US5834079A - Zeolite in packaging film - Google Patents

Zeolite in packaging film Download PDF

Info

Publication number
US5834079A
US5834079A US08/812,637 US81263797A US5834079A US 5834079 A US5834079 A US 5834079A US 81263797 A US81263797 A US 81263797A US 5834079 A US5834079 A US 5834079A
Authority
US
United States
Prior art keywords
film
layer
sub
zeolite
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/812,637
Inventor
Thomas A. Blinka
Frank B. Edwards
Nathanael R. Miranda
Drew V. Speer
Jeffrey A. Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryovac LLC
Original Assignee
WR Grace and Co Conn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CNB01141135XA priority Critical patent/CN1235956C/en
Priority to PCT/US1997/003526 priority patent/WO1997032924A1/en
Priority to BR9708172A priority patent/BR9708172A/en
Priority to DK97908040T priority patent/DK0885257T3/en
Priority to US08/812,637 priority patent/US5834079A/en
Priority to JP53194397A priority patent/JP3529139B2/en
Priority to AU19886/97A priority patent/AU727948C/en
Priority to CA 2247904 priority patent/CA2247904C/en
Priority to NZ331414A priority patent/NZ331414A/en
Priority to CN97194442A priority patent/CN1090201C/en
Application filed by WR Grace and Co Conn filed Critical WR Grace and Co Conn
Priority to EP19970908040 priority patent/EP0885257B1/en
Priority to KR10-1998-0706968A priority patent/KR100408145B1/en
Assigned to W. R. GRACE & CO.-CONN. reassignment W. R. GRACE & CO.-CONN. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIRANDA, NATHANIEL R., EDWARDS, FRANK B., THOMAS, JEFFREY A., BLINKA, THOMAS A., SPEER, DREW V.
Priority to US09/074,058 priority patent/US6365245B2/en
Assigned to CRYOVAC, INC. reassignment CRYOVAC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: W.R. GRACE & CO.-CONN.
Application granted granted Critical
Publication of US5834079A publication Critical patent/US5834079A/en
Priority to US09/691,570 priority patent/US6391403B1/en
Priority to US09/919,225 priority patent/US6458438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • Y10T428/1359Three or more layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the invention generally relates to compositions, articles and methods for scavenging by-products of an oxygen scavenging reaction.
  • MAP modified atmosphere packaging
  • Oxygen barrier films and laminates reduce or retard oxygen permeation from the outside environment into the package interior.
  • oxygen scavengers are in the form of sachets which contain a composition which scavenges the oxygen through chemical reactions.
  • sachets which contain iron compositions which oxidize.
  • sachet contains unsaturated fatty acid salts on a particulate adsorbent.
  • metal/polyamide complex is another type of sachet.
  • sachets One disadvantage of sachets is the need for additional packaging operations to add the sachet to each package.
  • a further disadvantage arising from the use of some sachets is that certain atmospheric conditions (e.g., high humidity, low CO 2 level) in the package are required in order for scavenging to occur at an adequate rate.
  • Another means for limiting the exposure to oxygen involves incorporating an oxygen scavenger into the packaging structure itself. This achieves a more uniform scavenging effect throughout the package. This may be specially important where there is restricted air circulation inside the package.
  • incorporation can provide a means of intercepting and scavenging oxygen as it passes through the walls of the package (herein referred to as an "active oxygen barrier"), thereby maintaining the lowest possible oxygen level throughout the package.
  • an oxygen-scavenging wall involves the incorporation of inorganic powders and/or salts.
  • incorporation of these powders and/or salts causes degradation of the wall's transparency and mechanical properties such as tear strength.
  • these compounds can lead to processing difficulties, especially in the fabrication of thin films, or thin layers within a film structure.
  • the scavenging rates for walls containing these compounds are unsuitable for some commercial oxygen-scavenging applications, e.g. such as those in which sachets are employed.
  • Oxygen scavengers suitable for commercial use in films of the present invention are disclosed in U.S. Pat. No. 5,350,622, and a method of initiating oxygen scavenging generally is disclosed in U.S. Pat. No. 5,211,875. Both applications are incorporated herein by reference in their entirety.
  • oxygen scavengers are made of an ethylenically unsaturated hydrocarbon and transition metal catalyst.
  • the preferred ethylenically unsaturated hydrocarbon may be either substituted or unsubstituted.
  • an unsubstituted ethylenically unsaturated hydrocarbon is any compound which possesses at least one aliphatic carbon-carbon double bond and comprises 100% by weight carbon and hydrogen.
  • a substituted ethylenically unsaturated hydrocarbon is defined herein as an ethylenically unsaturated hydrocarbon which possesses at least one aliphatic carbon-carbon double bond and comprises about 50%-99% by weight carbon and hydrogen.
  • Preferable substituted or unsubstituted ethylenically unsaturated hydrocarbons are those having two or more ethylenically unsaturated groups per molecule. More preferably, it is a polymeric compound having three or more ethylenically unsaturated groups and a molecular weight equal to or greater than 1,000 weight average molecular weight.
  • unsubstituted ethylenically unsaturated hydrocarbons include, but are not limited to, diene polymers such as polyisoprene, (e.g., trans-polyisoprene) and copolymers thereof, cis and trans 1,4-polybutadiene, 1,2-polybutadienes, (which are defined as those polybutadienes possessing greater than or equal to 50% 1,2 microstructure), and copolymers thereof, such as styrene-butadiene copolymer.
  • diene polymers such as polyisoprene, (e.g., trans-polyisoprene) and copolymers thereof, cis and trans 1,4-polybutadiene, 1,2-polybutadienes, (which are defined as those polybutadienes possessing greater than or equal to 50% 1,2 microstructure), and copolymers thereof, such as styrene-butadiene copolymer.
  • Such hydrocarbons also include polymeric compounds such as polypentenamer, pplyoctenamer, and other polymers prepared by cyclic olefin metathesis; diene oligomers such as squalene; and polymers or copolymers with unsaturation derived from dicyclopentadiene, norbornadiene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 4-vinylcyclohexene, or other monomers containing more than one carbon-carbon double bond (conjugated or non-conjugated).
  • polymeric compounds such as polypentenamer, pplyoctenamer, and other polymers prepared by cyclic olefin metathesis; diene oligomers such as squalene; and polymers or copolymers with unsaturation derived from dicyclopentadiene, norbornadiene, 5-ethylidene-2-norbornene, 5-vinyl
  • Preferred substituted ethylenically unsaturated hydrocarbons include, but are not limited to, those with oxygen-containing moieties, such as esters, carboxylic acids, aldehydes, ethers, ketones, alcohols, peroxides, and/or hydroperoxides.
  • oxygen-containing moieties such as esters, carboxylic acids, aldehydes, ethers, ketones, alcohols, peroxides, and/or hydroperoxides.
  • Specific examples of such hydrocarbons include, but are not limited to, condensation polymers such as polyesters derived from monomers containing carbon-carbon double bonds, and unsaturated fatty acids such as oleic, ricinoleic, dehydrated ricinoleic, and linoleic acids and derivatives thereof, e.g. esters.
  • Such hydrocarbons also include polymers or copolymers derived from (meth)allyl (meth)acrylates.
  • Suitable oxygen scavenging polymers can be made by trans-esterification. Such polymers are disclosed in WO 95/02616, incorporated herein by reference as if set forth in full.
  • the composition used may also comprise a mixture of two or more of the substituted or unsubstituted ethylenically unsaturated hydrocarbons described above. While a weight average molecular weight of 1,000 or more is preferred, an ethylenically unsaturated hydrocarbon having a lower molecular weight is usable, provided it is blended with a film-forming polymer or blend of polymers.
  • ethylenically unsaturated hydrocarbons which are appropriate for forming solid transparent layers at room temperature are preferred for scavenging oxygen in the packaging articles described above.
  • a layer which allows at least 50% transmission of visible light is preferred.
  • 1,2-polybutadiene is especially preferred for use at room temperature.
  • 1,2-polybutadiene can exhibit transparency, mechanical properties and processing characteristics similar to those of polyethylene.
  • this polymer is found to retain its transparency and mechanical integrity even after most or all of its oxygen capacity has been consumed, and even when little or no diluent resin is present.
  • 1,2-polybutadiene exhibits a relatively high oxygen capacity and, once it has begun to scavenge, it exhibits a relatively high scavenging rate as well.
  • 1,4-polybutadiene, and copolymers of styrene with butadiene, and styrene with isoprene are especially preferred.
  • Such compositions are disclosed in U.S. Pat. No. 5,310,497 issued to Speer et al. on May 10, 1994 and incorporated herein by reference as if set forth in full. In many cases it may be desirable to blend the aforementioned polymers with a polymer or copolymer of ethylene.
  • oxygen scavengers which can be used in connection with this invention are disclosed in U.S. Pat. Nos. 5,075,362 (Hofeldt et al.), 5,106,886 (Hofeldt et al.), 5,204,389 (Hofeldt et al.), and 5,227,411 (Hofeldt et al.), all incorporated by reference herein in their entirety.
  • These oxygen scavengers include ascorbates or isoascorbates or mixtures thereof with each other or with a sulfite, often sodium sulfite.
  • oxygen scavengers which can be used in connection with this invention are disclosed in PCT patent publications WO 91/17044 (Zapata Industries) and WO94/09084 (Aquanautics Corporation), both incorporated by reference herein in their entirety.
  • These oxygen scavengers include an ascorbate with a transition metal catalyst, the catalyst being a simple metal or salt or a compound, complex or chelate of the transition metal; or a transition metal complex or chelate of a polycarboxylic or salicylic acid or polyamine, optionally with a reducing agent such as ascorbate, where the transition metal complex or chelate acts primarily as an oxygen scavenging composition.
  • oxygen scavengers which can be used in connection with this invention are disclosed in PCT patent publication WO 94/12590 (Commonwealth Scientific and Industrial Research Organisation), incorporated by reference herein in its entirety.
  • These oxygen scavengers include at least one reducible organic compound which is reduced under predetermined conditions, the reduced form of the compound being oxidizable by molecular oxygen, wherein the reduction and/or subsequent oxidation of the organic compound occurs independent of the presence of a transition metal catalyst.
  • the reducible organic compound is preferably a quinone, a photoreducible dye, or a carbonyl compound which has absorbence in the UV spectrum.
  • Sulfites, alkali metal salts of sulphites, and tannins are also contemplated as oxygen scavenging compounds.
  • the ethylenically unsaturated hydrocarbon is combined with a transition metal catalyst.
  • suitable metal catalysts are those which can readily interconvert between at least two oxidation states. See Sheldon, R. A.; Kochi, J. K.; "Metal-Catalyzed Oxidations of Organic Compounds” Academic Press, New York 1981.
  • the catalyst is in the form of a transition metal salt, with the metal selected from the first, second or third transition series of the Periodic Table.
  • Suitable metals include, but are not limited to, manganese II or III, iron II or III, cobalt II or III, nickel II or III, copper I or II, rhodium II, III or IV, and ruthenium II or III.
  • the oxidation state of the metal when introduced is not necessarily that of the active form.
  • the metal is preferably iron, nickel or copper, more preferably manganese and most preferably cobalt.
  • Suitable counterions for the metal include, but are not limited to, chloride, acetate, stearate, palmitate, caprylate, linoleate, tallate, 2-ethylhexanoate, neodecanoate, oleate or naphthenate.
  • Particularly preferable salts include cobalt (II) 2-ethylhexanoate and cobalt (II) neodecanoate.
  • the metal salt may also be an ionomer, in which case a polymeric counterion is employed. Such ionomers are well known in the art.
  • the ethylenically unsaturated hydrocarbon and transition metal catalyst can be further combined with one or more polymeric diluents, such as thermoplastic polymers which are typically used to form film layers in plastic packaging articles.
  • polymeric diluents such as thermoplastic polymers which are typically used to form film layers in plastic packaging articles.
  • thermosets can also be used as the polymeric diluent.
  • Polymers which can be used as the diluent include, but are not limited to, polyethylene terephthalate (PET), polyethylene, low or very low density polyethylene, ultra-low density polyethylene, linear low density polyethylene, polypropylene, polyvinyl chloride, polystyrene, and ethylene copolymers such as ethylene-vinyl acetate, ethylene-alkyl (meth)acrylates, ethylene-(meth)acrylic acid and ethylene-(meth)acrylic acid ionomers. Blends of different diluents may also be used. However, as indicated above, the selection of the polymeric diluent largely depends on the article to be manufactured and the end use. Such selection factors are well known in the art.
  • additives can also be included in the composition to impart properties desired for the particular article being manufactured.
  • additives include, but are not necessarily limited to, fillers, pigments, dyestuffs, antioxidants, stabilizers, processing aids, plasticizers, fire retardants, anti-fog agents, etc.
  • the mixing of the components listed above is preferably accomplished by melt-blending at a temperature in the range of 50° C. to 300° C. However alternatives such as the use of a solvent followed by evaporation may also be employed. The blending may immediately precede the formation of the finished article or preform or precede the formation of a feedstock or masterbatch for later use in the production of finished packaging articles.
  • oxygen scavenging structures can sometimes generate reaction byproducts which can affect the taste and smell of the packaged material (i.e. organoleptic properties), or raise food regulatory issues.
  • reaction byproducts can include acids, aldehydes and ketones.
  • zeolites such as organophilic zeolites
  • the zeolites can be incorporated into one or more layers of a multilayer film or container which includes an oxygen scavenging layer.
  • oxygen scavenging layer a multilayer film or container which includes an oxygen scavenging layer.
  • the present invention is applicable to any oxygen scavenging system that produces by-products such as acids, aldehydes, and ketones.
  • Frm means a film, laminate, sheet, web, coating, or the like which can be used to package a product.
  • Zero-silicon herein refers to molecular sieves, including aluminophosphates and aluminosilicates with a framework structure enclosing cavities occupied by large ions and/or water molecules, both of which have considerable freedom of movement permitting ion exchange and reversible dehydration.
  • the framework may also contain other cations such as Mn, Ti, Co, and Fe.
  • An example of such materials are the titanosilicate and titanoaluminosilicate molecular sieves. Unlike amorphous materials, these crystalline structures contain voids of discrete size.
  • a typical naturally occurring zeolite is the mineral faujasite with formula
  • Ammonium and alkylammonium cations may be incorporated in synthetic zeolites, e.g. NH 4 , CH 3 NH 3 , (CH 3 ) 2 NH 2 , (CH 3 ) 3 NH, and (CH 3 ) 4 N.
  • Some zeolites have frameworks of linked truncated octahedra (Beta-cages) characteristic of the structure of sodalite. Numerous synthetic zeolites are available.
  • Oxygen scavenger (OS) and the like herein means a composition, article or the like which consumes, depletes or reacts with oxygen from a given environment.
  • Actinic radiation and the like herein means any form of radiation, such as ultraviolet radiation or electron beam irradiation, disclosed in U.S. Pat. No. 5,211,875 (Speer et al.).
  • Polymer and the like herein means a homopolymer, but also copolymers thereof, including bispolymers, terpolymers, etc.
  • Ethylene alpha-olefin copolymer and the like herein means such heterogeneous materials as linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE) and very low and ultra low density polyethylene (VLDPE and ULDPE); and homogeneous polymers such as metallocene catalyzed polymers such as EXACT (TM) materials supplied by Exxon, and TAFMER (TM) materials supplied by Mitsui Petrochemical Corporation. These materials generally include copolymers of ethylene with one or more comonomers selected from C 4 to C 10 alpha-olefins such as butene-1 (i.e., 1-butene), hexene-1, octene-1, etc.
  • C 4 to C 10 alpha-olefins such as butene-1 (i.e., 1-butene), hexene-1, octene-1, etc.
  • ethylene/alpha-olefin copolymers such as the long chain branched homogeneous ethylene/alpha-olefin copolymers available from the Dow Chemical Company, known as AFFINITY (TM) resins, are also included as another type of ethylene alpha-olefin copolymer useful in the present invention.
  • polyamide refers to polymers having amide linkages along the molecular chain, and preferably to synthetic polyamides such as nylons. Furthermore, such term encompasses both polymers comprising repeating units derived from monomers, such as caprolactam, which polymerize to form a polyamide, as well as copolymers of two or more amide monomers, including nylon terpolymers, also referred to generally as "copolyamides" herein.
  • LLDPE linear low density polyethylene, which is an ethylene alpha olefin copolymer.
  • EVOH herein means ethylene vinyl alcohol copolymer
  • EVA ethylene vinyl acetate copolymer
  • an article of manufacture comprises an oxygen scavenger and a zeolite.
  • a package comprises an article and a container into which the oxygen sensitive article is disposed, the container including a component comprising an oxygen scavenger and a zeolite.
  • a method of making an article of manufacture having reduced migration of by-products of an oxygen scavenging reaction comprises providing an article comprising an oxygen scavenger and a zeolite and exposing the article to actinic radiation.
  • FIGS. 1 through 5 are schematic cross-sections of various embodiments of a film of the present invention.
  • the invention can be used to make various articles of manufacture, compounds, compositions of matter, coatings, etc.
  • Two preferred forms are sealing compounds, and flexible films, both useful in packaging of food and non-food products.
  • Smaller gaskets are typically made for use in beer crowns in bottles.
  • a polymer melt is applied by cold molding to the entire inner surface of the crown. Both PVC and other polymers are used in this application.
  • Discs for plastic caps are typically made by taking a ribbon of gasket material and making discs, and inserting the discs into the plastic cap.
  • an oxygen scavenger and zeolite beneficially provides removal of oxygen from the interior environment of the container, while controlling undesirable by-products of the oxygen scavenging reaction.
  • a gasket includes a polymeric composition, an oxygen scavenger, and a zeolite.
  • the gasket adheres a metal or plastic lid or closure to a rigid or semi-rigid container, thus sealing the lid or closure to the container.
  • a multilayer film 10 is shown, having layer 12 and layer 14.
  • FIG. 2 shows a multilayer film with layers 12, 14, and 16.
  • Layers 12, 14, and 16 are preferably polymeric.
  • Layer 12 comprises a zeolite.
  • Preferred materials are the molecular sieves of the type disclosed in U.S. Pat. No. 4,795,482 (Gioffre et al.), incorporated herein by reference in its entirety.
  • Also useful in the present invention are zeolites supplied by the Davison division of W. R. Grace & Co.-Conn.
  • Preferred particle sizes for zeolites used in the present invention are between 0.1 and 10 micrometers, and more preferably between 0.5 and 3 micrometers.
  • Layer 14 comprises an oxygen scavenger, preferably a polymeric oxygen scavenger, more preferably one of the materials described above.
  • Layer 16 comprises an oxygen barrier material, such as ethylene vinyl alcohol copolymer (EVOH), Saran (vinylidene chloride copolymer), polyester, polyamide, metal, silica coating, etc.
  • EVOH ethylene vinyl alcohol copolymer
  • Saran vinyl chloride copolymer
  • polyester polyamide
  • metal metal, silica coating, etc.
  • FIG. 3 shows a laminated film in which a three layer film is adhered to a second film.
  • Layers 32, 34, and 36 correspond functionally and compositionally to 12, 14, and 16 respectively of FIG. 2, and layer 38 is an intermediate layer which can comprise any polymeric material such as polyolefin, more preferably ethylenic polymers such as ethylene/alpha-olefin and ethylene/unsaturated ester copolymers, more preferably ethylene/vinyl acetate copolymer.
  • Layer 31 represents a conventional adhesive such as polyurethane adhesive. Comparative 2 in Table 6 exemplifies the laminated film of FIG. 3.
  • FIG. 4 shows a laminated film in which a four layer film is adhered to a second film.
  • Layers 42, 44, 46 and 48 correspond functionally and compositionally to layers 32, 34, 36 and 38 respectively of FIG. 3.
  • Layer 49 is an innermost heat sealable layer which can comprise any polymeric material such as polyolefin, more preferably ethylenic polymers such as ethylene/alpha-olefin and ethyene/unsaturated ester copolymers, such as ethylene vinyl acetate copolymer.
  • Layer 46 provides oxygen barrier to the film structure, and adheres to layer 48 by means of conventional adhesive 41. This adhesive corresponds to layer 31 of FIG. 3, and is shown simply as a thickened line. Examples 2 and 3 of Table 6 exemplify the laminated film of FIG. 4.
  • FIG. 5 shows a nine layer film.
  • Example 1 and Comparative 1 in Table 2 exemplify the film of FIG. 5.
  • Layer 57 is an abuse-resistant layer useful as an outermost layer of a film when used in a packaging application.
  • Layers 54 and 56 correspond functionally and compositionally to layers 14 and 16 respectively of FIGS. 2 and 3, as well as to layers 44 and 46 respectively of FIG. 4.
  • Layers 52, 53, 58 and 59 comprise an adhesive.
  • the adhesive is preferably polymeric, more preferably acid or acid anhydride-grafted polyolefins.
  • these layers can comprise a zeolite.
  • Layer 55 comprises a heat resistant material.
  • This can be any suitable polymeric material, preferably an amide polymer such as nylon 6, or a polyester such as polyethylene terephthalate.
  • Layer 51 comprises a heat sealable material.
  • This can be any suitable polymeric material, preferably an olefinic polymer such as an ethylenic polymer, more preferably an ethylene alpha olefin copolymer.
  • layer 51 can further comprise a zeolite.
  • Table 1 identifies the materials used in the examples.
  • the remaining tables describe the films made with these materials, and organoleptic or migration data resulting from testing some of these films.
  • PEB 1 90% PE 1 +10% AB 1 .
  • PEB 2 90% PE 1 +10% PEB 3 .
  • PEB 3 80% PE 3 +20% PE 4 .
  • PPB 1 60% PP 1 +40% EB 1 .
  • PPB 2 40% PP 1 +60% EB 1 .
  • OSB 1 76.5% OS 1 +13.5% OS 2 +9.2% EV 1 +0.5% PI 1 +0.3% TC 1 .
  • OSB 2 50% OS 3 +40% PE 3 +8.54% EV 1 +0.90% TC 1 +0.50% PI 1 +0.05% calcium oxide+0.01% antioxidant (Irganox 1076).
  • OSB 3 60% OS 3 +38.83% EV 3 +1.06% TC 2 +0.10% PI 2 +0.01% antioxidant (Irganox 1076).
  • OSB 4 40% OS 3 +58.83% EV 3 +1.06% TC 2 +0.10% PI 2 +0.01% antioxidant (Irganox 1076).
  • ZB 1 87% PE 1 +10% AB 1 +3% Z 1 .
  • ZB 2 90% PE 2 +10% Z 1 .
  • ZB 3 90% PE 2 +10% Z 2 .
  • ZB 4 90% PE 2 +6% PE 3 +2% PE 4 +1% Z 3 +1% Z 4
  • ZB 5 80% PE 2 +20% Z 2 .
  • ZB 6 80% PE 3 +20% Z 2 .
  • Table 2 a nine-layer film structure in accordance with the invention, and a comparative film, are disclosed. These were each made by coextrusion of the layers.
  • the target (and approximate actual) gauge (in mils) of each layer of the nine-layer film is shown below.
  • Layer 9 would preferably form the food or product contact layer in a typical packaging application.
  • Example 1 and Comparative 1 were subjected to food law migration tests to evaluate whether zeolites could reduce the concentration of extractables.
  • the films were triggered by ultraviolet light according to the procedure disclosed in U.S. Pat. No. 5,211,875.
  • the films were converted into 280 cm 2 pouches and the pouches were filled with a food simulant.
  • the filled pouches were then retorted at 100° C. for 30 minutes and stored at 50° C. for 10 days.
  • the food simulant was decanted from the pouches and analyzed.
  • Table 3 shows a list of potential extractables.
  • Table 4 shows the concentration of the same extractables, where the films were extracted with 8% ethanol solution as the food simulant.
  • Table 5 shows the concentration of the same extractables, where the films were extracted with water as the food simulant. In both Tables 4 and 5, the concentration of each extractable is in units of nanograms/milliliter. Zeolites can reduce the concentration of certain extractables which could cause regulatory issues.
  • Table 6 two five-layer laminate structures in accordance with the invention, and one comparative four-layer laminate structure, are disclosed.
  • the target (and approximate actual) gauge (in mils) of each layer of the laminate structures of the invention was:
  • the target (and approximate actual) gauge (in mils) of each layer of the comparative laminate structures was:
  • Table 8 three five-layer laminate structures in accordance with the invention, and one comparative five-layer laminate structure, are disclosed.
  • the target (and approximate actual) gauge (in mils) of each layer of the laminate structures of the invention and the comparative was:
  • Sliced turkey breast was stored in packages made from the films of Examples 4, 5, 6 and Comparative 3.
  • a sensory panel tasted the turkey slices to evaluate whether or not zeolites can reduce the off-flavor caused by byproducts of the oxygen-scavenging reaction.
  • the films were triggered by ultraviolet light according to the procedure disclosed in U.S. Pat. No. 5,211,875.
  • the films were converted into packages on a Multivac® R7000 packaging machine.
  • Cryovac® T6070B film was used as the bottom web of the packages.
  • Each package contained one slice of turkey.
  • Each package was flushed with a gas mixture consisting of 99% N 2 and 1% O 2 .
  • Packages were stored in the dark for 7 days at 40° F.
  • a sensory panel rated the taste of the turkey slices.
  • the scale ranged from 1 to 6, with 1 indicating extreme off-flavor and 6 indicating no off-flavor.
  • the average scores are summarized in Table 9.
  • zeolites can reduce the off-flavor caused by the byproducts of the oxygen-scavenging reaction.
  • the target (and approximate actual) gauge (in mils) of each layer of the laminate structures of the invention and the comparative was:
  • Sliced turkey breast was stored in packages made from the films of Examples 7 and 8 and Comparatives 4 and 5.
  • a sensory panel tasted the turkey slices to evaluate whether or not zeolites can reduce the off-flavor caused by the byproducts of the oxygen-scavenging reaction.
  • the films were triggered by ultraviolet light according to the procedure disclosed in U.S. Pat. No. 5,211,875.
  • the films were converted into packages on a Multivac® R7000 packaging machine.
  • Cryovac® T6070B film was used as the bottom web of the packages.
  • Each package contained one slice of turkey.
  • Each package was flushed with a gas mixture consisting of 99% N 2 and 1% O 2 .
  • Packages were stored in the dark for 7 days at 40° F.
  • a sensory panel rated the taste of the turkey slices.
  • the scale ranged from 1 to 6, with 1 indicating extreme off-flavor and 6 indicating no off-flavor.
  • Table 11 summarizes the percentage of the panelists which did not taste an off-flavor (i.e. a score of 6) in the packaged turkey slices.
  • zeolites can significantly reduce the off-flavor caused by the byproducts of the oxygen-scavenging reaction.
  • a headspace gas chromatography (GC) method was used to determine the ability of a material to absorb aldehydes.
  • the material (either 6 to 7 mg of powder or 25 mm disk of LLDPE film containing 4% absorber) was placed in a headspace GC vial (22 mL), and 2 ⁇ L of an aldehyde mixture containing about 0.1% each of the indicated aldehydes in methanol was injected into each vial.
  • the vials were incubated at 80° C. for 1 hour and were injected into a GC.
  • Table 12 shows the percent change in the aldehyde concentration for each material relative to an appropriate control (vial with no absorber or LLDPE disk).
  • Table 12 shows that various zeolites are capable of reducing the migration of aldehydes.
  • blends of materials can be advantageous.
  • Films of the invention can been made by any conventional means, including coextrusion, lamination, extrusion coating, or corona bonding, and then optionally irradiated and/or oriented. They can be made heat shrinkable through orientation or tenterframing if desired, at orientation ratios of 1:2 to 1:9 in either or both of the machine and transverse directions. For shrink applications, they can be made to have a free shrink of at least 10%, more preferably at least 20%, most preferably at least 30%, in either or both directions at 90° C.
  • Gasket compositions of the invention can be made by any conventional process, including, but not limited to, extrusion compounding for thermoplastic compositions, and conventional mixing equipment for plastisol compositions.
  • the gasket compositions of the invention can then be formed into gaskets on lids by any conventional process, including but not limited to, cold molding processes, inserted discs, application of liquid plastisols via pressurized nozzles followed by solidification in an oven, etc.
  • zeolites can be used in the same article (e.g. film or sealing compound).
  • films although it is preferred that the zeolite be used in the film and as a packaging material such that the zeolite is disposed closer to the contents of the package, which can be food or any oxygen-sensitive product, than the oxygen scavenger, there may be applications where the zeolite is disposed "outside of" the oxygen scavenger, such that the oxygen scavenger-containing layer is disposed closer to the contents of a package made from the film, than the zeolite-containing layer.
  • the zeolite can alternatively be disposed on both sides of the oxygen scavenger. Also, within the same film, a first zeolite can be used in a first layer, and a second zeolite, different from the first zeolite, can be used in another layer of the film.
  • the zeolite in addition to or instead of the arrangements described above, can be disposed in the same layer or layers as the oxygen scavenging material.
  • any of layers 14, 34, 44, and 54 of the examples and figures can include any suitable percent, by weight of the layer, of a zeolite.
  • a preferred blend of oxygen scavenging and zeolite in such a blend layer is between 95% and 99.5% oxygen scavenger, and between 0.5% and 5% zeolite.
  • Any suitable polymeric materials can be employed in films containing the zeolites, and are not limited to those listed herein.
  • the amount of zeolite used in a film of the present invention is preferably between 0.1% and 5% of the layer in which it occurs.
  • zeolite material e.g. zeolite
  • zeolite material e.g. zeolite
  • another material such as polyethylene.
  • optics of the film can be compromised to some extent, although the film can still be used in many applications. In end-use applications where optics are not a critical feature of the package, such as opaque films or gaskets for containers, higher amounts of zeolites can be beneficially used.
  • Zeolites disclosed herein can be used with or in films or coatings, or absorbed into a variety of other supports for scavenging or other uses, such as a layer or coating on another object, or as a bottle cap or bottle liner, as an adhesive or non-adhesive insert, sealant, gasket, fibrous matte or other inserts, or as a non-integral component of a rigid, semi-rigid, or flexible container.

Abstract

An article of manufacture includes an oxygen scavenger and a zeolite. The article can be in the form of e.g. a film or sealing compound. A package can be made from the article for containing an oxygen-sensitive article such as food. The zeolite reduces migration of odor causing by-products of the oxygen scavenging process. A method of making an article of manufacture having reduced migration of byproducts of an oxygen scavenging reaction includes providing an article including an oxygen scavenger and a zeolite; and exposing the article to actinic radiation.

Description

This application is a continuation-in-part of U.S. Ser. No. 08/612,360, filed Mar. 7, 1996 now abandoned.
FIELD OF THE INVENTION
The invention generally relates to compositions, articles and methods for scavenging by-products of an oxygen scavenging reaction.
BACKGROUND OF THE INVENTION
It is well known that limiting the exposure of an oxygen-sensitive product to oxygen maintains and enhances the quality and "shelf-life" of the product. In the food packaging industry, several means for regulating oxygen exposure have already been developed.
These means include modified atmosphere packaging (MAP) for modifying the interior environment of a package; gas flushing; vacuum packaging; vacuum packaging combined with the use of oxygen barrier packaging materials; etc. Oxygen barrier films and laminates reduce or retard oxygen permeation from the outside environment into the package interior.
Another method currently being used is through "active packaging." The inclusion of oxygen scavengers within the cavity or interior of the package is one form of active packaging. Typically, such oxygen scavengers are in the form of sachets which contain a composition which scavenges the oxygen through chemical reactions. One type of sachet contains iron compositions which oxidize. Another type of sachet contains unsaturated fatty acid salts on a particulate adsorbent. Yet another type of sachet contains metal/polyamide complex.
One disadvantage of sachets is the need for additional packaging operations to add the sachet to each package. A further disadvantage arising from the use of some sachets is that certain atmospheric conditions (e.g., high humidity, low CO2 level) in the package are required in order for scavenging to occur at an adequate rate.
Another means for limiting the exposure to oxygen involves incorporating an oxygen scavenger into the packaging structure itself. This achieves a more uniform scavenging effect throughout the package. This may be specially important where there is restricted air circulation inside the package. In addition, such incorporation can provide a means of intercepting and scavenging oxygen as it passes through the walls of the package (herein referred to as an "active oxygen barrier"), thereby maintaining the lowest possible oxygen level throughout the package.
One attempt to prepare an oxygen-scavenging wall involves the incorporation of inorganic powders and/or salts. However, incorporation of these powders and/or salts causes degradation of the wall's transparency and mechanical properties such as tear strength. In addition, these compounds can lead to processing difficulties, especially in the fabrication of thin films, or thin layers within a film structure. Even further, the scavenging rates for walls containing these compounds are unsuitable for some commercial oxygen-scavenging applications, e.g. such as those in which sachets are employed.
Other efforts have been directed to incorporating a metal catalyst-polyamide oxygen scavenging system into the package wall. However, this system does not exhibit oxygen scavenging at a commercially feasible rate.
Oxygen scavengers suitable for commercial use in films of the present invention are disclosed in U.S. Pat. No. 5,350,622, and a method of initiating oxygen scavenging generally is disclosed in U.S. Pat. No. 5,211,875. Both applications are incorporated herein by reference in their entirety. According to U.S. Pat. No. 5,350,622, oxygen scavengers are made of an ethylenically unsaturated hydrocarbon and transition metal catalyst. The preferred ethylenically unsaturated hydrocarbon may be either substituted or unsubstituted. As defined herein, an unsubstituted ethylenically unsaturated hydrocarbon is any compound which possesses at least one aliphatic carbon-carbon double bond and comprises 100% by weight carbon and hydrogen. A substituted ethylenically unsaturated hydrocarbon is defined herein as an ethylenically unsaturated hydrocarbon which possesses at least one aliphatic carbon-carbon double bond and comprises about 50%-99% by weight carbon and hydrogen. Preferable substituted or unsubstituted ethylenically unsaturated hydrocarbons are those having two or more ethylenically unsaturated groups per molecule. More preferably, it is a polymeric compound having three or more ethylenically unsaturated groups and a molecular weight equal to or greater than 1,000 weight average molecular weight.
Preferred examples of unsubstituted ethylenically unsaturated hydrocarbons include, but are not limited to, diene polymers such as polyisoprene, (e.g., trans-polyisoprene) and copolymers thereof, cis and trans 1,4-polybutadiene, 1,2-polybutadienes, (which are defined as those polybutadienes possessing greater than or equal to 50% 1,2 microstructure), and copolymers thereof, such as styrene-butadiene copolymer. Such hydrocarbons also include polymeric compounds such as polypentenamer, pplyoctenamer, and other polymers prepared by cyclic olefin metathesis; diene oligomers such as squalene; and polymers or copolymers with unsaturation derived from dicyclopentadiene, norbornadiene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, 4-vinylcyclohexene, or other monomers containing more than one carbon-carbon double bond (conjugated or non-conjugated).
Preferred substituted ethylenically unsaturated hydrocarbons include, but are not limited to, those with oxygen-containing moieties, such as esters, carboxylic acids, aldehydes, ethers, ketones, alcohols, peroxides, and/or hydroperoxides. Specific examples of such hydrocarbons include, but are not limited to, condensation polymers such as polyesters derived from monomers containing carbon-carbon double bonds, and unsaturated fatty acids such as oleic, ricinoleic, dehydrated ricinoleic, and linoleic acids and derivatives thereof, e.g. esters. Such hydrocarbons also include polymers or copolymers derived from (meth)allyl (meth)acrylates. Suitable oxygen scavenging polymers can be made by trans-esterification. Such polymers are disclosed in WO 95/02616, incorporated herein by reference as if set forth in full. The composition used may also comprise a mixture of two or more of the substituted or unsubstituted ethylenically unsaturated hydrocarbons described above. While a weight average molecular weight of 1,000 or more is preferred, an ethylenically unsaturated hydrocarbon having a lower molecular weight is usable, provided it is blended with a film-forming polymer or blend of polymers.
As will also be evident, ethylenically unsaturated hydrocarbons which are appropriate for forming solid transparent layers at room temperature are preferred for scavenging oxygen in the packaging articles described above. For most applications where transparency is necessary, a layer which allows at least 50% transmission of visible light is preferred.
When making transparent oxygen-scavenging layers according to this invention, 1,2-polybutadiene is especially preferred for use at room temperature. For instance, 1,2-polybutadiene can exhibit transparency, mechanical properties and processing characteristics similar to those of polyethylene. In addition, this polymer is found to retain its transparency and mechanical integrity even after most or all of its oxygen capacity has been consumed, and even when little or no diluent resin is present. Even further, 1,2-polybutadiene exhibits a relatively high oxygen capacity and, once it has begun to scavenge, it exhibits a relatively high scavenging rate as well.
When oxygen scavenging at low temperatures is desired, 1,4-polybutadiene, and copolymers of styrene with butadiene, and styrene with isoprene are especially preferred. Such compositions are disclosed in U.S. Pat. No. 5,310,497 issued to Speer et al. on May 10, 1994 and incorporated herein by reference as if set forth in full. In many cases it may be desirable to blend the aforementioned polymers with a polymer or copolymer of ethylene.
Other oxygen scavengers which can be used in connection with this invention are disclosed in U.S. Pat. Nos. 5,075,362 (Hofeldt et al.), 5,106,886 (Hofeldt et al.), 5,204,389 (Hofeldt et al.), and 5,227,411 (Hofeldt et al.), all incorporated by reference herein in their entirety. These oxygen scavengers include ascorbates or isoascorbates or mixtures thereof with each other or with a sulfite, often sodium sulfite.
Still other oxygen scavengers which can be used in connection with this invention are disclosed in PCT patent publications WO 91/17044 (Zapata Industries) and WO94/09084 (Aquanautics Corporation), both incorporated by reference herein in their entirety. These oxygen scavengers include an ascorbate with a transition metal catalyst, the catalyst being a simple metal or salt or a compound, complex or chelate of the transition metal; or a transition metal complex or chelate of a polycarboxylic or salicylic acid or polyamine, optionally with a reducing agent such as ascorbate, where the transition metal complex or chelate acts primarily as an oxygen scavenging composition.
Yet other oxygen scavengers which can be used in connection with this invention are disclosed in PCT patent publication WO 94/12590 (Commonwealth Scientific and Industrial Research Organisation), incorporated by reference herein in its entirety. These oxygen scavengers include at least one reducible organic compound which is reduced under predetermined conditions, the reduced form of the compound being oxidizable by molecular oxygen, wherein the reduction and/or subsequent oxidation of the organic compound occurs independent of the presence of a transition metal catalyst. The reducible organic compound is preferably a quinone, a photoreducible dye, or a carbonyl compound which has absorbence in the UV spectrum.
Sulfites, alkali metal salts of sulphites, and tannins, are also contemplated as oxygen scavenging compounds.
As indicated above, the ethylenically unsaturated hydrocarbon is combined with a transition metal catalyst. While not being bound by any particular theory, the inventors observe that suitable metal catalysts are those which can readily interconvert between at least two oxidation states. See Sheldon, R. A.; Kochi, J. K.; "Metal-Catalyzed Oxidations of Organic Compounds" Academic Press, New York 1981.
Preferably, the catalyst is in the form of a transition metal salt, with the metal selected from the first, second or third transition series of the Periodic Table. Suitable metals include, but are not limited to, manganese II or III, iron II or III, cobalt II or III, nickel II or III, copper I or II, rhodium II, III or IV, and ruthenium II or III. The oxidation state of the metal when introduced is not necessarily that of the active form. The metal is preferably iron, nickel or copper, more preferably manganese and most preferably cobalt. Suitable counterions for the metal include, but are not limited to, chloride, acetate, stearate, palmitate, caprylate, linoleate, tallate, 2-ethylhexanoate, neodecanoate, oleate or naphthenate. Particularly preferable salts include cobalt (II) 2-ethylhexanoate and cobalt (II) neodecanoate. The metal salt may also be an ionomer, in which case a polymeric counterion is employed. Such ionomers are well known in the art.
The ethylenically unsaturated hydrocarbon and transition metal catalyst can be further combined with one or more polymeric diluents, such as thermoplastic polymers which are typically used to form film layers in plastic packaging articles. In the manufacture of certain packaging articles well known thermosets can also be used as the polymeric diluent.
Polymers which can be used as the diluent include, but are not limited to, polyethylene terephthalate (PET), polyethylene, low or very low density polyethylene, ultra-low density polyethylene, linear low density polyethylene, polypropylene, polyvinyl chloride, polystyrene, and ethylene copolymers such as ethylene-vinyl acetate, ethylene-alkyl (meth)acrylates, ethylene-(meth)acrylic acid and ethylene-(meth)acrylic acid ionomers. Blends of different diluents may also be used. However, as indicated above, the selection of the polymeric diluent largely depends on the article to be manufactured and the end use. Such selection factors are well known in the art.
Further additives can also be included in the composition to impart properties desired for the particular article being manufactured. Such additives include, but are not necessarily limited to, fillers, pigments, dyestuffs, antioxidants, stabilizers, processing aids, plasticizers, fire retardants, anti-fog agents, etc.
The mixing of the components listed above is preferably accomplished by melt-blending at a temperature in the range of 50° C. to 300° C. However alternatives such as the use of a solvent followed by evaporation may also be employed. The blending may immediately precede the formation of the finished article or preform or precede the formation of a feedstock or masterbatch for later use in the production of finished packaging articles.
Although these technologies offers great potential in packaging applications, it has been found that oxygen scavenging structures can sometimes generate reaction byproducts which can affect the taste and smell of the packaged material (i.e. organoleptic properties), or raise food regulatory issues. These by-products can include acids, aldehydes and ketones.
The inventors have found that this problem can be minimized by the use of zeolites (such as organophilic zeolites) which absorb odor-causing reaction byproducts. The zeolites can be incorporated into one or more layers of a multilayer film or container which includes an oxygen scavenging layer. However, one of ordinary skill in the art will readily recognize that the present invention is applicable to any oxygen scavenging system that produces by-products such as acids, aldehydes, and ketones.
DEFINITIONS
"Film" (F) herein means a film, laminate, sheet, web, coating, or the like which can be used to package a product.
"Zeolite" herein refers to molecular sieves, including aluminophosphates and aluminosilicates with a framework structure enclosing cavities occupied by large ions and/or water molecules, both of which have considerable freedom of movement permitting ion exchange and reversible dehydration. The framework may also contain other cations such as Mn, Ti, Co, and Fe. An example of such materials are the titanosilicate and titanoaluminosilicate molecular sieves. Unlike amorphous materials, these crystalline structures contain voids of discrete size. A typical naturally occurring zeolite is the mineral faujasite with formula
Na.sub.13 Ca.sub.11 Mg.sub.9 K.sub.2 Al.sub.55 Si.sub.137 O.sub.384.235H.sub.2 O.
Ammonium and alkylammonium cations may be incorporated in synthetic zeolites, e.g. NH4, CH3 NH3, (CH3)2 NH2, (CH3)3 NH, and (CH3)4 N. Some zeolites have frameworks of linked truncated octahedra (Beta-cages) characteristic of the structure of sodalite. Numerous synthetic zeolites are available.
"Oxygen scavenger" (OS) and the like herein means a composition, article or the like which consumes, depletes or reacts with oxygen from a given environment.
"Actinic radiation" and the like herein means any form of radiation, such as ultraviolet radiation or electron beam irradiation, disclosed in U.S. Pat. No. 5,211,875 (Speer et al.).
"Polymer" and the like herein means a homopolymer, but also copolymers thereof, including bispolymers, terpolymers, etc.
"Ethylene alpha-olefin copolymer" and the like herein means such heterogeneous materials as linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE) and very low and ultra low density polyethylene (VLDPE and ULDPE); and homogeneous polymers such as metallocene catalyzed polymers such as EXACT (TM) materials supplied by Exxon, and TAFMER (TM) materials supplied by Mitsui Petrochemical Corporation. These materials generally include copolymers of ethylene with one or more comonomers selected from C4 to C10 alpha-olefins such as butene-1 (i.e., 1-butene), hexene-1, octene-1, etc. in which the molecules of the copolymers comprise long chains with relatively few side chain branches or cross-linked structures. This molecular structure is to be contrasted with conventional low or medium density polyethylenes which are more highly branched than their respective counterparts. Other ethylene/alpha-olefin copolymers, such as the long chain branched homogeneous ethylene/alpha-olefin copolymers available from the Dow Chemical Company, known as AFFINITY (TM) resins, are also included as another type of ethylene alpha-olefin copolymer useful in the present invention.
As used herein, the term "polyamide" refers to polymers having amide linkages along the molecular chain, and preferably to synthetic polyamides such as nylons. Furthermore, such term encompasses both polymers comprising repeating units derived from monomers, such as caprolactam, which polymerize to form a polyamide, as well as copolymers of two or more amide monomers, including nylon terpolymers, also referred to generally as "copolyamides" herein.
"LLDPE" herein means linear low density polyethylene, which is an ethylene alpha olefin copolymer.
"EVOH" herein means ethylene vinyl alcohol copolymer.
"EVA" herein means ethylene vinyl acetate copolymer.
SUMMARY OF THE INVENTION
In one aspect of the invention, an article of manufacture comprises an oxygen scavenger and a zeolite.
In a second aspect of the invention, a package comprises an article and a container into which the oxygen sensitive article is disposed, the container including a component comprising an oxygen scavenger and a zeolite.
In a third aspect of the invention, a method of making an article of manufacture having reduced migration of by-products of an oxygen scavenging reaction comprises providing an article comprising an oxygen scavenger and a zeolite and exposing the article to actinic radiation.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may be further understood with reference to the drawings wherein FIGS. 1 through 5 are schematic cross-sections of various embodiments of a film of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The invention can be used to make various articles of manufacture, compounds, compositions of matter, coatings, etc. Two preferred forms are sealing compounds, and flexible films, both useful in packaging of food and non-food products.
It is known to use sealing compounds in the manufacture of gaskets for the rigid container market. Large, wide diameter gaskets are typically made using a liquid plastisol. This plastisol is a highly viscous, liquid suspension of polymer particles in a plasticizer. In the manufacture of metal or plastic caps, lids, and the like, this liquid plastisol is applied to the annulus of a container such as a jar, and the container with the applied plastisol is "fluxed" in an oven to solidify the plastisol into a gasket. The result is a gasket formed around the annulus of the container.
Smaller gaskets are typically made for use in beer crowns in bottles. A polymer melt is applied by cold molding to the entire inner surface of the crown. Both PVC and other polymers are used in this application.
Discs for plastic caps are typically made by taking a ribbon of gasket material and making discs, and inserting the discs into the plastic cap.
In all of these applications, the use of an oxygen scavenger and zeolite beneficially provides removal of oxygen from the interior environment of the container, while controlling undesirable by-products of the oxygen scavenging reaction.
Thus, a gasket includes a polymeric composition, an oxygen scavenger, and a zeolite. The gasket adheres a metal or plastic lid or closure to a rigid or semi-rigid container, thus sealing the lid or closure to the container.
Referring to FIG. 1, a multilayer film 10 is shown, having layer 12 and layer 14.
FIG. 2 shows a multilayer film with layers 12, 14, and 16. Layers 12, 14, and 16 are preferably polymeric.
Layer 12 comprises a zeolite. Preferred materials are the molecular sieves of the type disclosed in U.S. Pat. No. 4,795,482 (Gioffre et al.), incorporated herein by reference in its entirety. Also useful in the present invention are zeolites supplied by the Davison division of W. R. Grace & Co.-Conn. Preferred particle sizes for zeolites used in the present invention are between 0.1 and 10 micrometers, and more preferably between 0.5 and 3 micrometers.
Layer 14 comprises an oxygen scavenger, preferably a polymeric oxygen scavenger, more preferably one of the materials described above.
Layer 16 comprises an oxygen barrier material, such as ethylene vinyl alcohol copolymer (EVOH), Saran (vinylidene chloride copolymer), polyester, polyamide, metal, silica coating, etc.
FIG. 3 shows a laminated film in which a three layer film is adhered to a second film. Layers 32, 34, and 36 correspond functionally and compositionally to 12, 14, and 16 respectively of FIG. 2, and layer 38 is an intermediate layer which can comprise any polymeric material such as polyolefin, more preferably ethylenic polymers such as ethylene/alpha-olefin and ethylene/unsaturated ester copolymers, more preferably ethylene/vinyl acetate copolymer. Layer 31 represents a conventional adhesive such as polyurethane adhesive. Comparative 2 in Table 6 exemplifies the laminated film of FIG. 3.
FIG. 4 shows a laminated film in which a four layer film is adhered to a second film. Layers 42, 44, 46 and 48 correspond functionally and compositionally to layers 32, 34, 36 and 38 respectively of FIG. 3. Layer 49 is an innermost heat sealable layer which can comprise any polymeric material such as polyolefin, more preferably ethylenic polymers such as ethylene/alpha-olefin and ethyene/unsaturated ester copolymers, such as ethylene vinyl acetate copolymer. Layer 46 provides oxygen barrier to the film structure, and adheres to layer 48 by means of conventional adhesive 41. This adhesive corresponds to layer 31 of FIG. 3, and is shown simply as a thickened line. Examples 2 and 3 of Table 6 exemplify the laminated film of FIG. 4.
FIG. 5 shows a nine layer film. Example 1 and Comparative 1 in Table 2 exemplify the film of FIG. 5.
Layer 57 is an abuse-resistant layer useful as an outermost layer of a film when used in a packaging application.
Layers 54 and 56 correspond functionally and compositionally to layers 14 and 16 respectively of FIGS. 2 and 3, as well as to layers 44 and 46 respectively of FIG. 4.
Layers 52, 53, 58 and 59 comprise an adhesive. The adhesive is preferably polymeric, more preferably acid or acid anhydride-grafted polyolefins. In addition, these layers can comprise a zeolite.
Layer 55 comprises a heat resistant material. This can be any suitable polymeric material, preferably an amide polymer such as nylon 6, or a polyester such as polyethylene terephthalate.
Layer 51 comprises a heat sealable material. This can be any suitable polymeric material, preferably an olefinic polymer such as an ethylenic polymer, more preferably an ethylene alpha olefin copolymer. In addition, layer 51 can further comprise a zeolite.
The invention may be further understood by reference to the examples shown below. Table 1 identifies the materials used in the examples. The remaining tables describe the films made with these materials, and organoleptic or migration data resulting from testing some of these films.
              TABLE 1                                                     
______________________________________                                    
MA-                                                                       
TER-                                                                      
IAL   TRADENAME    SOURCE   DESCRIPTION                                   
______________________________________                                    
PE.sub.1                                                                  
      Dowlex ™ 3010                                                    
                   Dow      LLDPE, an ethylene/1-                         
                            octene copolymer with a                       
                            density of 0.921 gm/cc                        
PE.sub.2                                                                  
      Dowlex ™ 2244 A                                                  
                   Dow      LLDPE, an ethylene/1-                         
                            octene copolymer with a                       
                            density of 0.916 gm/cc                        
PE.sub.3                                                                  
      Poly-eth 1017                                                       
                   Chevron  low density polyethylene                      
PE.sub.4                                                                  
      AC-9A        Allied   polyethylene powder                           
AB.sub.1                                                                  
      10,075 ACP Sy-                                                      
                   Tecknor  89.8% low density polyeth-                    
      loid ™ antiblock                                                 
                   Color    ylene (Exxon LD 203.48) +                     
      concentrate           10% synthetic amorphous                       
                            silica (Syloid ™ 74X6500                   
                            from Davison Chemical) +                      
                            0.2% calcium stearate                         
PP.sub.1                                                                  
      Escorene     Exxon    polypropylene                                 
      PP292.E1                                                            
Z.sub.1                                                                   
      10414-12 zeolite                                                    
                   Cotortech                                              
                            masterbatch of 80% LLDPE                      
      concentrate           and 20% UOP Abscents ®                    
                            3000 zeolite                                  
Z.sub.2                                                                   
      10417-12 zeolite                                                    
                   Colortech                                              
                            masterbatch of 80% LLDPE                      
      concentrate           and 20% UOP Abscents ®                    
                            2000 zeolite                                  
Z.sub.3                                                                   
      USY zeolite  Grace    zeolite                                       
                   Davison                                                
Z.sub.4                                                                   
      ZSM-5 zeolite                                                       
                   Grace    zeolite                                       
                   Davison                                                
Z.sub.5                                                                   
      ZN-1         Grace    zeolite                                       
                   Davison                                                
      X5297H       Engelhard                                              
                            titanium silicate zeolite                     
AD.sub.1                                                                  
      Plexar ™ 107                                                     
                   Quantum  anhydride-grafted EVA                         
AD.sub.2                                                                  
      Adcote 530 and                                                      
                   Morton   mixture of silane, isocy-                     
      Coreactant 9L23                                                     
                   Inter-   anate, glycol, and alkyl                      
                   national acetate                                       
PA.sub.1                                                                  
      Ultramid ™ KR                                                    
                   BASF     nylon 6 (polycaprolactam)                     
      4407-F                                                              
OB.sub.1                                                                  
      LC-H101BD    Evalca   ethylene/vinyl alcohol co-                    
                            polymer with 38 mole %                        
                            ethylene                                      
OS.sub.1                                                                  
      RB-830       JSR      1,2-polybutadiene                             
OS.sub.2                                                                  
      VISTALON ™                                                       
                   Exxon    ethylene-propylene-diene                      
      3708                  terpolymer                                    
OS.sub.3                                                                  
      VECTOR ™ 8508-                                                   
                   Dexco    styrene/butadiene copoly-                     
      D                     mer with 30% by weight of                     
                            the styrene comonomer,                        
                            and 70% by weight of the                      
                            butadiene comonomer                           
EV.sub.1                                                                  
      MU-763       Quantum  ethylene/vinyl acetate co-                    
                            polymer                                       
EV.sub.2                                                                  
      PE 1375      Rexene   ethylene/vinyl acetate co-                    
                            polymer with 3.6 wt. % vinyl                  
                            acetate comonomer                             
EV.sub.3                                                                  
      LD-318.92    Exxon    ethylene/vinyl acetate co-                    
                            polymer with 9 wt. % vinyl                    
                            acetate comonomer                             
EB.sub.1                                                                  
      Lotryl 30BA02                                                       
                   Atochem  ethylene/butyl acrylate co-                   
                            polymer with 30 wt. % butyl                   
                            acrylate copolymer                            
PI.sub.1                                                                  
      benzophenone Sartomer photoinitiator                                
PI.sub.2                                                                  
      benzoylbiphenyl                                                     
                   --       photoinitiator                                
TC.sub.1                                                                  
      TENCEM ™ 170                                                     
                   OMG      cobalt neodecanoate, a                        
                            transition metal catalyst                     
TC.sub.2                                                                  
      cobalt oleate                                                       
                   Shepherd a transition metal catalyst                   
F.sub.1                                                                   
      50m-44 Mylar12 ™                                                 
                   DuPont   Saran-coated polyethylene                     
                            terephthalate film                            
______________________________________                                    
Certain materials were blended together for some of the film structures, and these blends are identified as follows:
PEB1 =90% PE1 +10% AB1.
PEB2 =90% PE1 +10% PEB3.
PEB3 =80% PE3 +20% PE4.
PPB1 =60% PP1 +40% EB1.
PPB2 =40% PP1 +60% EB1.
OSB1 =76.5% OS1 +13.5% OS2 +9.2% EV1 +0.5% PI1 +0.3% TC1.
OSB2 =50% OS3 +40% PE3 +8.54% EV1 +0.90% TC1 +0.50% PI1 +0.05% calcium oxide+0.01% antioxidant (Irganox 1076).
OSB3 =60% OS3 +38.83% EV3 +1.06% TC2 +0.10% PI2 +0.01% antioxidant (Irganox 1076).
OSB4 =40% OS3 +58.83% EV3 +1.06% TC2 +0.10% PI2 +0.01% antioxidant (Irganox 1076).
ZB1 =87% PE1 +10% AB1 +3% Z1.
ZB2 =90% PE2 +10% Z1.
ZB3 =90% PE2 +10% Z2.
ZB4 =90% PE2 +6% PE3 +2% PE4 +1% Z3 +1% Z4
ZB5 =80% PE2 +20% Z2.
ZB6 =80% PE3 +20% Z2.
In Table 2, a nine-layer film structure in accordance with the invention, and a comparative film, are disclosed. These were each made by coextrusion of the layers.
              TABLE 2                                                     
______________________________________                                    
EXAMPLE   STRUCTURE                                                       
______________________________________                                    
1         PEB.sub.1 /AD.sub.4 /OB.sub.1 /AD.sub.4 /OSB.sub.1 /AD.sub.4    
          /PA.sub.1 /AD.sub.4 /ZB.sub.2                                   
COMP. 1   PEB.sub.1 /AD.sub.4 /OB.sub.1 /AD.sub.4 /OSB.sub.1 /AD.sub.4    
          /PA.sub.1 /AD.sub.4 /PEB.sub.1                                  
______________________________________                                    
The target (and approximate actual) gauge (in mils) of each layer of the nine-layer film is shown below. Layer 9 would preferably form the food or product contact layer in a typical packaging application.
______________________________________                                    
layer layer  layer   layer                                                
                          layer layer                                     
                                     layer layer                          
                                                layer                     
1     2      3       4    5     6    7     8    9                         
______________________________________                                    
1.35  0.20   0.50    0.20 0.50  0.20 1.00  0.20 1.35                      
______________________________________                                    
The films of Example 1 and Comparative 1 were subjected to food law migration tests to evaluate whether zeolites could reduce the concentration of extractables. The films were triggered by ultraviolet light according to the procedure disclosed in U.S. Pat. No. 5,211,875. The films were converted into 280 cm2 pouches and the pouches were filled with a food simulant. The filled pouches were then retorted at 100° C. for 30 minutes and stored at 50° C. for 10 days. The food simulant was decanted from the pouches and analyzed. Table 3 shows a list of potential extractables. Table 4 shows the concentration of the same extractables, where the films were extracted with 8% ethanol solution as the food simulant. Table 5 shows the concentration of the same extractables, where the films were extracted with water as the food simulant. In both Tables 4 and 5, the concentration of each extractable is in units of nanograms/milliliter. Zeolites can reduce the concentration of certain extractables which could cause regulatory issues.
              TABLE 3                                                     
______________________________________                                    
ABBREVIATION    DESCRIPTION                                               
______________________________________                                    
E.sub.1         benzophenone                                              
E.sub.2         triphenyl phosphine oxide                                 
E.sub.3         Permanax ™ WSP (antioxidant)*                          
E.sub.4         dilauryl thiodipropionate                                 
E.sub.5         methyl formate                                            
E.sub.6         ethyl formate                                             
E.sub.7         methanol                                                  
E.sub.8         formaldehyde                                              
E.sub.9         acetaldehyde                                              
.sub. E.sub.10  acetone                                                   
.sub. E.sub.11  acrolein (2-propenal)                                     
.sub. E.sub.12  propanal                                                  
______________________________________                                    
 *E3 = 2,2'-methylene bis (4ethyl-6-(1-methylcyclohexyl)phenol).          
                                  TABLE 4                                 
__________________________________________________________________________
EX.  E.sub.1                                                              
        E.sub.2                                                           
            E.sub.3                                                       
               E.sub.4                                                    
                  E.sub.5                                                 
                      E.sub.6                                             
                         E.sub.7                                          
                            E.sub.8                                       
                                E.sub.9                                   
                                   E.sub.10                               
__________________________________________________________________________
1     21                                                                  
        21  <10                                                           
               <5 <600                                                    
                      <300                                                
                         3,310                                            
                            1,400                                         
                                6,700                                     
                                   100                                    
COMP. 1                                                                   
     <20                                                                  
        40  <10                                                           
               <5 <600                                                    
                      <300                                                
                         2,960                                            
                            1,600                                         
                                7,800                                     
                                    80                                    
__________________________________________________________________________
                                  TABLE 5                                 
__________________________________________________________________________
EX.  E.sub.1                                                              
        E.sub.2                                                           
            E.sub.3                                                       
               E.sub.4                                                    
                  E.sub.5                                                 
                      E.sub.6                                             
                         E.sub.7                                          
                            E.sub.8                                       
                                E.sub.9                                   
                                   E.sub.10                               
__________________________________________________________________________
1    22 13  <10                                                           
               <5 <600                                                    
                      <300                                                
                         <600                                             
                            320 780                                       
                                   50                                     
COMP. 1                                                                   
     21 16  <10                                                           
               <5 <600                                                    
                      <300                                                
                         <600                                             
                            310 730                                       
                                   50                                     
__________________________________________________________________________
In Table 6, two five-layer laminate structures in accordance with the invention, and one comparative four-layer laminate structure, are disclosed. The two five-layer structures were each made by laminating a coextruded four-layer film, using a conventional adhesive, to a second film (=layer 5). The comparative structure was made by laminating a coextruded three-layer film, using a conventional adhesive, to a second film (=layer 4).
              TABLE 6                                                     
______________________________________                                    
EXAMPLE     STRUCTURE                                                     
______________________________________                                    
2           PE.sub.2 /ZB.sub.2 /OSB.sub.2 /EV.sub.2 //AD.sub.2 //F.sub.1  
3           PE.sub.2 /ZB.sub.3 /OSB.sub.2 /EV.sub.2 //AD.sub.2 //F.sub.1  
COMP. 2     PE.sub.2 /OSB.sub.2 /EV.sub.2 //AD.sub.2 //F.sub.1            
______________________________________                                    
The target (and approximate actual) gauge (in mils) of each layer of the laminate structures of the invention was:
______________________________________                                    
layer 1                                                                   
       layer 2  layer 3  layer 4                                          
                                adhesive                                  
                                        layer 5                           
______________________________________                                    
0.20   0.20     0.50     1.00   (minimal)                                 
                                        0.50                              
______________________________________                                    
The target (and approximate actual) gauge (in mils) of each layer of the comparative laminate structures was:
______________________________________                                    
layer 1  layer 2 layer 3    adhesive                                      
                                   layer 4                                
______________________________________                                    
0.40     0.51    1.04       (minimal)                                     
                                   0.50                                   
______________________________________                                    
The film of Examples 2 and 3 were subjected to food law migration tests to evaluate whether zeolites could remove oxidation byproducts. Their efficacy was compared with Comparative 2. The list of extractables can be found in Table 3. The test results from the extraction of the films with Miglyol 812 (available from Huls America), a fatty food simulant, are summarized in Table 7. Zeolites can reduce the concentration of certain extractables which could cause regulatory issues.
              TABLE 7                                                     
______________________________________                                    
Migrant                                                                   
(ppb)   COMP. 2      EX. 2     EX. 3                                      
______________________________________                                    
E.sub.9 <Q.L.        <Q.L.     <Q.L.                                      
E.sub.10                                                                  
        <Q.L.        <Q.L.     <Q.L.                                      
E.sub.11                                                                  
        <D.L.        <D.L.     <D.L.                                      
E.sub.1 980          1000 +/- 5                                           
                               875 +/- 23                                 
E.sub.8 <D.L.        <D.L.     <D.L.                                      
E.sub.12                                                                  
        <D.L.        <D.L.     <D.L.                                      
______________________________________                                    
 D.L. = detection limit = 50 parts per billion (food equivalent).         
 Q.L. = quantifiable limit = 150 parts per billion (food equivalent).     
In Table 8, three five-layer laminate structures in accordance with the invention, and one comparative five-layer laminate structure, are disclosed. The five-layer structures were each made by laminating a coextruded four-layer film, using a conventional adhesive, to a second film (=layer 5).
              TABLE 8                                                     
______________________________________                                    
EXAMPLE     STRUCTURE                                                     
______________________________________                                    
4           PE.sub.2 /ZB.sub.2 /OSB.sub.3 /EV.sub.2 //AD.sub.2 //F.sub.1  
5           PE.sub.2 /ZB.sub.3 /OSB.sub.3 /EV.sub.2 //AD.sub.2 //F.sub.1  
6           PE.sub.2 /ZB.sub.4 /OSB.sub.3 /EV.sub.2 //AD.sub.2 //F.sub.1  
COMP. 3     PE.sub.2 /PEB.sub.2 /OSB.sub.3 /EV.sub.2 //AD.sub.2 //F.sub.1 
______________________________________                                    
The target (and approximate actual) gauge (in mils) of each layer of the laminate structures of the invention and the comparative was:
______________________________________                                    
layer 1                                                                   
       layer 2  layer 3  layer 4                                          
                                adhesive                                  
                                        layer 5                           
______________________________________                                    
0.15   0.15     0.50     1.00   (minimal)                                 
                                        0.50                              
______________________________________                                    
Sliced turkey breast was stored in packages made from the films of Examples 4, 5, 6 and Comparative 3. A sensory panel tasted the turkey slices to evaluate whether or not zeolites can reduce the off-flavor caused by byproducts of the oxygen-scavenging reaction.
The films were triggered by ultraviolet light according to the procedure disclosed in U.S. Pat. No. 5,211,875. The films were converted into packages on a Multivac® R7000 packaging machine. Cryovac® T6070B film was used as the bottom web of the packages. Each package contained one slice of turkey. Each package was flushed with a gas mixture consisting of 99% N2 and 1% O2. Packages were stored in the dark for 7 days at 40° F.
A sensory panel rated the taste of the turkey slices. The scale ranged from 1 to 6, with 1 indicating extreme off-flavor and 6 indicating no off-flavor. The average scores are summarized in Table 9. In some cases, zeolites can reduce the off-flavor caused by the byproducts of the oxygen-scavenging reaction.
              TABLE 9                                                     
______________________________________                                    
Film         Average Score                                                
______________________________________                                    
4            2.3                                                          
5            3.9                                                          
6            2.5                                                          
COMP. 3      2.6                                                          
______________________________________                                    
In Table 10, two five-layer laminate structures in accordance with the invention, and two comparative five-layer laminate structure, are disclosed. The five-layer structures were each made by laminating a coextruded four-layer film, using a conventional adhesive, to a second film (=layer 5).
              TABLE 10                                                    
______________________________________                                    
EXAMPLE     STRUCTURE                                                     
______________________________________                                    
7           ZB.sub.5 /PPB.sub.1 /OSB.sub.4 /ZB.sub.6 //AD.sub.2 //F.sub.1 
            3                                                             
COMP. 4     PE.sub.2 /PPB.sub.1 /OSB.sub.4 /PE.sub.2 //AD.sub.2 //F.sub.1 
            1                                                             
8           ZB.sub.5 /PPB.sub.2 /OSB.sub.4 /ZB.sub.6 //AD.sub.2 //F.sub.1 
            8                                                             
COMP. 5     PE.sub.2 /PPB.sub.2 /OSB.sub.4 /PE.sub.2 //AD.sub.2 //F.sub.1 
______________________________________                                    
The target (and approximate actual) gauge (in mils) of each layer of the laminate structures of the invention and the comparative was:
______________________________________                                    
layer 1                                                                   
       layer 2  layer 3  layer 4                                          
                                adhesive                                  
                                        layer 5                           
______________________________________                                    
0.15   0.15     0.50     1.00   (minimal)                                 
                                        0.50                              
______________________________________                                    
Sliced turkey breast was stored in packages made from the films of Examples 7 and 8 and Comparatives 4 and 5. A sensory panel tasted the turkey slices to evaluate whether or not zeolites can reduce the off-flavor caused by the byproducts of the oxygen-scavenging reaction.
The films were triggered by ultraviolet light according to the procedure disclosed in U.S. Pat. No. 5,211,875. The films were converted into packages on a Multivac® R7000 packaging machine. Cryovac® T6070B film was used as the bottom web of the packages. Each package contained one slice of turkey. Each package was flushed with a gas mixture consisting of 99% N2 and 1% O2. Packages were stored in the dark for 7 days at 40° F.
A sensory panel rated the taste of the turkey slices. The scale ranged from 1 to 6, with 1 indicating extreme off-flavor and 6 indicating no off-flavor. Table 11 summarizes the percentage of the panelists which did not taste an off-flavor (i.e. a score of 6) in the packaged turkey slices. In some cases, zeolites can significantly reduce the off-flavor caused by the byproducts of the oxygen-scavenging reaction.
              TABLE 11                                                    
______________________________________                                    
           Percentage of Panelist which                                   
           did not taste an off-flavor                                    
Film       in the packaged turkey                                         
______________________________________                                    
7          39%                                                            
COMP. 4    17%                                                            
8          17%                                                            
COMP. 5    13%                                                            
______________________________________                                    
A headspace gas chromatography (GC) method was used to determine the ability of a material to absorb aldehydes. The material (either 6 to 7 mg of powder or 25 mm disk of LLDPE film containing 4% absorber) was placed in a headspace GC vial (22 mL), and 2 μL of an aldehyde mixture containing about 0.1% each of the indicated aldehydes in methanol was injected into each vial. The vials were incubated at 80° C. for 1 hour and were injected into a GC. The data in Table 12 shows the percent change in the aldehyde concentration for each material relative to an appropriate control (vial with no absorber or LLDPE disk).
              TABLE 12                                                    
______________________________________                                    
Percent of Aldehydes Absorbed by Candidate Absorbers                      
Sample                                                                    
      Propenal  Pentanal Hexanal                                          
                                Heptanal                                  
                                        Octanal                           
______________________________________                                    
Percent Change Relative to Aldehyde Control                               
Z.sub.5                                                                   
      -77        4       -18     -21     -28                              
Z.sub.6                                                                   
      -57       -93      -99    -100    -100                              
Percent Change Relative to LLDPE Control                                  
Z.sub.4                                                                   
      -95       n/t.sup.c                                                 
                         -100    -85    n/t                               
Z.sub.3                                                                   
      -92       n/t      -77    -100    n/t                               
______________________________________                                    
 n/t means not included in this test                                      
The data in Table 12 shows that various zeolites are capable of reducing the migration of aldehydes. In addition, due to specificity of various materials it can be seen that blends of materials can be advantageous.
Films of the invention can been made by any conventional means, including coextrusion, lamination, extrusion coating, or corona bonding, and then optionally irradiated and/or oriented. They can be made heat shrinkable through orientation or tenterframing if desired, at orientation ratios of 1:2 to 1:9 in either or both of the machine and transverse directions. For shrink applications, they can be made to have a free shrink of at least 10%, more preferably at least 20%, most preferably at least 30%, in either or both directions at 90° C.
Gasket compositions of the invention can be made by any conventional process, including, but not limited to, extrusion compounding for thermoplastic compositions, and conventional mixing equipment for plastisol compositions. The gasket compositions of the invention can then be formed into gaskets on lids by any conventional process, including but not limited to, cold molding processes, inserted discs, application of liquid plastisols via pressurized nozzles followed by solidification in an oven, etc.
Various changes and modifications may be made without departing from the scope of the invention defined below. For example, a blend of different zeolites can be used in the same article (e.g. film or sealing compound). In films, although it is preferred that the zeolite be used in the film and as a packaging material such that the zeolite is disposed closer to the contents of the package, which can be food or any oxygen-sensitive product, than the oxygen scavenger, there may be applications where the zeolite is disposed "outside of" the oxygen scavenger, such that the oxygen scavenger-containing layer is disposed closer to the contents of a package made from the film, than the zeolite-containing layer. The zeolite can alternatively be disposed on both sides of the oxygen scavenger. Also, within the same film, a first zeolite can be used in a first layer, and a second zeolite, different from the first zeolite, can be used in another layer of the film.
Alternatively, the zeolite, in addition to or instead of the arrangements described above, can be disposed in the same layer or layers as the oxygen scavenging material. Thus, by way of example, any of layers 14, 34, 44, and 54 of the examples and figures can include any suitable percent, by weight of the layer, of a zeolite. A preferred blend of oxygen scavenging and zeolite in such a blend layer is between 95% and 99.5% oxygen scavenger, and between 0.5% and 5% zeolite. Any suitable polymeric materials can be employed in films containing the zeolites, and are not limited to those listed herein. The amount of zeolite used in a film of the present invention is preferably between 0.1% and 5% of the layer in which it occurs. These percentages are based on the zeolite material (e.g. zeolite) per se, with suitable adjustment to be made if the zeolite material is used as a masterbatch with another material such as polyethylene. Above 5% of the layer, optics of the film can be compromised to some extent, although the film can still be used in many applications. In end-use applications where optics are not a critical feature of the package, such as opaque films or gaskets for containers, higher amounts of zeolites can be beneficially used.
Zeolites disclosed herein can be used with or in films or coatings, or absorbed into a variety of other supports for scavenging or other uses, such as a layer or coating on another object, or as a bottle cap or bottle liner, as an adhesive or non-adhesive insert, sealant, gasket, fibrous matte or other inserts, or as a non-integral component of a rigid, semi-rigid, or flexible container.

Claims (20)

What is claimed is:
1. A film having at least one layer, said layer comprising:
a) a zeolite; and
b) an oxygen scavenger comprising a material selected from the group consisting of:
i) oxidizable compound and a transition metal catalyst,
ii) ethylenically unsaturated hydrocarbon and a transition metal catalyst,
iii) ascorbate,
iv) isoascorbate,
v) sulfite,
vi) ascorbate with a transition metal catalyst, the catalyst comprising a simple metal or salt, or a compound, complex or chelate of the transition metal;
vii) a transition metal complex or chelate of a polycarboxylic acid, salicylic acid, or polyamine;
viii) a reduced form of a quinone, a photoreducible dye, or a carbonyl compound which has absorbence in the UV spectrum, and
ix) tannin.
2. The film of claim 1 wherein the zeolite is selected from the group consisting of microporous crystalline aluminosilicates and microporous crystalline aluminophosphates.
3. The film of claim 1 wherein the zeolite comprises a synthetic zeolite.
4. The film of claim 1 wherein the film comprises an oxygen barrier layer.
5. The film of claim 1 wherein the film comprises a heat sealable layer.
6. The film of claim 1 wherein the film comprises an intermediate adhesive layer.
7. The film of claim 1 wherein the film is cross-linked.
8. The film of claim 1 wherein the film is oriented.
9. The film of claim 1 wherein the film is heat shrinkable.
10. A film comprising:
a) a first layer comprising an oxygen barrier material;
b) a second layer comprising an oxygen scavenger; and
c) a third layer comprising a zeolite.
11. The film of claim 10 wherein the oxygen barrier material comprises a material selected from the group consisting of:
a) ethylene/vinyl alcohol copolymer,
b) vinylidene chloride copolymer,
c) polyester,
d) polyamide,
e) metal, and
f) silica coating.
12. The film of claim 10 wherein the oxygen scavenger comprises a material selected from the group consisting of:
i) oxidizable compound and a transition metal catalyst,
ii) ethylenically unsaturated hydrocarbon and a transition metal catalyst,
iii) ascorbate,
iv) isoascorbate,
v) sulfite,
vi) ascorbate with a transition metal catalyst, the catalyst comprising a simple metal or salt, or a compound, complex or chelate of the transition metal;
vii) a transition metal complex or chelate of a polycarboxylic acid, salicylic acid, or polyamine;
viii) a reduced form of a quinone, a photoreducible dye, or a carbonyl compound which has absorbence in the UV spectrum, and
ix) tannin.
13. The film of claim 10 wherein the zeolite is selected from the group consisting of microporous crystalline aluminosilicates and microporous crystalline aluminophosphates.
14. The film of claim 10 wherein the zeolite comprises a synthetic zeolite.
15. The film of claim 10 wherein the film comprises a heat sealable layer.
16. The film of claim 10 wherein the film comprises an intermediate adhesive layer.
17. The film of claim 10 wherein the film is cross-linked.
18. The film of claim 10 wherein the film is oriented.
19. The film of claim 10 wherein the film is heat shrinkable.
20. A film comprising:
a) a first layer comprising an ethylene/vinyl alcohol copolymer;
b) a second layer comprising an ethylenically unsaturated hydrocarbon and a transition metal catalyst;
c) a third layer comprising a microporous crystalline aluminosilicate or a microporous crystalline aluminophosphate; and
d) a fourth, heat sealable, layer comprising an olefinic polymer;
wherein the first and fourth layers form outside surfaces of the film.
US08/812,637 1996-03-07 1997-03-07 Zeolite in packaging film Expired - Lifetime US5834079A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
PCT/US1997/003526 WO1997032924A1 (en) 1996-03-07 1997-03-07 Zeolite in packaging film
DK97908040T DK0885257T3 (en) 1996-03-07 1997-03-07 Zeolite in packaging foil
US08/812,637 US5834079A (en) 1996-03-07 1997-03-07 Zeolite in packaging film
JP53194397A JP3529139B2 (en) 1996-03-07 1997-03-07 Zeolites in packaging films
AU19886/97A AU727948C (en) 1996-03-07 1997-03-07 Zeolite in packaging film
CA 2247904 CA2247904C (en) 1996-03-07 1997-03-07 Zeolite in packaging film
KR10-1998-0706968A KR100408145B1 (en) 1996-03-07 1997-03-07 Zeolite in packaging film
CN97194442A CN1090201C (en) 1996-03-07 1997-03-07 Zeolites in Packaging Films
CNB01141135XA CN1235956C (en) 1996-03-07 1997-03-07 Sealing composition
BR9708172A BR9708172A (en) 1996-03-07 1997-03-07 Presence of zeolite in packaging films
NZ331414A NZ331414A (en) 1996-03-07 1997-03-07 sealing compound containing an oxygen scavenger and a zeolite and a film having layers containing an oxygen scavenger and a zeolite
EP19970908040 EP0885257B1 (en) 1996-03-07 1997-03-07 Zeolite in packaging film
US09/074,058 US6365245B2 (en) 1996-03-07 1998-05-07 Zeolite in packaging film
US09/691,570 US6391403B1 (en) 1996-03-07 2000-10-18 Zeolite in packaging film
US09/919,225 US6458438B2 (en) 1996-03-07 2001-07-31 Zeolite in packaging film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61236096A 1996-03-07 1996-03-07
US08/812,637 US5834079A (en) 1996-03-07 1997-03-07 Zeolite in packaging film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US61236096A Continuation-In-Part 1996-03-07 1996-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/074,058 Division US6365245B2 (en) 1996-03-07 1998-05-07 Zeolite in packaging film

Publications (1)

Publication Number Publication Date
US5834079A true US5834079A (en) 1998-11-10

Family

ID=24452830

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/812,637 Expired - Lifetime US5834079A (en) 1996-03-07 1997-03-07 Zeolite in packaging film

Country Status (7)

Country Link
US (1) US5834079A (en)
EP (1) EP0952179B1 (en)
KR (1) KR100408145B1 (en)
AR (1) AR006166A1 (en)
AT (2) ATE284917T1 (en)
DE (2) DE69706287T2 (en)
ES (1) ES2162255T3 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962094A (en) * 1995-08-09 1999-10-05 Ppg Industries Ohio, Inc. Mechanically sealing closure for receptables
US6013736A (en) * 1998-02-16 2000-01-11 The Goodyear Tire & Rubber Company Metal deactivator for cobalt catalyzed polymers
WO2000032695A1 (en) * 1998-11-27 2000-06-08 Bp Chemicals Limited Polymer composition for bottle screw caps
US6255248B1 (en) * 1999-07-09 2001-07-03 Cryovac, Inc. Oxygen scavenging composition with improved properties and method of using same
US6258883B1 (en) 1999-05-06 2001-07-10 Cryovac, Inc. Oxygen scavenging system and compositions
US6287481B1 (en) * 1997-08-01 2001-09-11 Cryovac, Inc. Method, apparatus, and system for triggering oxygen scavenging films
WO2002051705A2 (en) * 2000-12-22 2002-07-04 Cryovac, Inc. Method of sterilizing and initiating a scavenging reaction in a package
US6458438B2 (en) * 1996-03-07 2002-10-01 Cryovac, Inc. Zeolite in packaging film
US20020183448A1 (en) * 1996-09-23 2002-12-05 Tibbitt James M. Oxygen scavenging monolayer bottles
US20030003197A1 (en) * 2000-01-26 2003-01-02 Mikael Berlin Method of manufacturing a multi-layer packaging laminate and packaging laminate obtained by the method
US6524672B1 (en) 1999-02-12 2003-02-25 Plastipak Packaging, Inc. Multilayer preform and container with co-extruded liner
US6569479B2 (en) 1999-10-27 2003-05-27 The Coca-Cola Company Process for reduction of acetaldehyde and oxygen in beverages contained in polyester-based packaging
US20030108702A1 (en) * 2001-07-26 2003-06-12 Deborah Tung Oxygen-scavenging containers
US6686006B1 (en) 1997-05-16 2004-02-03 Cyrovac, Inc. Amorphous silica in packaging film
US6761825B2 (en) 2000-08-04 2004-07-13 I. Du Pont De Nemours And Company Method for removing odors in sterilized water
WO2004062896A1 (en) 2003-01-16 2004-07-29 Ian Orde Michael Jacobs Methods, compositions and blends for forming articles having improved environmental stress crack resistance
US20040151934A1 (en) * 2003-01-27 2004-08-05 Schwark Dwight W. Oxygen scavenging film with high slip properties
US20040234797A1 (en) * 2003-05-23 2004-11-25 Cryovac, Inc. Oxygen scavenging film with antifog properties
US20050019208A1 (en) * 2001-05-18 2005-01-27 Speer Drew V. Process for pasteurizing an oxygen sensitive product and triggering an oxygen scavenger, and the resulting package
US6872247B1 (en) 2003-10-07 2005-03-29 W. R. Grace & Co.-Conn. Amine-based, hexavalent chromium reducing agents for cement
US6969552B2 (en) * 1995-05-17 2005-11-29 Tetra Laval Holdings & Finance, S.A. Resin composition containing a reducing agent to be used in a multi-layer laminate for storing liquid foods
US20060099436A1 (en) * 2004-11-05 2006-05-11 Cryovac, Inc. Reduced antifog level in oxygen scavenging film with antifog properties
US20060122306A1 (en) * 2004-12-06 2006-06-08 Stafford Steven L Polyester/polyamide blend having improved flavor retaining property and clarity
US20060128861A1 (en) * 2004-12-06 2006-06-15 Stewart Mark E Polyester based cobalt concentrates for oxygen scavenging compositions
US20060148957A1 (en) * 2004-12-06 2006-07-06 Constar International Inc. Blends of oxygen scavenging polyamides with polyesters which contain zinc and cobalt
US20060228503A1 (en) * 2005-04-12 2006-10-12 Marvin Havens Film for chub packaging
US20070020418A1 (en) * 2003-01-29 2007-01-25 Howell Earl E Jr Acetaldehyde scavenging by addition of active scavengers to bottle closures
US20070122523A1 (en) * 2005-11-28 2007-05-31 G3 Enterprises Highly selective molecular confinement for the prevention and removal of taint in foods and beverages
US20110017611A1 (en) * 2007-12-21 2011-01-27 Basf Se Oxygen-scavenging mixtures
US20130168270A1 (en) * 2010-09-01 2013-07-04 Kyodo Printing Co., Ltd. Laminated sheet suitable for package, container using the laminated sheet, and package containing the laminated sheet and container
US20130213824A1 (en) * 2010-10-27 2013-08-22 Advanced Technology Materials, Inc. Liner-based assembly for removing impurities
CZ306753B6 (en) * 2011-01-26 2017-06-14 Invos, Spol. S. R. O. A multilayer packaging polymeric film
US20170327294A1 (en) * 2015-03-31 2017-11-16 Yoshino Kogyosho Co., Ltd. Humidity controlling container
US11279116B2 (en) 2016-04-27 2022-03-22 Cryovac, Llc Film having an oxygen scavenger and a volatile organoleptic compound scavenger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908652B1 (en) 1996-09-18 2005-06-21 Cryovac, Inc. Poly(lactic acid) in oxygen scavenging article
DE102013013163A1 (en) * 2013-07-18 2015-01-22 Kautex Textron Gmbh & Co. Kg Multilayer composite material and articles comprising same
CN108680674B (en) * 2018-05-21 2021-01-26 珠海天祥粤澳质量技术服务有限公司 Method for detecting special migration amount of 5-ethylidene-2-norbornene in food contact material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126174A (en) * 1989-02-16 1992-06-30 Wm. Wrigley Jr. Company Food packaging improvements
US5153038A (en) * 1988-04-30 1992-10-06 Toyo Seikan Kaisha, Ltd. Plastic multi-layer vessel
US5211875A (en) * 1991-06-27 1993-05-18 W. R. Grace & Co.-Conn. Methods and compositions for oxygen scavenging
US5310497A (en) * 1992-10-01 1994-05-10 W. R. Grace & Co.-Conn. Oxygen scavenging compositions for low temperature use
US5350622A (en) * 1991-04-02 1994-09-27 W. R. Grace & Co.-Conn. Multilayer structure for a package for scavenging oxygen
EP0638487A1 (en) * 1993-08-06 1995-02-15 Toyo Seikan Kaisha Limited Plastic multi-layer container having excellent flavor-retaining property and boiled rice-packaging material
WO1996022160A1 (en) * 1995-01-17 1996-07-25 E.I. Du Pont De Nemours And Company Sulfide scavenging packaging materials
WO1996040429A1 (en) * 1995-06-07 1996-12-19 E.I. Du Pont De Nemours And Company Sulfide scavenging packaging materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA924298B (en) * 1991-03-14 1993-04-28 Nat Brands Limited Oxygen scavenger system
JPH05247276A (en) * 1992-03-04 1993-09-24 Toppan Printing Co Ltd Oxygen-barrier resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153038A (en) * 1988-04-30 1992-10-06 Toyo Seikan Kaisha, Ltd. Plastic multi-layer vessel
US5126174A (en) * 1989-02-16 1992-06-30 Wm. Wrigley Jr. Company Food packaging improvements
US5350622A (en) * 1991-04-02 1994-09-27 W. R. Grace & Co.-Conn. Multilayer structure for a package for scavenging oxygen
US5211875A (en) * 1991-06-27 1993-05-18 W. R. Grace & Co.-Conn. Methods and compositions for oxygen scavenging
US5310497A (en) * 1992-10-01 1994-05-10 W. R. Grace & Co.-Conn. Oxygen scavenging compositions for low temperature use
EP0638487A1 (en) * 1993-08-06 1995-02-15 Toyo Seikan Kaisha Limited Plastic multi-layer container having excellent flavor-retaining property and boiled rice-packaging material
WO1996022160A1 (en) * 1995-01-17 1996-07-25 E.I. Du Pont De Nemours And Company Sulfide scavenging packaging materials
WO1996040429A1 (en) * 1995-06-07 1996-12-19 E.I. Du Pont De Nemours And Company Sulfide scavenging packaging materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Abstract of Japan 5 247,276 (Published Sep. 24, 1993). *
Abstract of Japan 5-247,276 (Published Sep. 24, 1993).
Abstract of South Africa 9204298 (Published Apr. 28, 1993). *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969552B2 (en) * 1995-05-17 2005-11-29 Tetra Laval Holdings & Finance, S.A. Resin composition containing a reducing agent to be used in a multi-layer laminate for storing liquid foods
US5962094A (en) * 1995-08-09 1999-10-05 Ppg Industries Ohio, Inc. Mechanically sealing closure for receptables
US6458438B2 (en) * 1996-03-07 2002-10-01 Cryovac, Inc. Zeolite in packaging film
US6863988B2 (en) 1996-09-23 2005-03-08 Bp Corporation North America Inc. Oxygen scavenging monolayer bottles
US20020183448A1 (en) * 1996-09-23 2002-12-05 Tibbitt James M. Oxygen scavenging monolayer bottles
US6686006B1 (en) 1997-05-16 2004-02-03 Cyrovac, Inc. Amorphous silica in packaging film
US6287481B1 (en) * 1997-08-01 2001-09-11 Cryovac, Inc. Method, apparatus, and system for triggering oxygen scavenging films
US6013736A (en) * 1998-02-16 2000-01-11 The Goodyear Tire & Rubber Company Metal deactivator for cobalt catalyzed polymers
WO2000032695A1 (en) * 1998-11-27 2000-06-08 Bp Chemicals Limited Polymer composition for bottle screw caps
US6797756B2 (en) 1998-11-27 2004-09-28 Bp Chemicals Limited Polymer composition for bottle screw caps
US6641774B2 (en) 1999-02-12 2003-11-04 Plastipak Packaging, Inc. Multilayer preform and container with co-extruded liner
US6524672B1 (en) 1999-02-12 2003-02-25 Plastipak Packaging, Inc. Multilayer preform and container with co-extruded liner
US6258883B1 (en) 1999-05-06 2001-07-10 Cryovac, Inc. Oxygen scavenging system and compositions
US6255248B1 (en) * 1999-07-09 2001-07-03 Cryovac, Inc. Oxygen scavenging composition with improved properties and method of using same
US6569479B2 (en) 1999-10-27 2003-05-27 The Coca-Cola Company Process for reduction of acetaldehyde and oxygen in beverages contained in polyester-based packaging
US20030003197A1 (en) * 2000-01-26 2003-01-02 Mikael Berlin Method of manufacturing a multi-layer packaging laminate and packaging laminate obtained by the method
US6845599B2 (en) * 2000-01-26 2005-01-25 Tetra Laval Holdings & Finance Sa Method of manufacturing a multi-layer packaging laminate and packaging laminate obtained by the method
AU777042B2 (en) * 2000-01-26 2004-09-30 Tetra Laval Holdings & Finance Sa Method of manufacturing a multi-layer packaging laminate and packaging laminate obtained by the method
US6761825B2 (en) 2000-08-04 2004-07-13 I. Du Pont De Nemours And Company Method for removing odors in sterilized water
US6875400B2 (en) 2000-12-22 2005-04-05 Cryovac, Inc. Method of sterilizing and initiating a scavenging reaction in an article
WO2002051705A2 (en) * 2000-12-22 2002-07-04 Cryovac, Inc. Method of sterilizing and initiating a scavenging reaction in a package
WO2002051705A3 (en) * 2000-12-22 2003-03-06 Cryovac Inc Method of sterilizing and initiating a scavenging reaction in a package
US20050019208A1 (en) * 2001-05-18 2005-01-27 Speer Drew V. Process for pasteurizing an oxygen sensitive product and triggering an oxygen scavenger, and the resulting package
US7740926B2 (en) 2001-07-26 2010-06-22 M&G Usa Corporation Oxygen-scavenging containers
US20030108702A1 (en) * 2001-07-26 2003-06-12 Deborah Tung Oxygen-scavenging containers
US10035310B2 (en) 2003-01-16 2018-07-31 Viva Healthcare Packaging Limited Methods, compositions and blends for forming articles having improved environmental stress crack resistance
US9199421B2 (en) 2003-01-16 2015-12-01 Viva Healthcare Packaging Limited Methods, compositions and blends for forming articles having improved environmental stress crack resistance
WO2004062896A1 (en) 2003-01-16 2004-07-29 Ian Orde Michael Jacobs Methods, compositions and blends for forming articles having improved environmental stress crack resistance
US8518318B2 (en) 2003-01-16 2013-08-27 Viva Healthcare Packaging Limited Methods, compositions and blends for forming articles having improved environmental stress crack resistance
EP2363276A2 (en) 2003-01-16 2011-09-07 JACOBS, Ian Orde Michael Methods for forming articles having improved environmental stress crack resistance
US20060214331A1 (en) * 2003-01-16 2006-09-28 Jacobs Ian O M Methods, compositions and blends for forming articles having improved environmental stress crack resistance
AU2004207784B2 (en) * 2003-01-27 2010-04-22 Cryovac, Inc. Oxygen scavenging film with high slip properties
US20040151934A1 (en) * 2003-01-27 2004-08-05 Schwark Dwight W. Oxygen scavenging film with high slip properties
US20070020418A1 (en) * 2003-01-29 2007-01-25 Howell Earl E Jr Acetaldehyde scavenging by addition of active scavengers to bottle closures
US20040234797A1 (en) * 2003-05-23 2004-11-25 Cryovac, Inc. Oxygen scavenging film with antifog properties
US6872247B1 (en) 2003-10-07 2005-03-29 W. R. Grace & Co.-Conn. Amine-based, hexavalent chromium reducing agents for cement
US20050072339A1 (en) * 2003-10-07 2005-04-07 Jardine Leslie A. Amine-based, hexavalent chromium reducing agents for cement
US20060099436A1 (en) * 2004-11-05 2006-05-11 Cryovac, Inc. Reduced antifog level in oxygen scavenging film with antifog properties
US20080045637A1 (en) * 2004-12-06 2008-02-21 Eastman Chemical Company Polyester based cobalt concentrates for oxygen scavenging compositions
US7288586B2 (en) 2004-12-06 2007-10-30 Eastman Chemical Company Polyester based cobalt concentrates for oxygen scavenging compositions
US7375154B2 (en) 2004-12-06 2008-05-20 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity
US20080118690A1 (en) * 2004-12-06 2008-05-22 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity
US20060128861A1 (en) * 2004-12-06 2006-06-15 Stewart Mark E Polyester based cobalt concentrates for oxygen scavenging compositions
US7641950B2 (en) 2004-12-06 2010-01-05 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity
US20060148957A1 (en) * 2004-12-06 2006-07-06 Constar International Inc. Blends of oxygen scavenging polyamides with polyesters which contain zinc and cobalt
US20060122306A1 (en) * 2004-12-06 2006-06-08 Stafford Steven L Polyester/polyamide blend having improved flavor retaining property and clarity
US20080021142A1 (en) * 2004-12-06 2008-01-24 Eastman Chemical Company Polyester based cobalt concentrates for oxygen scavenging compositions
US20060228503A1 (en) * 2005-04-12 2006-10-12 Marvin Havens Film for chub packaging
US20100044296A1 (en) * 2005-11-28 2010-02-25 G3 Enterprises Highly Selective Molecular Confinement for the Prevention and Removal of Taint in Foods and Beverages
US8057671B2 (en) 2005-11-28 2011-11-15 G3 Enterprises Closure device capable of removing TCA in a beverage container
US20070122523A1 (en) * 2005-11-28 2007-05-31 G3 Enterprises Highly selective molecular confinement for the prevention and removal of taint in foods and beverages
US7629009B2 (en) 2005-11-28 2009-12-08 G3 Enterprises Highly selective molecular confinement for the prevention and removal of taint in foods and beverages
US20110017611A1 (en) * 2007-12-21 2011-01-27 Basf Se Oxygen-scavenging mixtures
US20130168270A1 (en) * 2010-09-01 2013-07-04 Kyodo Printing Co., Ltd. Laminated sheet suitable for package, container using the laminated sheet, and package containing the laminated sheet and container
US10239680B2 (en) * 2010-09-01 2019-03-26 Kyodo Printing Co., Ltd. Blister package containing the laminated sheet and container
US20130213824A1 (en) * 2010-10-27 2013-08-22 Advanced Technology Materials, Inc. Liner-based assembly for removing impurities
US9062828B2 (en) * 2010-10-27 2015-06-23 Advanced Technology Materials, Inc. Liner-based assembly for removing impurities
US9631774B2 (en) 2010-10-27 2017-04-25 Entegris, Inc. Liner-based assembly for removing impurities
CZ306753B6 (en) * 2011-01-26 2017-06-14 Invos, Spol. S. R. O. A multilayer packaging polymeric film
US20170327294A1 (en) * 2015-03-31 2017-11-16 Yoshino Kogyosho Co., Ltd. Humidity controlling container
US11279116B2 (en) 2016-04-27 2022-03-22 Cryovac, Llc Film having an oxygen scavenger and a volatile organoleptic compound scavenger

Also Published As

Publication number Publication date
ES2162255T3 (en) 2001-12-16
EP0952179B1 (en) 2004-12-15
DE69706287D1 (en) 2001-09-27
DE69731974D1 (en) 2005-01-20
EP0952179A2 (en) 1999-10-27
DE69706287T2 (en) 2002-05-16
AR006166A1 (en) 1999-08-11
ATE284917T1 (en) 2005-01-15
EP0952179A3 (en) 2000-06-14
ATE204595T1 (en) 2001-09-15
KR19990087533A (en) 1999-12-27
KR100408145B1 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US5834079A (en) Zeolite in packaging film
US6391403B1 (en) Zeolite in packaging film
EP0885258B1 (en) Functional barrier in oxygen scavenging film
US6908652B1 (en) Poly(lactic acid) in oxygen scavenging article
EP0981579B1 (en) Amorphous silica in packaging film
AU733336B2 (en) Poly(lactic acid) in oxygen scavenging article
AU2003201319B2 (en) Zeolite in packaging film
MXPA99010528A (en) Amorphous silica in packaging film

Legal Events

Date Code Title Description
AS Assignment

Owner name: W. R. GRACE & CO.-CONN., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLINKA, THOMAS A.;EDWARDS, FRANK B.;MIRANDA, NATHANIEL R.;AND OTHERS;REEL/FRAME:008707/0629;SIGNING DATES FROM 19970428 TO 19970505

AS Assignment

Owner name: CRYOVAC, INC., SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:W.R. GRACE & CO.-CONN.;REEL/FRAME:009405/0001

Effective date: 19980814

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12