US5810913A - Activating catalytic solution for electroless plating and method of electroless plating - Google Patents
Activating catalytic solution for electroless plating and method of electroless plating Download PDFInfo
- Publication number
- US5810913A US5810913A US08/729,952 US72995296A US5810913A US 5810913 A US5810913 A US 5810913A US 72995296 A US72995296 A US 72995296A US 5810913 A US5810913 A US 5810913A
- Authority
- US
- United States
- Prior art keywords
- electroless plating
- catalytic solution
- film
- solution
- activating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1612—Process or apparatus coating on selected surface areas by direct patterning through irradiation means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1603—Process or apparatus coating on selected surface areas
- C23C18/1607—Process or apparatus coating on selected surface areas by direct patterning
- C23C18/1608—Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/105—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
- H05K3/185—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
Definitions
- the present invention relates to an activating catalytic solution for electroless plating and a method of electroless plating utilizing the same.
- Electroless plating is sometimes used for forming a conductive film having a predetermined pattern for a coil for high frequencies, dielectric filter, capacitor, hybrid IC or the like, on an base such as an alumina substrate, dielectric ceramic substrate, polyimide substrate, glass epoxy substrate or ferrite substrate.
- an activating catalytic solution is used for such activation.
- the activating catalytic solution is applied to the base to form a photoreactive film on the base.
- Attracting attention are activating catalytic solutions for forming such a photoreactive film in which activation selectively takes place only in regions irradiated with ultraviolet rays or laser beams and, therefore, electroless plating can be selectively performed only in those particular regions.
- a conductive film having a fine pattern can be efficiently formed on the base substrate using photolithography.
- an activating catalytic solution which provides the above-described feature
- a product obtained by dissolving palladium acetylacetonate into an organic solvent such as chloroform has conventionally been used.
- Such an activating catalytic solution is applied to an appropriate base to form a photoreactive film thereon which is in turn irradiated with laser beams or ultraviolet rays through a photomask.
- palladium metal is deposited on the base only in regions which are exposed. Thereafter, the photomask is removed. Photoreactive films in regions which have not been exposed are flushed away using an organic solvent such as chloroform.
- an electroless plating film is formed on the base using palladium metal as an activating catalyst. This process is hereinafter referred to as the "first conventional technique".
- an organic solvent such as chloroform must be used in the developing step. Since such an organic solvent is harmful, it can not be readily used in large amounts. It is therefore relatively difficult to completely flush away photoreactive films which have not been exposed to the light. If any unexposed photoreactive film remains in place, there will be a problem in that the clearness of the pattern of the plating film produced by subsequent electroless plating will be lost. There is another problem in that the exposure involves high cost because the exposure of a photoreactive film requires a light source having high energy such as an excimer laser and takes time.
- the developing step according to the second conventional technique can be carried out using water because hydrophilic palladium chloride is used. It is therefore easy to completely flush away photoreactive films which have not been exposed using a large amount of water.
- the photoreactive film obtained by this second conventional technique has a low sensitivity to exposure and, therefore, the exposure of the same also takes time.
- a metal film obtained by means of electroless plating using such a photoreactive film as an activating catalyst has a problem in that it has a relatively low electrical conductivity which reduces high frequency characteristics.
- such an electroless-plated metal film has another problem in that the strength of its adherence to the base is relatively low. Although the strength of adherence can be improved by etching the surface of the base, such etching can be difficult depending on the quality of the base.
- An activating catalytic solution for electroless plating according to the present invention is a hydrophilic liquid including copper oxalate, a palladium salt and an alkaline solution.
- a hydrophilic binder such as polyvinyl alcohol may be added to the activating catalytic solution.
- a method of electroless plating wherein an activating catalytic solution as described above is applied to a base to form a photoreactive film made of the activating catalytic solution on the base.
- This photoreactive film is irradiated with light to deposit metal palladium on the base.
- the base having palladium metal deposited thereon is immersed in an electroless plating bath to form an electroless plating film on the base using the palladium metal as an activating catalyst.
- a developing step is preferably added wherein regions of the activating film which have not been irradiated with the light are flushed away by water or a liquid mainly constituted by water.
- the activating catalytic solution according to the present invention is hydrophilic, it can serve as an activating catalytic solution for electroless plating without the need for an organic solvent and a developing step can be carried out as needed. This makes it possible to perform all of the steps that is, the step of preparing the activating catalytic solution, the step of applying it to a base, the developing step, and the electroless plating step, using processes and operations based on water.
- the method of electroless plating utilizing an activating catalytic solution according to the present invention can be safe first of all. Cost reduction can be expected from the use of water instead of an organic solvent.
- the developing step since flushing can be performed using water in this step, photoreactive films which have not been irradiated with light can be flushed away using a large amount of water without concern about harmfulness. This makes it possible to eliminate unnecessary photoreactive films completely, thereby allowing the formation of finer patterns. Further, regardless of whether the water used at the developing step remains, the subsequent electroless plating step can be immediately carried out. This makes it possible to perform a series of operations for electroless plating efficiently.
- an activating catalytic solution according to the present invention has a high sensitivity to light. Therefore, sufficient reaction can be obtained to deposit palladium metal even if the light such as ultraviolet rays for exposure has small energy or the exposure time is short. For example, it has been confirmed that palladium metal can be deposited after exposure for two minutes using an inexpensive mercury lamp. On the contrary, the first conventional technique involves exposure time of five minutes for deposition despite of the fact that it employs an expensive excimer laser.
- a plating film obtained by electroless plating carried out using an activating catalytic solution according to the present invention exhibits high adherence strength to the base. Since sufficient adherence strength can be thus obtained without etching the base in advance, a plating film can be formed with sufficient adherence strength using electroless plating even on a base which is difficult to etch.
- a plating film obtained by electroless plating carried out using an activating catalytic solution according to the present invention the intrinsic electrical conductivity of the metal constituting the plating film can be maintained. Therefore, such a plating film can be applied to high frequency circuit elements without any problem.
- 10 ml of an activating catalytic solution having the composition shown below was prepared by dissolving Cu(COO) 2 .1/2H 2 O and PdCl 2 into ammonia solution, diluting the product with water, adding polyvinyl alcohol thereto, mixing and filtering the mixed solution using a 0.45 ⁇ m millipore filter.
- the above-described activating catalytic solution was spin-coated on an alumina substrate at 1000 rpm/30 sec. to form an activating film.
- the photoreactive film was then irradiated with ultraviolet rays from an excimer lamp (wavelength:172 nm) through quartz.chrome photomask for three minutes; it was then washed with water; and an electroless plating process was performed by immersing it in an electroless plating bath of one liter (60° C.) containing the composition shown below for ten minutes.
- a Ni pattern having a thickness of 0.3 ⁇ m and a line space of 50 ⁇ m was formed on the substrate.
- composition of the activating catalytic solution is only an example.
- the content of Cu(COO) 2 .1/2H 2 O, PdCl 2 , and ammonia solution (25%) in 10 ml of the activating catalytic solution can be varied within ranges from about 0.05 to 0.15 g, from about 0.01 to 0.15 g, and from about 1 to 5 ml, respectively.
- Preferred amounts are about 0.07 to 0.13/10 ml, about 0.03 to 0.13 g/10 ml and about 2 to 4 ml/10 ml, respectively.
- PdCl 2 may be replaced with other hydrophilic salts, e.g., sulfates, nitrates, and acetates of palladium, and the ammonia solution with aqueous sodium hydroxide and the like.
- the pH of the water is preferably about 8 to 14 and more preferably about 9 to 13.
- the wavelength of the light with which the photoreactive film is irradiated can be varied within a range from about 100 to 400 nm.
- the present invention may be applied to the electroless plating of other metals such as copper, palladium, silver and gold.
- the base to be processed using electroless plating is not limited to an alumina substrate as described above, and other bases such as dielectric ceramic substrates, polyimide substrates, glass epoxy substrates, and ferrite substrates may be processed.
- the above-described developing step by means of water washing may be omitted.
- the developing step may be omitted not only when a photoreactive film is entirely exposed instead of being selectively exposed in particular regions but also when, even if particular regions are selectively exposed, the resolution of the plating film to be formed is not required to be so high.
- the reason for the fact that the developing step can be omitted is that the activating catalytic solution is hydrophilic unlike the above-described first conventional technique.
- the water washing may be carried out using a liquid mainly constituted by water instead of water alone. This does not inhibit the use of other liquids.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/039,091 US5874125A (en) | 1995-10-18 | 1998-03-13 | Activating catalytic solution for electroless plating and method of electroless plating |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7269566A JP3058063B2 (en) | 1995-10-18 | 1995-10-18 | Activating catalyst solution for electroless plating and electroless plating method |
JP7-269566 | 1995-10-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/039,091 Division US5874125A (en) | 1995-10-18 | 1998-03-13 | Activating catalytic solution for electroless plating and method of electroless plating |
Publications (1)
Publication Number | Publication Date |
---|---|
US5810913A true US5810913A (en) | 1998-09-22 |
Family
ID=17474154
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/729,952 Expired - Fee Related US5810913A (en) | 1995-10-18 | 1996-10-15 | Activating catalytic solution for electroless plating and method of electroless plating |
US09/039,091 Expired - Fee Related US5874125A (en) | 1995-10-18 | 1998-03-13 | Activating catalytic solution for electroless plating and method of electroless plating |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/039,091 Expired - Fee Related US5874125A (en) | 1995-10-18 | 1998-03-13 | Activating catalytic solution for electroless plating and method of electroless plating |
Country Status (3)
Country | Link |
---|---|
US (2) | US5810913A (en) |
JP (1) | JP3058063B2 (en) |
DE (1) | DE19642922C2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6156413A (en) * | 1996-10-25 | 2000-12-05 | Canon Kabushiki Kaisha | Glass circuit substrate and fabrication method thereof |
US20040110374A1 (en) * | 2002-12-10 | 2004-06-10 | Enthone, Inc. | Copper activator solution and method for semiconductor seed layer enhancement |
CN110291849A (en) * | 2017-02-14 | 2019-09-27 | 日产化学株式会社 | Wiring method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6830785B1 (en) * | 1995-03-20 | 2004-12-14 | Toto Ltd. | Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof |
JP3111891B2 (en) * | 1996-04-09 | 2000-11-27 | 株式会社村田製作所 | Activating catalyst solution for electroless plating and electroless plating method |
DE69800056T2 (en) * | 1997-02-26 | 2000-05-25 | Murata Mfg. Co., Ltd. | Activating catalytic solution for electroless metallization and method for electroless metallization |
JP2001236885A (en) * | 2000-02-22 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Plasma display panel and its manufacturing method |
US20060057472A1 (en) * | 2004-09-15 | 2006-03-16 | Fu Tsai Robert C | Method for making chrome photo mask |
US20060068173A1 (en) * | 2004-09-30 | 2006-03-30 | Ebara Corporation | Methods for forming and patterning of metallic films |
GB2501247A (en) * | 2012-04-11 | 2013-10-23 | Univ Swansea | Counter Electrode for a Dye-Sensitised Solar Cell |
US20190053381A1 (en) * | 2014-11-28 | 2019-02-14 | Industrial Technology Research Institute | Structure of conductive lines and method of manufacturing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615735A (en) * | 1968-08-13 | 1971-10-26 | Shipley Co | Electroless copper plating |
US3754939A (en) * | 1972-05-23 | 1973-08-28 | Us Army | Electroless deposition of palladium alloys |
US4076949A (en) * | 1976-05-13 | 1978-02-28 | Atlantic Richfield Company | Process for the preparation of oxalate esters |
US4473705A (en) * | 1981-12-23 | 1984-09-25 | Mitsubishi Gas Chemical Company, Inc. | Process for producing oxalate diester |
US4681630A (en) * | 1982-09-27 | 1987-07-21 | Learonal, Inc. | Method of making copper colloid for activating insulating surfaces |
US4734299A (en) * | 1984-06-29 | 1988-03-29 | Hitachi Chemical Co. Ltd. | Sensitizing agent for electroless plating and method for sensitizing substrate with the agent |
US5411795A (en) * | 1992-10-14 | 1995-05-02 | Monsanto Company | Electroless deposition of metal employing thermally stable carrier polymers |
US5445997A (en) * | 1990-07-06 | 1995-08-29 | Matsushita Electric Industrial Co., Ltd. | Patterning method |
US5498467A (en) * | 1994-07-26 | 1996-03-12 | W. L. Gore & Associates, Inc. | Process for preparing selectively conductive materials by electroless metal deposition and product made therefrom |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3791340A (en) * | 1972-05-15 | 1974-02-12 | Western Electric Co | Method of depositing a metal pattern on a surface |
US4425378A (en) * | 1981-07-06 | 1984-01-10 | Sprague Electric Company | Electroless nickel plating activator composition a method for using and a ceramic capacitor made therewith |
DE3337790A1 (en) * | 1983-10-18 | 1985-04-25 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | METHOD FOR CHEMICAL METALIZATION |
US4806159A (en) * | 1987-07-16 | 1989-02-21 | Sprague Electric Company | Electro-nickel plating activator composition, a method for using and a capacitor made therewith |
US5153023A (en) * | 1990-12-03 | 1992-10-06 | Xerox Corporation | Process for catalysis of electroless metal plating on plastic |
JP3111891B2 (en) * | 1996-04-09 | 2000-11-27 | 株式会社村田製作所 | Activating catalyst solution for electroless plating and electroless plating method |
-
1995
- 1995-10-18 JP JP7269566A patent/JP3058063B2/en not_active Expired - Fee Related
-
1996
- 1996-10-15 US US08/729,952 patent/US5810913A/en not_active Expired - Fee Related
- 1996-10-17 DE DE19642922A patent/DE19642922C2/en not_active Expired - Fee Related
-
1998
- 1998-03-13 US US09/039,091 patent/US5874125A/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615735A (en) * | 1968-08-13 | 1971-10-26 | Shipley Co | Electroless copper plating |
US3754939A (en) * | 1972-05-23 | 1973-08-28 | Us Army | Electroless deposition of palladium alloys |
US4076949A (en) * | 1976-05-13 | 1978-02-28 | Atlantic Richfield Company | Process for the preparation of oxalate esters |
US4473705A (en) * | 1981-12-23 | 1984-09-25 | Mitsubishi Gas Chemical Company, Inc. | Process for producing oxalate diester |
US4681630A (en) * | 1982-09-27 | 1987-07-21 | Learonal, Inc. | Method of making copper colloid for activating insulating surfaces |
US4734299A (en) * | 1984-06-29 | 1988-03-29 | Hitachi Chemical Co. Ltd. | Sensitizing agent for electroless plating and method for sensitizing substrate with the agent |
US5445997A (en) * | 1990-07-06 | 1995-08-29 | Matsushita Electric Industrial Co., Ltd. | Patterning method |
US5411795A (en) * | 1992-10-14 | 1995-05-02 | Monsanto Company | Electroless deposition of metal employing thermally stable carrier polymers |
US5498467A (en) * | 1994-07-26 | 1996-03-12 | W. L. Gore & Associates, Inc. | Process for preparing selectively conductive materials by electroless metal deposition and product made therefrom |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6156413A (en) * | 1996-10-25 | 2000-12-05 | Canon Kabushiki Kaisha | Glass circuit substrate and fabrication method thereof |
US20040110374A1 (en) * | 2002-12-10 | 2004-06-10 | Enthone, Inc. | Copper activator solution and method for semiconductor seed layer enhancement |
US6875260B2 (en) | 2002-12-10 | 2005-04-05 | Enthone Inc. | Copper activator solution and method for semiconductor seed layer enhancement |
CN110291849A (en) * | 2017-02-14 | 2019-09-27 | 日产化学株式会社 | Wiring method |
Also Published As
Publication number | Publication date |
---|---|
JPH09111463A (en) | 1997-04-28 |
JP3058063B2 (en) | 2000-07-04 |
DE19642922A1 (en) | 1997-04-24 |
US5874125A (en) | 1999-02-23 |
DE19642922C2 (en) | 2000-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6087258A (en) | Method for circuitizing through-holes by photo-activated seeding | |
US4865873A (en) | Electroless deposition employing laser-patterned masking layer | |
US5158860A (en) | Selective metallization process | |
US5810913A (en) | Activating catalytic solution for electroless plating and method of electroless plating | |
JPS5912942A (en) | Method of adhering metal layer on polyester substrate | |
US4328298A (en) | Process for manufacturing lithography masks | |
JPH07188936A (en) | Production of metallic pattern on electrical insulation substrate in electroless process | |
JP2008047874A (en) | Novel method for forming metal pattern and flat panel display device using the metal pattern | |
US3791340A (en) | Method of depositing a metal pattern on a surface | |
US7338752B2 (en) | Method for forming metal pattern and electromagnetic interference filter using pattern formed by the method | |
JPH0688243A (en) | Method for forming metal pattern on glass substrate by electroless process | |
US3950570A (en) | Method of depositing a metal on a surface | |
KR100292652B1 (en) | Activation Catalysts for Electroless Plating and Electroless Plating Methods | |
JP3111891B2 (en) | Activating catalyst solution for electroless plating and electroless plating method | |
US7488570B2 (en) | Method of forming metal pattern having low resistivity | |
EP0143951B1 (en) | Process for electroless plating | |
JP3161407B2 (en) | Activating catalyst solution for electroless plating and electroless plating method | |
EP0577187A1 (en) | Method of providing a metal pattern on glass in an electroless process | |
US3791939A (en) | Method of selectively depositing a metal on a surface | |
JP3121421B2 (en) | Non-conductive material plating method | |
WO2004110118A1 (en) | Method for the structured metal-coating of polymeric and ceramic support materials, and compound that can be activated and is used in said method | |
JP2000144437A (en) | Electroless plating method, electroless plating device, production of wiring board and device for producing wiring board | |
JPH05214547A (en) | Electroless plating method | |
KR20060056438A (en) | Method for preparing highly transparent optical filter for image display devices | |
JPH0810786B2 (en) | Method of forming conductor pattern by ultraviolet laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MURATA MANUFACTURING CO., LTD., A CORP. OF JAPAN, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANOH, OSAMU;SENDA, TSO (DECEASED) BY HIS REPRESENTATIVE (S) NAGAOKAKYO-SHI, KYOTO-FU, JAPAN;REEL/FRAME:008369/0347;SIGNING DATES FROM 19970115 TO 19970120 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100922 |