US6146098A - Tip shroud for cooled blade of gas turbine - Google Patents

Tip shroud for cooled blade of gas turbine Download PDF

Info

Publication number
US6146098A
US6146098A US09/242,678 US24267899A US6146098A US 6146098 A US6146098 A US 6146098A US 24267899 A US24267899 A US 24267899A US 6146098 A US6146098 A US 6146098A
Authority
US
United States
Prior art keywords
cooling air
tip shroud
moving blade
blade
air holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/242,678
Inventor
Hiroki Fukuno
Yasuoki Tomita
Eisaku Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Assigned to MITSUBISHI HEAVY INDUSTRIES, LTD. reassignment MITSUBISHI HEAVY INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUKUNO, HIROKI, ITO, EISAKU, TOMITA, YASUOKI
Application granted granted Critical
Publication of US6146098A publication Critical patent/US6146098A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the present invention relates to a gas turbine cooled blade tip shroud and, more particularly, to a tip shroud for a moving blade, which is made light at a downstream stage of the gas turbine and which is cooled not only from its inside but also from its outside.
  • the gas turbine has advanced to have elongated moving blades that are subjected to higher temperatures and output.
  • a downstream stage moving blade is remarkably elongated to 50 to 60 cm, for example.
  • This long moving blade has a large weight and accordingly a serious vibration so that the stress to be generated by the centrifugal force at the time of rotation becomes far higher than that of the prior art. Therefore, this moving blade is thinned as much as possible so that it may be lighter, and its width is tapered to grow smaller toward the end portion.
  • FIGS. 6(a)-(b) show an example of the prior art moving blade
  • FIG. 6(a) is a longitudinal section
  • FIG. 6(b) is a section taken along line D--D of FIG. 6(a).
  • reference numeral 50 designates a moving blade having a blade root 51 and a hub 53.
  • Numeral 54 designates a hub which has a cavity 55 therein as long as 25% of the blade length.
  • Numeral 56 designates a number of pin fins protruding inward of the cavity 55 or connected to the two opposing cavity walls.
  • Numeral 57 designates core supporting ribs.
  • Numeral 58 designates holes for feeding cooling air. These holes 58 are arrayed in a large number from the portion of the 25% blade length, as shown in FIG. 6(b), and extend to a blade end 59.
  • Numeral 60 designates a tip shroud at the leading end.
  • FIGS. 7(a)-(b) show the tip shroud
  • FIG. 7(a) is a view taken in the direction of arrows E--E of FIG. 6(a)
  • FIG. 7(b) is a view taken in the direction of arrows F--F of FIG. 7(a).
  • numeral 61 designates a number of air passages formed along the inner face of the tip shroud 60 and having openings 62.
  • the cooling air from the blade root 51 enters the cavity 55 so that it is disturbed by the pin fins 56 into a turbulent state to cool the hub 54 in an enhanced cooling effect.
  • the cooling air flows through the holes 58 into the air passages 61 of the tip shroud 60 while cooling the blade and cooling the tip shroud 60 from the inside until the air is finally released from right and left openings 62 to the combustion gas passage.
  • FIG. 8 shows an improvement over the aforementioned moving blade 50 shown in FIGS. 6 and 7.
  • numeral 40 designates a moving blade having a blade root 41 and a hub 42.
  • This moving blade 40 has a cavity which is supported by a number of core supporting ribs 43 extending in the longitudinal direction of the blade.
  • On the inner wall of the cavity on the other hand, there are provided multiple stages of oblique turbulators 44.
  • FIG. 9 is a section taken along line G--G of FIG.
  • Numeral 45 designates openings which are formed in the front and back of a tip shroud 46 at the leading end to provide exits for the cooling air.
  • the numeral 46 designates the tip shroud at the leading end.
  • the cooling air 30 flows from below the blade root 41 into the moving blade 40 toward the leading end of the cavity.
  • the cooling air 30 is disturbed by the oblique turbulators 44 to enhance its cooling effect which extracts the heat in the inside of the moving blade 40 until the air finally flows from the openings 45 at the leading end of the tip shroud 46 to the combustion gas passage.
  • the tip shroud 46 is similar to that shown in FIG. 7, and its description will be omitted.
  • FIGS. 10 and 11 show an improvement over the moving blade 50 of the prior art shown in FIGS. 6 and 7.
  • the work of boring the holes are eliminated to improve the workability and the porosity.
  • FIG. 10 is also directed to the moving blade of the prior art, as applied for patent by the Applicant.
  • FIG. 10 is a longitudinal section of the moving blade
  • FIG. 11 is a section taken along line H--H of FIG. 10.
  • numeral 30 designates a moving blade having a blade root 31 and a hub 32.
  • a cavity is formed in the moving blade 30 and is supported by core supporting ribs 33.
  • Numeral 34 designates a number of pin fins formed in the interior of the cavity. These fins 34 are connected between the two walls of the cavity, as shown in FIG. 11, to disturb the flow of the cooling air like the oblique turbulators 44 provided on the moving blade 40 shown in FIGS. 8 and 9 and to increase the heat transfer area thereby enhancing the cooling efficiency.
  • a tip shroud 36 has a structure similar to that of FIG. 7, and its description will be omitted.
  • the pin fins are provided in the cavity up to a 25% height from the blade root, and the holes are provided from the 25% height to the tip shroud, so that the cooling air fed from the blade root flows to the leading end portion, while cooling the blade interior, to the leading end portion to cool the inner faces of the tip shroud at the leading end until the air finally flows out to the combustion gas passage from the openings formed in the front and rear side faces of the tip shroud.
  • the tip shroud is cooled, but its high stress portions (i.e., the X and Y portions shown in FIG. 7(a)) are not sufficiently cooled, although they especially need the cooling.
  • the air holes cannot be formed in those portions so as to avoid the stress concentration.
  • the portions are bottlenecks against the cooling operation because they cannot be cooled by feeding them directly with the cooling air.
  • a first object of the invention to provide a tip shroud for a thinned and lightened moving blade at a downstream stage of a gas turbine, the cooling effect of which is enhanced by improving the openings for cooling air to flow out of the two side faces thereof.
  • a second object of the invention is to provide a tip shroud for a thinned and lightened moving blade at a downstream stage of a gas turbine, in which cooling air holes are provided for feeding, especially at the high stress portions, the cooling air to cool the tip shroud efficiently.
  • a third object of the invention is to provide a gas turbine cooled blade tip shroud which can be cooled efficiently in its entirety by feeding the cooling air all over the surface thereof, especially its high stress portions.
  • a gas turbine cooled blade tip shroud mounted on the leading end of a moving blade and having a plurality of cooling air holes in two side faces for receiving cooling air to flow in the moving blade from the blade root to the leading end portion and for releasing the cooling air from the cooling air holes.
  • the cooling air holes are formed into a slot shape along the face of the tip shroud.
  • a gas turbine cooled blade tip shroud mounted on the leading end of a moving blade and having a plurality of cooling air holes in two side faces for receiving cooling air to flow in the moving blade from the blade root to the leading end portion and for releasing the cooling air from the cooling air holes.
  • the cooling air holes which are opened in the upper face of the tip shroud and communicate with the inside of the moving blade, are positioned on the higher pressure side of a combustion gas passage.
  • the cooling air holes in the two side faces of the tip shroud are formed into such a slot shape so as to have a larger passage area than that of the circular holes of the prior art so that more cooling air can be fed over a wide area to enhance the cooling effect of the tip shroud.
  • the cooling air holes are opened in the upper face of the tip shroud on the higher pressure side of the combustion gas passage so that the cooling air, having flown from the inside of the moving blade to the upper face of the tip shroud, will flow along the upper face to the lower pressure side.
  • the cooling air flows along the shroud upper face from the higher pressure side to the lower pressure side due to the pressure difference. In this flowing process, the curved high stress portions can be cooled with the cooling air without forming any hole.
  • the cooling air holes in the two side faces of the shroud are formed into the slot shape, and the cooling air holes are also formed on the higher pressure side in the upper face of the tip shroud so that the two functions of the means (1) and (2) of the invention can be performed to cool the whole face of the tip shroud effectively.
  • FIG. 1 is a top plan view of a gas turbine cooled blade tip shroud according to one embodiment of the invention
  • FIG. 2 is a view taken in the direction of arrows A--A of FIG. 1;
  • FIG. 3 is a view taken in the direction of arrows B--B of FIG. 1;
  • FIG. 4 is a diagram showing the gas turbine cooled blade tip shroud according to the embodiment of the invention and explaining its actions;
  • FIG. 5 is a view taken in the direction of arrows C--C of FIG. 4;
  • FIGS. 6(a)-6(b) show an example of a prior art gas turbine moving blade provided with pin fins and multi-holes
  • FIG. 6(a) is a longitudinal section
  • FIG. 6(b) is a section taken in the direction of arrows D--D of FIG. 6(a);
  • FIGS. 7(a)-7(b) show the tip shroud of the gas turbine moving blade shown in FIG. 6(a), FIG. 7(a) is a view taken in the direction of arrows E--E of FIG. 6(a), and FIG. 7(b) is a view taken in the direction of arrows F--F of FIG. 7(a);
  • FIG. 8 is a longitudinal section of a gas turbine moving blade according to a technique developed prior to the present invention and provided with inclined turbulators;
  • FIG. 9 is a section taken in the direction of arrows G--G of FIG. 8;
  • FIG. 10 is a longitudinal section of a gas turbine moving blade according to a technique developed prior to the present invention and provided with pin fins;
  • FIG. 11 is a section taken in the direction of arrows H--H of FIG. 10.
  • FIG. 1 is a top plan view of a gas turbine cooled blade tip shroud according to one embodiment of the invention.
  • FIG. 2 is a view taken in the direction of arrows A--A of FIG. 1
  • FIG. 3 is a view taken in the direction of arrows B--B.
  • reference numeral 10 designates a moving blade
  • numeral 11 designates a tip shroud at the leading end portion of the moving blade 10
  • numeral 12 designates an upper fin.
  • Numerals 13, 14, 15 and 16 designate cooling air holes opened in the two side faces of the tip shroud 11.
  • Each of the air holes 13-16 has a elongated slot or elliptical shape, as will be described hereinafter.
  • the tip shroud 11 there are formed passages which are as wide as the cooling air holes 13 to 16.
  • Numeral 20 designates cooling air holes which are formed in the upper face of the moving blade 10, as located on the higher pressure side (or upstream side) in a combustion gas flow direction R with respect to the fin 12 of the tip shroud 11, for releasing the cooling air from the inside of the moving blade 10.
  • FIG. 2 is a view taken in the direction of arrows A--A of FIG. 1 and shows an arrangement of the cooling air holes 13 to 16, as located on the upstream side in the combustion gas flow direction R.
  • the cooling air holes 13 to 16 are shaped into such a slot so as to have a wider passage area than that of the simple circular holes of the prior art and a wider area of the tip shroud 11 to allow the cooling air to pass thereby to enhance the cooling effect.
  • these cooling air holes 13 to 16 are exemplified by the slot shape but may be made elliptical.
  • FIG. 3 is a view taken in the direction of arrows B--B of FIG. 1 and shows the downstream cooling air holes 13 to 16 in the combustion gas flow direction R, and their arrangement is similar to that of FIG. 2.
  • the cooling air 30 thus having flown from the moving blade 10 to the leading end flows to the two ends of the tip shroud 11 and has a wide passage so that it can cool the face of the tip shroud 11 effectively.
  • the cooled blade tip shroud in the embodiment of the invention thus far described can be applied with similar effects as the tip shroud of any of the moving blade 50 of the prior art having the pin fins 56 and the multi-holes 58, as described with reference to FIG. 6, the moving blade 40 having only the inclined turbulator 44, as shown in FIG. 8, and the moving blade 30 having only the pin fins 34, as shown in FIG. 10.
  • FIG. 4 is a top plan view of the tip shroud for explaining the actions and shows tip shrouds 11-1 and 11-2 circumferentially adjoining each other.
  • FIG. 5 is a view taken in the direction of arrows C--C of FIG. 4 and shows the flows of the cooling air over the shroud surface.
  • the tip shrouds 11-1 and 11-2 are circumferentially arranged adjacent to each other so that the cooling air 30 from the moving blade 10 passes the slot-shaped cooling air holes 13 to 16 while cooling the inner sides of the tip shrouds 11-1 and 11-2, until it finally flows from the individual two side faces to the combustion gas passage.
  • the cooling air from the moving blade 10 flows out to the surfaces of the tip shrouds 11-1 and 11-2. Since the cooling air flows out to the higher pressure side in the combustion gas flow direction R, however, it is forced by the gas flow to a lower pressure side, as indicated by V1, and further to the downstream side, as indicated by V2, over the fin 12.
  • the cooling air flows V1 and, V2, having passed the fin of the tip, cool the surface of the high stress portion X, and a cooling air flow V3, from the tip shroud 11-2, flows while cooling the surface of a high stress portion Y on the higher pressure side of the tip shroud 11-1.
  • the high stress portion Y is cooled with the cooling air flow V1 of its own cooling air holes 20, and the high stress portion X is cooled with the cooling air flow V3 from the adjoining tip shroud thereby to effect the cooling operation.
  • FIG. 5 is a view taken in the direction of arrows C--C of FIG. 4 and shows the cooling air flow over the upper face of the tip shroud 11-2.
  • the cooling air flows from the inside of the moving blade 10 via the cooling air holes 20 of the tip shroud 11-2 to the higher pressure side of the combustion gas flow so that it is guided by the pressure difference to flow over the fin 12, as indicated by the flows V1 to V2, along the upper face of the tip shroud 11-2 to the lower pressure side.
  • the high stress portions X and Y can be fed with the cooling air due to the pressure difference over the upper face of the tip shroud.
  • the slot-shaped cooling air holes 13 to 16 that are opened in the two side faces are provided in the tip shroud 11, and the cooling air holes 20 communicating with the inside of the moving blade 10 are formed in the upper face of the tip shroud 11 on the higher pressure side (or upstream side) in the gas flow direction.
  • the tip shroud 11 is passed therethrough over a wide area by the cooling air to enhance the cooling effect, and the high stress portions X and Y of the tip shroud 11 are also exposed through the cooling air holes 20 to the cooling air outside of the upper face thereof so that they are effectively cooled to prevent a high stress from occurring. Therefore, the high stress portions X and Y of the tip shroud 11, which cannot be worked to form the cooling air holes, can be fed with the cooling air by making use of the pressure difference at the upper face.

Abstract

A tip shroud for a moving blade that is made thin and light for use at a gas turbine downstream stage. Cooling air holes (13 to 16) having a slot shape, are formed in a tip shroud (11) of the moving blade (10). The cooling holes are opened in two side faces of the tip shroud to release the cooling air from the inside of the moving blade (10). In the upper face of the tip shroud 11, there are formed cooling air holes 20, which communicate with the higher pressure side in a combustion gas flow direction R to release the cooling air so that the cooling air flows from the higher pressure side to the lower pressure side so as to cool a high stress portion Y. A high stress portion X is likewise cooled with the cooling air coming from an adjoining moving blade. The slot shapes of the cooling air holes (13 to 16) allow the cooling air to flow widely, thereby cooling the face of the tip shroud (11), and the cooling air holes 20 cool the high stress portions X and Y effectively.

Description

TECHNICAL FIELD
The present invention relates to a gas turbine cooled blade tip shroud and, more particularly, to a tip shroud for a moving blade, which is made light at a downstream stage of the gas turbine and which is cooled not only from its inside but also from its outside.
DESCRIPTION OF RELATED ART
In recent years, the gas turbine has advanced to have elongated moving blades that are subjected to higher temperatures and output. Especially a downstream stage moving blade is remarkably elongated to 50 to 60 cm, for example. This long moving blade has a large weight and accordingly a serious vibration so that the stress to be generated by the centrifugal force at the time of rotation becomes far higher than that of the prior art. Therefore, this moving blade is thinned as much as possible so that it may be lighter, and its width is tapered to grow smaller toward the end portion.
FIGS. 6(a)-(b) show an example of the prior art moving blade, FIG. 6(a) is a longitudinal section, and FIG. 6(b) is a section taken along line D--D of FIG. 6(a). In FIG. 6(a), reference numeral 50 designates a moving blade having a blade root 51 and a hub 53. Numeral 54 designates a hub which has a cavity 55 therein as long as 25% of the blade length. Numeral 56 designates a number of pin fins protruding inward of the cavity 55 or connected to the two opposing cavity walls. Numeral 57 designates core supporting ribs. Numeral 58 designates holes for feeding cooling air. These holes 58 are arrayed in a large number from the portion of the 25% blade length, as shown in FIG. 6(b), and extend to a blade end 59. Numeral 60 designates a tip shroud at the leading end.
FIGS. 7(a)-(b) show the tip shroud, FIG. 7(a) is a view taken in the direction of arrows E--E of FIG. 6(a), and FIG. 7(b) is a view taken in the direction of arrows F--F of FIG. 7(a). In FIG. 7(a), numeral 61 designates a number of air passages formed along the inner face of the tip shroud 60 and having openings 62. In the moving blade thus constructed, the cooling air from the blade root 51 enters the cavity 55 so that it is disturbed by the pin fins 56 into a turbulent state to cool the hub 54 in an enhanced cooling effect. Then, the cooling air flows through the holes 58 into the air passages 61 of the tip shroud 60 while cooling the blade and cooling the tip shroud 60 from the inside until the air is finally released from right and left openings 62 to the combustion gas passage.
FIG. 8 shows an improvement over the aforementioned moving blade 50 shown in FIGS. 6 and 7. In this example of the moving blade, the work of boring the holes is eliminated to improve the workability, and the porosity is improved to improve the cooling efficiency, as has been applied for patent by the Applicant. In FIG. 8, numeral 40 designates a moving blade having a blade root 41 and a hub 42. This moving blade 40 has a cavity which is supported by a number of core supporting ribs 43 extending in the longitudinal direction of the blade. On the inner wall of the cavity, on the other hand, there are provided multiple stages of oblique turbulators 44. FIG. 9 is a section taken along line G--G of FIG. 8 and shows the oblique turbulators 44 which protrude from the inner wall for disturbing the inflows of the cooling air to enhance the cooling efficiency. Numeral 45 designates openings which are formed in the front and back of a tip shroud 46 at the leading end to provide exits for the cooling air. The numeral 46 designates the tip shroud at the leading end.
In the moving blade thus constructed, the cooling air 30 flows from below the blade root 41 into the moving blade 40 toward the leading end of the cavity. In this course, the cooling air 30 is disturbed by the oblique turbulators 44 to enhance its cooling effect which extracts the heat in the inside of the moving blade 40 until the air finally flows from the openings 45 at the leading end of the tip shroud 46 to the combustion gas passage. Here, the tip shroud 46 is similar to that shown in FIG. 7, and its description will be omitted.
FIGS. 10 and 11 show an improvement over the moving blade 50 of the prior art shown in FIGS. 6 and 7. The work of boring the holes are eliminated to improve the workability and the porosity. The example shown in FIG. 10 is also directed to the moving blade of the prior art, as applied for patent by the Applicant. FIG. 10 is a longitudinal section of the moving blade, and FIG. 11 is a section taken along line H--H of FIG. 10. In these Figures, numeral 30 designates a moving blade having a blade root 31 and a hub 32. A cavity is formed in the moving blade 30 and is supported by core supporting ribs 33. Numeral 34 designates a number of pin fins formed in the interior of the cavity. These fins 34 are connected between the two walls of the cavity, as shown in FIG. 11, to disturb the flow of the cooling air like the oblique turbulators 44 provided on the moving blade 40 shown in FIGS. 8 and 9 and to increase the heat transfer area thereby enhancing the cooling efficiency.
In the moving blade thus constructed, while flowing from below the blade root 31 into the cavity of the moving blade 30 and toward the leading end, the cooling air 30 is disturbed by the pin fins 34 so as to extract the heat from the pin fins 34 thereby cooling the interior of the blade, until the air finally flows out of the leading end. Here, a tip shroud 36 has a structure similar to that of FIG. 7, and its description will be omitted.
In the moving blade of the prior art, now made thin and light and disposed at a gas turbine downstream stage, the pin fins are provided in the cavity up to a 25% height from the blade root, and the holes are provided from the 25% height to the tip shroud, so that the cooling air fed from the blade root flows to the leading end portion, while cooling the blade interior, to the leading end portion to cool the inner faces of the tip shroud at the leading end until the air finally flows out to the combustion gas passage from the openings formed in the front and rear side faces of the tip shroud.
In the moving blade of the prior art, which is improved from the aforementioned multiple hole type moving blade, on the other hand, only the oblique turbulators are provided on the inner wall of the cavity of the moving blade, or only the pin fins are arrayed. In this construction, the cooling air is also fed from the blade root to cool the inside and the inner face of the tip shroud until it finally flows out to the combustion gas passage from the openings in the side face.
In the moving blades of or according to the prior art thus far described, however, the tip shroud is cooled, but its high stress portions (i.e., the X and Y portions shown in FIG. 7(a)) are not sufficiently cooled, although they especially need the cooling. However, the air holes cannot be formed in those portions so as to avoid the stress concentration.
Thus, the portions are bottlenecks against the cooling operation because they cannot be cooled by feeding them directly with the cooling air.
SUMMARY OF THE INVENTION
It is, therefore, a first object of the invention to provide a tip shroud for a thinned and lightened moving blade at a downstream stage of a gas turbine, the cooling effect of which is enhanced by improving the openings for cooling air to flow out of the two side faces thereof.
A second object of the invention is to provide a tip shroud for a thinned and lightened moving blade at a downstream stage of a gas turbine, in which cooling air holes are provided for feeding, especially at the high stress portions, the cooling air to cool the tip shroud efficiently.
A third object of the invention is to provide a gas turbine cooled blade tip shroud which can be cooled efficiently in its entirety by feeding the cooling air all over the surface thereof, especially its high stress portions.
In order to solve the above-specified first to third objects, according to the invention, there are respectively provided the following means (1) to (3).
(1) A gas turbine cooled blade tip shroud mounted on the leading end of a moving blade and having a plurality of cooling air holes in two side faces for receiving cooling air to flow in the moving blade from the blade root to the leading end portion and for releasing the cooling air from the cooling air holes. The cooling air holes are formed into a slot shape along the face of the tip shroud.
(2) A gas turbine cooled blade tip shroud mounted on the leading end of a moving blade and having a plurality of cooling air holes in two side faces for receiving cooling air to flow in the moving blade from the blade root to the leading end portion and for releasing the cooling air from the cooling air holes. The cooling air holes, which are opened in the upper face of the tip shroud and communicate with the inside of the moving blade, are positioned on the higher pressure side of a combustion gas passage.
(3) A gas turbine cooled blade tip shroud in which the cooling air holes in the two side faces are formed into a slot shape along the face of the tip shroud.
In the means (1) of the invention, the cooling air holes in the two side faces of the tip shroud are formed into such a slot shape so as to have a larger passage area than that of the circular holes of the prior art so that more cooling air can be fed over a wide area to enhance the cooling effect of the tip shroud.
In the means (2) of the invention, the cooling air holes are opened in the upper face of the tip shroud on the higher pressure side of the combustion gas passage so that the cooling air, having flown from the inside of the moving blade to the upper face of the tip shroud, will flow along the upper face to the lower pressure side. At the two circumferential end portions of the tip shroud, there are curved peripheral portions, at which the high stress due to the heat is especially concentrated to especially require the cooling treatment. However, these portions cannot be bored because the cooling air holes, if formed, are likely to cause the stress concentration. According to the means (2) of the invention, the cooling air flows along the shroud upper face from the higher pressure side to the lower pressure side due to the pressure difference. In this flowing process, the curved high stress portions can be cooled with the cooling air without forming any hole.
In the means (3) of the invention, the cooling air holes in the two side faces of the shroud are formed into the slot shape, and the cooling air holes are also formed on the higher pressure side in the upper face of the tip shroud so that the two functions of the means (1) and (2) of the invention can be performed to cool the whole face of the tip shroud effectively.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a top plan view of a gas turbine cooled blade tip shroud according to one embodiment of the invention;
FIG. 2 is a view taken in the direction of arrows A--A of FIG. 1;
FIG. 3 is a view taken in the direction of arrows B--B of FIG. 1;
FIG. 4 is a diagram showing the gas turbine cooled blade tip shroud according to the embodiment of the invention and explaining its actions;
FIG. 5 is a view taken in the direction of arrows C--C of FIG. 4;
FIGS. 6(a)-6(b) show an example of a prior art gas turbine moving blade provided with pin fins and multi-holes, FIG. 6(a) is a longitudinal section, and FIG. 6(b) is a section taken in the direction of arrows D--D of FIG. 6(a);
FIGS. 7(a)-7(b) show the tip shroud of the gas turbine moving blade shown in FIG. 6(a), FIG. 7(a) is a view taken in the direction of arrows E--E of FIG. 6(a), and FIG. 7(b) is a view taken in the direction of arrows F--F of FIG. 7(a);
FIG. 8 is a longitudinal section of a gas turbine moving blade according to a technique developed prior to the present invention and provided with inclined turbulators;
FIG. 9 is a section taken in the direction of arrows G--G of FIG. 8;
FIG. 10 is a longitudinal section of a gas turbine moving blade according to a technique developed prior to the present invention and provided with pin fins; and
FIG. 11 is a section taken in the direction of arrows H--H of FIG. 10.
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a top plan view of a gas turbine cooled blade tip shroud according to one embodiment of the invention. FIG. 2 is a view taken in the direction of arrows A--A of FIG. 1, and FIG. 3 is a view taken in the direction of arrows B--B. In FIG. 2: reference numeral 10 designates a moving blade; numeral 11 designates a tip shroud at the leading end portion of the moving blade 10; and numeral 12 designates an upper fin. Numerals 13, 14, 15 and 16 designate cooling air holes opened in the two side faces of the tip shroud 11. Each of the air holes 13-16 has a elongated slot or elliptical shape, as will be described hereinafter. In the tip shroud 11, there are formed passages which are as wide as the cooling air holes 13 to 16. Numeral 20 designates cooling air holes which are formed in the upper face of the moving blade 10, as located on the higher pressure side (or upstream side) in a combustion gas flow direction R with respect to the fin 12 of the tip shroud 11, for releasing the cooling air from the inside of the moving blade 10.
FIG. 2 is a view taken in the direction of arrows A--A of FIG. 1 and shows an arrangement of the cooling air holes 13 to 16, as located on the upstream side in the combustion gas flow direction R. As shown, the cooling air holes 13 to 16 are shaped into such a slot so as to have a wider passage area than that of the simple circular holes of the prior art and a wider area of the tip shroud 11 to allow the cooling air to pass thereby to enhance the cooling effect. Here, these cooling air holes 13 to 16 are exemplified by the slot shape but may be made elliptical.
FIG. 3 is a view taken in the direction of arrows B--B of FIG. 1 and shows the downstream cooling air holes 13 to 16 in the combustion gas flow direction R, and their arrangement is similar to that of FIG. 2. The cooling air 30 thus having flown from the moving blade 10 to the leading end flows to the two ends of the tip shroud 11 and has a wide passage so that it can cool the face of the tip shroud 11 effectively.
Here, the cooled blade tip shroud in the embodiment of the invention thus far described can be applied with similar effects as the tip shroud of any of the moving blade 50 of the prior art having the pin fins 56 and the multi-holes 58, as described with reference to FIG. 6, the moving blade 40 having only the inclined turbulator 44, as shown in FIG. 8, and the moving blade 30 having only the pin fins 34, as shown in FIG. 10.
Here will be described the actions of the gas turbine cooled blade tip shroud of the aforementioned embodiment. FIG. 4 is a top plan view of the tip shroud for explaining the actions and shows tip shrouds 11-1 and 11-2 circumferentially adjoining each other. FIG. 5 is a view taken in the direction of arrows C--C of FIG. 4 and shows the flows of the cooling air over the shroud surface.
In FIG. 4, the tip shrouds 11-1 and 11-2 are circumferentially arranged adjacent to each other so that the cooling air 30 from the moving blade 10 passes the slot-shaped cooling air holes 13 to 16 while cooling the inner sides of the tip shrouds 11-1 and 11-2, until it finally flows from the individual two side faces to the combustion gas passage.
From the cooling air holes 20, formed in the upper faces of the tip shrouds 11-1 and 11-2 on the higher pressure side with respect to the combustion gas flow direction R, the cooling air from the moving blade 10 flows out to the surfaces of the tip shrouds 11-1 and 11-2. Since the cooling air flows out to the higher pressure side in the combustion gas flow direction R, however, it is forced by the gas flow to a lower pressure side, as indicated by V1, and further to the downstream side, as indicated by V2, over the fin 12. As to a portion of the cooling air V1 to flow out to the lower pressure side in connection with the tip shroud 11-1, the cooling air flows V1 and, V2, having passed the fin of the tip, cool the surface of the high stress portion X, and a cooling air flow V3, from the tip shroud 11-2, flows while cooling the surface of a high stress portion Y on the higher pressure side of the tip shroud 11-1. Of the high stress portions X and Y of the tip shroud 11-1, therefore, the high stress portion Y is cooled with the cooling air flow V1 of its own cooling air holes 20, and the high stress portion X is cooled with the cooling air flow V3 from the adjoining tip shroud thereby to effect the cooling operation.
FIG. 5 is a view taken in the direction of arrows C--C of FIG. 4 and shows the cooling air flow over the upper face of the tip shroud 11-2. As shown, the cooling air flows from the inside of the moving blade 10 via the cooling air holes 20 of the tip shroud 11-2 to the higher pressure side of the combustion gas flow so that it is guided by the pressure difference to flow over the fin 12, as indicated by the flows V1 to V2, along the upper face of the tip shroud 11-2 to the lower pressure side. Even when the pressure for feeding the cooling air is low, therefore, the high stress portions X and Y can be fed with the cooling air due to the pressure difference over the upper face of the tip shroud.
In the gas turbine cooled blade tip shroud thus far described according to the embodiment of the invention, the slot-shaped cooling air holes 13 to 16 that are opened in the two side faces are provided in the tip shroud 11, and the cooling air holes 20 communicating with the inside of the moving blade 10 are formed in the upper face of the tip shroud 11 on the higher pressure side (or upstream side) in the gas flow direction. As a result, the tip shroud 11 is passed therethrough over a wide area by the cooling air to enhance the cooling effect, and the high stress portions X and Y of the tip shroud 11 are also exposed through the cooling air holes 20 to the cooling air outside of the upper face thereof so that they are effectively cooled to prevent a high stress from occurring. Therefore, the high stress portions X and Y of the tip shroud 11, which cannot be worked to form the cooling air holes, can be fed with the cooling air by making use of the pressure difference at the upper face.

Claims (5)

What is claimed is:
1. A gas turbine moving blade assembly comprising:
a moving blade having a blade root and an outer end portion;
a blade shroud mounted on the outer end portion of said moving blade, said blade shroud having opposite side faces and a plurality of cooling air holes formed in the side faces for receiving cooling air from the blade root and releasing the cooling air through said cooling air holes,
wherein each of said cooling air holes that are formed in said side faces has an elongated slot shape.
2. A gas turbine moving blade assembly comprising:
a moving blade having a blade root and an outer end portion; and
a tip shroud mounted on the outer end portion of said moving blade, said tip shroud having opposite side faces, an outer face, a plurality of cooling air holes formed in the side faces, and a plurality of cooling air holes formed in the outer face of said tip shroud,
wherein said cooling air holes, formed in the outer face of said tip shroud, communicate with the interior of said moving blade and are positioned on a higher pressure side of a combustion gas passage, and
wherein said cooling air holes, formed in the outer face of said tip shroud, are positioned only on an upstream side of said tip shroud relative to the flow of combustion gas in the combustion gas passage.
3. A gas turbine moving blade assembly as claimed in claim 2, wherein said cooling air holes, formed in the outer face of said tip shroud, are positioned only on an upstream side of said tip shroud relative to the flow of combustion gas in the combustion gas passage.
4. A gas turbine moving blade assembly comprising:
a moving blade having a blade root and an outer end portion; and
a tip shroud mounted on the outer end portion of said moving blade, said tip shroud having opposite side faces, an outer face, a plurality of cooling air holes formed in the side faces, and a plurality of cooling air holes formed in the outer face of said tip shroud
wherein said cooling air holes, formed in the outer face of said tip shroud, communicate with the interior of said moving blade And are Positioned on a higher pressure side of a combustion gas passage,
wherein each of said cooling holes, formed in the side faces of said tip shroud, communicate with the interior of said moving blade and have an elongated elliptical shape so as to release cooling air over a wide area of said tip shroud.
5. A gas turbine cooled blade tip shroud for being mounted on an outer end of a moving blade, said gas turbine cooled blade tip shroud having an upstream side face, a downstream side face, an upper face, a plurality of elongated elliptical holes formed in said upstream side face for communicating with an interior of the moving blade, a plurality of elliptical holes formed in said downstream side face for receiving cooling air from the interior of the moving blade, and a plurality of cooling holes formed in said upper face for receiving cooling air from the interior of the moving blade,
wherein said cooling holes, formed in said upper face, are positioned on a higher-pressure side of a combustion gas passage.
US09/242,678 1997-06-23 1998-06-18 Tip shroud for cooled blade of gas turbine Expired - Lifetime US6146098A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-165917 1997-06-23
JP9165917A JPH1113402A (en) 1997-06-23 1997-06-23 Tip shroud for gas turbine cooling blade
PCT/JP1998/002689 WO1998059157A1 (en) 1997-06-23 1998-06-18 Tip shroud for cooled blade of gas turbine

Publications (1)

Publication Number Publication Date
US6146098A true US6146098A (en) 2000-11-14

Family

ID=15821477

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/242,678 Expired - Lifetime US6146098A (en) 1997-06-23 1998-06-18 Tip shroud for cooled blade of gas turbine

Country Status (6)

Country Link
US (1) US6146098A (en)
EP (1) EP0927814B1 (en)
JP (1) JPH1113402A (en)
CA (1) CA2264682C (en)
DE (1) DE69828023T2 (en)
WO (1) WO1998059157A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340284B1 (en) * 1998-12-24 2002-01-22 Alstom (Switzerland) Ltd Turbine blade with actively cooled shroud-band element
US6413045B1 (en) * 1999-07-06 2002-07-02 Rolls-Royce Plc Turbine blades
US20090180895A1 (en) * 2008-01-10 2009-07-16 General Electric Company Turbine blade tip shroud
US20090277803A1 (en) * 2008-05-12 2009-11-12 General Electric Company Method and tool for forming non-circular holes using a selectively coated electrode
US20090304520A1 (en) * 2006-06-07 2009-12-10 General Electric Company Serpentine cooling circuit and method for cooling tip shroud
US8900424B2 (en) 2008-05-12 2014-12-02 General Electric Company Electrode and electrochemical machining process for forming non-circular holes
US20180355729A1 (en) * 2017-06-07 2018-12-13 General Electric Company Turbomachine rotor blade
US10704406B2 (en) 2017-06-13 2020-07-07 General Electric Company Turbomachine blade cooling structure and related methods
US11060407B2 (en) * 2017-06-22 2021-07-13 General Electric Company Turbomachine rotor blade
US20220282624A1 (en) * 2021-03-08 2022-09-08 Kabushiki Kaisha Toshiba Turbine rotor blade

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6761534B1 (en) * 1999-04-05 2004-07-13 General Electric Company Cooling circuit for a gas turbine bucket and tip shroud
DE19963377A1 (en) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Turbine blade with actively cooled cover band element
JP2002371802A (en) * 2001-06-14 2002-12-26 Mitsubishi Heavy Ind Ltd Shroud integrated type moving blade in gas turbine and split ring
JP4628865B2 (en) * 2005-05-16 2011-02-09 株式会社日立製作所 Gas turbine blade, gas turbine using the same, and power plant
JP2009167934A (en) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd Gas turbine moving blade and gas turbine
US8317461B2 (en) 2008-08-27 2012-11-27 United Technologies Corporation Gas turbine engine component having dual flow passage cooling chamber formed by single core
JP5868609B2 (en) * 2011-04-18 2016-02-24 三菱重工業株式会社 Gas turbine blade and method for manufacturing the same
FR3001758B1 (en) * 2013-02-01 2016-07-15 Snecma TURBOMACHINE ROTOR BLADE
US10344599B2 (en) * 2016-05-24 2019-07-09 General Electric Company Cooling passage for gas turbine rotor blade

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742504A (en) * 1991-09-02 1995-02-10 General Electric Co <Ge> Turbine blade-air foil cooled in collisional manner in series through bore forming rib
US5460486A (en) * 1992-11-19 1995-10-24 Bmw Rolls-Royce Gmbh Gas turbine blade having improved thermal stress cooling ducts
US5482435A (en) * 1994-10-26 1996-01-09 Westinghouse Electric Corporation Gas turbine blade having a cooled shroud
JPH08200002A (en) * 1995-01-24 1996-08-06 Mitsubishi Heavy Ind Ltd Moving vane of gas turbine
US5785496A (en) * 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2275975A5 (en) * 1973-03-20 1976-01-16 Snecma Gas turbine blade with cooling passages - holes parallel to blade axis provide surface layer of cool air
GB1605335A (en) * 1975-08-23 1991-12-18 Rolls Royce A rotor blade for a gas turbine engine
US4390320A (en) * 1980-05-01 1983-06-28 General Electric Company Tip cap for a rotor blade and method of replacement
US4643645A (en) * 1984-07-30 1987-02-17 General Electric Company Stage for a steam turbine
GB2228540B (en) * 1988-12-07 1993-03-31 Rolls Royce Plc Cooling of turbine blades
US5122033A (en) * 1990-11-16 1992-06-16 Paul Marius A Turbine blade unit
US5261789A (en) * 1992-08-25 1993-11-16 General Electric Company Tip cooled blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742504A (en) * 1991-09-02 1995-02-10 General Electric Co <Ge> Turbine blade-air foil cooled in collisional manner in series through bore forming rib
US5460486A (en) * 1992-11-19 1995-10-24 Bmw Rolls-Royce Gmbh Gas turbine blade having improved thermal stress cooling ducts
US5482435A (en) * 1994-10-26 1996-01-09 Westinghouse Electric Corporation Gas turbine blade having a cooled shroud
JPH08200002A (en) * 1995-01-24 1996-08-06 Mitsubishi Heavy Ind Ltd Moving vane of gas turbine
US5785496A (en) * 1997-02-24 1998-07-28 Mitsubishi Heavy Industries, Ltd. Gas turbine rotor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340284B1 (en) * 1998-12-24 2002-01-22 Alstom (Switzerland) Ltd Turbine blade with actively cooled shroud-band element
US6413045B1 (en) * 1999-07-06 2002-07-02 Rolls-Royce Plc Turbine blades
US20090304520A1 (en) * 2006-06-07 2009-12-10 General Electric Company Serpentine cooling circuit and method for cooling tip shroud
US7686581B2 (en) 2006-06-07 2010-03-30 General Electric Company Serpentine cooling circuit and method for cooling tip shroud
US8057177B2 (en) * 2008-01-10 2011-11-15 General Electric Company Turbine blade tip shroud
US20090180895A1 (en) * 2008-01-10 2009-07-16 General Electric Company Turbine blade tip shroud
US20090277803A1 (en) * 2008-05-12 2009-11-12 General Electric Company Method and tool for forming non-circular holes using a selectively coated electrode
US8778147B2 (en) * 2008-05-12 2014-07-15 General Electric Company Method and tool for forming non-circular holes using a selectively coated electrode
US8900424B2 (en) 2008-05-12 2014-12-02 General Electric Company Electrode and electrochemical machining process for forming non-circular holes
US20180355729A1 (en) * 2017-06-07 2018-12-13 General Electric Company Turbomachine rotor blade
US10502069B2 (en) * 2017-06-07 2019-12-10 General Electric Company Turbomachine rotor blade
US10704406B2 (en) 2017-06-13 2020-07-07 General Electric Company Turbomachine blade cooling structure and related methods
US11060407B2 (en) * 2017-06-22 2021-07-13 General Electric Company Turbomachine rotor blade
US20220282624A1 (en) * 2021-03-08 2022-09-08 Kabushiki Kaisha Toshiba Turbine rotor blade

Also Published As

Publication number Publication date
EP0927814A4 (en) 2001-02-28
DE69828023T2 (en) 2005-12-01
CA2264682C (en) 2002-09-03
DE69828023D1 (en) 2005-01-13
CA2264682A1 (en) 1998-12-30
EP0927814B1 (en) 2004-12-08
JPH1113402A (en) 1999-01-19
EP0927814A1 (en) 1999-07-07
WO1998059157A1 (en) 1998-12-30

Similar Documents

Publication Publication Date Title
US6146098A (en) Tip shroud for cooled blade of gas turbine
EP1116861B1 (en) A cooling circuit for a gas turbine bucket
KR100569765B1 (en) Turbine blade
RU2296862C2 (en) Gas-turbine blade provided with cooling circuits
US5660524A (en) Airfoil blade having a serpentine cooling circuit and impingement cooling
KR100573658B1 (en) Turbine element
KR100553295B1 (en) Turbine Blade with Multi-Pass Cooling and Cooling Air Addition
US5848876A (en) Cooling system for cooling platform of gas turbine moving blade
US6254346B1 (en) Gas turbine cooling moving blade
US5915923A (en) Gas turbine moving blade
EP3124746B1 (en) Method for cooling a turbo-engine component and turbo-engine component
EP1391581B1 (en) Gas turbine moving blade
US20050025623A1 (en) Cooling circuits for a gas turbine blade
EP0874131A2 (en) Cooled shroud of gas turbine stationary blade
CZ292382B6 (en) Cooling system for an airfoil, in particular gas turbine blade airfoil
EP1088964A2 (en) Slotted impingement cooling of airfoil leading edge
KR20000070801A (en) Apparatus for cooling a gas turbine airfoil and method of making same
EP1600604A1 (en) Cooler rotor blade and method for cooling a rotor blade
US6547525B2 (en) Cooled component, casting core for manufacturing such a component, as well as method for manufacturing such a component
EP3341567B1 (en) Internally cooled turbine airfoil with flow displacement feature
KR20010007059A (en) Partially-turbulated trailing edge cooling passages for gas turbine nozzles
US10830061B2 (en) Turbine airfoil with internal cooling channels having flow splitter feature
US5577884A (en) Structure for a stationary cooled turbine vane
US10662778B2 (en) Turbine airfoil with internal impingement cooling feature
JPH0112921B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUKUNO, HIROKI;TOMITA, YASUOKI;ITO, EISAKU;REEL/FRAME:010381/0924

Effective date: 19990201

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12