US5817715A - Method for making curable coatings - Google Patents
Method for making curable coatings Download PDFInfo
- Publication number
- US5817715A US5817715A US08/906,629 US90662997A US5817715A US 5817715 A US5817715 A US 5817715A US 90662997 A US90662997 A US 90662997A US 5817715 A US5817715 A US 5817715A
- Authority
- US
- United States
- Prior art keywords
- coating composition
- acrylate
- gel
- silica
- curable coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/12—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F292/00—Macromolecular compounds obtained by polymerising monomers on to inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/02—Polysilicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/10—Block or graft copolymers containing polysiloxane sequences
Definitions
- the present invention relates to curable coating compositions and to a method for producing curable gel-free coating compositions. More particularly the present invention relates to a gel-free silica acrylate curable coating composition.
- Curable coating compositions based on silica acrylate resins are generally made using colloidal silica. It is desirable to produce a stripped coating by removing water from colloidal silica azeotropically, using a compatible solvent, for example isopropyl alcohol, and leaving the treated silica in a reactive acrylate carrier. It has been shown that when this reaction is run under a nitrogen atmosphere, a gel forms at a point during the stripping process when nearly all of the compatible solvent is removed. It is known that highly reactive acrylates require oxygen to prevent gelation, hence typically this stripping operation has been run under at least some oxygen. Due to the flammability of the compatible solvents, it is highly desirable to run these reactions without the addition of oxygen.
- a compatible solvent for example isopropyl alcohol
- the method of the current invention is a process for making gel-free curable coating compositions, without requiring the addition of oxygen to the system. Further, it has been found that coating compositions which are so stripped have exhibited longer shelf-lives.
- gel-free refers to coating compositions in which viscosity is controlled within useful limits.
- the viscosity will of course vary depending on the specific polymers, however when the composition is diluted in a suitable solvent, essentially no undissolved material remains.
- U.S. Pat. Nos. 4,486,504 and 4,455,205 relate to formulations of weatherable and non-weatherable UV curable hard coat compositions.
- U.S. Pat. No. 4,973,612 to Cottington et al. relates to coating compositions which contain multifuntional acrylates, unsaturated organic compounds and aqueous dispersions of colloidal silica.
- U.S. Pat. No. 4,644,077 to Gupta relates to a process for producing organophilic silica.
- U.S. Pat. No. 4,491,508 to Olsen et al. relates to a method for making a solventless hard coat composition, which may be useful in the current invention.
- U.S. Pat. No. 4,478,876 to Chung relates to a process of coating a substrate with an abrasion resistance ultraviolet curable composition. This process relates to forming the composition under a non-inert atmosphere such as air.
- U.S. Pat. No. 5,120,811 to Glotfelter et al. relates to an organic/inorganic (epoxy/glass) wear surface coating over a clear, protective layer providing excellent stain and gloss protection.
- An acid hydrolyzed silicate is combined with an acid hydrolyzed silicone coupling agent, an epoxy monomer, a photoinitiator and silicon oil surfactant, but no colloidal silica or acrylate monomer is used.
- U.S. Pat. No. 5,103,032 to Turner et al. relates to compositions containing an acryloxysilane or a methacryloxysilane and an N,N-dialkylaminomethylene phenol in an amount at least sufficient to inhibit polymerization of the silane during its formation, purification and storage, however, there is no mention of the use of colloidal silica.
- U.S. Pat. No. 4,831,093 to Swarts relates to the polymerization of methyl methacrylate with initiator of perester salt of maleic acid using a bisulfite activator in water-in-oil emulsion, but does not contain SiO 2 .
- U.S. Pat. No. 4,780,555 to Bank relates to a method for preparing acryl-functional halosilanes by reacting a halosilane with an acryloxy or methacryloxy-functional organic compound in the presence of a platinum hydrosilation catalyst and a stabilizing amount phenothiazine, wherein the reaction mixture is contacted with an oxygen-cooing inert gas. No salt or surfactant is suggested for use as an compound.
- U.S. Pat. No. 4,709,067 to Chu et al. relates to an improved process for preparing, purifying and/or storing methacryloxy or acryloxy containing organosilicon compounds without the undesirable polymerization normally associated with the methacrylate bonds. No salts or surfactants are suggested for inhibiting this polymerization, and the polymerization here is associated with methacrylate bonds.
- U.S. Pat. No. 4,021,310 to Shimizu et al. relates to a method for inhibiting the polymerization of acrylic acid or acrylic esters during the distillation for separating or purifying the acrylic acid obtained by the vapor phase catalytic oxidation of propylene or acrolein, or the acrylic esters derived from said acrylic acid.
- colloidal silica there is no mention of colloidal silica, and the inhibited polymerization is that of acrylic acid or acrylic esters.
- the present invention is directed to a curable coating composition
- a curable coating composition comprising a compound selected from the group consisting of soluble salts, soaps, amines, nonionic and anionic surfactants, acids, and bases and mixtures thereof, and to a method for making gel-free silica acrylate curable coating compositions, wherein such a compound is added to the reaction mixture before stripping.
- the curable coating compositions of the present invention are made from a gel-free silica acrylate curable coating composition comprising a compound selected from the group consisting of soluble salts, soaps, amines, nonionic and anionic surfactants, acids, and bases or mixtures thereof.
- Silica acrylate resins are known in the art.
- silyl acrylate of the present invention can generally be represented by the following formula: ##STR1##
- Acrylic monomer of the formula: ##STR2## is added to the silyl acrylate to form the resins employed in present invention.
- each R independently is a C.sub.(1-13) monovalent organic radical
- each R 1 is independently a C.sub.(1-8) alkyl radical
- R 2 is selected from hydrogen, R or mixtures thereof
- each R 3 is independently a C.sub.(1-8) alkylene radical
- each R 4 is independently a mono- or polyvalent organic radical
- a is a whole number from 0 to 2 inclusive
- b is an integer from 1 to 3
- the sum of a+b is equal to 1-3
- n is an integer from 1 to 6 inclusive.
- a UV photoinitiator can be added to the resulting mixture of the silyl acrylate and acrylic monomer.
- each R is more particularly a C.sub.(1-8) alkyl, such as methyl, ethyl, propyl, butyl, and the like; an aryl radical or halogenated aryl radical, for example, phenyl, tolyl, xylyl, naphthyl, chlorophenyl, and the like; each R 1 is more particularly, for example, any of the C.sub.(1-8) alkyl radicals included within the definition of R; and radicals included within the definition of each of R 2 are hydrogen and each of the radicals included within the definition of R.
- R 3 is more particularly a divalent alkylene radical, for example, methylene, ethylene, trimethylene, tetramethylene, and the like.
- Divalent organic radicals included within the definition of R 4 are R 3 radicals, branched C.sub.(2-8) alkylene radicals, branched halogenated C 2-8 ) alkylene radicals, branched hydroxylated C.sub.(2-8) alkylene radicals, branched hydroxylated C.sub.(2-8) alkylene radicals, branched hydroxylated C.sub.(2-8) alkylene radicals, branched acrylate radicals, C 6-13 ) arylene radicals, for example, phenylone, tolylene, naphthylene, and the like, halogenated C.sub.(6-13) arylene radicals, and the like.
- Formula (2) includes polyfunctional acrylate monomers, for example, diacrylates of the formulas: ##STR3## and the like, and triacrylates of the formulas: ##STR4## and the like, and tetraacrylates of the formulas: ##STR5##
- silyl acrylates of formula (1) include compounds having the formulas:
- CH 2 CCH 3 CO 2 --CH 2 CH 2 --Si(OCH 2 CH 3 ) 3 ,
- CH 2 CHCO 2 --CH 2 CH 2 --Si(OCH 3 ) 3 ,
- CH 2 CCH 3 CO 2 --CH 2 CH 2 CH 2 --Si(OCH 2 CH 3 ) 3 ,
- CH 2 CHCO 2 --CH 2 CH 2 --Si(OCH 2 CH 3 ),
- CH 2 CCH 3 CO 2 --CH 2 CH 2 CH 2 --Si(OCH 3 ) 3 ,
- CH 2 CHCO 2 --CH 2 CH 2 CH2--Si(OCH 3 ) 3 ,
- CH 2 CCH 3 CO 2 --CH 2 CH 2 CH 2 --Si(OCH 2 CH 3 ) 3 ,
- CH 2 CHCO 2 --CH 2 CH 2 CH 2 --Si(OCH 2 CH 3 ) 3 ,
- CH 2 CCH 3 CO 2 --CH 2 CH 2 CH 2 CH 2 --Si(OCH 3 ) 3 ,
- CH 2 CHCO 2 --CH 2 CH 2 CH 2 CH 2 --Si(OCH 3 ) 3 ,
- CH 2 CCH 3 CO 2 --CH 2 CH 2 CH 2 C--H 2 -Si(OCH 2 CH 3 ) 3 ,
- CH 2 CHCO 2 --CH 2 CH 2 CH 2 CH 2 --Si(OCH 2 CH 3 ) 3 , and the like.
- Colloidal silica another of the ingredients of the hardcoat composition of the present invention, is a dispersion of submicron-sized silica (SiO 2 ) particles in an aqueous or other solvent medium.
- the SiO 2 provides quadri-functional (Q) silicon atoms and adds hardness to the coatings.
- Q quadri-functional
- TQ mixtures are formed.
- Dispersions of colloidal silica are available from chemical manufacturers such as DuPont and Nalco Chemical Company. Colloidal silica is available in either acidic or basic form. However, for purposes of the present invention it is preferable that the acidic form be utilized. It has been found that superior hardcoat properties can be achieved with acidic colloidal silica (i.e., dispersions with low sodium content). Alkaline colloidal silica also may be converted to acidic colloidal silica with additions of acids such as HCI or H 2 SO 4 along with high agitation.
- Nalcoag 1034A® is an example of a satisfactory colloidal silica for use in these coating compositions, available from Nalco Chemical Company, Chicago, Ill.
- Nalcoag 1034A® is a high purity, acidic pH aqueous colloidal silica dispersion having a low Na 2 O content, a pH of approximately 3.1 and an SiO 2 content of approximately 34 percent by weight.
- the weight in grams or parts by weight of the colloidal silica includes its aqueous medium.
- 520 grams of Nalcoag 1034A® colloidal silica represents, approximately, 177 grams of SiO 2 by weight.
- the aqueous medium is al convenient way of handling the colloidal silica and does not form a necessary part of the hardcoat compositions of the present invention.
- water since water is required for the SiOR hydrolysis, some water must be added to non-aqueous colloidal silica.
- colloidal silica is intended to represent a wide variety of finely divided SiO2 forms which can be utilized to form the hardcoat compositions of the present invention without the necessity of undue experimentation. Further description can be found in U.S. Pat. No. 4,027,073, which is herein incorporated by reference.
- the coating compositions of the present invention may be formulated without any additional curing agent. If desired, the coating compositions may be cured by exposure to electron-beam (EB) radiation. In the case of exposure to EB, it is desirable to have a thin coating. Preferably this coating is less than 2.5 cm (1 in.) in thickness, and preferably less than 25 micron. (1/1000th in.)
- EB electron-beam
- This material may be further formulated to contain curing agents.
- One such curing agent is a photoinitiator.
- the composition may than be cured by exposure to a UV light source. It is desirable to have a coating of about 2500 microns (1/10 in.) in thickness, and preferably less than about 25 microns (1/1000th in.) in thickness.
- the coating compositions may contain only one of said polyfunctional acrylate monomers, preferred coating compositions contain a mixture of two or more polyfunctional monomers, preferably a diacrylate and a higher functional acrylate. In addition, minor amounts of monoacrylate can be used in particular instances.
- the UV curable compositions of the present invention can contain nonacrylic UV curable aliphatically unsaturated organic monomers in amounts up to 50% by weight of the UV curable hardcoat compositions which include, for example, such materials as N-vinyl pyrrolidone, styrene, vinyl ether/maleate blends, tri- and tetra-functional acrylates and the like.
- Coating compositions which contain a mixture of diacrylates and higher functional acrylates have a ratio of diacrylates to higher functional acrylate is general from about 0.5:99 to about 99:0.5 and most preferably from about 1:99 to about 99:1.
- Exemplary mixtures of diacrylate and higher functional acrylates include mixtures of hexanediol diacrylate with trimethylolpropane triacrylate, hexanediol diacrylate with pentaerythritol triacrylate, hexanediol diacrylate with dipenta-erythritol-pentaacrylate, diethyleneglycol diacrylate with pentaerythritol triacrylate, and diethyleneglycol diacrylate with trimethylolpropane triacrylate. Coatings containing the photoreaction product of two polyfunctional acrylate monomers are preferred.
- the coatings may likewise contain the ultraviolet light reaction product of a single polyfunctional acrylate monomer.
- a diacrylate and a higher functional acrylate are used.
- compositions comprising between 0.2 and 99 parts by weight trimethylolpropane triacrylate, before or after curing are preferred. Cured compositions comprising from about 2 to about 99 parts by weight are also preferred.
- the photocurable coating compositions also contain a photosensitizing amount of photointiator, i.e., an amount affective to effect the photocure, of the coating composition.
- a photosensitizing amount of photointiator i.e., an amount affective to effect the photocure, of the coating composition.
- this amount is from about 0.01 to about 15 parts by weight, and preferably from about 0.1 to about 10 parts by weight based upon the total of colloidal silica, hydrolysis and condensation reaction product of a silyl acrylate of formula (1) and an acrylate monomer of formula (2).
- One ketone-type photoinitiator used is ⁇ , ⁇ -diethoxyacetophenone.
- a preferred photoinitiator is methylbenzoylformate, having a molecular weight of 164, and used at 5 parts by weight or more. At 5.7 parts by weight methylbenzoylformate, 50 mole percent more photoinitiator is available in the formulations than the mole percent available then when using 5 parts by weight of the higher molecular weight ⁇ 0 ⁇ -diethoxyacetophenone.
- Methylbenzoylformate is available as Vicure 55® from Akzo Chemicals, Inc., Chicago, Ill. According to an embodiment of the present invention, 35 millimoles of photoinitiator per 100 g of coating is used. A wider range of substrates can be coated using a higher level of photoinitiator.
- the photoinitiators break down to free radicals when exposed to UV light, The free radicals then open the double bonds between carbon atoms in acrylate groups
- the amount of photoinitiator added to the compositions is greater than 5 parts by weight based on 100 parts by weight of non-volatile components; colloidal silica, hydrolysis and condensation reaction product of a silyl acrylate of formula (1) and an acrylate monomer of formula (2).
- hardcoats having shorter cure times. These hardcoats are particularly useful and desired for coating films at high rates.
- Current film application cure rates range from about 30 to 100 feet per minute (fpm).
- higher cure rates are obtainable since the high amounts of photoinitiator enable a faster cure.
- Film coatings comprising the hardcoats of the present invention can be cured by passing under a UV source at rates of 50 to as high as 500 feet per minute if enough light sources are used. At such high rates and under similar conditions, the hardcoats of the prior art would remain less cured as evidenced by softer coatings.
- the coating compositions of the Instant invention may also optionally contain UV absorbers or stabilizers such as resorcinol monobenzoate, 2-methyl resorcinol dibenzoate, and the like.
- the stabilizers can be present in an amount, based upon the weight of the coating compositions, exclusive of any additional solvent which may optionally be present, from about 0.1 to 25 parts by weight, preferably from about 3 to about 18 parts by weight based on colloidal silica, hydrolysis and condensation reaction product of a silyl acrylate of formula (1) and an acrylate monomer of formula (2).
- the UV curable coating composition can contain from about 1 to about 25 parts by weight of stabilizers based on colloidal silica, hydrolysis and condensation reaction product of a silyl acrylate of formula (1) and an acrylate monomer of formula (2).
- Suitable solvents include any water-miscible alcohol or water-solvent azeotrope.
- solvents include isopropyl alcohol (IPA). 4-methoxypropanol, n-butanol, 2-butanol, ethanol and the like.
- Suitable compounds that may be added to the curable compositions can include solvable salts, soaps, amines, nonionic and anionic surfactants, acids, bases and the like.
- Compounds for use in the current invention includes any compound that prevents the formation of gel in the coating compositions of the current invention.
- One skilled in the art would recognize that any such compound can be used, as long as it does not precipitate the colloidal silica, and as long as properties such as cure speed, hardness, weatherability, and substrate protection are maintained at suitable levels.
- One preferred compound is sodium acetate.
- soluble salts include stannous chloride, sodium acetate, sodium bicarbonate, tetrabutyl ammonium acetate, tetrabutyl ammonium bromide and the like.
- soaps contemplated for use in the present invention include calciumneodecanoate, stannous octate, zinc octoate and the like.
- Amines contemplated for use in the present invention include triethylamine.
- nonionic and anionic surfactants include linear secondary alcohols having from about C 11 to about C 18 reacted with polyethyleneoxidepropleneoxide (EOPO) z , where z is from about 8-10; nonylphenol, octyl phenols having from about 3 to about 10 EO; alkylphenol(EO) 70 H: secondary alcohols having from about C 11 to about C 18 with (EO) x H wherein x is from about 2 to about 10; HO(EO) x (PO) y (EO) x OH, wherein x is from about 2 to about 100 and y is from about 2 to about 100; ammoniumlaurylsulfonate; and the like.
- EOPO polyethyleneoxidepropleneoxide
- acids contemplated for use in the current invention include hydrochloric acid, and the like.
- Specific bases can include triethylamine and the like.
- One skilled in the art would recognize they are merely representative examples, and other compounds may be used, as well as a combination of those listed above.
- Compounds for use in the current invention include any compound that prevents the formation of gel in the coating compositions of the current invention.
- the amount of compound present in the compositions of the present invention is an amount sufficient to maintain the viscosity of the mixture at a level such that when diluted in a suitable solvent, no undissolved material remains.
- the coating compositions of the present invention may also optionally contain various flattening agents, surface active ,agents, thixotropic agents, UV light stabilizers, hindered amine light stabilizers (HALS) and dyes. All of these additives are well known in the art and do not require extensive discussions. Therefore, only a limited number will be referred to, is being understood that any of these compounds can be used so long as they do not deleteriously affect the photocuring of the coating compositions and do not adversely affect the non-opaque character of the coating.
- various flattening agents include surface active ,agents, thixotropic agents, UV light stabilizers, hindered amine light stabilizers (HALS) and dyes. All of these additives are well known in the art and do not require extensive discussions. Therefore, only a limited number will be referred to, is being understood that any of these compounds can be used so long as they do not deleteriously affect the photocuring of the coating compositions and do not adversely affect the non-
- the method of the current invention is run in an atmosphere that is substantially oxygen free.
- substantially oxygen free is that the atmosphere is generally less than 15% oxygen and preferably less than 10%. Still more preferably the atmosphere is less than 6% oxygen.
- the compounds can be added to the silicon acrylate curable coating composition at any time during the method of the present invention.
- the compounds may be added before or after the T/Q resin blend is prepared.
- One skilled in the art would also recognize that further formulations of the above blends may be necessary or desirable.
- a master batch of hydrolysate was made as follows:
- Methacryloxypropyltrimethoxysilane 13.0 parts was hydrolysed in acidic colloidal silica (Nalco 1034A, 86.9 parts), para methoxyphenol (0.07 parts), and isopropyl alcohol (IPA, 464 parts), and stripped to remove about 73% of the water and IPA. This material was 24.2% non-volatile by weight, and it served as the silicone portion for all of the reactions described in Table 1:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
Description
TABLE 1 ______________________________________ AMOUNT (parts per million AMOUNT VISCOSITY.sup.1,2 EX- (ppm) of g/161.2 g AT 25° C. AMPLE stripped hydrolysate CENTISTOKES # COMPOUND product) at 24.2% (CSTKS) ______________________________________ 1 Control 0 0 GEL 2 Stannous chloride 133 0.0100 40.5 3 Sodium Acetate 213 0.0160 40.1 4 Sodium Acetate 52 0.00396 41.5 5 Sodium Acetate 40 0.00297 41.5 6 Sodium Acetate 30 0.00205 247 7 Sodium Acetate 100 0.00733 39.5 8 Sodium 110 0.0082 41.9 Bicarbonate 9 Tetrabutyl- 133 0.01000 41.4 ammonium Acetate 10 Tetrabutyl- 200 0.0150 low ammonium Bromide 11 Calcium 213 0.0160 41.6 Neodecanoate 12 Stannous Octoate 533 0.0400 low 13 Zinc Octoate 400 0.0300 low 14 Ionic Surfactant 100 0.0074 213.7 (WITCOLATE AM ®) 15 Ionic Surfactant 400 0.0292 91.8 (WITCOLATE AM ®) 16 Nonionic 500 0.036 84.6 Surfactant (Tergitol 15-S-9 ®) 17 HCl 487 0.037 low 18 Triethylamine 32 0.0024 low 19 Triethylamine 10 0.00076 low 20 Triethylamine 100 0.0076 low 21 Triethylamlne 4 0.00032 moderate ______________________________________ .sup.1 Strip conducted under nitrogen .sup.2 Test performed using CannonFensky Tube @ 25 C. Low = approx. 35-74 CSTKS; Moderate = approx. 75-100,000; GEL = approx. > > 100,000 CSTKS
TABLE 2 ______________________________________ LEVEL LEVEL (PPM) (g/161.2 g PER hydro- EX- PRO- lysate VISCOS- AMPLE COMPOUND DUCT) @ 24.2%) ITY.sup.1,2 COMMENT ______________________________________ 22 NaACETATE 213 0.016 40.1 Partial Strip before adding NaOAc (213 PPM/ Finished Product) 23 NaACTATE 200 0.015 45.6 No strip before adding NaOAc (200 PPM/ finished product) 24 NaACETATE 100 0.0074 38 Partial strip before adding NaOAc (100 PPM/ finished product 25 NaACETATE 100 0.0074 49 No strip before adding NaOAc (100 PPM/ finished product) 26 NaACETATE 200 0.016 38.5 Sequential Add - 100 PPM NaOAc Immediately before strip, and 100 PPM after some strip time. 27 Control 0 0 GEL ______________________________________ .sup.1,2 Test performed as in Table 1
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/906,629 US5817715A (en) | 1993-05-25 | 1997-08-07 | Method for making curable coatings |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6680293A | 1993-05-25 | 1993-05-25 | |
US22031994A | 1994-03-30 | 1994-03-30 | |
US58614896A | 1996-01-11 | 1996-01-11 | |
US08/906,629 US5817715A (en) | 1993-05-25 | 1997-08-07 | Method for making curable coatings |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US58614896A Continuation | 1993-05-25 | 1996-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5817715A true US5817715A (en) | 1998-10-06 |
Family
ID=22071810
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/607,020 Expired - Lifetime US5607729A (en) | 1993-05-25 | 1996-02-26 | Method for making curable coatings |
US08/906,629 Expired - Fee Related US5817715A (en) | 1993-05-25 | 1997-08-07 | Method for making curable coatings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/607,020 Expired - Lifetime US5607729A (en) | 1993-05-25 | 1996-02-26 | Method for making curable coatings |
Country Status (5)
Country | Link |
---|---|
US (2) | US5607729A (en) |
JP (1) | JPH07138500A (en) |
DE (1) | DE4417141C2 (en) |
FR (1) | FR2706901B1 (en) |
GB (1) | GB2278610B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040044095A1 (en) * | 2002-08-30 | 2004-03-04 | Zhikai Wang | Reactive and gel-free compositions for making hybrid composites |
US20090212587A1 (en) * | 2008-02-23 | 2009-08-27 | Bayer Materialscience Ag | Asymmetric Multi-Layer Composites and Processes for Producing the Same |
US20110097574A1 (en) * | 2007-12-26 | 2011-04-28 | Julien Faldysta | Roll-Up Polyester Film Comprising, on at Least One of the Faces Thereof, a Scratch-Resistant Cross-Linked Coating, Method for Obtaining this Polyester Film |
WO2013178563A2 (en) | 2012-06-01 | 2013-12-05 | Bayer Materialscience Ag | Multilayer structure as reflector |
WO2019121347A1 (en) | 2017-12-21 | 2019-06-27 | Covestro Deutschland Ag | Device comprising a multi-layer body and a lidar sensor |
EP3620288A1 (en) | 2018-09-10 | 2020-03-11 | Covestro Deutschland AG | Dynamically thermally conditioned back injection of films |
WO2020083661A1 (en) | 2018-10-23 | 2020-04-30 | Covestro Deutschland Ag | Ir-transparent sensor and camera system for motor vehicles |
WO2020109007A1 (en) | 2018-11-29 | 2020-06-04 | Covestro Deutschland Ag | Lidar sensor system having improved surface quality |
WO2021094248A1 (en) | 2019-11-14 | 2021-05-20 | Covestro Intellectual Property Gmbh & Co. Kg | Thermoplastic compositino for lidar sensor system with improved absorption properties |
DE102023000052A1 (en) | 2023-01-12 | 2024-07-18 | Covestro Deutschland Ag | Production of an at least partially coated molded article without a clean room using a PC composition with improved antistatic properties |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5466491A (en) * | 1994-09-12 | 1995-11-14 | General Electric Company | Radiation curable silicon containing polyarcylate hardcoat compositions, method for making, and use |
TW339355B (en) * | 1994-09-12 | 1998-09-01 | Gen Electric | Method for making radiation curable silicon containing polyacrylation hardcoat compositions the invention relates to a method for making curable silicon containing polyacrylation hardcoat compositions |
US5468789A (en) * | 1994-09-12 | 1995-11-21 | General Electric Company | Method for making radiation curable silicon containing polyacrylate hardcoat compositions and compositions made thereby |
US5811183A (en) * | 1995-04-06 | 1998-09-22 | Shaw; David G. | Acrylate polymer release coated sheet materials and method of production thereof |
JP2004515558A (en) | 1999-03-26 | 2004-05-27 | エー. ラポイント,デイビッド | Abrasion-resistant coating compositions, methods for their preparation and articles coated thereby |
ATE496098T1 (en) | 2000-10-21 | 2011-02-15 | Evonik Degussa Gmbh | RADIATION CURING PAINT SYSTEMS |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2597614A (en) * | 1947-02-06 | 1952-05-20 | Harris Res Lab | Method of rendering organic textile material water repellent and composition therefor |
US3258477A (en) * | 1963-07-19 | 1966-06-28 | Dow Corning | Acryloxyalkylsilanes and compositions thereof |
US4021310A (en) * | 1972-12-22 | 1977-05-03 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for inhibiting the polymerization of acrylic acid or its esters |
US4455205A (en) * | 1981-06-01 | 1984-06-19 | General Electric Company | UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator |
US4478876A (en) * | 1980-12-18 | 1984-10-23 | General Electric Company | Process of coating a substrate with an abrasion resistant ultraviolet curable composition |
US4486504A (en) * | 1982-03-19 | 1984-12-04 | General Electric Company | Solventless, ultraviolet radiation-curable silicone coating compositions |
US4491508A (en) * | 1981-06-01 | 1985-01-01 | General Electric Company | Method of preparing curable coating composition from alcohol, colloidal silica, silylacrylate and multiacrylate monomer |
US4644077A (en) * | 1984-07-11 | 1987-02-17 | The Sherwin-Williams Company | Process for producing organophilic silica |
US4709067A (en) * | 1986-05-20 | 1987-11-24 | Union Carbide Corporation | Method for preparing methacryloxy and acryloxy containing organosilanes and organosilicones |
US4831093A (en) * | 1988-08-26 | 1989-05-16 | E. I. Du Pont De Nemours And Company | Polymerization process for methyl methacrylate with improved activator system |
US4877654A (en) * | 1988-05-02 | 1989-10-31 | Pcr, Inc. | Buffered silane emulsions for rendering porous substrates water repellent |
US4973612A (en) * | 1989-11-30 | 1990-11-27 | Dow Corning Corporation | Silane free radiation curable abrasion resistant coating composition containing an unsaturated organic compound |
EP0424007A2 (en) * | 1989-10-18 | 1991-04-24 | Dow Corning Corporation | Zero volatile organic content radiation curable silicone coatings |
EP0437327A2 (en) * | 1990-01-08 | 1991-07-17 | Dow Corning Corporation | Radiation curable abrasion resistant cyclic ether acrylate coating composition |
US5103032A (en) * | 1991-06-27 | 1992-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Inhibited acryloxysilanes and methacryloxysilanes |
US5120811A (en) * | 1988-06-20 | 1992-06-09 | Armstrong World Industries, Inc. | Polymer/glass hybrid coating |
US5242719A (en) * | 1992-04-06 | 1993-09-07 | General Electric Company | Abrasion resistant UV-curable hardcoat compositions |
EP0576247A2 (en) * | 1992-06-25 | 1993-12-29 | General Electric Company | Radiation curable hardcoat compositions |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2207495A1 (en) * | 1971-02-20 | 1972-08-24 | Dainippon Printing Co Ltd | Planographic printing plates and processes for their manufacture |
BE787750A (en) * | 1971-08-20 | 1973-02-19 | Union Carbide Corp | PROCESS FOR INHIBITING THE POLYMERIZATION OF ACRYLATES AND METHACRYLATES DURING THEIR DISTILLATION |
US4027073A (en) * | 1974-06-25 | 1977-05-31 | Dow Corning Corporation | Pigment-free coating compositions |
US4201808A (en) * | 1978-06-12 | 1980-05-06 | Union Carbide Corporation | Radiation curable silicone release compositions |
US4348462A (en) * | 1980-07-11 | 1982-09-07 | General Electric Company | Abrasion resistant ultraviolet light curable hard coating compositions |
GB2089826B (en) * | 1980-12-18 | 1985-01-03 | Gen Electric | Abrasion resistant ultraviolet light curable hard coating compositions |
JPS5953311B2 (en) * | 1981-08-04 | 1984-12-24 | 大倉工業株式会社 | Adhesive composition with excellent storage stability |
IT1178945B (en) * | 1984-05-21 | 1987-09-16 | Fiat Ricerche | COMPOSITION AND PROCEDURE FOR COATING A METAL OBJECT WITH A PIGMENTED POLYMER PROTECTIVE LAYER THROUGH THE SITE REDOX POLYMERIZATION |
US5232964A (en) * | 1991-11-12 | 1993-08-03 | Dow Corning Corporation | Tintable abrasion resistant coating compositions |
US5318850A (en) * | 1991-11-27 | 1994-06-07 | General Electric Company | UV curable abrasion-resistant coatings with improved weatherability |
US5214085A (en) * | 1992-02-03 | 1993-05-25 | General Electric Company | Abrasion-resistant coating compositions with improved weatherability |
-
1994
- 1994-05-17 DE DE4417141A patent/DE4417141C2/en not_active Expired - Fee Related
- 1994-05-17 FR FR9405969A patent/FR2706901B1/fr not_active Expired - Fee Related
- 1994-05-18 GB GB9409983A patent/GB2278610B/en not_active Expired - Fee Related
- 1994-05-23 JP JP6108041A patent/JPH07138500A/en active Pending
-
1996
- 1996-02-26 US US08/607,020 patent/US5607729A/en not_active Expired - Lifetime
-
1997
- 1997-08-07 US US08/906,629 patent/US5817715A/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2597614A (en) * | 1947-02-06 | 1952-05-20 | Harris Res Lab | Method of rendering organic textile material water repellent and composition therefor |
US3258477A (en) * | 1963-07-19 | 1966-06-28 | Dow Corning | Acryloxyalkylsilanes and compositions thereof |
US4021310A (en) * | 1972-12-22 | 1977-05-03 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for inhibiting the polymerization of acrylic acid or its esters |
US4478876A (en) * | 1980-12-18 | 1984-10-23 | General Electric Company | Process of coating a substrate with an abrasion resistant ultraviolet curable composition |
US4455205A (en) * | 1981-06-01 | 1984-06-19 | General Electric Company | UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator |
US4491508A (en) * | 1981-06-01 | 1985-01-01 | General Electric Company | Method of preparing curable coating composition from alcohol, colloidal silica, silylacrylate and multiacrylate monomer |
US4486504A (en) * | 1982-03-19 | 1984-12-04 | General Electric Company | Solventless, ultraviolet radiation-curable silicone coating compositions |
US4644077A (en) * | 1984-07-11 | 1987-02-17 | The Sherwin-Williams Company | Process for producing organophilic silica |
US4709067A (en) * | 1986-05-20 | 1987-11-24 | Union Carbide Corporation | Method for preparing methacryloxy and acryloxy containing organosilanes and organosilicones |
US4877654A (en) * | 1988-05-02 | 1989-10-31 | Pcr, Inc. | Buffered silane emulsions for rendering porous substrates water repellent |
US5120811A (en) * | 1988-06-20 | 1992-06-09 | Armstrong World Industries, Inc. | Polymer/glass hybrid coating |
US4831093A (en) * | 1988-08-26 | 1989-05-16 | E. I. Du Pont De Nemours And Company | Polymerization process for methyl methacrylate with improved activator system |
EP0424007A2 (en) * | 1989-10-18 | 1991-04-24 | Dow Corning Corporation | Zero volatile organic content radiation curable silicone coatings |
US4973612A (en) * | 1989-11-30 | 1990-11-27 | Dow Corning Corporation | Silane free radiation curable abrasion resistant coating composition containing an unsaturated organic compound |
EP0437327A2 (en) * | 1990-01-08 | 1991-07-17 | Dow Corning Corporation | Radiation curable abrasion resistant cyclic ether acrylate coating composition |
US5103032A (en) * | 1991-06-27 | 1992-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Inhibited acryloxysilanes and methacryloxysilanes |
US5242719A (en) * | 1992-04-06 | 1993-09-07 | General Electric Company | Abrasion resistant UV-curable hardcoat compositions |
EP0576247A2 (en) * | 1992-06-25 | 1993-12-29 | General Electric Company | Radiation curable hardcoat compositions |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040044095A1 (en) * | 2002-08-30 | 2004-03-04 | Zhikai Wang | Reactive and gel-free compositions for making hybrid composites |
US6838536B2 (en) * | 2002-08-30 | 2005-01-04 | Ucb, S.A. | Reactive and gel-free compositions for making hybrid composites |
US20110097574A1 (en) * | 2007-12-26 | 2011-04-28 | Julien Faldysta | Roll-Up Polyester Film Comprising, on at Least One of the Faces Thereof, a Scratch-Resistant Cross-Linked Coating, Method for Obtaining this Polyester Film |
US9273190B2 (en) * | 2007-12-26 | 2016-03-01 | Toray Films Europe | Roll-up polyester film comprising, on at least one of the faces thereof, a scratch-resistant cross-linked coating, method for obtaining this polyester film |
US20090212587A1 (en) * | 2008-02-23 | 2009-08-27 | Bayer Materialscience Ag | Asymmetric Multi-Layer Composites and Processes for Producing the Same |
DE102008010752A1 (en) | 2008-02-23 | 2009-08-27 | Bayer Materialscience Ag | Asymmetric multi-layer composite |
US8455105B2 (en) | 2008-02-23 | 2013-06-04 | Bayer Intellectual Property Gmbh | Asymmetric multi-layer composites and processes for producing the same |
WO2013178563A2 (en) | 2012-06-01 | 2013-12-05 | Bayer Materialscience Ag | Multilayer structure as reflector |
WO2019121347A1 (en) | 2017-12-21 | 2019-06-27 | Covestro Deutschland Ag | Device comprising a multi-layer body and a lidar sensor |
US11747447B2 (en) | 2017-12-21 | 2023-09-05 | Covestro Deutschland Ag | Device comprising a multi-layer body and a LiDAR sensor |
EP3620288A1 (en) | 2018-09-10 | 2020-03-11 | Covestro Deutschland AG | Dynamically thermally conditioned back injection of films |
WO2020052955A1 (en) | 2018-09-10 | 2020-03-19 | Covestro Deutschland Ag | Dynamically temperature-controlled in-mould decoration |
WO2020083661A1 (en) | 2018-10-23 | 2020-04-30 | Covestro Deutschland Ag | Ir-transparent sensor and camera system for motor vehicles |
WO2020109007A1 (en) | 2018-11-29 | 2020-06-04 | Covestro Deutschland Ag | Lidar sensor system having improved surface quality |
WO2021094248A1 (en) | 2019-11-14 | 2021-05-20 | Covestro Intellectual Property Gmbh & Co. Kg | Thermoplastic compositino for lidar sensor system with improved absorption properties |
DE102023000052A1 (en) | 2023-01-12 | 2024-07-18 | Covestro Deutschland Ag | Production of an at least partially coated molded article without a clean room using a PC composition with improved antistatic properties |
Also Published As
Publication number | Publication date |
---|---|
GB2278610B (en) | 1997-11-12 |
JPH07138500A (en) | 1995-05-30 |
FR2706901B1 (en) | 1999-11-12 |
DE4417141A1 (en) | 1994-12-01 |
GB9409983D0 (en) | 1994-07-06 |
US5607729A (en) | 1997-03-04 |
FR2706901A1 (en) | 1994-12-30 |
GB2278610A (en) | 1994-12-07 |
DE4417141C2 (en) | 2001-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5817715A (en) | Method for making curable coatings | |
JP3616118B2 (en) | Radiation curable hard coating composition | |
US4455205A (en) | UV Curable polysiloxane from colloidal silica, methacryloyl silane, diacrylate, resorcinol monobenzoate and photoinitiator | |
US4491508A (en) | Method of preparing curable coating composition from alcohol, colloidal silica, silylacrylate and multiacrylate monomer | |
US5468789A (en) | Method for making radiation curable silicon containing polyacrylate hardcoat compositions and compositions made thereby | |
US5318850A (en) | UV curable abrasion-resistant coatings with improved weatherability | |
US5242719A (en) | Abrasion resistant UV-curable hardcoat compositions | |
US4486504A (en) | Solventless, ultraviolet radiation-curable silicone coating compositions | |
US5712325A (en) | Method for making radiation curable silicon containing polyacrylate hardcoat | |
JP2512673B2 (en) | Abrasion resistant coating composition with improved weather resistance | |
JP4775543B2 (en) | Organosilicone resin emulsion composition and method for producing the same, and article formed with a film of the composition | |
US5260350A (en) | Radiation curable acryloxyfunctional silicone coating composition | |
KR101021045B1 (en) | Acryloxy-functional silicone composition curable by high-energy radiation | |
JP2008520809A (en) | Ultrathin thiol-ene coating | |
US5466491A (en) | Radiation curable silicon containing polyarcylate hardcoat compositions, method for making, and use | |
EP0424645A2 (en) | Radiation curable transparent coating compositions containing basic colloidal silica | |
JP3088511B2 (en) | Coating composition and surface-coated article | |
JP2003292891A (en) | Photocurable coating material for forming hard protective film and article having the film formed | |
FR2711141A1 (en) | Hardenable coating compositions with improved adhesion. | |
JP2008001870A (en) | Silicone-containing resin coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A. AS ADMINISTRATIVE AGENT, Free format text: SECURITY AGREEMENT;ASSIGNORS:MOMENTIVE PERFORMANCE MATERIALS HOLDINGS INC.;MOMENTIVE PERFORMANCE MATERIALS GMBH & CO. KG;MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK;REEL/FRAME:019511/0166 Effective date: 20070228 |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A Free format text: SECURITY AGREEMENT;ASSIGNORS:MOMENTIVE PERFORMANCE MATERIALS, INC.;JUNIPER BOND HOLDINGS I LLC;JUNIPER BOND HOLDINGS II LLC;AND OTHERS;REEL/FRAME:022902/0461 Effective date: 20090615 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20101006 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS JAPAN HOLDINGS GK, JAPAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001 Effective date: 20201102 Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001 Effective date: 20201102 Owner name: MOMENTIVE PERFORMANCE MATERIALS GMBH & CO KG, GERMANY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:054387/0001 Effective date: 20201102 |
|
AS | Assignment |
Owner name: MOMENTIVE PERFORMANCE MATERIALS INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS COLLATERAL AGENT;REEL/FRAME:054883/0855 Effective date: 20201222 |