US6147794A - Raman amplifier with pump source for improved performance - Google Patents
Raman amplifier with pump source for improved performance Download PDFInfo
- Publication number
- US6147794A US6147794A US09/244,214 US24421499A US6147794A US 6147794 A US6147794 A US 6147794A US 24421499 A US24421499 A US 24421499A US 6147794 A US6147794 A US 6147794A
- Authority
- US
- United States
- Prior art keywords
- pump
- order
- amplifier
- raman
- sensitive component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/30—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
- H01S3/302—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094096—Multi-wavelength pumping
Definitions
- This invention relates to Raman optical amplifiers and, in particular, to Raman amplifiers with a pump source for providing improved amplifier performance.
- Raman optical amplifiers are important components in optical communication systems.
- Optical fiber communication systems are beginning to achieve their great potential for the rapid transmission of vast amounts of information.
- an optical fiber system comprises a source of information-carrying optical signals, an optical fiber transmission line for carrying the optical signals and a receiver for detecting the optical signals and demodulating the information they carry.
- the signals are typically within a wavelength range favorable for propagation within silica fibers, and preferably comprise a plurality of wavelength distinct channels within that range.
- Raman effect amplification utilizes Raman effect amplification.
- the gain spectrum of a silica fiber pumped by a monochromatic Raman pump exhibits maximum gain when the signal to be amplified is at a frequency approximately 13 THz lower than the frequency of the Raman pump.
- the frequency (or wavelength) difference between the pump and the frequency (or wavelength) of maximum gain is often referred to as the Stokes shift, and the amplified signal is referred to as the Stokes wave.
- Use of a pump that is detuned from the signals by about one Stokes shift (1/2 the Stokes shift to 3/2 the shift) is referred to as first-order Stokes pumping.
- Raman amplifiers can be categorized as either distributed or discrete. In distributed amplifiers, the transmission fiber itself is used as the gain medium. In discrete amplifiers, a separate fiber, typically optimized for Raman amplification, is used as the gain fiber. While the discrete amplifier gain fiber may be kilometers in length it is typically spooled at one location and not used to transfer information from one location to another.
- Raman pump sources utilize a plurality of sources to establish a high power first order pump (>100 mW) and an immediate downstream multiplexing component to combine the outputs into a pump with a wide, flat bandwidth.
- the pump power is generated by an array of high power semiconductor pump lasers that are followed by wavelength-division multiplexers. See, for example, Y. Emori et al., "Less than 4.7 dB Noise Figure . . . ", Conference on Optical Amplifiers, Paper PD3-1, Vail Colorado (Jul. 27-29, 1998).
- the problem with such amplifiers is that the multiplexers present relatively high insertion loss to the high power signals. Moreover the multiplexers are not reliable at high power levels.
- Other Raman pump sources utilize plural sources of different polarization followed by polarization multiplexers.
- the polarization multiplexers present the same problems of insertion loss and unreliability at high power. And even single source high power pumps are sometimes followed by lossy or unreliable components as polarization scramblers or spectral filters. Accordingly there is a need for an improved Raman amplifier with reduced sensitivity to power sensitive components.
- a first order Raman amplifier comprises a low power first order Raman pump followed by one or more components that are lossy or unreliable at high power levels. After passing through the component, the first order pump is itself amplified by a second order Raman amplifier. The amplified first order pump is then used to amplify optical signals in a transmission fiber. Advantages are that resulting pump source is more reliable and relatively insensitive to insertion loss. Convenient low power sources, such as filtered spontaneous emission sources can be used as the first order pump source. And the gain spectrum of the second order pump can be used to compensate the gain spectrum of the first order pump.
- FIG. 1 schematically illustrates a first embodiment of a Raman amplifier using distributed second order amplification of a first order pump
- FIG. 2 is a schematic spectral diagram showing the relationship among the wavelengths for the amplifier of FIG. 1.
- FIGS. 3 and 4 schematically illustrate Raman amplifiers using discrete second order amplification of a first order pump.
- FIG. 1 illustrates a distributed Raman amplifier 9 comprising a low power first order pump source 10 whose output is connected to one or more power sensitive components 11.
- power sensitive component is meant a component incurring a greater than 10% insertion loss or a component subject to a high failure rate at optical power of 100 mW.
- a high failure rate can be quantified as a FIT rate greater than 1000 where the FIT rate is the expected number of failures in 10 9 hours.
- the first order pump source 10 can comprise a plurality of sources which differ in wavelength or polarization.
- the combined first order pump ⁇ p1 is then itself amplified by a second order Raman amplifier comprising, for example, a second order pump source 12, subsequent fiber segment 14 and a portion of transmission line 16.
- the second order pump from source 12 is added to the first order pump ⁇ p1 at coupler 13, and the first and second order pumps ⁇ p 1 and ⁇ p 2 travel together along a length of fiber 14 and a portion of fiber 16 to permit Raman amplification of ⁇ p 1 .
- Coupler 15 launches ⁇ p1 and ⁇ p2 into the transmission fiber 16 counterpropagating with a transmitted signal ⁇ s in the transmission fiber.
- the low power first order pump source 10 preferably has a low power level less than 100 mW. It can comprise a plurality of sources such as an array of semiconductor lasers or it can be a single source such as a filtered spontaneous emission source.
- the power sensitive component 11 can be a polarization or wavelength-division multiplexer, a polarization scrambler, or a spectral filter (for a spontaneous emission source). It typically has a loss of 10% or more or a FIT rate greater than 1000 when subjected to an optical input of 100 mW.
- the second order pump source 12 is preferably a high power semiconductor laser.
- FIG. 2 is a qualitative power spectrum illustrating the spectral relationship among ⁇ p 1 , ⁇ p 2 and ⁇ s .
- ⁇ p 1 is one Stokes shift shorter in wavelength than ⁇ s so that ⁇ p 1 amplifies ⁇ s .
- ⁇ p 2 is one Stokes shift shorter than ⁇ p 1 so that ⁇ p 2 amplifies ⁇ p 1 .
- FIG. 3 illustrates an alternative embodiment similar to that of FIG. 2 wherein the second order pump amplifies the combined first order pump in a discrete Raman gain fiber 30 before the amplified ⁇ p 1 is introduced into the transmission line 16 for distributed amplification of ⁇ s .
- the gain fiber 30 is essentially one or more coils of fiber where ⁇ p1 and ⁇ p2 propagate together.
- the source 12 and the gain fiber 30 form a discrete second order Raman amplifier.
- FIG. 4 illustrates a second alternative embodiment similar to that of FIG. 3 except that the amplified first order pump ⁇ 1 amplifies ⁇ s in a second discrete Raman gain fiber 40.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/244,214 US6147794A (en) | 1999-02-04 | 1999-02-04 | Raman amplifier with pump source for improved performance |
EP00300710A EP1026797A3 (en) | 1999-02-04 | 2000-01-31 | Raman amplifier with pump source |
JP2000026927A JP3676167B2 (en) | 1999-02-04 | 2000-02-04 | Raman amplifier with pump source for improved performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/244,214 US6147794A (en) | 1999-02-04 | 1999-02-04 | Raman amplifier with pump source for improved performance |
Publications (1)
Publication Number | Publication Date |
---|---|
US6147794A true US6147794A (en) | 2000-11-14 |
Family
ID=22921840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/244,214 Expired - Lifetime US6147794A (en) | 1999-02-04 | 1999-02-04 | Raman amplifier with pump source for improved performance |
Country Status (3)
Country | Link |
---|---|
US (1) | US6147794A (en) |
EP (1) | EP1026797A3 (en) |
JP (1) | JP3676167B2 (en) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6344925B1 (en) * | 2000-03-03 | 2002-02-05 | Corvis Corporation | Optical systems and methods and optical amplifiers for use therein |
US6384963B2 (en) * | 2000-03-03 | 2002-05-07 | Lucent Technologies Inc. | Optical communication system with co-propagating pump radiation for raman amplification |
US6417959B1 (en) | 2000-12-04 | 2002-07-09 | Onetta, Inc. | Raman fiber amplifier |
US20020101649A1 (en) * | 1998-06-16 | 2002-08-01 | Islam Mohammed N. | Multi-stage optical amplifier and broadband communication system |
US6433921B1 (en) | 2001-01-12 | 2002-08-13 | Onetta, Inc. | Multiwavelength pumps for raman amplifier systems |
US6441950B1 (en) | 2000-11-03 | 2002-08-27 | Onetta, Inc. | Distributed raman amplifier systems with transient control |
US20020126714A1 (en) * | 2001-02-07 | 2002-09-12 | Hong Po | Raman fiber laser |
US6456426B1 (en) | 2001-06-28 | 2002-09-24 | Onetta, Inc. | Raman amplifiers with modulated pumps |
US20020159133A1 (en) * | 2001-02-02 | 2002-10-31 | The Furukawa Electric Co., Ltd. | Pump light source for raman amplifier and raman amplifier using the same |
WO2002088781A2 (en) * | 2001-05-02 | 2002-11-07 | Xtera Communications, Inc. | High efficiency raman amplifier |
US6480326B2 (en) * | 2000-07-10 | 2002-11-12 | Mpb Technologies Inc. | Cascaded pumping system and method for producing distributed Raman amplification in optical fiber telecommunication systems |
US20020176133A1 (en) * | 1999-10-22 | 2002-11-28 | Corvis Corporation | Method of adjusting power for a wavelength-division multiplexed optical transmission system |
US6519078B2 (en) * | 2000-06-28 | 2003-02-11 | Kdd Submarine Cable Systems, Inc. | Raman amplifier |
US6532101B2 (en) * | 2001-03-16 | 2003-03-11 | Xtera Communications, Inc. | System and method for wide band Raman amplification |
US20030063373A1 (en) * | 2000-01-14 | 2003-04-03 | The Furukawa Electric Co., Ltd. | Raman amplifier |
US20030090778A1 (en) * | 2001-09-28 | 2003-05-15 | Stefano Cattaneo | Process for generating an optical radiation, corresponding source and raman amplifier including such a source |
US20030095745A1 (en) * | 2001-11-21 | 2003-05-22 | Gehlot Narayan L. | Modulated pump source for fiber raman amplifier |
US6574037B2 (en) | 1998-06-16 | 2003-06-03 | Xtera Communications, Inc. | All band amplifier |
US6580548B2 (en) | 1998-03-24 | 2003-06-17 | Xtera Communications, Inc. | Broadband amplifier and communication system |
US6587259B2 (en) | 2001-07-27 | 2003-07-01 | Xtera Communications, Inc. | System and method for controlling noise figure |
US6594071B1 (en) | 2001-10-02 | 2003-07-15 | Xtera Communications, Inc. | Method and apparatus for amplifier control |
US6600592B2 (en) | 1998-03-24 | 2003-07-29 | Xtera Communications, Inc. | S+ band nonlinear polarization amplifiers |
WO2003065625A2 (en) * | 2002-01-31 | 2003-08-07 | Corning Incorporated | Fiber ring amplifiers and lasers |
US6611369B2 (en) * | 1999-09-06 | 2003-08-26 | Furukawa Electric Co., Ltd. | Optical signal amplifier |
US6614586B2 (en) | 2001-07-30 | 2003-09-02 | Dorsal Networks, Inc. | Methods and systems for high performance, wide bandwidth optical communication systems using Raman amplification |
US6618191B2 (en) * | 2001-04-30 | 2003-09-09 | Corning Incorporated | Enabler of large raman gain on small effective area fibers |
US6618195B2 (en) | 2001-04-20 | 2003-09-09 | Dorsal Networks Inc. | Pump assembly employing coupled radiation sources for multiple fibers |
US6624927B1 (en) | 2001-03-14 | 2003-09-23 | Onetta, Inc. | Raman optical amplifiers |
US6625347B1 (en) | 2001-01-12 | 2003-09-23 | Onetta, Inc. | Pumps for Raman amplifier systems |
US20030184849A1 (en) * | 2002-04-02 | 2003-10-02 | Alcatel | Method of distributed Raman amplification in an optical fiber |
US6633697B2 (en) | 1999-05-31 | 2003-10-14 | Ther Furukawa Electric Co., Ltd. | Raman amplification method and optical signal transmission method using same |
US6657776B2 (en) | 2001-11-21 | 2003-12-02 | Lucent Technologies Inc. | Pump source including polarization scrambling in Raman amplified optical WDM systems |
US6671429B2 (en) | 2001-10-03 | 2003-12-30 | Dorsal Networks, Inc. | Balanced coupler for radiation sources |
US20040032641A1 (en) * | 1999-07-23 | 2004-02-19 | The Furukawa Electric Co., Ltd. | Raman amplifier system, apparatus and method for identifying, obtaining and maintaining an arbitrary raman amplification performance |
US20040042061A1 (en) * | 2002-08-30 | 2004-03-04 | Islam Mohammed N. | Controlling ASE in optical amplification stages implementing time modulated pump signals |
US6707598B2 (en) * | 2001-03-16 | 2004-03-16 | Siemens Aktiengesellschaft | Pump source with increased pump power for optical broadband Raman amplification |
US6714342B2 (en) * | 2000-01-12 | 2004-03-30 | Xtera Communications, Inc. | Low-noise distributed Raman amplifier using bi-directional pumping using multiple Raman orders |
US6717963B1 (en) * | 2000-07-14 | 2004-04-06 | Tyco Telecommunications (Us) Inc. | Raman fiber amplifier using a wide bandwidth continuous wave pump |
US20040071418A1 (en) * | 2002-10-10 | 2004-04-15 | Seo Hong-Seok | Transmission optical fiber |
US6731428B2 (en) | 2001-11-21 | 2004-05-04 | Lucent Technologies Inc. | Pump monitoring and control in a fiber Raman amplifier |
US6775057B2 (en) | 1998-07-23 | 2004-08-10 | The Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and raman amplification method |
US6778321B1 (en) | 2002-03-15 | 2004-08-17 | Xtera Communications, Inc. | Fiber optic transmission system for a metropolitan area network |
US20040179797A1 (en) * | 2001-07-02 | 2004-09-16 | Hong Po | Multi-wavelength optical fiber |
US20040208586A1 (en) * | 2002-03-27 | 2004-10-21 | Susumu Kinoshita | System and method for amplifying signals in an optical network |
US6810214B2 (en) | 2001-03-16 | 2004-10-26 | Xtera Communications, Inc. | Method and system for reducing degradation of optical signal to noise ratio |
US20040213510A1 (en) * | 1999-10-22 | 2004-10-28 | Corvis Corporation | Optical fiber transmission system using RZ pulses |
US6819479B1 (en) | 2001-12-20 | 2004-11-16 | Xtera Communications, Inc. | Optical amplification using launched signal powers selected as a function of a noise figure |
US6819478B1 (en) | 2002-03-15 | 2004-11-16 | Xtera Communications, Inc. | Fiber optic transmission system with low cost transmitter compensation |
US20040240043A1 (en) * | 2001-08-03 | 2004-12-02 | Demidov Andrey A. | Optical fiber amplifier |
US6850360B1 (en) | 2001-04-16 | 2005-02-01 | Bookham, Inc. | Raman amplifier systems with diagnostic capabilities |
US20060051093A1 (en) * | 2004-08-11 | 2006-03-09 | Massimo Manna | System and method for spectral loading an optical transmission system |
US7038839B1 (en) * | 2003-01-24 | 2006-05-02 | Sprint Communications Company L.P. | Optical signal amplification using multiple backward-pumping systems |
US20060209394A1 (en) * | 2004-09-28 | 2006-09-21 | Sergueil Papernyi | Cascaded pump delivery for remotely pumped erbium-doped fiber amplifiers |
US7197245B1 (en) | 2002-03-15 | 2007-03-27 | Xtera Communications, Inc. | System and method for managing system margin |
US7277610B2 (en) | 2001-05-15 | 2007-10-02 | Nufern | Optical fiber and system containing same |
US20090128891A1 (en) * | 2002-04-30 | 2009-05-21 | Paolo Fella | Optical fiber amplification system |
US20130121693A1 (en) * | 2011-11-15 | 2013-05-16 | Fujitsu Limited | Optical transmission system, pump-light supply control method, and pump light supply apparatus |
US9575390B2 (en) * | 2015-03-31 | 2017-02-21 | Ipg Photonics Corporation | Higher order seedless raman pumping |
CN107533270A (en) * | 2015-05-13 | 2018-01-02 | 古河电气工业株式会社 | Raman amplifiction light source, Raman amplifiction light-source system, raman amplifier, Raman amplification system |
US10938175B2 (en) | 2015-05-13 | 2021-03-02 | Furukawa Electric Co., Ltd. | Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3857881B2 (en) * | 2001-01-31 | 2006-12-13 | 古河電気工業株式会社 | Excitation light source device for Raman light amplification and Raman light amplification system using the same |
JP4551007B2 (en) * | 2001-02-06 | 2010-09-22 | 富士通株式会社 | Raman amplifier and optical transmission system using the same |
US6473223B1 (en) * | 2001-05-01 | 2002-10-29 | Nortel Networks Limited | Raman amplifier |
ATE304248T1 (en) | 2003-04-16 | 2005-09-15 | Cit Alcatel | RAMAN PUMP SOURCE BASED ON SEMICONDUCTOR OPTICAL AMPLIFIER |
WO2016182068A1 (en) * | 2015-05-13 | 2016-11-17 | 古河電気工業株式会社 | Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system |
JP7417168B2 (en) * | 2020-08-25 | 2024-01-18 | 日本電信電話株式会社 | Optical amplifier pumping device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4616898A (en) * | 1980-03-31 | 1986-10-14 | Polaroid Corporation | Optical communication systems using raman repeaters and components therefor |
US4805977A (en) * | 1986-11-04 | 1989-02-21 | Oki Electric Industry Co., Ltd | Optical coupler for optical direct amplifier |
US4881790A (en) * | 1988-04-25 | 1989-11-21 | American Telephone And Telegraph Company, At&T Bell Laboratories | Optical communications system comprising raman amplification means |
US5191628A (en) * | 1990-11-09 | 1993-03-02 | Northern Telecom Limited | Optical amplifiers |
US5623508A (en) * | 1996-02-12 | 1997-04-22 | Lucent Technologies Inc. | Article comprising a counter-pumped optical fiber raman amplifier |
US5815518A (en) * | 1997-06-06 | 1998-09-29 | Lucent Technologies Inc. | Article comprising a cascaded raman fiber laser |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4028180C2 (en) * | 1990-09-05 | 1999-11-18 | Siemens Ag | Arrangement for amplifying a soliton signal by means of stimulated Raman scattering |
JP3403288B2 (en) * | 1996-02-23 | 2003-05-06 | 古河電気工業株式会社 | Optical amplifier |
-
1999
- 1999-02-04 US US09/244,214 patent/US6147794A/en not_active Expired - Lifetime
-
2000
- 2000-01-31 EP EP00300710A patent/EP1026797A3/en not_active Withdrawn
- 2000-02-04 JP JP2000026927A patent/JP3676167B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4616898A (en) * | 1980-03-31 | 1986-10-14 | Polaroid Corporation | Optical communication systems using raman repeaters and components therefor |
US4805977A (en) * | 1986-11-04 | 1989-02-21 | Oki Electric Industry Co., Ltd | Optical coupler for optical direct amplifier |
US4881790A (en) * | 1988-04-25 | 1989-11-21 | American Telephone And Telegraph Company, At&T Bell Laboratories | Optical communications system comprising raman amplification means |
US5191628A (en) * | 1990-11-09 | 1993-03-02 | Northern Telecom Limited | Optical amplifiers |
US5623508A (en) * | 1996-02-12 | 1997-04-22 | Lucent Technologies Inc. | Article comprising a counter-pumped optical fiber raman amplifier |
US5815518A (en) * | 1997-06-06 | 1998-09-29 | Lucent Technologies Inc. | Article comprising a cascaded raman fiber laser |
Non-Patent Citations (5)
Title |
---|
Masuda et al, BCOC 97, Conf. Public. #448, pp 73-76, Sep. 1997. |
Masuda et al, BCOC 97, Conf. Public. 448, pp 73 76, Sep. 1997. * |
Stentz et al, OFC 96, vol. 92, pp 16 17, Mar. 1, 1996. * |
Stentz et al, OFC '96, vol. 92, pp 16-17, Mar. 1, 1996. |
Stentz, AJ, Conf. Opt. Fiber Commun. Tech. Digest, vol. 6, pp 343; abstract only herewith, Feb. 21, 1997. * |
Cited By (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6580548B2 (en) | 1998-03-24 | 2003-06-17 | Xtera Communications, Inc. | Broadband amplifier and communication system |
US6600592B2 (en) | 1998-03-24 | 2003-07-29 | Xtera Communications, Inc. | S+ band nonlinear polarization amplifiers |
US6693738B2 (en) | 1998-03-24 | 2004-02-17 | The Regents Of The University Of Michigan | Broadband amplifier and communication system |
US6574037B2 (en) | 1998-06-16 | 2003-06-03 | Xtera Communications, Inc. | All band amplifier |
US20020101649A1 (en) * | 1998-06-16 | 2002-08-01 | Islam Mohammed N. | Multi-stage optical amplifier and broadband communication system |
US6618192B2 (en) | 1998-06-16 | 2003-09-09 | Xtera Communications, Inc. | High efficiency raman amplifier |
US6775057B2 (en) | 1998-07-23 | 2004-08-10 | The Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and raman amplification method |
US20070247701A1 (en) * | 1998-07-23 | 2007-10-25 | The Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and raman amplification method |
US20040190909A1 (en) * | 1998-07-23 | 2004-09-30 | The Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and raman amplification method |
US7548368B2 (en) | 1998-07-23 | 2009-06-16 | The Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and raman amplification method |
US7692852B2 (en) | 1998-07-23 | 2010-04-06 | The Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and Raman amplification method |
US20110141553A1 (en) * | 1998-07-23 | 2011-06-16 | Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and raman amplification method |
US8437074B2 (en) * | 1998-07-23 | 2013-05-07 | Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and Raman amplification method |
US9281654B2 (en) | 1998-07-23 | 2016-03-08 | Furukawa Electric Co., Ltd. | Raman amplifier, optical repeater, and Raman amplification method |
US6882467B1 (en) | 1999-05-31 | 2005-04-19 | The Furukawa Electric Co., Ltd. | Raman amplification method and optical signal transmission method using the same |
US20050078352A1 (en) * | 1999-05-31 | 2005-04-14 | The Furukawa Electric Co., Ltd. | Raman amplification method and optical signal transmission method using same |
US6633697B2 (en) | 1999-05-31 | 2003-10-14 | Ther Furukawa Electric Co., Ltd. | Raman amplification method and optical signal transmission method using same |
US6917466B2 (en) | 1999-07-23 | 2005-07-12 | The Furukawa Electric Co., Ltd. | Raman amplifier system, apparatus and method for identifying, obtaining and maintaining an arbitrary Raman amplification performance |
US20040032641A1 (en) * | 1999-07-23 | 2004-02-19 | The Furukawa Electric Co., Ltd. | Raman amplifier system, apparatus and method for identifying, obtaining and maintaining an arbitrary raman amplification performance |
US20040109230A1 (en) * | 1999-09-06 | 2004-06-10 | The Furukawa Electric Co., Ltd. | Optical signal amplifier |
US7400442B2 (en) | 1999-09-06 | 2008-07-15 | The Furukawa Electric Co., Ltd. | Optical signal amplifier |
US6611369B2 (en) * | 1999-09-06 | 2003-08-26 | Furukawa Electric Co., Ltd. | Optical signal amplifier |
US20020176133A1 (en) * | 1999-10-22 | 2002-11-28 | Corvis Corporation | Method of adjusting power for a wavelength-division multiplexed optical transmission system |
US7127173B2 (en) | 1999-10-22 | 2006-10-24 | Corvis Algety Sa | Method of adjusting power for a wavelength-division multiplexed optical transmission system |
US20040213510A1 (en) * | 1999-10-22 | 2004-10-28 | Corvis Corporation | Optical fiber transmission system using RZ pulses |
US6941037B2 (en) | 1999-10-22 | 2005-09-06 | Corvis Algety Sa | Optical fiber transmission system using RZ pulses |
US6714342B2 (en) * | 2000-01-12 | 2004-03-30 | Xtera Communications, Inc. | Low-noise distributed Raman amplifier using bi-directional pumping using multiple Raman orders |
US20030063373A1 (en) * | 2000-01-14 | 2003-04-03 | The Furukawa Electric Co., Ltd. | Raman amplifier |
US20050157379A1 (en) * | 2000-01-14 | 2005-07-21 | The Furukawa Electric Co. Ltd. | Raman amplifier |
US6882468B2 (en) * | 2000-01-14 | 2005-04-19 | The Furukawa Electric Co., Ltd. | Raman amplifier |
US7050221B2 (en) | 2000-01-14 | 2006-05-23 | The Furukawa Electric Co., Ltd. | Raman amplifier |
US6825972B2 (en) | 2000-01-14 | 2004-11-30 | The Furukawa Electric Co., Ltd. | Raman amplifier |
US20040051937A1 (en) * | 2000-01-14 | 2004-03-18 | The Furukawa Electric Co., Ltd. | Raman amplifier |
US6344925B1 (en) * | 2000-03-03 | 2002-02-05 | Corvis Corporation | Optical systems and methods and optical amplifiers for use therein |
US6459529B1 (en) | 2000-03-03 | 2002-10-01 | Corvis Corporation | Optical systems and methods and optical amplifiers for use therein |
US6384963B2 (en) * | 2000-03-03 | 2002-05-07 | Lucent Technologies Inc. | Optical communication system with co-propagating pump radiation for raman amplification |
US6704139B2 (en) | 2000-03-03 | 2004-03-09 | Corvis Corporation | Optical systems and methods and optical amplifiers for use therein |
US6519078B2 (en) * | 2000-06-28 | 2003-02-11 | Kdd Submarine Cable Systems, Inc. | Raman amplifier |
US6480326B2 (en) * | 2000-07-10 | 2002-11-12 | Mpb Technologies Inc. | Cascaded pumping system and method for producing distributed Raman amplification in optical fiber telecommunication systems |
US6717963B1 (en) * | 2000-07-14 | 2004-04-06 | Tyco Telecommunications (Us) Inc. | Raman fiber amplifier using a wide bandwidth continuous wave pump |
US6441950B1 (en) | 2000-11-03 | 2002-08-27 | Onetta, Inc. | Distributed raman amplifier systems with transient control |
US6417959B1 (en) | 2000-12-04 | 2002-07-09 | Onetta, Inc. | Raman fiber amplifier |
US6433921B1 (en) | 2001-01-12 | 2002-08-13 | Onetta, Inc. | Multiwavelength pumps for raman amplifier systems |
US6625347B1 (en) | 2001-01-12 | 2003-09-23 | Onetta, Inc. | Pumps for Raman amplifier systems |
US6950230B2 (en) | 2001-02-02 | 2005-09-27 | The Furukawa Electric Co., Ltd. | Pump light source for Raman amplifier and Raman amplifier using the same |
US20020159133A1 (en) * | 2001-02-02 | 2002-10-31 | The Furukawa Electric Co., Ltd. | Pump light source for raman amplifier and raman amplifier using the same |
US6959021B2 (en) | 2001-02-07 | 2005-10-25 | Ocg Technology Licensing, Llc | Raman fiber laser |
US20020126714A1 (en) * | 2001-02-07 | 2002-09-12 | Hong Po | Raman fiber laser |
US6624927B1 (en) | 2001-03-14 | 2003-09-23 | Onetta, Inc. | Raman optical amplifiers |
US6646788B2 (en) * | 2001-03-16 | 2003-11-11 | Xtera Communications, Inc. | System and method for wide band Raman amplification |
US6810214B2 (en) | 2001-03-16 | 2004-10-26 | Xtera Communications, Inc. | Method and system for reducing degradation of optical signal to noise ratio |
US6707598B2 (en) * | 2001-03-16 | 2004-03-16 | Siemens Aktiengesellschaft | Pump source with increased pump power for optical broadband Raman amplification |
US6532101B2 (en) * | 2001-03-16 | 2003-03-11 | Xtera Communications, Inc. | System and method for wide band Raman amplification |
US6850360B1 (en) | 2001-04-16 | 2005-02-01 | Bookham, Inc. | Raman amplifier systems with diagnostic capabilities |
US6894831B2 (en) | 2001-04-20 | 2005-05-17 | Dorsal Networks, Inc. | Pump assembly employing coupled radiation sources for multiple fibers |
US6618195B2 (en) | 2001-04-20 | 2003-09-09 | Dorsal Networks Inc. | Pump assembly employing coupled radiation sources for multiple fibers |
US20040042064A1 (en) * | 2001-04-20 | 2004-03-04 | Dorsal Networks, Inc. | Pump assembly employing coupled radiation sources for multiple fibers |
US6618191B2 (en) * | 2001-04-30 | 2003-09-09 | Corning Incorporated | Enabler of large raman gain on small effective area fibers |
WO2002088781A3 (en) * | 2001-05-02 | 2003-12-18 | Xtera Communications Inc | High efficiency raman amplifier |
WO2002088781A2 (en) * | 2001-05-02 | 2002-11-07 | Xtera Communications, Inc. | High efficiency raman amplifier |
US7277610B2 (en) | 2001-05-15 | 2007-10-02 | Nufern | Optical fiber and system containing same |
US6456426B1 (en) | 2001-06-28 | 2002-09-24 | Onetta, Inc. | Raman amplifiers with modulated pumps |
US20040179797A1 (en) * | 2001-07-02 | 2004-09-16 | Hong Po | Multi-wavelength optical fiber |
US7340136B2 (en) | 2001-07-02 | 2008-03-04 | Ocg Technology Licensing, Llc | Multi-wavelength optical fiber |
US6587259B2 (en) | 2001-07-27 | 2003-07-01 | Xtera Communications, Inc. | System and method for controlling noise figure |
US6614586B2 (en) | 2001-07-30 | 2003-09-02 | Dorsal Networks, Inc. | Methods and systems for high performance, wide bandwidth optical communication systems using Raman amplification |
US20040240043A1 (en) * | 2001-08-03 | 2004-12-02 | Demidov Andrey A. | Optical fiber amplifier |
US7463411B2 (en) | 2001-08-03 | 2008-12-09 | Demidov Andrey A | Optical fiber amplifier |
US20030090778A1 (en) * | 2001-09-28 | 2003-05-15 | Stefano Cattaneo | Process for generating an optical radiation, corresponding source and raman amplifier including such a source |
US6594071B1 (en) | 2001-10-02 | 2003-07-15 | Xtera Communications, Inc. | Method and apparatus for amplifier control |
US6671429B2 (en) | 2001-10-03 | 2003-12-30 | Dorsal Networks, Inc. | Balanced coupler for radiation sources |
US6657776B2 (en) | 2001-11-21 | 2003-12-02 | Lucent Technologies Inc. | Pump source including polarization scrambling in Raman amplified optical WDM systems |
US20030095745A1 (en) * | 2001-11-21 | 2003-05-22 | Gehlot Narayan L. | Modulated pump source for fiber raman amplifier |
US6731428B2 (en) | 2001-11-21 | 2004-05-04 | Lucent Technologies Inc. | Pump monitoring and control in a fiber Raman amplifier |
US6914716B2 (en) | 2001-11-21 | 2005-07-05 | Lucent Technologies Inc. | Modulated pump source for fiber Raman amplifier |
US6819479B1 (en) | 2001-12-20 | 2004-11-16 | Xtera Communications, Inc. | Optical amplification using launched signal powers selected as a function of a noise figure |
US6646785B2 (en) * | 2002-01-31 | 2003-11-11 | Corning Incorporated | Fiber ring amplifiers and lasers |
WO2003065625A3 (en) * | 2002-01-31 | 2003-12-31 | Corning Inc | Fiber ring amplifiers and lasers |
WO2003065625A2 (en) * | 2002-01-31 | 2003-08-07 | Corning Incorporated | Fiber ring amplifiers and lasers |
US6819478B1 (en) | 2002-03-15 | 2004-11-16 | Xtera Communications, Inc. | Fiber optic transmission system with low cost transmitter compensation |
US7197245B1 (en) | 2002-03-15 | 2007-03-27 | Xtera Communications, Inc. | System and method for managing system margin |
US7974002B2 (en) | 2002-03-15 | 2011-07-05 | Xtera Communication, Inc. | System and method for managing system margin |
US6778321B1 (en) | 2002-03-15 | 2004-08-17 | Xtera Communications, Inc. | Fiber optic transmission system for a metropolitan area network |
US20040208586A1 (en) * | 2002-03-27 | 2004-10-21 | Susumu Kinoshita | System and method for amplifying signals in an optical network |
US20030184849A1 (en) * | 2002-04-02 | 2003-10-02 | Alcatel | Method of distributed Raman amplification in an optical fiber |
US7848013B2 (en) * | 2002-04-30 | 2010-12-07 | Ericsson Ab | Optical fiber amplification system |
US20090128891A1 (en) * | 2002-04-30 | 2009-05-21 | Paolo Fella | Optical fiber amplification system |
US20040042061A1 (en) * | 2002-08-30 | 2004-03-04 | Islam Mohammed N. | Controlling ASE in optical amplification stages implementing time modulated pump signals |
US6873774B2 (en) | 2002-10-10 | 2005-03-29 | Electronics And Telecommunication Research Institute | Transmission optical fiber |
US20040071418A1 (en) * | 2002-10-10 | 2004-04-15 | Seo Hong-Seok | Transmission optical fiber |
US7038839B1 (en) * | 2003-01-24 | 2006-05-02 | Sprint Communications Company L.P. | Optical signal amplification using multiple backward-pumping systems |
US20060051093A1 (en) * | 2004-08-11 | 2006-03-09 | Massimo Manna | System and method for spectral loading an optical transmission system |
US8064770B2 (en) * | 2004-08-11 | 2011-11-22 | Tyco Electronics Subsea Communications Llc | System and method for spectral loading an optical transmission system |
US20060209394A1 (en) * | 2004-09-28 | 2006-09-21 | Sergueil Papernyi | Cascaded pump delivery for remotely pumped erbium-doped fiber amplifiers |
US7508575B2 (en) * | 2004-09-28 | 2009-03-24 | Mpb | Cascaded pump delivery for remotely pumped erbium-doped fiber amplifiers |
US20130121693A1 (en) * | 2011-11-15 | 2013-05-16 | Fujitsu Limited | Optical transmission system, pump-light supply control method, and pump light supply apparatus |
US9575390B2 (en) * | 2015-03-31 | 2017-02-21 | Ipg Photonics Corporation | Higher order seedless raman pumping |
CN107533270A (en) * | 2015-05-13 | 2018-01-02 | 古河电气工业株式会社 | Raman amplifiction light source, Raman amplifiction light-source system, raman amplifier, Raman amplification system |
US10938175B2 (en) | 2015-05-13 | 2021-03-02 | Furukawa Electric Co., Ltd. | Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system |
CN107533270B (en) * | 2015-05-13 | 2022-04-26 | 古河电气工业株式会社 | Raman amplification light source, Raman amplification light source system, Raman amplifier, and Raman amplification system |
US11652329B2 (en) | 2015-05-13 | 2023-05-16 | Furukawa Electric Co., Ltd. | Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system |
Also Published As
Publication number | Publication date |
---|---|
JP2000228548A (en) | 2000-08-15 |
EP1026797A2 (en) | 2000-08-09 |
JP3676167B2 (en) | 2005-07-27 |
EP1026797A3 (en) | 2003-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6147794A (en) | Raman amplifier with pump source for improved performance | |
US6104527A (en) | High efficiency bandwidth doubled and gain flattened silica fiber amplifier | |
US6927897B2 (en) | Optical amplifier | |
US6163636A (en) | Optical communication system using multiple-order Raman amplifiers | |
US5563733A (en) | Optical fiber amplifier and optical fiber transmission system | |
EP0789432B1 (en) | Low noise optical fiber raman amplifier and communication system comprising such an amplifier | |
EP1263096B1 (en) | Improved wide band erbium-doped fiber amplifier (EDFA) | |
JP2999376B2 (en) | Optical fiber amplifier | |
JPH07176817A (en) | Optical signal amplifier | |
JP2000151507A (en) | Optical transmission system | |
EP0660468B1 (en) | Bidirectional optical amplifier | |
EP1469621B1 (en) | Raman amplifying device and method for pump modulation | |
KR100396510B1 (en) | Dispersion-compensated optical fiber amplifier | |
US6388800B1 (en) | Raman amplifier with gain enhancement from optical filtering | |
US6862132B1 (en) | Suppression of double rayleigh backscattering and pump reuse in a raman amplifier | |
EP1372276A2 (en) | Raman optical fiber amplifier using Erbium doped fiber | |
US6441952B1 (en) | Apparatus and method for channel monitoring in a hybrid distributed Raman/EDFA optical amplifier | |
CN107193171B (en) | Bidirectional optical amplifier | |
KR100446541B1 (en) | Dispersion-compensated raman optical fiber amplifier | |
JPH0854580A (en) | Bidirectional optical amplifier | |
KR100252180B1 (en) | Optical fiber amplifier for gain flattening | |
JP3290707B2 (en) | Optical amplifier | |
JP2001028569A (en) | Hybrid raman amplifier | |
JP2001057538A (en) | Multi-band raman amplifier | |
JPH1041570A (en) | Optical amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LUCENT TECHNOLOGIES, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STENTZ, ANDREW JOHN;REEL/FRAME:009854/0058 Effective date: 19990212 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT, TEX Free format text: CONDITIONAL ASSIGNMENT OF AND SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:LUCENT TECHNOLOGIES INC. (DE CORPORATION);REEL/FRAME:011722/0048 Effective date: 20010222 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (FORMERLY KNOWN AS THE CHASE MANHATTAN BANK), AS ADMINISTRATIVE AGENT;REEL/FRAME:018590/0287 Effective date: 20061130 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:ALCATEL-LUCENT USA INC.;REEL/FRAME:030510/0627 Effective date: 20130130 |
|
AS | Assignment |
Owner name: ALCATEL-LUCENT USA INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG;REEL/FRAME:033950/0261 Effective date: 20140819 |