage layer which have unpredictable or random orientations and switching behavior.
One prior solution for minimizing these negative effects is to form each data storage layer as a rectangle with an elongated dimension along its easy axis. Such a structure usually increases easy axis contribution to the resulting orientation of magnetization in the data storage layer in comparison to contributions from the edges. Unfortunately, such a rectangular configuration usually requires more energy to flip the orientation of magnetization in the data storage layer during write operations, thereby causing increase power consumption in an MRAM that uses such a structure. In addition, such rectangular magnetic memory cells usually limit the overall memory cell density that may be obtained in an MRAM.
A stabilized magnetic memory cell is disclosed including a data storage layer having an interior region and a pair of end regions near a pair of opposing edges of the data storage layer. The stabilized magnetic memory cell includes a stabilizing material that pins the magnetization in the end regions to a predetermined direction, thereby eliminating randomly oriented patterns of magnetization in the end regions which results in predictable switching behavior of the magnetic memory cell.
A method is also disclosed for stabilizing a magnetic memory cell that uses a sequence of write fields to eliminate the randomly oriented patterns of magnetization in the edge regions of the magnetic memory cell.
Other features and advantages of the present invention will be apparent from the detailed description that follows.
The present invention is described with respect to particular exemplary embodiments thereof and reference is accordingly made to the drawings in which:
FIGS. 1a-1 b illustrate one embodiment of a stabilized magnetic memory cell;
FIGS. 2a-2 b illustrate the orientations of magnetization in the data storage layer for the two stabilized states of the magnetic memory cell;
FIG. 3 shows a method for stabilizing a magnetic memory cell;
FIG. 4 is a top view of a magnetic memory which includes an array of magnetic memory cells.
FIGS. 1a-1 b illustrate one embodiment of a stabilized magnetic memory cell 40. The magnetic memory cell 40 includes a data storage layer 50 that stores alterable magnetic fields and a reference layer 54 having a pinned orientation of magnetization. The magnetic memory cell 40 further includes layers of stabilizing material 55-56 which pin the orientation of magnetization in a pair of end regions 57-58 near opposing edges of the data storage layer 50.
In this embodiment, the magnetic memory cell 40 includes a tunnel barrier 52 between the data storage layer 50 and the reference layer 54. This structure of the magnetic memory cell 40 may be referred to as a spin tunneling device in that electrical charge migrates through the tunnel barrier 52 during read operations. This electrical charge migration through the tunnel barrier 52 is due to a phenomenon known as spin tunneling and occurs when a read voltage is applied to the magnetic memory cell 40. In an alternative embodiment, a giant magneto-resistive (GMR) structure may be used in the magnetic memory cell 40.
FIG. 1a shows a cross-sectional side view of the magnetic memory cell 40. FIG. 1b shows a cutaway top view of the magnetic memory cell 40. The end regions 57-58 correspond to a pair of opposing edges of the data storage layer 50 which are perpendicular to the easy axis of the data storage layer 50. The easy axis of the data storage layer 50 is parallel to an x axis shown.
In one embodiment, the stabilizing material 55-56 pins the orientation of magnetization in the end regions 57-58 in a direction which is substantially parallel to a y axis. In an alternative embodiment, the stabilizing material 55-56 pins the orientation of magnetization in the end regions 57-58 in a direction which is substantially anti-parallel to the y axis.
The stabilizing material 55-56 not only pins the orientation of magnetization in the end regions 57-58 but also provides insulation for the edges of the layers 50-54 and prevent electrical coupling to conductors which are used to provide read and write access to the magnetic memory cell 40. In one embodiment, the stabilizing material 55-56 is a nickel-oxide material which provides antiferromagnetic properties to pin the end regions 57-58 and provides suitable insulating properties. In other embodiments, other antiferromagnetic materials such as Fe2O3 or permanent magnet materials may be used for the stabilizing material 55-56.
In embodiments in which the magnetic memory cell 40 is a GMR structure, the insulating properties of the stabilizing material 55-56 may not be needed so materials such as nickel-manganese are suitable. In such embodiments, the stabilizing material 55-56 would serve as conductors for adjacent GMR cells as well as pinning materials for edges of individual GMR cells.
In one embodiment, the dimensions dx and dy are selected to be substantially equal and form a square shape for the data storage layer 50. The square shape of the data storage layer 50 enhances the density that may be obtained in an MRAM in comparison to that which may be obtained when using rectangular memory cells. This is so because for a given minimum feature size more square magnetic memory cells may be formed on a given substrate area than rectangular magnetic memory cells. In other embodiments, rectangular shapes may be used.
The reference layer 54 may be a permalloy layer such as nickel-iron (NiFe) which is coupled to an antiferromagnetic layer that pins the orientation of magnetization in the permalloy layer. The antiferromagnetic material may be iron-manganese (FeMn) or nickel-manganese (NiMn). Alternative materials for the antiferromagnetic material include NiO, TbCo, PtMn, and IrMn.
FIGS. 2a-2 b illustrate the orientations of magnetization in the data storage layer 50 for the two stabilized states of the magnetic memory cell 40. FIG. 2a shows a first stabilized state and FIG. 2b shows a second stabilized state.
The magnetization in the interior of the data storage layer 50 rotates about the x axis and the easy axis of the data storage layer 50 in response to applied switching fields. The magnetization in the interior of the data storage layer 50 are oriented substantially anti-parallel to the x axis in the first stabilized state and are oriented substantially parallel to the x axis in the second stabilized state.
The magnetic fields in the end regions 57-58 are pinned in a direction that is substantially perpendicular to the easy axis of the data storage layer 50. This prevents one of the first or second stabilized states from being preferred over or more stable than the other.
FIG. 3 shows a method for stabilizing the magnetic memory cell 40. This method uses a bias field to minimize the small regions of randomly oriented patterns of magnetization in the data storage layer 50 before a switching field is applied. The bias field reduces the number of free poles in the side regions of the data storage layer 50 which reduces nucleation sites for undesirable domains. The side regions of the data storage layer 50 are the regions near the opposing edges of the data storage layer 50 which are parallel to the easy axis.
The method for stabilizing the magnetic memory cell 40 which includes steps 100-106 is set forth for an example in which the orientation of magnetization in the interior of the data storage layer 40 is substantially in the positive x direction and the orientation of magnetization in the end regions 57-58 is in the positive y direction.
At step 102, a magnetic field is applied to rotate the magnetization in the end regions 57-58 towards a desired direction and to reduce the free poles in the end regions 57-58. In one embodiment, the desired direction is in the positive y direction. In the example, the magnetic field applied at step 102 is a field in the positive y direction (Hy+). The reversal of magnetization proceeds by rotation rather than domain nucleation because the magnetization in the side regions of the data storage layer 50 is in the positive x direction at the start of step 102. The Hy+ field affects the end regions 57-58 as a bias field to reduce the number of free poles and align the magnetization in the end regions 57-58 in the positive y direction.
At step 104, a magnetic field is applied to rotate the orientation of magnetization in the interior of the data storage layer 50 towards a desired logic state. This step writes the magnetic memory cell 40 to its desired first or second logic state of a corresponding bit. In this example, the orientation of magnetization is rotated to the negative x direction using a field applied in negative x direction (Hx−). After step 104, the magnetization in the end regions 57-58 and in the side regions of the data storage layer 50 are largely in the positive y direction. Reversal of magnetization is by magnetization rotation rather than domain nucleation. The overall magnetization in the data storage layer after step 104 is closest to the negative x direction and the easy axis.
At step 106, the magnetic field applied at step 102 is removed. The magnetization in the interior region of the data storage layer 50 becomes largely oriented along the x axis.
At step 108, the magnetic field applied at step 104 is removed. The magnetization in the data storage layer 50 remains in the direction that defined the desired logic state, which in the example 10 is the negative x direction.
In another embodiment, prior to step 102 a magnetic field is applied to reduce the free poles in the side regions of the data storage layer 50. The is direction of the magnetic field is determined by reading the current state of the bit. The field is applied in the same direction as the current state of the bit. In this example, the magnetic field applied at step 100 is a field in the positive x direction The method steps 100-108 may be employed on the magnetic memory cell 40 whether or not the end regions 57-58 are pinned as shown in FIGS. 1a-1 b.
FIG. 4 is a top view of a magnetic memory 10 which includes an array of magnetic memory cells comprising the magnetic memory cell 40 along with additional magnetic memory cells 41-43. The magnetic memory 10 also includes an array of conductors 20-21 and 30-31 that enable read and write access to the magnetic memory cells 40-43. The conductors 30-31 are top conductors and the conductors 20-21 are orthogonal bottom conductors. Each of the magnetic memory cells 40-43 has dimensions dx and dy.
The magnetic memory cells 40-43 are stabilized and their logic states are manipulated by applying electrical currents to the conductors 20-21 and 30-32. For example, an electrical current applied to the conductor 30 in the +x direction causes a magnetic field (Hy+) in the data storage layer 50 in the +y direction according to the right-hand rule. An electrical current applied to the conductor 30 in the −x direction causes a magnetic field (Hy−) in the data storage layer 50 in the −y direction. Similarly, an electrical current applied to the conductor 20 in the +y direction causes a magnetic field (Hx+) in the data storage layer 50 in the +x direction, while an electrical current applied to the conductor 20 in the −y direction causes a magnetic field (Hx−) in the data storage layer 50 in the −x direction. These induced magnetic fields Hx+, Hx−, Hy+, and Hy− may be used to stabilize and/or write the logic state of the magnetic memory cell 40.
The foregoing detailed description of the present invention is provided for the purposes of illustration and is not intended to be exhaustive or to limit the invention to the precise embodiment disclosed. Accordingly, the scope of the present invention is defined by the appended claims.
Claims (10)
1. A method for stabilizing a magnetic memory cell, comprising the steps of:
applying a magnetic field that rotates a magnetization in a pair of opposing end regions of a data storage layer of the magnetic memory cell to reduces free poles in the end regions;
applying a magnetic field that rotates an orientation of magnetization in an interior region of the data storage layer to a desired direction for a logic state.
2. The method of claim 1, wherein the desired direction is substantially parallel to an easy axis of the data storage layer.
3. The method of claim 1, wherein the desired direction is substantially anti-parallel to an easy axis of the data storage layer.
4. The method of claim 1, wherein the magnetic field that rotates the magnetization in the opposing end regions is substantially orthogonal to the magnetic field that rotates the orientation of magnetization in the interior region.
5. The method of claim 1, further comprising the step of applying a magnetic field that reduces free poles in a pair of opposing side regions of a data storage layer.
6. The method of claim 1, wherein the step of applying a magnetic field that reduces free poles in a pair of opposing side regions of a data storage layer occurs before the step of applying the magnetic field that rotates a magnetization in the opposing end regions.
7. The method of claim 6, wherein the magnetic field that reduces free poles in the side regions is substantially parallel to the magnetic field that rotates the orientation of magnetization in the interior region.
8. The method of claim 1, further comprising the step of removing the magnetic field that rotates the magnetization in the opposing end regions of the data storage layer.
9. The method of claim 1, further comprising the step of removing the magnetic field that rotates the orientation of magnetization in the interior region of the data storage layer.
10. The method of claim 1, further comprising the step of providing stabilizing material in the magnetic memory cell that pins a magnetization in the end regions to the predetermined direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/522,269 US6205051B1 (en) | 1998-09-04 | 2000-03-09 | Stabilized magnetic memory cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/146,819 US6072717A (en) | 1998-09-04 | 1998-09-04 | Stabilized magnetic memory cell |
US09/522,269 US6205051B1 (en) | 1998-09-04 | 2000-03-09 | Stabilized magnetic memory cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/146,819 Division US6072717A (en) | 1998-09-04 | 1998-09-04 | Stabilized magnetic memory cell |
Publications (1)
Publication Number | Publication Date |
---|---|
US6205051B1 true US6205051B1 (en) | 2001-03-20 |
Family
ID=22519125
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/146,819 Expired - Lifetime US6072717A (en) | 1998-09-04 | 1998-09-04 | Stabilized magnetic memory cell |
US09/522,269 Expired - Lifetime US6205051B1 (en) | 1998-09-04 | 2000-03-09 | Stabilized magnetic memory cell |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/146,819 Expired - Lifetime US6072717A (en) | 1998-09-04 | 1998-09-04 | Stabilized magnetic memory cell |
Country Status (4)
Country | Link |
---|---|
US (2) | US6072717A (en) |
EP (1) | EP0986065A3 (en) |
JP (1) | JP2000100153A (en) |
CN (1) | CN1186781C (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6351409B1 (en) * | 2001-01-04 | 2002-02-26 | Motorola, Inc. | MRAM write apparatus and method |
US6538917B1 (en) * | 2001-09-25 | 2003-03-25 | Hewlett-Packard Development Company, L.P. | Read methods for magneto-resistive device having soft reference layer |
US20030128603A1 (en) * | 2001-10-16 | 2003-07-10 | Leonid Savtchenko | Method of writing to a scalable magnetoresistance random access memory element |
EP1376600A1 (en) * | 2002-06-17 | 2004-01-02 | Hewlett-Packard Company | Data storage device |
US20040027854A1 (en) * | 2002-05-15 | 2004-02-12 | Yoshihisa Iwata | Magnetic random access memory |
US20040264238A1 (en) * | 2003-06-27 | 2004-12-30 | Akerman Bengt J. | MRAM element and methods for writing the MRAM element |
US20050045929A1 (en) * | 2003-08-25 | 2005-03-03 | Janesky Jason A. | Magnetoresistive random access memory with reduced switching field variation |
US20050052902A1 (en) * | 2003-09-08 | 2005-03-10 | Smith Kenneth K. | Memory device with a thermally assisted write |
US20060017083A1 (en) * | 2002-07-17 | 2006-01-26 | Slaughter Jon M | Multi-state magnetoresistance random access cell with improved memory storage density |
US20060108620A1 (en) * | 2004-11-24 | 2006-05-25 | Rizzo Nicholas D | Reduced power magnetoresistive random access memory elements |
US7079414B2 (en) | 2003-04-25 | 2006-07-18 | Kabushiki Kaisha Toshiba | Magnetic random access memory device |
US20070198803A1 (en) * | 2006-02-07 | 2007-08-23 | Seagate Technology Llc | Storage system with alterable background behaviors |
US20100035309A1 (en) * | 2008-08-06 | 2010-02-11 | Luca Technologies, Inc. | Analysis and enhancement of metabolic pathways for methanogenesis |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6163477A (en) * | 1999-08-06 | 2000-12-19 | Hewlett Packard Company | MRAM device using magnetic field bias to improve reproducibility of memory cell switching |
US20020055190A1 (en) * | 2000-01-27 | 2002-05-09 | Anthony Thomas C. | Magnetic memory with structures that prevent disruptions to magnetization in sense layer |
US6172904B1 (en) * | 2000-01-27 | 2001-01-09 | Hewlett-Packard Company | Magnetic memory cell with symmetric switching characteristics |
US6205053B1 (en) * | 2000-06-20 | 2001-03-20 | Hewlett-Packard Company | Magnetically stable magnetoresistive memory element |
US6236590B1 (en) | 2000-07-21 | 2001-05-22 | Hewlett-Packard Company | Optimal write conductors layout for improved performance in MRAM |
US6538920B2 (en) | 2001-04-02 | 2003-03-25 | Manish Sharma | Cladded read conductor for a pinned-on-the-fly soft reference layer |
US6404674B1 (en) | 2001-04-02 | 2002-06-11 | Hewlett Packard Company Intellectual Property Administrator | Cladded read-write conductor for a pinned-on-the-fly soft reference layer |
US6570783B1 (en) | 2001-11-15 | 2003-05-27 | Micron Technology, Inc. | Asymmetric MRAM cell and bit design for improving bit yield |
JP3769241B2 (en) | 2002-03-29 | 2006-04-19 | 株式会社東芝 | Magnetoresistive element and magnetic memory |
US6812538B2 (en) * | 2003-02-05 | 2004-11-02 | Applied Spintronics Technology, Inc. | MRAM cells having magnetic write lines with a stable magnetic state at the end regions |
US6807092B1 (en) * | 2003-06-13 | 2004-10-19 | Infineon Technologies Ag | MRAM cell having frustrated magnetic reservoirs |
US6944053B2 (en) * | 2003-06-17 | 2005-09-13 | Hewlett-Packard Development Company, L.P. | Magnetic memory with structure providing reduced coercivity |
JP4468258B2 (en) | 2005-07-15 | 2010-05-26 | 株式会社東芝 | Magnetoresistive element and magnetic memory |
US7999338B2 (en) * | 2009-07-13 | 2011-08-16 | Seagate Technology Llc | Magnetic stack having reference layers with orthogonal magnetization orientation directions |
ITMO20110061A1 (en) * | 2011-03-16 | 2012-09-17 | C R D Ct Ricerche Ducati Trent O S R L | WHEEL FOR ASSISTED RIDING BICYCLES |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5650958A (en) * | 1996-03-18 | 1997-07-22 | International Business Machines Corporation | Magnetic tunnel junctions with controlled magnetic response |
US5748524A (en) * | 1996-09-23 | 1998-05-05 | Motorola, Inc. | MRAM with pinned ends |
US5756366A (en) * | 1995-12-21 | 1998-05-26 | Honeywell Inc. | Magnetic hardening of bit edges of magnetoresistive RAM |
US5825685A (en) * | 1995-11-12 | 1998-10-20 | Oki Electric Industry Co., Ltd. | High-speed, low-current magnetoresistive memory device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3480922A (en) * | 1965-05-05 | 1969-11-25 | Ibm | Magnetic film device |
JPS5033623B1 (en) * | 1969-08-16 | 1975-11-01 | ||
JPH0850710A (en) * | 1994-04-07 | 1996-02-20 | Read Rite Corp | Magnetoresistance effect-type converter with insulating oxide replacement layer |
US5946228A (en) * | 1998-02-10 | 1999-08-31 | International Business Machines Corporation | Limiting magnetic writing fields to a preferred portion of a changeable magnetic region in magnetic devices |
US6081445A (en) * | 1998-07-27 | 2000-06-27 | Motorola, Inc. | Method to write/read MRAM arrays |
-
1998
- 1998-09-04 US US09/146,819 patent/US6072717A/en not_active Expired - Lifetime
-
1999
- 1999-07-23 EP EP99305878A patent/EP0986065A3/en not_active Withdrawn
- 1999-08-04 CN CNB991119479A patent/CN1186781C/en not_active Expired - Lifetime
- 1999-09-01 JP JP11247566A patent/JP2000100153A/en active Pending
-
2000
- 2000-03-09 US US09/522,269 patent/US6205051B1/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5825685A (en) * | 1995-11-12 | 1998-10-20 | Oki Electric Industry Co., Ltd. | High-speed, low-current magnetoresistive memory device |
US5756366A (en) * | 1995-12-21 | 1998-05-26 | Honeywell Inc. | Magnetic hardening of bit edges of magnetoresistive RAM |
US5650958A (en) * | 1996-03-18 | 1997-07-22 | International Business Machines Corporation | Magnetic tunnel junctions with controlled magnetic response |
US5748524A (en) * | 1996-09-23 | 1998-05-05 | Motorola, Inc. | MRAM with pinned ends |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6351409B1 (en) * | 2001-01-04 | 2002-02-26 | Motorola, Inc. | MRAM write apparatus and method |
US6538917B1 (en) * | 2001-09-25 | 2003-03-25 | Hewlett-Packard Development Company, L.P. | Read methods for magneto-resistive device having soft reference layer |
US20030128603A1 (en) * | 2001-10-16 | 2003-07-10 | Leonid Savtchenko | Method of writing to a scalable magnetoresistance random access memory element |
US7209382B2 (en) | 2002-05-15 | 2007-04-24 | Kabushiki Kaisha Toshiba | Magnetic random access memory |
US20040027854A1 (en) * | 2002-05-15 | 2004-02-12 | Yoshihisa Iwata | Magnetic random access memory |
US7050325B2 (en) | 2002-05-15 | 2006-05-23 | Kabushiki Kaisha Toshiba | Magnetic random access memory |
US20060092692A1 (en) * | 2002-05-15 | 2006-05-04 | Yoshihisa Iwata | Magnetic random access memory |
US6905888B2 (en) | 2002-06-17 | 2005-06-14 | Hewlett-Packard Development Company, L.P. | Magnetic memory element having controlled nucleation site in data layer |
EP1376600A1 (en) * | 2002-06-17 | 2004-01-02 | Hewlett-Packard Company | Data storage device |
KR100972631B1 (en) * | 2002-06-17 | 2010-07-28 | 삼성전자주식회사 | Magnetic memory element having controlled nucleation site in data layer |
CN100442384C (en) * | 2002-06-17 | 2008-12-10 | 三星电子株式会社 | Magnetic memory element for controlling nucleation position in data layer |
US20040062125A1 (en) * | 2002-06-17 | 2004-04-01 | Nickel Janice H. | Magnetic memory element having controlled nucleation site in data layer |
US6803616B2 (en) | 2002-06-17 | 2004-10-12 | Hewlett-Packard Development Company, L.P. | Magnetic memory element having controlled nucleation site in data layer |
US20060017083A1 (en) * | 2002-07-17 | 2006-01-26 | Slaughter Jon M | Multi-state magnetoresistance random access cell with improved memory storage density |
US7079414B2 (en) | 2003-04-25 | 2006-07-18 | Kabushiki Kaisha Toshiba | Magnetic random access memory device |
US20040264238A1 (en) * | 2003-06-27 | 2004-12-30 | Akerman Bengt J. | MRAM element and methods for writing the MRAM element |
US20050045929A1 (en) * | 2003-08-25 | 2005-03-03 | Janesky Jason A. | Magnetoresistive random access memory with reduced switching field variation |
US6961263B2 (en) | 2003-09-08 | 2005-11-01 | Hewlett-Packard Development Company, L.P. | Memory device with a thermally assisted write |
US20050052902A1 (en) * | 2003-09-08 | 2005-03-10 | Smith Kenneth K. | Memory device with a thermally assisted write |
US20060108620A1 (en) * | 2004-11-24 | 2006-05-25 | Rizzo Nicholas D | Reduced power magnetoresistive random access memory elements |
US20070198803A1 (en) * | 2006-02-07 | 2007-08-23 | Seagate Technology Llc | Storage system with alterable background behaviors |
US8200869B2 (en) | 2006-02-07 | 2012-06-12 | Seagate Technology Llc | Storage system with alterable background behaviors |
US20100035309A1 (en) * | 2008-08-06 | 2010-02-11 | Luca Technologies, Inc. | Analysis and enhancement of metabolic pathways for methanogenesis |
Also Published As
Publication number | Publication date |
---|---|
CN1186781C (en) | 2005-01-26 |
CN1247367A (en) | 2000-03-15 |
EP0986065A3 (en) | 2000-12-27 |
US6072717A (en) | 2000-06-06 |
EP0986065A2 (en) | 2000-03-15 |
JP2000100153A (en) | 2000-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6205051B1 (en) | Stabilized magnetic memory cell | |
US5982660A (en) | Magnetic memory cell with off-axis reference layer orientation for improved response | |
US6654278B1 (en) | Magnetoresistance random access memory | |
US7235408B2 (en) | Synthetic antiferromagnetic structure for magnetoelectronic devices | |
EP1126469B1 (en) | Magnetic memory | |
US6358757B2 (en) | Method for forming magnetic memory with structures that prevent disruptions to magnetization in sense layers | |
KR100893852B1 (en) | Multi-bit magnetic memory cells | |
US6205053B1 (en) | Magnetically stable magnetoresistive memory element | |
US6134139A (en) | Magnetic memory structure with improved half-select margin | |
US6081446A (en) | Multiple bit magnetic memory cell | |
US6479353B2 (en) | Reference layer structure in a magnetic storage cell | |
KR100752068B1 (en) | Magnetic random access memory designs with patterned and stabilized magnetic shields | |
EP1248265A2 (en) | Magnetic memory cell | |
US20050237793A1 (en) | Magnetic random access memory designs with controlled magnetic switching mechanism by magnetostatic coupling | |
KR20040058244A (en) | Writing to a scalable MRAM element | |
US6661688B2 (en) | Method and article for concentrating fields at sense layers | |
US6906947B2 (en) | In-plane toroidal memory cell with vertically stepped conductors | |
WO2002005318A2 (en) | High density giant magnetoresistive memory cell | |
JP4900647B2 (en) | Magnetic random access memory | |
KR100915975B1 (en) | Method for switching magnetic moment in magnetoresistive random access memory with low current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:019725/0320 Effective date: 20070518 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |