US5609541A - Synchronous belt using rubberized facing fabric - Google Patents

Synchronous belt using rubberized facing fabric Download PDF

Info

Publication number
US5609541A
US5609541A US08/406,185 US40618595A US5609541A US 5609541 A US5609541 A US 5609541A US 40618595 A US40618595 A US 40618595A US 5609541 A US5609541 A US 5609541A
Authority
US
United States
Prior art keywords
rubber
facing fabric
belt
tooth
synchronous belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/406,185
Inventor
Hiroyuki Tachibana
Mitumori Kasada
Kimichika Ohno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Assigned to BANDO CHEMICAL INDUSTRIES, LTD. reassignment BANDO CHEMICAL INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KASADA, MITUMORI, OHNO, KIMICHIKA, TACHIBANA, HIROYUKI
Application granted granted Critical
Publication of US5609541A publication Critical patent/US5609541A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0061Organic fillers or organic fibrous fillers, e.g. ground leather waste, wood bark, cork powder, vegetable flour; Other organic compounding ingredients; Post-treatment with organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/10Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with styrene-butadiene copolymerisation products or other synthetic rubbers or elastomers except polyurethanes

Definitions

  • H-NBR hydrogenated acrylonitrile-butadiene rubber
  • first and second solutions of this invention are conducted in relation to a facing fabric, and third to seventh solutions are conducted in relation to a synchronous belt using the facing fabric.
  • the third solution of this invention has a feature that the facing fabric is treated with a rubber composition in which hydrogenated acrylonitrile-butadiene rubber (H-NBR) is mixed with N,N'-m-phenylenedimaleimide.
  • H-NBR hydrogenated acrylonitrile-butadiene rubber
  • the fourth solution of this invention premises the third solution and has a feature that a ratio of mixture of N,N'-m-phenylenedimaleimide is set to 0.5 to 10 parts by weight with respect to hydrogenated acrylonitrile-butadiene rubber (H-NBR) of 100 parts by weight.
  • H-NBR hydrogenated acrylonitrile-butadiene rubber
  • the sixth solution of this invention premises the fifth solution and has a feature that the cords are subjected to adhesive treatment with a treatment liquid containing chlorosulfonated polyethylene rubber.
  • the seventh solution of this invention premises the fifth solution and has a feature that the cords are subjected to adhesive treatment with a treatment liquid containing hydrogenated acrylonitrile-butadiene rubber (H-NBR).
  • H-NBR hydrogenated acrylonitrile-butadiene rubber
  • FIG. 1 is a cross-sectional diagram of a synchronous belt.
  • FIG. 3 is an explanatory diagram of an abrasion test.
  • FIG. 1 shows a synchronous belt A according to an embodiment of this invention.
  • the synchronous belt A has a belt body 1.
  • the belt body 1 is composed of a backing rubber layer 3 in which a plurality of cords 2, 2, . . . as tension members are embedded in a longitudinal direction of belt, and a large number of tooth rubber layers 4, 4, . . . provided integrally on one face of the backing rubber layer 3 at regular intervals in the longitudinal direction of belt. Further, tooth faces of the tooth rubber layers 4 of the belt body 1 are covered with a facing fabric 5.
  • the above treatment for the facing fabric 5 can be conducted by various kinds of method commonly used, for example, a method of applying on the facing fabric 5, with an applying device such as roller coater, rubber cement formed in such a manner that the rubber composition is dissolved by suitable organic solvent or a method of dipping the facing fabric 5 in the rubber cement. Further, if necessary, the facing fabric 5 may be preliminarily treated with a treatment liquid including a composition of RFL (resorein-formaldehyde condensation product and latex) or other treatment liquids.
  • RFL resorein-formaldehyde condensation product and latex
  • a driving motor (not shown) was rotated at a rotation speed of 800 rpm so that rotational torque thus generated was converted to a horizontally linear movement, thereby horizontally sliding the slide table 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

A facing fabric covering tooth faces of tooth rubber layers of a belt body is treated with a rubber composition in which hydrogenated acrylonitrile-butadiene rubber is mixed with N,N'-m-phenylenedimaleimide.

Description

BACKGROUND OF THE INVENTION
This invention relates to improvements of a facing fabric for belt and a synchronous belt using the same, and specifically relates to improvements of adhesive property of the facing fabric and improvements of durability of tooth rubber layers.
A synchronous belt as a power transmission belt generally has a belt body composed of: a backing rubber layer in which a plurality of cords are embedded in a longitudinal direction of belt, and a large number of tooth rubber layers integrally provided on the backing rubber layer at regular intervals in the longitudinal direction of belt. The tooth rubber layers of the belt body are covered with a facing fabric.
In recent years, such a synchronous belt has been employed in various kinds of fields and is often used under severe conditions such as high-speed rotation, high load and high temperature. The use of the synchronous belt under such severe conditions progresses deterioration of materials forming the belt. This frequently causes, at an early stage, the tooth rubber layers to shatter or the cords to break, thereby shortening a belt life. It is therefore desired to enhance the durability of the synchronous belt.
To meet the above requirement, there have been now increasingly performed improvements of the belt body such as the use of rubber having good heat resistance for rubber forming the belt body. Out of such improvements, special attention is focused on a synchronous belt applying hydrogenated acrylonitrile-butadiene rubber (hereinafter, also referred to as "H-NBR") for rubber portion forming the belt body since H-NBR has excellent heat resistance.
Meanwhile, since the facing fabric has also a significant effect on the belt life, researches on the facing fabric have been done parallel with the researches on the belt body. For example, it is proposed to subject the facing fabric to adhesive treatment with a rubber composition in which H-NBR is mixed with silica, metylene donor, and resorcin or denatured product thereof (See Japanese Utility-Model Application Laid-Open No. 63-64948). Further, there is also proposed a facing fabric subjected to adhesive treatment with a rubber composition in which H-NBR or the like is mixed with nickel compound (See Japanese Patent Application Laid-Open No. 2-99667).
However, while each of the facing fabrics subjected to adhesive treatment with the above rubber compositions has excellent heat resistance resulting from characteristics of H-NBR and nickel compound and has a large strength maintaining ratio even after heat-aged, its adhesive property and abrasion resistance are insufficient. In particular, since a synchronous belt receives intensive stresses at tooth roots thereof, it may be broken at an early stage due to cracks generated at the tooth roots if its adhesive property and abrasion resistance are not sufficiently secured.
This invention has been made in view of the foregoing problem and has its object of enhancing not only heat resistance and the strength maintaining ratio of the facing fabric but also its abrasion resistance and its adhesive properties to rubber forming the belt body and to rubber for treating tension members such as cords, by subjecting the facing fabric to treatment with a rubber composition in which H-NBR is mixed with a specific additive. In particular, this invention has its object of preventing the belt from breaking at an early stage due to cracks generated at its tooth root to increase the belt life.
SUMMARY OF THE INVENTION
To attain the foregoing objects, first and second solutions of this invention are conducted in relation to a facing fabric, and third to seventh solutions are conducted in relation to a synchronous belt using the facing fabric.
Specifically, the first and second solutions are focused on a facing fabric for covering a large number of tooth rubber layers integrally provided on a backing rubber layer at regular intervals in a longitudinal direction of belt. These solutions are as follows.
That is, the first solution of this invention has a feature that the facing fabric is treated with a rubber composition in which hydrogenated acrylonitrile-butadiene rubber (H-NBR) is mixed with N,N'-m-phenylenedimaleimide.
The second solution of this invention premises the first solution and has a feature that a ratio of mixture of N,N'-m-phenylenedimaleimide is set to 0.5 to 10 parts by weight with respect to hydrogenated acrylonitrile-butadiene rubber (H-NBR) of 100 parts by weight.
The third to seventh solutions of this invention are focused on a synchronous belt in which a belt body thereof is composed of: a backing rubber layer in which a plurality of cords are embedded in a longitudinal direction of belt; and a large number of tooth rubber layers integrally provided on the backing rubber layer at regular intervals in the longitudinal direction of belt, and in which tooth faces of the tooth rubber layers of the belt body are covered with a facing fabric. These solutions are as follows.
That is, the third solution of this invention has a feature that the facing fabric is treated with a rubber composition in which hydrogenated acrylonitrile-butadiene rubber (H-NBR) is mixed with N,N'-m-phenylenedimaleimide.
The fourth solution of this invention premises the third solution and has a feature that a ratio of mixture of N,N'-m-phenylenedimaleimide is set to 0.5 to 10 parts by weight with respect to hydrogenated acrylonitrile-butadiene rubber (H-NBR) of 100 parts by weight.
The fifth solution of this invention premises the third or fourth solution and has a feature that at least tooth rubber layers each contain as a main ingredient hydrogenated acrylonitrile-butadiene rubber (H-NBR).
The sixth solution of this invention premises the fifth solution and has a feature that the cords are subjected to adhesive treatment with a treatment liquid containing chlorosulfonated polyethylene rubber.
The seventh solution of this invention premises the fifth solution and has a feature that the cords are subjected to adhesive treatment with a treatment liquid containing hydrogenated acrylonitrile-butadiene rubber (H-NBR).
Under the above structure, in the first and second solutions of this invention. H-NBR contained in the rubber composition as a treatment liquid for facing fabric enhances heat resistance of the facing fabric and a strength maintaining ratio of the facing fabric after heat-aged. Further, combination of H-NBR and N,N'-m-phenylenedimaleimide presents, in addition to the above effects, increase in adhesive property and abrasion resistance of the facing fabric, so that a sufficient strength maintaining ratio can be obtained even after the belt is used over the long term under high temperature conditions.
In the third to seventh solutions of this invention, because of characteristics of the facing fabric treated as above-mentioned, the synchronous belt sufficiently endures stress focused on tooth roots so as not to break at the tooth roots. Further, since crosslinking is accelerated in rubber forming the tooth rubber layer and in rubber contained as an ingredient in the treatment liquid for subjecting the cords to adhesive treatment, the belt life is extensively increased. In particular, in the fifth to seventh solutions of this invention, crosslinking is distinctively performed.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is a cross-sectional diagram of a synchronous belt.
FIG. 2 is a graph which illustrates data showing the relationship between adhesive strength of a facing fabric to rubber and a ratio of mixture of N,N'-m-phenylenedimaleimide with H-NBR in a rubber composition forming a treatment liquid for facing fabric and date showing the relationship between abrasion resistance (abrasion lost) of the facing fabric and the ratio of mixture of N,N'-m-phenylenedimaleimide with H-NBR in the same rubber composition.
FIG. 3 is an explanatory diagram of an abrasion test.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Description is made below about preferred embodiments of this invention with reference to the drawings.
FIG. 1 shows a synchronous belt A according to an embodiment of this invention. The synchronous belt A has a belt body 1. The belt body 1 is composed of a backing rubber layer 3 in which a plurality of cords 2, 2, . . . as tension members are embedded in a longitudinal direction of belt, and a large number of tooth rubber layers 4, 4, . . . provided integrally on one face of the backing rubber layer 3 at regular intervals in the longitudinal direction of belt. Further, tooth faces of the tooth rubber layers 4 of the belt body 1 are covered with a facing fabric 5.
The backing rubber layer 3 and the tooth rubber layers 4 are formed of hydrogenated acrylonitrile-butadiene rubber (H-NBR) in which hydrogen is added to acrylonitrile-butadiene rubber (NBR) having double bonds to saturate the double bonds thereby restraining recombination reactions based on double bonds. In the case of using H-NBR, H-NBR is mixed with each necessary amount of vulcanizing agent, vulcanization accelertor, reinforcer, plasticizer and, as needed, various kinds of other additives.
The cord 2 is used in the form of, as needed, yarn formed of one kind of fibers, blended yarn formed by mixed fiber spinning or twisted yarn formed of blended fibers. The material of the cord 2 is selected according to the purpose out of glass fiber, aromatic polyamide fiber, polyester fiber, whisker fiber, metallic fiber and the like.
Further, the cords 2 are subjected to adhesive treatment in order to be adhered to rubber forming the belt body 1. A treatment liquid used for the adhesive treatment is rubber cement so formed that rubber such as natural rubber (NR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), chlorosulfonated polyethylene rubber (CSM) and hydrogenated acrylonitrile-butadiene rubber (H-NBR) is dissolved in organic solvent such as methylethylketone (MEK) and toluene. One of treatment liquids respectively containing the above various kinds of rubber ingredients is selectively used according to the purpose. In particular, chlorosulfonated polyethylene rubber (CSM) and hydrogenated acrylonitrile-butadiene rubber (H-NBR) are preferable because they are distinctively crosslinked owing to N,N'-m-phenylenedimaleimide forming the below-mentioned treatment liquid for the facing fabric 5.
The facing fabric 5 is formed of material such as aliphatic polyamide fiber, aromatic polyamide fiber and polyester fiber. Its weave design is selected according to the purpose.
The facing fabric 5 is treated with a rubber composition in which H-NBR is mixed with N,N'-m-phenylenedimaleimide. A ratio of mixture of N,N'-m-phenylenedimaleimide is set to 0.5 to 100 parts by weight with respect to H-NBR of 100 parts by weight. The reason for such a setting is that while N,N'-m-phenylenedimaleimide of less than 0.5 parts by weight has little adhesive effect, N,N'-m-phenylenedimaleimide of more than 10 parts by weight causes decrease in heat resistance and decrease in belt life due to generated cracks. When the rubber composition is used for treating the facing fabric 5, it is mixed with each necessary amount of vulcanizing agent, vulcanization accelerator, reinforcer, plasticizer and, as needed, various kinds of other additives.
The above treatment for the facing fabric 5 can be conducted by various kinds of method commonly used, for example, a method of applying on the facing fabric 5, with an applying device such as roller coater, rubber cement formed in such a manner that the rubber composition is dissolved by suitable organic solvent or a method of dipping the facing fabric 5 in the rubber cement. Further, if necessary, the facing fabric 5 may be preliminarily treated with a treatment liquid including a composition of RFL (resorein-formaldehyde condensation product and latex) or other treatment liquids.
Shown in Table 1 and FIG. 2 are test results of synchronous belts according to embodiments of this invention and test results of synchronous belts according to comparative examples. The conditions when the test results are obtained will be described next.
Rubber composition for belt body
Both the embodiments of this invention and the comparative examples used rubber compositions in which N,N'-m-phenylenedimaleimide was excepted from respective rubber compositions shown in upper sections of Table 1.
Material of facing fabric
Both the embodiments of this invention and the comparative examples used 6,6-nylon fiber.
Material of cord
Both the embodiments of this invention and the comparative examples used glass fiber cords.
Treatment of facing fabric
Both the embodiments of this invention and the comparative examples were subjected to preliminary treatment with an RFL liquid and adhesive treatment with respective treatment liquids composed of rubber compositions shown in Table 1. The application amount of rubber became 260 g/m2.
Treatment of cords
Both the embodiments of this invention and the comparative examples were each subjected to adhesion treatment with a RFL liquid commonly used and thereafter were each subjected to adhesive treatment with a treatment liquid of rubber cement composed of a rubber composition containing chlorosulfonated polyethylene rubber (CSM).
Measurement details of adhesive strength between rubber and treated facing fabric
Prepared were test pieces in each of which a facing fabric was integrally interposed in each of rubber members composed of rubber compositions shown in upper sections of Table 1. Then, the interface between the rubber composition and the facing fabric in each test piece was peeled at a peeling speed of 50 mm/min.
Details of abrasion test
As shown in FIG. 3, prepared were test pieces 11 as treated facing fabric complexes in each of which a facing fabric 5 was adhesively bonded to each of rubber members 1' composed of rubber compositions shown in upper sections of Table 1. Then, each of the test pieces 11 was set on a slide table 12 of an abrasion test machine at the state that the facing fabric 5 was faced upward, and an abrasion jig 13 was set on the facing fabric 5 of the test piece 11. On conditions that a load of 20 kg was applied from above to the test piece 11 with the abrasion jig 13 at a temperature of 25° C., a driving motor (not shown) was rotated at a rotation speed of 800 rpm so that rotational torque thus generated was converted to a horizontally linear movement, thereby horizontally sliding the slide table 12.
Calculation of strength maintaining ratio of facing fabric after heat-aged
Each of the facing fabrics treated in the above-mentioned manner was punched in dimensions of 3×20 cm to form a test piece. The test piece was entered into a thermostat of which an inner temperature was held to 120° C. Then, the test piece was retrieved therefrom after 72 hours and subsequently was aged for 24 hours at a room temperature. Thereafter, the test piece was subjected to a tensile test at a tension speed of 300 m/min so that a strength maintaining ratio (%) was obtained according to the following formula.
Strength maintaining ratio (%)=(Strength after aged/Strength before aged)×100
Conditions of measurement of belt life due to cracks
A synchronous belt was wound between a driving pulley having 18 teeth and a driven pulley having 18 teeth. Under conditions that a load of 4PS was applied to the driven pulley and a tension of 20 kg was applied to the synchronous belt, the driving pulley was rotated at 1000 rpm at a temperature of 100° C.
As is evident from the test results, it will be appreciated that the embodiments 1 to 3 of this invention are more excellent in almost all evaluation items than the comparative examples 1 to 4.
In the comparative example 1 in which the rubber composition did not include N,N'-m-phenylenedimaleimide, the adhesive strength between the rubber and the facing fabric was low. In the comparative example 2 in which a ratio of mixture of N,N'-m-phenylenedimaleimide is 15 parts by weight, though the adhesive strength between the rubber and the facing fabric was better, the strength maintaining ratio of facing fabric after heat-aged was lower and the belt life due to cracks was shorter. In the comparative example 3, since H-NBR was not used in the rubber composition forming a treatment liquid for facing fabric, evaluations were worse in all the evaluation items. In the comparative example 4, though the strength between the rubber and the facing fabric was slightly higher than the comparative example 3, it was lower than the embodiments 1 to 3 of this invention and evaluations were as bad in other evaluation items as the comparative example 3.
It will be appreciated from the above test results that the deference in evaluation between the embodiments of this invention and the comparative examples depends on whether or not the treatment liquid for facing fabric contains H-NBR and N,N'-m-phenylenedimaleimide at a suitable ratio of mixture.
              TABLE 1                                                     
______________________________________                                    
                   Embodiment of                                          
                   This Invention                                         
                     1       2       3                                    
______________________________________                                    
Rubber Composition for Facing Fabric                                      
(parts by weight)                                                         
H-NBR *1             100     ←  ←                               
Carbon black *2      50      ←  ←                               
Plasticizer          5       ←  ←                               
ZnO                  5       ←  ←                               
Stearic acid         1       ←  ←                               
Antioxidant          3       ←  ←                               
Sulfur               0.8     ←  ←                               
Vulcanization accelerator TT                                              
                     2       ←  ←                               
Vulcanization accelerator CZ                                              
                     1       ←  ←                               
N,N'-m-phenylenedimaleimide                                               
                     0.5     5       10                                   
Total                168.3   172.8   177.8                                
Evaluation items                                                          
Adhesive Strength between Rubber                                          
                     140     200     210                                  
and Treated Facing Fabric (N/inch)                                        
Abrasion Resistance of Treated                                            
                     2.9     2.7     2.5                                  
Facing Fabric Complex *4                                                  
(Abrasion loss) (×10.sup.-2 cc)                                     
Strength Maintaining Ratio of                                             
                     75      73      70                                   
Facing Fabric after Aged *5 (%)                                           
Belt Life due to Cracks *6 (index)                                        
                     160     185     180                                  
______________________________________                                    
                     Comparative                                          
                     Example                                              
                       1       2                                          
______________________________________                                    
Rubber Composition for Facing Fabric                                      
(parts by weight)                                                         
H-NBR *1               100     ←                                     
Carbon black *2        50      ←                                     
Plasticizer            5       ←                                     
ZnO                    5       ←                                     
Stearic acid           1       ←                                     
Antioxidant            3       ←                                     
Sulfur                 0.8     ←                                     
Vulcanization accelerator TT                                              
                       2       ←                                     
Vulcanization accelerator CZ                                              
                       1       ←                                     
N,N'-m-phenylenedimaleimide                                               
                       0       15                                         
Total                  167.8   182.8                                      
Evaluation Items                                                          
Adhesive Strength between Rubber                                          
                       110     205                                        
and Treated Facing Fabric (N/inch)                                        
Abrasion Resistance of Treated                                            
                       3.6     2.7                                        
Facing Fabric Complex *4                                                  
(Abrasion loss) (×10.sup.-2 cc)                                     
Strength Maintaining Ratio of                                             
                       72      55                                         
Facing Fabric after Aged *5 (%)                                           
Belt Life due to Cracks *6 (index)                                        
                       100     85                                         
______________________________________                                    
                     Comparative                                          
                     Example                                              
                       3       4                                          
______________________________________                                    
Rubber Composition for Facing Fabric                                      
(parts by weight)                                                         
CR *3                  100     ←                                     
Carbon black *2        50      ←                                     
Plasticizer            5       ←                                     
ZnO                    5       ←                                     
Stearic acid           1       ←                                     
Antioxidant            3       ←                                     
MgO                    4       ←                                     
Vulcanization accelerator TT                                              
                       2       ←                                     
N,N'-m-phenylenedimaleimide                                               
                       0       3                                          
Total                  170     173                                        
Evaluation items                                                          
Adhesive Strength between Rubber                                          
                       80      110                                        
and Treated Facing Fabric (N/inch)                                        
Abracion Resistance of Treated                                            
                       4.2     3.7                                        
Facing Fabric Complex *4                                                  
(Abrasion loss) (×10.sup.-2 cc)                                     
Strength Maintaining Ratio of                                             
                       35      37                                         
Facing Fabric after Aged *5 (%)                                           
Belt Life due to Cracks *6 (index)                                        
                       38      40                                         
______________________________________                                    
 *1 ZETPOL 2020 produced by Nippon Zeon Co., Ltd.                         
 *2 FEF (Fast extrusion furnace)                                          
 *3 NEOPRENE GRT produced by Showa Electric DuPont Co., Ltd.              
 *4 Temp.: 25° C., Load: 20 kg, Rotational Speed: 800 rpm          
 *5 120° C. × 72 hr.                                         
 *6 Temp.: 100° C., Number of Pulley Teeth: 18, Tensile Strength: 2
 kg, Load: 4PS, Rotational Speed: 1000 rpm                                

Claims (4)

We claim:
1. A synchronous belt comprising:
a belt body having a backing rubber layer in which a plurality of cords are embedded in a longitudinal direction of belt and a large number of tooth rubber layers are integrally provided on the backing rubber layer at regular intervals in the longitudinal direction of belt; and
a facing fabric covering tooth faces of the tooth rubber layers of the belt body, said facing fabric being treated with a rubber composition in which hydrogenated acrylonitrile-butadiene rubber is mixed with N, N'-m-phenylenedimaleimide,
wherein at least said tooth rubber layers each contain as a main ingredient acrylonitrile-butadiene rubber to enhance adhesiveness between said facing fabric and said tooth rubber layers.
2. A synchronous belt according to claim 1,
wherein a ratio of mixture of N, N'-m-phenylenedimaleimide is set to 0.5 to 10 parts by weight with respect to hydrogenated acrylonitrile-butadiene rubber of 100 parts by weight.
3. A synchronous belt according to claim 2, wherein the cords are subjected to adhesive treatment with a treatment liquid containing chlorosulfonated polyethylene rubber.
4. A synchronous belt according to claim 2, wherein the cords are subjected to adhesive treatment with a treatment liquid containing hydrogenated acrylonitrile-butadiene rubber.
US08/406,185 1994-03-17 1995-03-16 Synchronous belt using rubberized facing fabric Expired - Lifetime US5609541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6-046668 1994-03-17
JP6046668A JP2724109B2 (en) 1994-03-17 1994-03-17 Toothed belt

Publications (1)

Publication Number Publication Date
US5609541A true US5609541A (en) 1997-03-11

Family

ID=12753743

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/406,185 Expired - Lifetime US5609541A (en) 1994-03-17 1995-03-16 Synchronous belt using rubberized facing fabric

Country Status (5)

Country Link
US (1) US5609541A (en)
EP (1) EP0672716B1 (en)
JP (1) JP2724109B2 (en)
KR (1) KR0143824B1 (en)
DE (1) DE69511135T2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860883A (en) * 1996-04-26 1999-01-19 Mitsuboshi Belting Ltd. Power transmission belt
WO2000019123A1 (en) 1998-09-29 2000-04-06 The Goodyear Tire & Rubber Company Synchronous drive belt with scaffold stretch fabric
US20030130077A1 (en) * 2001-01-12 2003-07-10 Knutson Paul S. Power transmission belt and method
US6656073B1 (en) * 1999-11-26 2003-12-02 Dayco Europe S.R.L. Toothed belt comprising a tooth covering cloth treated with an adhesive composition
US6685785B1 (en) 1998-09-29 2004-02-03 The Goodyear Tire & Rubber Company Synchronous drive belt with scaffold stretch fabric
US20040132571A1 (en) * 2001-01-12 2004-07-08 Knutson Paul S. Low growth power transmission belt
US20040214675A1 (en) * 2003-04-23 2004-10-28 Beck Harold D. Elastomer composition for power transmission belt tooth facing
US20060063884A1 (en) * 2002-12-02 2006-03-23 Nippon Sheet Glass Company, Limited Cord for rubber reinforcement, process for producing the same, and rubber product made with the same
US20080032130A1 (en) * 2004-06-28 2008-02-07 Nippon Sheet Glass Company. Limited Cord For Reinforcing Rubber, Method Of Manufacturing The Cord, And Rubber Product Using The Cord
US20080166576A1 (en) * 2004-11-19 2008-07-10 Nippon Sheet Glass Company, Limited Reinforcing Sheet for Reinforcing Toothed Belt,and Toothed Belt and Method for Production Thereof
US20090259517A1 (en) * 2008-04-15 2009-10-15 Adbrite, Inc. Commission-based and arbitrage-based targeting
US20100221520A1 (en) * 2007-05-25 2010-09-02 Nippon Sheet Glass Company, Limited Rubber-reinforcing member and rubber product utilizing the same
US20120252619A1 (en) * 2009-10-13 2012-10-04 Honda Motor Co., Ltd. Toothed belt
US20140290387A1 (en) * 2012-06-01 2014-10-02 Bando Chemical Industries, Ltd. Method for measuring stable-state tension of power transmission belt
CN105508506A (en) * 2015-08-26 2016-04-20 宁波丰茂远东橡胶有限公司 Wear-resisting synchronous belt for automobile engines

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132870A (en) * 1998-03-27 2000-10-17 Lord Corporation Reinforced composite and adhesive
JP4927645B2 (en) * 2007-06-01 2012-05-09 三ツ星ベルト株式会社 Tooth cloth adhesion processing method and toothed belt
KR100937345B1 (en) * 2007-10-29 2010-01-20 주식회사 대연 Rotational display board gear manufacture method of rotational display stand
JP4792053B2 (en) * 2008-03-19 2011-10-12 日本板硝子株式会社 Aqueous treatment agent applied to reinforcing fibers
CN103757933B (en) * 2014-01-21 2015-07-15 宁波裕江特种胶带有限公司 Hydrogenated butadiene-acrylonitrile rubber adhesive tape for automotive synchronous belt and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284278A (en) * 1961-10-06 1966-11-08 Montedison Spa Process for the adhesive bodying of olefin copolymers to synthetic and natural fibers and shaped articles obtained therefrom
JPH0299667A (en) * 1988-09-29 1990-04-11 Mitsuboshi Belting Ltd Treated fiber for reinforcing rubber and reinforced rubber product reinforced with the same
US5093426A (en) * 1988-10-22 1992-03-03 Japan Synthetic Rubber Co., Ltd. Hydrogenated copolymer rubber, rubber composition comprising said rubber and rubber product obtained from the rubber
EP0547880A1 (en) * 1991-12-17 1993-06-23 Tsubakimoto Chain Co. Toothed belt and method for producing the same
US5378206A (en) * 1990-04-27 1995-01-03 Mitsuboshi Belting Ltd. Toothed belt having twisted core wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3284278A (en) * 1961-10-06 1966-11-08 Montedison Spa Process for the adhesive bodying of olefin copolymers to synthetic and natural fibers and shaped articles obtained therefrom
JPH0299667A (en) * 1988-09-29 1990-04-11 Mitsuboshi Belting Ltd Treated fiber for reinforcing rubber and reinforced rubber product reinforced with the same
US5093426A (en) * 1988-10-22 1992-03-03 Japan Synthetic Rubber Co., Ltd. Hydrogenated copolymer rubber, rubber composition comprising said rubber and rubber product obtained from the rubber
US5378206A (en) * 1990-04-27 1995-01-03 Mitsuboshi Belting Ltd. Toothed belt having twisted core wire
EP0547880A1 (en) * 1991-12-17 1993-06-23 Tsubakimoto Chain Co. Toothed belt and method for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5860883A (en) * 1996-04-26 1999-01-19 Mitsuboshi Belting Ltd. Power transmission belt
WO2000019123A1 (en) 1998-09-29 2000-04-06 The Goodyear Tire & Rubber Company Synchronous drive belt with scaffold stretch fabric
US6685785B1 (en) 1998-09-29 2004-02-03 The Goodyear Tire & Rubber Company Synchronous drive belt with scaffold stretch fabric
US6656073B1 (en) * 1999-11-26 2003-12-02 Dayco Europe S.R.L. Toothed belt comprising a tooth covering cloth treated with an adhesive composition
US6945891B2 (en) * 2001-01-12 2005-09-20 The Gates Corporation Power transmission belt and method
US20030130077A1 (en) * 2001-01-12 2003-07-10 Knutson Paul S. Power transmission belt and method
US20040132571A1 (en) * 2001-01-12 2004-07-08 Knutson Paul S. Low growth power transmission belt
US6872159B2 (en) * 2001-01-12 2005-03-29 The Gates Corporation Low growth power transmission belt
US20060063884A1 (en) * 2002-12-02 2006-03-23 Nippon Sheet Glass Company, Limited Cord for rubber reinforcement, process for producing the same, and rubber product made with the same
US7025699B2 (en) 2003-04-23 2006-04-11 Dayco Products, Llc Elastomer composition for power transmission belt tooth facing
US20040214675A1 (en) * 2003-04-23 2004-10-28 Beck Harold D. Elastomer composition for power transmission belt tooth facing
US9593445B2 (en) * 2004-06-28 2017-03-14 Nippon Sheet Glass Company, Limited Cord for reinforcing rubber, method of manufacturing the cord, and rubber product using the cord
US20080032130A1 (en) * 2004-06-28 2008-02-07 Nippon Sheet Glass Company. Limited Cord For Reinforcing Rubber, Method Of Manufacturing The Cord, And Rubber Product Using The Cord
US20080166576A1 (en) * 2004-11-19 2008-07-10 Nippon Sheet Glass Company, Limited Reinforcing Sheet for Reinforcing Toothed Belt,and Toothed Belt and Method for Production Thereof
US8222328B2 (en) 2004-11-19 2012-07-17 Nippon Sheet Glass Company, Limited Reinforcing sheet for reinforcing toothed belt, and toothed belt and method for production thereof
US20080271638A1 (en) * 2004-11-19 2008-11-06 Nippon Sheet Glass Company, Limited Reinforcing sheet for reinforcing toothed belt, and toothed belt and method for production thereof
US20100221520A1 (en) * 2007-05-25 2010-09-02 Nippon Sheet Glass Company, Limited Rubber-reinforcing member and rubber product utilizing the same
US8962129B2 (en) 2007-05-25 2015-02-24 Nippon Sheet Glass Company, Limited Rubber-reinforcing member and rubber product utilizing the same
US20090259517A1 (en) * 2008-04-15 2009-10-15 Adbrite, Inc. Commission-based and arbitrage-based targeting
US20120252619A1 (en) * 2009-10-13 2012-10-04 Honda Motor Co., Ltd. Toothed belt
US9353827B2 (en) * 2009-10-13 2016-05-31 Gates Unitta Asia Company Toothed belt
US20140290387A1 (en) * 2012-06-01 2014-10-02 Bando Chemical Industries, Ltd. Method for measuring stable-state tension of power transmission belt
US9052248B2 (en) * 2012-06-01 2015-06-09 Bando Chemical Industries, Ltd. Method for measuring stable-state tension of power transmission belt
CN105508506A (en) * 2015-08-26 2016-04-20 宁波丰茂远东橡胶有限公司 Wear-resisting synchronous belt for automobile engines

Also Published As

Publication number Publication date
JPH07259928A (en) 1995-10-13
JP2724109B2 (en) 1998-03-09
EP0672716A2 (en) 1995-09-20
KR0143824B1 (en) 1998-08-01
DE69511135T2 (en) 1999-11-25
EP0672716A3 (en) 1995-10-25
EP0672716B1 (en) 1999-08-04
DE69511135D1 (en) 1999-09-09

Similar Documents

Publication Publication Date Title
US5609541A (en) Synchronous belt using rubberized facing fabric
AU745210B2 (en) Wear resistant belts, and a process for their manufacture
EP2507429B1 (en) Polyurea-urethane cord treatment for power transmission belt and belt
EP1185470B1 (en) High temperature flexible thermoplastic composites for endless belt driving surfaces
US7824284B2 (en) Power transmission belt and cord adhesive system and adhesion method
EP2489899B1 (en) Toothed belt
EP0961050B1 (en) Toothed power transmission belt
US5387160A (en) Heat resistant rubber compositions and belts made therefrom
US20130059690A1 (en) High Performance Toothed Belt
US5310386A (en) Toothed belt having coated cores exhibiting improved resistance
US5663225A (en) Rubber composition and belt for a power transmission
EP0451983B1 (en) Power transmission belt
US6375590B1 (en) Toothed belt
JPH0641528B2 (en) Method for bonding hydrogenated nitrile rubber composition to fiber
JPH026872B2 (en)
EP3971331A1 (en) Twisted cord for core wire of transmission belt, manufacturing method and use of same, and transmission belt
JP2506294B2 (en) V-ribbed belt
JP2001056043A (en) Toothed belt
JP2001343050A (en) Power transmission belt
JP2000199144A (en) Aramid fiber cord for transmission belt and transmission belt using the same
WO2024018358A1 (en) Power transmission belt and corresponding transmission system
WO2023023205A1 (en) Synchronous belt fabric treatment and belt
JP2004353806A (en) Toothed belt
JPH0299667A (en) Treated fiber for reinforcing rubber and reinforced rubber product reinforced with the same
JP2003166598A (en) Transmission belt and rubber composition therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: BANDO CHEMICAL INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TACHIBANA, HIROYUKI;KASADA, MITUMORI;OHNO, KIMICHIKA;REEL/FRAME:007478/0874

Effective date: 19950414

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12