US6163845A - Apparatus and method for power management of embedded subsystems - Google Patents

Apparatus and method for power management of embedded subsystems Download PDF

Info

Publication number
US6163845A
US6163845A US09165781 US16578198A US6163845A US 6163845 A US6163845 A US 6163845A US 09165781 US09165781 US 09165781 US 16578198 A US16578198 A US 16578198A US 6163845 A US6163845 A US 6163845A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
subsystem
power
node
connected
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09165781
Inventor
Dongfeng Zhao
F. Matthew Rhodes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synaptics Inc
Original Assignee
Lakestar Semi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • G06F1/3234Action, measure or step performed to reduce power consumption
    • G06F1/3287Power saving by switching off individual functional units in a computer system, i.e. selective power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 – G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power Management, i.e. event-based initiation of power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/40Bus structure
    • G06F13/4063Device-to-bus coupling
    • G06F13/4068Electrical coupling
    • G06F13/4081Live connection to bus, e.g. hot-plugging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing
    • Y02D10/10Reducing energy consumption at the single machine level, e.g. processors, personal computers, peripherals or power supply
    • Y02D10/17Power management
    • Y02D10/171Selective power distribution

Abstract

An apparatus and method for power management of embedded electronic subsystems. A power management control circuit for managing power to an embedded subsystem includes a subsystem power node connected to a first section of the embedded electronic subsystem and a bias voltage node connected to a second section of the embedded electronic subsystem. A power switch is connected between a power supply and the subsystem power node. By separating the power subsystem node from the bias voltage node, power can be removed from the subsystem, while still providing the necessary bias voltage to the electronic static discharge (ESD) diodes. This prevents the voltages applied to the system bus by the subsystem from causing bus contention or system bus lock-ups. A power removal and restoration procedure is also disclosed.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of power management, and more particularly, to power management of embedded subsystems such as embedded modems.

2. Description of Related Art

With the proliferation of portable, battery-powered electronic devices, power management has become a critical issue for device performance. In order to extend the usable life of the battery power source, sophisticated power management techniques have been employed. In personal computers, the system microprocessor (Intel) and operating system (Microsoft) work together to conserve system power by controlling system resources. Various system devices may be monitored, and power use regulated by cutting or reducing power to inactive devices. For example, after a specified period of inactivity, a timer in the operating system may trigger the system display monitor to enter a "sleep" mode to reduce power consumption. After another interval, the monitor may be completely shutdown, further reducing power consumption. Similarly, power to peripheral devices or plug-in cards can be controlled. These power management techniques work due to the wide adoption of the Intel/Microsoft implemented solutions.

In the embedded device market, however, these solutions are inadequate since many different microprocessors and operating systems are used, each with a different power management scheme. With increased circuit integration, many manufacturers are producing a "system-on-a-chip." In other words, many functions that used to be performed by separate circuitry, are now performed on a single chip. For example, modems may now be embedded into a device, without being a separate peripheral. Unless power management techniques are utilized, the various embedded subsystems can severely drain the battery if they are powered on, but are not used. In the case of a modem, power is continually being consumed even though the user may only access the modem 10% of the time. Since the modem is embedded, it cannot simply be removed. Thus, the "standby" power consumption of the embedded systems is a significant source of power drain. In fact, testing has shown that an embedded modem may draw 6-8 mA of current even in a "stop" mode.

In many prior art attempts to manage power usage in an embedded subsystem, additional power management circuitry is used. This additional circuitry, however, is itself a source of power drain. Also, merely cutting the power to the subsystem does not provide satisfactory results. As shown in FIG. 1, a modem subsystem 2 is connected to a power node 24. In order to disable power to the subsystem when the subsystem is not in use, power supplied through the power node 24 is simply cut-off. This may cause several problems, however. First, since the signal applied to the system bus is indeterminate, the system bus may crash, thereby locking-up the system. The modem may also lock-up or otherwise fail, without special power down processing. Thus, there is a need for an improved power management system for embedded subsystems, such as modems.

SUMMARY OF THE INVENTION

The present invention is an apparatus and method for power management of embedded electronic subsystems. A power management control circuit for managing power to an embedded subsystem includes a subsystem power node connected to a first section of the embedded electronic subsystem and a bias voltage node connected to a second section of the embedded electronic subsystem. A power switch is connected between a power supply and the subsystem power node. By separating the power subsystem node from the bias voltage node, power can be removed from the subsystem, while still providing the necessary bias voltage to the electronic static discharge (ESD) diodes. This prevents the signals applied to the system bus by the subsystem from causing bus contention or system bus lock-ups.

In order to take full advantage of the present invention, the power needs to be removed and restored in a specific order. In order to remove power from a subsystem, all system bus activities must first be halted. The bias voltage to the bias voltage node is maintained. All subsystem activity is suspended and then the power switch is switched to remove power to the power subsystem node. All system bus activities may then be resumed after a sufficient time interval to insure the subsystem discharge has stabilized.

To restore power to the subsystem, all system bus and subsystem activities are halted. Power is restored to the subsystem power node, and system bus activities are resumed after a sufficient time interval. The host system then resets the embedded subsystem.

BRIEF DESCRIPTION OF THE DRAWINGS

The exact nature of this invention, as well as its objects and advantages, will become readily apparent from consideration of the following specification as illustrated in the accompanying drawings, in which like reference numerals designate like parts throughout the figures thereof, and wherein:

FIG. 1 is a schematic illustrating a prior art solution to power management;

FIG. 2 is a schematic illustrating a power management scheme according to the present invention;

FIG. 3 is a high-level block diagram of a modem subsystem incorporating the present invention;

FIG. 4 is a schematic illustrating the operation of a power switch according to the present invention;

FIG. 5 is a flowchart of the power management procedure according to the present invention;

FIG. 6 illustrates the steps of the power down procedure according to the present invention; and

FIG. 7 illustrates the steps of the power on procedure according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best modes contemplated by the inventor for carrying out the invention. Various modifications, however, will remain readily apparent to those skilled in the art, since the basic principles of the present invention have been defined herein specifically to provide an apparatus and method for power management, and more particularly, to power management of embedded subsystems such as embedded modems.

A preferred embodiment of the present invention will now be described with reference to FIG. 2, illustrating a modem subsystem. As those skilled in the art will recognize, however, the present invention may be applied to any similar electronic embedded subsystem. The modem subsystem 30 is divided into two separately powered subsections 36, 38. The output section 36 is powered via a modem subsystem power node 34, while the input section 38 is powered via bias voltage node 32. The output section 36 and the input section 38 are both connected to a pad 10. In order to power down the modem subsystem, power is removed from the modem subsystem power node 34. The power to the bias voltage node 32 is held constant, however. This prevents bus contention on the system bus by maintaining the proper bias voltages to the electrical static discharge (ESD) diodes 14, 16 in the input section 38. Notice that in the prior art circuit of FIG. 1, when power is removed from the modem subsystem, the diodes are no longer biased. Thus, the present circuit removes power to non-essential circuitry of the embedded modem subsystem, while still maintaining the proper bias voltages required by the ESD diodes 14, 16.

FIG. 3 is a high-level block diagram of a modem subsystem incorporating the present invention. The power to the modem subsystem 40 is controlled by a switch 42. The switch may be implemented using a single field effect transistor (FET). As shown in FIG. 4, the FET switch 42 may connect the modem subsystem 40 to either the host power supply, ground, or it may leave the node floating, as desired. The ESD diodes (not shown) are always connected to the bias voltage, without interruption. Notice that the present invention can be implemented using only a single FET and one extra power node. With one additional power control pin from the host microcontroller (to control the power switch 42), the power ON and power OFF procedures can easily be implemented in a variety of operating systems. Thus, the present invention does not require significant additional power consuming power circuitry in order to provide power management capabilities. In addition, the present invention may be implemented with minimal cost.

FIG. 5 is a flow chart illustrating the subsystem power procedure according to the present invention. At step 50, normal bus activity occurs and the subsystem power is on. At decision block 52, if the modem subsystem can be turned off (according to some predetermined inactivity parameters), the power down procedure is implemented at step 54. The power down procedure is illustrated in detail in FIG. 6. First, all system bus activities are halted to insure that there are no bus contention problems. All ESD bias voltages are held constant. Then, all subsystem activities are halted. The power to the subsystem power node is then removed (step 56). After a sufficient time interval to insure that the subsystem discharge has stabilized, the system bus activities may be restored. Since the ESD bias voltages to the subsystem have been held constant, there are no bus contention problems caused by floating nodes.

At step 58, with the subsystem off, the system engages in normal bus activity. Once a power on request is detected, however, the power on procedure (step 62) is performed. This power on procedure is illustrated in detail in FIG. 7. First, all the system bus activities are halted, and then all subsystem activities (if any) are halted. The power to the subsystem is then restored by applying power to the subsystem power node (step 64). The system bus and the subsystem activities are restored after a sufficient time interval to allow all voltage levels to stabilize. Finally, the subsystem functions are reset (by the host) to insure that the subsystem is in a known operational state in order to prevent lock-ups.

According to testing, implementation of the present invention can reduce the current drain of an embedded modem subsystem to approximately 0.1 μA in the powered clown state. As stated previously, prior art power management techniques draw approximately 6-8 mA. Thus, the present invention provides a significant improvement in power management for embedded subsystems. The present invention is also independent of any specific microcontroller or operating system, and may therefore be applied to many different configurations.

The present invention has been described with reference to a preferred embodiment, specifically an embedded modem subsystem. As those skilled in the art will recognize, however, the present invention may be applied to any similar electronic embedded subsystem which has a similar tri-state output driver-isolated gate FET connected to the interface bus.

Those skilled in the art will appreciate that various adaptations and modifications of the just-described preferred embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described herein.

Claims (17)

What is claimed is:
1. A power management control circuit for managing power of an embedded electronic subsystem, comprising:
an embedded electronic subsystem having a first section, and a second section, the second section including a first electrostatic discharge (ESD) diode and a second ESD diode connected between the first ESD diode and a ground node;
a subsystem power node conned to the first section of the embedded electronic subsystem;
a bias voltage node connected to the first ESD diode of the second section; and
a power switch connected between a power supply and the subsystem power node.
2. The circuit of claim 1, wherein the power switch is a field effect transistor (FET).
3. The circuit of claim 2, wherein the power switch is switched to remove power to the subsystem power node when the subsystem is not in use.
4. The circuit of claim 3, wherein the subsystem is a modem.
5. The circuit of claim 3, wherein the subsystem has a tri-state isolated gate transistor output driver.
6. A power management control method for removing power from an embedded electronic subsystem connected to a system bus, the subsystem comprising a subsystem power node connected to a first section of the subsystem, a bias voltage node connected to a second section of the subsystem, and a power switch connected between the subsystem power node and a power supply, the method comprising the steps of:
halting all system bus activities;
maintaining a bias voltage on the bias voltage node;
halting all subsystem activities;
switching the power switch to remove power to the subsystem power node; and
resuming system bus activities after a sufficient time interval for subsystem discharge to stabilize.
7. A power management control method for restoring power from an embedded electronic subsystem connected to a system bus, the subsystem comprising a subsystem power node connected to a first section of the subsystem, a bias voltage node connected to a second section of the subsystem, and a power switch connected between the subsystem power node and a power supply, the method comprising the steps of:
halting all system bus activities;
halting all subsystem activities;
switching the power switch to supply power to the subsystem power node;
resuming system bus activities after a sufficient time interval for all voltage levels to stabilize; and
resetting the embedded subsystem.
8. The method of claim 6, wherein the embedded subsystem is a modem.
9. The method of claim 7, wherein the embedded subsystem is a modem.
10. A power management method for managing power supplied to an embedded electronic subsystem connected to a system bus, the subsystem comprising a subsystem power node connected to a first section of the embedded electronic subsystem, a bias voltage node connected to a second section of the embedded electronic subsystem, and a power switch connected between a power supply and the subsystem power node, the method comprising the steps of:
removing power to the subsystem, wherein the step of removing power comprises the steps of
halting all system bus activities;
maintaining a bias voltage on the bias voltage node;
halting all subsystem activities;
switching the power switch to remove power to the subsystem power node; and
resuming system bus activities after a sufficient time interval for subsystem discharge to stabilize; and
restoring power to the subsystem,
wherein the step of restoring power comprises the steps of
halting all system bus activities;
halting all subsystem activities;
switching the power switch to supply power to the subsystem power node;
resuming system bus activities after a sufficient time interval for all voltage levels to stabilize; and
resetting the embedded subsystem.
11. The method of claim 10, wherein the second section comprises at least one electronic static discharge (ESD) diode.
12. The method of claim 10, wherein the second section comprises two electronic static discharge (ESD) diodes.
13. The method of claim 12, wherein the bias voltage node biases the ESD diodes.
14. The method of claim 13, wherein the power switch is a field effect transistor (FET).
15. The method of claim 10, wherein the subsystem is a modem.
16. The method of claim 10, wherein the subsystem has a tri-state isolated gate transistor output driver.
17. An embedded electronic subsystem, comprising:
a power node;
a first section connected to the power node;
a bias voltage node;
a second section connected to the bias voltage node;
a pad connected between the first and second sections;
said second section including a first electrostatic discharge (ESD) diode connected between the pad and the bias voltage node, and a second (ESD) diode connected between the pad and ground; and
a power switch connected between a power supply and the power node.
US09165781 1998-10-02 1998-10-02 Apparatus and method for power management of embedded subsystems Expired - Lifetime US6163845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09165781 US6163845A (en) 1998-10-02 1998-10-02 Apparatus and method for power management of embedded subsystems

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09165781 US6163845A (en) 1998-10-02 1998-10-02 Apparatus and method for power management of embedded subsystems
PCT/US1999/022778 WO2000020956A9 (en) 1998-10-02 1999-09-30 Apparatus and method for power management of embedded subsystems
US09734522 US6427210B2 (en) 1998-10-02 2000-12-11 Apparatus and method for power management of embedded subsystems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09734522 Continuation US6427210B2 (en) 1998-10-02 2000-12-11 Apparatus and method for power management of embedded subsystems

Publications (1)

Publication Number Publication Date
US6163845A true US6163845A (en) 2000-12-19

Family

ID=22600457

Family Applications (2)

Application Number Title Priority Date Filing Date
US09165781 Expired - Lifetime US6163845A (en) 1998-10-02 1998-10-02 Apparatus and method for power management of embedded subsystems
US09734522 Expired - Lifetime US6427210B2 (en) 1998-10-02 2000-12-11 Apparatus and method for power management of embedded subsystems

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09734522 Expired - Lifetime US6427210B2 (en) 1998-10-02 2000-12-11 Apparatus and method for power management of embedded subsystems

Country Status (2)

Country Link
US (2) US6163845A (en)
WO (1) WO2000020956A9 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427210B2 (en) * 1998-10-02 2002-07-30 Conexant Systems, Inc. Apparatus and method for power management of embedded subsystems
US20020154243A1 (en) * 2000-12-19 2002-10-24 Fife Keith Glen Compact digital camera system
US20030090918A1 (en) * 2001-11-05 2003-05-15 Krishna Shenai DC-DC converter with resonant gate drive
US20030090237A1 (en) * 2001-11-05 2003-05-15 Krishna Shenai Monolithic battery charging device
US6760852B1 (en) 2000-08-31 2004-07-06 Advanced Micro Devices, Inc. System and method for monitoring and controlling a power-manageable resource based upon activities of a plurality of devices
US7245725B1 (en) * 2001-05-17 2007-07-17 Cypress Semiconductor Corp. Dual processor framer
US7936854B2 (en) 2002-11-15 2011-05-03 Cypress Semiconductor Corporation Method and system of cycle slip framing in a deserializer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424317B1 (en) * 2002-03-06 2004-03-25 엘지전자 주식회사 Refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416351A (en) * 1991-10-30 1995-05-16 Harris Corporation Electrostatic discharge protection
US5546591A (en) * 1991-12-20 1996-08-13 Vlsi Technology, Inc. Distributed power management system for battery operated personal computers
US5724297A (en) * 1995-12-21 1998-03-03 Hitachi, Ltd. Semiconductor integrated circuit device and method of activating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163845A (en) * 1998-10-02 2000-12-19 Conexant Systems, Inc. Apparatus and method for power management of embedded subsystems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416351A (en) * 1991-10-30 1995-05-16 Harris Corporation Electrostatic discharge protection
US5546591A (en) * 1991-12-20 1996-08-13 Vlsi Technology, Inc. Distributed power management system for battery operated personal computers
US5724297A (en) * 1995-12-21 1998-03-03 Hitachi, Ltd. Semiconductor integrated circuit device and method of activating the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Automatic Disk Power Reduction For Portable Computers; IMB Technical Disclosure Bulletin, vol. 32, No. 4B, Sep. 1989, pp. 60 61. *
Automatic Disk Power Reduction For Portable Computers; IMB Technical Disclosure Bulletin, vol. 32, No. 4B, Sep. 1989, pp. 60-61.
Power Managed Second Level Cache Control; IBM Technical Disclosure Bulletin, vol. 39, No. 04. Apr. 1996, pp. 79 82. *
Power Managed Second-Level Cache Control; IBM Technical Disclosure Bulletin, vol. 39, No. 04. Apr. 1996, pp. 79-82.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427210B2 (en) * 1998-10-02 2002-07-30 Conexant Systems, Inc. Apparatus and method for power management of embedded subsystems
US6760852B1 (en) 2000-08-31 2004-07-06 Advanced Micro Devices, Inc. System and method for monitoring and controlling a power-manageable resource based upon activities of a plurality of devices
US20020154243A1 (en) * 2000-12-19 2002-10-24 Fife Keith Glen Compact digital camera system
US7245725B1 (en) * 2001-05-17 2007-07-17 Cypress Semiconductor Corp. Dual processor framer
US20030090918A1 (en) * 2001-11-05 2003-05-15 Krishna Shenai DC-DC converter with resonant gate drive
US20030090237A1 (en) * 2001-11-05 2003-05-15 Krishna Shenai Monolithic battery charging device
US6819088B2 (en) 2001-11-05 2004-11-16 Krishna Shenai DC-DC converter with resonant gate drive
US7936854B2 (en) 2002-11-15 2011-05-03 Cypress Semiconductor Corporation Method and system of cycle slip framing in a deserializer

Also Published As

Publication number Publication date Type
US6427210B2 (en) 2002-07-30 grant
US20010000542A1 (en) 2001-04-26 application
WO2000020956A1 (en) 2000-04-13 application
WO2000020956A9 (en) 2000-08-31 application

Similar Documents

Publication Publication Date Title
US6121962A (en) Computer system and method for controlling screen display of a monitor in a power management mode
US6222347B1 (en) System for charging portable computer's battery using both the dynamically determined power available based on power consumed by sub-system devices and power limits from the battery
US5822600A (en) Dynamic hibernation time in a computer system
US5375051A (en) Apparatus using serial data line to turn on a transceiver or other device
US6795927B1 (en) Power state resynchronization
US6304981B1 (en) Adaptive shutdown system and method for an information handling system
US6154845A (en) Power failure safe computer architecture
US6509788B2 (en) System and method utilizing on-chip voltage controlled frequency modulation to manage power consumption
US6259172B1 (en) Cooling fan controlling apparatus for computer
US5708819A (en) Process and apparatus for generating power management events in a computer system
US5590061A (en) Method and apparatus for thermal management in a computer system
US6304978B1 (en) Method and apparatus for control of the rate of change of current consumption of an electronic component
US6092207A (en) Computer having a dual mode power supply for implementing a power saving mode
US6654264B2 (en) System for providing a regulated voltage with high current capability and low quiescent current
US5805910A (en) Computer hibernation system for transmitting data and command words between host and controller
US5818781A (en) Automatic voltage detection in multiple voltage applications
US20070283176A1 (en) Method and apparatus for improving responsiveness of a power management system in a computing device
US5542035A (en) Timer-controlled computer system shutdown and startup
US6665802B1 (en) Power management and control for a microcontroller
US5752050A (en) Method and apparatus for managing power consumption of external devices for personal computers using a power management coordinator
US20090235105A1 (en) Hardware Monitoring and Decision Making for Transitioning In and Out of Low-Power State
US20030056127A1 (en) CPU powerdown method and apparatus therefor
US6052793A (en) Wakeup event restoration after power loss
US7418608B2 (en) Method and an apparatus for managing power consumption of a server
US20030009702A1 (en) Power supply for central processing unit

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKWELL SEMICONDUCTOR SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHAO, DONGFENG;RHODES, F. MATTHEW;REEL/FRAME:009572/0895

Effective date: 19981012

AS Assignment

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ROCKWELL SEMICONDUCTOR SYSTEMS, INC.;REEL/FRAME:010447/0510

Effective date: 19991014

AS Assignment

Owner name: CREDIT SUISSE FIRST BOSTON, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:010450/0899

Effective date: 19981221

AS Assignment

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

Owner name: BROOKTREE CORPORATION, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

Owner name: BROOKTREE WORLDWIDE SALES CORPORATION, CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

Owner name: CONEXANT SYSTEMS WORLDWIDE, INC., CALIFORNIA

Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:012252/0865

Effective date: 20011018

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BANK OF NEW YORK TRUST COMPANY, N.A., ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:018711/0818

Effective date: 20061113

Owner name: BANK OF NEW YORK TRUST COMPANY, N.A.,ILLINOIS

Free format text: SECURITY AGREEMENT;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:018711/0818

Effective date: 20061113

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CONEXANT SYSTEMS, INC.,CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. (FORMERLY, THE BANK OF NEW YORK TRUST COMPANY, N.A.);REEL/FRAME:023998/0838

Effective date: 20100128

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A. (FORMERLY, THE BANK OF NEW YORK TRUST COMPANY, N.A.);REEL/FRAME:023998/0838

Effective date: 20100128

AS Assignment

Owner name: THE BANK OF NEW YORK, MELLON TRUST COMPANY, N.A.,I

Free format text: SECURITY AGREEMENT;ASSIGNORS:CONEXANT SYSTEMS, INC.;CONEXANT SYSTEMS WORLDWIDE, INC.;CONEXANT, INC.;AND OTHERS;REEL/FRAME:024066/0075

Effective date: 20100310

Owner name: THE BANK OF NEW YORK, MELLON TRUST COMPANY, N.A.,

Free format text: SECURITY AGREEMENT;ASSIGNORS:CONEXANT SYSTEMS, INC.;CONEXANT SYSTEMS WORLDWIDE, INC.;CONEXANT, INC.;AND OTHERS;REEL/FRAME:024066/0075

Effective date: 20100310

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:038631/0452

Effective date: 20140310

Owner name: CONEXANT SYSTEMS WORLDWIDE, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:038631/0452

Effective date: 20140310

Owner name: BROOKTREE BROADBAND HOLDING, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:038631/0452

Effective date: 20140310

Owner name: CONEXANT, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A.;REEL/FRAME:038631/0452

Effective date: 20140310

AS Assignment

Owner name: LAKESTAR SEMI INC., NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:038777/0885

Effective date: 20130712

AS Assignment

Owner name: CONEXANT SYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAKESTAR SEMI INC.;REEL/FRAME:038803/0693

Effective date: 20130712

AS Assignment

Owner name: CONEXANT SYSTEMS, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CONEXANT SYSTEMS, INC.;REEL/FRAME:042986/0613

Effective date: 20170320

AS Assignment

Owner name: SYNAPTICS INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONEXANT SYSTEMS, LLC;REEL/FRAME:043786/0267

Effective date: 20170901

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, NORTH CARO

Free format text: SECURITY INTEREST;ASSIGNOR:SYNAPTICS INCORPORATED;REEL/FRAME:044037/0896

Effective date: 20170927