US6154355A - Apparatus and method for independently controlling multiple material applicators - Google Patents
Apparatus and method for independently controlling multiple material applicators Download PDFInfo
- Publication number
- US6154355A US6154355A US09/189,791 US18979198A US6154355A US 6154355 A US6154355 A US 6154355A US 18979198 A US18979198 A US 18979198A US 6154355 A US6154355 A US 6154355A
- Authority
- US
- United States
- Prior art keywords
- operating
- material applicator
- voltage
- activated material
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 title claims description 15
- 239000012530 fluid Substances 0.000 claims abstract description 51
- 239000003973 paint Substances 0.000 claims abstract description 30
- 239000007921 spray Substances 0.000 claims abstract description 30
- 230000001276 controlling effect Effects 0.000 claims 17
- 230000005540 biological transmission Effects 0.000 claims 8
- 238000000151 deposition Methods 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 230000001960 triggered effect Effects 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 8
- 235000014676 Phragmites communis Nutrition 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
- B05B12/02—Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
- B05B12/04—Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for sequential operation or multiple outlets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/005—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means the high voltage supplied to an electrostatic spraying apparatus being adjustable during spraying operation, e.g. for modifying spray width, droplet size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/053—Arrangements for supplying power, e.g. charging power
- B05B5/0531—Power generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/08—Plant for applying liquids or other fluent materials to objects
- B05B5/10—Arrangements for supplying power, e.g. charging power
Definitions
- the present invention relates to controllers for material applicators, such as spray paint guns and other paint applicators, and more particularly to controllers that independently control the air pressure, fluid pressure, and/or the operating voltage of paint applicators commonly used in industrial applications.
- Electrostatic paint spray guns and other coating material applicators are commonly used in the automotive industry for coating automotive bodies and are also used in other industrial applications. Typically, in the past, the same spray gun was used to spray different paint colors. To change paint colors, a user would have to flush the gun with solvent thoroughly before loading the gun with the new paint color. In light of environmental concerns regarding emissions, however, many manufacturers have attempted to minimize or eliminate the flushing process by dedicating one gun to each paint color. Because different paint colors often have different properties, the operating voltage and air pressure for each gun must often be adjusted individually to optimize paint application for each color. One way to accomplish this individual gun control is by providing each gun with its own separate power supply and pressure regulator. Many manufacturers often use twenty or more spray guns, however, making it cumbersome to find space for all of the power supplies and pressure regulators controlling all of the guns.
- the present invention is an apparatus for independently controlling the operating characteristics, such as the operating voltage, air pressure, and fluid pressure, of multiple spray guns.
- the present invention includes a multiple gun control board that allows a single power supply to control the operation of multiple spray paint guns. Because only one paint color, and therefore one gun, is operated at any given time, the multiple gun control board directs the output of a main supply board, which supplies a driving signal for the gun, to the activated gun and locks out all of the other guns from receiving the driving signal. As a result, if a second gun trigger is pulled while the first gun is activated, the driving signal is still routed to the first gun until its trigger is released.
- the present invention also includes an independent gun control board that can output a different voltage signal for each gun to generate different gun operating voltages or different air/fluid pressures.
- the independent gun control board includes a separate relay and potentiometer for each gun to be controlled.
- the potentiometer is adjustable so that the driving signal of the independent gun control board can be varied to accommodate the particular paint characteristics being sprayed by each gun.
- the output voltage can be used to operate the gun and/or send it to an air/fluid pressure transducer to adjust the air and/or fluid pressure for an activated gun.
- the present invention therefore allows independent voltage and/or pressure control of each gun without requiring each gun to have its own separate power supply and pressure regulator, greatly reducing the space required in manufacturing facilities to accommodate the spray gun control hardware.
- FIG. 1 is a representative block diagram showing a preferred spray gun system having independent gun controls according to one embodiment of the present invention
- FIG. 2 is a schematic of a preferred main supply board in one embodiment of the present invention.
- FIG. 3 is a schematic diagram of a multiple gun system board used in one embodiment of the invention.
- FIG. 4 is a schematic diagram of the independent spray gun controller with a voltage control output
- FIG. 5 is a simplified diagram showing the interconnection between the independent spray gun controller of FIG. 6 and an air supply;
- FIG. 6 is a schematic diagram of the independent spray gun controller with an air/fluid pressure control output
- FIG. 7 illustrates an example of a cascade circuit that can be used in the independent spray gun controller of the present invention.
- FIG. 1 is a block diagram showing one possible embodiment of a spray gun system 8 having independent spray gun controls according to the present invention.
- the system includes a main supply board 10, a multiple gun system (MGS) microcontroller board 11, an independent gun control (IGC) voltage control board 12, an IGC air pressure control board 14, and a plurality of spray paint guns 16.
- MGS multiple gun system
- IGC independent gun control
- FIG. 1 illustrates a 20-gun system, any number of guns can be controlled, from as few as two to as many as space will allow.
- the guns can also be placed in any configuration.
- the following description focuses on controlling a plurality of paint spray guns, the invention can control any material application device and is not limited to paint spray guns.
- the following description also specifies an IGC air pressure control board 14, but fluid pressure can be controlled as well, in a similar manner, without departing from the spirit of the invention.
- FIG. 1 illustrates the connections for only Gun 1 for clarity.
- a pressure transducer 17 e.g., air pressure, fluid pressure, operating voltage
- the operation of a preferred main supply board 10 is essentially the same for each IGC board 12, 14 and known to those of skill in the art, as will be understood from the description below.
- the main supply board 10 generates the voltage signal that goes to an individual paint gun 16 when its trigger is pulled.
- the high voltage output of most electrostatic paint spray guns 16 is derived from an electronic circuit containing transformers, capacitors and diodes. This circuit is commonly called a cascade circuit because of the way in which the diodes and capacitors are cascaded together to generate the high voltage.
- a typical cascade circuit 56 is shown in FIG. 7 and is within the capabilities of those skilled in the art. In the present embodiment, the cascade circuit is located in the gun 16. Because of this, the input signal to the cascade circuit 56 should have a sufficiently high frequency so that the transformers and the capacitors of the cascade circuit are reasonably small in size.
- a conventional wall outlet plug connects a power source to the gun control system 8.
- the AC voltage from the power source is dropped down to 20 VAC via a step down transformer 58 before being supplied to the main supply board 10.
- the 20 VAC is rectified to a DC voltage and fed to the input of an oscillator 60 through a voltage regulator circuit 62 and gun trigger relay contact K1 64.
- the air flow switch 68 energizes relay K1 70, closing relay contact K1 64 and supplying power to the oscillator.
- the output of the oscillator 60 is about 10 V RMS at 15 Khz and is supplied to the MGS board 11, where the output is directed to the gun 16 whose trigger is pulled.
- An external potentiometer 32 connected to the voltage regulator circuit 62 allows infinite adjustment of the oscillator input voltage and thus its output to the gun 16. Using the potentiometer 32, the output of the gun can thus be adjusted between 0 and the maximum rated kV.
- the main supply board 10 converts the 20 VAC, 50/60 kHz signal from the output of the step-down transformer 58 to a 10 VAC signal at a higher operating frequency (in this case, 15 kHz) that is compatible with the cascade circuit 56 being used.
- a preferred MGS board 11 includes a plurality of microcontrollers 30, each microcontroller 30 associated with a group of spray guns. Because only one paint color is sprayed at any given time, only one gun 16 will be operative at a time.
- the MGS board 11 enables multiple guns to be operated with only one power supply. When the user triggers a selected gun 16, the MGS board 11 directs the supply voltage from the main supply board 10 to the selected gun 16 and locks out the other guns from receiving the same supply voltage. If the trigger from a second gun is pulled while the first gun is operating, nothing will happen until the first gun's trigger is released.
- the main supply board 10 and the MGS board 11 can be used together so that multiple guns 16 can be controlled using one supply voltage, there may be only one potentiometer 32 (referred to as the "external potentiometer") available for adjusting the voltage level controlling the activated gun. As a result of the single external potentiometer, all of the guns will be controlled by the same supply voltage. For operating voltage adjustments, for example, any signal from the main supply board 10 is routed through the same external potentiometer 32 before reaching a selected gun, making every gun receive the same operating voltage. As noted above, however, some users wish to operate each gun at a different voltage, particularly if each gun sprays a different paint color having different electrostatic properties.
- the user may wish to set one gun at 45 kV, the next at 60 kV, and the next at 50 kV, for example.
- a user still may wish to have the option of using the same voltage for all of the spray guns connected to the controller and not be bothered with individual voltage adjustments for each gun.
- the preferred embodiment of the present invention provides both options to the user, as will be detailed below.
- FIG. 4 illustrates one embodiment of the IGC voltage control board 12, which can provide independent voltage control adjustment for each gun 16.
- the MGS board 11 directs the output of the main supply board 10 to one activated gun 16, and the IGC voltage board 12 is responsible for controlling "internal" potentiometers on the IGC voltage board 12 to vary the main supply board 10 signal such that each gun 16 can receive a different operating voltage, if desired.
- the main supply board 10 is connected to the IGC voltage control board 12 through terminals 1 and 2 of bus J3 ("J3-1 and J3-2") to provide a supply signal to a selected gun 16.
- each gun 16 has a control circuit 40a through 40t associated with it.
- Switch 1SW in this embodiment is a double-throw switch to allow the user to select whether each gun voltage will be adjusted individually or whether the same operating voltage will be applied to all of the guns.
- the switch 1SW connects the main supply board 10 to the external potentiometer 32 through the IGC voltage control board 12.
- the independent gun control feature of the IGC voltage control board 12 is essentially turned off.
- the wiper of the external potentiometer 32 is connected to J3-4 and the top of the external potentiometer, which receives the voltage from the main supply board 10, is connected to J3-3.
- the gun control voltage to and from the main supply board 10 is routed through the IGC control board 12 to the external potentiometer 32.
- the gun control voltage is routed to J3-2 of the IGC voltage control board 12, then through terminals 1 and 2 of switch 1SW, then through J3-3 of the IGC voltage control board 12 to the top of the external potentiometer 32.
- the voltage from the wiper of the external potentiometer 32 is then routed through J3-4 of the IGC voltage control board 12, then through terminals 4 and 5 of switch 1SW, then back out to the main supply board 10 via J3-1.
- the supply voltage will always be routed through the external potentiometer 32 when switch 1SW is in the illustrated position, and therefore the voltage signal sent to each gun 16, as it is activated, will be the same.
- switch 1SW is switched down to disconnect the guns 16 from the external potentiometer 32 and allow the signal from the main supply board 10 to route through a selected internal potentiometer 46 in the voltage control IGC board 12 instead of through the external potentiometer 32.
- switch 1SW is in this second position, the supply signal flows between terminals 2 and 3 and terminals 5 and 6 in 1SW.
- the IGC voltage control board 12 circuitry will be explained with respect to Gun 1, but the other guns 16 connected to the IGC voltage control board 12 are controlled in the same manner using the same circuitry as Gun 1.
- the IGC voltage gun control board 12 shown in FIG. 4 will now be described in greater detail.
- terminals 1 and 2 of bus J3 are connected to the main supply board 10, which generates the supply voltage.
- pin 12 of bus J1 (“J1-12") is connected to ground, and J1-11 1 is connected to a 5V supply (not shown).
- Pin J1-10 is connected to, for example, a magnet operated reed switch located in the handle of Gun 1.
- J1-10 can be connected to any type of switch (e.g. a pressure switch, an air flow switch, etc.) that operates the gun 16, and the switch does not necessarily have to be located in the gun 16.
- Gun 1's reed switch is connected at the other end to the 5V supply.
- pin J1-10 will be coupled to the 5V supply.
- the MGS board 11 is also coupled via Gun 1's reed switch to the 5V supply to direct the microcontroller 32 corresponding to Gun 1 to send the main supply board 10 output to Gun 1.
- the magnetic reed switch of Gun 1 is coupled with relay K1 42 such that relay K1 42 energizes when Gun 1's magnetic reed switch closes.
- current flows from pin J1-10 to the voltage divider formed by resistors R1 and R41 in the control circuit associated with Gun 1.
- the circuit 40a can operate satisfactorily using only gate resistor R1, incorporating a voltage divider drops the voltage level applied to the gate of MOSFET Q1 and prevents electrical noise from inadvertently triggering a gun whose trigger has not been pulled.
- a varistor V1 is also preferably connected to pin J1-10 to serve as a transient surge suppressor and eliminate any spikes that may travel down the line, preventing damage to components (MOSFET Q1 in particular) that are connected to the line.
- the varistor V1 grounds any voltage spikes that occur, as can be seen in FIG. 4.
- MOSFET Q1 acts essentially as a switch that turns on when a voltage is applied to its gate.
- Gun 1 is turned off (not triggered)
- MOSFET Q1 is switched off and is non-conductive; thus no current flows through relay K1 42 and MOSFET Q1 to ground.
- MOSFET Q1 turns on and becomes conductive. Because the top of relay K1 42 is connected to the 5V supply via pin J1-11, current flows down through relay K1 and MOSFET Q1; in short, relay K1 42 turns on when its associated MOSFET Q1 switch turns on.
- a light emitting diode LED1 and a diode D1 are connected in parallel to the relay K1 42.
- relay K1 42 When relay K1 42 is turned on, current also flows to LED1 so that it illuminates, providing visual confirmation to the user that the proper gun is operating.
- Diode D1 is a flyback diode to protect the relay K1 42 from voltage surges when MOSFET Q1 is turned off; because the relay K1 42 acts as an inductor, any sudden stoppage in the energy flow to the relay K1 42 may create a large spike as the relay K1 42 attempts to maintain its energy level.
- Diode D1 serves as an energy drain when MOSFET Q1 is turned off, providing an energy path for any spikes that may otherwise damage components in the IGC voltage control board 12.
- each potentiometer When relay K1 is energized, its corresponding K1 contacts 44 and 45 close and thereby direct the supply signal to and from the main supply board 10 through the internal potentiometer P1 46 corresponding to Gun 1.
- the specific value of the internal potentiometer P1 which is set by the user, determines the specific voltage at which Gun 1 will be operated.
- the user can redirect the supply voltage signal from the main supply board 10 away from the external potentiometer (not shown) and through any one of the individually adjustable internal potentiometers P1 through P20 such that each gun's operating voltage can be individually controlled by its corresponding potentiometer P1-P20. Adjusting each potentiometer can be accomplished by any known means, depending on the specific potentiometer model used.
- potentiometers that have screwdriver-compatible controls and to place all of the potentiometer controls in a secured environment, such as a "lock-box", so that only authorized people can change the potentiometer settings.
- FIGS. 5 and 6 illustrate the IGC air pressure control board 14, which controls each gun's air pressure rather than its operating voltage.
- FIG. 5 is a simplified diagram illustrating the interrelationship between the IGC air pressure control board 14 and other system components
- FIG. 6 is a more detailed schematic diagram of a preferred IGC air pressure board 14 embodiment.
- the circuit structure and components of the IGC air pressure control board 14 in this embodiment are virtually identical to the IGC voltage control board 12 shown in FIG. 4. Both IGC boards 12 and 14 use internal potentiometers to vary the amount of voltage or air that is used to control each gun.
- the IGC potentiometer output is used.
- the internal potentiometers P1 through P20 corresponding to the plurality of spray guns 16 are activated by relays 62 in the same manner as in the IGC voltage control board 12.
- the top of the potentiometer is preferably connected to a 10VDC power supply and the bottom connected to ground, as shown in FIG. 5 air pressure control board 14.
- the relay 62 can be a single pole relay, whereas a double pole relay 42 is needed for the IGC voltage control board 12.
- the IGC voltage output is coupled to a pressure transducer 50, as shown in FIG. 5.
- the pressure transducer 50 preferably has a 0 to 100 psi range and produces an air pressure output that is proportional to the voltage input of the pressure transducer 50. For example, if the internal potentiometer for a triggered gun is set such that 6V is sent to the pressure transducer 50, then the pressure transducer 50 will output 60 psi. Similarly, if the potentiometer is set so that only 2V reaches the pressure transducer 50, then the transducer 50 will output only 20 psi.
- the pressure transducer 50 output has the desired air pressure as determined by the internal potentiometers P1-P20 in the IGC air pressure control board 14, it often does not have enough air flow to drive the paint guns 16.
- the output of the pressure transducer 50 is coupled with a volume booster 52.
- the volume booster 52 acts as a regulator that increases the amount of air going to the guns 16 without changing the air pressure. For example, if the pressure transducer 50 output is 50 psi, the output of the volume booster 52 will also be 50 psi, but the volume booster 52 output will have a greater flow volume than the pressure transducer 50 output.
- Both the pressure transducer 50 and the volume booster 52 are connected to a main air line 54 that supplies the air for driving the paint guns 16.
- the relay K1 62 energizes, thereby closing the normally open contacts 92 and connecting the potentiometer P1 corresponding to Gun 1 16 to the pressure transducer 50, the output of which is then controlled by the potentiometer P1.
- the potentiometer P1 setting dictates the voltage that is output from the IGC air pressure control board 14. Similar to the switch 1SW in the IGC voltage control board 12, a switch 2SW can be used in the IGC air pressure control board 14 to make all the air pressure settings the same without having to adjust all the potentiometers individually. A double throw switch is not necessary in the IGC air pressure control board 14 because the top of the potentiometers P1 through P20 are simply connected to the 10VDC supply via pin J3-3.
- the IGC air pressure control board 14 allows individual control of the air pressure for each gun 16 without requiring a separate air regulator for each gun 16, resulting in significant space and cost savings.
- the potentiometer controls for the IGC air pressure control board 14 can be placed in a lock box to prevent unauthorized adjustment of the potentiometer settings.
- FIG. 1 illustrates a preferred embodiment where the gun control system 8 has both an IGC voltage control board 12 and an IGC pressure control board 14, but the IGC boards 12, 14 can be used individually as well if the user wishes to control independently either the operating voltage or the air pressure but not both.
- each individual gun will have two potentiometers associated with it, one in the IGC voltage control board 12 and one in the IGC air pressure control board 14, dedicated to its operation.
- the plurality of guns 16, as a whole, will preferably also have two corresponding external potentiometers, one potentiometer 32 for setting the operating voltage for all of the guns and one potentiometer 90 for setting the air pressure for all of the guns.
- the invention is not limited to controlling paint spray guns, but can also control any number and any combination of other material applicators as well.
- the invention can be also used to adjust other paint gun operating characteristics, such as fluid pressure, by providing a fluid supply and using the adjusted voltage for varying the fluid pressure to the gun via a pressure transducer and fluid volume booster, similar to the air pressure control conducted by the IGC air pressure control board 14.
- the main supply board 10, the MGS board 11, and the IGC boards 12, 14 can be combined onto a single electronic platform rather than divided into separate boards.
- the existing relays on the MGS board 11 can be expanded from double pole relays to multiple pole relays so that the voltage, air, or fluid potentiometers are selected by the multiple pole relays on the MGS board 11. Moving all the potentiometers to the MGS board 11 would eliminate the need for separate upper control circuitry, such as diodes, MOSFETS, and relays for the IGC air and voltage control boards.
- a microcontroller or combination of microcontrollers can be used to determine which gun has activated and send the desired voltage, air and/or fluid settings to that gun, locking out all other guns until the selected gun has been deactivated.
Landscapes
- Spray Control Apparatus (AREA)
- Electrostatic Spraying Apparatus (AREA)
- Nozzles (AREA)
Abstract
Description
Claims (51)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/189,791 US6154355A (en) | 1998-11-10 | 1998-11-10 | Apparatus and method for independently controlling multiple material applicators |
| CA002288587A CA2288587C (en) | 1998-11-10 | 1999-11-08 | Apparatus and method for independently controlling multiple material applicators |
| EP99121991A EP1000666A2 (en) | 1998-11-10 | 1999-11-10 | Apparatus and method for independently controlling multiple material applicators |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/189,791 US6154355A (en) | 1998-11-10 | 1998-11-10 | Apparatus and method for independently controlling multiple material applicators |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6154355A true US6154355A (en) | 2000-11-28 |
Family
ID=22698791
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/189,791 Expired - Lifetime US6154355A (en) | 1998-11-10 | 1998-11-10 | Apparatus and method for independently controlling multiple material applicators |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6154355A (en) |
| EP (1) | EP1000666A2 (en) |
| CA (1) | CA2288587C (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040050556A1 (en) * | 2002-03-06 | 2004-03-18 | Kidde Fire Fighting, Inc. | Fire suppression apparatus mixing foam and water and method of the same |
| US20070042556A1 (en) * | 2005-08-17 | 2007-02-22 | Chao-Sheng Lin | Method of fabricating metal oxide semiconductor transistor |
| US20070075163A1 (en) * | 2005-09-13 | 2007-04-05 | Smith Alan A | Paint circulating system and method |
| US20100145516A1 (en) * | 2008-12-08 | 2010-06-10 | Illinois Tool Works Inc. | High voltage monitoring system and method for spray coating systems |
| US20130008536A1 (en) * | 2010-03-18 | 2013-01-10 | Wrobel Steve J | Adjusting pump flow at tool |
| US8733392B2 (en) | 2005-09-13 | 2014-05-27 | Finishing Brands Uk Limited | Back pressure regulator |
Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2266354A (en) * | 1939-03-22 | 1941-12-16 | Binks Mfg Co | Liquid material supply system |
| US2748036A (en) * | 1954-05-10 | 1956-05-29 | Nat Supply Co | Method for providing a pressure responsive variable spray |
| US3831845A (en) * | 1973-08-17 | 1974-08-27 | Partek Corp Of Houston | Fluid delivery system |
| US3893006A (en) * | 1974-01-14 | 1975-07-01 | Nordson Corp | High voltage power supply with overcurrent protection |
| US4011991A (en) * | 1974-08-04 | 1977-03-15 | Senichi Masuda | Electrostatic powder painting apparatus |
| US4085892A (en) * | 1976-04-21 | 1978-04-25 | Dalton Robert E | Continuously energized electrostatic coating voltage block |
| US4368852A (en) * | 1981-03-23 | 1983-01-18 | Nordson Corporation | Combination spray gun and pressure regulator |
| US4530463A (en) * | 1982-08-05 | 1985-07-23 | Hiniker Company | Control method and apparatus for liquid distributor |
| US4607987A (en) * | 1984-11-26 | 1986-08-26 | Kice Metal Products Co., Inc. | Multiple lift pneumatic conveying air velocity control apparatus and method for controlling the pneumatic velocity in a multiple lift pneumatic conveying air velocity control apparatus |
| US4653696A (en) * | 1985-03-06 | 1987-03-31 | Rath Anton | Electrostatic spray gun for coating material |
| US4682710A (en) * | 1986-04-15 | 1987-07-28 | Nordson Corporation | Multi-station viscous liquid distribution system |
| US4706885A (en) * | 1984-08-06 | 1987-11-17 | Morin Rolland L | Liquid distribution system |
| US4858062A (en) * | 1986-06-04 | 1989-08-15 | Canon Kabushiki Kaisha | Charging device |
| US4858828A (en) * | 1986-09-15 | 1989-08-22 | Stachowiak J Edward | Multi-gun control valve |
| US4959137A (en) * | 1989-01-24 | 1990-09-25 | Honda Giken Kogyo Kabushiki Kaisha | Electrocoating system with multistage voltage application to prevent electrode coating |
| US5096120A (en) * | 1988-06-24 | 1992-03-17 | Behr Industrieanlagen Gmbh & Co. | Process and apparatus to guide a spray material to a plurality of spraying statins |
| US5271569A (en) * | 1990-07-18 | 1993-12-21 | Nordson Corporation | Apparatus for dispensing conductive coating materials |
| US5326031A (en) * | 1992-10-15 | 1994-07-05 | Nordson Corporation | Apparatus for dispensing conductive coating materials including color changing capability |
-
1998
- 1998-11-10 US US09/189,791 patent/US6154355A/en not_active Expired - Lifetime
-
1999
- 1999-11-08 CA CA002288587A patent/CA2288587C/en not_active Expired - Fee Related
- 1999-11-10 EP EP99121991A patent/EP1000666A2/en not_active Withdrawn
Patent Citations (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2266354A (en) * | 1939-03-22 | 1941-12-16 | Binks Mfg Co | Liquid material supply system |
| US2748036A (en) * | 1954-05-10 | 1956-05-29 | Nat Supply Co | Method for providing a pressure responsive variable spray |
| US3831845A (en) * | 1973-08-17 | 1974-08-27 | Partek Corp Of Houston | Fluid delivery system |
| US3893006A (en) * | 1974-01-14 | 1975-07-01 | Nordson Corp | High voltage power supply with overcurrent protection |
| US4011991A (en) * | 1974-08-04 | 1977-03-15 | Senichi Masuda | Electrostatic powder painting apparatus |
| US4085892A (en) * | 1976-04-21 | 1978-04-25 | Dalton Robert E | Continuously energized electrostatic coating voltage block |
| US4368852A (en) * | 1981-03-23 | 1983-01-18 | Nordson Corporation | Combination spray gun and pressure regulator |
| US4530463A (en) * | 1982-08-05 | 1985-07-23 | Hiniker Company | Control method and apparatus for liquid distributor |
| US4706885A (en) * | 1984-08-06 | 1987-11-17 | Morin Rolland L | Liquid distribution system |
| US4607987A (en) * | 1984-11-26 | 1986-08-26 | Kice Metal Products Co., Inc. | Multiple lift pneumatic conveying air velocity control apparatus and method for controlling the pneumatic velocity in a multiple lift pneumatic conveying air velocity control apparatus |
| US4653696A (en) * | 1985-03-06 | 1987-03-31 | Rath Anton | Electrostatic spray gun for coating material |
| US4682710A (en) * | 1986-04-15 | 1987-07-28 | Nordson Corporation | Multi-station viscous liquid distribution system |
| US4858062A (en) * | 1986-06-04 | 1989-08-15 | Canon Kabushiki Kaisha | Charging device |
| US4858828A (en) * | 1986-09-15 | 1989-08-22 | Stachowiak J Edward | Multi-gun control valve |
| US5096120A (en) * | 1988-06-24 | 1992-03-17 | Behr Industrieanlagen Gmbh & Co. | Process and apparatus to guide a spray material to a plurality of spraying statins |
| US4959137A (en) * | 1989-01-24 | 1990-09-25 | Honda Giken Kogyo Kabushiki Kaisha | Electrocoating system with multistage voltage application to prevent electrode coating |
| US5271569A (en) * | 1990-07-18 | 1993-12-21 | Nordson Corporation | Apparatus for dispensing conductive coating materials |
| US5326031A (en) * | 1992-10-15 | 1994-07-05 | Nordson Corporation | Apparatus for dispensing conductive coating materials including color changing capability |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040050556A1 (en) * | 2002-03-06 | 2004-03-18 | Kidde Fire Fighting, Inc. | Fire suppression apparatus mixing foam and water and method of the same |
| US20070042556A1 (en) * | 2005-08-17 | 2007-02-22 | Chao-Sheng Lin | Method of fabricating metal oxide semiconductor transistor |
| US20070075163A1 (en) * | 2005-09-13 | 2007-04-05 | Smith Alan A | Paint circulating system and method |
| US7828527B2 (en) | 2005-09-13 | 2010-11-09 | Illinois Tool Works Inc. | Paint circulating system and method |
| US8733392B2 (en) | 2005-09-13 | 2014-05-27 | Finishing Brands Uk Limited | Back pressure regulator |
| US9529370B2 (en) | 2005-09-13 | 2016-12-27 | Finishing Brands Uk Limited | Back pressure regulator |
| US20100145516A1 (en) * | 2008-12-08 | 2010-06-10 | Illinois Tool Works Inc. | High voltage monitoring system and method for spray coating systems |
| WO2010068353A1 (en) * | 2008-12-08 | 2010-06-17 | Illinois Tool Works Inc. | High voltage monitoring system and method for spray coating systems |
| US20130008536A1 (en) * | 2010-03-18 | 2013-01-10 | Wrobel Steve J | Adjusting pump flow at tool |
| US9481000B2 (en) * | 2010-03-18 | 2016-11-01 | Graco Minnesota Inc. | Adjusting pump flow at tool |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2288587C (en) | 2004-02-03 |
| CA2288587A1 (en) | 2000-05-10 |
| EP1000666A2 (en) | 2000-05-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5566042A (en) | Spray gun device with dynamic loadline manipulation power supply | |
| US6423142B1 (en) | Power supply control system | |
| US4216915A (en) | Electrostatic powder spray gun | |
| EP1890822B1 (en) | In-gun power supply control | |
| CN101422760B (en) | Improved spray gun trigger apparatus and methods | |
| US5844197A (en) | Arc retract circuit and method | |
| US6154355A (en) | Apparatus and method for independently controlling multiple material applicators | |
| JPH04506178A (en) | Plasma arc conversion control device | |
| US6144570A (en) | Control system for a HVDC power supply | |
| US4979067A (en) | Voltage and current limiting power supply | |
| US6557789B1 (en) | Manual spray coating gun | |
| US4508276A (en) | Current limited electrostatic spray gun system with positive feedback controlled constant voltage output | |
| US6979933B2 (en) | Apparatus and method for charging and discharging a capacitor | |
| US20050063131A1 (en) | Controller for electrostatic spray gun internal power supply | |
| US7037374B2 (en) | Pneumatic pump switching apparatus | |
| EP1097751A2 (en) | Voltage block monitoring system | |
| MXPA99010252A (en) | Method and device for independently controlling material multiple applicators | |
| JPH06320066A (en) | High voltage power supply device for electrostatic coating apparatus | |
| DE3215644C2 (en) | Electrostatic spraying device | |
| JPH02298374A (en) | Electrostatic painting apparatus | |
| JPH0531407A (en) | Liquid/powder paint-electrostatic painting controller | |
| EP0991173B1 (en) | High magnitude potential supply | |
| JP6803605B2 (en) | Painting control device and painting device | |
| JPH0847657A (en) | Air-assisted airless hand-painting equipment | |
| EP1563597A1 (en) | Apparatus and method for charging and discharging a capacitor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ILLINOIS TOOL WORKS, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALTENBURGER, GENE P.;BALTZ, JAMES P.;REEL/FRAME:009674/0785 Effective date: 19981204 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
| AS | Assignment |
Owner name: FINISHING BRANDS HOLDINGS INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ILLINOIS TOOL WORKS;REEL/FRAME:031580/0001 Effective date: 20130501 |
|
| AS | Assignment |
Owner name: CARLISLE FLUID TECHNOLOGIES, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FINISHING BRANDS HOLDINGS INC.;REEL/FRAME:036101/0622 Effective date: 20150323 |
|
| AS | Assignment |
Owner name: CARLISLE FLUID TECHNOLOGIES, INC., NORTH CAROLINA Free format text: CORRECTIVE ASSIGNMENT TO INCLUDE THE ENTIRE EXHIBIT INSIDE THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 036101 FRAME: 0622. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:FINISHING BRANDS HOLDINGS INC.;REEL/FRAME:036886/0249 Effective date: 20150323 |