New! View global litigation for patent families

US5725544A - Method and instrument for establishing the receiving site of a coronary artery bypass graft - Google Patents

Method and instrument for establishing the receiving site of a coronary artery bypass graft Download PDF

Info

Publication number
US5725544A
US5725544A US08663133 US66313396A US5725544A US 5725544 A US5725544 A US 5725544A US 08663133 US08663133 US 08663133 US 66313396 A US66313396 A US 66313396A US 5725544 A US5725544 A US 5725544A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
instrument
end
coronary
artery
heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08663133
Inventor
Jorgen A. Rygaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bernafon AG
Oticon AS
Original Assignee
Oticon AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • A61B18/245Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter for removing obstructions in blood vessels or calculi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00557Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B2017/0237Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for heart surgery
    • A61B2017/0243Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for heart surgery for immobilizing local areas of the heart, e.g. while it beats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1135End-to-side connections, e.g. T- or Y-connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22062Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation to be filled with liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction

Abstract

A method of locating a constriction in a coronary artery and performing an arteriotomy distally thereof which comprises locating the site of a constriction in a coronary artery by scanning the artery with a non-invasive sensing instrument capable of detecting the constriction. The sensing instrument has associated therewith a cutting instrument comprised of a cutter and member for moving the cutter into a position for making an incision. After the constriction is located, the cutting member is moved into a cutting position distal of the constriction and an incision is made through the wall of the artery into the lumen thereof.

Description

TECHNICAL FIELD

The present invention relates to a method for locating an arterial constriction and performing an arteriotomy distally thereof, especially with a view to establishing a connection between the root of the aorta and a selected part of a coronary artery, such as set forth in the preamble of claim 1.

BACKGROUND ART

Modern heart surgery was developed fundamentally in the nineteen-fifties together with the extra-corporeal circulation, based on the use of the heart-and-lung machine, making it possible to replace heart valves and to correct certain congenital heart disorders; this as a whole was designated "open heart surgery", as the heart itself, its ventricles and internal functional parts were opened during the operation.

As a natural extension of this method, the coronary bypass surgery emerged in the mid-sixties, also based on the use of the same per-operative technology, viz. the heart-and-lung machine. In this case the surgeon, although not having to operate within the heart itself, needed peace to work in the operating field, i.e. the "coronary tree", the heart's own circulatory system, substantially embedded in the surface of the heart in the form of two main stems--right and left--gradually branching out down along the heart, finally to end deep below the surface in the form of the end-arterial branches of the heart musculature.

Thus, the techniques already established by the use of the heart-and-lung machine was taken over directly, although the coronary bypass operation could not be categorized as "open heart surgery", but rather as "closed heart surgery"--simply to have peace and quiet in the operating field.

The use of the heart-and-lung machine involves a trauma to the heart itself, and more or less serious complications will often appear post-operatively, during intensive care as well as later; thus, in short, a so-called post-perfusion syndrome has been described.

DISCLOSURE OF THE INVENTION

It is the object of the present invention to provide a method of the kind referred to above, with which it is possible to perform the initial steps of a coronary bypass connection safely, quickly and accurately and without having to use extra-corporeal circulation, and this object is achieved with a method of said kind, which according to the present invention comprises the steps set forth in the characterizing clause of claim 1. By proceeding in this manner, the initial steps of the coronary bypass operation, comprising locating the constriction and performing the arteriotomy needed for the subsequent anastomosis, may be performed on the beating heart.

The invention also relates to an instrument for carrying out the method referred to above, and according to the invention this instrument comprises the features set forth in the characterizing clause of claim 4.

Advantageous embodiments of the method and instrument, the effects of which are explained in more detail in the following detailed portion of the present description, are set forth in claims 2, 3 and 5, respectively.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed portion of the present description, the invention will be explained in more detail with reference to the drawings, in which

FIG. 1 is a simplified perspective view of a sensing and incising instrument with its sensing means placed in contact with a coronary artery and the surrounding surface of the heart,

FIG. 2 shows a first face on the instrument of FIG. 1, comprising said sensing means,

FIG. 3 is a sectional view along the line III--III in FIG. 2,

FIG. 4 at a greatly enlarged scale and in longitudinal section shows an anastomotic instrument prepared for carrying out an end-to-side anastomosis in an incision in the coronary artery made by the sensing and incising instrument shown in FIG. 1,

FIG. 5 is a simplified bottom view of certain parts of the instrument shown in FIG. 4,

FIG. 6 is a set of contour curves illustrating the shape of a part of the instrument shown in FIG. 4,

FIGS. 7-10 show the "front end" of the instrument shown in FIG. 4 during various stages of the operation in carrying out an end-to-side anastomosis, and

FIG. 11 is a sectional view along the line XI--XI in FIG. 8, reduced to showing only the parts of the vessels concerned having been "nailed together".

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the following part of the present description, two surgical instruments will be described and their methods of use explained, viz.:

I. A sensing and incising instrument and its method of use, and

II. an anastomosis instrument and its method of use.

The instrument and method according to I are the subject of the claims in the present application, whereas the instrument and method according to II are the subject of the claims in the co-pending application WO 94/ . . . (B, S & Co. Ref. No. 53135).

I. Sensing and incising instrument

The combined sensing and incising instrument shown in FIGS. 1-3 comprises a head 3 secured to a handle 9. The head 3 is shaped like a flat or slightly curved or dished disk, the front face 4 of which faces away from the handle 9 with a view to be able to be brought into contact with the external surface of a heart 50 and a coronary artery 51 supplying part of the heart muscle with blood from the aorta 52.

The front face 4 carries two highly important components, viz. an ultrasonic probe 1 and a knife 2.

The ultrasonic probe 1, shown in FIGS. 2 and 3 symbolically and purely as an example as a composite array of individuel ultrasonic transducers, is in a manner known per se adapted to transmit ultrasonic probing signals into living tissue and to receive reflected signals, cooperating with an external signal processing and display unit (not shown) to produce a screen image corresponding to a transverse and/or longitudinal sectional view of the tissue concerned, at the same time displaying other information, such as preferably the flow velocity of blood flowing through arteries shown in sectional view. The probe 1 may be based on the use of the Doppler principle, such as is well known in the art of non-invasive examination of living tissue. The ultrasonic probe 1 is connected to the external unit through suitable conductors in a cable 10, the latter also comprising a vacuum conduit mentioned below.

The knife 2 is placed centrally of the probe 1 and is oriented in a direction enabling it to make an incision extending in the longitudinal direction of the coronary artery 51 when the latter also is shown in longitudinal cross-sectional view by the display unit cooperating with the ultrasonic probe 1. The knife 2 is operated by means of a knife button 8. The knife button 8 may, in a manner not shown, be slidably supported on the handle 9, so as to make the knife protrude from the front face 4 or, in a rest position, to recede behind it. Alternatively, the knife 2 may be constituted by a remotely-controlled cutter or a laser cutter, suitably controlled by the knife button 8. Persons skilled in the art of making surgical instruments will know how to establish a suitable connection.

A vacuum aperture 11 in the front face 4 is connected to a vacuum source (not shown) through a vacuum conduit in the cable 10, and controlled by a vacuum-on button 6, operable to connect the vacuum aperture 11 to said vacuum conduit so as to aspirate air from the front face 4, and a vacuum-off button 7, operable to connect the vacuum aperture 11 to atmosphere so as to release any vacuum established in front of the front face 4, all in a manner to be explained below.

The front face 4 is surrounded by a soft sealing lip 5 making it possible to establish a sealed space between on the one hand the external wall of the heart 50 and the coronary artery 51 and on the other hand the front face 4 of the head 3.

II. Anastomosis instrument

The anastomosis instrument with an auxiliary fitting shown in FIGS. 4-11 comprises a tube 20, one end of which is cut off at an angle of the order of approx. 60° with the longitudinal axis 25, thus forming an oblique end face 21. Adjoining the end face 21 is an internal circumferential recess 22, the function of which will be explained below. Within the tube 20 is a slidably supported tubular ejector 23, the end face 24 of which will, according to the position of the ejector 23, lie clear of the recess 22 (cf. FIG. 4) or have been moved into the bounds of the recess 22 (cf. FIG. 8), for a purpose to be explained below. The ejector 23 is preferably spring-biased against a stop in a manner not shown to the position shown in FIG. 4, from which position it may be moved towards the position shown in FIG. 8 by operating an ejecting flange 26 on its opposite end. The ejector 23 is formed so as to allow a substantial space around the longitudinal axis 25 of the tube 20, for reasons to become apparent.

The anastomotic fitting 30 shown in FIGS. 4, 5 and 7-11 consists of an elastically flexible brace 31, bent so as to enable its free ends to cross each other, and provided with a number of outwardly protruding spikes 32. The spikes at the "rear end", i.e. the end pointing to the right in the drawing, are directed obliquely outwardly and towards the "front end", this obliqueness being reduced gradually towards said "front end". The purpose of this arrangement will become apparent below.

III. Methods of using the above instruments I and II

As already described in the introductory part of the present specification, the invention is related to cardiac surgery of the kind normally referred to as "coronary bypass surgery". As is well known, this type of surgery comprises establishing a new connection between the aorta ascendens and the coronary artery below, i.e. downstream of, a stenosis or occlusion having been located by a preceding diagnosis.

The purpose of establishing this extra connection is, of course, to bypass a constriction in the coronary artery, said constriction constituting a well-known pathological condition, the causes and effects of which need not be discussed in the present context.

According to a combination of the present invention and the invention subject of said co-pending application No. WO 94/ . . . (B, S & Co. Ref. No. 53135), coronary bypass surgery of the kind referred to above is carried out in the manner described below.

After having made the patient ready for surgery in any suitable manner, the thorax is opened mid-sternally so as to provide access to the front side of the heart 50 as indicated in FIG. 1. Then, the coronary artery 51 being suspected of having a constriction is identified, after which the front face 4 of the head 3 is brought into contact with the coronary artery 51 concerned and the immediately surrounding surface of the heart 50 so as to make the ultrasonic probe 1 cover the artery and with the knife 2 in the receding position ready for making an incision in the artery. The artery 51 is scanned by moving the head 3 lengthwise and crosswise of it, until, by watching the image or images on the display unit, a location is found, in which the knife 2 is in position facing the coronary artery 51 immediately downstream of a constriction of the kind referred to above. It should be noted that during this brief sensing operation, the heart 50 is beating, thus causing the surface, against which the front face 4 abuts, to move rhythmically, but in a "drug-controlled" manner. In order to hold the head 3 with the front face 4 temporarily in position with the probe 1 covering the coronary segment below the constriction, the vacuum-on button 6 is now operated to apply vacuum to the space bounded by the front face 4, the surface of the heart 50 and the coronary artery 51, sealed by the sealing lip 5 surrounding the front face 4.

With the vacuum applied, the head 3 will remain in exactly the same position, temporarily attached by suction to the surface of the heart 50, the latter--of course--still beating, and during such attachment the knife 2 is held in said position in readiness for making the incision in the coronary artery 51.

At a suitable moment in time, such as the peak of the diastole, the knife button 8 is operated to bring the knife 2 to make the incision, thus producing an arteriotomy, after which the vacuum is rapidly released by operating the vacuum-off button 7, upon which the instrument is removed and the arteriotomy temporarily closed, such as by holding a finger tip against it, so as to avoid or reduce bleeding.

When the sensing and incising instrument shown in FIG. 1 has been removed from the heart, an end-to-side anastomosis is performed as soon and rapidly as possible by using the anastomosis instrument shown in FIGS. 4-10 in conjunction with--of course--a graft vessel and an anastomotic fitting as described above.

After having established an anastomosis between one end of the graft vessel and the arteriotomy in the coronary artery 51 in a manner to be described in more detail below, the opposite end of the graft vessel is suitably prepared and connected to the aorta, such as in the conventional manner of previously known coronary bypass surgery.

Before establishing an end-to-side anastomosis between said first end, i.e. the distal end, of the graft vessel, certain simple preparatory work must be done by "loading" the anastomosis instrument shown in FIGS. 4-10 with the graft vessel and anastomotic fitting.

The steps in the preparatory work are as follows:

I. it is ensured that the ejector 23 is in the withdrawn position shown in FIG. 4,

II. an anastomotic fitting, such as the fitting 30, is bent elastically inwards sufficiently for its brace 31 to fit into the circumferential recess 22 with the spikes 32 protruding in front of the end face 21 on the tube 20, after which the fitting is released so as to retain itself in engagement with the recess 22 by its own elastic force,

III. a bypass vessel (of natural or artificial origin) 27 is inserted through the anastomotic fitting 30 into the passage inside the ejector 23 and the tube 20, cf. FIG. 4, and the free end of the vessel is everted about the fitting 30 and the end face 21 of the tube 20 so as to form a collar 28 about the end of the tube 20, thus making the intima on the collar 28 face outwardly. Then, a guiding device comprising a rod 34 with a guide body 35 of a "streamlined" shape, cf. also FIG. 6 in conjunction with FIG. 5, is inserted into the tube 20 inside the graft vessel 27 and provided with a detachable push-button 36 at the opposite end. The guide body 35 is made of soft elastic flexible material and comprises a cavity 37 filled with a heparin solution, the purpose of which will become apparent. The anastomosis instrument is now "loaded" and ready to be used for establishing an end-to-side anastomosis with the coronary artery 51.

It will appear obvious that this work of "loading" the anastomosis instrument should have been completed before locating the constriction and making the incision in the coronary artery 51 in the manner described above. Preferably, steps I and II are carried out by the manufacturer, as only step III, entailing work with the sensitive graft vessel 27, will have to be carried out in the operating theatre.

The finger or whatever object has been used for temporarily closing the incision made in the coronary artery 51 by the knife 2 is now removed, and the tube 20, "loaded" with the bypass vessel 27, is now inserted into the incision and manoeuvred in a manner to make the intima facing outwardly of the collar 28 contact the intima on the wall region 53 bounding the incision, cf. FIG. 7. This step is facilitated by the guide body 35, causing the formation of a "waistline" around its upper part and the everted part of the graft vessel 27 forming the collar 28. The wall region 53 around the incision, being elastic and slippery, will slip into this "waistline" into the position shown in FIG. 7. In this manner, the tube 20 will have been manoeuvred into a relative position, in which the spikes 32, if the brace 30 is released, will penetrate both the collar 28 and the wall region 53.

The ejector 23 is now operated by pressing the ejecting flange 26 downwards, thus moving the ejector end face 24 to the position shown in FIG. 8, during this movement pushing the brace 31 out of the recess 22, thus making it free under the elastic force, with which it has been held in the recess 22, to move rapidly outwardly so as to penetrate the collar 28 and the wall region 53 as shown in FIG. 8, thus joining these two parts in an intima-to-intima fashion. As the spikes 32 at the "rear end" of the brace 31 are directed obliquely outwards and towards the "front end", the whole brace 30 will be pushed forward, when the oblique spikes penetrate the tissues, so that the spikes at the "front end" will also be made to penetrate the tissues in that region. As indicated in FIG. 11, a small gap at the "rear end" may remain "unstitched", but--due to intima-to-intima agglutination--with a minimum of leakage or none at all. In practice this will not cause any problems, as any possible bleeding through this gap will rapidly be stopped and the gap sealed automatically by natural self-coagulation of the blood.

The tube 20 with the ejector 23, the rod 34 and the guide body 35 must now be removed. This is carried out by first pushing the push-button 36 downwards, so that a head 39 on the opposite end of the rod 34 is moved away from the opening on the top wall of the guide body 35, through which the rod 34 extends. Further downward movement of the rod 34 causes a groove 38 close to the lower end of the rod to enter the opening, thus establishing communication between the cavity 37 and the lumen of the graft vessel 27. The heparin solution in the cavity 37 will now flow into the lumen of the graft vessel 27, and at the same time, the guide body 35, until now having been held elastically distended to the shape shown in FIGS. 5 and 6 by the solution, will collapse. At this stage, the tube 20 with the ejector 23 is removed by pulling them away from the anastomosis, after which, as shown in FIG. 10, the collapsed guide body 35 is pulled out through the graft vessel 27, the head 39 preventing the rod 34 from being pulled out of the guide body 35.

Now, the opposite end of the bypass vessel 27 is joined to the aorta in any suitable conventional manner, thus completing the bypass connection desired.

LIST OF PARTS

1 Ultrasonic probe

2 Knife

3 Head

4 Front face

5 Sealing lip

6 Vacuum-on button

7 Vacuum-off button

8 Knife button

9 Handle

10 Cable

11 Vacuum aperture

20 Tube

21 End face

22 Circumferential recess

23 Ejector

24 Ejector end face

25 Longitudinal axis

26 Ejecting flange

27 Bypass vessel

28 Collar

30 Anastomotic fitting

31 Brace

32 Spike

34 Rod

35 Guide body

36 Push-button

37 Cavity

38 Groove

39 Head

50 Heart

51 Coronary artery

52 Aorta

53 Wall region

Claims (3)

I claim:
1. A method of locating a constriction in a coronary artery and performing an arteriotomy distally thereof which comprises locating the site of a constriction in a coronary artery having a lumen therein by scanning said artery with a non-invasive sensing instrument capable of detecting said constriction, said sensing instrument having associated therewith a cutting instrument comprised of a cutter and means for moving said cutter into a position for making an incision, and after locating said constriction, moving said cutting member into a cutting position distal of said constriction and making an incision through the wall of said artery into the lumen thereof.
2. A method according the claim 1 wherein the non-invasive sensing instrument and said cutting instrument used to locate said constriction and make said incision constitute a combined sensing and cutting instrument.
3. A method according to claim 2 wherein the combined sensing or cutting instrument further comprises a holding means capable of being activated and inactivated for holding the instrument in abutment with an external surface of the heart such that the cutter can be activated to form an incision in the coronary artery.
US08663133 1993-12-23 1994-04-12 Method and instrument for establishing the receiving site of a coronary artery bypass graft Expired - Fee Related US5725544A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK145593A DK145593D0 (en) 1993-12-23 1993-12-23 Surgical double instrument for carrying out the connection MLM. arteries (end-to-side anastomosis)
DK1455/93 1993-12-23
PCT/DK1994/000148 WO1995017127A1 (en) 1993-12-23 1994-04-12 Method and instrument for establishing the receiving site of a coronary artery bypass graft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08864381 US5868770A (en) 1993-12-23 1997-05-28 Method and instrument for establishing the receiving site of a coronary artery bypass graft

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08864381 Division US5868770A (en) 1993-12-23 1997-05-28 Method and instrument for establishing the receiving site of a coronary artery bypass graft

Publications (1)

Publication Number Publication Date
US5725544A true US5725544A (en) 1998-03-10

Family

ID=8105013

Family Applications (3)

Application Number Title Priority Date Filing Date
US08663134 Expired - Fee Related US5797934A (en) 1993-12-23 1994-04-12 Method, instrument and anastomotic fitting for use when performing an end-to-side anastomosis
US08663133 Expired - Fee Related US5725544A (en) 1993-12-23 1994-04-12 Method and instrument for establishing the receiving site of a coronary artery bypass graft
US08864381 Expired - Fee Related US5868770A (en) 1993-12-23 1997-05-28 Method and instrument for establishing the receiving site of a coronary artery bypass graft

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08663134 Expired - Fee Related US5797934A (en) 1993-12-23 1994-04-12 Method, instrument and anastomotic fitting for use when performing an end-to-side anastomosis

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08864381 Expired - Fee Related US5868770A (en) 1993-12-23 1997-05-28 Method and instrument for establishing the receiving site of a coronary artery bypass graft

Country Status (9)

Country Link
US (3) US5797934A (en)
EP (2) EP0774923B1 (en)
JP (2) JP2997315B2 (en)
KR (2) KR100189277B1 (en)
CA (2) CA2179507C (en)
DE (4) DE69419437T2 (en)
DK (3) DK145593D0 (en)
ES (2) ES2137366T3 (en)
WO (2) WO1995017127A1 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068638A (en) * 1995-10-13 2000-05-30 Transvascular, Inc. Device, system and method for interstitial transvascular intervention
US6080175A (en) * 1998-07-29 2000-06-27 Corvascular, Inc. Surgical cutting instrument and method of use
US6179849B1 (en) 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6206913B1 (en) 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6248119B1 (en) * 2000-02-28 2001-06-19 Jan Otto Solem Device and method for endoscopic vascular surgery
US6293955B1 (en) 1996-09-20 2001-09-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US20010037139A1 (en) * 1998-08-12 2001-11-01 Yencho Stephen A. Method and system for attaching a graft to a blood vessel
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
US6371964B1 (en) 1999-05-18 2002-04-16 Vascular Innovations, Inc. Trocar for use in deploying an anastomosis device and method of performing anastomosis
US6398797B2 (en) 1999-07-28 2002-06-04 Cardica, Inc. Tissue bonding system and method for controlling a tissue site during anastomosis
US20020077637A1 (en) * 1999-05-18 2002-06-20 Jaime Vargas Trocar for use in deploying an asastomosis device and method of performing anastomosis
US20020116018A1 (en) * 1999-05-28 2002-08-22 Stevens Walter J. Anastomosis system and methods for use
US6471713B1 (en) 2000-11-13 2002-10-29 Cardica, Inc. System for deploying an anastomosis device and method of performing anastomosis
US20020173809A1 (en) * 1999-09-01 2002-11-21 Fleischman Sidney D. Sutureless anastomosis system deployment concepts
US6494889B1 (en) 1999-09-01 2002-12-17 Converge Medical, Inc. Additional sutureless anastomosis embodiments
US20030014061A1 (en) * 1996-11-08 2003-01-16 Houser Russell A. Percutaneous bypass graft and securing system
US20030023253A1 (en) * 2001-04-27 2003-01-30 Cardica, Inc. Anastomosis system
US20030023252A1 (en) * 2001-07-05 2003-01-30 Whayne James G. Distal anastomosis system
US6537290B2 (en) 2001-03-05 2003-03-25 Edwards Lifesciences Corporation Sealing access cannula system
US6537288B2 (en) 1999-05-18 2003-03-25 Cardica, Inc. Implantable medical device such as an anastomosis device
US6554764B1 (en) 2000-11-13 2003-04-29 Cardica, Inc. Graft vessel preparation device and methods for using the same
US20030093095A1 (en) * 2001-07-05 2003-05-15 Whayne James G. Distal anastomosis system
US20030109893A1 (en) * 2001-12-06 2003-06-12 Cardica,Inc. Implantable medical device such as an anastomosis device
US6579311B1 (en) 1996-02-02 2003-06-17 Transvascular, Inc. Method for interstitial transvascular intervention
US20030167064A1 (en) * 1999-09-01 2003-09-04 Whayne James G. Advanced anastomosis systems (II)
US20030212418A1 (en) * 2000-10-12 2003-11-13 Cardica, Inc. Implantable superelastic anastomosis device
US20030229365A1 (en) * 2002-06-10 2003-12-11 Whayne James G. Angled vascular anastomosis system
US20040068278A1 (en) * 1999-12-06 2004-04-08 Converge Medical Inc. Anastomosis systems
US6719769B2 (en) 1999-11-15 2004-04-13 Cardica, Inc. Integrated anastomosis tool with graft vessel attachment device and cutting device
US20040073248A1 (en) * 1999-05-18 2004-04-15 Cardica, Inc. Tissue punch
US6746459B2 (en) 2000-10-19 2004-06-08 Terumo Kabushiki Kaisha End-to-side blood vessel anastomosis method and instruments therefor
US20040215214A1 (en) * 2000-12-13 2004-10-28 Samuel Crews Methods, devices and systems for forming magnetic anastomoses
US20040236178A1 (en) * 2003-02-14 2004-11-25 Cardica, Inc. Method for preparing a graft vessel for anastomosis
US20050004591A1 (en) * 2002-01-22 2005-01-06 Bender Theodore M. Tool for creating an opening in tissue
US20050021059A1 (en) * 2000-04-29 2005-01-27 Cole David H. Magnetic components for use in forming anastomoses, creating ports in vessels and closing openings in tissue
US20050027308A1 (en) * 2001-02-27 2005-02-03 Davis John W. Methods for performing anastomosis
US20050033111A1 (en) * 1996-02-20 2005-02-10 Taylor Charles S. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US20050033330A1 (en) * 2002-01-23 2005-02-10 Cardica, Inc. Method of performing anastomosis
US20050038456A1 (en) * 2002-01-22 2005-02-17 Cardica, Inc. Anastomosis device having a deployable section
US6858035B2 (en) 2001-07-05 2005-02-22 Converge Medical, Inc. Distal anastomosis system
US20050075657A1 (en) * 1999-07-28 2005-04-07 Cardica, Inc. Method of performing anastomosis
US20050080439A1 (en) * 2000-04-29 2005-04-14 Carson Dean F. Devices and methods for forming magnetic anastomoses and ports in vessels
US20050149071A1 (en) * 2003-12-24 2005-07-07 Ryan Abbott Anastomosis device, tools and method of using
US20050154406A1 (en) * 1999-07-28 2005-07-14 Cardica, Inc. Method for anastomosing vessels
US20050165427A1 (en) * 2004-01-22 2005-07-28 Jahns Scott E. Vessel sealing devices
US20050192603A1 (en) * 2000-12-13 2005-09-01 Medtronic Avecor Cardiovascular, Inc. A Minnesota Corporation Extravascular anastomotic components and methods for forming magnetic anastomoses
US20050234483A1 (en) * 2000-11-06 2005-10-20 Cardica, Inc. Unitary anastomosis device
US20050251163A1 (en) * 2001-07-05 2005-11-10 Converge Medical, Inc. Vascular anastomosis systems
US20050262673A1 (en) * 2003-10-09 2005-12-01 Strahm Textile Systems Ag Device for removing needles from a fabric web
US20050283173A1 (en) * 2004-06-17 2005-12-22 Abbott Ryan C Angled anastomosis device, tools and method of using
US20070010834A1 (en) * 2000-04-29 2007-01-11 Sharkawy A A Components, systems and methods for forming anastomoses using magnetism or other coupling means
US20080027472A1 (en) * 2003-11-24 2008-01-31 Cardica, Inc. Anastomosis System with Anvil Entry Hole Sealer
EP1967152A1 (en) * 2007-03-05 2008-09-10 Frank Michael Münker Device for creating openings in pressurized vessels with deformable walls
US20080269784A1 (en) * 2003-12-24 2008-10-30 Ryan Abbott Anastomosis device, tools and methods of using
WO2009104949A1 (en) * 2008-02-21 2009-08-27 Amj B.V. Laser catheter for bypass surgery and assembly comprising said catheter
US20100069934A1 (en) * 1999-07-28 2010-03-18 Cardica, Inc. Anastomosis Method Utilizing Tool with Fluid-Driven Actuator
US20100155453A1 (en) * 1999-07-28 2010-06-24 Cardica, Inc. Surgical Staples Frangibly Connected to Staple Holding Strip
US7794471B1 (en) 2003-06-26 2010-09-14 Cardica, Inc. Compliant anastomosis system
US20100230464A1 (en) * 2007-09-06 2010-09-16 Cardica, Inc. Driverless Surgical Stapler
US7850703B2 (en) 1999-07-28 2010-12-14 Cardica, Inc. System for performing anastomosis
US8012164B1 (en) 2002-01-22 2011-09-06 Cardica, Inc. Method and apparatus for creating an opening in the wall of a tubular vessel
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler
US8361092B1 (en) 2007-06-18 2013-01-29 Wilson T. Asfora Vascular anastomosis device and method
US8518062B2 (en) 2000-04-29 2013-08-27 Medtronic, Inc. Devices and methods for forming magnetic anastomoses between vessels
US8574246B1 (en) 2004-06-25 2013-11-05 Cardica, Inc. Compliant anastomosis system utilizing suture
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
US9345478B2 (en) 2007-09-06 2016-05-24 Cardica, Inc. Method for surgical stapling

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5799661A (en) * 1993-02-22 1998-09-01 Heartport, Inc. Devices and methods for port-access multivessel coronary artery bypass surgery
US6478029B1 (en) 1993-02-22 2002-11-12 Hearport, Inc. Devices and methods for port-access multivessel coronary artery bypass surgery
US6494211B1 (en) 1993-02-22 2002-12-17 Hearport, Inc. Device and methods for port-access multivessel coronary artery bypass surgery
US6110187A (en) * 1995-02-24 2000-08-29 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US5888247A (en) * 1995-04-10 1999-03-30 Cardiothoracic Systems, Inc Method for coronary artery bypass
US5836311A (en) * 1995-09-20 1998-11-17 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US6068637A (en) * 1995-10-03 2000-05-30 Cedar Sinai Medical Center Method and devices for performing vascular anastomosis
US5702412A (en) * 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
WO1997016122A1 (en) * 1995-10-31 1997-05-09 Oticon A/S Method and anastomotic instrument for use when performing an end-to-side anastomosis
US6290644B1 (en) 1996-02-20 2001-09-18 Cardiothoracic Systems, Inc. Surgical instruments and procedures for stabilizing a localized portion of a beating heart
US5894843A (en) * 1996-02-20 1999-04-20 Cardiothoracic Systems, Inc. Surgical method for stabilizing the beating heart during coronary artery bypass graft surgery
US6685632B1 (en) 1999-05-04 2004-02-03 Cardiothoracic Systems, Inc. Surgical instruments for accessing and stabilizing a localized portion of a beating heart
CA2197608C (en) * 1996-02-20 2000-02-01 Charles S. Taylor Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US5727569A (en) * 1996-02-20 1998-03-17 Cardiothoracic Systems, Inc. Surgical devices for imposing a negative pressure to fix the position of cardiac tissue during surgery
US6152918A (en) * 1996-04-05 2000-11-28 Eclipse Surgical Technologies, Inc. Laser device with auto-piercing tip for myocardial revascularization procedures
US5738680A (en) * 1996-04-05 1998-04-14 Eclipse Surgical Technologies, Inc. Laser device with piercing tip for transmyocardial revascularization procedures
US6019756A (en) * 1996-04-05 2000-02-01 Eclipse Surgical Technologies, Inc. Laser device for transmyocardial revascularization procedures
US5976080A (en) 1996-09-20 1999-11-02 United States Surgical Surgical apparatus and method
US6254535B1 (en) 1996-04-26 2001-07-03 Genzyme Corporation Ball and socket coronary stabilizer
CA2252873C (en) * 1996-04-26 2005-04-12 Genzyme Corporation Coronary stabilizing retractor
US5947896A (en) * 1996-04-26 1999-09-07 United States Surgical Corporation Heart stabilizer apparatus and method for use
US6152874A (en) * 1996-04-26 2000-11-28 Genzyme Corporation Adjustable multi-purpose coronary stabilizing retractor
US5766164A (en) * 1996-07-03 1998-06-16 Eclipse Surgical Technologies, Inc. Contiguous, branched transmyocardial revascularization (TMR) channel, method and device
US5942157A (en) * 1996-07-12 1999-08-24 Science Applications International Corporation Switchable volume hologram materials and devices
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US7223273B2 (en) 1996-07-23 2007-05-29 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
US6440146B2 (en) 1996-07-23 2002-08-27 United States Surgical Corporation Anastomosis instrument and method
US5833698A (en) * 1996-07-23 1998-11-10 United States Surgical Corporation Anastomosis instrument and method
US6391039B1 (en) 1996-07-23 2002-05-21 United States Surgical Corporation Anastomosis instrument and method
US20020019642A1 (en) 1996-07-23 2002-02-14 Keith Milliman Anastomosis instrument and method for performing same
US7169158B2 (en) 1996-07-23 2007-01-30 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
CN1225565A (en) * 1996-07-24 1999-08-11 詹·奥托·索里姆 Anastomotic fitting
CA2211305A1 (en) * 1996-07-25 1998-01-25 Jose A. Navia Epicardial immobilization device
US5976164A (en) * 1996-09-13 1999-11-02 Eclipse Surgical Technologies, Inc. Method and apparatus for myocardial revascularization and/or biopsy of the heart
US6565581B1 (en) 1996-09-16 2003-05-20 Origin Medsystems, Inc. Apparatus and method for performing an anastomosis
US5868763A (en) 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US6488692B1 (en) 1996-09-16 2002-12-03 Origin Medsystems, Inc. Access and cannulation device and method for rapidly placing same and for rapidly closing same in minimally invasive surgery
US6811555B1 (en) 1996-09-16 2004-11-02 Origin Medsystems, Inc. Method and apparatus for performing anastomosis with eversion of tissue edges and joining of exposed intima of the everted tissue
US5976178A (en) * 1996-11-07 1999-11-02 Vascular Science Inc. Medical grafting methods
DE19704261C2 (en) * 1997-02-05 1999-01-28 Aesculap Ag & Co Kg A surgical instrument
JP3036686B2 (en) 1997-02-27 2000-04-24 政夫 高橋 Hemostatic holding device vascular anastomosis used in coronary artery bypass surgery
US6035856A (en) 1997-03-06 2000-03-14 Scimed Life Systems Percutaneous bypass with branching vessel
US6026814A (en) 1997-03-06 2000-02-22 Scimed Life Systems, Inc. System and method for percutaneous coronary artery bypass
US6155264A (en) 1997-03-06 2000-12-05 Scimed Life Systems, Inc. Percutaneous bypass by tunneling through vessel wall
US6036702A (en) 1997-04-23 2000-03-14 Vascular Science Inc. Medical grafting connectors and fasteners
US6033362A (en) * 1997-04-25 2000-03-07 Beth Israel Deaconess Medical Center Surgical retractor and method of use
US7235049B1 (en) 1997-04-25 2007-06-26 Beth Israel Deaconess Medical Center Surgical retractor and method of positioning an artery during surgery
US6458079B1 (en) * 1997-04-25 2002-10-01 Beth Israel Deaconess Medical Center Surgical retractor and method of use
DE29707567U1 (en) * 1997-04-29 1997-07-03 Riess Andreas G Arrangement for local immobilising a beating heart,
US5957835A (en) * 1997-05-16 1999-09-28 Guidant Corporation Apparatus and method for cardiac stabilization and arterial occlusion
US6409739B1 (en) 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
US5944730A (en) * 1997-05-19 1999-08-31 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US6056762A (en) 1997-05-22 2000-05-02 Kensey Nash Corporation Anastomosis system and method of use
WO1998055027A3 (en) * 1997-06-05 2001-06-07 Vascular Science Inc Minimally invasive medical bypass methods and apparatus using partial relocation of tubular body conduit
US6213126B1 (en) 1997-06-19 2001-04-10 Scimed Life Systems, Inc. Percutaneous artery to artery bypass using heart tissue as a portion of a bypass conduit
US6443158B1 (en) 1997-06-19 2002-09-03 Scimed Life Systems, Inc. Percutaneous coronary artery bypass through a venous vessel
EP0894475A1 (en) * 1997-07-31 1999-02-03 Medtronic, Inc. Temporary vascular seal for anastomosis
EP0895753A1 (en) * 1997-07-31 1999-02-10 Academisch Ziekenhuis Utrecht Temporary vascular seal for anastomosis
US6063114A (en) 1997-09-04 2000-05-16 Kensey Nash Corporation Connector system for vessels, ducts, lumens or hollow organs and methods of use
NL1007349C2 (en) 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
US6102853A (en) * 1998-01-23 2000-08-15 United States Surgical Corporation Surgical instrument
US6200263B1 (en) 1998-01-23 2001-03-13 United States Surgical Corporation Surgical instrument holder
US6651670B2 (en) 1998-02-13 2003-11-25 Ventrica, Inc. Delivering a conduit into a heart wall to place a coronary vessel in communication with a heart chamber and removing tissue from the vessel or heart wall to facilitate such communication
US20010041902A1 (en) * 1998-02-13 2001-11-15 Michael J. Lynch Anastomotic methods and devices for placing a target vessel in fluid communication with a source of blood
US20020144696A1 (en) 1998-02-13 2002-10-10 A. Adam Sharkawy Conduits for use in placing a target vessel in fluid communication with a source of blood
US6280460B1 (en) * 1998-02-13 2001-08-28 Heartport, Inc. Devices and methods for performing vascular anastomosis
US6015416A (en) 1998-02-26 2000-01-18 Ethicon Endo-Surgery, Inc. Surgical anastomosis instrument
WO1999062415A1 (en) 1998-05-29 1999-12-09 By-Pass, Inc. Methods and devices for vascular surgery
US20050101983A1 (en) * 1998-05-29 2005-05-12 By-Pass,Inc. Method and apparatus for forming apertures in blood vessels
US7063711B1 (en) 1998-05-29 2006-06-20 By-Pass, Inc. Vascular surgery
US6726704B1 (en) 1998-05-29 2004-04-27 By-Pass, Inc. Advanced closure device
US20040073247A1 (en) * 1998-05-29 2004-04-15 By-Pass, Inc. Method and apparatus for forming apertures in blood vessels
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6945980B2 (en) 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
WO2000042920A1 (en) 1999-01-24 2000-07-27 Genzyme Corporation Surgical retractor and tissue stabilization device having an adjustable sled member
US6348036B1 (en) 1999-01-24 2002-02-19 Genzyme Corporation Surgical retractor and tissue stabilization device
US6475226B1 (en) 1999-02-03 2002-11-05 Scimed Life Systems, Inc. Percutaneous bypass apparatus and method
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
EP1265536A1 (en) * 2000-03-20 2002-12-18 By-Pass, Inc. Graft delivery system
US20040087985A1 (en) * 1999-03-19 2004-05-06 Amir Loshakove Graft and connector delivery
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6623494B1 (en) 1999-04-16 2003-09-23 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Methods and systems for intraluminally directed vascular anastomosis
US6743244B2 (en) 1999-04-16 2004-06-01 Integrated Vascular Interventional Technologies, L.C. Soft anvil apparatus for cutting anastomosis fenestra
US7160311B2 (en) 1999-04-16 2007-01-09 Integrated Vascular Interventional Technologies, L.C. (Ivit Lc) Locking compression plate anastomosis apparatus
US7981126B2 (en) 1999-04-16 2011-07-19 Vital Access Corporation Locking compression plate anastomosis apparatus
US6626921B2 (en) 1999-04-16 2003-09-30 Integrated Vascular Interventional Technologies, L.C. Externally positioned anvil apparatus for cutting anastomosis
US6726694B2 (en) * 1999-04-16 2004-04-27 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Intraluminally directed anvil apparatus and related methods and systems
US6736825B2 (en) * 1999-12-14 2004-05-18 Integrated Vascular Interventional Technologies, L C (Ivit Lc) Paired expandable anastomosis devices and related methods
US6626830B1 (en) * 1999-05-04 2003-09-30 Cardiothoracic Systems, Inc. Methods and devices for improved tissue stabilization
US6283912B1 (en) * 1999-05-04 2001-09-04 Cardiothoracic Systems, Inc. Surgical retractor platform blade apparatus
US6231506B1 (en) 1999-05-04 2001-05-15 Cardiothoracic Systems, Inc. Method and apparatus for creating a working opening through an incision
EP1196093B1 (en) 1999-07-02 2006-06-14 Quickpass, Inc. Suturing device
US6258023B1 (en) 1999-07-08 2001-07-10 Chase Medical, Inc. Device and method for isolating a surface of a beating heart during surgery
US6251116B1 (en) 1999-07-28 2001-06-26 Vasconnect, Inc. Device for interconnecting vessels in a patient
US6458140B2 (en) 1999-07-28 2002-10-01 Vasconnect, Inc. Devices and methods for interconnecting vessels
US6165185A (en) * 1999-07-28 2000-12-26 Vasconnect, Inc. Method for interconnecting vessels in a patient
US6511416B1 (en) 1999-08-03 2003-01-28 Cardiothoracic Systems, Inc. Tissue stabilizer and methods of use
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US6406424B1 (en) 1999-09-16 2002-06-18 Williamson, Iv Warren P. Tissue stabilizer having an articulating lift element
US6475142B1 (en) 1999-11-12 2002-11-05 Genzyme Corporation Curved stabilization arm for use with surgical retractor and tissue stabilization device and methods related thereto
US6569173B1 (en) 1999-12-14 2003-05-27 Integrated Vascular Interventional Technologies, L.C. Compression plate anastomosis apparatus
US6595941B1 (en) 2000-01-11 2003-07-22 Integrated Vascular Interventional Technologies, L.C. Methods for external treatment of blood
US6663590B2 (en) 2000-01-11 2003-12-16 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Vascular occlusal balloons and related vascular access devices and systems
US6656151B1 (en) 2000-01-11 2003-12-02 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Vascular access devices and systems
US7118546B2 (en) * 2000-01-11 2006-10-10 Integrated Vascular Interventional Technologies, L.C. Apparatus and methods for facilitating repeated vascular access
DE60127236T2 (en) * 2000-01-18 2007-11-22 Tyco Healthcare Group Lp, Norwalk Instrument for anastomosis
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
JP2003530916A (en) * 2000-04-12 2003-10-21 ベントリカ, インコーポレイテッド Method and apparatus for positioning a conduit
US6712831B1 (en) 2000-06-16 2004-03-30 Aaron V. Kaplan Methods and apparatus for forming anastomotic sites
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6503245B2 (en) 2000-10-11 2003-01-07 Medcanica, Inc. Method of performing port off-pump beating heart coronary artery bypass surgery
US6464690B1 (en) 2000-10-11 2002-10-15 Popcab, Llc Port off-pump beating heart coronary artery bypass heart stabilization system
US6592573B2 (en) 2000-10-11 2003-07-15 Popcab, Llc Through-port heart stabilization system
US7241302B2 (en) 2001-10-18 2007-07-10 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
GB0026236D0 (en) * 2000-10-26 2000-12-13 Anson Medical Ltd Fixation instrument for arterial graft
US6599240B2 (en) 2000-12-20 2003-07-29 Genzyme Corporation Segmented arm assembly for use with a surgical retractor and instruments and methods related thereto
US7628780B2 (en) * 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US7740623B2 (en) * 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
ES2307723T3 (en) * 2001-01-24 2008-12-01 Tyco Healthcare Group Lp Instrumentio anastomosis and method for carrying it out.
US6758808B2 (en) 2001-01-24 2004-07-06 Cardiothoracic System, Inc. Surgical instruments for stabilizing a localized portion of a beating heart
US6953464B2 (en) 2001-02-21 2005-10-11 Novare Surgical Systems, Inc. Anastomosis occlusion device
US6620177B2 (en) 2001-02-15 2003-09-16 Novare Surgical Systems, Inc. Anastomosis occlusion device
KR20020091523A (en) * 2001-05-31 2002-12-06 (주)에이치비메디컬스 Vascular anastomosis device
US6749615B2 (en) 2001-06-25 2004-06-15 Abbott Laboratories Apparatus and methods for performing an anastomosis
US6605098B2 (en) 2001-09-28 2003-08-12 Ethicon, Inc. Surgical device for creating an anastomosis between first and second hollow organs
US7892247B2 (en) 2001-10-03 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting vessels
US6814743B2 (en) 2001-12-26 2004-11-09 Origin Medsystems, Inc. Temporary seal and method for facilitating anastomosis
WO2003088847A1 (en) * 2002-04-17 2003-10-30 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US6769594B2 (en) 2002-05-31 2004-08-03 Tyco Healthcare Group, Lp End-to-end anastomosis instrument and method for performing same
EP1519687B1 (en) * 2002-06-19 2010-01-20 Tyco Healthcare Group Lp Apparatus for anastomosis
DE60335463D1 (en) 2002-06-19 2011-02-03 Tyco Healthcare An apparatus for anastomosis following radical prostatectomy
WO2004000134A3 (en) * 2002-06-19 2004-03-11 Tyco Healthcare Method and apparatus for anastomosis including annular joining member
WO2004000093A3 (en) * 2002-06-20 2004-08-26 Tyco Healthcare Method and apparatus for anastomosis including annular joining member
EP1519688B1 (en) 2002-06-20 2010-06-16 Tyco Healthcare Group Lp Apparatus for anastomosis including an anchoring sleeve
DE60335720D1 (en) * 2002-06-20 2011-02-24 Tyco Healthcare The anastomosis device with an anchoring sleeve
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
US6960209B2 (en) * 2002-10-23 2005-11-01 Medtronic, Inc. Electrosurgical methods and apparatus for making precise incisions in body vessels
US7493154B2 (en) * 2002-10-23 2009-02-17 Medtronic, Inc. Methods and apparatus for locating body vessels and occlusions in body vessels
US7931590B2 (en) 2002-10-29 2011-04-26 Maquet Cardiovascular Llc Tissue stabilizer and methods of using the same
US7146225B2 (en) 2002-10-30 2006-12-05 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US6890295B2 (en) * 2002-10-31 2005-05-10 Medtronic, Inc. Anatomical space access tools and methods
WO2004043267A3 (en) 2002-11-06 2004-09-23 Medtronic Inc Suction-assisted tissue engagement through a minimally invasive incision
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US8377082B2 (en) * 2003-01-14 2013-02-19 Medtronic, Inc. Methods and apparatus for making precise incisions in body vessels
US6786898B2 (en) * 2003-01-15 2004-09-07 Medtronic, Inc. Methods and tools for accessing an anatomic space
US6837848B2 (en) * 2003-01-15 2005-01-04 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US7131959B2 (en) * 2003-01-23 2006-11-07 Integrated Vascular Interventional Technologies, L.C., (“IVIT LC”) Apparatus and methods for occluding an access tube anastomosed to sidewall of an anatomical vessel
US7124570B2 (en) * 2003-01-23 2006-10-24 Integrated Vascular Interventional Technologies, L.C. Apparatus and methods for fluid occlusion of an access tube anastomosed to an anatomical vessel
US7479104B2 (en) 2003-07-08 2009-01-20 Maquet Cardiovascular, Llc Organ manipulator apparatus
US20050010241A1 (en) * 2003-07-09 2005-01-13 Keith Milliman Anastomosis instrument and method for performing same
US7182769B2 (en) 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
DE10337813A1 (en) * 2003-08-14 2005-03-10 Transmit Technologietransfer Apparatus for tissue and organ manipulation
US20050043749A1 (en) 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US8080023B2 (en) * 2003-12-12 2011-12-20 Vitalitec International, Inc. Device and method for performing multiple anastomoses
US20050148824A1 (en) * 2003-12-30 2005-07-07 Morejohn Dwight P. Transabdominal surgery system
US7186214B2 (en) * 2004-02-12 2007-03-06 Medtronic, Inc. Instruments and methods for accessing an anatomic space
EP1611850A1 (en) * 2004-06-28 2006-01-04 Cardio Life Research S.A. Occlusion and tight punction device for an anatomical structure
US7556627B2 (en) * 2004-09-13 2009-07-07 Ethicon Endo-Surgery, Inc. Mucosal ablation device
US8083664B2 (en) 2005-05-25 2011-12-27 Maquet Cardiovascular Llc Surgical stabilizers and methods for use in reduced-access surgical sites
US20070088203A1 (en) * 2005-05-25 2007-04-19 Liming Lau Surgical assemblies and methods for visualizing and performing surgical procedures in reduced-access surgical sites
EP1909655A2 (en) 2005-06-20 2008-04-16 Sutura, Inc. Method and apparatus for applying a knot to a suture
US20070010793A1 (en) * 2005-06-23 2007-01-11 Cardiac Pacemakers, Inc. Method and system for accessing a pericardial space
US20070142850A1 (en) * 2005-12-15 2007-06-21 David Fowler Compression anastomosis device
WO2008022087A3 (en) * 2006-08-11 2008-12-24 Mynosys Cellular Devices Inc Three-dimensional cutting instrument
JP5411125B2 (en) 2007-03-29 2014-02-12 ノーブルズ メディカル テクノロジーズ、インコーポレイテッド Suturing apparatus, and a system for closing a patent foramen ovale
US8690816B2 (en) 2007-08-02 2014-04-08 Bioconnect Systems, Inc. Implantable flow connector
US20130197546A1 (en) 2007-08-02 2013-08-01 Bioconnect Systems, Inc. Implantable flow connector
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
JP5848125B2 (en) 2008-05-09 2016-01-27 ノーブルズ メディカル テクノロジーズ、インコーポレイテッド Suturing devices and methods for suturing anatomical valve
ES2424493T3 (en) 2009-03-26 2013-10-02 Georg Fischer Jrg Ag Accessory for the production of a pipe joint
US8518060B2 (en) 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8668704B2 (en) 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US8413872B2 (en) 2009-10-28 2013-04-09 Covidien Lp Surgical fastening apparatus
US9022998B2 (en) 2010-02-26 2015-05-05 Maquet Cardiovascular Llc Blower instrument, apparatus and methods of using
US9642623B2 (en) 2010-04-16 2017-05-09 The University Of Utah Research Foundation Methods, devices and apparatus for performing a vascular anastomosis
EP2579785B1 (en) 2010-06-14 2016-11-16 Maquet Cardiovascular LLC Surgical instruments, systems and methods of use
EP2688514A1 (en) 2011-03-21 2014-01-29 Endo Pharmaceuticals Inc. Urethral anastomosis device and method
CN103889345B (en) 2011-04-15 2016-10-19 心脏缝合有限公司 Suturing device and method for suturing anatomical flap
WO2013170081A1 (en) 2012-05-11 2013-11-14 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
EP3038540A4 (en) * 2013-08-30 2017-07-12 Bioventrix Inc Cardiac tissue anchoring devices, methods, and systems for treatment of congestive heart failure and other conditions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119983A (en) * 1987-05-26 1992-06-09 United States Surgical Corporation Surgical stapler apparatus
US5158222A (en) * 1987-05-26 1992-10-27 United States Surgical Corp. Surgical stapler apparatus
US5254120A (en) * 1992-02-11 1993-10-19 Cinberg James Z Myringotomy ventilliation tube, method, applicator and kit
US5285944A (en) * 1987-05-26 1994-02-15 United States Surgical Corporation Surgical stapler apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4368736A (en) * 1980-11-17 1983-01-18 Kaster Robert L Anastomotic fitting
FR2631592B1 (en) * 1988-05-19 1990-08-24 Ecia Equip Composants Ind Auto Locking device for vehicle seat slide rail or the like
US4930674A (en) * 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US5234447A (en) * 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5122156A (en) * 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US5234448A (en) * 1992-02-28 1993-08-10 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119983A (en) * 1987-05-26 1992-06-09 United States Surgical Corporation Surgical stapler apparatus
US5158222A (en) * 1987-05-26 1992-10-27 United States Surgical Corp. Surgical stapler apparatus
US5285944A (en) * 1987-05-26 1994-02-15 United States Surgical Corporation Surgical stapler apparatus
US5254120A (en) * 1992-02-11 1993-10-19 Cinberg James Z Myringotomy ventilliation tube, method, applicator and kit

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068638A (en) * 1995-10-13 2000-05-30 Transvascular, Inc. Device, system and method for interstitial transvascular intervention
US20040073238A1 (en) * 1996-02-02 2004-04-15 Transvascular, Inc. Device, system and method for interstitial transvascular intervention
US8075580B2 (en) 1996-02-02 2011-12-13 Medtronic Vascular, Inc. Device, system and method for interstitial transvascular intervention
US6579311B1 (en) 1996-02-02 2003-06-17 Transvascular, Inc. Method for interstitial transvascular intervention
US20050033111A1 (en) * 1996-02-20 2005-02-10 Taylor Charles S. Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US7497824B2 (en) * 1996-02-20 2009-03-03 Maquet Cardiovasculer, Llc Surgical devices for imposing a negative pressure to stabilize cardiac tissue during surgery
US6293955B1 (en) 1996-09-20 2001-09-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US20030014062A1 (en) * 1996-11-08 2003-01-16 Houser Russell A. Percutaneous bypass graft and securing system
US6652544B2 (en) 1996-11-08 2003-11-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US20030014061A1 (en) * 1996-11-08 2003-01-16 Houser Russell A. Percutaneous bypass graft and securing system
US7083631B2 (en) 1996-11-08 2006-08-01 Converge Medical, Inc. Percutaneous bypass graft and securing system
US20030014063A1 (en) * 1996-11-08 2003-01-16 Houser Russell A. Percutaneous bypass graft and securing system
US6843795B1 (en) 1998-06-10 2005-01-18 Converge Medical, Inc. Anastomotic connector for sutureless anastomosis systems
US20020099394A1 (en) * 1998-06-10 2002-07-25 Houser Russell A. Sutureless anastomosis systems
US6740101B2 (en) 1998-06-10 2004-05-25 Converge Medical, Inc. Sutureless anastomosis systems
US6599302B2 (en) 1998-06-10 2003-07-29 Converge Medical, Inc. Aortic aneurysm treatment systems
US6648901B2 (en) 1998-06-10 2003-11-18 Converge Medical, Inc. Anastomosis systems
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
US6648900B2 (en) 1998-06-10 2003-11-18 Converge Medical, Inc. Anastomosis systems
US6887249B1 (en) 1998-06-10 2005-05-03 Converge Medical Inc. Positioning systems for sutureless anastomosis systems
US6080175A (en) * 1998-07-29 2000-06-27 Corvascular, Inc. Surgical cutting instrument and method of use
US6497710B2 (en) 1998-08-12 2002-12-24 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US20040015180A1 (en) * 1998-08-12 2004-01-22 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US20020026137A1 (en) * 1998-08-12 2002-02-28 Yencho Stephen A. Method and system for attaching a graft to a blood vessel
US20010037139A1 (en) * 1998-08-12 2001-11-01 Yencho Stephen A. Method and system for attaching a graft to a blood vessel
US6805708B1 (en) 1998-08-12 2004-10-19 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US20060155313A1 (en) * 1998-08-12 2006-07-13 Cardica, Inc. Integrated anastomosis tool and method
US6206913B1 (en) 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6461320B1 (en) 1998-08-12 2002-10-08 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US20040102795A1 (en) * 1998-08-12 2004-05-27 Cardica, Inc. Method and system for attaching a graft to a blood vessel
US20040243155A1 (en) * 1998-08-12 2004-12-02 Cardica, Inc. Anastomosis device having at least one frangible member
US6537288B2 (en) 1999-05-18 2003-03-25 Cardica, Inc. Implantable medical device such as an anastomosis device
US20040249400A1 (en) * 1999-05-18 2004-12-09 Cardica, Inc. Anastomosis device
US20040098011A1 (en) * 1999-05-18 2004-05-20 Cardica, Inc. Method for cutting tissue
US20040210244A1 (en) * 1999-05-18 2004-10-21 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US6673088B1 (en) 1999-05-18 2004-01-06 Cardica, Inc. Tissue punch
US20070043387A1 (en) * 1999-05-18 2007-02-22 Cardica, Inc. Surgical method for treating a vessel wall
US20050149078A1 (en) * 1999-05-18 2005-07-07 Cardica, Inc. Trocar for use in deploying an anastomosis device and method of performing anastomosis
US6786914B1 (en) 1999-05-18 2004-09-07 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US20040167550A1 (en) * 1999-05-18 2004-08-26 Cardica, Inc. Integrated anastomosis tool with graft vessel attachment device and cutting device
US6371964B1 (en) 1999-05-18 2002-04-16 Vascular Innovations, Inc. Trocar for use in deploying an anastomosis device and method of performing anastomosis
US20020077637A1 (en) * 1999-05-18 2002-06-20 Jaime Vargas Trocar for use in deploying an asastomosis device and method of performing anastomosis
US6652541B1 (en) 1999-05-18 2003-11-25 Cardica, Inc Method of sutureless closure for connecting blood vessels
US20040073248A1 (en) * 1999-05-18 2004-04-15 Cardica, Inc. Tissue punch
US6428550B1 (en) 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US6419681B1 (en) 1999-05-18 2002-07-16 Cardica, Inc. Implantable medical device such as an anastomosis device
US20040097991A1 (en) * 1999-05-18 2004-05-20 Cardica, Inc. Method for sutureless connection of vessels
US20040092977A1 (en) * 1999-05-18 2004-05-13 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US20020116018A1 (en) * 1999-05-28 2002-08-22 Stevens Walter J. Anastomosis system and methods for use
US6537287B1 (en) 1999-06-10 2003-03-25 Cardica, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6179849B1 (en) 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US20030120293A1 (en) * 1999-06-10 2003-06-26 Cardica, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6966920B2 (en) 1999-06-10 2005-11-22 Cardica, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US20100069934A1 (en) * 1999-07-28 2010-03-18 Cardica, Inc. Anastomosis Method Utilizing Tool with Fluid-Driven Actuator
US20050154406A1 (en) * 1999-07-28 2005-07-14 Cardica, Inc. Method for anastomosing vessels
US9622748B2 (en) 1999-07-28 2017-04-18 Dextera Surgical Inc. Anastomosis system with flexible shaft
US20070119902A1 (en) * 1999-07-28 2007-05-31 Cardica, Inc. Anastomosis Stapler
US8475474B2 (en) 1999-07-28 2013-07-02 Cardica, Inc. Anastomosis method utilizing tool with fluid-driven actuator
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US6478804B2 (en) 1999-07-28 2002-11-12 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US7699859B2 (en) 1999-07-28 2010-04-20 Cardica, Inc. Method of performing anastomosis
US7850703B2 (en) 1999-07-28 2010-12-14 Cardica, Inc. System for performing anastomosis
US20040260342A1 (en) * 1999-07-28 2004-12-23 Cardica, Inc. Apparatus for performing anastomosis
US7766924B1 (en) 1999-07-28 2010-08-03 Cardica, Inc. System for performing anastomosis
US6398797B2 (en) 1999-07-28 2002-06-04 Cardica, Inc. Tissue bonding system and method for controlling a tissue site during anastomosis
US20100155453A1 (en) * 1999-07-28 2010-06-24 Cardica, Inc. Surgical Staples Frangibly Connected to Staple Holding Strip
US20050075657A1 (en) * 1999-07-28 2005-04-07 Cardica, Inc. Method of performing anastomosis
US20020173809A1 (en) * 1999-09-01 2002-11-21 Fleischman Sidney D. Sutureless anastomosis system deployment concepts
US20030167064A1 (en) * 1999-09-01 2003-09-04 Whayne James G. Advanced anastomosis systems (II)
US6494889B1 (en) 1999-09-01 2002-12-17 Converge Medical, Inc. Additional sutureless anastomosis embodiments
US6719769B2 (en) 1999-11-15 2004-04-13 Cardica, Inc. Integrated anastomosis tool with graft vessel attachment device and cutting device
US20040068278A1 (en) * 1999-12-06 2004-04-08 Converge Medical Inc. Anastomosis systems
US6248119B1 (en) * 2000-02-28 2001-06-19 Jan Otto Solem Device and method for endoscopic vascular surgery
US7431727B2 (en) 2000-04-29 2008-10-07 Medtronic, Inc. Magnetic components for use in forming anastomoses, creating ports in vessels and closing openings in tissue
US7938841B2 (en) 2000-04-29 2011-05-10 Medtronic, Inc. Components, systems and methods for forming anastomoses using magnetism or other coupling means
US20070010834A1 (en) * 2000-04-29 2007-01-11 Sharkawy A A Components, systems and methods for forming anastomoses using magnetism or other coupling means
US20050021059A1 (en) * 2000-04-29 2005-01-27 Cole David H. Magnetic components for use in forming anastomoses, creating ports in vessels and closing openings in tissue
US8518062B2 (en) 2000-04-29 2013-08-27 Medtronic, Inc. Devices and methods for forming magnetic anastomoses between vessels
US20050080439A1 (en) * 2000-04-29 2005-04-14 Carson Dean F. Devices and methods for forming magnetic anastomoses and ports in vessels
US20110184505A1 (en) * 2000-04-29 2011-07-28 Medtronic, Inc. Components, Systems and Methods for Forming Anastomoses Using Magnetism or Other Coupling Means
US20040181245A1 (en) * 2000-10-12 2004-09-16 Cardica, Inc. Superelastic anastomosis device
US7303569B2 (en) 2000-10-12 2007-12-04 Cardica, Inc. Implantable superelastic anastomosis device
US20030212418A1 (en) * 2000-10-12 2003-11-13 Cardica, Inc. Implantable superelastic anastomosis device
US6776785B1 (en) 2000-10-12 2004-08-17 Cardica, Inc. Implantable superelastic anastomosis device
US6746459B2 (en) 2000-10-19 2004-06-08 Terumo Kabushiki Kaisha End-to-side blood vessel anastomosis method and instruments therefor
US20050234483A1 (en) * 2000-11-06 2005-10-20 Cardica, Inc. Unitary anastomosis device
US6786862B2 (en) 2000-11-13 2004-09-07 Cardica, Inc. Graft vessel preparation device and methods for using the same
US6471713B1 (en) 2000-11-13 2002-10-29 Cardica, Inc. System for deploying an anastomosis device and method of performing anastomosis
US6554764B1 (en) 2000-11-13 2003-04-29 Cardica, Inc. Graft vessel preparation device and methods for using the same
US20050192603A1 (en) * 2000-12-13 2005-09-01 Medtronic Avecor Cardiovascular, Inc. A Minnesota Corporation Extravascular anastomotic components and methods for forming magnetic anastomoses
US20040215214A1 (en) * 2000-12-13 2004-10-28 Samuel Crews Methods, devices and systems for forming magnetic anastomoses
US7909837B2 (en) 2000-12-13 2011-03-22 Medtronic, Inc. Methods, devices and systems for forming magnetic anastomoses
US20050027308A1 (en) * 2001-02-27 2005-02-03 Davis John W. Methods for performing anastomosis
US6537290B2 (en) 2001-03-05 2003-03-25 Edwards Lifesciences Corporation Sealing access cannula system
US20030023253A1 (en) * 2001-04-27 2003-01-30 Cardica, Inc. Anastomosis system
US20030028205A1 (en) * 2001-04-27 2003-02-06 Cardica, Inc. Anastomosis method
US6858035B2 (en) 2001-07-05 2005-02-22 Converge Medical, Inc. Distal anastomosis system
US20060064119A9 (en) * 2001-07-05 2006-03-23 Converge Medical, Inc. Vascular anastomosis systems
US20030093095A1 (en) * 2001-07-05 2003-05-15 Whayne James G. Distal anastomosis system
US6626920B2 (en) 2001-07-05 2003-09-30 Converge Medical, Inc. Distal anastomosis system
US20030023252A1 (en) * 2001-07-05 2003-01-30 Whayne James G. Distal anastomosis system
US6972023B2 (en) 2001-07-05 2005-12-06 Converge Medical, Inc. Distal anastomosis system
US20050251163A1 (en) * 2001-07-05 2005-11-10 Converge Medical, Inc. Vascular anastomosis systems
US20030109893A1 (en) * 2001-12-06 2003-06-12 Cardica,Inc. Implantable medical device such as an anastomosis device
US20050038457A1 (en) * 2002-01-22 2005-02-17 Cardica, Inc. Tool for deploying an anastomosis device
US8012164B1 (en) 2002-01-22 2011-09-06 Cardica, Inc. Method and apparatus for creating an opening in the wall of a tubular vessel
US20050038456A1 (en) * 2002-01-22 2005-02-17 Cardica, Inc. Anastomosis device having a deployable section
US20050004591A1 (en) * 2002-01-22 2005-01-06 Bender Theodore M. Tool for creating an opening in tissue
US20050033330A1 (en) * 2002-01-23 2005-02-10 Cardica, Inc. Method of performing anastomosis
US20030229365A1 (en) * 2002-06-10 2003-12-11 Whayne James G. Angled vascular anastomosis system
US20040236178A1 (en) * 2003-02-14 2004-11-25 Cardica, Inc. Method for preparing a graft vessel for anastomosis
US7794471B1 (en) 2003-06-26 2010-09-14 Cardica, Inc. Compliant anastomosis system
US20050262673A1 (en) * 2003-10-09 2005-12-01 Strahm Textile Systems Ag Device for removing needles from a fabric web
US8915934B2 (en) 2003-11-24 2014-12-23 Cardica, Inc. Anastomosis system with anvil entry hole sealer
US20080027472A1 (en) * 2003-11-24 2008-01-31 Cardica, Inc. Anastomosis System with Anvil Entry Hole Sealer
US20050149071A1 (en) * 2003-12-24 2005-07-07 Ryan Abbott Anastomosis device, tools and method of using
US20080269784A1 (en) * 2003-12-24 2008-10-30 Ryan Abbott Anastomosis device, tools and methods of using
US8454634B2 (en) 2004-01-22 2013-06-04 Medtronic, Inc. Vessel sealing devices
US20100174281A1 (en) * 2004-01-22 2010-07-08 Jahns Scott E Vessel sealing devices
US20050165427A1 (en) * 2004-01-22 2005-07-28 Jahns Scott E. Vessel sealing devices
US20070073343A1 (en) * 2004-01-22 2007-03-29 Jahns Scott E Vessel sealing devices
US20050283173A1 (en) * 2004-06-17 2005-12-22 Abbott Ryan C Angled anastomosis device, tools and method of using
US8162963B2 (en) 2004-06-17 2012-04-24 Maquet Cardiovascular Llc Angled anastomosis device, tools and method of using
US8574246B1 (en) 2004-06-25 2013-11-05 Cardica, Inc. Compliant anastomosis system utilizing suture
EP1967152A1 (en) * 2007-03-05 2008-09-10 Frank Michael Münker Device for creating openings in pressurized vessels with deformable walls
US20080249516A1 (en) * 2007-03-05 2008-10-09 Amj Bv Device for creating openings in pressurized vessels with deformable walls
US8273078B2 (en) 2007-03-05 2012-09-25 Amj Bv Device for creating openings in pressurized vessels with deformable walls
US8361092B1 (en) 2007-06-18 2013-01-29 Wilson T. Asfora Vascular anastomosis device and method
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
US8439245B2 (en) 2007-09-06 2013-05-14 Cardica, Inc. True multi-fire endocutter
US8272551B2 (en) 2007-09-06 2012-09-25 Cardica, Inc. Method of utilizing a driverless surgical stapler
US9345478B2 (en) 2007-09-06 2016-05-24 Cardica, Inc. Method for surgical stapling
US7963432B2 (en) 2007-09-06 2011-06-21 Cardica, Inc. Driverless surgical stapler
US20100230464A1 (en) * 2007-09-06 2010-09-16 Cardica, Inc. Driverless Surgical Stapler
US8679155B2 (en) 2007-09-06 2014-03-25 Cardica, Inc. Surgical method utilizing a true multiple-fire surgical stapler
US20110210157A1 (en) * 2007-09-06 2011-09-01 Cardica, Inc. Surgical Method for Stapling Tissue
US8789738B2 (en) 2007-09-06 2014-07-29 Cardica, Inc. Surgical method for stapling tissue
US9655618B2 (en) 2007-09-06 2017-05-23 Dextera Surgical Inc. Surgical method utilizing a true multiple-fire surgical stapler
US9144427B2 (en) 2007-09-06 2015-09-29 Cardica, Inc. Surgical method utilizing a true multiple-fire surgical stapler
US8734436B2 (en) * 2008-02-21 2014-05-27 Amj Bv Laser catheter for bypass surgery and assembly comprising said catheter
WO2009104949A1 (en) * 2008-02-21 2009-08-27 Amj B.V. Laser catheter for bypass surgery and assembly comprising said catheter
US20100331793A1 (en) * 2008-02-21 2010-12-30 Amj B.V. Laser catheter for bypass surgery and assembly comprising said catheter
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler

Also Published As

Publication number Publication date Type
DK0740531T3 (en) 2000-01-31 grant
KR100189277B1 (en) 1999-06-01 grant
DK145593A (en) 1995-06-24 application
WO1995017128A1 (en) 1995-06-29 application
WO1995017127A1 (en) 1995-06-29 application
JP2997315B2 (en) 2000-01-11 grant
ES2137366T3 (en) 1999-12-16 grant
EP0774923A1 (en) 1997-05-28 application
EP0774923B1 (en) 1999-07-07 grant
US5868770A (en) 1999-02-09 grant
DE69419437D1 (en) 1999-08-12 grant
JPH09503421A (en) 1997-04-08 application
EP0740531B1 (en) 1999-07-28 grant
DK0774923T3 (en) 2000-01-24 grant
CA2179508C (en) 2000-06-27 grant
CA2179507C (en) 1999-08-03 grant
JP2997316B2 (en) 2000-01-11 grant
EP0740531A1 (en) 1996-11-06 application
ES2138081T3 (en) 2000-01-01 grant
KR100189276B1 (en) 1999-06-01 grant
DE69419780D1 (en) 1999-09-02 grant
CA2179508A1 (en) 1995-06-29 application
US5797934A (en) 1998-08-25 grant
DE69419780T2 (en) 2000-01-13 grant
DE69419437T2 (en) 1999-10-28 grant
JPH09503420A (en) 1997-04-08 application
DK145593D0 (en) 1993-12-23 grant
CA2179507A1 (en) 1995-06-29 application

Similar Documents

Publication Publication Date Title
US7077801B2 (en) Methods and devices for improving cardiac output
US6350248B1 (en) Expandable myocardial implant
US4867156A (en) Percutaneous axial atheroectomy catheter assembly and method of using the same
US6159225A (en) Device for interstitial transvascular intervention and revascularization
US5306240A (en) Tunneler and method for implanting subcutaneous vascular access grafts
US5702417A (en) Balloon loaded dissecting instruments
US5284146A (en) Removable implanted device
US6254615B1 (en) Surgical clips and methods for tissue approximation
US6890330B2 (en) Intracardiovascular access (ICVATM) system
US4890612A (en) Device for sealing percutaneous puncture in a vessel
US6699256B1 (en) Medical grafting apparatus and methods
US7497865B2 (en) Method and apparatus for performing anastomosis with eversion of tissue edges and joining of exposed intima of the everted tissue
US6464707B1 (en) Vacuum-assisted remote suture placement system
USRE34866E (en) Device for sealing percutaneous puncture in a vessel
US6245083B1 (en) Sutureless anastomotic technique using a bioadhesive and device therefor
Heinemann et al. Use of the “elephant trunk technique” in aortic surgery
US6402764B1 (en) Everter and threadthrough system for attaching graft vessel to anastomosis device
US5725523A (en) Lateral-and posterior-aspect method and apparatus for laser-assisted transmyocardial revascularization and other surgical applications
US6338710B1 (en) Device for stabilizing a treatment site and method of use
US6283983B1 (en) Percutaneous in-situ coronary bypass method and apparatus
US6228063B1 (en) Anatomical cavity access sealing conduit
US5797946A (en) Method for arterial harvest and anastomosis for coronary bypass grafting
US6042563A (en) Methods and apparatus for occluding a blood vessel
US8382697B2 (en) Devices, systems, and methods for peripheral arteriovenous fistula creation
US20080188873A1 (en) Thorascopic Heart Valve Repair Method and Apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BERNAFON AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RYGAARD, JORGEN A.;REEL/FRAME:008216/0292

Effective date: 19960820

Owner name: OTICON A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RYGAARD, JORGEN A.;REEL/FRAME:008216/0292

Effective date: 19960820

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20060310