US6171248B1 - Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction - Google Patents
Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction Download PDFInfo
- Publication number
- US6171248B1 US6171248B1 US09/291,829 US29182999A US6171248B1 US 6171248 B1 US6171248 B1 US 6171248B1 US 29182999 A US29182999 A US 29182999A US 6171248 B1 US6171248 B1 US 6171248B1
- Authority
- US
- United States
- Prior art keywords
- array
- ultrasound array
- ultrasound
- tracking
- ultrasonic probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000523 sample Substances 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims description 42
- 238000003384 imaging method Methods 0.000 title claims description 21
- 238000003491 array Methods 0.000 claims abstract description 33
- 238000002604 ultrasonography Methods 0.000 claims description 39
- 230000005284 excitation Effects 0.000 claims description 9
- 238000013519 translation Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 9
- 238000013500 data storage Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
- A61B8/145—Echo-tomography characterised by scanning multiple planes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4488—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/892—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8993—Three dimensional imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/52074—Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
Definitions
- This invention relates to an ultrasonic probe, system and method for acquiring two-dimensional image information and relative positional information to allow subsequent three dimensional reconstruction utilizing an ultrasonic probe that has at least two ultrasonic transducer arrays mounted thereon which generate differing image formats.
- Probes that incorporate more than one transducer array are known.
- a 1994 model of the Toshiba biplane endocavity transducer incorporates linear imaging elements and axial imaging elements to offer a choice of views without transducer repositioning.
- B&K Medical Model 8558 bi-plane imaging transducer incorporates a linear ultrasound array and a 110° convex ultrasound array to allow for switching from longitudinal to transverse imaging and vice versa.
- the Acuson ER7B endorectal biplane transducer integrates a 128 element radial phased array which provides 150° of radial phased array coverage with a separate longitudinal array of 128 elements.
- a method for registering image information acquired from an interior region of a patient includes the steps of:
- step (f) automatically using the component of motion determined in step (e) to register the first image information acquired in step (d) with the first image information acquired in step (b).
- a method for registering image information acquired from an interior region of a patient includes the steps of:
- step (f) automatically using the component of motion determined in step (e) to register the first image information acquired in step (d) with the first image information acquired in step (b).
- a probe including a body having a longitudinal axis, a circumference, and a distal end region; a linear phased array disposed in the distal end region of the body; and a radial phased array disposed 360° around the circumference of the body.
- a system including a probe having a body having a longitudinal axis, a circumference, and a distal end region, a linear phased array disposed in the distal end region of the body, and a radial phased array disposed 360° around the circumference of the body; and a transmit beamformer and a receive beamformer coupled to each of the linear phased array and the first radial phased array.
- FIG. 1 is a schematic view of the distal portion of a probe according to a preferred embodiment of the present invention.
- FIG. 2 is a schematic view of a distal portion of a probe according to another preferred embodiment of the present invention.
- FIG. 3 is a schematic view of a distal portion of a probe according to still another preferred embodiment of the present invention.
- FIG. 4 is a block diagram of an ultrasonic imaging system according to a presently preferred embodiment of the present invention.
- FIG. 5 illustrates the distal end region of an ultrasonic probe according to another preferred embodiment of the present invention.
- FIG. 6 is a block diagram of an ultrasonic imaging system according to a preferred embodiment of the present invention.
- FIGS. 7 and 7A illustrate the distal end region of a prior art probe.
- FIG. 8 illustrates the distal end region of an ultrasonic probe according to a preferred embodiment of the present invention.
- FIG. 9 illustrates the distal end region of an ultrasonic probe according to a preferred embodiment of the present invention.
- FIG. 10 illustrates the distal end region of an ultrasonic probe according to a preferred embodiment of the present invention.
- FIG. 11 illustrates a subset of beam data.
- FIG. 12 illustrates the subset data shown in FIG. 11 unwrapped.
- FIG. 13 illustrates a display generated by the linear phased array used with the present invention.
- FIG. 14 illustrates a display generated by the radial phased array used with the present invention.
- FIG. 15 illustrates a display generated by images formed by both the linear and radial phased arrays used with the present invention.
- FIG. 16 illustrates a display generated by both the linear and radial phased arrays according to a preferred embodiment of the present invention.
- FIG. 1 is a schematic view of a distal portion of a probe 10 that includes a body 12 , which preferably is in the form of a rigid shaft having a longitudinal axis L and a circumference C.
- the body 12 has a distal end region 18 which includes at least two ultrasonic transducer arrays that generate different image formats when excited as will be described in greater detail hereinafter.
- the probe 10 may have various configurations for various uses.
- the probe 10 may be an endorectal probe, an endovaginal probe or a transesophageal probe.
- the particular shape of the probe 10 will be dictated by its use and FIG. 1 is merely intended to represent the distal end portion of the probe 10 which typically is a cylindrical shaft.
- the present invention is not limited to such a configuration.
- a lens or acoustic window may cover the emitting faces of the transducer arrays, however, it has not been shown for clarity purposes.
- the body 12 is preferably constructed of RADELTM available from Amoco Polymers of Atlanta, Ga. Other high impact thermoplastics preferentially having substantial chemical resistance may be used.
- the body 12 preferably has a length ranging from about 10 cm to about 20 cm and a diameter ranging from about 10 mm to about 20 mm.
- a first ultrasonic transducer array 20 (“first array 20 ”) and a second ultrasonic transducer array 22 (“second array 22 ”) are provided in the distal end region 18 of the probe 10 .
- the first array 20 is a linear phased array and the second array 22 is a radial phased array.
- the radial phased array is an annular array.
- An annular array 22 is used to obtain a 360 degree scan. A 360 degree scan, however, is not always necessary for every application.
- the radial array 22 ′ may be formed by a curved linear phased array which does not form an entire annulus and only provides a partial radial scan.
- the radial array 22 ′′ may be formed by a substantially planar linear phased array which provides a partial radial scan.
- a radial array is any array that generates a scan in a plane perpendicular to the longitudinal axis L of the probe when the array is excited. If the radial array is formed by a linear or curved linear phased array the scan obtained may be linear, sector or VECTORTM format.
- a particular example is the Acuson V510B bi-plane transesophagael probe which includes two planar linear phased arrays operated in a VECTORTM format to collect longitudinal and radial plane image data.
- the linear phased array 20 generates a sector, VECTORTM, or linear format image plane 24 upon excitation as illustrated in FIG. 1 .
- Linear phased array 20 is formed by a plurality of ultrasonic transducer elements 30 that are sequentially arranged along the longitudinal axis L of the body 12 .
- the azimuth of the array 20 extends parallel with the longitudinal axis L of the body 12 .
- the linear phased array 20 is formed by 128 transducer elements having an elevation dimension extending into the FIGS. 1 - 3 of about 5 mm and are spaced on a 0.3 or 0.4 mm pitch.
- the linear phased array 20 can be of conventional form, such as a flat linear phased array with a cylindrical elevation focusing lens. Alternately, the array 20 can be generally flat, but the transducer elements can be curved in elevation to focus.
- a non-refractive filler such as a polyurethane can be used since a focusing lens is no longer required. All imaging modes including B mode, color Doppler, color Doppler energy and the like are supported.
- the linear phased array 20 may include more or less than 128 elements and may have a different pitch and elevation.
- Radial phased ultrasonic transducer array 22 in FIG. 1 is formed by a plurality of transducer elements 32 sequentially arranged circumferentially so that it is preferably concentric with the circumference of the body 12 .
- the radial phased array 22 is formed by 128 elements having an elevation dimension of 5 mm spaced on a 0.2 mm pitch.
- the radial phased array 22 is formed by 256 elements having an elevation dimension of 5 mm spaced on a 0.25 mm pitch to form an annulus and provide a 360° scan.
- the annular array may be formed by wrapping a flat transducer array that has been partially diced into a circle around a support.
- the radial phased array 22 may be formed by fewer elements and, thus, provide less than a 360° scan.
- the radial phased array 22 has the format shown in FIG. 2 or 3 , the number of elements, pitch, and elevation may be different.
- each transducer element includes two matching layers.
- the matching layer adjacent to the PZT is an epoxy loaded with alumina or lithium aluminum silicate and/or metal power such as tungsten preferably 325 mesh and possesses an acoustic impedance of approximately 8-10 MRayls.
- the arrays 20 and 22 are constructed using well known techniques which involve laminating the matching layers, an electroded slab of PZT and a flexible circuit onto a thin backing block substrate. Since a very high acoustic loss is desired, it may be preferable to form the backing block from polymeric particles which have been fused to form a macroscopically rigid structure having remnant tortuous permeability, as described in U.S. Pat. No. 5,297,553, assigned to the assignee of this invention. Once the structure has been laminated, individual elements are defined by dicing through the matching layers, PZT and partially into the backing block as is well known. Thereafter, the substrate can be bent to its final shape.
- the ultrasonic probe 10 can be used to reconstruct three dimensional images. More particularly, in a preferred embodiment, one array is used as an imaging array and the other array is used as a tracking array. For example, if the radial phased array 22 , 22 ′, 22 ′′ is used as the imaging array and the linear phased array 20 is used as the tracking array, multiple two dimensional image data sets are accumulated from the radial phased array as the probe is pushed or pulled through a region of interest.
- the linear phased array is used for collecting frame-to-frame tracking data by feature tracking between successive frames using, for example, the sum of absolute differences technique.
- the longitudinal displacement between successive radial phased scans is obtained and sufficient locating data is acquired to allow the multiple two dimensional image data sets to be assembled into a three dimensional volume.
- the linear phased array 20 is used as the imaging array and the radial phased array 22 , 22 ′, 22 ′′ is used as the tracking array
- multiple two dimensional image data sets are acquired using the linear phased array.
- the probe is rotated and the radial phased array acquires multiple data sets which are analyzed to determine the extent of rotation between frames. This provides enough locating information to allow the multiple two dimensional image data sets to be assembled into a three dimensional volume.
- both arrays 20 and 22 may be used as tracking arrays. Image reconstruction techniques are described in greater detail in U.S.
- FIG. 4 is a block diagram of an ultrasonic imaging system according to a preferred embodiment of the present invention. The following discussion will first present a system overview, and then a detailed description of select components of the system.
- the system 100 includes a beamformer system/signal detector 102 which includes both transmit and receive beamformers and is connected via a multiplexer/demultiplexer 104 to an ultrasonic probe 10 such as that shown in FIG. 1 . If both arrays are operating in a conventional mode where the active transducer aperture is operated simultaneously in a phased manner, then any conventional device—such as the Acuson XP may be used for element 102 . If the arrays are being operated in a synthetic aperture mode, i.e., in which the elements of the array are operated in a sequential rather than simultaneous mode, then it is necessary for the system to store the receive element signals in a temporary store until all of the transmit-receive element combinations have been received.
- a beamformer system/signal detector 102 which includes both transmit and receive beamformers and is connected via a multiplexer/demultiplexer 104 to an ultrasonic probe 10 such as that shown in FIG. 1 . If both arrays are operating in a conventional mode where the active transducer aperture
- the data in the temporary storage registers are delayed and summed to produce a beamformed signal.
- Systems for implementing this type of synthetic focusing by temporarily storing single channel data until all channel data has been received are well known, for example, see Proudian U.S. Pat. No. 4,917,097.
- the system preferably accumulates multiple signals for each transmitter-receiver pair so that signal averaging is achieved thereby resulting in an improvement in the signal to noise ratio.
- a separate receiver can be used for each transmitter channel selected. Such a method is described by O'Donnell et al.
- the array is operated with frequencies in the range of about 5 to 10 MHz. If lower frequencies are used, then the linear array has less problems with grating lobes. Alternatively, a lower frequency can be used when operating steered ultrasonic lines as describe in U.S. Pat. No. 5,549,111.
- the linear phased array is used to accumulate tracking information, the array can be operated at a high frequency, for example, 10 MHz, since only a relatively small set of data is required in order to derive the motion information.
- the beamformer system/signal detector 102 sends excitation signal pulses to the arrays 20 and 22 and supplies summed returning echoes to a signal detector 102 .
- the beamformer system/signal detector 102 accumulates data from the array elements 20 and 22 and forms beamformed acoustic line outputs.
- the output of the beamformer signal detector 102 is supplied to a scan converter 124 .
- the scan converter 124 controls an output display 126 to display preferably the two images generated by the two arrays 20 , 22 .
- the output display 126 displays the views obtained from the linear phased array 20 and the radial phased array 22 simultaneously on a split screen. Alternatively, the operator may flip back and forth between views. Other display options will be described in greater detail hereinafter.
- scan-converted image information from the scan converter 124 is stored in a data storage system 128 .
- the data storage system 128 includes two separate storage arrays 130 and 132 , each storing data for image frames from a respective one of the arrays 20 and 22 .
- one array of the probe is used for collecting image data that will be used to construct displayed representation of the region of interest and other array operates as a tracking array.
- the linear phased array 20 is used to collect image data and the radial phased array 22 is use to collect tracking data.
- image information from the image array 20 is stored as frames of image data in the storage array 130
- tracking information from the tracking array 22 is stored as respective frames of tracking data in the storage array 132 .
- the frames of data in the storage arrays 130 and 132 are all time marked, so that they can be associated with one another appropriately. This time marking can take the form of real-time clock information or frame number information, for example.
- the frames of image data in the storage array 130 are applied to a computer 136 . It is these frames that are used to form the displayed representation of the region of interest.
- the tracking frames stored in storage array 132 are not necessarily registered to create a displayed reconstruction of the region of interest but are instead used to determine the relative positions of individual frames of image data from the image data storage array 130 .
- the tracking information from the tracking array data storage array 132 is supplied to a motion estimator 138 .
- the motion estimator 138 compares sequences of frame data from the tracking array 22 to estimate a component of motion of the probe 10 between the respective frames. This estimate of the component of motion is smoothed in logic 140 , and then applied to a calculator 142 that calculates a vector value defining the best estimate of the movement between selected frames of the data stored in the image data storage array 130 . This vector is then applied as another input to the computer 136 .
- the computer 136 registers selected frames of image data from the image data storage array 130 with respect to one another by appropriate use of the vectors supplied by the calculator 142 . Also, any necessary interpolation is done, and the respective frames of image data are stored in proper registration with respect to one another in a three-dimensional data storage device 144 .
- the computer 136 when operating in a display mode, can select appropriate information from the three-dimensional data storage device 144 to provide a desired image on the display 146 . For example, cross sections can be taken in various planes, including a wide variety of planes that do not correspond to the planes of the image data. Also, surface renderings and segmentation displays can be created if desired.
- Common signal conductors can be used between the beamformer/signal detector 102 and the housing for the probe 10 .
- individual signals are routed between the signal conductors and the transducer elements of the arrays 20 and 22 by high voltage analog switches or multiplexers.
- FIG. 5 illustrates the distal end region 18 ′ of an ultrasonic probe according to another preferred embodiment of the present invention.
- a second tracking array 200 preferably a radial phased array, is provided proximal of the linear phased array 20 ′.
- FIG. 6 illustrates a system in which a second tracking array 200 is incorporated in the probe. As previously described with respect to radial array 22 , the second tracking array 200 may extend around the entire circumference to obtain a 360° scan of the probe or it may extend only partial around the circumference.
- FIG. 7 illustrates the distal end region of an endo vaginal (EV) or endo rectal (ER) probe according to the prior art.
- EV endo vaginal
- ER endo rectal
- the probe 300 has a tightly curved array similar to that shown in FIG. 7 but also includes an imaging array 301 at the distal end of the probe except that a first tracking array 302 and optionally a second tracking array 304 have been added to the probe 300 to facilitate three dimensional reconstruction.
- array 301 at the distal end of the probe is used as the imaging array and the first and second arrays 302 and 304 are used as tracking arrays.
- the first tracking array 302 extends 360 degrees around the shaft of the probe while the second tracking array 304 extend only partially around the shaft of the probe. Either or both of the tracking arrays may scan 360° or less than 360°.
- the probe In use, the probe is inserted into the rectum or vagina and is rotated so that the image array 301 sweeps out a volume and the first and second tracking arrays 302 and 304 track motion within a plane. While a second tracking array 304 is shown, the probe may be provided with only one imaging array and one tracking array. By providing the second tracking array, impure rotation of the probe can be accounted for as previously discussed.
- the first tracking array 302 proximal of the imaging array 301 is preferably set back a distance of 10 mm and, if a second tracking array 304 is provided, it is set back about 3 or 4 cm proximal of the first tracking array 302 .
- the Acuson EV7 shown diagrammatically in FIG. 9, which has a phased array 400 mounted at the distal end of the probe at an angle of about 60 degrees with respect to the end of the cylindrical base of the probe and may be modified to include at least one tracking array 402 located in the side of the probe, for example, to permit motion tracking as the probe is rotated and the image array at the end of the probe sweeps out a volume.
- the probe 500 includes an imaging array 502 in the distal end of the probe and at least one tracking array 504 is provided on the side of the probe.
- the imaging array 502 is preferably a combined curved and flat array.
- the probe must be rotated 360 degrees in order to scan an entire volume whereas the probe shown in FIG. 8 only requires the probe to be rotated 180 degrees to scan an entire volume.
- This type of array may be simpler to manufacture since the number of elements contained within the end region is minimized and hence wiring to the elements is less cramped.
- the tracking arrays should form scans in the radial plane.
- the tracking arrays are radial in form and scan 360° although they do not absolutely have to be annular arrays.
- the output of the beamformer are polar in format.
- the beamformer outputs lines are detected to form unipolar signals and are scan converted to digital quantities.
- FIG. 11 illustrates how a subset of beam data appears in reality, i.e. scan converted into Cartesian coordinates. It is much simpler, however, to unwrap the axial display shown in FIG. 11, i.e. do not scan convert it.
- FIG. 12 illustrates how this data is unwrapped to form the straight polar case.
- the increment between successive beam lines is simply their angular separation, for example, 5 degrees.
- the lines are spaced 5 degrees apart and the detected motion from Line 1 to Line 1 ′ is approximately two-thirds of 5 degrees.
- FIG. 13 illustrates a display generated by the linear phased array.
- the angle of probe rotation with respect to some user defined arbitrary starting point has been measured. This angle is an indication of the relative angular direction of the image frame produced by the linear phased array and may be displayed as a circular icon as shown in FIG. 13 and/or a numeric output as is also displayed.
- the circular icon assumes that the user defined origin is at the top of the circle (for example)and the angular rotation of the probe with respect to this position is shown by an arrow suitably angled with respect to the starting point, i.e., the top of the circle.
- Software for displaying such icons is well within the scope of those skilled in the art.
- FIG. 14 illustrates a display generated by the radial phased array.
- the radial display is presented and depth of penetration as detected by motion sensed from the linear array is also displayed.
- the reference point for the start of motion detection is arbitrary and the user should have the option of resetting it by, for example, selection of a key on a keyboard.
- An icon display for the detected depth relative to the last resetting of the depth measurement is also shown in FIG. 14 .
- the icon is in the form of a ruler like object with an arrow pointing to the current position.
- a numeric display indicating millimeters of penetration is also provided.
- FIG. 15 illustrates a display of images formed both the linear phased array and the radial phased array.
- both the radial and linear array images are displayed each having tick marks indicating a scale in either mm or cm.
- the scan converter sets the millimeter scales to be equal in dimension in both displays. Displaying multiple ultrasound images is relatively well known, for example, simultaneous B-Mode and M-Mode. In this case, an angle display is also provided which indicates the present position of the linear array image with respect to the last resetting of the angle measurement.
- FIG. 16 illustrates a display formed by both the linear phased array and the radial phased array.
- the radial image display is rotated according to the detected rotation angle such that the display rotation completely compensates for rotation of the physical device.
- the image appears to remain static though the image is moving with respect to the array.
- the system detects that an arbitrary object has moved 20 degrees anticlockwise, the system signals the scan converter to rotate the image 20 degrees clockwise to compensate.
- the concept of the detecting image motion and altering the display to correct for it is described in considerable detail in Bamber U.S. Pat. No. 5,538,004.
- the probe can include an absolute sensor incorporated in its distal end region for position, orientation, or both, such as a magnetic sensor or an accelerometer.
- the sensor 19 may be used to supplement or back up the motion detection approach and may be of the types described in Keller U.S. Pat. No. 5,353,354 or one of the smaller sensors manufactured by Biosense, Inc. of Setauket, N.Y.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Gynecology & Obstetrics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
An ultrasonic probe that includes at least two ultrasonic arrays and allows three dimensional images to be constructed of the region examined by the probe in a precise and facile manner.
Description
This application is a division of Ser. No. 08/807,384 filing date Feb. 27, 1997.
This invention relates to an ultrasonic probe, system and method for acquiring two-dimensional image information and relative positional information to allow subsequent three dimensional reconstruction utilizing an ultrasonic probe that has at least two ultrasonic transducer arrays mounted thereon which generate differing image formats.
Probes that incorporate more than one transducer array are known. For example, a 1994 model of the Toshiba biplane endocavity transducer incorporates linear imaging elements and axial imaging elements to offer a choice of views without transducer repositioning. B&K Medical Model 8558 bi-plane imaging transducer incorporates a linear ultrasound array and a 110° convex ultrasound array to allow for switching from longitudinal to transverse imaging and vice versa. In addition, the Acuson ER7B endorectal biplane transducer integrates a 128 element radial phased array which provides 150° of radial phased array coverage with a separate longitudinal array of 128 elements. These known probes allow different two dimensional views to be obtained from the different arrays.
Attempts have been made to construct three-dimensional images using a probe with a linear array by collecting multiple two dimensional image data frames along with relative positional information among the image data frames so that these image frames could be subsequently assembled into a three dimensional volume to form the desired three dimensional reconstruction. The relative positional information was acquired by externally rotating the probe while trying to maintain angular control. Such manual techniques are slow and cumbersome and therefore have many drawbacks. Thus, these probes have not been successfully used to construct three dimensional images.
Thus, it is desirable to provide an ultrasonic probe that allows three dimensional images to be constructed of the region examined by the probe in a precise and facile manner.
According to a first aspect of the present invention there is provided a method for registering image information acquired from an interior region of a patient. The method includes the steps of:
(a) inserting an ultrasonic probe having a body having a longitudinal axis, a circumference and a distal end region, a first ultrasound array disposed in the distal end region of the body and a second ultrasound array disposed in the distal end region of the body into a patient to image an interior region of the patient;
(b) acquiring image data with the first ultrasound array;
(c) acquiring tracking data with the second ultrasound array;
(d) repeating steps (b) and (c) after moving the ultrasonic probe along a direction having a component of motion in the tracking plane;
(e) automatically determining the component of motion based on a comparison of the tracking data acquired in steps (c) and (d); and
(f) automatically using the component of motion determined in step (e) to register the first image information acquired in step (d) with the first image information acquired in step (b).
According to a second aspect of the present invention there is provided a method for registering image information acquired from an interior region of a patient. The method includes the steps of:
(a) inserting an ultrasonic probe having a body having a longitudinal axis, a circumference and a distal end region, a first ultrasound array disposed in the distal region of the body and a second ultrasound array disposed around the circumference of the distal end region of the body into a patient to image an interior region of the patient;
(b) acquiring first two-dimensional image data in an image plane with the first ultrasound array;
(c) acquiring tracking data in a tracking plane oriented at a non-zero angle with respect to the image plane with the second ultrasound array;
(d) repeating steps (b) and (c) after moving the ultrasonic probe along a direction having a component of motion in the tracking plane;
(e) automatically determining the component of motion based on a comparison of the tracking data acquired in steps (c) and (d); and
(f) automatically using the component of motion determined in step (e) to register the first image information acquired in step (d) with the first image information acquired in step (b).
According to a third aspect of the present invention there is provided a probe including a body having a longitudinal axis, a circumference, and a distal end region; a linear phased array disposed in the distal end region of the body; and a radial phased array disposed 360° around the circumference of the body.
According to a fourth aspect of the present invention there is provided a system including a probe having a body having a longitudinal axis, a circumference, and a distal end region, a linear phased array disposed in the distal end region of the body, and a radial phased array disposed 360° around the circumference of the body; and a transmit beamformer and a receive beamformer coupled to each of the linear phased array and the first radial phased array.
FIG. 1 is a schematic view of the distal portion of a probe according to a preferred embodiment of the present invention.
FIG. 2 is a schematic view of a distal portion of a probe according to another preferred embodiment of the present invention.
FIG. 3 is a schematic view of a distal portion of a probe according to still another preferred embodiment of the present invention.
FIG. 4 is a block diagram of an ultrasonic imaging system according to a presently preferred embodiment of the present invention.
FIG. 5 illustrates the distal end region of an ultrasonic probe according to another preferred embodiment of the present invention.
FIG. 6 is a block diagram of an ultrasonic imaging system according to a preferred embodiment of the present invention.
FIGS. 7 and 7A illustrate the distal end region of a prior art probe.
FIG. 8 illustrates the distal end region of an ultrasonic probe according to a preferred embodiment of the present invention.
FIG. 9 illustrates the distal end region of an ultrasonic probe according to a preferred embodiment of the present invention.
FIG. 10 illustrates the distal end region of an ultrasonic probe according to a preferred embodiment of the present invention.
FIG. 11 illustrates a subset of beam data.
FIG. 12 illustrates the subset data shown in FIG. 11 unwrapped.
FIG. 13 illustrates a display generated by the linear phased array used with the present invention.
FIG. 14 illustrates a display generated by the radial phased array used with the present invention.
FIG. 15 illustrates a display generated by images formed by both the linear and radial phased arrays used with the present invention.
FIG. 16 illustrates a display generated by both the linear and radial phased arrays according to a preferred embodiment of the present invention.
FIG. 1 is a schematic view of a distal portion of a probe 10 that includes a body 12, which preferably is in the form of a rigid shaft having a longitudinal axis L and a circumference C. The body 12 has a distal end region 18 which includes at least two ultrasonic transducer arrays that generate different image formats when excited as will be described in greater detail hereinafter. The probe 10 may have various configurations for various uses. For example, the probe 10 may be an endorectal probe, an endovaginal probe or a transesophageal probe. The particular shape of the probe 10 will be dictated by its use and FIG. 1 is merely intended to represent the distal end portion of the probe 10 which typically is a cylindrical shaft. The present invention, however, is not limited to such a configuration. A lens or acoustic window (not shown) may cover the emitting faces of the transducer arrays, however, it has not been shown for clarity purposes.
In a preferred embodiment, the body 12 is preferably constructed of RADEL™ available from Amoco Polymers of Atlanta, Ga. Other high impact thermoplastics preferentially having substantial chemical resistance may be used. The body 12 preferably has a length ranging from about 10 cm to about 20 cm and a diameter ranging from about 10 mm to about 20 mm.
A first ultrasonic transducer array 20 (“first array 20”) and a second ultrasonic transducer array 22 (“second array 22”) are provided in the distal end region 18 of the probe 10. In a preferred embodiment, the first array 20 is a linear phased array and the second array 22 is a radial phased array. In a preferred embodiment, the radial phased array is an annular array. When the annular array 22 is excited all of the emitted acoustic lines have a common origin lying at the center of the annular array 22. An annular array 22 is used to obtain a 360 degree scan. A 360 degree scan, however, is not always necessary for every application. In particular, in another preferred embodiment shown in FIG. 2 the radial array 22′ may be formed by a curved linear phased array which does not form an entire annulus and only provides a partial radial scan. In another preferred embodiment shown in FIG. 3, the radial array 22″ may be formed by a substantially planar linear phased array which provides a partial radial scan. A radial array, as that term is used in the present invention, is any array that generates a scan in a plane perpendicular to the longitudinal axis L of the probe when the array is excited. If the radial array is formed by a linear or curved linear phased array the scan obtained may be linear, sector or VECTOR™ format. A particular example is the Acuson V510B bi-plane transesophagael probe which includes two planar linear phased arrays operated in a VECTOR™ format to collect longitudinal and radial plane image data. The linear phased array 20 generates a sector, VECTOR™, or linear format image plane 24 upon excitation as illustrated in FIG. 1.
Linear phased array 20 is formed by a plurality of ultrasonic transducer elements 30 that are sequentially arranged along the longitudinal axis L of the body 12. The azimuth of the array 20 extends parallel with the longitudinal axis L of the body 12. In a preferred embodiment, the linear phased array 20 is formed by 128 transducer elements having an elevation dimension extending into the FIGS. 1-3 of about 5 mm and are spaced on a 0.3 or 0.4 mm pitch. The linear phased array 20 can be of conventional form, such as a flat linear phased array with a cylindrical elevation focusing lens. Alternately, the array 20 can be generally flat, but the transducer elements can be curved in elevation to focus. In this case, a non-refractive filler such as a polyurethane can be used since a focusing lens is no longer required. All imaging modes including B mode, color Doppler, color Doppler energy and the like are supported. The linear phased array 20 may include more or less than 128 elements and may have a different pitch and elevation.
Radial phased ultrasonic transducer array 22 in FIG. 1 is formed by a plurality of transducer elements 32 sequentially arranged circumferentially so that it is preferably concentric with the circumference of the body 12. In a preferred embodiment, the radial phased array 22 is formed by 128 elements having an elevation dimension of 5 mm spaced on a 0.2 mm pitch. In another preferred embodiment, the radial phased array 22 is formed by 256 elements having an elevation dimension of 5 mm spaced on a 0.25 mm pitch to form an annulus and provide a 360° scan. The annular array may be formed by wrapping a flat transducer array that has been partially diced into a circle around a support. Alternatively, the radial phased array 22 may be formed by fewer elements and, thus, provide less than a 360° scan. Of course, if the radial phased array 22 has the format shown in FIG. 2 or 3, the number of elements, pitch, and elevation may be different.
As is well known in the art, conventional ultrasound transducers are typically constructed of piezoelectric material, such as PZT. In a preferred embodiment, the piezoelectric material for arrays 20 and 22 is preferably 3203HD sold by Motorola Ceramics of Albuquerque, N. Mex. Preferably, each transducer element includes two matching layers. The matching layer adjacent to the PZT is an epoxy loaded with alumina or lithium aluminum silicate and/or metal power such as tungsten preferably 325 mesh and possesses an acoustic impedance of approximately 8-10 MRayls. The second matching layer—further from the PZT—is preferably an unfilled epoxy possessing an impedance of approximately 2.5 MRayls. The arrays 20 and 22 are constructed using well known techniques which involve laminating the matching layers, an electroded slab of PZT and a flexible circuit onto a thin backing block substrate. Since a very high acoustic loss is desired, it may be preferable to form the backing block from polymeric particles which have been fused to form a macroscopically rigid structure having remnant tortuous permeability, as described in U.S. Pat. No. 5,297,553, assigned to the assignee of this invention. Once the structure has been laminated, individual elements are defined by dicing through the matching layers, PZT and partially into the backing block as is well known. Thereafter, the substrate can be bent to its final shape.
The ultrasonic probe 10 according to the preferred embodiments shown in FIGS. 1-3 can be used to reconstruct three dimensional images. More particularly, in a preferred embodiment, one array is used as an imaging array and the other array is used as a tracking array. For example, if the radial phased array 22, 22′, 22″ is used as the imaging array and the linear phased array 20 is used as the tracking array, multiple two dimensional image data sets are accumulated from the radial phased array as the probe is pushed or pulled through a region of interest. The linear phased array is used for collecting frame-to-frame tracking data by feature tracking between successive frames using, for example, the sum of absolute differences technique. In this way, the longitudinal displacement between successive radial phased scans is obtained and sufficient locating data is acquired to allow the multiple two dimensional image data sets to be assembled into a three dimensional volume. Alternatively, if the linear phased array 20 is used as the imaging array and the radial phased array 22, 22′, 22″ is used as the tracking array, multiple two dimensional image data sets are acquired using the linear phased array. The probe is rotated and the radial phased array acquires multiple data sets which are analyzed to determine the extent of rotation between frames. This provides enough locating information to allow the multiple two dimensional image data sets to be assembled into a three dimensional volume. Alternatively, both arrays 20 and 22 may be used as tracking arrays. Image reconstruction techniques are described in greater detail in U.S. patent application Ser. No. 08/807,498, entitled “Multiple Ultrasound Image Registration System, Method and Transducer,” concurrently filed herewith which is a continuation-in-part of U.S. patent application Ser. No. 08/621,561, filed Mar. 25, 1996, which is a continuation-in-part of provisional patent application Serial No. 60/012,578 filed Feb. 29, 1996, all of which are assigned to the assignee of the present invention and all of which are hereby incorporated herein by reference.
FIG. 4 is a block diagram of an ultrasonic imaging system according to a preferred embodiment of the present invention. The following discussion will first present a system overview, and then a detailed description of select components of the system.
System Overview
The system 100 includes a beamformer system/signal detector 102 which includes both transmit and receive beamformers and is connected via a multiplexer/demultiplexer 104 to an ultrasonic probe 10 such as that shown in FIG. 1. If both arrays are operating in a conventional mode where the active transducer aperture is operated simultaneously in a phased manner, then any conventional device—such as the Acuson XP may be used for element 102. If the arrays are being operated in a synthetic aperture mode, i.e., in which the elements of the array are operated in a sequential rather than simultaneous mode, then it is necessary for the system to store the receive element signals in a temporary store until all of the transmit-receive element combinations have been received. Once all the echo signals have been received then the data in the temporary storage registers are delayed and summed to produce a beamformed signal. Systems for implementing this type of synthetic focusing by temporarily storing single channel data until all channel data has been received are well known, for example, see Proudian U.S. Pat. No. 4,917,097. The system preferably accumulates multiple signals for each transmitter-receiver pair so that signal averaging is achieved thereby resulting in an improvement in the signal to noise ratio. Alternatively, instead of using a common transducer element for both transmitter and receiver a separate receiver can be used for each transmitter channel selected. Such a method is described by O'Donnell et al. in “Synthetic Phased Array Imaging of Coronary Arteries With An Intraluminal Array,” Proceedings of the 1995 IEEE Ultrasonics Symposium, pp. 1251-1254 (1995). Individual elements are sequentially used as transmitters. As each element is used as a transmitter, separate adjacent elements are used as receivers on a sequential basis. In this way, the array can be made to synthesize the operation of a conventional large scale phased array scanner but with the added advantage that dynamic transmit focusing as well as dynamic receive focusing is possible since the individual channel transmit path lengths are known uniquely. The low signal to noise ratio of the array elements is partially overcome by averaging the successive firings of the same element pairs. Preferably, as many averages as possible are used consistent with not providing an imaging frame rate which is slower than desired by the user. Preferably the array is operated with frequencies in the range of about 5 to 10 MHz. If lower frequencies are used, then the linear array has less problems with grating lobes. Alternatively, a lower frequency can be used when operating steered ultrasonic lines as describe in U.S. Pat. No. 5,549,111. When the linear phased array is used to accumulate tracking information, the array can be operated at a high frequency, for example, 10 MHz, since only a relatively small set of data is required in order to derive the motion information.
The beamformer system/signal detector 102 sends excitation signal pulses to the arrays 20 and 22 and supplies summed returning echoes to a signal detector 102. The beamformer system/signal detector 102 accumulates data from the array elements 20 and 22 and forms beamformed acoustic line outputs. The output of the beamformer signal detector 102 is supplied to a scan converter 124. The scan converter 124 controls an output display 126 to display preferably the two images generated by the two arrays 20, 22. In a preferred embodiment, the output display 126 displays the views obtained from the linear phased array 20 and the radial phased array 22 simultaneously on a split screen. Alternatively, the operator may flip back and forth between views. Other display options will be described in greater detail hereinafter.
In addition, scan-converted image information from the scan converter 124 is stored in a data storage system 128. In this preferred embodiment, the data storage system 128 includes two separate storage arrays 130 and 132, each storing data for image frames from a respective one of the arrays 20 and 22. In a preferred embodiment, one array of the probe is used for collecting image data that will be used to construct displayed representation of the region of interest and other array operates as a tracking array. In a preferred embodiment, the linear phased array 20 is used to collect image data and the radial phased array 22 is use to collect tracking data. Thus, image information from the image array 20 is stored as frames of image data in the storage array 130, and tracking information from the tracking array 22 is stored as respective frames of tracking data in the storage array 132. The frames of data in the storage arrays 130 and 132 are all time marked, so that they can be associated with one another appropriately. This time marking can take the form of real-time clock information or frame number information, for example.
The frames of image data in the storage array 130 are applied to a computer 136. It is these frames that are used to form the displayed representation of the region of interest. The tracking frames stored in storage array 132 are not necessarily registered to create a displayed reconstruction of the region of interest but are instead used to determine the relative positions of individual frames of image data from the image data storage array 130.
In order to estimate movement of the probe 10 between successive frames of the image data, the tracking information from the tracking array data storage array 132 is supplied to a motion estimator 138. The motion estimator 138 compares sequences of frame data from the tracking array 22 to estimate a component of motion of the probe 10 between the respective frames. This estimate of the component of motion is smoothed in logic 140, and then applied to a calculator 142 that calculates a vector value defining the best estimate of the movement between selected frames of the data stored in the image data storage array 130. This vector is then applied as another input to the computer 136.
The computer 136 registers selected frames of image data from the image data storage array 130 with respect to one another by appropriate use of the vectors supplied by the calculator 142. Also, any necessary interpolation is done, and the respective frames of image data are stored in proper registration with respect to one another in a three-dimensional data storage device 144. The computer 136, when operating in a display mode, can select appropriate information from the three-dimensional data storage device 144 to provide a desired image on the display 146. For example, cross sections can be taken in various planes, including a wide variety of planes that do not correspond to the planes of the image data. Also, surface renderings and segmentation displays can be created if desired.
Common signal conductors can be used between the beamformer/signal detector 102 and the housing for the probe 10. In the housing, individual signals are routed between the signal conductors and the transducer elements of the arrays 20 and 22 by high voltage analog switches or multiplexers.
Various other preferred embodiments of transducer probes are possible and within the scope of the present invention. FIG. 5 illustrates the distal end region 18′ of an ultrasonic probe according to another preferred embodiment of the present invention. In this preferred embodiment, a second tracking array 200, preferably a radial phased array, is provided proximal of the linear phased array 20′. FIG. 6 illustrates a system in which a second tracking array 200 is incorporated in the probe. As previously described with respect to radial array 22, the second tracking array 200 may extend around the entire circumference to obtain a 360° scan of the probe or it may extend only partial around the circumference. When two tracking arrays are used, the ability to compensate for impure rotation (where one or both ends of the image array 20′ is linearly translated as well as rotated) is substantially increased. Since the tracking arrays are on either side of the image array, and the exact geometry of the image data plane with respect to the tracking arrays is known, it is possible to interpolate linearly along the image data array azimuth axis to calculate the exact pixel translations for all points on the image data plane. FIG. 7 illustrates the distal end region of an endo vaginal (EV) or endo rectal (ER) probe according to the prior art. A tightly curved linear array is provided at the end of the cylindrical probe as shown in end view in FIG. 7A. FIG. 8 illustrates the distal end region of an EV or ER probe according to a preferred embodiment of the present invention. The probe 300 has a tightly curved array similar to that shown in FIG. 7 but also includes an imaging array 301 at the distal end of the probe except that a first tracking array 302 and optionally a second tracking array 304 have been added to the probe 300 to facilitate three dimensional reconstruction. In a preferred embodiment, array 301 at the distal end of the probe is used as the imaging array and the first and second arrays 302 and 304 are used as tracking arrays. The first tracking array 302 extends 360 degrees around the shaft of the probe while the second tracking array 304 extend only partially around the shaft of the probe. Either or both of the tracking arrays may scan 360° or less than 360°. In use, the probe is inserted into the rectum or vagina and is rotated so that the image array 301 sweeps out a volume and the first and second tracking arrays 302 and 304 track motion within a plane. While a second tracking array 304 is shown, the probe may be provided with only one imaging array and one tracking array. By providing the second tracking array, impure rotation of the probe can be accounted for as previously discussed. In the preferred embodiment shown in FIG. 8, the first tracking array 302 proximal of the imaging array 301 is preferably set back a distance of 10 mm and, if a second tracking array 304 is provided, it is set back about 3 or 4 cm proximal of the first tracking array 302.
Other preferred embodiments may be provided. For example, the Acuson EV7, shown diagrammatically in FIG. 9, which has a phased array 400 mounted at the distal end of the probe at an angle of about 60 degrees with respect to the end of the cylindrical base of the probe and may be modified to include at least one tracking array 402 located in the side of the probe, for example, to permit motion tracking as the probe is rotated and the image array at the end of the probe sweeps out a volume.
Another preferred embodiment of a probe according to the present invention is shown in FIG. 10. In this embodiment, the probe 500 includes an imaging array 502 in the distal end of the probe and at least one tracking array 504 is provided on the side of the probe. The imaging array 502 is preferably a combined curved and flat array. With this design, the probe must be rotated 360 degrees in order to scan an entire volume whereas the probe shown in FIG. 8 only requires the probe to be rotated 180 degrees to scan an entire volume. This type of array may be simpler to manufacture since the number of elements contained within the end region is minimized and hence wiring to the elements is less cramped. The tracking arrays should form scans in the radial plane. Preferably the tracking arrays are radial in form and scan 360° although they do not absolutely have to be annular arrays.
Angular Motion Detection
With respect to the radial arrays described previously, the output of the beamformer are polar in format. For measuring rotational motion rather than Cartesian motion, it is simpler to retain the acoustic line data in polar format, i.e., not scan converted. Typically, the beamformer outputs lines are detected to form unipolar signals and are scan converted to digital quantities. FIG. 11 illustrates how a subset of beam data appears in reality, i.e. scan converted into Cartesian coordinates. It is much simpler, however, to unwrap the axial display shown in FIG. 11, i.e. do not scan convert it. FIG. 12 illustrates how this data is unwrapped to form the straight polar case. The increment between successive beam lines is simply their angular separation, for example, 5 degrees. With respect to detecting the motion of pixel values from Line 1 to Line 1′ etc., it is evident that by using polar coordinates the correct answer for rotation is arrived at more simply. In this case the lines are spaced 5 degrees apart and the detected motion from Line 1 to Line 1′ is approximately two-thirds of 5 degrees.
Display Options
Since one is to able collect image data from both arrays and use one or both sets for tracking motion of the other plane described previously, various display options exist.
FIG. 13 illustrates a display generated by the linear phased array. The angle of probe rotation with respect to some user defined arbitrary starting point has been measured. This angle is an indication of the relative angular direction of the image frame produced by the linear phased array and may be displayed as a circular icon as shown in FIG. 13 and/or a numeric output as is also displayed. The circular icon assumes that the user defined origin is at the top of the circle (for example)and the angular rotation of the probe with respect to this position is shown by an arrow suitably angled with respect to the starting point, i.e., the top of the circle. Software for displaying such icons is well within the scope of those skilled in the art.
FIG. 14 illustrates a display generated by the radial phased array. The radial display is presented and depth of penetration as detected by motion sensed from the linear array is also displayed. Again, the reference point for the start of motion detection is arbitrary and the user should have the option of resetting it by, for example, selection of a key on a keyboard. An icon display for the detected depth relative to the last resetting of the depth measurement is also shown in FIG. 14. Preferably the icon is in the form of a ruler like object with an arrow pointing to the current position. Optionally, a numeric display indicating millimeters of penetration is also provided.
FIG. 15 illustrates a display of images formed both the linear phased array and the radial phased array. In the embodiment shown in FIG. 15, both the radial and linear array images are displayed each having tick marks indicating a scale in either mm or cm. Preferably, the scan converter sets the millimeter scales to be equal in dimension in both displays. Displaying multiple ultrasound images is relatively well known, for example, simultaneous B-Mode and M-Mode. In this case, an angle display is also provided which indicates the present position of the linear array image with respect to the last resetting of the angle measurement.
FIG. 16 illustrates a display formed by both the linear phased array and the radial phased array. In this preferred embodiment, the radial image display is rotated according to the detected rotation angle such that the display rotation completely compensates for rotation of the physical device. Thus, the image appears to remain static though the image is moving with respect to the array. If the system detects that an arbitrary object has moved 20 degrees anticlockwise, the system signals the scan converter to rotate the image 20 degrees clockwise to compensate. The concept of the detecting image motion and altering the display to correct for it is described in considerable detail in Bamber U.S. Pat. No. 5,538,004.
If desired, the probe can include an absolute sensor incorporated in its distal end region for position, orientation, or both, such as a magnetic sensor or an accelerometer. The sensor 19 may be used to supplement or back up the motion detection approach and may be of the types described in Keller U.S. Pat. No. 5,353,354 or one of the smaller sensors manufactured by Biosense, Inc. of Setauket, N.Y.
While this invention has been shown and described in connection with the preferred embodiments, it is apparent that certain changes and modifications, in addition to those mentioned above, may be made from the basic features of the present invention. Accordingly, it is the intention of the Applicant to protect all variations and modifications within the true spirit and valid scope of the present invention.
Claims (27)
1. A method for registering image information acquired from an interior region of a patient, said method comprising the steps of:
(a) inserting an ultrasonic probe into a patient to image an interior region of the patient, the ultrasonic probe having a body having a longitudinal axis, a circumference and a distal end region, a first ultrasound array disposed in the distal end region of the body and a second ultrasound array disposed in the distal end region of the body;
(b) acquiring a plurality of sets of image data with the first ultrasound array, the first ultrasound array moved between acquisition of at least some of the sets of image data;
(c) acquiring a plurality of sets of tracking data with the second ultrasound array, the second ultrasound array moved between acquisition of at least some of the sets of tracking data;
(d) automatically determining a component of motion based on a comparison of at least a portion of the tracking sets acquired in step (c); and
(e) automatically using the component of motion determined in step to register select ones of the image data sets acquired in step (b).
2. A method according to claim 1 wherein the second ultrasound array is oriented to scan in a radial plane upon receiving an excitation signal.
3. A method according to claim 1 wherein the first ultrasound array is oriented to scan in a linear format upon receiving an excitation signal.
4. A method according to claim 1 wherein the first ultrasound array is oriented to scan in a sector format upon receiving an excitation signal.
5. A method according to claim 1 wherein the first ultrasound array is oriented to scan in a VECTOR™ format upon receiving an excitation signal.
6. A method according to claim 2 wherein the first ultrasound array is oriented to scan in a linear format upon receiving an excitation signal.
7. A method according to claim 2 wherein the first ultrasound array is oriented to scan in a sector format upon receiving an excitation signal.
8. A method according to claim 2 wherein the first ultrasound array is oriented to scan in a VECTOR™ format upon receiving an excitation signal.
9. The method of claim 1 wherein step (e) comprises the step of correlating the tracking data acquired in steps (c) and (d).
10. The method of claim 1 wherein the image data comprises information selected from the group consisting of B mode information, color Doppler velocity information, color Doppler energy information, and combinations thereof.
11. A method according to claim 1 wherein the first ultrasound array is a linear phased array.
12. A method according to claim 1 wherein the second ultrasound array is a radial phased array.
13. A method according to claim 1 wherein the first ultrasound array is a linear phased array and the second ultrasound array is a radial phased array.
14. A method according to claim 1 wherein the first ultrasound array is a radial phased array and the second ultrasound array is a linear phased array.
15. The method according to claim 1 wherein the step of moving the ultrasonic probe comprises rotating the ultrasonic probe about its longitudinal axis.
16. The method according to claim 1 wherein the step of moving the ultrasonic probe comprises translating the ultrasonic probe through a region of interest in a direction parallel with its longitudinal axis.
17. A method for registering image information acquired from an interior region of a patient, said method comprising the steps of:
(a) inserting an ultrasonic probe into a patient to image an interior region of the patient, the ultrasonic probe having a body having a longitudinal axis, a circumference and a distal end region, a first ultrasound array disposed in the distal region of the body and a second ultrasound array disposed in the distal end region of the body;
(b) acquiring a plurality of sets of two-dimensional image data in an image plane with the first ultrasound array, the first ultrasound array moved between acquisition of at least some of the sets of image data;
(c) acquiring a plurality of sets of tracking data in a tracking plane oriented at a non-zero angle with respect to the image plane with the second ultrasound array, the second ultrasound array moved between acquisition of at least some of the sets of tracking data;
(d) automatically determining a component of motion based on a comparison of at least a portion of the tracking sets acquired in step (c); and
(e) automatically using the component of motion determined in step to register select ones of the image data sets acquired in step (b).
18. The method according to claim 17 wherein the step of moving the first and second ultrasound arrays comprises translating the ultrasonic probe in a direction parallel to the longitudinal axis.
19. The method of claim 17 further comprising the steps of:
(f) repeating steps (b), (c)and (d) and accumulating the component of motion detected in step (d) to generate composite detected motion wherein the composite detected motion indicates the motion of the ultrasonic probe with respect to a predetermined reference point;
(g) displaying the two-dimensional image data acquired in step (b); and
(h) displaying the composite detected motion determined in step (d).
20. The method according to claim 19 wherein the step of displaying the composite detected of motion comprises displaying an icon representation of the composite detected motion.
21. The method according to claim 20 wherein the second array is a radial phased array and the icon is a circle with an arrow indicating the degree of rotation.
22. The method according to claim 20 wherein the second array is a linear phased array and the icon is a ruler with an arrow indicating the degree of translation.
23. The method according to claim 19 further comprising the step of
(i) acquiring two-dimensional image data in the tracking plane with the second array; and
(j) displaying at least a portion of the two-dimensional image information acquired in step (i).
24. The method according to claim 23 wherein the step of displaying the composite detected motion comprises displaying an icon representative of the composite detected motion.
25. The method to claim 24 wherein the icon is displayed over the two-dimensional image data displayed in step (j).
26. The method according to claim 19 wherein the step of displaying the composite detected motion comprises displaying a numerical value representative of the composite detected motion.
27. A method for imaging an interior region of a patient, the method comprising the steps of:
(a) inserting an ultrasonic probe having a body having a longitudinal axis, a circumference, and a distal end region, a linear phased array disposed in the distal end region of the body and a radial phased array disposed 360° around the circumference of the body into a patient to image an interior region of the patient;
(b) operating the linear phased array to image a first region during a first period of time; and
(c) operating the radial phased array to image a second region during a second period of time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/291,829 US6171248B1 (en) | 1997-02-27 | 1999-04-14 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/807,384 US6045508A (en) | 1997-02-27 | 1997-02-27 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
US09/291,829 US6171248B1 (en) | 1997-02-27 | 1999-04-14 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/807,384 Division US6045508A (en) | 1997-02-27 | 1997-02-27 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Publications (1)
Publication Number | Publication Date |
---|---|
US6171248B1 true US6171248B1 (en) | 2001-01-09 |
Family
ID=25196247
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/807,384 Expired - Lifetime US6045508A (en) | 1997-02-27 | 1997-02-27 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
US09/291,829 Expired - Lifetime US6171248B1 (en) | 1997-02-27 | 1999-04-14 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/807,384 Expired - Lifetime US6045508A (en) | 1997-02-27 | 1997-02-27 | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Country Status (3)
Country | Link |
---|---|
US (2) | US6045508A (en) |
AU (1) | AU6340698A (en) |
WO (1) | WO1998038486A2 (en) |
Cited By (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6338716B1 (en) * | 1999-11-24 | 2002-01-15 | Acuson Corporation | Medical diagnostic ultrasonic transducer probe and imaging system for use with a position and orientation sensor |
US6398731B1 (en) * | 1997-07-25 | 2002-06-04 | Tomtec Imaging Systems Gmbh | Method for recording ultrasound images of moving objects |
US6503205B2 (en) * | 1998-11-18 | 2003-01-07 | Cardiosonix Ltd. | Dual ultrasonic transducer probe for blood flow measurement, and blood vessel diameter determination method |
US20030018270A1 (en) * | 2001-05-29 | 2003-01-23 | Makin Inder Raj. S. | Tissue-retaining system for ultrasound medical treatment |
US6632179B2 (en) * | 2001-07-31 | 2003-10-14 | Koninklijke Philips Electronics N.V. | Acoustic imaging system with non-focusing lens |
US20040106870A1 (en) * | 2001-05-29 | 2004-06-03 | Mast T. Douglas | Method for monitoring of medical treatment using pulse-echo ultrasound |
US20040114146A1 (en) * | 2002-12-13 | 2004-06-17 | Scimed Life Systems, Inc. | Method and apparatus for orienting a medical image |
US20040127797A1 (en) * | 2002-06-07 | 2004-07-01 | Bill Barnard | System and method for measuring bladder wall thickness and presenting a bladder virtual image |
US20040152986A1 (en) * | 2003-01-23 | 2004-08-05 | Fidel Howard F. | Ultrasonic imaging device, system and method of use |
US20040254471A1 (en) * | 2003-06-13 | 2004-12-16 | Andreas Hadjicostis | Miniature ultrasonic phased array for intracardiac and intracavity applications |
US20050080336A1 (en) * | 2002-07-22 | 2005-04-14 | Ep Medsystems, Inc. | Method and apparatus for time gating of medical images |
US20050124898A1 (en) * | 2002-01-16 | 2005-06-09 | Ep Medsystems, Inc. | Method and apparatus for isolating a catheter interface |
US20050165314A1 (en) * | 2004-01-27 | 2005-07-28 | Fujinon Corporation | Electronic scan type ultrasound diagnostic instrument |
US20050203410A1 (en) * | 2004-02-27 | 2005-09-15 | Ep Medsystems, Inc. | Methods and systems for ultrasound imaging of the heart from the pericardium |
US20050228290A1 (en) * | 2004-04-07 | 2005-10-13 | Ep Medsystems, Inc. | Steerable ultrasound catheter |
US20050228286A1 (en) * | 2004-04-07 | 2005-10-13 | Messerly Jeffrey D | Medical system having a rotatable ultrasound source and a piercing tip |
US20050240123A1 (en) * | 2004-04-14 | 2005-10-27 | Mast T D | Ultrasound medical treatment system and method |
US20050240124A1 (en) * | 2004-04-15 | 2005-10-27 | Mast T D | Ultrasound medical treatment system and method |
US20050240103A1 (en) * | 2004-04-20 | 2005-10-27 | Ep Medsystems, Inc. | Method and apparatus for ultrasound imaging with autofrequency selection |
US20050240125A1 (en) * | 2004-04-16 | 2005-10-27 | Makin Inder Raj S | Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode |
US20050245822A1 (en) * | 2002-07-22 | 2005-11-03 | Ep Medsystems, Inc. | Method and apparatus for imaging distant anatomical structures in intra-cardiac ultrasound imaging |
US20050251127A1 (en) * | 2003-10-15 | 2005-11-10 | Jared Brosch | Miniature ultrasonic transducer with focusing lens for intracardiac and intracavity applications |
US20050256405A1 (en) * | 2004-05-17 | 2005-11-17 | Makin Inder Raj S | Ultrasound-based procedure for uterine medical treatment |
US20050261588A1 (en) * | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
US20050261587A1 (en) * | 2004-05-20 | 2005-11-24 | Makin Inder R S | Ultrasound medical system and method |
US20050261610A1 (en) * | 2004-05-21 | 2005-11-24 | Mast T D | Transmit apodization of an ultrasound transducer array |
US20050261585A1 (en) * | 2004-05-20 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
US20050261586A1 (en) * | 2004-05-18 | 2005-11-24 | Makin Inder R S | Medical system having an ultrasound source and an acoustic coupling medium |
US20050261611A1 (en) * | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system and method |
US20050277853A1 (en) * | 2004-06-14 | 2005-12-15 | Mast T D | System and method for medical treatment using ultrasound |
US20060025689A1 (en) * | 2002-06-07 | 2006-02-02 | Vikram Chalana | System and method to measure cardiac ejection fraction |
US20060058679A1 (en) * | 2004-08-20 | 2006-03-16 | Fuji Photo Film Co., Ltd. | Ultrasonic endoscope and ultrasonic endoscopic apparatus |
US20060074309A1 (en) * | 2002-11-06 | 2006-04-06 | Odile Bonnefous | Phased array acoustic system for 3d imaging of moving parts |
US20060116571A1 (en) * | 2004-12-01 | 2006-06-01 | Siemens Aktiengesellschaft | Guidewire for vascular catheters |
US20060122514A1 (en) * | 2004-11-23 | 2006-06-08 | Ep Medsystems, Inc. | Method and apparatus for localizing an ultrasound catheter |
US20060173310A1 (en) * | 2003-07-03 | 2006-08-03 | Satoshi Tamano | Ultrasonic probe and ultrasonic diagnostic device |
US20060241445A1 (en) * | 2005-04-26 | 2006-10-26 | Altmann Andres C | Three-dimensional cardial imaging using ultrasound contour reconstruction |
US20060253032A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Display of catheter tip with beam direction for ultrasound system |
US20060253031A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Registration of ultrasound data with pre-acquired image |
US20060253024A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction |
US20060253029A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Display of two-dimensional ultrasound fan |
US20070016184A1 (en) * | 2005-07-14 | 2007-01-18 | Ethicon Endo-Surgery, Inc. | Medical-treatment electrode assembly and method for medical treatment |
US20070038110A1 (en) * | 2005-07-07 | 2007-02-15 | Aime Flesch | Motorized ultrasonic scanhead |
US20070083118A1 (en) * | 2002-07-22 | 2007-04-12 | Ep Medsystems, Inc. | Method and System For Estimating Cardiac Ejection Volume Using Ultrasound Spectral Doppler Image Data |
US20070167793A1 (en) * | 2005-12-14 | 2007-07-19 | Ep Medsystems, Inc. | Method and system for enhancing spectral doppler presentation |
US20070167794A1 (en) * | 2005-12-14 | 2007-07-19 | Ep Medsystems, Inc. | Method and system for evaluating valvular function |
US20070167809A1 (en) * | 2002-07-22 | 2007-07-19 | Ep Medsystems, Inc. | Method and System For Estimating Cardiac Ejection Volume And Placing Pacemaker Electrodes Using Speckle Tracking |
US20070167818A1 (en) * | 2005-12-06 | 2007-07-19 | Osborn Thomas W Iii | Device and system for in-vivo measurement of biomechanical properties of internal tissues |
US20070232908A1 (en) * | 2002-06-07 | 2007-10-04 | Yanwei Wang | Systems and methods to improve clarity in ultrasound images |
US20070232949A1 (en) * | 2006-03-31 | 2007-10-04 | Ep Medsystems, Inc. | Method For Simultaneous Bi-Atrial Mapping Of Atrial Fibrillation |
US20070255137A1 (en) * | 2006-05-01 | 2007-11-01 | Siemens Medical Solutions Usa, Inc. | Extended volume ultrasound data display and measurement |
US20070276254A1 (en) * | 2002-06-07 | 2007-11-29 | Fuxing Yang | System and method to identify and measure organ wall boundaries |
US20070276247A1 (en) * | 2002-06-07 | 2007-11-29 | Vikram Chalana | Systems and methods for ultrasound imaging using an inertial reference unit |
US20070299479A1 (en) * | 2006-06-27 | 2007-12-27 | Ep Medsystems, Inc. | Method for Reversing Ventricular Dyssynchrony |
US20080009733A1 (en) * | 2006-06-27 | 2008-01-10 | Ep Medsystems, Inc. | Method for Evaluating Regional Ventricular Function and Incoordinate Ventricular Contraction |
US20080021317A1 (en) * | 2006-07-24 | 2008-01-24 | Siemens Medical Solutions Usa, Inc. | Ultrasound medical imaging with robotic assistance for volume imaging |
US20080146943A1 (en) * | 2006-12-14 | 2008-06-19 | Ep Medsystems, Inc. | Integrated Beam Former And Isolation For An Ultrasound Probe |
US20080146928A1 (en) * | 2006-12-14 | 2008-06-19 | Ep Medsystems, Inc. | Method and System for Configuration of a Pacemaker and For Placement of Pacemaker Electrodes |
US20080146942A1 (en) * | 2006-12-13 | 2008-06-19 | Ep Medsystems, Inc. | Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors |
US20080146940A1 (en) * | 2006-12-14 | 2008-06-19 | Ep Medsystems, Inc. | External and Internal Ultrasound Imaging System |
US20080200801A1 (en) * | 2007-02-21 | 2008-08-21 | Douglas Glenn Wildes | Mapping Movement of a Movable Transducer |
US20080242985A1 (en) * | 2003-05-20 | 2008-10-02 | Vikram Chalana | 3d ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
US20080262356A1 (en) * | 2002-06-07 | 2008-10-23 | Vikram Chalana | Systems and methods for ultrasound imaging using an inertial reference unit |
US20080312536A1 (en) * | 2007-06-16 | 2008-12-18 | Ep Medsystems, Inc. | Oscillating Phased-Array Ultrasound Imaging Catheter System |
US20090030317A1 (en) * | 2007-07-25 | 2009-01-29 | Mayo Foundation For Medical Education And Research | Ultrasonic imaging devices, systems, and methods |
US20090062644A1 (en) * | 2002-06-07 | 2009-03-05 | Mcmorrow Gerald | System and method for ultrasound harmonic imaging |
US20090112089A1 (en) * | 2007-10-27 | 2009-04-30 | Bill Barnard | System and method for measuring bladder wall thickness and presenting a bladder virtual image |
US20090124903A1 (en) * | 2004-11-17 | 2009-05-14 | Takashi Osaka | Ultrasound Diagnostic Apparatus and Method of Displaying Ultrasound Image |
US20090264757A1 (en) * | 2007-05-16 | 2009-10-22 | Fuxing Yang | System and method for bladder detection using harmonic imaging |
US20090312643A1 (en) * | 2008-06-17 | 2009-12-17 | Fujifilm Corporation | Ultrasonic diagnostic apparatus and ultrasonic probe |
US20100006649A1 (en) * | 2008-07-11 | 2010-01-14 | Steve Bolton | Secure Ballot Box |
US7648462B2 (en) | 2002-01-16 | 2010-01-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Safety systems and methods for ensuring safe use of intra-cardiac ultrasound catheters |
US20100036252A1 (en) * | 2002-06-07 | 2010-02-11 | Vikram Chalana | Ultrasound system and method for measuring bladder wall thickness and mass |
US20100036242A1 (en) * | 2007-05-16 | 2010-02-11 | Jongtae Yuk | Device, system and method to measure abdominal aortic aneurysm diameter |
US20100198075A1 (en) * | 2002-08-09 | 2010-08-05 | Verathon Inc. | Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams |
US20100241002A1 (en) * | 2005-10-19 | 2010-09-23 | Koninklijke Philips Electronics, N.V. | 2D Ultrasound Transducer for Radial Application and Method |
US20100286527A1 (en) * | 2009-05-08 | 2010-11-11 | Penrith Corporation | Ultrasound system with multi-head wireless probe |
US8052607B2 (en) | 2008-04-22 | 2011-11-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound imaging catheter with pivoting head |
US8057394B2 (en) | 2007-06-30 | 2011-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound image processing to render three-dimensional images from two-dimensional images |
US20110320143A1 (en) * | 2009-03-20 | 2011-12-29 | Andrew David Hopkins | Ultrasound probe with accelerometer |
US8221321B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods for quantification and classification of fluids in human cavities in ultrasound images |
US20180073353A1 (en) * | 2015-03-16 | 2018-03-15 | Darkvision Technologies Inc. | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
US20220079442A1 (en) * | 2013-03-15 | 2022-03-17 | Synaptive Medical Inc. | Insert imaging device for surgical procedures |
US11364012B2 (en) * | 2017-05-31 | 2022-06-21 | Bk Medical Aps | 3-D imaging via free-hand scanning with a multiplane US transducer |
US11813418B2 (en) | 2019-08-22 | 2023-11-14 | Becton, Dickinson And Company | Echogenic balloon dilation catheter and balloon thereof |
US11918795B2 (en) | 2019-05-01 | 2024-03-05 | Bard Access Systems, Inc. | Puncturing devices, puncturing systems including the puncturing devices, and methods thereof |
US12109382B2 (en) | 2019-08-23 | 2024-10-08 | Becton, Dickinson And Company | Device set designed for PCNL surgery |
US12129753B2 (en) * | 2023-03-07 | 2024-10-29 | Darkvision Technologies Inc. | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6045508A (en) * | 1997-02-27 | 2000-04-04 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
US6261234B1 (en) * | 1998-05-07 | 2001-07-17 | Diasonics Ultrasound, Inc. | Method and apparatus for ultrasound imaging with biplane instrument guidance |
US6254601B1 (en) | 1998-12-08 | 2001-07-03 | Hysterx, Inc. | Methods for occlusion of the uterine arteries |
US6193657B1 (en) * | 1998-12-31 | 2001-02-27 | Ge Medical Systems Global Technology Company, Llc | Image based probe position and orientation detection |
US6233476B1 (en) * | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US6306097B1 (en) * | 1999-06-17 | 2001-10-23 | Acuson Corporation | Ultrasound imaging catheter guiding assembly with catheter working port |
US6506156B1 (en) * | 2000-01-19 | 2003-01-14 | Vascular Control Systems, Inc | Echogenic coating |
US6550482B1 (en) | 2000-04-21 | 2003-04-22 | Vascular Control Systems, Inc. | Methods for non-permanent occlusion of a uterine artery |
US7223279B2 (en) | 2000-04-21 | 2007-05-29 | Vascular Control Systems, Inc. | Methods for minimally-invasive, non-permanent occlusion of a uterine artery |
US20030120306A1 (en) * | 2000-04-21 | 2003-06-26 | Vascular Control System | Method and apparatus for the detection and occlusion of blood vessels |
US6561980B1 (en) * | 2000-05-23 | 2003-05-13 | Alpha Intervention Technology, Inc | Automatic segmentation of prostate, rectum and urethra in ultrasound imaging |
US6503202B1 (en) | 2000-06-29 | 2003-01-07 | Acuson Corp. | Medical diagnostic ultrasound system and method for flow analysis |
US6517488B1 (en) | 2000-06-29 | 2003-02-11 | Acuson Corporation | Medical diagnostic ultrasound system and method for identifying constrictions |
US6482161B1 (en) | 2000-06-29 | 2002-11-19 | Acuson Corporation | Medical diagnostic ultrasound system and method for vessel structure analysis |
US6635065B2 (en) * | 2000-11-16 | 2003-10-21 | Vascular Control Systems, Inc. | Doppler directed suture ligation device and method |
US6638286B1 (en) | 2000-11-16 | 2003-10-28 | Vascular Control Systems, Inc. | Doppler directed suture ligation device and method |
CA2442362C (en) * | 2001-03-28 | 2009-08-11 | Vascular Control Systems, Inc. | Method and apparatus for the detection and ligation of uterine arteries |
US20030120286A1 (en) * | 2001-03-28 | 2003-06-26 | Vascular Control System | Luminal clip applicator with sensor |
US7354444B2 (en) * | 2001-03-28 | 2008-04-08 | Vascular Control Systems, Inc. | Occlusion device with deployable paddles for detection and occlusion of blood vessels |
JP2003180697A (en) * | 2001-12-18 | 2003-07-02 | Olympus Optical Co Ltd | Ultrasonic diagnostic equipment |
US6755789B2 (en) * | 2002-02-05 | 2004-06-29 | Inceptio Medical Technologies, Llc | Ultrasonic vascular imaging system and method of blood vessel cannulation |
US7806828B2 (en) * | 2002-02-05 | 2010-10-05 | Inceptio Medical Technologies, Lc | Multiplanar ultrasonic vascular sensor assembly and apparatus for movably affixing a sensor assembly to a body |
US6824516B2 (en) * | 2002-03-11 | 2004-11-30 | Medsci Technologies, Inc. | System for examining, mapping, diagnosing, and treating diseases of the prostate |
US7611522B2 (en) * | 2003-06-02 | 2009-11-03 | Nuvasive, Inc. | Gravity dependent pedicle screw tap hole guide and data processing device |
US6638281B2 (en) * | 2002-03-21 | 2003-10-28 | Spinecore, Inc. | Gravity dependent pedicle screw tap hole guide |
US7207996B2 (en) * | 2002-04-04 | 2007-04-24 | Vascular Control Systems, Inc. | Doppler directed suturing and compression device and method |
US6730033B2 (en) | 2002-05-16 | 2004-05-04 | Siemens Medical Systems, Inc. | Two dimensional array and methods for imaging in three dimensions |
US7172603B2 (en) * | 2002-11-19 | 2007-02-06 | Vascular Control Systems, Inc. | Deployable constrictor for uterine artery occlusion |
US20040097961A1 (en) * | 2002-11-19 | 2004-05-20 | Vascular Control System | Tenaculum for use with occlusion devices |
US7404821B2 (en) * | 2003-01-30 | 2008-07-29 | Vascular Control Systems, Inc. | Treatment for post partum hemorrhage |
US7651511B2 (en) * | 2003-02-05 | 2010-01-26 | Vascular Control Systems, Inc. | Vascular clamp for caesarian section |
US7333844B2 (en) * | 2003-03-28 | 2008-02-19 | Vascular Control Systems, Inc. | Uterine tissue monitoring device and method |
US20040202694A1 (en) * | 2003-04-11 | 2004-10-14 | Vascular Control Systems, Inc. | Embolic occlusion of uterine arteries |
US7066887B2 (en) * | 2003-10-21 | 2006-06-27 | Vermon | Bi-plane ultrasonic probe |
US7325546B2 (en) * | 2003-11-20 | 2008-02-05 | Vascular Control Systems, Inc. | Uterine artery occlusion device with cervical receptacle |
US7686817B2 (en) * | 2003-11-25 | 2010-03-30 | Vascular Control Systems, Inc. | Occlusion device for asymmetrical uterine artery anatomy |
EP1706036B1 (en) * | 2003-11-26 | 2013-01-09 | ImaCor Inc. | Transesophageal ultrasound using a narrow probe |
EP1712183A4 (en) * | 2003-12-16 | 2009-07-08 | Hitachi Medical Corp | Ultrasonographic bio-movement detection device, image presentation device using the same, and ultrasonographic curing device |
US7431698B2 (en) * | 2004-01-13 | 2008-10-07 | Ge Medical Systems Global Technology Company, Llc | Apparatus and method for controlling an ultrasound probe |
US20050228617A1 (en) * | 2004-04-02 | 2005-10-13 | Scott Kerwin | Methods and systems for tracking probe use |
US20060015144A1 (en) * | 2004-07-19 | 2006-01-19 | Vascular Control Systems, Inc. | Uterine artery occlusion staple |
US7618374B2 (en) * | 2004-09-27 | 2009-11-17 | Siemens Medical Solutions Usa, Inc. | Image plane sensing methods and systems for intra-patient probes |
US7875036B2 (en) * | 2004-10-27 | 2011-01-25 | Vascular Control Systems, Inc. | Short term treatment for uterine disorder |
US20070016058A1 (en) * | 2005-07-15 | 2007-01-18 | Scott Kerwin | System and method for controlling ultrasound probe having multiple transducer arrays |
US20070049973A1 (en) * | 2005-08-29 | 2007-03-01 | Vascular Control Systems, Inc. | Method and device for treating adenomyosis and endometriosis |
JP2007068918A (en) * | 2005-09-09 | 2007-03-22 | Fujifilm Corp | Ultrasonic probe and ultrasonic diagnosis apparatus |
JP4694930B2 (en) * | 2005-09-21 | 2011-06-08 | 富士フイルム株式会社 | Ultrasonic diagnostic equipment |
US20070161905A1 (en) * | 2006-01-12 | 2007-07-12 | Gynesonics, Inc. | Intrauterine ultrasound and method for use |
JP2007244415A (en) * | 2006-03-13 | 2007-09-27 | Fujifilm Corp | Ultrasonic probe and ultrasonograph |
WO2007110076A1 (en) * | 2006-03-24 | 2007-10-04 | B-K Medical Aps | Biopsy system |
EP1998679B1 (en) * | 2006-03-24 | 2019-10-16 | B-K Medical ApS | Ultrasound probe |
WO2008115188A2 (en) * | 2006-05-08 | 2008-09-25 | C. R. Bard, Inc. | User interface and methods for sonographic display device |
WO2007136784A2 (en) * | 2006-05-17 | 2007-11-29 | Nuvasive, Inc. | Surgical trajectory monitoring system and related methods |
US9295444B2 (en) * | 2006-11-10 | 2016-03-29 | Siemens Medical Solutions Usa, Inc. | Transducer array imaging system |
KR20080093281A (en) * | 2007-04-16 | 2008-10-21 | 주식회사 메디슨 | Ultrasound diagnostic probe |
JP2009066074A (en) * | 2007-09-11 | 2009-04-02 | Olympus Medical Systems Corp | Ultrasonic diagnostic apparatus |
JP5085250B2 (en) * | 2007-09-21 | 2012-11-28 | オリンパスメディカルシステムズ株式会社 | Ultrasonic diagnostic equipment |
WO2009055034A1 (en) | 2007-10-24 | 2009-04-30 | Nuvasive, Inc. | Surgical trajectory monitoring system and related methods |
US20100106023A1 (en) * | 2008-09-29 | 2010-04-29 | Kabushiki Kaisha Toshiba | Body cavity ultrasonic probe and ultrasonic diagnosis apparatus |
US8727986B2 (en) * | 2009-02-27 | 2014-05-20 | Wisconsin Alumni Research Foundation | Method and apparatus for assessing risk of preterm delivery |
US8343056B2 (en) * | 2009-05-07 | 2013-01-01 | Hitachi Aloka Medical, Ltd. | Ultrasound systems and methods for orthopedic applications |
US8206306B2 (en) * | 2009-05-07 | 2012-06-26 | Hitachi Aloka Medical, Ltd. | Ultrasound systems and methods for orthopedic applications |
US10117564B2 (en) | 2010-04-16 | 2018-11-06 | Hitachi Healthcare Americas Corporation | Ultrasound and detachable instrument for procedures |
JP6440359B2 (en) * | 2011-01-31 | 2018-12-19 | サニーブルック ヘルス サイエンシーズ センター | Ultrasonic probe with an ultrasonic transducer that can be processed on a common electrical channel |
JP2012239813A (en) | 2011-05-24 | 2012-12-10 | Sony Corp | Signal processing apparatus, signal processing system, probe, signal processing method and program |
CN102415906B (en) * | 2011-09-06 | 2013-10-16 | 深圳市开立科技有限公司 | Tri-plane ultrasonic probe |
US9642598B2 (en) | 2011-09-12 | 2017-05-09 | B-K Medical Aps | Ultrasound imaging console |
FR2991160B1 (en) * | 2012-06-01 | 2015-05-15 | Koelis | MEDICAL IMAGING PROBE GUIDING DEVICE, MEDICAL IMAGING PROBE ADAPTED TO BE GUIDED BY SUCH A DEVICE, AND METHOD FOR GUIDING SUCH PROBE. |
US10499878B2 (en) | 2012-07-26 | 2019-12-10 | Interson Corporation | Portable ultrasonic imaging probe including a transducer array |
US20160045184A1 (en) * | 2013-03-15 | 2016-02-18 | Colibri Technologies Inc. | Active localization and visualization of minimally invasive devices using ultrasound |
KR101496863B1 (en) * | 2013-05-09 | 2015-03-02 | 주식회사 휴먼스캔 | Separating and binding type ultrasound probe apparatus |
SG11201603729UA (en) * | 2013-12-30 | 2016-07-28 | Airbus Group Singapore Pte Ltd | Reflective wave device for simultaneous event detection and signal reconstruction using compressive measurements |
CA2948102A1 (en) * | 2014-05-12 | 2015-11-19 | Exact Imaging Inc. | Medical-imaging system and method for operating medical-imaging system |
JP6662578B2 (en) | 2015-05-18 | 2020-03-11 | キヤノンメディカルシステムズ株式会社 | Ultrasonic probe and ultrasonic diagnostic device |
US11564660B2 (en) * | 2016-03-04 | 2023-01-31 | Canon Medical Systems Corporation | Ultrasonic diagnostic apparatus and method for generating ultrasonic image |
US10816650B2 (en) | 2016-05-27 | 2020-10-27 | Interson Corporation | Ultrasonic imaging probe including composite aperture receiving array |
EP3471619B1 (en) * | 2016-06-16 | 2020-08-05 | Koninklijke Philips N.V. | Image orientation identification for an external microconvex-linear ultrasound probe |
JP7025434B2 (en) * | 2017-01-19 | 2022-02-24 | コーニンクレッカ フィリップス エヌ ヴェ | Large Area Ultrasonic Transducer Assembly |
JP6878042B2 (en) * | 2017-02-22 | 2021-05-26 | キヤノンメディカルシステムズ株式会社 | Ultrasonic diagnostic equipment and ultrasonic diagnostic support program |
CN107550519A (en) * | 2017-08-22 | 2018-01-09 | 深圳先进技术研究院 | A kind of Multifunctional blood intraductal ultrasonography imaging device |
WO2020118709A1 (en) * | 2018-12-14 | 2020-06-18 | 深圳先进技术研究院 | Ultrasonic endoscope system |
US20210128112A1 (en) * | 2019-02-11 | 2021-05-06 | Sonivate Medical, Inc. | Ultrasound probe with dual array and system |
US20210137494A1 (en) * | 2019-02-11 | 2021-05-13 | Sonivate Medical, Inc. | Wearable portable ultrasound probe and system |
US20210137488A1 (en) * | 2019-11-12 | 2021-05-13 | Biosense Webster (Israel) Ltd. | Historical ultrasound data for display of live location data |
US11998393B2 (en) * | 2020-10-20 | 2024-06-04 | GE Precision Healthcare LLC | System and method of signal processing for ultrasound arrays with mechanically adjustable transducer shapes |
CN114010222A (en) * | 2021-10-11 | 2022-02-08 | 之江实验室 | Double-frequency array type ultrasonic endoscopic probe and imaging method thereof |
Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3888238A (en) | 1973-09-28 | 1975-06-10 | Univ Stanford | Ultrasonic blood vessel imaging system and method |
US4140022A (en) | 1977-12-20 | 1979-02-20 | Hewlett-Packard Company | Acoustic imaging apparatus |
US4219811A (en) | 1975-02-07 | 1980-08-26 | Hughes Aircraft Company | Synthetic array autofocus system |
USRE30397E (en) | 1976-04-27 | 1980-09-09 | Three-dimensional ultrasonic imaging of animal soft tissue | |
US4241608A (en) | 1978-01-24 | 1980-12-30 | Unirad Corporation | Ultrasonic scanner |
US4244026A (en) | 1978-11-06 | 1981-01-06 | General Electric Company | Velocity measuring correlation sonar |
US4397775A (en) | 1981-06-01 | 1983-08-09 | General Electric Company | Varistors with controllable voltage versus time response |
US4635293A (en) | 1984-02-24 | 1987-01-06 | Kabushiki Kaisha Toshiba | Image processing system |
US4841977A (en) | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4917097A (en) | 1987-10-27 | 1990-04-17 | Endosonics Corporation | Apparatus and method for imaging small cavities |
US4937775A (en) | 1988-11-21 | 1990-06-26 | General Electric Company | Apparatus for the cross-correlation of a pair of complex sampled signals |
US4947852A (en) | 1988-10-05 | 1990-08-14 | Cardiometrics, Inc. | Apparatus and method for continuously measuring volumetric blood flow using multiple transducer and catheter for use therewith |
US4972199A (en) | 1989-03-30 | 1990-11-20 | Hughes Aircraft Company | Low cross-polarization radiator of circularly polarized radiation |
US5000185A (en) | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
US5014710A (en) | 1988-09-13 | 1991-05-14 | Acuson Corporation | Steered linear color doppler imaging |
US5064290A (en) | 1987-12-12 | 1991-11-12 | Renishaw Plc | Opto-electronic scale-reading apparatus wherein phase-separated secondary orders of diffraction are generated |
US5070879A (en) | 1989-11-30 | 1991-12-10 | Acoustic Imaging Technologies Corp. | Ultrasound imaging method and apparatus |
US5081993A (en) | 1987-11-11 | 1992-01-21 | Circulation Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5103129A (en) | 1990-07-26 | 1992-04-07 | Acoustic Imaging Technologies Corporation | Fixed origin biplane ultrasonic transducer |
US5107844A (en) | 1989-04-06 | 1992-04-28 | Olympus Optical Co., Ltd. | Ultrasonic observing apparatus |
US5123415A (en) | 1990-07-19 | 1992-06-23 | Advanced Technology Laboratories, Inc. | Ultrasonic imaging by radial scan of trapezoidal sector |
US5127409A (en) | 1991-04-25 | 1992-07-07 | Daigle Ronald E | Ultrasound Doppler position sensing |
US5158071A (en) | 1988-07-01 | 1992-10-27 | Hitachi, Ltd. | Ultrasonic apparatus for therapeutical use |
US5159931A (en) | 1988-11-25 | 1992-11-03 | Riccardo Pini | Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images |
US5161537A (en) | 1990-03-26 | 1992-11-10 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic diagnostic system |
US5186176A (en) | 1990-04-11 | 1993-02-16 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus |
US5186177A (en) | 1991-12-05 | 1993-02-16 | General Electric Company | Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels |
US5199437A (en) | 1991-09-09 | 1993-04-06 | Sensor Electronics, Inc. | Ultrasonic imager |
US5211176A (en) | 1990-11-30 | 1993-05-18 | Fuji Photo Optical Co., Ltd. | Ultrasound examination system |
US5215093A (en) | 1990-11-02 | 1993-06-01 | Fujitsu Limited | Ultrasonic color doppler diagnostic apparatus |
US5257629A (en) | 1989-05-26 | 1993-11-02 | Intravascular Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5273045A (en) | 1991-05-23 | 1993-12-28 | Fujitsu Limited | Ultrasonic equipment and its catheter-type ultrasonic probe |
US5285788A (en) | 1992-10-16 | 1994-02-15 | Acuson Corporation | Ultrasonic tissue imaging method and apparatus with doppler velocity and acceleration processing |
US5315512A (en) | 1989-09-01 | 1994-05-24 | Montefiore Medical Center | Apparatus and method for generating image representations of a body utilizing an ultrasonic imaging subsystem and a three-dimensional digitizer subsystem |
US5320105A (en) | 1991-12-11 | 1994-06-14 | U.S. Philips Corporation | Ultrasonic echograph for measuring high velocities of blood flows |
US5325860A (en) | 1991-11-08 | 1994-07-05 | Mayo Foundation For Medical Education And Research | Ultrasonic and interventional catheter and method |
US5327895A (en) | 1991-07-10 | 1994-07-12 | Kabushiki Kaisha Toshiba | Ultrasonic probe and ultrasonic diagnosing system using ultrasonic probe |
US5343867A (en) | 1991-06-12 | 1994-09-06 | Florida Atlantic University Research Corp. | Method and apparatus for detecting the onset and relative degree of atherosclerosis in humans |
US5349262A (en) | 1994-02-22 | 1994-09-20 | Hewlett-Packard Company | Phased array ultrasound imaging system with dynamic elevation focusing |
US5353354A (en) | 1990-11-22 | 1994-10-04 | Advanced Technology Laboratories, Inc. | Acquisition and display of ultrasonic images from sequentially oriented image planes |
US5368037A (en) | 1993-02-01 | 1994-11-29 | Endosonics Corporation | Ultrasound catheter |
US5377682A (en) | 1991-09-05 | 1995-01-03 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic probe for transmission and reception of ultrasonic wave and ultrasonic diagnostic apparatus including ultrasonic probe |
US5379642A (en) | 1993-07-19 | 1995-01-10 | Diasonics Ultrasound, Inc. | Method and apparatus for performing imaging |
US5381067A (en) | 1993-03-10 | 1995-01-10 | Hewlett-Packard Company | Electrical impedance normalization for an ultrasonic transducer array |
US5398691A (en) | 1993-09-03 | 1995-03-21 | University Of Washington | Method and apparatus for three-dimensional translumenal ultrasonic imaging |
US5402793A (en) | 1993-11-19 | 1995-04-04 | Advanced Technology Laboratories, Inc. | Ultrasonic transesophageal probe for the imaging and diagnosis of multiple scan planes |
US5435311A (en) | 1989-06-27 | 1995-07-25 | Hitachi, Ltd. | Ultrasound therapeutic system |
US5456259A (en) | 1991-07-30 | 1995-10-10 | Intravascular Research Limited | Ultrasonic transducer arrangement and catheter |
US5469851A (en) | 1994-08-09 | 1995-11-28 | Hewlett-Packard Company | Time multiplexed digital ultrasound beamformer |
US5471988A (en) | 1993-12-24 | 1995-12-05 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
US5474073A (en) | 1994-11-22 | 1995-12-12 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic scanning for three dimensional display |
US5487388A (en) | 1994-11-01 | 1996-01-30 | Interspec. Inc. | Three dimensional ultrasonic scanning devices and techniques |
US5492125A (en) | 1995-02-10 | 1996-02-20 | University Of Washington | Ultrasound signal processing apparatus |
US5497776A (en) | 1993-08-05 | 1996-03-12 | Olympus Optical Co., Ltd. | Ultrasonic image diagnosing apparatus for displaying three-dimensional image |
US5503153A (en) | 1995-06-30 | 1996-04-02 | Siemens Medical Systems, Inc. | Noise suppression method utilizing motion compensation for ultrasound images |
US5515853A (en) | 1995-03-28 | 1996-05-14 | Sonometrics Corporation | Three-dimensional digital ultrasound tracking system |
US5517537A (en) | 1994-08-18 | 1996-05-14 | General Electric Company | Integrated acoustic leak detection beamforming system |
US5531224A (en) | 1994-11-23 | 1996-07-02 | General Electric Company | Framem interpolator for increasing apparent acoustic frame rate in ultrasound imaging |
US5538004A (en) | 1995-02-28 | 1996-07-23 | Hewlett-Packard Company | Method and apparatus for tissue-centered scan conversion in an ultrasound imaging system |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5566674A (en) | 1995-06-30 | 1996-10-22 | Siemens Medical Systems, Inc. | Method and apparatus for reducing ultrasound image shadowing and speckle |
US5568813A (en) | 1994-11-23 | 1996-10-29 | General Electric Company | Method for combining ultrasound vector data from multiple firings to improve image quality |
US5570691A (en) | 1994-08-05 | 1996-11-05 | Acuson Corporation | Method and apparatus for real-time, concurrent adaptive focusing in an ultrasound beamformer imaging system |
US5575290A (en) | 1995-06-30 | 1996-11-19 | Siemens Medical Systems, Inc. | Coarse-fine ultrasound transducer array for medical imaging |
US5575286A (en) | 1995-03-31 | 1996-11-19 | Siemens Medical Systems, Inc. | Method and apparatus for generating large compound ultrasound image |
US5582173A (en) | 1995-09-18 | 1996-12-10 | Siemens Medical Systems, Inc. | System and method for 3-D medical imaging using 2-D scan data |
WO1997000482A1 (en) | 1995-06-15 | 1997-01-03 | The Regents Of The University Of Michigan | Method and apparatus for composition and display of three-dimensional image from two-dimensional ultrasound |
US5590659A (en) | 1994-09-15 | 1997-01-07 | Intravascular Research Limited | Ultrasonic visualization method and apparatus |
US5608849A (en) | 1991-08-27 | 1997-03-04 | King, Jr.; Donald | Method of visual guidance for positioning images or data in three-dimensional space |
US5606975A (en) | 1994-09-19 | 1997-03-04 | The Board Of Trustees Of The Leland Stanford Junior University | Forward viewing ultrasonic imaging catheter |
US5612713A (en) | 1995-01-06 | 1997-03-18 | Texas Instruments Incorporated | Digital micro-mirror device with block data loading |
US5655535A (en) | 1996-03-29 | 1997-08-12 | Siemens Medical Systems, Inc. | 3-Dimensional compound ultrasound field of view |
US5699805A (en) | 1996-06-20 | 1997-12-23 | Mayo Foundation For Medical Education And Research | Longitudinal multiplane ultrasound transducer underfluid catheter system |
US5704361A (en) | 1991-11-08 | 1998-01-06 | Mayo Foundation For Medical Education And Research | Volumetric image ultrasound transducer underfluid catheter system |
US5713363A (en) | 1991-11-08 | 1998-02-03 | Mayo Foundation For Medical Education And Research | Ultrasound catheter and method for imaging and hemodynamic monitoring |
US5724976A (en) | 1994-12-28 | 1998-03-10 | Kabushiki Kaisha Toshiba | Ultrasound imaging preferable to ultrasound contrast echography |
US5724978A (en) | 1996-09-20 | 1998-03-10 | Cardiovascular Imaging Systems, Inc. | Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction |
US5735281A (en) | 1996-08-09 | 1998-04-07 | Hewlett-Packard Company | Method of enhancing and prolonging the effect of ultrasound contrast agents |
WO1998025509A2 (en) | 1996-12-10 | 1998-06-18 | Medsim Ltd. | A method of mosaicing ultrasonic volumes for visual simulation |
US5776067A (en) | 1996-01-19 | 1998-07-07 | Hitachi Medical Corporation | Method of displaying a biplane image in real time and an ultrasonic diagnosing apparatus for displaying the biplane in real time |
US5797849A (en) | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5876345A (en) * | 1997-02-27 | 1999-03-02 | Acuson Corporation | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction |
US5891039A (en) | 1996-12-31 | 1999-04-06 | U.S. Philips Corporation | Ultrasonic echography system including sequencing means for the examination of arteries |
US5899861A (en) | 1995-03-31 | 1999-05-04 | Siemens Medical Systems, Inc. | 3-dimensional volume by aggregating ultrasound fields of view |
US6045508A (en) * | 1997-02-27 | 2000-04-04 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US30397A (en) * | 1860-10-16 | Window-blind fastener |
-
1997
- 1997-02-27 US US08/807,384 patent/US6045508A/en not_active Expired - Lifetime
-
1998
- 1998-02-27 AU AU63406/98A patent/AU6340698A/en not_active Abandoned
- 1998-02-27 WO PCT/US1998/003820 patent/WO1998038486A2/en active Application Filing
-
1999
- 1999-04-14 US US09/291,829 patent/US6171248B1/en not_active Expired - Lifetime
Patent Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3888238A (en) | 1973-09-28 | 1975-06-10 | Univ Stanford | Ultrasonic blood vessel imaging system and method |
US4219811A (en) | 1975-02-07 | 1980-08-26 | Hughes Aircraft Company | Synthetic array autofocus system |
USRE30397E (en) | 1976-04-27 | 1980-09-09 | Three-dimensional ultrasonic imaging of animal soft tissue | |
US4140022A (en) | 1977-12-20 | 1979-02-20 | Hewlett-Packard Company | Acoustic imaging apparatus |
US4140022B1 (en) | 1977-12-20 | 1995-05-16 | Hewlett Packard Co | Acoustic imaging apparatus |
US4241608A (en) | 1978-01-24 | 1980-12-30 | Unirad Corporation | Ultrasonic scanner |
US4244026A (en) | 1978-11-06 | 1981-01-06 | General Electric Company | Velocity measuring correlation sonar |
US4397775A (en) | 1981-06-01 | 1983-08-09 | General Electric Company | Varistors with controllable voltage versus time response |
US4635293A (en) | 1984-02-24 | 1987-01-06 | Kabushiki Kaisha Toshiba | Image processing system |
US5000185A (en) | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
US4841977A (en) | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4917097A (en) | 1987-10-27 | 1990-04-17 | Endosonics Corporation | Apparatus and method for imaging small cavities |
US5081993A (en) | 1987-11-11 | 1992-01-21 | Circulation Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5064290A (en) | 1987-12-12 | 1991-11-12 | Renishaw Plc | Opto-electronic scale-reading apparatus wherein phase-separated secondary orders of diffraction are generated |
US5158071A (en) | 1988-07-01 | 1992-10-27 | Hitachi, Ltd. | Ultrasonic apparatus for therapeutical use |
US5014710A (en) | 1988-09-13 | 1991-05-14 | Acuson Corporation | Steered linear color doppler imaging |
US4947852A (en) | 1988-10-05 | 1990-08-14 | Cardiometrics, Inc. | Apparatus and method for continuously measuring volumetric blood flow using multiple transducer and catheter for use therewith |
US4937775A (en) | 1988-11-21 | 1990-06-26 | General Electric Company | Apparatus for the cross-correlation of a pair of complex sampled signals |
US5159931A (en) | 1988-11-25 | 1992-11-03 | Riccardo Pini | Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images |
US4972199A (en) | 1989-03-30 | 1990-11-20 | Hughes Aircraft Company | Low cross-polarization radiator of circularly polarized radiation |
US5107844A (en) | 1989-04-06 | 1992-04-28 | Olympus Optical Co., Ltd. | Ultrasonic observing apparatus |
US5257629A (en) | 1989-05-26 | 1993-11-02 | Intravascular Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5435311A (en) | 1989-06-27 | 1995-07-25 | Hitachi, Ltd. | Ultrasound therapeutic system |
US5315512A (en) | 1989-09-01 | 1994-05-24 | Montefiore Medical Center | Apparatus and method for generating image representations of a body utilizing an ultrasonic imaging subsystem and a three-dimensional digitizer subsystem |
US5070879A (en) | 1989-11-30 | 1991-12-10 | Acoustic Imaging Technologies Corp. | Ultrasound imaging method and apparatus |
US5161537A (en) | 1990-03-26 | 1992-11-10 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic diagnostic system |
US5186176A (en) | 1990-04-11 | 1993-02-16 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus |
US5123415A (en) | 1990-07-19 | 1992-06-23 | Advanced Technology Laboratories, Inc. | Ultrasonic imaging by radial scan of trapezoidal sector |
US5103129A (en) | 1990-07-26 | 1992-04-07 | Acoustic Imaging Technologies Corporation | Fixed origin biplane ultrasonic transducer |
US5215093A (en) | 1990-11-02 | 1993-06-01 | Fujitsu Limited | Ultrasonic color doppler diagnostic apparatus |
US5529070A (en) | 1990-11-22 | 1996-06-25 | Advanced Technology Laboratories, Inc. | Acquisition and display of ultrasonic images from sequentially oriented image planes |
US5353354A (en) | 1990-11-22 | 1994-10-04 | Advanced Technology Laboratories, Inc. | Acquisition and display of ultrasonic images from sequentially oriented image planes |
US5211176A (en) | 1990-11-30 | 1993-05-18 | Fuji Photo Optical Co., Ltd. | Ultrasound examination system |
US5127409A (en) | 1991-04-25 | 1992-07-07 | Daigle Ronald E | Ultrasound Doppler position sensing |
US5273045A (en) | 1991-05-23 | 1993-12-28 | Fujitsu Limited | Ultrasonic equipment and its catheter-type ultrasonic probe |
US5343867A (en) | 1991-06-12 | 1994-09-06 | Florida Atlantic University Research Corp. | Method and apparatus for detecting the onset and relative degree of atherosclerosis in humans |
US5327895A (en) | 1991-07-10 | 1994-07-12 | Kabushiki Kaisha Toshiba | Ultrasonic probe and ultrasonic diagnosing system using ultrasonic probe |
US5456259A (en) | 1991-07-30 | 1995-10-10 | Intravascular Research Limited | Ultrasonic transducer arrangement and catheter |
US5608849A (en) | 1991-08-27 | 1997-03-04 | King, Jr.; Donald | Method of visual guidance for positioning images or data in three-dimensional space |
US5377682A (en) | 1991-09-05 | 1995-01-03 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic probe for transmission and reception of ultrasonic wave and ultrasonic diagnostic apparatus including ultrasonic probe |
US5199437A (en) | 1991-09-09 | 1993-04-06 | Sensor Electronics, Inc. | Ultrasonic imager |
US5325860A (en) | 1991-11-08 | 1994-07-05 | Mayo Foundation For Medical Education And Research | Ultrasonic and interventional catheter and method |
US5345940A (en) | 1991-11-08 | 1994-09-13 | Mayo Foundation For Medical Education And Research | Transvascular ultrasound hemodynamic and interventional catheter and method |
US5713363A (en) | 1991-11-08 | 1998-02-03 | Mayo Foundation For Medical Education And Research | Ultrasound catheter and method for imaging and hemodynamic monitoring |
US5704361A (en) | 1991-11-08 | 1998-01-06 | Mayo Foundation For Medical Education And Research | Volumetric image ultrasound transducer underfluid catheter system |
US5186177A (en) | 1991-12-05 | 1993-02-16 | General Electric Company | Method and apparatus for applying synthetic aperture focusing techniques to a catheter based system for high frequency ultrasound imaging of small vessels |
US5320105A (en) | 1991-12-11 | 1994-06-14 | U.S. Philips Corporation | Ultrasonic echograph for measuring high velocities of blood flows |
US5285788A (en) | 1992-10-16 | 1994-02-15 | Acuson Corporation | Ultrasonic tissue imaging method and apparatus with doppler velocity and acceleration processing |
US5368037A (en) | 1993-02-01 | 1994-11-29 | Endosonics Corporation | Ultrasound catheter |
US5381067A (en) | 1993-03-10 | 1995-01-10 | Hewlett-Packard Company | Electrical impedance normalization for an ultrasonic transducer array |
US5379642A (en) | 1993-07-19 | 1995-01-10 | Diasonics Ultrasound, Inc. | Method and apparatus for performing imaging |
US5497776A (en) | 1993-08-05 | 1996-03-12 | Olympus Optical Co., Ltd. | Ultrasonic image diagnosing apparatus for displaying three-dimensional image |
US5398691A (en) | 1993-09-03 | 1995-03-21 | University Of Washington | Method and apparatus for three-dimensional translumenal ultrasonic imaging |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5402793A (en) | 1993-11-19 | 1995-04-04 | Advanced Technology Laboratories, Inc. | Ultrasonic transesophageal probe for the imaging and diagnosis of multiple scan planes |
US5471988A (en) | 1993-12-24 | 1995-12-05 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
US5349262A (en) | 1994-02-22 | 1994-09-20 | Hewlett-Packard Company | Phased array ultrasound imaging system with dynamic elevation focusing |
US5570691A (en) | 1994-08-05 | 1996-11-05 | Acuson Corporation | Method and apparatus for real-time, concurrent adaptive focusing in an ultrasound beamformer imaging system |
US5469851A (en) | 1994-08-09 | 1995-11-28 | Hewlett-Packard Company | Time multiplexed digital ultrasound beamformer |
US5517537A (en) | 1994-08-18 | 1996-05-14 | General Electric Company | Integrated acoustic leak detection beamforming system |
US5590659A (en) | 1994-09-15 | 1997-01-07 | Intravascular Research Limited | Ultrasonic visualization method and apparatus |
US5606975A (en) | 1994-09-19 | 1997-03-04 | The Board Of Trustees Of The Leland Stanford Junior University | Forward viewing ultrasonic imaging catheter |
US5487388A (en) | 1994-11-01 | 1996-01-30 | Interspec. Inc. | Three dimensional ultrasonic scanning devices and techniques |
US5474073A (en) | 1994-11-22 | 1995-12-12 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic scanning for three dimensional display |
US5531224A (en) | 1994-11-23 | 1996-07-02 | General Electric Company | Framem interpolator for increasing apparent acoustic frame rate in ultrasound imaging |
US5568813A (en) | 1994-11-23 | 1996-10-29 | General Electric Company | Method for combining ultrasound vector data from multiple firings to improve image quality |
US5724976A (en) | 1994-12-28 | 1998-03-10 | Kabushiki Kaisha Toshiba | Ultrasound imaging preferable to ultrasound contrast echography |
US5612713A (en) | 1995-01-06 | 1997-03-18 | Texas Instruments Incorporated | Digital micro-mirror device with block data loading |
US5492125A (en) | 1995-02-10 | 1996-02-20 | University Of Washington | Ultrasound signal processing apparatus |
US5538004A (en) | 1995-02-28 | 1996-07-23 | Hewlett-Packard Company | Method and apparatus for tissue-centered scan conversion in an ultrasound imaging system |
US5515853A (en) | 1995-03-28 | 1996-05-14 | Sonometrics Corporation | Three-dimensional digital ultrasound tracking system |
US5797849A (en) | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
US5899861A (en) | 1995-03-31 | 1999-05-04 | Siemens Medical Systems, Inc. | 3-dimensional volume by aggregating ultrasound fields of view |
US5575286A (en) | 1995-03-31 | 1996-11-19 | Siemens Medical Systems, Inc. | Method and apparatus for generating large compound ultrasound image |
WO1997000482A1 (en) | 1995-06-15 | 1997-01-03 | The Regents Of The University Of Michigan | Method and apparatus for composition and display of three-dimensional image from two-dimensional ultrasound |
US5503153A (en) | 1995-06-30 | 1996-04-02 | Siemens Medical Systems, Inc. | Noise suppression method utilizing motion compensation for ultrasound images |
US5566674A (en) | 1995-06-30 | 1996-10-22 | Siemens Medical Systems, Inc. | Method and apparatus for reducing ultrasound image shadowing and speckle |
US5575290A (en) | 1995-06-30 | 1996-11-19 | Siemens Medical Systems, Inc. | Coarse-fine ultrasound transducer array for medical imaging |
US5582173A (en) | 1995-09-18 | 1996-12-10 | Siemens Medical Systems, Inc. | System and method for 3-D medical imaging using 2-D scan data |
US5776067A (en) | 1996-01-19 | 1998-07-07 | Hitachi Medical Corporation | Method of displaying a biplane image in real time and an ultrasonic diagnosing apparatus for displaying the biplane in real time |
US5655535A (en) | 1996-03-29 | 1997-08-12 | Siemens Medical Systems, Inc. | 3-Dimensional compound ultrasound field of view |
US5699805A (en) | 1996-06-20 | 1997-12-23 | Mayo Foundation For Medical Education And Research | Longitudinal multiplane ultrasound transducer underfluid catheter system |
US5735281A (en) | 1996-08-09 | 1998-04-07 | Hewlett-Packard Company | Method of enhancing and prolonging the effect of ultrasound contrast agents |
US5724978A (en) | 1996-09-20 | 1998-03-10 | Cardiovascular Imaging Systems, Inc. | Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction |
WO1998025509A2 (en) | 1996-12-10 | 1998-06-18 | Medsim Ltd. | A method of mosaicing ultrasonic volumes for visual simulation |
US5891039A (en) | 1996-12-31 | 1999-04-06 | U.S. Philips Corporation | Ultrasonic echography system including sequencing means for the examination of arteries |
US5876345A (en) * | 1997-02-27 | 1999-03-02 | Acuson Corporation | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction |
US6045508A (en) * | 1997-02-27 | 2000-04-04 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
Non-Patent Citations (26)
Title |
---|
"The Next Generation: New Bi-plane and End-Array Transducers with Color Doppler Capabilities" B&K Medical Brochure, (date unknown) two pages. |
A. Shaulov et al., "Biplane Phased Array for Ultrasound Medical Imaging," (1988), pp. 635-638. |
Bon, N. et al., "Early & Recent Intraluminal Ultrasound Devices", Intul Jrnl of Cardiac Imaging 4:pp. 79-88 1989. |
Dan Sapoznikov et al., "Left Ventricular Shape, Wall Thickness and Function Based on Three-Dimensional Reconstruction Echocardiography," pp. 195. 496-498. |
Detmer, Paul R. et al. "3D Ultrasonic Image Feature Localization Based on Magnetic Scanhead Tracking: In Vitro Calibration and Validation" Ultrasound in Med. & Biol., 1994, vol. 20, No. 9, pp. 923-936. |
Elizabeth O. Ofili et al., "Three-Dimensional and Four-Dimensional Echocardiography," (1994), pp. 669-675. |
Frederich Dohery, M.D. et al., "Sonoline(R) Elegra Ultrasound Imaging Platform and Extended Field of view XFOVυ Imaging," (1995), 4 pages. |
Frederich Dohery, M.D. et al., "Sonoline® Elegra Ultrasound Imaging Platform and Extended Field of view XFOVυ Imaging," (1995), 4 pages. |
Gussenhoven, E. et al., "Displacement Sensing Device Enabling Accurate Documentation of Catheter Tip Position," Intravascular Ultrasound, pp. 157-166 (1993). |
Hugh A. McCann et al., "Multdimensional Ultrasonic Imaging for Cardiology," (1988), pp. 1063-1072. |
ISO/IEC Standard (MPEG Video), "Introduction-Part 2: Video," (1991) pp. 5-9. |
ISO/IEC Standard (MPEG Video), "Introduction—Part 2: Video," (1991) pp. 5-9. |
J. Souquet et al., "Transesphageal Phased Array for Imaging the Heart," (1982), pp. 707-712. |
Laurence N. Bohs et al., "A Novel Method for Angle Independent Ultrasonic Imaging of Blood Flow and Tissue Motion," (1991), pp. 280-286. |
Leotta, Daniel F. et al. "Three-Dimensional Ultrasound Imaging Using Multiple Magnetic Tracking Systems and Miniature Sensors". |
LSI Logic, Appendix 2, "L64720 Video Motion Estimation Processor (MEP)," 1 page. |
M. Belohlavek et al., "Multidimensional Ultrasonic Visualization in Cardiology," (1992) pp. 1137-1145. |
N. Bom et al., "Early and Recent Intraluminal Ultrasound Devices," (1989) pp. 79-88. |
O'Donnell, M., et al., "Synthetic Phased Array Imaging of Coronary Arteries with an Intraluminal Array," IEEE Ultrasonics Symposium, pp. 1251-1254 (1995). |
One page product brochure of Powerpace Enhancement Package, (date unknown). |
Ramamurthy, Bhaskar S. et al., Potential and Limitations of Angle-Independent Flow Detection Algorithms Using Radio-Frequency and Detected Echo Signals Ultrasonic Imaging 1991, vol. 13, pp. 252-268. |
Shinichi Tamura et al., "Three-Dimensional Reconstruction of Echocardiograms Based on Orthogonal Sections," (1985) pp. 115-124. |
Three-Dimensional Reconstruction of Human Coronary and Peripheral Arteries from Images Recorded During Two-Dimensional Intravascular Ultrasound Examination,K. Rosenfield, et al., Circulation vol. 84, No. 5, pp. 1938-1956, (1991). |
Timothy C. Hodges et al., "Ultrasonic Three-Dimensional Reconstruction: In Vitro and In Vivo Volume and Area Measurement," (1994), pp. 719-729. |
Two page B&K Medical product brochure describing B&K 8558 transducer and B&K 8557 transducer, (date unknown). |
U.S. Ser. No. 08/874,792 filed Jun. 12, 1997. |
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6398731B1 (en) * | 1997-07-25 | 2002-06-04 | Tomtec Imaging Systems Gmbh | Method for recording ultrasound images of moving objects |
US6503205B2 (en) * | 1998-11-18 | 2003-01-07 | Cardiosonix Ltd. | Dual ultrasonic transducer probe for blood flow measurement, and blood vessel diameter determination method |
US6338716B1 (en) * | 1999-11-24 | 2002-01-15 | Acuson Corporation | Medical diagnostic ultrasonic transducer probe and imaging system for use with a position and orientation sensor |
US7846096B2 (en) | 2001-05-29 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Method for monitoring of medical treatment using pulse-echo ultrasound |
US9261596B2 (en) | 2001-05-29 | 2016-02-16 | T. Douglas Mast | Method for monitoring of medical treatment using pulse-echo ultrasound |
US20040106870A1 (en) * | 2001-05-29 | 2004-06-03 | Mast T. Douglas | Method for monitoring of medical treatment using pulse-echo ultrasound |
US20030018270A1 (en) * | 2001-05-29 | 2003-01-23 | Makin Inder Raj. S. | Tissue-retaining system for ultrasound medical treatment |
US7806892B2 (en) | 2001-05-29 | 2010-10-05 | Ethicon Endo-Surgery, Inc. | Tissue-retaining system for ultrasound medical treatment |
US9005144B2 (en) | 2001-05-29 | 2015-04-14 | Michael H. Slayton | Tissue-retaining systems for ultrasound medical treatment |
US6632179B2 (en) * | 2001-07-31 | 2003-10-14 | Koninklijke Philips Electronics N.V. | Acoustic imaging system with non-focusing lens |
US7648462B2 (en) | 2002-01-16 | 2010-01-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Safety systems and methods for ensuring safe use of intra-cardiac ultrasound catheters |
US20050124898A1 (en) * | 2002-01-16 | 2005-06-09 | Ep Medsystems, Inc. | Method and apparatus for isolating a catheter interface |
US20060025689A1 (en) * | 2002-06-07 | 2006-02-02 | Vikram Chalana | System and method to measure cardiac ejection fraction |
US7819806B2 (en) | 2002-06-07 | 2010-10-26 | Verathon Inc. | System and method to identify and measure organ wall boundaries |
US8221321B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods for quantification and classification of fluids in human cavities in ultrasound images |
US20100036252A1 (en) * | 2002-06-07 | 2010-02-11 | Vikram Chalana | Ultrasound system and method for measuring bladder wall thickness and mass |
US20040127797A1 (en) * | 2002-06-07 | 2004-07-01 | Bill Barnard | System and method for measuring bladder wall thickness and presenting a bladder virtual image |
US20090062644A1 (en) * | 2002-06-07 | 2009-03-05 | Mcmorrow Gerald | System and method for ultrasound harmonic imaging |
US8221322B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods to improve clarity in ultrasound images |
US20080262356A1 (en) * | 2002-06-07 | 2008-10-23 | Vikram Chalana | Systems and methods for ultrasound imaging using an inertial reference unit |
US20070276247A1 (en) * | 2002-06-07 | 2007-11-29 | Vikram Chalana | Systems and methods for ultrasound imaging using an inertial reference unit |
US20070276254A1 (en) * | 2002-06-07 | 2007-11-29 | Fuxing Yang | System and method to identify and measure organ wall boundaries |
US20070232908A1 (en) * | 2002-06-07 | 2007-10-04 | Yanwei Wang | Systems and methods to improve clarity in ultrasound images |
US7314446B2 (en) | 2002-07-22 | 2008-01-01 | Ep Medsystems, Inc. | Method and apparatus for time gating of medical images |
US20050080336A1 (en) * | 2002-07-22 | 2005-04-14 | Ep Medsystems, Inc. | Method and apparatus for time gating of medical images |
US20070083118A1 (en) * | 2002-07-22 | 2007-04-12 | Ep Medsystems, Inc. | Method and System For Estimating Cardiac Ejection Volume Using Ultrasound Spectral Doppler Image Data |
US20050245822A1 (en) * | 2002-07-22 | 2005-11-03 | Ep Medsystems, Inc. | Method and apparatus for imaging distant anatomical structures in intra-cardiac ultrasound imaging |
US20070167809A1 (en) * | 2002-07-22 | 2007-07-19 | Ep Medsystems, Inc. | Method and System For Estimating Cardiac Ejection Volume And Placing Pacemaker Electrodes Using Speckle Tracking |
US9993225B2 (en) | 2002-08-09 | 2018-06-12 | Verathon Inc. | Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams |
US8308644B2 (en) | 2002-08-09 | 2012-11-13 | Verathon Inc. | Instantaneous ultrasonic measurement of bladder volume |
US20100198075A1 (en) * | 2002-08-09 | 2010-08-05 | Verathon Inc. | Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams |
US20060074309A1 (en) * | 2002-11-06 | 2006-04-06 | Odile Bonnefous | Phased array acoustic system for 3d imaging of moving parts |
US7347820B2 (en) * | 2002-11-06 | 2008-03-25 | Koninklijke Philips Electronics N.V. | Phased array acoustic system for 3D imaging of moving parts |
US8388540B2 (en) * | 2002-12-13 | 2013-03-05 | Boston Scientific Scimed, Inc. | Method and apparatus for orienting a medical image |
US20040114146A1 (en) * | 2002-12-13 | 2004-06-17 | Scimed Life Systems, Inc. | Method and apparatus for orienting a medical image |
US20130184590A1 (en) * | 2002-12-13 | 2013-07-18 | Boston Scientific Scimed, Inc. | Method and apparatus for orienting a medical image |
WO2004054451A3 (en) * | 2002-12-13 | 2004-10-21 | Scimed Life Systems Inc | Apparatus for orienting a medical image |
US7090643B2 (en) | 2003-01-23 | 2006-08-15 | 3G Ultrasound, Inc. | Ultrasonic imaging device, system and method of use |
US20040152986A1 (en) * | 2003-01-23 | 2004-08-05 | Fidel Howard F. | Ultrasonic imaging device, system and method of use |
US20080242985A1 (en) * | 2003-05-20 | 2008-10-02 | Vikram Chalana | 3d ultrasound-based instrument for non-invasive measurement of amniotic fluid volume |
US20040254471A1 (en) * | 2003-06-13 | 2004-12-16 | Andreas Hadjicostis | Miniature ultrasonic phased array for intracardiac and intracavity applications |
US20060173310A1 (en) * | 2003-07-03 | 2006-08-03 | Satoshi Tamano | Ultrasonic probe and ultrasonic diagnostic device |
US7691065B2 (en) * | 2003-07-03 | 2010-04-06 | Hitachi Medical Corporation | Ultrasonic probe and ultrasonic diagnostic device |
CN100464708C (en) * | 2003-07-03 | 2009-03-04 | 株式会社日立医药 | Ultrasonic probe and ultrasonic diagnostic device |
US20050251127A1 (en) * | 2003-10-15 | 2005-11-10 | Jared Brosch | Miniature ultrasonic transducer with focusing lens for intracardiac and intracavity applications |
US20050165314A1 (en) * | 2004-01-27 | 2005-07-28 | Fujinon Corporation | Electronic scan type ultrasound diagnostic instrument |
US7828736B2 (en) * | 2004-01-27 | 2010-11-09 | Fujinon Corporation | Electronic scan type ultrasound diagnostic instrument |
US20050203410A1 (en) * | 2004-02-27 | 2005-09-15 | Ep Medsystems, Inc. | Methods and systems for ultrasound imaging of the heart from the pericardium |
US7507205B2 (en) | 2004-04-07 | 2009-03-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Steerable ultrasound catheter |
US20050228286A1 (en) * | 2004-04-07 | 2005-10-13 | Messerly Jeffrey D | Medical system having a rotatable ultrasound source and a piercing tip |
US20050228290A1 (en) * | 2004-04-07 | 2005-10-13 | Ep Medsystems, Inc. | Steerable ultrasound catheter |
US20050240123A1 (en) * | 2004-04-14 | 2005-10-27 | Mast T D | Ultrasound medical treatment system and method |
US20050240124A1 (en) * | 2004-04-15 | 2005-10-27 | Mast T D | Ultrasound medical treatment system and method |
US20090198156A1 (en) * | 2004-04-15 | 2009-08-06 | Mast T Douglas | Ultrasound medical treatment system and method |
US20050240125A1 (en) * | 2004-04-16 | 2005-10-27 | Makin Inder Raj S | Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode |
US7494467B2 (en) * | 2004-04-16 | 2009-02-24 | Ethicon Endo-Surgery, Inc. | Medical system having multiple ultrasound transducers or an ultrasound transducer and an RF electrode |
US20050240103A1 (en) * | 2004-04-20 | 2005-10-27 | Ep Medsystems, Inc. | Method and apparatus for ultrasound imaging with autofrequency selection |
US7654958B2 (en) | 2004-04-20 | 2010-02-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for ultrasound imaging with autofrequency selection |
US20050256405A1 (en) * | 2004-05-17 | 2005-11-17 | Makin Inder Raj S | Ultrasound-based procedure for uterine medical treatment |
US20050261586A1 (en) * | 2004-05-18 | 2005-11-24 | Makin Inder R S | Medical system having an ultrasound source and an acoustic coupling medium |
US7883468B2 (en) | 2004-05-18 | 2011-02-08 | Ethicon Endo-Surgery, Inc. | Medical system having an ultrasound source and an acoustic coupling medium |
US20050261587A1 (en) * | 2004-05-20 | 2005-11-24 | Makin Inder R S | Ultrasound medical system and method |
US7951095B2 (en) | 2004-05-20 | 2011-05-31 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system |
US20050261585A1 (en) * | 2004-05-20 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
US20050261611A1 (en) * | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system and method |
US20050261610A1 (en) * | 2004-05-21 | 2005-11-24 | Mast T D | Transmit apodization of an ultrasound transducer array |
US20050261588A1 (en) * | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
US7695436B2 (en) | 2004-05-21 | 2010-04-13 | Ethicon Endo-Surgery, Inc. | Transmit apodization of an ultrasound transducer array |
US7806839B2 (en) | 2004-06-14 | 2010-10-05 | Ethicon Endo-Surgery, Inc. | System and method for ultrasound therapy using grating lobes |
US20050277853A1 (en) * | 2004-06-14 | 2005-12-15 | Mast T D | System and method for medical treatment using ultrasound |
US9132287B2 (en) | 2004-06-14 | 2015-09-15 | T. Douglas Mast | System and method for ultrasound treatment using grating lobes |
US7632233B2 (en) * | 2004-08-20 | 2009-12-15 | Fujifilm Corporation | Ultrasonic endoscope and ultrasonic endoscopic apparatus |
US20060058679A1 (en) * | 2004-08-20 | 2006-03-16 | Fuji Photo Film Co., Ltd. | Ultrasonic endoscope and ultrasonic endoscopic apparatus |
US20090124903A1 (en) * | 2004-11-17 | 2009-05-14 | Takashi Osaka | Ultrasound Diagnostic Apparatus and Method of Displaying Ultrasound Image |
US8708912B2 (en) * | 2004-11-17 | 2014-04-29 | Hitachi Medical Corporation | Ultrasound diagnostic apparatus and method of displaying ultrasound image |
US7713210B2 (en) | 2004-11-23 | 2010-05-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for localizing an ultrasound catheter |
US20060122514A1 (en) * | 2004-11-23 | 2006-06-08 | Ep Medsystems, Inc. | Method and apparatus for localizing an ultrasound catheter |
US10639004B2 (en) | 2004-11-23 | 2020-05-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for localizing an ultrasound catheter |
US20060116571A1 (en) * | 2004-12-01 | 2006-06-01 | Siemens Aktiengesellschaft | Guidewire for vascular catheters |
US8870779B2 (en) | 2005-04-26 | 2014-10-28 | Biosense Webster, Inc. | Display of two-dimensional ultrasound fan |
US20060253024A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction |
US7517318B2 (en) | 2005-04-26 | 2009-04-14 | Biosense Webster, Inc. | Registration of electro-anatomical map with pre-acquired image using ultrasound |
EP3199977A1 (en) | 2005-04-26 | 2017-08-02 | Biosense Webster, Inc. | Registration of ultrasound data with pre-acquired image |
US20060241445A1 (en) * | 2005-04-26 | 2006-10-26 | Altmann Andres C | Three-dimensional cardial imaging using ultrasound contour reconstruction |
US20060253032A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Display of catheter tip with beam direction for ultrasound system |
US20060253031A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Registration of ultrasound data with pre-acquired image |
US10143398B2 (en) | 2005-04-26 | 2018-12-04 | Biosense Webster, Inc. | Registration of ultrasound data with pre-acquired image |
US20060253029A1 (en) * | 2005-04-26 | 2006-11-09 | Altmann Andres C | Display of two-dimensional ultrasound fan |
US7604601B2 (en) * | 2005-04-26 | 2009-10-20 | Biosense Webster, Inc. | Display of catheter tip with beam direction for ultrasound system |
US7798971B2 (en) * | 2005-07-07 | 2010-09-21 | Vermon | Motorized ultrasonic scanhead |
US20070038110A1 (en) * | 2005-07-07 | 2007-02-15 | Aime Flesch | Motorized ultrasonic scanhead |
US20070016184A1 (en) * | 2005-07-14 | 2007-01-18 | Ethicon Endo-Surgery, Inc. | Medical-treatment electrode assembly and method for medical treatment |
US20100241002A1 (en) * | 2005-10-19 | 2010-09-23 | Koninklijke Philips Electronics, N.V. | 2D Ultrasound Transducer for Radial Application and Method |
US20070167818A1 (en) * | 2005-12-06 | 2007-07-19 | Osborn Thomas W Iii | Device and system for in-vivo measurement of biomechanical properties of internal tissues |
US8070684B2 (en) | 2005-12-14 | 2011-12-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for evaluating valvular function |
US20070167793A1 (en) * | 2005-12-14 | 2007-07-19 | Ep Medsystems, Inc. | Method and system for enhancing spectral doppler presentation |
US20070167794A1 (en) * | 2005-12-14 | 2007-07-19 | Ep Medsystems, Inc. | Method and system for evaluating valvular function |
US20070232949A1 (en) * | 2006-03-31 | 2007-10-04 | Ep Medsystems, Inc. | Method For Simultaneous Bi-Atrial Mapping Of Atrial Fibrillation |
US20070255137A1 (en) * | 2006-05-01 | 2007-11-01 | Siemens Medical Solutions Usa, Inc. | Extended volume ultrasound data display and measurement |
WO2007133296A2 (en) | 2006-05-01 | 2007-11-22 | Siemens Medical Solutions Usa, Inc. | Extended volume ultrasound data display and measurement |
US20070299479A1 (en) * | 2006-06-27 | 2007-12-27 | Ep Medsystems, Inc. | Method for Reversing Ventricular Dyssynchrony |
US20080009733A1 (en) * | 2006-06-27 | 2008-01-10 | Ep Medsystems, Inc. | Method for Evaluating Regional Ventricular Function and Incoordinate Ventricular Contraction |
US20080021317A1 (en) * | 2006-07-24 | 2008-01-24 | Siemens Medical Solutions Usa, Inc. | Ultrasound medical imaging with robotic assistance for volume imaging |
US20080146942A1 (en) * | 2006-12-13 | 2008-06-19 | Ep Medsystems, Inc. | Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors |
US8187190B2 (en) | 2006-12-14 | 2012-05-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for configuration of a pacemaker and for placement of pacemaker electrodes |
US20080146928A1 (en) * | 2006-12-14 | 2008-06-19 | Ep Medsystems, Inc. | Method and System for Configuration of a Pacemaker and For Placement of Pacemaker Electrodes |
US20080146943A1 (en) * | 2006-12-14 | 2008-06-19 | Ep Medsystems, Inc. | Integrated Beam Former And Isolation For An Ultrasound Probe |
US20080146940A1 (en) * | 2006-12-14 | 2008-06-19 | Ep Medsystems, Inc. | External and Internal Ultrasound Imaging System |
US20080200801A1 (en) * | 2007-02-21 | 2008-08-21 | Douglas Glenn Wildes | Mapping Movement of a Movable Transducer |
US8133181B2 (en) | 2007-05-16 | 2012-03-13 | Verathon Inc. | Device, system and method to measure abdominal aortic aneurysm diameter |
US8167803B2 (en) | 2007-05-16 | 2012-05-01 | Verathon Inc. | System and method for bladder detection using harmonic imaging |
US20100036242A1 (en) * | 2007-05-16 | 2010-02-11 | Jongtae Yuk | Device, system and method to measure abdominal aortic aneurysm diameter |
US20090264757A1 (en) * | 2007-05-16 | 2009-10-22 | Fuxing Yang | System and method for bladder detection using harmonic imaging |
US20080312536A1 (en) * | 2007-06-16 | 2008-12-18 | Ep Medsystems, Inc. | Oscillating Phased-Array Ultrasound Imaging Catheter System |
US8317711B2 (en) | 2007-06-16 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Oscillating phased-array ultrasound imaging catheter system |
US9697634B2 (en) | 2007-06-30 | 2017-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound image processing to render three-dimensional images from two-dimensional images |
US11217000B2 (en) | 2007-06-30 | 2022-01-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound image processing to render three-dimensional images from two-dimensional images |
US8622915B2 (en) * | 2007-06-30 | 2014-01-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound image processing to render three-dimensional images from two-dimensional images |
US20120113108A1 (en) * | 2007-06-30 | 2012-05-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound image processing to render three-dimensional images from two-dimensional images |
US8057394B2 (en) | 2007-06-30 | 2011-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound image processing to render three-dimensional images from two-dimensional images |
US20090030317A1 (en) * | 2007-07-25 | 2009-01-29 | Mayo Foundation For Medical Education And Research | Ultrasonic imaging devices, systems, and methods |
US20090112089A1 (en) * | 2007-10-27 | 2009-04-30 | Bill Barnard | System and method for measuring bladder wall thickness and presenting a bladder virtual image |
US8052607B2 (en) | 2008-04-22 | 2011-11-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ultrasound imaging catheter with pivoting head |
US20090312643A1 (en) * | 2008-06-17 | 2009-12-17 | Fujifilm Corporation | Ultrasonic diagnostic apparatus and ultrasonic probe |
US8257263B2 (en) * | 2008-06-17 | 2012-09-04 | Fujifilm Corporation | Ultrasonic diagnostic apparatus and ultrasonic probe |
US20100006649A1 (en) * | 2008-07-11 | 2010-01-14 | Steve Bolton | Secure Ballot Box |
US8914245B2 (en) * | 2009-03-20 | 2014-12-16 | Andrew David Hopkins | Ultrasound probe with accelerometer |
US20110320143A1 (en) * | 2009-03-20 | 2011-12-29 | Andrew David Hopkins | Ultrasound probe with accelerometer |
US20100286527A1 (en) * | 2009-05-08 | 2010-11-11 | Penrith Corporation | Ultrasound system with multi-head wireless probe |
US20220079442A1 (en) * | 2013-03-15 | 2022-03-17 | Synaptive Medical Inc. | Insert imaging device for surgical procedures |
US11092002B2 (en) * | 2015-03-16 | 2021-08-17 | Darkvision Technologies Inc. | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
US20180073353A1 (en) * | 2015-03-16 | 2018-03-15 | Darkvision Technologies Inc. | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
US11619125B2 (en) | 2015-03-16 | 2023-04-04 | Darkvision Technologies Inc | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
US20230203942A1 (en) * | 2015-03-16 | 2023-06-29 | Darkvision Technologies Inc | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
US11364012B2 (en) * | 2017-05-31 | 2022-06-21 | Bk Medical Aps | 3-D imaging via free-hand scanning with a multiplane US transducer |
US11918795B2 (en) | 2019-05-01 | 2024-03-05 | Bard Access Systems, Inc. | Puncturing devices, puncturing systems including the puncturing devices, and methods thereof |
US11813418B2 (en) | 2019-08-22 | 2023-11-14 | Becton, Dickinson And Company | Echogenic balloon dilation catheter and balloon thereof |
US12109382B2 (en) | 2019-08-23 | 2024-10-08 | Becton, Dickinson And Company | Device set designed for PCNL surgery |
US12129753B2 (en) * | 2023-03-07 | 2024-10-29 | Darkvision Technologies Inc. | Device and method to image flow in oil and gas wells using phased array doppler ultrasound |
Also Published As
Publication number | Publication date |
---|---|
WO1998038486A2 (en) | 1998-09-03 |
WO1998038486A3 (en) | 1998-12-03 |
AU6340698A (en) | 1998-09-18 |
US6045508A (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6171248B1 (en) | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction | |
US5876345A (en) | Ultrasonic catheter, system and method for two dimensional imaging or three-dimensional reconstruction | |
US6685644B2 (en) | Ultrasound diagnostic apparatus | |
US7699782B2 (en) | Extended, ultrasound real time 3D image probe for insertion into the body | |
US6360027B1 (en) | Multiple ultrasound image registration system, method and transducer | |
US4341120A (en) | Ultrasonic volume measuring system | |
US6682488B2 (en) | Ultrasound probe with progressive element sizing | |
US8444567B2 (en) | Ultrasonic diagnostic apparatus for reducing an influence of uneven rotation of a flexible shaft | |
US20070078345A1 (en) | Flexible ultrasound transducer array | |
US20070276237A1 (en) | Volumetric Ultrasound Imaging System Using Two-Dimensional Array Transducer | |
JP2002253549A (en) | Ultrasonic image pickup device and method, and probe | |
JP2010233609A (en) | Ultrasonic diagnostic apparatus and method of determining contact state | |
Goldstein et al. | Medical ultrasonic diagnostics | |
US20040249283A1 (en) | Method and apparatus for breast imaging utilizing ultrasound | |
US20060264754A1 (en) | Colorflow biplane ultrasonic imaging system and method | |
JP2020509821A (en) | Location device and system for positioning acoustic sensor | |
GB1578405A (en) | Ultrasonic transducers | |
JPH05244691A (en) | Ultrasonic probe | |
US20090247879A1 (en) | Extended ultrasound imaging probe for insertion into the body | |
JPH11244291A (en) | Ultrasonic measuring device, ultrasonic system and use of them | |
JPS6253182B2 (en) | ||
JP4095332B2 (en) | Ultrasonic diagnostic equipment | |
US8303504B2 (en) | Ultrasonic diagnostic apparatus | |
WO2007032682A1 (en) | Extended, ultrasound real time imaging probe for insertion into the body | |
JP3330091B2 (en) | Apparatus and method for detecting probe moving speed of ultrasonic diagnostic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |