US5884138A - Method for improving the stiffness of extrudates - Google Patents
Method for improving the stiffness of extrudates Download PDFInfo
- Publication number
- US5884138A US5884138A US08/869,162 US86916297A US5884138A US 5884138 A US5884138 A US 5884138A US 86916297 A US86916297 A US 86916297A US 5884138 A US5884138 A US 5884138A
- Authority
- US
- United States
- Prior art keywords
- mixture
- carbon dioxide
- extruder
- extrudate
- mixtures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000000203 mixture Substances 0.000 claims abstract description 60
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 35
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 33
- 239000011230 binding agent Substances 0.000 claims abstract description 18
- 238000001125 extrusion Methods 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000008135 aqueous vehicle Substances 0.000 claims abstract description 5
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 239000002808 molecular sieve Substances 0.000 claims description 9
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000002241 glass-ceramic Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 241000264877 Hippospongia communis Species 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 229920003086 cellulose ether Polymers 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical class O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- -1 eg. Substances 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- 229910052747 lanthanoid Inorganic materials 0.000 description 4
- 150000002602 lanthanoids Chemical class 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229920003091 Methocel™ Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 3
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 3
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 3
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 3
- 229910052863 mullite Inorganic materials 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 102220076896 rs767072861 Human genes 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 229920003108 Methocel™ A4M Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- RPZANUYHRMRTTE-UHFFFAOYSA-N 2,3,4-trimethoxy-6-(methoxymethyl)-5-[3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxyoxane;1-[[3,4,5-tris(2-hydroxybutoxy)-6-[4,5,6-tris(2-hydroxybutoxy)-2-(2-hydroxybutoxymethyl)oxan-3-yl]oxyoxan-2-yl]methoxy]butan-2-ol Chemical compound COC1C(OC)C(OC)C(COC)OC1OC1C(OC)C(OC)C(OC)OC1COC.CCC(O)COC1C(OCC(O)CC)C(OCC(O)CC)C(COCC(O)CC)OC1OC1C(OCC(O)CC)C(OCC(O)CC)C(OCC(O)CC)OC1COCC(O)CC RPZANUYHRMRTTE-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910000502 Li-aluminosilicate Inorganic materials 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QRRWWGNBSQSBAM-UHFFFAOYSA-N alumane;chromium Chemical compound [AlH3].[Cr] QRRWWGNBSQSBAM-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000007833 carbon precursor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28042—Shaped bodies; Monolithic structures
- B01J20/28045—Honeycomb or cellular structures; Solid foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2003—Glass or glassy material
- B01D39/2006—Glass or glassy material the material being particulate
- B01D39/2013—Glass or glassy material the material being particulate otherwise bonded, e.g. by resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2027—Metallic material
- B01D39/2031—Metallic material the material being particulate
- B01D39/2037—Metallic material the material being particulate otherwise bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
- B01D39/2072—Other inorganic materials, e.g. ceramics the material being particulate or granular
- B01D39/2079—Other inorganic materials, e.g. ceramics the material being particulate or granular otherwise bonded, e.g. by resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/066—Tubular membrane modules with a porous block having membrane coated passages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2803—Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28042—Shaped bodies; Monolithic structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1115—Making porous workpieces or articles with particular physical characteristics comprising complex forms, e.g. honeycombs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/22—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
- B22F3/222—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by freeze-casting or in a supercritical fluid
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0006—Honeycomb structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/219—Specific solvent system
- B01D2323/225—Use of supercritical fluids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00129—Extrudable mixtures
Definitions
- This invention relates to a method of producing extruded structures from highly filled inorganic powder mixtures in which supercritical and/or liquid carbon dioxide is homogeneously blended as part of the mixture in the extruder.
- the carbon dioxide so utilized serves as a diluent in the mixture in the extruder reducing the viscosity of the mixture, making it softer.
- the carbon dioxide flashes off, leaving stiff extrudate.
- the extrudate is stiffer than would be possible without the carbon dioxide. Moreover the increase in stiffness is accomplished without increasing the extrusion pressure.
- Powder mixtures having a cellulose ether binder are used in forming articles of various shapes.
- ceramic or metal powder mixtures are formed into honeycombs which are used as substrates in catalytic and adsorption applications.
- the mixtures must be well blended and homogeneous in order for the resulting shaped body to have good integrity in size and shape and uniform physical properties.
- the mixtures have organic additives in addition to the binders. These additives can be surfactants, lubricants, and dispersants and function as processing aids to enhance wetting thereby producing a uniform batch.
- a major and ongoing need in extrusion of bodies from highly filled powder mixtures, especially multicellular bodies such as honeycombs is to extrude a stiffer body without causing higher pressures.
- the need is becoming increasingly critical as thinner walled cellular structures are becoming more in demand for various applications.
- Thin walled products with current technology are extremely difficult to handle without causing shape distortion. Rapid-setting characteristics are important for honeycomb substrates. If the cell walls of the honeycomb can be solidified quickly after forming, the dimension of the greenware will not be altered in subsequent cutting and handling steps. This is especially true for a fragile thin-walled or complex shaped product, or a product having a large frontal area.
- the present invention fills the need for rapid setting of extruded bodies which is especially beneficial for thin walled honeycombs.
- the improvement involves homogeneously blending in the extruder as part of the mixture, carbon dioxide in the supercritical and/or liquid form, to lower the viscosity of the mixture and produce an extrudate that is stiffer in a shorter time than it would be, absent the carbon dioxide, without increasing the extrusion pressure.
- This invention relates to a method for rapid stiffening of extrudates formed from highly filled plasticized inorganic powder mixtures having a plasticizing polymeric organic binder, such as certain cellulose ethers, carried in an aqueous vehicle.
- a plasticizing polymeric organic binder such as certain cellulose ethers
- Carbon dioxide is blended in and becomes part of the extrusion mixture in the extruder.
- the carbon dioxide is in the form of either supercritical carbon dioxide or liquid carbon dioxide, or combinations of these forms.
- the environment of the mixture must be controlled under conditions of temperature and pressure suitable for maintaining the carbon dioxide in the desired form.
- the extruder must be maintained at about 88° F. and about 1100 PSIA, the critical temperature being about 87.8° F., and critical pressure being about 1066.3 PSIA.
- carbon dioxide exists as liquid carbon dioxide, and at even lower temperatures and pressures it exists in the solid state.
- the physical states of carbon dioxide at various temperatures and pressures are given in a Temperature--Entropy Diagram, Form 6244 copyright 1974, by Liquid Carbonic Industries Corporation, Chicago, Ill.
- Typical powders are inorganics such as metal, ceramic, glass ceramic, glass, and molecular sieve, or combinations of these.
- the invention is especially suitable for use with metal powders.
- Metal powder mixtures generally have less vehicle than other, e.g. ceramic mixtures and the stiffening effects are therefore more pronounced than with mixtures having more vehicle.
- any sinterable metal or metal composition can be used in the practice of the present invention.
- iron group metal, chromium, and aluminum compositions with the preferred iron group metal being iron.
- Fe, Al, and Cr are especially preferred.
- Fe5-20Al5-40Cr, and Fe7-10Al10-20Cr powders with other possible additions are especially suited.
- Some typical compositions of metal powders are disclosed in U.S. Pat. Nos. 4,992,233, 4,758,272, and 5,427,601 which are herein incorporated by reference as filed.
- U.S. Pat. No. 4,992,233 relates to methods of producing porous sintered bodies made from metal powder compositions of Fe and Al with optional additions of Sn, Cu, and Cr.
- Pat. No. 5,427,601 relates to porous sintered bodies having a composition consisting essentially of in percent by weight about 5 to about 40 chromium, about 2 to about 30 aluminum, 0 to about 5 of special metal, 0 to about 4 of rare earth oxide additive and the balance being iron group metal, and unavoidable impurities such as eg., Mn or Mo, with the preferred iron group metal being iron.
- the special metal is at least one of Y, lanthanides, Zr, Hf, Ti, Si, alkaline earth metal, B, Cu, and Sn.
- the special metal is at least one of Y, lanthanides, Zr, Hf, Ti, Si, and B, with optional additions of alkaline earths, Cu, and Sn.
- the metal and/or metal alloy powders and optionally rare earth oxide powders are mixed in amounts to result in the body having the desired composition.
- the starting metal powders are iron, cobalt, nickel, chromium, aluminum metals, and special metal powders, if they are to be used.
- the metal can be supplied in either the unalloyed form or alloyed with one or more of the other metals, or partially unalloyed and partially alloyed. Most typically, however, the iron, when added as the balance, is in the elemental form.
- the chromium can be elemental or alloyed with aluminum or iron. Chromium-aluminum alloy is preferable.
- the aluminum is supplied alloyed with iron and/or chromium for stability.
- Some typical alloy powders that can be used in formulating the mix to yield a body having some typical compositions of the present invention are Fe--Cr--Al--(Y, lanthanide series elements, Zr, Hf, or Cu) alloy powder, Cr--A--(Y, lanthanide series elements, Zr, Hf, or Cu) alloy powder, Fe--B, Fe--Si powder, etc.
- the powder material is fine powder (in contrast to coarse grained materials) some components of which can either impart plasticity, such as clays, when mixed with a vehicle such as water, or which when combined with the organic binder can contribute to plasticity.
- ceramic, glass ceramic and glass ceramic powders are meant those materials as well as their pre-fired precursors.
- combinations is meant physical or chemical combinations, eg., mixtures or composites.
- these powder materials are cordierite, mullite, clay, talc, zircon, zirconia, spinel, aluminas and their precursors, silicas and their precursors, silicates, aluminates, lithium aluminosilicates, alumina silica, feldspar, titania, fused silica, nitrides, carbides, borides, eg., silicon carbide, silicon nitride, soda lime, aluminosilicate, borosilicate, soda barium borosilicate or mixtures of these, as well as others.
- Ceramic materials such as those that yield cordierite, mullite, or mixtures of these on firing, some examples of such mixtures being, for example, about 55% to about 60% mullite, and about 30% to about 45% cordierite, with allowance for other phases, typically up to about 10% by weight.
- Some ceramic batch material compositions for forming cordierite that are especially suited to the practice of the present invention are those disclosed in U.S. Pat. No. 3,885,977 which is herein incorporated by reference as filed.
- one composition which ultimately forms cordierite upon firing is as follows in percent by weight, although it is to be understood that the invention is not limited to such: about 33 to about 41, and most preferably about 34 to about 40 of aluminum oxide, about 46 to about 53 and most preferably about 48 to about 52 of silica, and about 11 to about 17 and most preferably about 12 to about 16 magnesium oxide.
- the powders can be synthetically produced materials such as oxides, hydroxides, etc, or they can be naturally occurring minerals such as clays, talcs, or any combination of these.
- the invention is not limited to the types of powders or raw materials. These can be chosen depending on the properties desired in the body.
- the particle size is given as median particle diameter by Sedigraph analysis, and the surface area is given as N 2 BET surface area.
- Some types of clay are non-delaminated kaolinite raw clay, having a particle size of about 7-9 micrometers, and a surface area of about 5-7 m 2 /g, such as Hydrite MPTM, those having a particle size of about 2-5 micrometers, and a surface area of about 10-14 m 2 /g, such as Hydrite PXTM, delaminated kaolinite having a particle size of about 1-3 micrometers, and a surface area of about 13-17 m 2 /g, such as KAOPAQUE-10TM (K10), calcined clay, having a particle size of about 1-3 micrometers, and a surface area of about 6-8 m 2 /g, such as Glomax LL. All of the above named materials are sold by Dry Branch Kaolin, Dry Branch, Ga.
- talc Some typical kinds of talc are those having a surface area of about 5-8 m 2 /g, such as supplied by Barretts Minerals, under the designation MB 96-67.
- Some typical aluminas are coarse aluminas, for example, Alcan C-700 series, such as those having a particle size of about 4-6 micrometers, and a surface area of about 0.5-1 m 2 /g, eg., C-701TM, fine alumina having a particle size of about 0.5-2 micrometers, and a surface area of about 8-11 m 2 /g, such as A-16SG from Alcoa.
- coarse aluminas for example, Alcan C-700 series, such as those having a particle size of about 4-6 micrometers, and a surface area of about 0.5-1 m 2 /g, eg., C-701TM, fine alumina having a particle size of about 0.5-2 micrometers, and a surface area of about 8-11 m 2 /g, such as A-16SG from Alcoa.
- silica having a particle size of about 9-11 micrometers, and a surface area of about 4-6 m 2 /g, such as IMSILTM sold by Unimin Corporation.
- a burnout agent is any particulate substance (not a binder) that burns out of the green body in the firing step.
- Some examples are graphite, cellulose, flour, etc. Elemental particulate carbon is preferred.
- Graphite is especially preferred because it has the least adverse effect on the processing. In an extrusion process, for example, the rheology of the mixture is good when graphite is used.
- the amount of graphite is about 10% to about 30%, and more typically about 15% to about 30% by weight based on the powder material.
- Molecular sieves are crystalline substances having pores of size suitable for adsorbing molecules.
- the molecular sieve can be in the crystallized form or in the ammonium form or hydrogen form, or ion-exchanged with or impregnated with a cation.
- the molecular sieves can be provided in ion exchanged form or impregnated with cations either before forming into a body or after the product body has formed.
- the ion-exchange and impregnation methods are well known processes. Such treatments are within the scope of this invention.
- Some types of molecular sieves which are preferred for the practice of the present invention are carbon molecular sieves, zeolites, metallophosphates, silicoaluminophosphates, and combinations of these. Carbon molecular sieves have well defined micropores made out of carbon material.
- the molecular sieves that are especially suited to the invention are the zeolites.
- Some suitable zeolites are pentasil, such as ZSM-5, Y, such as ultrastable Y, beta, mordenite, X, such as 13X, or mixtures thereof.
- the invention is also suited for mixtures that contain activated carbon or carbon precursors, e.g. thermosetting resins, that can be later activated.
- activated carbon or carbon precursors e.g. thermosetting resins
- the organic binder contributes to the plasticity of the mixture for shaping into a body.
- the plasticizing organic binder according to the present invention refers to cellulose ether binders.
- Some typical organic binders according to the present invention are methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof.
- Methylcellulose and/or methylcellulose derivatives are especially suited as organic binders in the practice of the present invention with methylcellulose, hydroxypropyl methylcellulose, or combinations of these being preferred.
- Methocel A4M is a methylcellulose binder having a thermal gel point of about 50° C., and a gel strength of 5000 g/cm 2 (based on a 2% solution at 65° C.).
- Methocel F4M, F240, and K75M are hydroxypropyl methylcellulose.
- Methocels F4M and F240 have thermal gel points of about 54° C.
- Methocel K75M has a gel point of about 70° C. (all based on a 2% solution in water).
- the organic binder makes up typically about 2-12% by weight, and more typically about 2-4% by weight of the mixture.
- the mixture can contain other additives such as surfactants, lubricants, dispersants, or other extrusion aids, usually up to about 4% by weight, typically about 1% to 4% by weight of the mixture.
- additives such as surfactants, lubricants, dispersants, or other extrusion aids
- the aqueous vehicle content which is typically water, can vary depending on the type of materials to impart optimum handling properties and compatibility with other components in the mixture.
- the vehicle content is less than it would be if the carbon dioxide were not used.
- the amount of water can be reduced by as much as 15%.
- a water content of typically about 29% to about 32% by weight without the CO 2 addition would be reduced to about 27% to 28% by weight or lower if feasible.
- the mixtures are highly filled.
- highly filled mixtures is meant a high solid to liquid content in the mixture.
- the powder material content in the mixture is typically at least about 45% by volume, and most typically at least about 55% by volume.
- the extruder must be one in which the mixture components can be uniformly blended with the carbon dioxide.
- two stage de-airing single auger extruder, or a twin screw mixer with a die assembly attached to the discharge end are suitable.
- the proper screw elements are chosen according to material and other process conditions in order to build up sufficient pressure to force the batch material through the die. Extrusion temperatures typically range from room temperature to no higher than about 60° C.
- the carbon dioxide can be introduced into the extruder in any form that is easy to handle.
- dry ice can be introduced into the extruder.
- the mixture in the extruder must be maintained in the pressure and temperature range where supercritical and/or liquid carbon dioxide exists so that any carbon dioxide in the extruder regardless of how it was introduced, will convert to and be maintained as supercritical and/or liquid carbon dioxide.
- Supercritical and/or liquid carbon dioxide serves as a diluent to reduce viscosity to make a softer batch, resulting in lower extrusion pressures than would be possible for a similar batch without those forms of carbon dioxide.
- Softer mixtures of inorganic powders which can be abrasive, extend the life of the extrusion die, even with the more abrasive powders. Also, because the addition of carbon dioxide enables less water to be used, the drying time is reduced from what would be needed without the CO 2 for a given system. At the same time there is a sharp increase in stiffness of the extrudate upon exiting the extrusion die due to the reduction in pressure as the carbon dioxide flashes off the extrudate passes from the extruder environment to ambient atmosphere. The resultant expansion of the carbon dioxide at this point can be controlled by venting at the die exit so as not to cause deformation of the extrudate due to too rapid release of gaseous carbon dioxide.
- the bodies according to the present invention can have any convenient size and shape and the invention is applicable to all processes in which powder mixtures having a cellulose ether binder are extruded and to the products made therefrom.
- the process is especially suited to production of cellular monolith bodies such as honeycombs.
- Cellular bodies find use in a number of applications such as catalyst carriers, electrically heated catalysts, filters such as diesel particulate filters, molten metal filters, regenerator cores, etc.
- honeycombs produced by the process of the present invention are those having about 94 cells/cm 2 (about 600 cells/in 2 ), about 62 cells/cm 2 (about 400 cells/in 2 ), or about 47 cells/cm 2 (about 300 cells/in 2 ), those having about 31 cells/cm 2 (about 200 cells/in 2 ), or those having about 15 cells/cm 2 (about 100 cells/in 2 ).
- Typical wall thicknesses are for example, about 0.15 mm (about 6 mils) for about 62 cells/cm 2 (about 400 cells/in 2 ) honeycombs.
- Wall (web) thicknesses range typically from about 0.1 to about 0.6 mm (about 4 to about 25 mils).
- honeycombs having about 15 to about 30 cells/cm 2 (about 100 to about 200 cells/in 2 ) and about 0.30 to about 0.64 mm (about 12 to about 25 mil) wall thicknesses are especially suited for diesel particulate filter applications. This invention is especially advantageous for honeycombs having very thin walls, e.g. ⁇ 0.13 mm (5 mils).
- the extrudates can then be dried and fired according to known techniques except that drying times will be shorter due to less water in the extrudate.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Structural Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
An improvement in a method of extruding a plasticized inorganic powder mixture having a plasticizing organic binder carried in an aqueous vehicle, by passing the mixture through an extruder and then through a die to produce an extrudate. The improvement involves homogeneously blending in the extruder as part of the mixture, carbon dioxide in the supercritical and/or liquid form, to lower the viscosity of the mixture and produce an extrudate that is stiffer in a shorter time than it would be, absent the carbon dioxide, without increasing the extrusion pressure.
Description
This application claims the benefit of U.S. Provisional Application No. Ser. 60/019,402 filed Jun. 10, 1996, entitled METHOD FOR IMPROVING THE STIFFNESS OF EXTRUDATES, by Devi Chalasani, Ronald E. Johnson and Christopher J. Malarkey.
This invention relates to a method of producing extruded structures from highly filled inorganic powder mixtures in which supercritical and/or liquid carbon dioxide is homogeneously blended as part of the mixture in the extruder. The carbon dioxide so utilized, serves as a diluent in the mixture in the extruder reducing the viscosity of the mixture, making it softer. As the extrudate exits the die, the carbon dioxide flashes off, leaving stiff extrudate. The extrudate is stiffer than would be possible without the carbon dioxide. Moreover the increase in stiffness is accomplished without increasing the extrusion pressure.
Powder mixtures having a cellulose ether binder are used in forming articles of various shapes. For example ceramic or metal powder mixtures are formed into honeycombs which are used as substrates in catalytic and adsorption applications. The mixtures must be well blended and homogeneous in order for the resulting shaped body to have good integrity in size and shape and uniform physical properties. The mixtures have organic additives in addition to the binders. These additives can be surfactants, lubricants, and dispersants and function as processing aids to enhance wetting thereby producing a uniform batch.
A major and ongoing need in extrusion of bodies from highly filled powder mixtures, especially multicellular bodies such as honeycombs is to extrude a stiffer body without causing higher pressures. The need is becoming increasingly critical as thinner walled cellular structures are becoming more in demand for various applications. Thin walled products with current technology are extremely difficult to handle without causing shape distortion. Rapid-setting characteristics are important for honeycomb substrates. If the cell walls of the honeycomb can be solidified quickly after forming, the dimension of the greenware will not be altered in subsequent cutting and handling steps. This is especially true for a fragile thin-walled or complex shaped product, or a product having a large frontal area.
The present invention fills the need for rapid setting of extruded bodies which is especially beneficial for thin walled honeycombs.
In accordance with one aspect of the invention, there is provided an improvement in a method of extruding a plasticized inorganic powder mixture having a plasticizing organic binder carried in an aqueous vehicle, by passing the mixture through an extruder and then through a die to produce an extrudate. The improvement involves homogeneously blending in the extruder as part of the mixture, carbon dioxide in the supercritical and/or liquid form, to lower the viscosity of the mixture and produce an extrudate that is stiffer in a shorter time than it would be, absent the carbon dioxide, without increasing the extrusion pressure.
This invention relates to a method for rapid stiffening of extrudates formed from highly filled plasticized inorganic powder mixtures having a plasticizing polymeric organic binder, such as certain cellulose ethers, carried in an aqueous vehicle.
Carbon dioxide is blended in and becomes part of the extrusion mixture in the extruder. The carbon dioxide is in the form of either supercritical carbon dioxide or liquid carbon dioxide, or combinations of these forms. The environment of the mixture must be controlled under conditions of temperature and pressure suitable for maintaining the carbon dioxide in the desired form. For example, if supercritical carbon dioxide is used, the extruder must be maintained at about 88° F. and about 1100 PSIA, the critical temperature being about 87.8° F., and critical pressure being about 1066.3 PSIA. Just below this temperature and pressure, carbon dioxide exists as liquid carbon dioxide, and at even lower temperatures and pressures it exists in the solid state. The physical states of carbon dioxide at various temperatures and pressures are given in a Temperature--Entropy Diagram, Form 6244 copyright 1974, by Liquid Carbonic Industries Corporation, Chicago, Ill.
Typical powders are inorganics such as metal, ceramic, glass ceramic, glass, and molecular sieve, or combinations of these.
The invention is especially suitable for use with metal powders. Metal powder mixtures generally have less vehicle than other, e.g. ceramic mixtures and the stiffening effects are therefore more pronounced than with mixtures having more vehicle.
Any sinterable metal or metal composition can be used in the practice of the present invention. Especially suited are iron group metal, chromium, and aluminum compositions, with the preferred iron group metal being iron. Especially preferred is Fe, Al, and Cr. For example, Fe5-20Al5-40Cr, and Fe7-10Al10-20Cr powders with other possible additions are especially suited. Some typical compositions of metal powders are disclosed in U.S. Pat. Nos. 4,992,233, 4,758,272, and 5,427,601 which are herein incorporated by reference as filed. U.S. Pat. No. 4,992,233 relates to methods of producing porous sintered bodies made from metal powder compositions of Fe and Al with optional additions of Sn, Cu, and Cr. U.S. Pat. No. 5,427,601 relates to porous sintered bodies having a composition consisting essentially of in percent by weight about 5 to about 40 chromium, about 2 to about 30 aluminum, 0 to about 5 of special metal, 0 to about 4 of rare earth oxide additive and the balance being iron group metal, and unavoidable impurities such as eg., Mn or Mo, with the preferred iron group metal being iron. When rare earth oxide is present, the special metal is at least one of Y, lanthanides, Zr, Hf, Ti, Si, alkaline earth metal, B, Cu, and Sn. When no rare earth oxide is present, the special metal is at least one of Y, lanthanides, Zr, Hf, Ti, Si, and B, with optional additions of alkaline earths, Cu, and Sn.
In general the metal and/or metal alloy powders and optionally rare earth oxide powders are mixed in amounts to result in the body having the desired composition. The starting metal powders are iron, cobalt, nickel, chromium, aluminum metals, and special metal powders, if they are to be used. The metal can be supplied in either the unalloyed form or alloyed with one or more of the other metals, or partially unalloyed and partially alloyed. Most typically, however, the iron, when added as the balance, is in the elemental form. The chromium can be elemental or alloyed with aluminum or iron. Chromium-aluminum alloy is preferable. Typically, the aluminum is supplied alloyed with iron and/or chromium for stability. Some typical alloy powders that can be used in formulating the mix to yield a body having some typical compositions of the present invention are Fe--Cr--Al--(Y, lanthanide series elements, Zr, Hf, or Cu) alloy powder, Cr--A--(Y, lanthanide series elements, Zr, Hf, or Cu) alloy powder, Fe--B, Fe--Si powder, etc.
In general, the powder material is fine powder (in contrast to coarse grained materials) some components of which can either impart plasticity, such as clays, when mixed with a vehicle such as water, or which when combined with the organic binder can contribute to plasticity.
By ceramic, glass ceramic and glass ceramic powders is meant those materials as well as their pre-fired precursors. By combinations is meant physical or chemical combinations, eg., mixtures or composites. Examples of these powder materials are cordierite, mullite, clay, talc, zircon, zirconia, spinel, aluminas and their precursors, silicas and their precursors, silicates, aluminates, lithium aluminosilicates, alumina silica, feldspar, titania, fused silica, nitrides, carbides, borides, eg., silicon carbide, silicon nitride, soda lime, aluminosilicate, borosilicate, soda barium borosilicate or mixtures of these, as well as others.
Especially suited are ceramic materials, such as those that yield cordierite, mullite, or mixtures of these on firing, some examples of such mixtures being, for example, about 55% to about 60% mullite, and about 30% to about 45% cordierite, with allowance for other phases, typically up to about 10% by weight. Some ceramic batch material compositions for forming cordierite that are especially suited to the practice of the present invention are those disclosed in U.S. Pat. No. 3,885,977 which is herein incorporated by reference as filed.
In accordance with a preferred embodiment, one composition which ultimately forms cordierite upon firing is as follows in percent by weight, although it is to be understood that the invention is not limited to such: about 33 to about 41, and most preferably about 34 to about 40 of aluminum oxide, about 46 to about 53 and most preferably about 48 to about 52 of silica, and about 11 to about 17 and most preferably about 12 to about 16 magnesium oxide.
The powders can be synthetically produced materials such as oxides, hydroxides, etc, or they can be naturally occurring minerals such as clays, talcs, or any combination of these. The invention is not limited to the types of powders or raw materials. These can be chosen depending on the properties desired in the body.
Some typical kinds of powder materials are given below. The particle size is given as median particle diameter by Sedigraph analysis, and the surface area is given as N2 BET surface area.
Some types of clay are non-delaminated kaolinite raw clay, having a particle size of about 7-9 micrometers, and a surface area of about 5-7 m2 /g, such as Hydrite MP™, those having a particle size of about 2-5 micrometers, and a surface area of about 10-14 m2 /g, such as Hydrite PX™, delaminated kaolinite having a particle size of about 1-3 micrometers, and a surface area of about 13-17 m2 /g, such as KAOPAQUE-10™ (K10), calcined clay, having a particle size of about 1-3 micrometers, and a surface area of about 6-8 m2 /g, such as Glomax LL. All of the above named materials are sold by Dry Branch Kaolin, Dry Branch, Ga.
Some typical kinds of talc are those having a surface area of about 5-8 m2 /g, such as supplied by Barretts Minerals, under the designation MB 96-67.
Some typical aluminas are coarse aluminas, for example, Alcan C-700 series, such as those having a particle size of about 4-6 micrometers, and a surface area of about 0.5-1 m2 /g, eg., C-701™, fine alumina having a particle size of about 0.5-2 micrometers, and a surface area of about 8-11 m2 /g, such as A-16SG from Alcoa.
One typical kind of silica is that having a particle size of about 9-11 micrometers, and a surface area of about 4-6 m2 /g, such as IMSIL™ sold by Unimin Corporation.
In filter applications, such as in diesel particulate filters, it is customary to include a burnout agent in the mixture in an amount effective to obtain the porosity required for efficient filtering. A burnout agent is any particulate substance (not a binder) that burns out of the green body in the firing step. Some types of burnout agents that can be used, although it is to be understood that the invention is not limited to these, are non-waxy organics that are solid at room temperature, elemental carbon, and combinations of these. Some examples are graphite, cellulose, flour, etc. Elemental particulate carbon is preferred. Graphite is especially preferred because it has the least adverse effect on the processing. In an extrusion process, for example, the rheology of the mixture is good when graphite is used. Typically, the amount of graphite is about 10% to about 30%, and more typically about 15% to about 30% by weight based on the powder material.
Molecular sieves are crystalline substances having pores of size suitable for adsorbing molecules. The molecular sieve can be in the crystallized form or in the ammonium form or hydrogen form, or ion-exchanged with or impregnated with a cation. The molecular sieves can be provided in ion exchanged form or impregnated with cations either before forming into a body or after the product body has formed. The ion-exchange and impregnation methods are well known processes. Such treatments are within the scope of this invention.
Some types of molecular sieves which are preferred for the practice of the present invention are carbon molecular sieves, zeolites, metallophosphates, silicoaluminophosphates, and combinations of these. Carbon molecular sieves have well defined micropores made out of carbon material.
The molecular sieves that are especially suited to the invention are the zeolites. Some suitable zeolites are pentasil, such as ZSM-5, Y, such as ultrastable Y, beta, mordenite, X, such as 13X, or mixtures thereof.
The invention is also suited for mixtures that contain activated carbon or carbon precursors, e.g. thermosetting resins, that can be later activated.
The weight percents of the organic binder and vehicle are calculated as superadditions with respect to the non-organic solids by the following formula: ##EQU1##
The organic binder contributes to the plasticity of the mixture for shaping into a body. The plasticizing organic binder according to the present invention refers to cellulose ether binders. Some typical organic binders according to the present invention are methylcellulose, ethylhydroxy ethylcellulose, hydroxybutyl methylcellulose, hydroxymethylcellulose, hydroxypropyl methylcellulose, hydroxyethyl methylcellulose, hydroxybutylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, sodium carboxy methylcellulose, and mixtures thereof. Methylcellulose and/or methylcellulose derivatives are especially suited as organic binders in the practice of the present invention with methylcellulose, hydroxypropyl methylcellulose, or combinations of these being preferred. Preferred sources of cellulose ethers are Methocel A4M, F4M, F240, and K75M from Dow Chemical Co. Methocel A4M is a methylcellulose binder having a thermal gel point of about 50° C., and a gel strength of 5000 g/cm2 (based on a 2% solution at 65° C.). Methocel F4M, F240, and K75M are hydroxypropyl methylcellulose. Methocels F4M and F240 have thermal gel points of about 54° C. Methocel K75M has a gel point of about 70° C. (all based on a 2% solution in water).
The organic binder makes up typically about 2-12% by weight, and more typically about 2-4% by weight of the mixture.
The mixture can contain other additives such as surfactants, lubricants, dispersants, or other extrusion aids, usually up to about 4% by weight, typically about 1% to 4% by weight of the mixture.
The aqueous vehicle content, which is typically water, can vary depending on the type of materials to impart optimum handling properties and compatibility with other components in the mixture. The vehicle content is less than it would be if the carbon dioxide were not used. For example, with water as a vehicle, the amount of water can be reduced by as much as 15%. As a typical example, and it is to be understood that the present invention is not limited to these values, a water content of typically about 29% to about 32% by weight without the CO2 addition would be reduced to about 27% to 28% by weight or lower if feasible.
The mixtures are highly filled. By highly filled mixtures is meant a high solid to liquid content in the mixture. For example, the powder material content in the mixture is typically at least about 45% by volume, and most typically at least about 55% by volume.
The extruder must be one in which the mixture components can be uniformly blended with the carbon dioxide. Thus two stage de-airing single auger extruder, or a twin screw mixer with a die assembly attached to the discharge end are suitable. In the latter, the proper screw elements are chosen according to material and other process conditions in order to build up sufficient pressure to force the batch material through the die. Extrusion temperatures typically range from room temperature to no higher than about 60° C.
The carbon dioxide can be introduced into the extruder in any form that is easy to handle. For example, dry ice can be introduced into the extruder. However, the mixture in the extruder must be maintained in the pressure and temperature range where supercritical and/or liquid carbon dioxide exists so that any carbon dioxide in the extruder regardless of how it was introduced, will convert to and be maintained as supercritical and/or liquid carbon dioxide. Supercritical and/or liquid carbon dioxide serves as a diluent to reduce viscosity to make a softer batch, resulting in lower extrusion pressures than would be possible for a similar batch without those forms of carbon dioxide. Softer mixtures of inorganic powders which can be abrasive, extend the life of the extrusion die, even with the more abrasive powders. Also, because the addition of carbon dioxide enables less water to be used, the drying time is reduced from what would be needed without the CO2 for a given system. At the same time there is a sharp increase in stiffness of the extrudate upon exiting the extrusion die due to the reduction in pressure as the carbon dioxide flashes off the extrudate passes from the extruder environment to ambient atmosphere. The resultant expansion of the carbon dioxide at this point can be controlled by venting at the die exit so as not to cause deformation of the extrudate due to too rapid release of gaseous carbon dioxide.
The bodies according to the present invention can have any convenient size and shape and the invention is applicable to all processes in which powder mixtures having a cellulose ether binder are extruded and to the products made therefrom. However, the process is especially suited to production of cellular monolith bodies such as honeycombs. Cellular bodies find use in a number of applications such as catalyst carriers, electrically heated catalysts, filters such as diesel particulate filters, molten metal filters, regenerator cores, etc.
Some examples of honeycombs produced by the process of the present invention, although it is to be understood that the invention is not limited to such, are those having about 94 cells/cm2 (about 600 cells/in2), about 62 cells/cm2 (about 400 cells/in2), or about 47 cells/cm2 (about 300 cells/in2), those having about 31 cells/cm2 (about 200 cells/in2), or those having about 15 cells/cm2 (about 100 cells/in2). Typical wall thicknesses are for example, about 0.15 mm (about 6 mils) for about 62 cells/cm2 (about 400 cells/in2) honeycombs. Wall (web) thicknesses range typically from about 0.1 to about 0.6 mm (about 4 to about 25 mils). The external size and shape of the body is controlled by the application, e.g. in automotive applications by engine size and space available for mounting, etc. Honeycombs having about 15 to about 30 cells/cm2 (about 100 to about 200 cells/in2) and about 0.30 to about 0.64 mm (about 12 to about 25 mil) wall thicknesses are especially suited for diesel particulate filter applications. This invention is especially advantageous for honeycombs having very thin walls, e.g. ≦0.13 mm (5 mils).
The extrudates can then be dried and fired according to known techniques except that drying times will be shorter due to less water in the extrudate.
It should be understood that while the present invention has been described in detail with respect to certain illustrative and specific embodiments thereof, it should not be considered limited to such but may be used in other ways without departing from the spirit of the invention and the scope of the appended claims.
Claims (3)
1. In a method of extruding a plasticized inorganic powder mixture having a plasticizing organic binder carried in an aqueous vehicle, by passing the mixture through an extruder and then through a die to produce an extrudate,
the improvement comprising homogeneously blending in the extruder as part of the mixture, carbon dioxide selected from the group consisting of supercritical carbon dioxide, liquid carbon dioxide and combinations thereof, to lower the viscosity of the mixture and produce an extrudate that is stiffer in a shorter time than it would be, absent the carbon dioxide, without increasing the extrusion pressure.
2. The improvement of claim 1 wherein the powder is selected from the group consisting of metal, ceramic, glass, glass-ceramic, molecular sieve, and combinations thereof.
3. The improvement of claim 2 wherein the mixture is extruded into a honeycomb structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/869,162 US5884138A (en) | 1996-06-10 | 1997-06-04 | Method for improving the stiffness of extrudates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1940296P | 1996-06-10 | 1996-06-10 | |
US08/869,162 US5884138A (en) | 1996-06-10 | 1997-06-04 | Method for improving the stiffness of extrudates |
Publications (1)
Publication Number | Publication Date |
---|---|
US5884138A true US5884138A (en) | 1999-03-16 |
Family
ID=26692184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/869,162 Expired - Fee Related US5884138A (en) | 1996-06-10 | 1997-06-04 | Method for improving the stiffness of extrudates |
Country Status (1)
Country | Link |
---|---|
US (1) | US5884138A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935514A (en) * | 1997-01-23 | 1999-08-10 | Corning Incorporated | Method for extrusion of powder mixtures using supercritical fluids |
WO2002047893A1 (en) * | 2000-12-11 | 2002-06-20 | Brunel University | Material processing |
US20030110744A1 (en) * | 2001-12-13 | 2003-06-19 | Gadkaree Kishor P. | Composite cordierite filters |
EP1321279A1 (en) * | 2001-12-17 | 2003-06-25 | Wolfram Lihotzky-Vaupel | Extrusion process and products obtainable therewith |
US6916389B2 (en) | 2002-08-13 | 2005-07-12 | Nanotechnologies, Inc. | Process for mixing particulates |
WO2006034439A2 (en) * | 2004-09-23 | 2006-03-30 | Quantum Fuel Systems Technologies Worldwide, Inc. | Tank seal |
WO2006040536A1 (en) * | 2004-10-14 | 2006-04-20 | Brunel University | Method of processing a polymer coated substrate |
US20070228621A1 (en) * | 2006-03-31 | 2007-10-04 | Massachusetts Institute Of Technology | Ceramic processing and shaped ceramic bodies |
WO2009032197A1 (en) * | 2007-08-31 | 2009-03-12 | Corning Incorporated | Glass-ceramic and glass-ceramic/ceramic composite semiconductor manufacturing article support devices |
WO2009115836A1 (en) * | 2008-03-15 | 2009-09-24 | The Queen's University Of Belfast | Method and apparatus for processing a material by applying a viscosity-reducing agent |
US20100121100A1 (en) * | 2008-11-12 | 2010-05-13 | Daniel Travis Shay | Supported palladium-gold catalysts and preparation of vinyl acetate therewith |
US20110144380A1 (en) * | 2009-12-16 | 2011-06-16 | Daniel Travis Shay | Preparation of palladium-gold catalyst |
WO2011075278A1 (en) | 2009-12-16 | 2011-06-23 | Lyondell Chemical Technology, L.P. | Preparation of palladium-gold catalyst |
US20110190533A1 (en) * | 2010-01-29 | 2011-08-04 | Daniel Travis Shay | Titania-alumina supported palladium catalyst |
US8329611B2 (en) | 2009-12-16 | 2012-12-11 | Lyondell Chemical Technology, L,P. | Titania-containing extrudate |
CN103386310A (en) * | 2012-05-10 | 2013-11-13 | 中国石油化工股份有限公司 | Selective hydrogenation catalyst of dialkene and preparation and application thereof |
CN103418352A (en) * | 2012-05-25 | 2013-12-04 | 中国石油化工股份有限公司 | Molded phosphorus-containing hydrated alumina, preparation method thereof, and molded phosphorus-containing alumina preparation method |
CN103418350A (en) * | 2012-05-17 | 2013-12-04 | 中国石油化工股份有限公司 | Carbon-containing formed hydrated alumina product and preparation method thereof |
CN103480389A (en) * | 2012-06-11 | 2014-01-01 | 中国石油化工股份有限公司 | Catalyst with hydrogenation catalytic effect, preparation method and application thereof and method for hydrogenation treatment of hydrocarbon oil |
CN103480337A (en) * | 2012-06-08 | 2014-01-01 | 中国石油化工股份有限公司 | Hydrate alumina forming product, production method thereof, alumina forming product, applications thereof, catalyst, preparation method thereof, and hydrogenation processing method |
WO2017154544A1 (en) * | 2016-03-09 | 2017-09-14 | 日本碍子株式会社 | Method for producing ceramic molded body |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3885977A (en) * | 1973-11-05 | 1975-05-27 | Corning Glass Works | Anisotropic cordierite monolith |
US4740352A (en) * | 1984-04-12 | 1988-04-26 | Mitsubishi Corporation | Method for the freeze-pressure molding of metallic powders |
US4758272A (en) * | 1987-05-27 | 1988-07-19 | Corning Glass Works | Porous metal bodies |
US4769212A (en) * | 1985-03-29 | 1988-09-06 | Hitachi Metals, Ltd | Process for producing metallic sintered parts |
US4965039A (en) * | 1986-03-31 | 1990-10-23 | The Dow Chemical Company | Method of preparing an aqueous inorganic powder slurry which is extruded and dried to form an inorganic article |
US4992233A (en) * | 1988-07-15 | 1991-02-12 | Corning Incorporated | Sintering metal powders into structures without sintering aids |
US5120559A (en) * | 1991-10-03 | 1992-06-09 | Cornell Research Foundation, Inc. | Extrusion processing with supercritical fluids |
US5427601A (en) * | 1990-11-29 | 1995-06-27 | Ngk Insulators, Ltd. | Sintered metal bodies and manufacturing method therefor |
US5678165A (en) * | 1995-12-06 | 1997-10-14 | Corning Incorporated | Plastic formable mixtures and method of use therefor |
-
1997
- 1997-06-04 US US08/869,162 patent/US5884138A/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3885977A (en) * | 1973-11-05 | 1975-05-27 | Corning Glass Works | Anisotropic cordierite monolith |
US4740352A (en) * | 1984-04-12 | 1988-04-26 | Mitsubishi Corporation | Method for the freeze-pressure molding of metallic powders |
US4769212A (en) * | 1985-03-29 | 1988-09-06 | Hitachi Metals, Ltd | Process for producing metallic sintered parts |
US4913737A (en) * | 1985-03-29 | 1990-04-03 | Hitachi Metals, Ltd. | Sintered metallic parts using extrusion process |
US4965039A (en) * | 1986-03-31 | 1990-10-23 | The Dow Chemical Company | Method of preparing an aqueous inorganic powder slurry which is extruded and dried to form an inorganic article |
US4758272A (en) * | 1987-05-27 | 1988-07-19 | Corning Glass Works | Porous metal bodies |
US4992233A (en) * | 1988-07-15 | 1991-02-12 | Corning Incorporated | Sintering metal powders into structures without sintering aids |
US5427601A (en) * | 1990-11-29 | 1995-06-27 | Ngk Insulators, Ltd. | Sintered metal bodies and manufacturing method therefor |
US5120559A (en) * | 1991-10-03 | 1992-06-09 | Cornell Research Foundation, Inc. | Extrusion processing with supercritical fluids |
US5678165A (en) * | 1995-12-06 | 1997-10-14 | Corning Incorporated | Plastic formable mixtures and method of use therefor |
Non-Patent Citations (2)
Title |
---|
Temperature -Enropy Diagram, Form 6244 © 1974 Liquid Carbonic. |
Temperature Enropy Diagram, Form 6244 1974 Liquid Carbonic. * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935514A (en) * | 1997-01-23 | 1999-08-10 | Corning Incorporated | Method for extrusion of powder mixtures using supercritical fluids |
CN1292890C (en) * | 2000-12-11 | 2007-01-03 | 布鲁内尔大学 | Material processing method |
WO2002047893A1 (en) * | 2000-12-11 | 2002-06-20 | Brunel University | Material processing |
US20040084795A1 (en) * | 2000-12-11 | 2004-05-06 | Hornsby Peter Ridsdale | Material processing |
US20030110744A1 (en) * | 2001-12-13 | 2003-06-19 | Gadkaree Kishor P. | Composite cordierite filters |
WO2003051488A1 (en) * | 2001-12-13 | 2003-06-26 | Corning Incorporated | Composite cordierite filters |
US6736875B2 (en) | 2001-12-13 | 2004-05-18 | Corning Incorporated | Composite cordierite filters |
EP1321279A1 (en) * | 2001-12-17 | 2003-06-25 | Wolfram Lihotzky-Vaupel | Extrusion process and products obtainable therewith |
WO2003051607A1 (en) * | 2001-12-17 | 2003-06-26 | Wolfram Lihotzky-Vaupel | Extrusion method and shaped body produced therewith |
US6916389B2 (en) | 2002-08-13 | 2005-07-12 | Nanotechnologies, Inc. | Process for mixing particulates |
WO2006034439A2 (en) * | 2004-09-23 | 2006-03-30 | Quantum Fuel Systems Technologies Worldwide, Inc. | Tank seal |
WO2006034439A3 (en) * | 2004-09-23 | 2010-01-28 | Quantum Fuel Systems Technologies Worldwide, Inc. | Tank seal |
WO2006040536A1 (en) * | 2004-10-14 | 2006-04-20 | Brunel University | Method of processing a polymer coated substrate |
US20070228621A1 (en) * | 2006-03-31 | 2007-10-04 | Massachusetts Institute Of Technology | Ceramic processing and shaped ceramic bodies |
US7824602B2 (en) | 2006-03-31 | 2010-11-02 | Massachusetts Institute Of Technology | Ceramic processing and shaped ceramic bodies |
WO2009032197A1 (en) * | 2007-08-31 | 2009-03-12 | Corning Incorporated | Glass-ceramic and glass-ceramic/ceramic composite semiconductor manufacturing article support devices |
WO2009115836A1 (en) * | 2008-03-15 | 2009-09-24 | The Queen's University Of Belfast | Method and apparatus for processing a material by applying a viscosity-reducing agent |
US20100121100A1 (en) * | 2008-11-12 | 2010-05-13 | Daniel Travis Shay | Supported palladium-gold catalysts and preparation of vinyl acetate therewith |
US20110144380A1 (en) * | 2009-12-16 | 2011-06-16 | Daniel Travis Shay | Preparation of palladium-gold catalyst |
WO2011075278A1 (en) | 2009-12-16 | 2011-06-23 | Lyondell Chemical Technology, L.P. | Preparation of palladium-gold catalyst |
WO2011075277A1 (en) | 2009-12-16 | 2011-06-23 | Lyondell Chemical Technology, L.P. | Titania-containing extrudate |
US8273682B2 (en) | 2009-12-16 | 2012-09-25 | Lyondell Chemical Technology, L.P. | Preparation of palladium-gold catalyst |
US8329611B2 (en) | 2009-12-16 | 2012-12-11 | Lyondell Chemical Technology, L,P. | Titania-containing extrudate |
US20110190533A1 (en) * | 2010-01-29 | 2011-08-04 | Daniel Travis Shay | Titania-alumina supported palladium catalyst |
US8507720B2 (en) | 2010-01-29 | 2013-08-13 | Lyondell Chemical Technology, L.P. | Titania-alumina supported palladium catalyst |
CN103386310B (en) * | 2012-05-10 | 2016-04-27 | 中国石油化工股份有限公司 | A kind of alkadienes selective hydrocatalyst and Synthesis and applications thereof |
CN103386310A (en) * | 2012-05-10 | 2013-11-13 | 中国石油化工股份有限公司 | Selective hydrogenation catalyst of dialkene and preparation and application thereof |
CN103418350A (en) * | 2012-05-17 | 2013-12-04 | 中国石油化工股份有限公司 | Carbon-containing formed hydrated alumina product and preparation method thereof |
CN103418350B (en) * | 2012-05-17 | 2016-03-02 | 中国石油化工股份有限公司 | A kind of containing charcoal hydrated alumina forming matter and preparation method thereof |
CN103418352B (en) * | 2012-05-25 | 2016-01-20 | 中国石油化工股份有限公司 | Phosphorous hydrated alumina forming matter and preparation method and prepare the method for phosphorus-containing alumina article shaped |
CN103418352A (en) * | 2012-05-25 | 2013-12-04 | 中国石油化工股份有限公司 | Molded phosphorus-containing hydrated alumina, preparation method thereof, and molded phosphorus-containing alumina preparation method |
CN103480337A (en) * | 2012-06-08 | 2014-01-01 | 中国石油化工股份有限公司 | Hydrate alumina forming product, production method thereof, alumina forming product, applications thereof, catalyst, preparation method thereof, and hydrogenation processing method |
CN103480337B (en) * | 2012-06-08 | 2016-01-13 | 中国石油化工股份有限公司 | Hydrated alumina forming matter and preparation method and aluminium oxide article shaped and application and catalyst and preparation method and hydrotreating method |
CN103480389B (en) * | 2012-06-11 | 2015-08-26 | 中国石油化工股份有限公司 | There is the Catalysts and its preparation method of hydrogenation catalyst effect and application and method for hydrotreating hydrocarbon oil |
CN103480389A (en) * | 2012-06-11 | 2014-01-01 | 中国石油化工股份有限公司 | Catalyst with hydrogenation catalytic effect, preparation method and application thereof and method for hydrogenation treatment of hydrocarbon oil |
WO2017154544A1 (en) * | 2016-03-09 | 2017-09-14 | 日本碍子株式会社 | Method for producing ceramic molded body |
CN108712949A (en) * | 2016-03-09 | 2018-10-26 | 日本碍子株式会社 | The manufacturing method of ceramic mouldings |
CN108712949B (en) * | 2016-03-09 | 2020-02-07 | 日本碍子株式会社 | Method for producing ceramic molded body |
US11578006B2 (en) | 2016-03-09 | 2023-02-14 | Ngk Insulators, Ltd. | Manufacturing method of ceramic formed body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5884138A (en) | Method for improving the stiffness of extrudates | |
US6087281A (en) | Low CTE cordierite bodies with narrow pore size distribution and method of making same | |
US5568652A (en) | Rapid setting compositions and method of making and using same | |
US6048490A (en) | Method of producing cordierite bodies utilizing substantially reduced firing times | |
EP1133457B1 (en) | Fabrication of low thermal expansion, high strength porous cordierite structures | |
EP0630677B1 (en) | Ceramic filter for a dust-containing gas and method for its production | |
EP0894776B1 (en) | Method of producing fast-fired cordierite bodies | |
EP0700882B1 (en) | Drying process to produce crack-free bodies | |
US5925308A (en) | Rapid-setting formable mixtures and method of making and using same | |
US6238618B1 (en) | Production of porous mullite bodies | |
KR100362495B1 (en) | Method of Making a High Strength Catalyst, Catalyst Support or Adsorber | |
US6221308B1 (en) | Method of making fired bodies | |
EP1483221B1 (en) | Strontium feldspar aluminum titanate for high temperature applications | |
US6207101B1 (en) | Method of making fired bodies | |
US6113829A (en) | Method of forming and shaping plasticized mixtures by low to moderate shear extrusion | |
US20040092381A1 (en) | Aluminum titanate-based ceramic article | |
US5344799A (en) | Formable ceramic compositions and method of use therefor | |
JPH0738930B2 (en) | Manufacturing method of porous ceramic filter | |
EP1012126B1 (en) | Improved method of forming and shaping plasticized mixtures and the green bodies made therefrom | |
US5935514A (en) | Method for extrusion of powder mixtures using supercritical fluids | |
US6254822B1 (en) | Production of porous mullite bodies | |
US6077796A (en) | Low CTE-low porosity cordierite bodies and method of making same | |
US5966582A (en) | Method for rapid stiffening of extrudates | |
EP0992467B1 (en) | Production of porous mullite bodies | |
WO1999043629A1 (en) | Low cte cordierite bodies with narrow pore size distribution and method of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CORNING INCORPORATED, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHALASANI, DEVI;JOHNSON, RONALD E.;MALARKEY, CHRISTOPHER J .;REEL/FRAME:008585/0237;SIGNING DATES FROM 19970528 TO 19970529 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070316 |