US6083681A - Stabilizer compounds for photothermographic elements - Google Patents
Stabilizer compounds for photothermographic elements Download PDFInfo
- Publication number
- US6083681A US6083681A US09/329,693 US32969399A US6083681A US 6083681 A US6083681 A US 6083681A US 32969399 A US32969399 A US 32969399A US 6083681 A US6083681 A US 6083681A
- Authority
- US
- United States
- Prior art keywords
- silver
- photothermographic
- photosensitive
- photothermographic element
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 101
- 239000003381 stabilizer Substances 0.000 title abstract description 32
- 229910052709 silver Inorganic materials 0.000 claims abstract description 178
- 239000004332 silver Substances 0.000 claims abstract description 178
- -1 silver halide Chemical class 0.000 claims abstract description 123
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 44
- 238000000576 coating method Methods 0.000 claims abstract description 38
- 239000011248 coating agent Substances 0.000 claims abstract description 36
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 29
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 230000005855 radiation Effects 0.000 claims abstract description 26
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 230000008569 process Effects 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 239000000839 emulsion Substances 0.000 claims description 58
- 239000000203 mixture Substances 0.000 claims description 36
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 33
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 20
- 150000003378 silver Chemical class 0.000 claims description 16
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 125000004429 atom Chemical group 0.000 claims description 9
- 125000003545 alkoxy group Chemical group 0.000 claims description 7
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical class OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 claims description 4
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- ZPANWZBSGMDWON-UHFFFAOYSA-N 1-[(2-hydroxynaphthalen-1-yl)methyl]naphthalen-2-ol Chemical class C1=CC=C2C(CC3=C4C=CC=CC4=CC=C3O)=C(O)C=CC2=C1 ZPANWZBSGMDWON-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- 230000005670 electromagnetic radiation Effects 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 150000004780 naphthols Chemical class 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 239000011591 potassium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 claims description 2
- 229920002120 photoresistant polymer Polymers 0.000 claims description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims 1
- 238000002059 diagnostic imaging Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 82
- 239000000975 dye Substances 0.000 description 31
- 238000009472 formulation Methods 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000011161 development Methods 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 18
- 125000001424 substituent group Chemical group 0.000 description 17
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 14
- 239000000344 soap Substances 0.000 description 13
- 230000003197 catalytic effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000001235 sensitizing effect Effects 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 238000012805 post-processing Methods 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 7
- 238000011066 ex-situ storage Methods 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000011258 core-shell material Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 238000005304 joining Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- CWIYBOJLSWJGKV-UHFFFAOYSA-N 5-methyl-1,3-dihydrobenzimidazole-2-thione Chemical compound CC1=CC=C2NC(S)=NC2=C1 CWIYBOJLSWJGKV-UHFFFAOYSA-N 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 229910052741 iridium Inorganic materials 0.000 description 5
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- DZVCFNFOPIZQKX-LTHRDKTGSA-M merocyanine Chemical compound [Na+].O=C1N(CCCC)C(=O)N(CCCC)C(=O)C1=C\C=C\C=C/1N(CCCS([O-])(=O)=O)C2=CC=CC=C2O\1 DZVCFNFOPIZQKX-LTHRDKTGSA-M 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- RJEZJMMMHHDWFQ-UHFFFAOYSA-N 2-(tribromomethylsulfonyl)quinoline Chemical compound C1=CC=CC2=NC(S(=O)(=O)C(Br)(Br)Br)=CC=C21 RJEZJMMMHHDWFQ-UHFFFAOYSA-N 0.000 description 4
- RPWDFMGIRPZGTI-UHFFFAOYSA-N 2-[1-(2-hydroxy-3,5-dimethylphenyl)-3,5,5-trimethylhexyl]-4,6-dimethylphenol Chemical compound C=1C(C)=CC(C)=C(O)C=1C(CC(C)CC(C)(C)C)C1=CC(C)=CC(C)=C1O RPWDFMGIRPZGTI-UHFFFAOYSA-N 0.000 description 4
- PHXLONCQBNATSL-UHFFFAOYSA-N 2-[[2-hydroxy-5-methyl-3-(1-methylcyclohexyl)phenyl]methyl]-4-methyl-6-(1-methylcyclohexyl)phenol Chemical compound OC=1C(C2(C)CCCCC2)=CC(C)=CC=1CC(C=1O)=CC(C)=CC=1C1(C)CCCCC1 PHXLONCQBNATSL-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 150000004820 halides Chemical class 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 4
- FLFWJIBUZQARMD-UHFFFAOYSA-N 2-mercapto-1,3-benzoxazole Chemical compound C1=CC=C2OC(S)=NC2=C1 FLFWJIBUZQARMD-UHFFFAOYSA-N 0.000 description 3
- WZHHYIOUKQNLQM-UHFFFAOYSA-N 3,4,5,6-tetrachlorophthalic acid Chemical compound OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C(O)=O WZHHYIOUKQNLQM-UHFFFAOYSA-N 0.000 description 3
- CWJJAFQCTXFSTA-UHFFFAOYSA-N 4-methylphthalic acid Chemical compound CC1=CC=C(C(O)=O)C(C(O)=O)=C1 CWJJAFQCTXFSTA-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 3
- 150000008360 acrylonitriles Chemical class 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Chemical group 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- RLISWLLILOTWGG-UHFFFAOYSA-N salamidacetic acid Chemical compound NC(=O)C1=CC=CC=C1OCC(O)=O RLISWLLILOTWGG-UHFFFAOYSA-N 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- ZUNKMNLKJXRCDM-UHFFFAOYSA-N silver bromoiodide Chemical compound [Ag].IBr ZUNKMNLKJXRCDM-UHFFFAOYSA-N 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- DQXKOHDUMJLXKH-PHEQNACWSA-N (e)-n-[2-[2-[[(e)-oct-2-enoyl]amino]ethyldisulfanyl]ethyl]oct-2-enamide Chemical compound CCCCC\C=C\C(=O)NCCSSCCNC(=O)\C=C\CCCCC DQXKOHDUMJLXKH-PHEQNACWSA-N 0.000 description 2
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 2
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- AVRPFRMDMNDIDH-UHFFFAOYSA-N 1h-quinazolin-2-one Chemical compound C1=CC=CC2=NC(O)=NC=C21 AVRPFRMDMNDIDH-UHFFFAOYSA-N 0.000 description 2
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 2
- YWECCEXWKFHHQJ-UHFFFAOYSA-N 2-(4-chlorobenzoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)C1=CC=C(Cl)C=C1 YWECCEXWKFHHQJ-UHFFFAOYSA-N 0.000 description 2
- JLLXSRLEXBECPY-UHFFFAOYSA-N 2-(carboxymethoxy)benzoic acid Chemical compound OC(=O)COC1=CC=CC=C1C(O)=O JLLXSRLEXBECPY-UHFFFAOYSA-N 0.000 description 2
- GMBZSYUPMWCDGK-UHFFFAOYSA-N 2-(carboxymethylsulfanyl)benzoic acid Chemical compound OC(=O)CSC1=CC=CC=C1C(O)=O GMBZSYUPMWCDGK-UHFFFAOYSA-N 0.000 description 2
- QXQMENSTZKYZCE-UHFFFAOYSA-N 2-[2,4-bis(2-methylbutan-2-yl)phenoxy]acetic acid Chemical compound CCC(C)(C)C1=CC=C(OCC(O)=O)C(C(C)(C)CC)=C1 QXQMENSTZKYZCE-UHFFFAOYSA-N 0.000 description 2
- JKFYKCYQEWQPTM-UHFFFAOYSA-N 2-azaniumyl-2-(4-fluorophenyl)acetate Chemical compound OC(=O)C(N)C1=CC=C(F)C=C1 JKFYKCYQEWQPTM-UHFFFAOYSA-N 0.000 description 2
- BKZXZGWHTRCFPX-UHFFFAOYSA-N 2-tert-butyl-6-methylphenol Chemical compound CC1=CC=CC(C(C)(C)C)=C1O BKZXZGWHTRCFPX-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910021612 Silver iodide Inorganic materials 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 241001061127 Thione Species 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000326 densiometry Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- NIUVYKIVCCMXLR-UHFFFAOYSA-N ethyl 2-(2-ethoxy-2-oxoethoxy)benzoate Chemical compound CCOC(=O)COC1=CC=CC=C1C(=O)OCC NIUVYKIVCCMXLR-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- 239000011872 intimate mixture Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical class [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 description 2
- FBSFWRHWHYMIOG-UHFFFAOYSA-N methyl 3,4,5-trihydroxybenzoate Chemical compound COC(=O)C1=CC(O)=C(O)C(O)=C1 FBSFWRHWHYMIOG-UHFFFAOYSA-N 0.000 description 2
- NSBNSZAXNUGWDJ-UHFFFAOYSA-O monopyridin-1-ium tribromide Chemical compound Br[Br-]Br.C1=CC=[NH+]C=C1 NSBNSZAXNUGWDJ-UHFFFAOYSA-O 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- IJAPPYDYQCXOEF-UHFFFAOYSA-N phthalazin-1(2H)-one Chemical class C1=CC=C2C(=O)NN=CC2=C1 IJAPPYDYQCXOEF-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 2
- 229940045105 silver iodide Drugs 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical class NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 235000010215 titanium dioxide Nutrition 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- PPTXVXKCQZKFBN-UHFFFAOYSA-N (S)-(-)-1,1'-Bi-2-naphthol Chemical compound C1=CC=C2C(C3=C4C=CC=CC4=CC=C3O)=C(O)C=CC2=C1 PPTXVXKCQZKFBN-UHFFFAOYSA-N 0.000 description 1
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 150000000178 1,2,4-triazoles Chemical class 0.000 description 1
- XBYRMPXUBGMOJC-UHFFFAOYSA-N 1,2-dihydropyrazol-3-one Chemical class OC=1C=CNN=1 XBYRMPXUBGMOJC-UHFFFAOYSA-N 0.000 description 1
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 1
- AIGNCQCMONAWOL-UHFFFAOYSA-N 1,3-benzoselenazole Chemical compound C1=CC=C2[se]C=NC2=C1 AIGNCQCMONAWOL-UHFFFAOYSA-N 0.000 description 1
- WKKIRKUKAAAUNL-UHFFFAOYSA-N 1,3-benzotellurazole Chemical compound C1=CC=C2[Te]C=NC2=C1 WKKIRKUKAAAUNL-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- ZDWVOYRAWVKGHA-UHFFFAOYSA-N 1,3-thiazole-4-thiol Chemical class SC1=CSC=N1 ZDWVOYRAWVKGHA-UHFFFAOYSA-N 0.000 description 1
- ZOBPZXTWZATXDG-UHFFFAOYSA-N 1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1 ZOBPZXTWZATXDG-UHFFFAOYSA-N 0.000 description 1
- PJDDFKGDNUTITH-UHFFFAOYSA-N 1,5-bis(2-chlorophenyl)-1,2,5,6-tetrahydro-[1,2,4]triazolo[1,2-a][1,2,4]triazole-3,7-dithione Chemical compound SC1=NC(C=2C(=CC=CC=2)Cl)N(C(=N2)S)N1C2C1=CC=CC=C1Cl PJDDFKGDNUTITH-UHFFFAOYSA-N 0.000 description 1
- WFYLHMAYBQLBEM-UHFFFAOYSA-N 1-phenyl-1,2,4-triazolidine-3,5-dione Chemical compound O=C1NC(=O)NN1C1=CC=CC=C1 WFYLHMAYBQLBEM-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- AFBBKYQYNPNMAT-UHFFFAOYSA-N 1h-1,2,4-triazol-1-ium-3-thiolate Chemical compound SC=1N=CNN=1 AFBBKYQYNPNMAT-UHFFFAOYSA-N 0.000 description 1
- USYCQABRSUEURP-UHFFFAOYSA-N 1h-benzo[f]benzimidazole Chemical compound C1=CC=C2C=C(NC=N3)C3=CC2=C1 USYCQABRSUEURP-UHFFFAOYSA-N 0.000 description 1
- ZEQIWKHCJWRNTH-UHFFFAOYSA-N 1h-pyrimidine-2,4-dithione Chemical compound S=C1C=CNC(=S)N1 ZEQIWKHCJWRNTH-UHFFFAOYSA-N 0.000 description 1
- HAZJTCQWIDBCCE-UHFFFAOYSA-N 1h-triazine-6-thione Chemical compound SC1=CC=NN=N1 HAZJTCQWIDBCCE-UHFFFAOYSA-N 0.000 description 1
- YTQQIHUQLOZOJI-UHFFFAOYSA-N 2,3-dihydro-1,2-thiazole Chemical compound C1NSC=C1 YTQQIHUQLOZOJI-UHFFFAOYSA-N 0.000 description 1
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical compound C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- VZYDKJOUEPFKMW-UHFFFAOYSA-N 2,3-dihydroxybenzenesulfonic acid Chemical class OC1=CC=CC(S(O)(=O)=O)=C1O VZYDKJOUEPFKMW-UHFFFAOYSA-N 0.000 description 1
- GDGDLBOVIAWEAD-UHFFFAOYSA-N 2,4-ditert-butyl-6-(3,5-ditert-butyl-2-hydroxyphenyl)phenol Chemical group CC(C)(C)C1=CC(C(C)(C)C)=CC(C=2C(=C(C=C(C=2)C(C)(C)C)C(C)(C)C)O)=C1O GDGDLBOVIAWEAD-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- HOLHYSJJBXSLMV-UHFFFAOYSA-N 2,6-dichlorophenol Chemical compound OC1=C(Cl)C=CC=C1Cl HOLHYSJJBXSLMV-UHFFFAOYSA-N 0.000 description 1
- GSOYMOAPJZYXTB-UHFFFAOYSA-N 2,6-ditert-butyl-4-(3,5-ditert-butyl-4-hydroxyphenyl)phenol Chemical group CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(C=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 GSOYMOAPJZYXTB-UHFFFAOYSA-N 0.000 description 1
- VEEXBQLWMFMATJ-UHFFFAOYSA-N 2-(2-carboxyethyl)benzoic acid Chemical compound OC(=O)CCC1=CC=CC=C1C(O)=O VEEXBQLWMFMATJ-UHFFFAOYSA-N 0.000 description 1
- BVSAODQLFFRZOR-UHFFFAOYSA-N 2-(3-tert-butyl-2-hydroxy-5-methylphenyl)-6-hexyl-4-methylphenol Chemical compound CCCCCCC1=CC(C)=CC(C=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O BVSAODQLFFRZOR-UHFFFAOYSA-N 0.000 description 1
- FVQQWSSTYVBNST-UHFFFAOYSA-N 2-(4-methyl-2-sulfanylidene-1,3-thiazol-3-yl)acetic acid Chemical compound CC1=CSC(=S)N1CC(O)=O FVQQWSSTYVBNST-UHFFFAOYSA-N 0.000 description 1
- RSQZJBAYJAPBKJ-UHFFFAOYSA-N 2-[(dimethylamino)methyl]benzo[f]isoindole-1,3-dione Chemical compound C1=CC=C2C=C(C(N(CN(C)C)C3=O)=O)C3=CC2=C1 RSQZJBAYJAPBKJ-UHFFFAOYSA-N 0.000 description 1
- SZAQZZKNQILGPU-UHFFFAOYSA-N 2-[1-(2-hydroxy-3,5-dimethylphenyl)-2-methylpropyl]-4,6-dimethylphenol Chemical compound C=1C(C)=CC(C)=C(O)C=1C(C(C)C)C1=CC(C)=CC(C)=C1O SZAQZZKNQILGPU-UHFFFAOYSA-N 0.000 description 1
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 1
- KTWCUGUUDHJVIH-UHFFFAOYSA-N 2-hydroxybenzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(N(O)C2=O)=O)=C3C2=CC=CC3=C1 KTWCUGUUDHJVIH-UHFFFAOYSA-N 0.000 description 1
- CFMZSMGAMPBRBE-UHFFFAOYSA-N 2-hydroxyisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(O)C(=O)C2=C1 CFMZSMGAMPBRBE-UHFFFAOYSA-N 0.000 description 1
- SRJCJJKWVSSELL-UHFFFAOYSA-N 2-methylnaphthalen-1-ol Chemical compound C1=CC=CC2=C(O)C(C)=CC=C21 SRJCJJKWVSSELL-UHFFFAOYSA-N 0.000 description 1
- UIQPERPLCCTBGX-UHFFFAOYSA-N 2-phenylacetic acid;silver Chemical compound [Ag].OC(=O)CC1=CC=CC=C1 UIQPERPLCCTBGX-UHFFFAOYSA-N 0.000 description 1
- SCNKFUNWPYDBQX-UHFFFAOYSA-N 2-sulfanyl-3h-thiadiazol-5-amine Chemical compound NC1=CNN(S)S1 SCNKFUNWPYDBQX-UHFFFAOYSA-N 0.000 description 1
- JUTMXSWUPIDAEQ-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxyphenyl)-4,4-dimethylcyclohexa-1,5-dien-1-ol Chemical group CC1(C)CC(C(C)(C)C)=C(O)C(C=2C(=C(C=CC=2)C(C)(C)C)O)=C1 JUTMXSWUPIDAEQ-UHFFFAOYSA-N 0.000 description 1
- NRRVCIIGWYRXMH-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-5-chloro-2-hydroxyphenyl)-4-chlorophenol Chemical group CC(C)(C)C1=CC(Cl)=CC(C=2C(=C(C=C(Cl)C=2)C(C)(C)C)O)=C1O NRRVCIIGWYRXMH-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- YMTYZTXUZLQUSF-UHFFFAOYSA-N 3,3'-Dimethylbisphenol A Chemical compound C1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=CC=2)=C1 YMTYZTXUZLQUSF-UHFFFAOYSA-N 0.000 description 1
- QGTQPTZBBLHLBV-UHFFFAOYSA-N 3,4-diphenyl-1h-1,2,4-triazole-5-thione Chemical compound C=1C=CC=CC=1N1C(=S)NN=C1C1=CC=CC=C1 QGTQPTZBBLHLBV-UHFFFAOYSA-N 0.000 description 1
- AKRDSDDYNMVKCX-UHFFFAOYSA-N 3,5-dimethylpyrazole-1-carboxamide Chemical compound CC=1C=C(C)N(C(N)=O)N=1 AKRDSDDYNMVKCX-UHFFFAOYSA-N 0.000 description 1
- KZFMGQGVVIBTIH-UHFFFAOYSA-N 3-(4-methyl-2-sulfanylidene-1,3-thiazol-3-yl)propanoic acid Chemical compound CC1=CSC(=S)N1CCC(O)=O KZFMGQGVVIBTIH-UHFFFAOYSA-N 0.000 description 1
- OXRSFHYBIRFJSF-UHFFFAOYSA-N 3-phenyl-1,4-dihydropyrazol-5-one Chemical compound N1C(=O)CC(C=2C=CC=CC=2)=N1 OXRSFHYBIRFJSF-UHFFFAOYSA-N 0.000 description 1
- QEQVCPKISCKMOQ-UHFFFAOYSA-N 3h-benzo[f][1,2]benzoxazine Chemical class C1=CC=CC2=C(C=CNO3)C3=CC=C21 QEQVCPKISCKMOQ-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- YGYPMFPGZQPETF-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)-2,6-dimethylphenol Chemical group CC1=C(O)C(C)=CC(C=2C=C(C)C(O)=C(C)C=2)=C1 YGYPMFPGZQPETF-UHFFFAOYSA-N 0.000 description 1
- BOTGCZBEERTTDQ-UHFFFAOYSA-N 4-Methoxy-1-naphthol Chemical compound C1=CC=C2C(OC)=CC=C(O)C2=C1 BOTGCZBEERTTDQ-UHFFFAOYSA-N 0.000 description 1
- MOJKCNIRHPKUKZ-UHFFFAOYSA-N 4-[(4-hydroxy-3-methylnaphthalen-1-yl)methyl]-2-methylnaphthalen-1-ol Chemical compound C1=CC=CC2=C(O)C(C)=CC(CC=3C4=CC=CC=C4C(O)=C(C)C=3)=C21 MOJKCNIRHPKUKZ-UHFFFAOYSA-N 0.000 description 1
- FKYNOIQBWUANOM-UHFFFAOYSA-N 4-[(dimethylamino)methyl]isoindole-1,3-dione Chemical compound CN(C)CC1=CC=CC2=C1C(=O)NC2=O FKYNOIQBWUANOM-UHFFFAOYSA-N 0.000 description 1
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- LVSPDZAGCBEQAV-UHFFFAOYSA-N 4-chloronaphthalen-1-ol Chemical compound C1=CC=C2C(O)=CC=C(Cl)C2=C1 LVSPDZAGCBEQAV-UHFFFAOYSA-N 0.000 description 1
- MLCZOHLVCQVKPI-UHFFFAOYSA-N 4-methyl-2h-benzotriazole;silver Chemical compound [Ag].CC1=CC=CC2=C1N=NN2 MLCZOHLVCQVKPI-UHFFFAOYSA-N 0.000 description 1
- ZSUDUDXOEGHEJR-UHFFFAOYSA-N 4-methylnaphthalen-1-ol Chemical compound C1=CC=C2C(C)=CC=C(O)C2=C1 ZSUDUDXOEGHEJR-UHFFFAOYSA-N 0.000 description 1
- KXFRSVCWEHBKQT-UHFFFAOYSA-N 4-naphthalen-1-yl-2h-phthalazin-1-one Chemical compound C12=CC=CC=C2C(=O)NN=C1C1=CC=CC2=CC=CC=C12 KXFRSVCWEHBKQT-UHFFFAOYSA-N 0.000 description 1
- SLBQXWXKPNIVSQ-UHFFFAOYSA-N 4-nitrophthalic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1C(O)=O SLBQXWXKPNIVSQ-UHFFFAOYSA-N 0.000 description 1
- PUGUFBAPNSPHHY-UHFFFAOYSA-N 4-phenyl-1h-1,2,4-triazole-5-thione Chemical compound SC1=NN=CN1C1=CC=CC=C1 PUGUFBAPNSPHHY-UHFFFAOYSA-N 0.000 description 1
- CFIUCOKDVARZGF-UHFFFAOYSA-N 5,7-dimethoxy-2h-phthalazin-1-one Chemical compound C1=NNC(=O)C2=CC(OC)=CC(OC)=C21 CFIUCOKDVARZGF-UHFFFAOYSA-N 0.000 description 1
- AFQMMWNCTDMSBG-UHFFFAOYSA-N 5-chloro-2h-benzotriazole;silver Chemical compound [Ag].ClC1=CC=C2NN=NC2=C1 AFQMMWNCTDMSBG-UHFFFAOYSA-N 0.000 description 1
- SSPYSWLZOPCOLO-UHFFFAOYSA-N 6-azauracil Chemical compound O=C1C=NNC(=O)N1 SSPYSWLZOPCOLO-UHFFFAOYSA-N 0.000 description 1
- XDECIMXTYLBMFQ-UHFFFAOYSA-N 6-chloro-2h-phthalazin-1-one Chemical compound C1=NNC(=O)C=2C1=CC(Cl)=CC=2 XDECIMXTYLBMFQ-UHFFFAOYSA-N 0.000 description 1
- SBAMYDGWXQMALO-UHFFFAOYSA-N 6-nitro-1,3-benzoxazine-2,4-dione Chemical compound O1C(=O)NC(=O)C2=CC([N+](=O)[O-])=CC=C21 SBAMYDGWXQMALO-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- GFRDROUPIRHZFD-UHFFFAOYSA-N 8-methyl-1,3-benzoxazine-2,4-dione Chemical compound O1C(=O)NC(=O)C2=C1C(C)=CC=C2 GFRDROUPIRHZFD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- BKGOEKOJWMSNRX-UHFFFAOYSA-L C(C1(C)C(C)(C)C(C(=O)[O-])CC1)(=O)[O-].[Ag+2] Chemical compound C(C1(C)C(C)(C)C(C(=O)[O-])CC1)(=O)[O-].[Ag+2] BKGOEKOJWMSNRX-UHFFFAOYSA-L 0.000 description 1
- SOPOWMHJZSPMBC-UHFFFAOYSA-L C(C1=CC=C(C(=O)[O-])C=C1)(=O)[O-].[Ag+2] Chemical compound C(C1=CC=C(C(=O)[O-])C=C1)(=O)[O-].[Ag+2] SOPOWMHJZSPMBC-UHFFFAOYSA-L 0.000 description 1
- AXVCDCGTJGNMKM-UHFFFAOYSA-L C(C=1C(C(=O)[O-])=CC=CC1)(=O)[O-].[Ag+2] Chemical compound C(C=1C(C(=O)[O-])=CC=CC1)(=O)[O-].[Ag+2] AXVCDCGTJGNMKM-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical class O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical class [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229920002253 Tannate Polymers 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- VXJUUVKQTUQXIB-UHFFFAOYSA-N [Ag+2].[C-]#[C-] Chemical class [Ag+2].[C-]#[C-] VXJUUVKQTUQXIB-UHFFFAOYSA-N 0.000 description 1
- JXFDPVZHNNCRKT-TYYBGVCCSA-L [Ag+2].[O-]C(=O)\C=C\C([O-])=O Chemical compound [Ag+2].[O-]C(=O)\C=C\C([O-])=O JXFDPVZHNNCRKT-TYYBGVCCSA-L 0.000 description 1
- SJOOOZPMQAWAOP-UHFFFAOYSA-N [Ag].BrCl Chemical compound [Ag].BrCl SJOOOZPMQAWAOP-UHFFFAOYSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000000475 acetylene derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 235000019395 ammonium persulphate Nutrition 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical class C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- KXNQKOAQSGJCQU-UHFFFAOYSA-N benzo[e][1,3]benzothiazole Chemical compound C1=CC=C2C(N=CS3)=C3C=CC2=C1 KXNQKOAQSGJCQU-UHFFFAOYSA-N 0.000 description 1
- WMUIZUWOEIQJEH-UHFFFAOYSA-N benzo[e][1,3]benzoxazole Chemical compound C1=CC=C2C(N=CO3)=C3C=CC2=C1 WMUIZUWOEIQJEH-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- RFAZFSACZIVZDV-UHFFFAOYSA-N butan-2-one Chemical group CCC(C)=O.CCC(C)=O RFAZFSACZIVZDV-UHFFFAOYSA-N 0.000 description 1
- 229910001622 calcium bromide Inorganic materials 0.000 description 1
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- OAYRYNVEFFWSHK-UHFFFAOYSA-N carsalam Chemical compound C1=CC=C2OC(=O)NC(=O)C2=C1 OAYRYNVEFFWSHK-UHFFFAOYSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000012822 chemical development Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- QZXCCPZJCKEPSA-UHFFFAOYSA-N chlorfenac Chemical compound OC(=O)CC1=C(Cl)C=CC(Cl)=C1Cl QZXCCPZJCKEPSA-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZEUUVJSRINKECZ-UHFFFAOYSA-N ethanedithioic acid Chemical compound CC(S)=S ZEUUVJSRINKECZ-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- JJIKCECWEYPAGR-UHFFFAOYSA-N icosanoic acid;silver Chemical compound [Ag].CCCCCCCCCCCCCCCCCCCC(O)=O JJIKCECWEYPAGR-UHFFFAOYSA-N 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- GPSDUZXPYCFOSQ-UHFFFAOYSA-M m-toluate Chemical compound CC1=CC=CC(C([O-])=O)=C1 GPSDUZXPYCFOSQ-UHFFFAOYSA-M 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 150000002730 mercury Chemical class 0.000 description 1
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 1
- NGYIMTKLQULBOO-UHFFFAOYSA-L mercury dibromide Chemical compound Br[Hg]Br NGYIMTKLQULBOO-UHFFFAOYSA-L 0.000 description 1
- WREDNSAXDZCLCP-UHFFFAOYSA-N methanedithioic acid Chemical compound SC=S WREDNSAXDZCLCP-UHFFFAOYSA-N 0.000 description 1
- IBKQQKPQRYUGBJ-UHFFFAOYSA-N methyl gallate Natural products CC(=O)C1=CC(O)=C(O)C(O)=C1 IBKQQKPQRYUGBJ-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- WPGGNTDTBCRPCE-UHFFFAOYSA-N n-(1,3-benzothiazol-2-yl)-2-hydroxybutanamide Chemical compound C1=CC=C2SC(NC(=O)C(O)CC)=NC2=C1 WPGGNTDTBCRPCE-UHFFFAOYSA-N 0.000 description 1
- OCDLDNMOCXDQHO-UHFFFAOYSA-N n-amino-n-phenylformamide Chemical class O=CN(N)C1=CC=CC=C1 OCDLDNMOCXDQHO-UHFFFAOYSA-N 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- CMCWWLVWPDLCRM-UHFFFAOYSA-N phenidone Chemical compound N1C(=O)CCN1C1=CC=CC=C1 CMCWWLVWPDLCRM-UHFFFAOYSA-N 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- QEIQICVPDMCDHG-UHFFFAOYSA-N pyrrolo[2,3-d]triazole Chemical class N1=NC2=CC=NC2=N1 QEIQICVPDMCDHG-UHFFFAOYSA-N 0.000 description 1
- 150000008515 quinazolinediones Chemical class 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 150000003283 rhodium Chemical class 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- MMRXYMKDBFSWJR-UHFFFAOYSA-K rhodium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Rh+3] MMRXYMKDBFSWJR-UHFFFAOYSA-K 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- IZXSLAZMYLIILP-ODZAUARKSA-M silver (Z)-4-hydroxy-4-oxobut-2-enoate Chemical compound [Ag+].OC(=O)\C=C/C([O-])=O IZXSLAZMYLIILP-ODZAUARKSA-M 0.000 description 1
- NBYLLBXLDOPANK-UHFFFAOYSA-M silver 2-carboxyphenolate hydrate Chemical compound C1=CC=C(C(=C1)C(=O)O)[O-].O.[Ag+] NBYLLBXLDOPANK-UHFFFAOYSA-M 0.000 description 1
- AQRYNYUOKMNDDV-UHFFFAOYSA-M silver behenate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCCCCCC([O-])=O AQRYNYUOKMNDDV-UHFFFAOYSA-M 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- YRSQDSCQMOUOKO-KVVVOXFISA-M silver;(z)-octadec-9-enoate Chemical compound [Ag+].CCCCCCCC\C=C/CCCCCCCC([O-])=O YRSQDSCQMOUOKO-KVVVOXFISA-M 0.000 description 1
- RUVFQTANUKYORF-UHFFFAOYSA-M silver;2,4-dichlorobenzoate Chemical compound [Ag+].[O-]C(=O)C1=CC=C(Cl)C=C1Cl RUVFQTANUKYORF-UHFFFAOYSA-M 0.000 description 1
- OEVSPXPUUSCCIH-UHFFFAOYSA-M silver;2-acetamidobenzoate Chemical compound [Ag+].CC(=O)NC1=CC=CC=C1C([O-])=O OEVSPXPUUSCCIH-UHFFFAOYSA-M 0.000 description 1
- JRTHUBNDKBQVKY-UHFFFAOYSA-M silver;2-methylbenzoate Chemical compound [Ag+].CC1=CC=CC=C1C([O-])=O JRTHUBNDKBQVKY-UHFFFAOYSA-M 0.000 description 1
- OXOZKDHFGLELEO-UHFFFAOYSA-M silver;3-carboxy-5-hydroxyphenolate Chemical compound [Ag+].OC1=CC(O)=CC(C([O-])=O)=C1 OXOZKDHFGLELEO-UHFFFAOYSA-M 0.000 description 1
- UCLXRBMHJWLGSO-UHFFFAOYSA-M silver;4-methylbenzoate Chemical compound [Ag+].CC1=CC=C(C([O-])=O)C=C1 UCLXRBMHJWLGSO-UHFFFAOYSA-M 0.000 description 1
- RDZTZLBPUKUEIM-UHFFFAOYSA-M silver;4-phenylbenzoate Chemical compound [Ag+].C1=CC(C(=O)[O-])=CC=C1C1=CC=CC=C1 RDZTZLBPUKUEIM-UHFFFAOYSA-M 0.000 description 1
- CLDWGXZGFUNWKB-UHFFFAOYSA-M silver;benzoate Chemical compound [Ag+].[O-]C(=O)C1=CC=CC=C1 CLDWGXZGFUNWKB-UHFFFAOYSA-M 0.000 description 1
- JKOCEVIXVMBKJA-UHFFFAOYSA-M silver;butanoate Chemical compound [Ag+].CCCC([O-])=O JKOCEVIXVMBKJA-UHFFFAOYSA-M 0.000 description 1
- OIZSSBDNMBMYFL-UHFFFAOYSA-M silver;decanoate Chemical compound [Ag+].CCCCCCCCCC([O-])=O OIZSSBDNMBMYFL-UHFFFAOYSA-M 0.000 description 1
- MNMYRUHURLPFQW-UHFFFAOYSA-M silver;dodecanoate Chemical compound [Ag+].CCCCCCCCCCCC([O-])=O MNMYRUHURLPFQW-UHFFFAOYSA-M 0.000 description 1
- GXBIBRDOPVAJRX-UHFFFAOYSA-M silver;furan-2-carboxylate Chemical compound [Ag+].[O-]C(=O)C1=CC=CO1 GXBIBRDOPVAJRX-UHFFFAOYSA-M 0.000 description 1
- LTYHQUJGIQUHMS-UHFFFAOYSA-M silver;hexadecanoate Chemical compound [Ag+].CCCCCCCCCCCCCCCC([O-])=O LTYHQUJGIQUHMS-UHFFFAOYSA-M 0.000 description 1
- SUGXYMLKALUNIU-UHFFFAOYSA-N silver;imidazol-3-ide Chemical class [Ag+].C1=C[N-]C=N1 SUGXYMLKALUNIU-UHFFFAOYSA-N 0.000 description 1
- ORYURPRSXLUCSS-UHFFFAOYSA-M silver;octadecanoate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCC([O-])=O ORYURPRSXLUCSS-UHFFFAOYSA-M 0.000 description 1
- OHGHHPYRRURLHR-UHFFFAOYSA-M silver;tetradecanoate Chemical compound [Ag+].CCCCCCCCCCCCCC([O-])=O OHGHHPYRRURLHR-UHFFFAOYSA-M 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- OEQSACUVTKYXIR-UHFFFAOYSA-M sodium;2-(2-carbamoylphenoxy)acetate Chemical compound [Na+].NC(=O)C1=CC=CC=C1OCC([O-])=O OEQSACUVTKYXIR-UHFFFAOYSA-M 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000004964 sulfoalkyl group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003536 tetrazoles Chemical class 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- OTOHACXAQUCHJO-UHFFFAOYSA-H tripotassium;hexachlororhodium(3-) Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[K+].[K+].[K+].[Rh+3] OTOHACXAQUCHJO-UHFFFAOYSA-H 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- INDZTCRIYSRWOH-UHFFFAOYSA-N undec-10-enyl carbamimidothioate;hydroiodide Chemical compound I.NC(=N)SCCCCCCCCCC=C INDZTCRIYSRWOH-UHFFFAOYSA-N 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 229940102001 zinc bromide Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/494—Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
- G03C1/498—Photothermographic systems, e.g. dry silver
- G03C1/49836—Additives
- G03C1/49845—Active additives, e.g. toners, stabilisers, sensitisers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/005—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
- G03C1/06—Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
- G03C1/34—Fog-inhibitors; Stabilisers; Agents inhibiting latent image regression
Definitions
- This invention relates to compounds useful as stabilizers in photothermo-graphic elements.
- Silver halide-containing, photothermographic imaging materials i.e., heat-developable photographic elements
- These materials are also known as "dry silver" compositions or emulsions and generally comprise a support having coated thereon: (a) a photosensitive compound that generates silver atoms when irradiated; (b) a relatively or completely non-photosensitive, reducible silver source; (c) a reducing agent (i.e., a developer) for silver ion, for example, for the silver ion in the non-photosensitive, reducible silver source; and (d) a binder.
- a photosensitive compound that generates silver atoms when irradiated
- a relatively or completely non-photosensitive, reducible silver source i.e., a relatively or completely non-photosensitive, reducible silver source
- a reducing agent i.e., a developer
- the photosensitive compound is generally a photographic type photosensitive silver halide which must be in catalytic proximity to the non-photosensitive, reducible silver source. Catalytic proximity requires an intimate physical association of these two materials so that when silver atoms (also known as silver specks, clusters, or nuclei) are generated by irradiation or light exposure of the photosensitive silver halide, those nuclei are able to catalyze the reduction of the reducible silver source within a catalytic sphere of influence around the silver specks.
- silver atoms also known as silver specks, clusters, or nuclei
- silver atoms are a catalyst for the reduction of silver ions, and that the photosensitive silver halide can be placed into catalytic proximity with the non-photosensitive, reducible silver source in a number of different fashions (see, for example, Research Disclosure, June 1978, Item No. 17029).
- the silver halide may be made "in situ," for example by adding a halogen-containing source to a reducible silver source to achieve partial methasis and thus causing the in-situ formation of silver halide (AgX) grains throughout the silver soap (see, for example, U.S. Pat. No. 3,457,075).
- a halogen-containing source to a reducible silver source to achieve partial methasis and thus causing the in-situ formation of silver halide (AgX) grains throughout the silver soap (see, for example, U.S. Pat. No. 3,457,075).
- the silver halide may also be pre-formed and prepared by an ex situ process whereby the silver halide (AgX) grains are prepared and grown in an aqueous or an organic solvent. It is reported in the art that when silver halide is made ex situ, one has the possibility of controlling the grain size, grain size distribution, dopant levels, and composition much more precisely, so that one can impart more specific properties to the photothermographic element and can do so much more consistently than with the in situ technique.
- the silver halide grains prepared ex-situ may then be added to and physically mixed with the reducible silver salt.
- a more preferable method is to prepare the reducible silver salt in the presence of the ex-situ prepared grains.
- the pre-formed grains are introduced prior to and are present during the formation of the silver soap.
- Co-precipitation of the silver halide and reducible silver source provides a more intimate mixture of the two materials (see, for example, M. J. Simons U.S. Pat. No. 3,839,049).
- the non-photosensitive, reducible silver source is a material that contains silver ions.
- the preferred non-photosensitive reducible silver source is a silver salt of a long chain aliphatic carboxylic acid having from 10 to 30 carbon atoms.
- the silver salt of behenic acid or mixtures of acids of similar molecular weight are generally used. Salts of other organic acids or other organic compounds, such as silver imidazolates, have been proposed.
- U.S. Pat. No. 4,260,677 discloses the use of complexes of inorganic or organic silver salts as non-photosensitive, reducible silver sources.
- the reducing agent for the silver ion of the light-insensitive silver salt may be any compound, preferably any organic compound, that can reduce silver ion to metallic silver and is preferably of relatively low activity until it is heated to a temperature above 100° C.
- the silver ion of the non-photosensitive reducible silver source e.g., silver carboxylate
- the reducing agent for silver ion is reduced by the reducing agent for silver ion. This produces a negative black-and-white image of elemental silver.
- Photothermographic elements differ significantly from conventional silver halide photographic elements which require wet-processing.
- photothermographic imaging elements a visible image is created by heat as a result of the reaction of a developer incorporated within the element. Heat is essential for development. Temperatures of over 100° C. are routinely required. In contrast, conventional wet-processed photographic imaging elements require processing in aqueous processing baths to provide a visible image (e.g., developing and fixing baths). Development is usually performed at a more moderate temperature (e.g., about 30° C. to about 50° C.).
- photothermographic elements only a small amount of silver halide is used to capture light and a different form of silver (e.g., silver carboxylate) is used to generate the image with heat.
- the silver halide serves as a catalyst for the physical development of the non-photosensitive, reducible silver source.
- conventional wet-processed, black-and-white photographic elements use only one form of silver (e.g., silver halide); which, upon chemical development, is itself converted to the silver image; or which upon physical development requires addition of an external silver source.
- photothermographic elements require an amount of silver halide per unit area that is as little as one-hundredth of that used in conventional wet-processed silver halide.
- Photothermographic systems employ a light-insensitive silver salt, such as a silver carboxylate, which participates with the developer in developing the latent image.
- a light-insensitive silver salt such as a silver carboxylate
- chemically developed photographic systems do not employ a light-insensitive silver salt directly in the image-forming process.
- the image in photothermographic elements is produced primarily by reduction of the light-insensitive silver source (e.g., silver carboxylate) while the image in photo-graphic black-and-white elements is produced primarily by the silver halide.
- photothermographic elements all of the "chemistry" of the system is incorporated within the element itself.
- photothermographic elements incorporate a developer (i.e., a reducing agent for the non-photosensitive reducible source of silver) within the element while conventional photographic elements do not.
- a developer i.e., a reducing agent for the non-photosensitive reducible source of silver
- the developer chemistry is physically separated from the photosensitive silver halide until development is desired.
- the incorporation of the developer into photothermographic elements can lead to increased formation of various types of "fog.” Much effort has gone into the preparation and manufacture of photothermographic elements to minimize formation of fog upon preparation of the photothermographic emulsion as well as during coating, storage, and post-processing handling of the photothermographic element.
- the unexposed silver halide inherently remains after development and the element must be stabilized against further development.
- the silver halide is removed from photographic elements after development to prevent further imaging (i.e., the fixing step).
- the binder In photothermographic elements, the binder is capable of wide variation and a number of binders are useful in preparing these elements. In contrast, photographic elements are limited almost exclusively to hydrophilic colloidal binders such as gelatin.
- photothermographic elements require thermal processing, they pose different considerations and present distinctly different problems in manufacture and use.
- additives e.g., stabilizers, antifoggants, speed enhancers, sensitizers, supersensitizers, etc.
- additives e.g., stabilizers, antifoggants, speed enhancers, sensitizers, supersensitizers, etc.
- additives which have one effect in conventional silver halide photography may behave quite differently in photo-thermographic elements where the underlying chemistry is so much more complex. For example, it is not uncommon for an antifoggant for a silver halide system to produce various types of fog when incorporated into photothermographic elements.
- Photothermographic elements can suffer from fog during preparation and storage of the photothermographic emulsion. This is referred to as “pot-life” fog. In addition photothermographic elements can suffer an increase in fog upon coating and drying of the of the photothermographic element. This is referred to as “coating” fog.
- the fog level of freshly prepared photothermographic elements caused by "pot-life" fog and coating fog will be referred to herein as initial fog or initial Dmin.
- the fog level of photothermographic elements often rises as the element is stored, or "ages.” This type of fog will be referred to herein as shelfaging fog. Adding to the difficulty of fog control on shelf-aging is the fact that the developer is incorporated in the photothermographic element. A great amount of work has been done to improve the shelf-life characteristics of photothermographic elements.
- a third type of fog in photothermographic systems results from instability of the image and/or background after processing.
- the density of the image or the Dmin of non-imaged areas continues to increase with time.
- This type of fog is known variously as "print instability,” “post-processing fog,” or “silver print-out.”
- One cause of post-processing fog is from the photosensitive silver halide still present in the developed image continuing to catalyze formation of metallic silver.
- Post-processing fog often occurs from prolonged room light handling. It can be particularly severe if imaged and developed photothermographic elements are left on a light box; are stored for a prolonged period of time as, for example, during transport in a hot vehicle by a courier service or a patient; or are used as photomasks and require post-processing exposure such as in graphic arts contact frames.
- U.S. Pat. No. 5,686,228 describes the use of propenenitrile compounds as antifoggants for black-and-white photothermographic and thermographic elements.
- U.S. Pat. No. 5,460,938 describes the use of 2-(tribromomethylsulfonyl)quinoline as an antifoggant in photothermographic elements.
- 2-(4-Chlorobenzoyl)benzoic acid, benzotriazole, and tetrachlorophthalic acid have also been used as antifoggants in photothermographic elements.
- the present invention shows compounds having general structures (I) or (II) can be used as antifoggants and stabilizers in photothermographic elements, preferably black-and-white photothermographic elements.
- the compounds are particularly effective in decreasing "pot-life" fog and post-processing fog.
- the photothermographic elements comprise a support bearing an imaging coating (specifically, a photosensitive, image-forming, photothermographic coating) comprising:
- the benzene ring of compound having general structure (I) is substituted as shown in compound having general structure (II) ##STR3## wherein X and Y are as defined above; R is hydrogen, alkyl groups having from 1 to 10 carbon atoms, preferably from 1 to 6 carbon atoms; alkoxy groups having from 1 to 10 carbon atoms, preferably from 1 to 6 carbon atoms; and Z is H, COOH, or CONH 2 .
- the present invention provides heat-developable, photothermographic elements which are capable of providing high photospeed; stable, high density images with high resolution, good sharpness; and good shelf stability using a dry and rapid process.
- the photothermographic elements of this invention can be used, for example, in conventional black-and-white photothermography, in electronically generated black-and-white hardcopy recording, in the graphic arts area (e.g., imagesetting and phototypesetting), in digital proofing, and in digital radiographic imaging. Furthermore, the absorbance of these photothermographic elements between 350 nanometers (nm) to 450 nm is sufficiently low (less than 0.50) to permit their use in graphic arts applications such as contact printing, proofing, and duplicating ("duping").
- the components of the imaging coating can be in one or more layers.
- the layer(s) that contain the photosensitive silver halide and non-photosensitive, reducible silver source are referred to herein as emulsion layer(s).
- the silver halide and the non-photo-sensitive, reducible silver source are in catalytic proximity, and preferably in the same emulsion layer.
- the compounds having general structures (I) or (II) can be added either to the emulsion layer(s) or to one or more layer(s) adjacent to the emulsion layer(s).
- Layers that are adjacent to the emulsion layer(s) may be, for example, protective topcoat layers, primer layers, interlayers, opacifying layers, antistatic layers, antihalation layers, barrier layers, auxiliary layers, etc. It is preferred that the compound having general structures (I) or (II) be present in the photothermographic emulsion layer or topcoat layer.
- the present invention also provides a process for the formation of a visible image by first exposing to electromagnetic radiation and thereafter heating the inventive photothermographic element.
- the present invention provides a process comprising:
- the photothermographic element used in this invention is heat developed, preferably at a temperature of from about 80° C. to about 250° C. (176° F. to 482° F.) for a duration of from about 1 second to about 2 minutes, in a substantially water-free condition after, or simultaneously with, imagewise exposure, a black-and-white silver image is obtained.
- the photothermographic element may be exposed in step (a) with visible, infrared, or laser radiation such as from an infrared laser, a laser diode, or an infrared laser diode.
- the compound having general structures (I) or (II) can be one or more compounds having general structure (I), one or more compounds having general structure (II) or mixtures of such compounds.
- Heating in a substantially water-free condition means heating at a temperature of 80° to 250° C. with little more than ambient water vapor present.
- substantially water-free condition means that the reaction system is approximately in equilibrium with water in the air, and water for inducing or promoting the reaction is not particularly or positively supplied from the exterior to the element. Such a condition is described in T. H. James, The Theory of the Photographic Process, Fourth Edition, Macmillan 1977, page 374.
- Photothermographic element means a construction comprising at least one photothermographic emulsion layer or a two trip photothermographic set of layers (the "two-trip coating where the silver halide and the reducible silver source are in one layer and the other essential components or desirable additives are distributed as desired in an adjacent coating layer) and any supports, topcoat layers, image-receiving layers, blocking layers, antihalation layers, subbing or priming layers, etc.
- Embodision layer or "photothermographic emulsion layer” means a layer of a photothermographic element that contains the photosensitive silver halide and non-photosensitive reducible silver source material.
- Ultraviolet region of the spectrum means that region of the spectrum less than or equal to about 400 nm, preferably from about 100 nm to about 400 nm (sometimes marginally inclusive up to 405 or 410 nm, although these ranges are often visible to the naked human eye), preferably from about 100 nm to about 400 nm. More preferably, the ultraviolet region of the spectrum is the region between about 190 nm and about 400 nm.
- Visible region of the spectrum means from about 400 nm to about 750 nm.
- Short wavelength visible region of the spectrum means that region of the spectrum from about 400 nm to about 450 nm.
- Red region of the spectrum means from about 640 nm to about 750 nm.
- the red region of the spectrum is from about 650 nm to about 700 nm.
- Infrared region of the spectrum means from about 750 nm to about 1400 nm.
- any substitution which does not alter the bond structure of the formula or the shown atoms within that structure is included within the formula, unless such substitution is specifically excluded by language (such as "free of carboxy-substituted alkyl").
- substituent groups may be placed on the benzene ring structure, but the atoms making up the benzene ring structure may not be replaced.
- the benzene ring may contain additional substituent groups.
- group and “moiety” are used to differentiate between those chemical species that may be substituted and those which may not be so substituted.
- group such as “aryl group”
- substituent includes the use of additional substituents beyond the literal definition of the basic group.
- moiety is used to describe a substituent, only the unsubstituted group is intended to be included.
- alkyl group is intended to include not only pure hydro-carbon alkyl chains, such as methyl, ethyl, propyl, t-butyl, cyclohexyl, iso-octyl, octadecyl and the like, but also alkyl chains bearing substituents known in the art, such as hydroxyl, alkoxy, phenyl, halogen atoms (F, Cl, Br, and I), cyano, nitro, amino, carboxy, etc.
- alkyl group includes ether groups (e.g., CH 3 -CH 2 --CH 2 --O--CH 2 --), haloalkyls, nitroalkyls, carboxyalkyls, hydroxyalkyls, sulfoalkyls, etc.
- the phrase "alkyl moiety" is limited to the inclusion of only pure hydrocarbon alkyl chains, such as methyl, ethyl, propyl, t-butyl, cyclohexyl, iso-octyl, octadecyl, and the like. Substituents that adversely react with other active ingredients, such as very strongly electrophilic or oxidizing substituents, would of course be excluded by the ordinarily skilled artisan as not being inert or harmless.
- Medical images are used by radiologists to make medical diagnosis. Therefore, it is undesirable to have image degradation when they are left on a light box or stored for a prolonged period of time as, for example, during transport in a hot vehicle by a courier service or a patient.
- the benzene ring in compounds having general structure (I) is capable of wide substitution.
- Non limiting substituents include alkyl groups (e.g., methyl, ethyl, propyl, iso-propyl, etc.); alkenyl groups; alkaryl groups (e.g. p-tolyl); aralkyl groups (e.g. benzyl); carboxylic acid or ester groups (e.g., C(O)OH, C(O)O-R 1 ); amide groups and nitrogen substituted amide groups (e.g.
- the benzene ring of compound having general structure (I) is substituted as shown in compound having general structure (II) ##STR5## wherein X and Y are as defined above.
- Preferred substituents R on the benzene ring are hydrogen, alkyl groups having from 1 to 10 carbon atoms, preferably from 1 to 6 carbon atoms; and alkoxy groups having from 1 to 10 carbon atoms, preferably from 1 to 6 carbon atoms.
- Preferred substituents Z on the benzene ring are H, COOH, or CONH 2 .
- Y when Y is a metal atom it is preferred that it be a metal from group (Ia) or group (Ib) of the periodic table. More preferably it is preferred that the metal atom be an alkali metal atom such as lithium, sodium, or potassium. It is to be understood that when Y is a metal atom then the stoichiometry of general structures (I) or (II) may be somewhat different from that shown. It is also to be understood that when Y is a metal atom it should not provide color to compounds having general structures (I) or (II), nor should the metal be photosensitive or thermosensitive.
- photothermographic elements can suffer from "4pot-life” fog during preparation and storage of the photothermographic emulsion.
- incorporation of compounds having general structure s (I) or (II) into photothermographic elements can help stabilize the photothermographic emulsion against "pot-life” fog.
- photothermographic elements can suffer from "post-processing" fog. This is evidenced by increased Dmin after several days on a light box or if stored in the dark at elevated temperatures. The rate at which the Dmin increase occurs depends on the light level and temperature of the light box.
- incorporation of compounds having general structures (I) or (II) into photothermographic elements can permit the use of decreased amounts of other antifoggants and stabilizers while maintaining print stability and delaying the onset of increase in Dmin.
- the X and Y groups may complex with undesiredly formed silver atoms to prevent catalytic development of the non-photosensitive, reducible source of silver and thus provide stability to the photothermographic element.
- the photothermographic elements of the present invention can be further protected against the production of fog and can be further stabilized against loss of sensitivity during storage. While not necessary for the practice of the invention, it may be advantageous to add mercury (II) salts to the emulsion layer(s) as an antifoggant.
- Preferred mercury (II) salts for this purpose are mercuric acetate and mercuric bromide.
- Suitable antifoggants and stabilizers which can be used alone or in combination with the compounds described herein include the thiazolium salts described in U.S. Pat. Nos. 2,131,038 and 2,694,716; the azaindenes described in U.S. Pat. No. 2,886,437; the triazaindolizines described in U.S. Pat. No. 2,444,605; the mercury salts described in U.S. Pat. No. 2,728,663; the urazoles described in U.S. Pat. No. 3,287,135; the sulfocatechols described in U.S. Pat. No. 3,235,652; the oximes described in British Patent No.
- Stabilizer precursor compounds capable of releasing stabilizers upon application of heat during development can also be used in combination with the stabilizers of this invention. Such precursor compounds are described in, for example, U.S. Pat. Nos. 5,158,866; 5,175,081; 5,298,390; and 5,300,420.
- the present invention includes a photosensitive silver halide.
- the photosensitive silver halide can be any photosensitive silver halide, such as silver bromide, silver iodide, silver chloride, silver bromoiodide, silver chlorobromoiodide, silver chlorobromide, etc.
- the silver halide may be in any form that is photosensitive including, but not limited to cubic, octahedral, rhombic dodecahedral, orthorhombic, tetrahedral, other polyhedral habits, etc., and may have epitaxial growth of crystals thereon.
- the silver halide grains may have a uniform ratio of halide throughout; they may have a graded halide content, with a continuously varying ratio of, for example, silver bromide and silver iodide; or they may be of the core-shell-type, having a discrete core of one halide ratio, and a discrete shell of another halide ratio.
- Core-shell silver halide grains useful in photothermographic elements and methods of preparing these materials are described in U.S. Pat. No. 5,382,504.
- a core-shell silver halide grain having an iridium-doped core is particularly preferred. Iridium doped core-shell grains of this type are described in U.S. Pat. No. 5,434,043.
- the photosensitive silver halide can be added to the emulsion layer in any fashion so long as it is placed in catalytic proximity to the light-insensitive reducible silver compound that serves as a source of reducible silver.
- the silver halide be pre-formed and prepared by an ex-situ process.
- the silver halide grains prepared ex-situ may then be added to and physically mixed with the reducible silver source. It is more preferable to form the non-photosensitive reducible silver source in the presence of ex-situ prepared silver halide. In this process, silver soap is formed in the presence of the pre-formed silver halide grains. Co-precipitation of the silver halide and reducible source of silver provides a more intimate mixture of the two materials (see, for example, M. J. Simons U.S. Pat. No. 3,839,049). Materials of this type are often referred to as "pre-formed emulsions.”
- Pre-formed silver halide emulsions used in the material of this invention can be unwashed or washed to remove soluble salts.
- the soluble salts can be removed by chill-setting and leaching or the emulsion can be coagulation washed (e.g., by the procedures described in U.S. Patent Nos. 2,618,556; 2,614,928; 2,565,418; 3,241,969; and 2,489,341).
- the light-sensitive silver halide used in the photothermographic elements of the present invention is preferably present in an amount of about 0.005 mole to about 0.5 mole, more preferably, about 0.01 mole to about 0.15 mole per mole, and most preferably, about 0.03 mole to about 0.12 mole, per mole of non-photo-sensitive reducible silver salt.
- the silver halide used in the present invention may be chemically and spectrally sensitized in a manner similar to that used to sensitize conventional wet-processed silver halide photographic materials or state-of-the-art heat-developable photothermographic elements.
- a chemical sensitizing agent such as a compound containing sulfur, selenium, tellurium, etc., or a compound containing gold, platinum, palladium, ruthenium, rhodium, iridium, or combinations thereof, etc., a reducing agent such as a tin halide, etc., or a combination thereof.
- a chemical sensitizing agent such as a compound containing sulfur, selenium, tellurium, etc., or a compound containing gold, platinum, palladium, ruthenium, rhodium, iridium, or combinations thereof, etc.
- a reducing agent such as a tin halide, etc.
- One preferred method of chemical sensitization is by oxidative decomposition of a spectral sensitizing dye in the presence of a photothermographic emulsion. Such methods are described in Winslow et al., PCT Publication No. WO 9845754 (U.S. patent application Ser. No. 08/841,953, filed Apr. 8, 1997) and incorporated herein by reference.
- sensitizing dyes serve to provide them with high sensitivity to visible and infrared light by spectral sensitization.
- the photosensitive silver halides may be spectrally sensitized with various known dyes that spectrally sensitize silver halide.
- sensitizing dyes include cyanine dyes, merocyanine dyes, complex cyanine dyes, complex merocyanine dyes, holopolar cyanine dyes, hemicyanine dyes, styryl dyes, and hemioxanol dyes. Of these dyes, cyanine dyes, merocyanine dyes, and complex merocyanine dyes are particularly useful.
- Suitable sensitizing dyes such as described, for example, in U.S. Pat. Nos. 3,719,495; 5,393,654; 5,441,866; and 5,541,054 are particularly effective.
- sensitizing dye added is generally about 10 -10 to 10 -1 mole; and preferably, about 10 -8 to 10 -3 moles per mole of silver halide.
- supersensitizers Any supersensitizer can be used that increases the sensitivity to light.
- preferred infrared supersensitizers are described in European laid Open Patent Application No. 0 559 228 and include heteroaromatic mercapto compounds or heteroaromatic disulfide compounds of the formulae: Ar-S-M and Ar-S-S-Ar, wherein M represents a hydrogen atom or an alkali metal atom.
- Ar represents a heteroaromatic ring or fused heteroaromatic ring containing one or more of nitrogen, sulfur, oxygen, selenium, or tellurium atoms.
- the heteroaromatic ring comprises benz-imidazole, naphthimidazole, benzothiazole, naphthothiazole, benzoxazole, naphth-oxazole, benzoselenazole, benzotellurazole, imidazole, oxazole, pyrazole, triazole, thiazole, thiadiazole, tetrazole, triazine, pyrimidine, pyridazine, pyrazine, pyridine, purine, quinoline, or quinazolinone.
- compounds having other heteroaromatic rings are envisioned to be suitable supersensitizers for use in the elements of the present invention.
- the heteroaromatic ring may also carry substituents.
- substituents being selected from the group consisting of halogen (e.g., Br and Cl), hydroxy, amino, carboxy, alkyl (e.g., of 1 or more carbon atoms, preferably 1 to 4 carbon atoms) and alkoxy (e.g., of 1 or more carbon atoms, preferably of 1 to 4 carbon atoms.
- Most preferred supersensitizers are 2-mercaptobenzimidazole, 2-mercapto-5-methylbenzimidazole (MMBI), 2-mercaptobenzothiazole, and 2-mercapto-benzoxazole (MBO).
- a supersensitizer is preferably present in an emulsion layer in an amount of at least about 0.001 mole per mole of silver in the emulsion layer. More preferably, a supersensitizer is present within a range of about 0.001 mole to about 1.0 mole, and most preferably, about 0.01 mole to about 0.3 mole, per mole of silver halide.
- the non-photosensitive reducible silver source used in the elements of the present invention can be any material that contains a source of reducible silver ions.
- it is a silver salt that is comparatively stable to light and forms a silver image when heated to 80° C. or higher in the presence of an exposed photocatalyst (such as silver halide) and a reducing agent.
- Silver salts of organic acids are preferred.
- the chains typically contain 10 to 30, preferably 15 to 28, carbon atoms.
- Suitable organic silver salts include silver salts of organic compounds having a carboxyl group. Examples thereof include a silver salt of an aliphatic carboxylic acid and a silver salt of an aromatic carboxylic acid.
- Preferred examples of the silver salts of aliphatic carboxylic acids include silver behenate, silver arachidate, silver stearate, silver oleate, silver laurate, silver caprate, silver myristate, silver palmitate, silver maleate, silver fumarate, silver tartarate, silver furoate, silver linoleate, silver butyrate, silver camphorate, and mixtures thereof.
- Silver salts that can be substituted with a halogen atom or a hydroxyl group also can be effectively used.
- Preferred examples of the silver salts of aromatic carboxylic acid and other carboxyl group-containing compounds include: silver benzoate, a silver-substituted benzoate, such as silver 3,5-dihydroxybenzoate, silver o-methylbenzoate, silver m-methylbenzoate, silver p-methylbenzoate, silver 2,4-dichlorobenzoate, silver acetamidobenzoate, silver p-phenylbenzoate, etc.; silver gallate; silver tannate; silver phthalate; silver terephthalate; silver salicylate; silver phenylacetate; silver pyromellilate; a silver salt of 3-carboxymethyl-4-methyl-4-thiazoline-2-thione or the like as described in U.S.
- Silver salts of compounds containing mercapto or thione groups and derivatives thereof can also be used.
- Preferred examples of these compounds include: a silver salt of 3-mercapto-4-phenyl-1,2,4-triazole; a silver salt of 2-mercaptobenzimidazole; a silver salt of 2-mercapto-5-aminothiadiazole; a silver salt of 2-(2-ethylglycolamido)benzothiazole; a silver salt of thioglycolic acid, such as a silver salt of a S-alkylthioglycolic acid (wherein the alkyl group has from 12 to 22 carbon atoms); a silver salt of a dithiocarboxylic acid such as a silver salt of dithioacetic acid; a silver salt of thioamide; a silver salt of 5-carboxylic-1-methyl-2-phenyl-4-thiopyridine; a silver salt of mercaptotriazine; a silver salt of 2-mer
- a silver salt of a 1,2,4-mercaptothiazole derivative such as a silver salt of 3-amino-5-benzylthio-1,2,4-thiazole
- a silver salt of a thione compound such as a silver salt of 3-(2-carboxyethyl)-4-methyl-4-thiazoline-2-thione as disclosed in U.S. Pat. No. 3,201,678.
- a silver salt of a compound containing an imino group can be used.
- Preferred examples of these compounds include: silver salts of benzotriazole and substituted derivatives thereof, for example, silver methylbenzotriazole and silver 5-chlorobenzotriazole, etc.; silver salts of 1,2,4-triazoles or 1-H-tetrazoles as described in U.S. Pat. No. 4,220,709; and silver salts of imidazoles and imidazole derivatives.
- Silver salts of acetylenes can also be used.
- Silver acetylides are described in U.S. Pat. Nos. 4,761,361 and 4,775,613.
- a preferred example of a silver half soap is an equimolar blend of silver carboxylate and carboxylic acid, which analyzes for about 14.5% by weight solids of silver in the blend and which is prepared by precipitation from an aqueous solution of the sodium salt of a commercial carboxylic acid.
- Transparent sheet materials made on transparent film backing require a transparent coating.
- a silver carboxylate full soap containing not more than about 15% of free carboxylic acid and analyzing about 22% silver, can be used.
- the silver halide and the non-photosensitive reducible silver source that form a starting point of development should be in catalytic proximity (i.e., reactive association).
- Catalytic proximity or “reactive association” means that they should be in the same layer, in adjacent layers, or in layers separated from each 25 other by an intermediate layer having a thickness of less than 1 micrometer (1 ⁇ m). It is preferred that the silver halide and the non-photosensitive reducible silver source be present in the same layer.
- Photothermographic emulsions containing pre-formed silver halide can be sensitized with chemical sensitizers, and/or with spectral sensitizers as described above.
- the source of reducible silver is preferably present in an amount of about 5% by weight to about 70% by weight, and more preferably, about 10% to about 50% by weight, based on the total weight of the emulsion layers.
- the reducing agent for the organic silver salt may be any compound, preferably organic compound, that can reduce silver ion to metallic silver.
- Conventional photographic developers such as phenidone, hydroquinones, and catechol are useful, but hindered phenol reducing agents or mixtures of hindered phenol reducing agents are preferred.
- Hindered phenol developers are compounds that contain only one hydroxy group on a given phenyl ring and have at least one additional substituent located ortho to the hydroxy group. They differ from traditional photographic developers, which contain two hydroxy groups on the same phenyl ring (such as is found in hydroquinones). Hindered phenol developers may contain more than one hydroxy group as long as each hydroxy group is located on different phenyl rings.
- Hindered phenol developers include, for example, binaphthols (i.e., dihydroxybinaphthyls), biphenols (i.e., dihydroxybiphenyls), bis(hydroxynaphthyl)methanes, bis(hydroxy-phenyl)methanes, hindered phenols, and hindered naphthols each of which may be variously substituted.
- binaphthols i.e., dihydroxybinaphthyls
- biphenols i.e., dihydroxybiphenyls
- bis(hydroxynaphthyl)methanes bis(hydroxy-phenyl)methanes
- hindered phenols hindered naphthols each of which may be variously substituted.
- Non-limiting representative binaphthols include 1,1'-bi-2-naphthol; 1,1'-bi-4-methyl-2-naphthol; and 6,6'-dibromo-bi-2-naphthol.
- 1,1'-bi-2-naphthol 1,1'-bi-4-methyl-2-naphthol
- 6,6'-dibromo-bi-2-naphthol for additional compounds see U.S. Pat. No. 5,262,295 at column 6, lines 12-13, incorporated herein by reference.
- Non-limiting representative biphenols include 2,2'-dihydroxy-3,3'-di-t-butyl-5,5-dimethylbiphenyl; 2,2'-dihydroxy-3,3',5,5'-tetra-t-butyl-biphenyl; 2,2'-dihydroxy-3,3'-di-t-butyl-5,5'-dichlorobiphenyl; 2-(2-hydroxy-3-t-butyl-5-methylphenyl)-4-methyl-6-n-hexylphenol; 4,4'-dihydroxy-3,3',5,5'-tetra-t-butylbiphenyl; and 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl.
- Non-limiting representative bis(hydroxynaphthyl)methanes include 4,4'-methylenebis(2-methyl-1-naphthol).
- 4,4'-methylenebis(2-methyl-1-naphthol) for additional compounds see U.S. Pat. No. 5,262,295 at column 6, lines 14-16, incorporated herein by reference.
- Non-limiting representative bis(hydroxyphenyl)methanes include bis(2-hydroxy-3-t-butyl-5-methylphenyl)methane (CAO-5); 1,1-bis(2-hydroxy-3,5-dimethylphenyl)-3,5,5-trimethylhexane (NONOX; PERMANAX WSO); 1,1-bis(3,5-di-t-butyl-4-hydroxyphenyl)methane; 2,2-bis(4-hydroxy-3-methyl-phenyl)propane; 4,4-ethylidene-bis(2-t-butyl-6-methylphenol); 1,1Bis(2-hydroxy-3,5-dimethylphenyl)isobutane (LOWINOX 22IB46); and 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane.
- CAO-5 bis(2-hydroxy-3-t-butyl-5-methylphenyl)methane
- NONOX 1,1-bis(2-hydroxy-3,5-dimethylphen
- Non-limiting representative hindered phenols include 2,6-di-t-butylphenol; 2,6-di-t-butyl-4-methylphenol; 2,4-di-t-butylphenol; 2,6-dichlorophenol; 2,6-dimethylphenol; and 2-t-butyl-6-methylphenol.
- Non-limiting representative hindered naphthols include 1-naphthol; 4-methyl-1-naphthol; 4-methoxy-1-naphthol; 4-chloro-1-naphthol; and 2-methyl-1-naphthol.
- Photothermographic elements of the invention may contain co-developers or mixtures of co-developers in combination with the hindered phenol developer or mixture of hindered phenol developers. Addition of co-developers is especially useful for the preparation of high-contrast photothermographic elements.
- co-developers for example, the trityl hydrazide or formyl phenylhydrazine compounds described in U.S. Pat. No. 5,496,695 may be used; the amine compounds described in U.S. Pat. No. 5,545,505 may be used; the hydroxamic acid compounds described in U.S. Pat. No. 5,545,507 may be used; the acrylonitrile compounds described in U.S. Pat. No.
- 5,545,515 may be used; the 3-heteroaromatic-substituted acrylonitrile compounds described in U.S. Pat. No. 5,635,339 may be used; the hydrogen atom donor compounds described in U.S. Pat. No. 5,637,449 may be used; the 2-substituted malondialdehyde compounds described in U.S. Pat. No. 5,654,130 may be used; and/or the 4-substituted isoxazole compounds described in U.S. Pat. No. 5,705,324 may be used.
- the amounts of the above described reducing agents that are added to the photothermographic element of the present invention may be varied depending upon the particular compound used, upon the type of emulsion layer, and whether components of the reducing agent are located in the emulsion layer or a topcoat layer.
- the hindered phenol is preferably present in an amount of about 0.01 mole to about 50 moles, and more preferably, about 0.05 mole to about 25 moles, per mole of silver halide; and the co-developer, when present, is preferably present in an amount of about 0.0005 mole to about 25 moles, and more preferably, about 0.0025 mole to about 10 moles, per mole of the silver halide.
- the hindered phenol developer is preferably present in an amount of about 1% by weight to about 15% by weight of the imaging coating, which can include emulsion layers, topcoats, etc.
- the co-developer (when used) is preferably present in an amount of about 0.01% by weight to about 1.5% by weight of the imaging coating.
- the hindered phenol developer is preferably present in an amount of about 2% to about 20% by weight, and the co-developer (when used) is preferably present in an amount of about 0.2% to about 20% by weight, of the layer in which it is present.
- Photothermographic elements of the invention may also contain other additives such as additional shelf-life stabilizers, toners, development accelerators, acutance dyes, post-processing stabilizers or stabilizer precursors, and other image-modifying agents.
- the photosensitive silver halide, the non-photosensitive reducible source of silver, the reducing agent system, and any other additives used in the present invention are generally added to at least one binder.
- the binder(s) that can be used in the present invention can be employed individually or in combination with one another. It is preferred that the binder be selected from polymeric materials, such as, for example, natural and synthetic resins that are sufficiently polar to hold the other ingredients in solution or suspension.
- a typical hydrophilic binder is a transparent or translucent hydrophilic colloid.
- hydrophilic binders include: a natural substance, for example, a protein such as gelatin, a gelatin derivative, a cellulose derivative, etc.; a polysaccharide such as starch, gum arabic, pullulan, dextrin, etc.; and a synthetic polymer, for example, a water-soluble polyvinyl compound such as polyvinyl alcohol, polyvinyl pyrrolidone, acrylamide polymer, etc.
- a hydrophilic binder is a dispersed vinyl compound in latex form which is used for the purpose of increasing dimensional stability of a photographic element.
- hydrophobic binders examples include polyvinyl acetals, polyvinyl chloride, polyvinyl acetate, cellulose acetate, polyolefins, polyesters, polystyrene, polyacrylonitrile, polycarbonates, methacrylate copolymers, maleic anhydride ester copolymers, butadiene-styrene copolymers, and the like. Copolymers (e.g., terpolymers) are also included in the definition of polymers.
- the polyvinyl acetals, such as polyvinyl butyral and polyvinyl formal, and vinyl copolymers such as polyvinyl acetate and polyvinyl chloride are particularly preferred.
- the binder can be hydrophilic or hydrophobic, preferably it is hydrophobic in the silver-containing layer(s).
- these polymers may be used in combination of two or more thereof.
- the binder should be able to withstand those conditions. Generally, it is preferred that the binder not decompose or lose its structural integrity at 250° F. (121° C.) for 60 seconds, and more preferred that it not decompose or lose its structural integrity at 350° F. (177° C.) for 60 seconds.
- the polymer binder is used in an amount sufficient to carry the components dispersed therein, that is, within the effective range of the action as the binder.
- the effective range can be appropriately determined by one skilled in the art.
- a binder is used at a level of about 30% by weight to about 90% by weight, and more preferably at a level of about 45% by weight to about 85% by weight, based on the total weight of the layer in which they are included.
- the formulation for the photothermographic emulsion layer can be prepared by dissolving and dispersing the binder, the photosensitive silver halide, the non-photosensitive reducible source of silver, the reducing agent for the non-photosensitive reducible silver source, and optional additives in an inert organic solvent, such as, for example, toluene, 2-butanone, or tetrahydrofuran.
- an inert organic solvent such as, for example, toluene, 2-butanone, or tetrahydrofuran.
- Toners or derivatives thereof which improve the image is highly desirable, but is not essential to the element.
- a toner can be present in an amount of about 0.01% by weight to about 10%, and more preferably about 0.1% by weight to about 10% by weight, based on the total weight of the layer in which it is included.
- Toners are usually incorporated in the photo-thermographic emulsion layer. Toners are well known materials in the photo-thermographic art, as shown in U.S. Pat. Nos. 3,080,254; 3,847,612; and 4,123,282.
- toners include: phthalimide and N-hydroxyphthalimide; cyclic imides, such as succinimide, pyrazoline-5-ones, quinazolinone, 1-phenylurazole, 3-phenyl-2-pyrazoline-5-one, and 2,4-thiazolidinedione; naphthalimides, such as N-hydroxy-1,8-naphthalimide; cobalt complexes, such as cobaltic hexamine tri fluoroacetate; mercaptans such as 3-mercapto-1,2,4-triazole, 2,4-dimercapto-pyrimidine, 3-mercapto-4,5-diphenyl-1,2,4-triazole and 2,5-dimercapto-1,3,4-thia-diazole; N-(aminomethyl)aryldicarboximides, such as (N,N-dimethyl-aminomethyl)phthalimide, and N-(dimethylaminomethyl)naphthalene-2,
- Photothermographic elements of the invention can contain plasticizers and lubricants such as polyalcohols and diols of the type described in U.S. Pat. No. 2.960,404; fatty acids or esters, such as those described in U.S. Pat. Nos. 2,588,765 and 3,121,060; and silicone resins, such as those described in British Patent No. 955,061.
- plasticizers and lubricants such as polyalcohols and diols of the type described in U.S. Pat. No. 2.960,404; fatty acids or esters, such as those described in U.S. Pat. Nos. 2,588,765 and 3,121,060; and silicone resins, such as those described in British Patent No. 955,061.
- Photothermographic elements of the invention can contain matting agents such as starch, titanium dioxide, zinc oxide, silica, and polymeric beads including beads of the type described in U.S. Pat. Nos. 2,992,101 and 2,701,245.
- the photothermographic elements of the present invention may contain antistatic or conducting layers.
- Such layers may contain soluble salts (e.g., chlorides, nitrates, etc.), evaporated metal layers, ionic polymers such as those described in U.S. Pat. Nos. 2,861,056 and 3,206,312, or insoluble inorganic salts such as those described in U.S. Pat. No. 3,428,451.
- the photothermographic elements of this invention may also contain electroconductive underlayers to reduce static electricity effects and improve transport through processing equipment. Such layers are described in U.S. Pat. No. 5,310,640.
- the photothermographic elements of this invention may be constructed of one or more layers on a support.
- Single layer elements should contain the silver halide, the non-photosensitive reducible silver source material, the reducing agent for the non-photosensitive reducible silver source, the binder, as well as optional materials such as toners, acutance dyes, coating aids, and other adjuvants.
- Two-layer constructions (often referred to as two-trip constructions because of the coating of two distinct layers on the support) preferably contain silver halide and non-photosensitive reducible silver source in one emulsion layer (usually the layer adjacent to the support) and, for example, the reducing agent and other ingredients in the second layer or distributed between both layers.
- the reducing agent or mixture of reducing agents may be in separate layers.
- the reducing agent may be in one layer and the co-developer (when used) may be in separate layers.
- Two layer constructions comprising a single emulsion layer coating containing all the ingredients and a protective topcoat are also envisioned.
- Photothermographic emulsions used in this invention can be coated by various coating procedures including wire wound rod coating, dip coating, air knife coating, curtain coating, or extrusion coating using hoppers of the type described in U.S. Pat. No. 2,681,294. If desired, two or more layers can be coated simultaneously by the procedures described in U.S. Pat. Nos. 2,761,791 and 5,340,613; and British Patent No. 837,095.
- a typical coating gap for the emulsion layer can be about 10 micrometers ( ⁇ m) to about 150 ⁇ m, and the layer can be dried in forced air at a temperature of about 20° C. to about 100° C. It is preferred that the thickness of the layer be selected to provide maximum image densities greater than about 0.2, and, more preferably, in a range of about 0.5 to about 4.0, as measured by a MacBeth Color Densitometer Model TD 504.
- Photothermographic elements according to the present invention can contain acutance dyes and antihalation dyes.
- the dyes may be incorporated into the photothermographic emulsion layer as acutance dyes according to known techniques.
- the dyes may also be incorporated into antihalation layers according to known techniques as an antihalation backing layer, an antihalation underlayer or as an overcoat. It is preferred that the photothermographic elements of this invention contain an antihalation coating on the support opposite to the side on which the emulsion and topcoat layers are coated.
- Antihalation and acutance dyes useful in the present invention are described in U.S. Pat. Nos. 5,135,842; 5,266,452; 5,314,795; and 5,380,635.
- Development conditions will vary, depending on the construction used, but will typically involve heating the imagewise exposed material at a suitably elevated temperature.
- the latent image obtained after exposure can be developed by heating the material at a moderately elevated temperature of, for example, about 80° C. to about 250° C., preferably about 100° C. to about 200° C., for a sufficient period of time, generally about 1 second to about 2 minutes. Heating may be carried out by the typical heating means such as a hot plate, an iron, a hot roller, a heat generator using carbon or titanium white, a resistive layer in the element, or the like.
- the imaged element may be subjected to a first heating step at a temperature and for a time sufficient to intensify and improve the stability of the latent image but insufficient to produce a visible image and later subjected to a second heating step at a temperature and for a time sufficient to produce the visible image.
- a first heating step at a temperature and for a time sufficient to intensify and improve the stability of the latent image but insufficient to produce a visible image
- a second heating step at a temperature and for a time sufficient to produce the visible image.
- Photothermographic emulsions used in the invention can be coated on a wide variety of supports.
- the support, or substrate can be selected from a wide range of materials depending on the imaging requirement.
- Supports may be transparent or at least translucent.
- Typical supports include polyester film, subbed polyester film (e.g., polyethylene terephthalate or polyethylene naphthalate), cellulose acetate film, cellulose ester film, polyvinyl acetal film, polyolefinic film (e.g., polethylene or polypropylene or blends thereof), polycarbonate film, and related or resinous materials, as well as glass, paper, and the like.
- a flexible support is employed, especially a polymeric film support, which can be partially acetylated or coated, particularly with a polymeric subbing or priming agent.
- Preferred polymeric materials for the support include polymers having good dimensional stability upon heating and development, such as polyesters. Particularly preferred polyesters are polyethylene terephthalate and polyethylene naphthalate.
- the support should be transparent or highly transmissive of the radiation (i.e., ultraviolet or short wavelength visible radiation) used in the final imaging process.
- a support with a backside resistive heating layer can also be used in photo-thermographic imaging systems such as shown in U.S. Pat. No. 4,374,921.
- the possibility of absorbance of the photothermographic elements of the present invention in the range of about 350 nm to about 450 nm in non-imaged areas facilitates the use of the photothermographic elements of the present invention in a process where there is a subsequent exposure of an ultraviolet or short wavelength visible radiation sensitive imageable medium.
- imaging the photothermographic element and subsequent development affords a visible image.
- the developed photothermographic element absorbs ultraviolet or short wavelength visible radiation in the areas where there is a visible image and transmits ultraviolet or short wavelength visible radiation where there is no visible image.
- the developed element may then be used as a mask and placed between an ultraviolet or short wavelength visible radiation energy source and an ultraviolet or short wavelength visible radiation photosensitive imageable medium such as, for example, a photopolymer, diazo material, or photoresist.
- an ultraviolet or short wavelength visible radiation photosensitive imageable medium such as, for example, a photopolymer, diazo material, or photoresist. This process is particularly useful where the imageable medium comprises a printing plate and the photothermographic element serves as an imagesetting film.
- ACRYLOID A-21 is an acrylic copolymer available from Rohm and Haas, Philadelphia, Pa.
- BUTVAR B-79 is a polyvinyl butyral resin available from Monsanto Company, St. Louis, Mo.
- CAB 171-15S is a cellulose acetate butyrate resin available from Eastman Kodak Co.
- CBBA is 2-(4-chlorobenzoyl)benzoic acid.
- DESMODUR N3300 is an aliphatic hexamethylene diisocyanate available from Bayer Chemicals, Pittsburgh, Pa.
- MEK is methyl ethyl ketone (2-butanone).
- MeOH is methanol
- MMBI 2-mercapto-5-methylbenzimidazole.
- 4-MPA is 4-methylphthalic acid.
- PET is polyethylene terephthalate.
- PHP is pyridinium hydrobromide perbromide.
- PHZ is phthalazine
- TCPA is tetrachlorophthalic acid.
- TCPAN is tetrachlorophthalic anhydride.
- Sensitizing Dye-1 is described in U.S. Pat. No. 5,541,054 and has the following structure: ##STR8##
- Antifoggant A is 2-(tribromomethylsulfonyl)quinoline and is described in U.S. Pat. No. 5,460,938. It has the following structure: ##STR10##
- Vinyl Sulfone-1 (VS-1) is described in European Laid Open Patent Application No. 0 600 589 A2 and has the following structure: ##STR11##
- Antihalation Dye-1 (AH-1) is described in PCT Patent Application No. WO 95/23,357 (filed Jan. 11, 1995) and is believed to have the following structure: ##STR12##
- Compound I-1 is [2-(aminocarbonyl)phenoxy]acetic acid, CAS Registry Number [25395-22-6]. It is commercially available from TCI America.
- Compound I-2 is [2-(aminocarbonyl)phenoxy]acetic acid, monosodium salt, CAS Registry Number [3785-32-8]. It is commercially available from TCI America.
- Compound I-3 is 2-(carboxymethoxy)benzoic acid, CAS Registry Number [635-53-0]. It is commercially available from Lancaster Synthesis.
- Compound I-4 is (2,4-di-tert-pentylphenoxy)-acetic acid, CAS Registry Number [13402-96-5]. It is commercially available from Aldrich Chemical Company.
- Compound I-5 is 2-[(carboxymethyl)thio]benzoic acid, CAS Registry Number [135-13-7] It is commercially available from Maybridge.
- Compound C-1 is 2-(2-ethoxy-2-oxoethoxy)benzoic acid ethyl ester, CAS Registry Number [56424-77-2]. It is commercially available from Lancaster Synthesis
- Compound C-2 is [2-(aminocarbonyl)phenoxylacetic acid ethyl ester, CAS Registry Number 190074-90-1]. It was prepared by esterification of C-1 with HCl(g) and ethanol.
- Compound C-3 is 2-carboxybenzenepropanoic acid, CAS Registry Number [1776-79-4].
- a pre-formed iridium-doped core-shell silver carboxylate soap was prepared as described in U.S. Pat. No. 5,434,043 incorporated herein by reference.
- the pre-formed soap contained 2.0% by weight of a 0.05 micrometer ( ⁇ m) diameter iridium-doped core-shell silver iodobromide emulsion (25% core containing 8% iodide, 92% bromide; and 75% all-bromide shell containing 1 ⁇ 10 -5 mole of iridium 4+ ).
- a dispersion of this silver carboxylate soap containing 25.2% solids (soap), 1.3% BUTVAR B-79 polyvinyl butyral resin, and 73.5% 2-butanone was homogenized.
- a topcoat solution was prepared in the following manner; 0.56 g of ACRYLOID-21 polymethyl methacrylate and 15 g of CAB 171-15S cellulose acetate butyrate were mixed in 183 g of 2-butanone until dissolved. To this premix was then added 0.27 g of Vinyl Sulfone-1 (VS-1), 0.50 g of compound Pr-01, and 0.100 g of tetrachlorophthalic anhydride.
- VS-1 Vinyl Sulfone-1
- Pr-01 0.100 g of tetrachlorophthalic anhydride
- Samples were coated out under infrared safelights using a dual-knife coater.
- the photothermographic formulation and topcoat solution were coated onto a 7 mil (177.8 ⁇ m) blue tinted polyethylene terephthalate support provided with an antihalation back coating containing AH-1 in CAB 171-15S resin.
- Knife #1 was raised to 10.3 mil (261.62 micrometer), the clearance corresponding to the desired thickness of the support plus the wet thickness of photothermographic emulsion layer #1.
- Knife #2 was raised to 12.0 mil (304.8 micrometer) the height equal to the desired thickness of the support plus the wet thickness of photothermographic emulsion layer #1 plus the wet thickness of topcoat layer #2.
- the coated and dried photothermographic elements prepared above were cut into 1.5-inch ⁇ 11-inch strips (3.8 cm ⁇ 27.9 cm) and exposed with a scanning laser sensitometer incorporating an 811 nm laser diode. The total scan time for the sample was 6 seconds.
- the samples were developed using a heated roll processor either for 15 seconds at 255° F. (124° C.) or for 25 seconds at 255° F. (124° C.).
- Densitometry measurements were made on a custom built computer scanned densitometer using a filter appropriate to the sensitivity of the photo-thermographic element and are believed to be comparable to measurements from commercially available densitometers.
- D min is the density of the non-exposed areas after development. It is the average of eight lowest density values on the exposed side of the fiducial mark.
- D max is the highest density value on the exposed side of the fiducial mark.
- Speed-2 is Log1/E+4 corresponding to the density value of 1.00 above D min where E is the exposure in ergs/cm 2 .
- Average Contrast-1 (AC-1) is the absolute value of the slope of the line joining the density points of 0.60 and 2.00 above D min .
- Average Contrast-2 (AC-2) is the absolute value of the slope of the line joining the density points 1.00 and 2.40 above D min .
- Average Contrast-3 (AC-3) is the absolute value of the slope of the line joining the density points of 2.40 and 2.90 above D min .
- Toe Contrast-1 (TC-1) is the absolute value of the slope of the line joining the density points 0.30 above D min -0.45 LogE and 0.30 above D min -0.20 LogE.
- Toe Contrast-2 (TC-2) is the absolute value of the slope of the line joining the density points 0.30 above D min -0.20 LogE and 0.30 above D min .
- Contrast A is the absolute value of the slope of the line joining the density points of 0.07 and 0.17 above D min .
- the stabilizer compounds of this invention were studied using PERMANAX WSO as the hindered phenol developer.
- the structures of the stabilizer compounds studied are shown above.
- Photothermographic formulations were prepared as described above incorporating stabilizer compounds I-1 and I-3 into 300 g of the photothermographic emulsion. Some formulations were coated, dried, and imaged immediately after preparation. Other formulations were stored for 24 hr after preparation before coating, drying, and imaging.
- Samples 1--1 through 1-6 were processed by heating at 255° C. for 15 seconds.
- Samples 1-7 through 1-12 were processed by heating at 255° C. for 25 seconds.
- Photothermographic formulations were prepared as described above incorporating 0.350 g of stabilizer compound I-1 into 300 g of photothermographic emulsion but also incorporating reduced amounts of Antifoggant A (AF-A). Some formulations were coated, dried, and imaged immediately after preparation. Other formulations were stored for 24 hr after preparation before coating, drying, and imaging.
- AF-A Antifoggant A
- Samples 2-1 through 2-6 were processed by heating at 255° C. for 15 seconds.
- Samples 2-7 through 2-9 were processed by heating at 255° C. for 25 seconds.
- Photothermographic formulations were prepared as described above but incorporating the indicated amounts of stabilizer compounds I-1, I-4, I-5 into 40 g aliquots of emulsion along with only 25% of the amount of Antifoggant A (AF-A) normally added to the formulation.
- a comparative sample incorporating compound C-3 was also prepared. Some formulations were coated, dried, and imaged immediately after preparation. Other formulations were stored for 24 hr after preparation before coating, drying, and imaging.
- Samples 3-1 through 3-9 were processed by heating at 255° C. for 15 seconds.
- Samples 3-10 through 3-18 were processed by heating at 255° C. for 25 seconds.
- Photothermographic formulations were prepared as described above but incorporating various amounts of stabilizer compounds I-1, I-3, I-5 and I-6 into 40 g aliquots of photothermographic emulsion along with only 25% of the amount of Antifoggant A (AF-A) normally added to the emulsion.
- a comparative sample incorporating compound C-2 was also prepared. Some formulations were coated, dried, and imaged immediately after preparation. Other formulations were stored for 24 hr after preparation before coating, drying, and imaging.
- Samples 4-1 through 3-10 were processed by heating at 255° C. for 15 seconds.
- Samples 4-11 through 3-20 were processed by heating at 255° C. for 25 seconds.
- Photothermographic formulations were prepared as described above incorporating various amounts of compound I-1 into 300 g of photothermographic emulsion. In these samples, no Pr-01 was incorporated in the topcoat solution. The photothermographic formulation and topcoat solution were coated and dried as described above. Sensitometry strips of the photothermographic element were prepared, imaged, and developed. The strips were then mounted on a Picker light box with the Dmax side of the strip near the clip. The strips were left on the light box for 11 days. Densitometry measurements were made in the Dmin region of the strip, approximately 5 in (12.7 cm) down from the clip. Measurements were made on a custom built computer scanned densitometer using a blue filter and are believed to be comparable to measurements made by commercially available densitometers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Abstract
Description
______________________________________ Material Amount ______________________________________ MMBI 0.14 g Sensitizing Dye-1 0.0067 g CBBA 2.61 g Methanol 5.000 g ______________________________________
______________________________________ Sample Stabilizer Pot Time Dmin Dmax Speed-2 ______________________________________ 1-1 none initial 0.206 4.325 1.993 1-2 none 24 hr 0.209 4.434 1.945 1-3 0.15 g I-1 initial 0.199 4.309 1.960 1-4 0.15 g I-1 24 hr 0.199 4.303 1.918 1-5 0.4 g I-3 initial 0.197 4.020 1.972 1-6 0.4 g I-3 24 hr 0.199 4.187 1.919 1-7 none initial 0.235 4.103 2.083 1-8 none 24 hr 0.247 4.364 2.064 1-9 0.15 g I-1 initial 0.220 4.076 2.091 1-10 0.15 g I-1 24 hr 0.221 4.168 2.085 1-11 0.4 g I-3 initial 0.214 3.993 2.068 1-12 0.4 g I-3 24 hr 0.216 4.041 3.013 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 1-1 6.657 6.891 5.930 0.193 1.181 1-2 6.528 7.751 4.334 0.217 1.129 1-3 6.558 7.897 8.723 0.179 1.210 1-4 6.652 7.474 7.146 0.209 1.164 1-5 6.928 7.631 4.782 0.183 1.223 1-6 7.061 9.144 2.799 0.204 1.183 1-7 5.040 4.740 3.214 0.222 1.124 1-8 5.157 5.022 4.390 0.210 2.267 1-9 5.725 5.255 4.368 0.199 1.175 1-10 5.307 5.319 4.029 0.208 1.151 1-11 5.368 5.291 3.855 0.190 1.210 1-12 5.217 5.172 4.111 0.195 1.168 ______________________________________
______________________________________ Sample Antifoggant Pot Time Dmin Dmax Speed-2 ______________________________________ 2-1 AF-A 100% initial 0.206 4.325 1.993 2-2 AF-A 100% 24 hr 0.209 4.434 1.945 2-3 AF-A 25% initial 0.197 4.267 1.884 2-4 AF-A 25% 24 hr 0.198 4.198 1.797 2-5 AF-A 10% initial 0.203 4.252 1.956 2-6 AF-A 10% 24 hr 0.207 4.147 1.888 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 2-1 6.657 6.891 5.930 0.193 1.181 2-2 6.528 7.751 4.334 0.217 1.129 2-3 5.963 7.086 6.314 0.206 1.162 2-4 5.800 6.449 5.815 0.228 1.154 2-5 5.939 7.369 5.493 0.237 1.127 2-6 5.758 7.079 6.009 0.215 1.666 ______________________________________ Sample Antifoggant Pot Time Dmin Dmax Speed-2 ______________________________________ 2-7 AF-A 100% initial 0.235 4.103 2.083 2-8 AF-A 25% initial 0.228 4.017 2.054 2-9 AF-A 10% initial 0.248 4.135 2.092 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 2-7 5.040 4.740 3.214 0.222 1.124 2-8 6.183 5.753 3.169 0.204 1.141 2-9 6.734 5.793 3.252 0.239 1.055 ______________________________________
______________________________________ Sample Stabilizer Pot Time Dmin Dmax Speed-2 ______________________________________ 3-1 None initial 0.217 4.375 2.082 3-2 None 24 hr 0.226 4.546 2.075 3-3 30 mg I-1 initial 0.196 3.895 1.953 3-4 90 mg I-3 initial 0.204 4.133 2.001 3-5 134 mg I-4 initial 0.202 4.242 1.979 3-6 130 mg I-5 initial 0.200 3.861 2.035 3-7 130 mg I-5 24 hr 0.203 3.751 1.964 3-8 117 mg I-6 initial 0.198 3.491 2.017 3-9 90 mg C-3 initial 0.226 3.829 2.122 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 3-1 6.301 8.043 6.499 0.285 1.054 3-2 6.312 7.787 7.549 0.260 1.076 3-3 5.618 6.336 4.858 0.221 1.159 3-4 5.898 6.661 6.583 0.205 1.155 3-5 6.167 7.078 9.936 0.215 1.150 3-6 5.952 6.439 3.295 0.203 1.188 3-7 6.204 7.021 6.471 0.199 1.195 3-8 5.899 5.960 2.746 0.221 1.157 3-9 6.718 6.247 2.802 0.222 1.137 ______________________________________ Sample Stabilizer Pot Time Dmin Dmax Speed-2 ______________________________________ 3-10 None initial 0.292 4.124 2.211 3-11 None 24 hr 0.329 4.391 2.205 3-12 30 mg I-1 initial 0.241 3.652 2.135 3-13 90 mg I-3 initial 0.287 3.824 2.129 3-14 134 mg I-4 initial 0.245 4.031 2.135 3-15 130 mg I-5 initial 0.249 3.920 2.160 3-16 130 mg I-5 24 hr 0.260 3.952 2.112 3-17 117 mg I-6 initial 0.240 3.474 2.175 3-18 90 mg C-3 initial 0.316 3.658 2.230 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 3-10 6.211 5.547 3.215 0.252 1.070 3-11 5.952 5.175 3.718 0.241 1.052 3-12 6.192 4.956 2.658 0.261 1.083 3-13 5.779 4.690 3.161 0.203 1.052 3-14 6.602 5.940 3.209 0.248 1.049 3-15 5.109 4.616 3.610 0.228 1.140 3-16 5.200 4.448 5.767 0.226 1.134 3-17 4.785 4.021 2.147 0.260 1.071 3-18 4.159 3.701 7.863 0.224 1.130 ______________________________________
______________________________________ Sample Stabilizer Pot Time Dmin Dmax Speed-2 ______________________________________ 4-1 None initial 0.223 4.206 2.042 4-2 None 24 hr 0.220 4.267 2.014 4-3 35 mg I-1 initial 0.198 3.973 1.920 4-4 35 mg I-1 24 hr 0.198 3.986 1.855 4-5 70 mg I-1 initial 0.198 4.011 1.935 4-6 70 mg I-3 initial 0.205 4.025 1.978 4-7 90 mg I-3 initial 0.203 3.951 1.950 4-8 97 mg I-5 initial 0.204 4.037 2.016 4-9 117 mg I-6 initial 0.201 3.568 2.004 4-10 102 mg C-2 initial 0.216 4.082 2.043 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 4-1 6.371 7.560 5.321 0.235 1.121 4-2 6.140 7.342 6.323 0.217 1.120 4-3 5.984 6.615 5.622 0.227 1.145 3-4 5.173 7.109 9.703 0.251 1.115 3-5 5.919 6.961 5.741 0.225 1.156 3-6 5.726 6.928 4.312 0.227 1.137 3-7 5.843 7.155 4.674 0.217 1.153 3-8 6.412 7.675 4.718 0.215 1.172 3-9 6.038 6.245 3.963 0.167 1.243 4-10 6.193 6.837 4.224 0.194 1.179 ______________________________________ Sample Stabilizer Pot Time Dmin Dmax Speed-2 ______________________________________ 4-11 None initial 0.300 4.086 2.184 4-12 None 24 hr 0.332 4.328 2.166 4-13 35 mg I-1 initial 0.231 3.782 2.075 4-14 35 mg I-1 24 hr 0.243 3.969 2.060 4-15 70 mg I-1 initial 0.245 4.114 2.109 4-16 70 mg I-3 initial 0.278 4.045 2.113 4-17 90 mg I-3 initial 0.277 3.935 2.104 4-18 97 mg I-5 initial 0.253 3.930 2.148 4-19 117 mg I-6 initial 0.240 3.530 2.138 4-20 102 mg C-2 initial 0.300 4.019 2.180 ______________________________________ Sample AC-1 AC-2 AC-3 TC-1 TC-2 ______________________________________ 4-11 4.828 4.508 3.293 0.283 1.040 4-12 5.188 4.766 4.66 0.185 1.075 4-13 6.140 5.860 2.390 0.177 1.138 3-14 6.382 5.967 2.702 0.248 1.089 3-15 6.819 5.944 3.884 0.212 1.120 3-16 5.115 4.538 3.339 0.159 1.064 3-17 5.180 4.626 2.941 0.234 1.093 3-18 5.523 4.689 6.443 0.230 1.115 3-19 4.902 4.246 2.241 0.232 1.132 4-20 4.817 4.283 3.226 0.254 1.091 ______________________________________
______________________________________ Picker Light Box Light Level Temp. Location (foot candles) ° F. ______________________________________ Under Clip 119 +/- 2 1/2 inch down from clip 475 +/- 50 110 +/- 2 3 inches down from clip 700 +/- 50 105 +/- 2 8 inches down from clip 850 +/- 50 101 +/- 2 ______________________________________
______________________________________ Amount of Stabilizer Delta Dmin AF-A Compound 11 Days ______________________________________ 100% AF-A None 0.848 100% AF-A 0.15 g I-1 0.943 25% AF-A 0.20 g I-1 0.133 25% AF-A 0.35 g I-1 0.069 10% AF-A 0.35 g I-1 0.083 ______________________________________
Claims (19)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/329,693 US6083681A (en) | 1999-06-10 | 1999-06-10 | Stabilizer compounds for photothermographic elements |
EP00201897A EP1059561A1 (en) | 1999-06-10 | 2000-05-29 | Stabilizer compounds for photothermographic elements |
JP2000177139A JP2001013627A (en) | 1999-06-10 | 2000-06-08 | Stabilizer compound for photothermographic element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/329,693 US6083681A (en) | 1999-06-10 | 1999-06-10 | Stabilizer compounds for photothermographic elements |
Publications (1)
Publication Number | Publication Date |
---|---|
US6083681A true US6083681A (en) | 2000-07-04 |
Family
ID=23286581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/329,693 Expired - Fee Related US6083681A (en) | 1999-06-10 | 1999-06-10 | Stabilizer compounds for photothermographic elements |
Country Status (3)
Country | Link |
---|---|
US (1) | US6083681A (en) |
EP (1) | EP1059561A1 (en) |
JP (1) | JP2001013627A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458525B1 (en) * | 1999-11-11 | 2002-10-01 | Konica Corporation | Preparation method of photothermographic material |
US6610469B2 (en) | 2001-01-16 | 2003-08-26 | Fuji Photo Film, Co., Ltd. | Photothermographic material |
US6620577B1 (en) | 2002-02-25 | 2003-09-16 | Eastman Kodak Company | High speed photothermographic materials containing selenium compounds and methods of using same |
US20060141403A1 (en) * | 2004-12-29 | 2006-06-29 | Eastman Kodak Company | Blocked aliphatic thiol stabilizers for photothermographic materials |
WO2017123444A1 (en) | 2016-01-15 | 2017-07-20 | Carestream Health, Inc. | Method of preparing silver carboxylate soaps |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1906235A4 (en) | 2005-07-20 | 2008-07-30 | Konica Minolta Med & Graphic | Image forming method |
US7504200B2 (en) | 2007-02-02 | 2009-03-17 | Konica Minolta Medical & Graphic, Inc. | Photothermographic material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5460938A (en) * | 1993-06-08 | 1995-10-24 | Minnesota Mining And Manufacturing Company | Photothermographic materials |
US5686228A (en) * | 1996-07-25 | 1997-11-11 | Imation Corp. | Substituted propenitrile compounds as antifoggants for black-and-white photothermographic and thermographic elements |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58193541A (en) * | 1982-05-07 | 1983-11-11 | Konishiroku Photo Ind Co Ltd | Heat developable image recording material |
US5464738A (en) * | 1995-01-06 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Sulfonyl hydrazide developers for photothermographic and thermographic elements |
-
1999
- 1999-06-10 US US09/329,693 patent/US6083681A/en not_active Expired - Fee Related
-
2000
- 2000-05-29 EP EP00201897A patent/EP1059561A1/en not_active Withdrawn
- 2000-06-08 JP JP2000177139A patent/JP2001013627A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5460938A (en) * | 1993-06-08 | 1995-10-24 | Minnesota Mining And Manufacturing Company | Photothermographic materials |
US5686228A (en) * | 1996-07-25 | 1997-11-11 | Imation Corp. | Substituted propenitrile compounds as antifoggants for black-and-white photothermographic and thermographic elements |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458525B1 (en) * | 1999-11-11 | 2002-10-01 | Konica Corporation | Preparation method of photothermographic material |
US6610469B2 (en) | 2001-01-16 | 2003-08-26 | Fuji Photo Film, Co., Ltd. | Photothermographic material |
US6620577B1 (en) | 2002-02-25 | 2003-09-16 | Eastman Kodak Company | High speed photothermographic materials containing selenium compounds and methods of using same |
US20060141403A1 (en) * | 2004-12-29 | 2006-06-29 | Eastman Kodak Company | Blocked aliphatic thiol stabilizers for photothermographic materials |
WO2006071585A1 (en) * | 2004-12-29 | 2006-07-06 | Carestream Health, Inc. | Blocked aliphatic thiol stabilizers for photothermographic materials |
US7169543B2 (en) | 2004-12-29 | 2007-01-30 | Eastman Kodak Company | Blocked aliphatic thiol stabilizers for photothermographic materials |
WO2017123444A1 (en) | 2016-01-15 | 2017-07-20 | Carestream Health, Inc. | Method of preparing silver carboxylate soaps |
Also Published As
Publication number | Publication date |
---|---|
EP1059561A1 (en) | 2000-12-13 |
JP2001013627A (en) | 2001-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0914628B1 (en) | Black-and-white photothermographic and thermographic elements containing substituted propenenitrile compounds as antifoggants | |
EP0852026B1 (en) | Black-and-white photothermographic and thermographic elements comprising acrylonitrile compounds as co-developers | |
EP0886805B1 (en) | Black-and-white photothermographic and thermographic elements comprising 4-substituted isoxazole compounds as co-developers | |
US5496695A (en) | Hydrazide compounds useful as co-developers for black-and-white photothermographic elements | |
EP0852024B1 (en) | Black-and-white photothermographic and thermographic elements comprising hydrogen atom donor compounds as contrast enhancers | |
US5654130A (en) | 2-substituted malondialdehyde compounds as co-developers for black-and-white photothermographic and thermographic elements | |
US5558983A (en) | N-acyl-hydrazine compounds as contrast enhancers for black-and-white photothermographic and thermographic elements | |
US5635339A (en) | 3-heteroaramatic-substituted acrylonitrile compounds as co-developers for black-and-white photothermographic and thermographic elements | |
EP0852027B1 (en) | Black-and-white photothermographic and thermographic elements comprising amine compounds as contrast enhancers | |
EP0852028B1 (en) | Black-and-white photothermographic and thermographic elements comprising hydroxamic acid compounds as contrast enhancers | |
US6171767B1 (en) | 1-sulfonyl-1H-benzotriazole compounds as print stabilizers in photothermographic elements | |
EP0974073B1 (en) | Chemical sensitization of photothermographic silver halide emulsions | |
EP0993626B1 (en) | Photothermographic element with iridium and copper doped silver halide grains | |
US6083681A (en) | Stabilizer compounds for photothermographic elements | |
US6387605B1 (en) | Co-developers for black-and-white photothermographic elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LYNCH, DOREEN C.;SKOUG, PAUL G.;KONG, STEVEN H.;REEL/FRAME:010028/0459 Effective date: 19990604 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CREDIT SUISSE, CAYMAN ISLANDS BRANCH, AS ADMINISTR Free format text: FIRST LIEN OF INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:CARESTREAM HEALTH, INC.;REEL/FRAME:019649/0454 Effective date: 20070430 Owner name: CREDIT SUISSE, CAYMAN ISLANDS BRANCH, AS ADMINISTR Free format text: SECOND LIEN INTELLECTUAL PROPERTY SECURITY AGREEME;ASSIGNOR:CARESTREAM HEALTH, INC.;REEL/FRAME:019773/0319 Effective date: 20070430 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CARESTREAM HEALTH, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:020741/0126 Effective date: 20070501 Owner name: CARESTREAM HEALTH, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:020756/0500 Effective date: 20070501 Owner name: CARESTREAM HEALTH, INC.,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:020741/0126 Effective date: 20070501 Owner name: CARESTREAM HEALTH, INC.,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EASTMAN KODAK COMPANY;REEL/FRAME:020756/0500 Effective date: 20070501 |
|
AS | Assignment |
Owner name: CARESTREAM HEALTH, INC., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (FIRST LIEN);ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:026069/0012 Effective date: 20110225 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:CARESTREAM HEALTH, INC.;CARESTREAM DENTAL, LLC;QUANTUM MEDICAL IMAGING, L.L.C.;AND OTHERS;REEL/FRAME:026269/0411 Effective date: 20110225 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20120704 |
|
AS | Assignment |
Owner name: TROPHY DENTAL INC., GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:061681/0380 Effective date: 20220930 Owner name: QUANTUM MEDICAL HOLDINGS, LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:061681/0380 Effective date: 20220930 Owner name: QUANTUM MEDICAL IMAGING, L.L.C., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:061681/0380 Effective date: 20220930 Owner name: CARESTREAM DENTAL, LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:061681/0380 Effective date: 20220930 Owner name: CARESTREAM HEALTH, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:061681/0380 Effective date: 20220930 |