US5569287A - Means for collecting and spotting small amount of blood - Google Patents
Means for collecting and spotting small amount of blood Download PDFInfo
- Publication number
- US5569287A US5569287A US08/353,108 US35310894A US5569287A US 5569287 A US5569287 A US 5569287A US 35310894 A US35310894 A US 35310894A US 5569287 A US5569287 A US 5569287A
- Authority
- US
- United States
- Prior art keywords
- blood
- piston
- cylinder
- needle
- puncturing tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15186—Devices loaded with a single lancet, i.e. a single lancet with or without a casing is loaded into a reusable drive device and then discarded after use; drive devices reloadable for multiple use
- A61B5/15188—Constructional features of reusable driving devices
- A61B5/15192—Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing
- A61B5/15194—Constructional features of reusable driving devices comprising driving means, e.g. a spring, for retracting the lancet unit into the driving device housing fully automatically retracted, i.e. the retraction does not require a deliberate action by the user, e.g. by terminating the contact with the patient's skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/150022—Source of blood for capillary blood or interstitial fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150053—Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
- A61B5/150061—Means for enhancing collection
- A61B5/150099—Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150412—Pointed piercing elements, e.g. needles, lancets for piercing the skin
- A61B5/150435—Specific design of proximal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150664—Pivotable protective sleeves, i.e. sleeves connected to, or integrated in, the piercing or driving device, and which are pivoted for covering or uncovering the piercing element
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15101—Details
- A61B5/15103—Piercing procedure
- A61B5/15107—Piercing being assisted by a triggering mechanism
- A61B5/15111—Semi-automatically triggered, e.g. at the end of the cocking procedure, for instance by biasing the main drive spring or when reaching sufficient contact pressure, the piercing device is automatically triggered without any deliberate action by the user
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
- A61B5/15101—Details
- A61B5/15115—Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids
- A61B5/15117—Driving means for propelling the piercing element to pierce the skin, e.g. comprising mechanisms based on shape memory alloys, magnetism, solenoids, piezoelectric effect, biased elements, resilient elements, vacuum or compressed fluids comprising biased elements, resilient elements or a spring, e.g. a helical spring, leaf spring, or elastic strap
Definitions
- This invention relates to means for collecting and spotting a small amount of blood.
- the blood is generally tested.
- a small but certain amount of blood is required.
- the blood is taken by an expert such as a medical doctor or a nurse through vein.
- several drops of blood are taken by slightly injuring a finger tip or an earlobe.
- multi-layered analytical elements which contain chemical reagents, biochemical reagents, or immunological reagents.
- a small but predetermined amount of the blood should be spotted onto the analytical element for causing a color development in the element.
- the developed color is then measured at a predetermined wavelength to quantitatively determine the analyte in the blood.
- the procedure for collecting the blood is also performed by a patient per se, for checking blood sugar level or cholesterol level by himself.
- the blood sugar level ought to be checked frequently (for instance, several times a day), though each check procedure requires only a small amount of the blood.
- the blood is taken at a finger tip, because a great number of blood vessels are gathered at the finger tip.
- the blood collection at the finger tip sometimes causes acute pain, because a great number of nerves are also gathered at the finger tip.
- the blood collection at the finger tip is also sometimes troublesome, because the finger tip is frequently used for daily works. For these reasons, the blood collection at other portions is sometimes required.
- Japanese Patent Provisional Publications No. 62-38140, No. H-1-185245, and No. H-5-95938 describe means for collecting a small amount of blood from a human body with simple operation. These means, however, are not designed for spotting a predetermined amount of the collected blood sample onto an analytical means.
- the present invention has an object to provide a blood collecting and spotting means which is employable for taking a small amount of blood and spotting a predetermined amount of blood onto an analytical means with little pain and no complicated procedures.
- the invention also has an object to provide a blood collecting and spotting means which is repeatedly employable with replacement of a needle tip.
- the present invention resides in a means for collecting and spotting a small amount of blood which comprises a cylinder, a piston, and a puncturing tip, wherein:
- the piston is inserted airtightly into the upper end of the cylinder;
- the puncturing tip is airtightly and exchangeably fitted onto the lower end of the cylinder;
- the puncturing tip comprises a blood conduit and a needle suspended by a spring within the blood conduit;
- the blood conduit has a volume which is equal to a volume of blood to be spotted to analytical means
- the needle is arranged to be pushed out from the puncturing tip by descent of the piston and then return back by ascent of the piston.
- FIG. 1 illustrates an example of the means for collecting and spotting a small amount of blood according to the invention, by separating the cylinder portion and puncturing tip.
- FIG. 2 illustrates the blood collecting and spotting means of FIG. 1 under the condition that the sliding means is pushed in and fixed and the puncturing tip is fitted to the cylinder.
- FIG. 3 illustrates the blood collecting and spotting means of FIG. 2 under the condition that the piston is pushed down, the sliding means is slide down and then the needle is pushed down to be inserted into a part of human body through skin.
- FIG. 4 illustrates the blood collecting and spotting means of FIG. 3 under the condition that the piston is returned to the original position, the sliding means is slide up, the needle is pushed up by the action of the spring, and then blood is taken out to fill up the blood conduit. An excess of the taken blood is received in a blood receiver of the puncturing tip.
- FIG. 5 illustrates the blood collecting and spotting means of FIG. 4 under the condition that the piston is again pushed down, the sliding means is slide down, and then a blood is pushed down to be spotted onto an analytical means (not shown).
- FIG. 6 illustrates another example of the puncturing tip to be attached to the blood collecting and spotting means of the invention.
- FIG. 7 illustrates a top view of the spring means for suspending the needle shown in FIG. 6.
- FIG. 8 illustrates a lower portion of the blood collecting and spotting means of FIG. 6 under the condition that the needle is inserted into a part of human body.
- an example of the blood collecting and spotting means 1 comprises a main body 100 and a puncturing tip 200.
- the main body 100 is composed of a cylinder 110, a piston 120, and a sliding means 130.
- the cylinder 110 has a tapered cylinder portion 112 at the lower end of the cylindrical portion 111 and two flanges 113, 113' at the upper end.
- the piston 120 is inserted into the cylinder 110 under such condition that the piston 120 is able to descend and ascend within the cylinder 110.
- the puncturing tip 200 has a cylindrical body 201 whose opened upper end 202 is so tapered that the tip is airtightly and exchangeably fitted to the tapered cylinder portion 112 of the cylinder 110.
- the puncturing tip 200 further has a lower portion 204 which is provided with a blood conduit 203 (which also serves to quantitatively receive the blood to be spotted) and an excess blood receiver 207.
- a needle 205 is suspended by a coil spring 206 under engagement between the upper end 203a of the blood conduit 203 and the upper end 205a of the needle 205.
- the puncturing tip 200 When the puncturing tip 200 is fitted to the main body 100, the lower end of the needle 205 is encased in the blood conduit 203. However, the needle 205 is pushed down (or protruded) from the lower end of the blood conduit 203 by descending action of the sliding means. Under the condition, the needle 205 is protruded by a length of 1 to 2 mm from the lower end of the blood conduit 203.
- a space 114 having a diameter smaller than the diameter of that of the cylindrical portion is formed in the tapered cylinder portion 112.
- the lower end of the tapered cylinder portion 112 is composed of a further smaller hole 115 and a bottom portion 116.
- the outer surface of the tapered cylinder portion 112 is so processed as to be airtightly and exchangeably inserted into the upper end 202 of the puncturing tip 200.
- the puncturing tip 200 is attached to the tapered cylinder portion 112 by friction. However, the puncturing tip can be screwed into the cylinder 110. Otherwise, other connecting means can be employed for keeping the cylinder and the puncturing tip from separation.
- the piston 120 has a bottom 121 at the upper end, and the bottom 121 has a hole 122.
- the piston 120 has a wall whose lower end 123 is shaped in the form of wedge.
- a sealing means 124 is provided so as to seal the space between the inner surface of the cylinder 110 and the outer surface of the piston 120.
- the sliding means 130 is composed of a cylindrical body 131, a spring supporting means 132, and a pushing means 133.
- the sliding means 130 has a through-hole 134 which allows passage of air therethrough.
- a portion 135 of the upper part of the cylindrical body 131 is cut off.
- an indented portion 136 is formed.
- the cylinder 110 has a protruded portion 117 on the inner surface of its wall in the portion above the cut-off portion 135 of the sliding means 130.
- the lower end 133a of the pushing means 133 is located on the same level as that of the lower end of the tapered cylinder portion 112. Further, on the outer surface of the cylindrical body 131, a vertically extended groove 137 is formed. The groove 137 is engaged with a projecting portion 118 of the cylinder 110 so that the sliding means 130 can do up-and-down movement only.
- a spring 141 is provided between the upper bottom 121 of the piston 120 and the top of the spring supporting means 132. Further, between the lower end of the cylindrical body 131 and the bottom portion 116 of the tapered cylinder portion 112, a spring 142 is provided. The sliding means 130 is pushed up by the spring 132 to keep the sliding means 130 under such condition that the upper end of the cylindrical body 131 is positioned in contact with the lower surface of the protruded portion 117.
- Each of the cylinder, piston and sliding means can be preferably made of hard plastic material such as polystyrene, high density polyethylene, polypropylene, poly(vinyl chloride), polyacrylate resin or polycarbonate.
- the sealing means can be in the form of a ring and can be made of rubber or soft plastic material such as soft poly(vinyl chloride) or low density polyethylene.
- Each of the springs 141, 142 preferably is a coil spring.
- the puncturing tip is preferably made of plastic material in one unit (except for the needle).
- the plastic material preferably is transparent or semi-transparent so as to be easily check the blood received in the puncturing tip.
- the plastic material can be hydrophilic or hydrophobic.
- the puncturing tip made of hydrophilic plastic material is favorably employed because the blood can enter easily and smoothly into the blood conduit.
- the hydrophilic plastic material include polyamide and ethylene-carboxylate copolymer, both of which are inherently hydrophilic.
- hydrophobic plastic material which is made hydrophilic by compounding a hydrophilic plasticizer such as glycerol, ethylene glycol, polyethylene glycol, or glycerol fatty acid ester (e.g., glycerol laurate or glycerol stearate) also can be employed.
- a hydrophilic plasticizer such as glycerol, ethylene glycol, polyethylene glycol, or glycerol fatty acid ester (e.g., glycerol laurate or glycerol stearate) also can be employed.
- the puncturing tip is once made of hydrophobic plastic material and coated with a hydrophilic material at the inner surface of the blood conduit.
- hydrophilic material include surface active agents (particularly, nonionic surfactants), hydrophilic polymer, and water-soluble organic compounds (e.g., glycerol ester, ethylene glycol, amino acid, and sugar).
- the spring 206 can be any form of spring means.
- a coil spring or leaf spring is preferred.
- FIGS. 2 to 5 The procedures for collecting the blood by the use of the blood collecting and spotting means 1 of FIG. 1 according to the invention are described below by referring to FIGS. 2 to 5 in the drawings.
- the pushing means 133 protruding from the tapered cylinder portion 112 of the main body at its lower end 133a is pushed up by a finger so that the cut-off upper end of the cylindrical body 131 of the sliding means 130 can be disengaged with the protruded portion 117 and can move upward to engage the indented portion 136 with the protruded portion 117, as is illustrated in FIG. 2.
- the puncturing tip 200 is connected to the cylinder 110 by inserting the tapered cylinder portion 112 into the opened upper portion 202 airtightly.
- FIG. 2 shows the condition in that the puncturing tip 200 is connected airtightly to the cylinder 110.
- the numbers given in FIG. 2 indicate the same elements and portions as indicated in FIG. 1.
- the lower end of the blood conduit 203 of the puncturing tip 200 is applied to a skin (S) of a human body, and the piston 120 is pushed down by pressing the upper end of the piston 120 by a finger (preferably, without closing the hole 122; other fingers are placed between the pair of flanges 113, 113').
- the sliding means 130 is not moved because of the engagement with the protruded portion 117, and the spring 141 is contracted.
- the wedge end 123 is inserted between the inner surface of the cylinder 110 and the cut-off upper end of the sliding means 130 to remove the engagement.
- the sliding means 130 is instantly pushed down by the expanding action of the contracted spring 141.
- the pushing means 133 quickly protrudes from the tapered cylinder portion 112.
- the lower end of the pushing means 133 then pushes the upper end 205a of the needle 205 down, and the needle 205 protrudes slightly from the lower end of the puncturing tip 200 to enter into the skin.
- the springs 142, 206 are contracted.
- the pushing means 133 is ascended by action of the contracted spring 142 to the position where the cut-off portion 135 of the sliding means is brought into contact with the protruded portion 117 of the cylinder.
- the spring 141 is then contracted.
- the needle 205 is also ascended by action of the contacted spring 206, for instance, 5 to 30 seconds after the insertion into the skin.
- the blood oozes through the hole formed by the insertion of the needle.
- the pressure of the finger applied to the top of the piston 120 is slowly reduced, at this time, with closing the hole 122.
- the piston 120 is slowly ascended by action of the contracted spring 141.
- the pressure inside the cylinder 110 and puncturing tip 200 is reduced.
- the blood is introduced into the blood conduit 203.
- An excessive blood is received into the receiver 204. This condition is illustrated in FIG. 4.
- the hole 122 of the piston is opened so that the pressure inside the cylinder 110 and puncturing tip 200 is returned to an atmospheric pressure.
- the blood collecting and spotting means is removed from the skin. By the action of surface tension, the blood in the blood conduit 203 is kept without flowing down.
- the blood collecting and spotting means is then moved onto an analytical means, and the piston 120 is pushed down with closing the hole 122 by the finger to push the blood out of the blood conduit 203.
- the blood in the receiver 204 is not pushed out by this procedure.
- FIG. 5 shows this spotting procedure. If the analytical means is made of blood absorbable material such as paper sheet, cloth, or porous sheet, the blood in the blood conduit automatically flows out when the lower end of the blood conduit is brought into contact with the analytical means, without applying the pressure on the piston.
- the volume of blood to be applied to the analytical means is automatically made equivalent to the inner volume of the blood conduit (after reduction of the volume of the needle).
- the volume of blood is kept at almost the same level in every blood collecting and spotting procedure, so long as the puncturing tip of the same size is employed in every procedure.
- the needle and the blood conduit can be treated with an anticoagulant such as heparin or EDTA prior to initiating the blood collecting and spotting procedure, so that coagulation of the collected blood can be prevented.
- an anticoagulant such as heparin or EDTA
- the puncturing tip 200 is removed and disposed. Since the main body 100 having the cylinder, piston and pushing means is completely kept from the blood in the procedure, the main body 100 can be repeatedly employed by attaching a fresh puncturing tip.
- the volume inside of the blood conduit 203 is optionally adjusted, generally, to a volume less than 100 ⁇ L, preferably in the range of 5 to 50 ⁇ L, more preferably in the range of 5 to 30 ⁇ L.
- the hole 122 of the piston 120 can be omitted.
- the volume of the blood introduced into the blood conduit can be adjusted by controlling the movement of the piston.
- FIGS. 6 to 8 one of other structures of the puncturing tip according to the invention is described below, by referring to FIGS. 6 to 8 in the attached drawings.
- a puncturing tip 300 comprises a housing 310 and a needle portion 320.
- the housing 310 is has a cylindrical body 311 whose upper end portion 312 is formed to be airtightly and exchangeably attached to the tapered cylinder portion 112 of the cylinder 110 and whose lower end has a blood conduit 313, a bottom plate 314, and an excessive blood receiver 315.
- the cylindrical body 311 further has a shelf 316 on its inner surface to fix thereon a needle supporting means 322 in the form of a disk (see FIG. 7).
- the needle portion 320 comprises a needle 321 and a needle supporting means 322.
- the needle supporting means 322 comprises an outer ring 323 and an inner ring 324 which are connected via a flexible connecting portion 325 with each other.
- a cylindrical needle holder 326 is connected with the inner ring 324 with a flexible connecting portion 327.
- the combination of the flexible connecting portions 325, 327 functions as leaf spring to ensure the up-and-down movement of the needle 321.
- the housing 310 is preferably formed in one unit, using hard plastic material.
- the needle supporting means 322 also is preferably formed in one unit which includes the outer ring 323, inner ring 324, connecting portions 325, 327, and cylindrical needle holder 326.
- the united needle supporting means is preferably made of polyethylene, polypropylene, acrylate polymer, or other plastic material.
- the needle 321 can be made of metal or plastic material.
- the plastic needle can be formed in one unit with the needle supporting means 322, for instance, by injection molding.
- the pushing means 133 is pushed into the cylinder 110, and the puncturing tip 300 is attached airtightly to the tapered cylinder portion 112.
- the piston is initially pushed down in the same manner as described hereinbefore. Then, the needle 321 is quickly pushed down to insert into a human body through a skin (S).
- the needle supporting means 322, particularly, the combination of the flexible connecting portions 325, 327 functions as leaf spring in the same manner as the coil spring 206. Accordingly, the same procedures as those for the blood collecting and spotting means of FIGS. 1 to 5 can be done using the blood collecting and spotting means which is formed of the main body 100 and the puncturing tip 300 to collect the blood and spot a predetermined volume of the blood onto an analytical means with simple operations.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Pain & Pain Management (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Devices For Use In Laboratory Experiments (AREA)
Abstract
Description
Claims (3)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34151093 | 1993-12-09 | ||
JP5-341510 | 1993-12-09 | ||
JP6-098130 | 1994-04-11 | ||
JP09813094A JP3393920B2 (en) | 1993-12-09 | 1994-04-11 | Wearing equipment for small-volume fixed-volume blood sampling points |
Publications (1)
Publication Number | Publication Date |
---|---|
US5569287A true US5569287A (en) | 1996-10-29 |
Family
ID=26439334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/353,108 Expired - Fee Related US5569287A (en) | 1993-12-09 | 1994-12-09 | Means for collecting and spotting small amount of blood |
Country Status (2)
Country | Link |
---|---|
US (1) | US5569287A (en) |
JP (1) | JP3393920B2 (en) |
Cited By (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5741291A (en) * | 1996-02-23 | 1998-04-21 | Yoo; Tae Woo | Acupuncture of the bleeding |
US5871494A (en) * | 1997-12-04 | 1999-02-16 | Hewlett-Packard Company | Reproducible lancing for sampling blood |
US5984940A (en) * | 1997-05-29 | 1999-11-16 | Atrion Medical Products, Inc. | Lancet device |
US6022366A (en) * | 1998-06-11 | 2000-02-08 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
WO2000040150A1 (en) * | 1999-01-04 | 2000-07-13 | Terumo Kabushiki Kaisha | Assembly having lancet and means for collecting and detecting body fluid |
US6283982B1 (en) | 1999-10-19 | 2001-09-04 | Facet Technologies, Inc. | Lancing device and method of sample collection |
US20020096317A1 (en) * | 2001-01-23 | 2002-07-25 | Colin Hargreaves | Heat exchanger tube |
US20020103499A1 (en) * | 2001-01-22 | 2002-08-01 | Perez Edward P. | Lancet device having capillary action |
US6530937B1 (en) | 2000-01-28 | 2003-03-11 | Stat Medical Devices, Inc. | Adjustable tip for a lancet device and method |
US20030144609A1 (en) * | 2002-01-31 | 2003-07-31 | Kennedy Gwenn E. | Single use device for blood microsampling |
US6613064B2 (en) * | 2000-04-04 | 2003-09-02 | P.Z. “Htl” S.A. | Arrangement regulating depth of the puncture, used in the device for puncturing |
US6616616B2 (en) * | 2000-09-26 | 2003-09-09 | Roche Diagnostics Corporation | Lancet system |
US20030225430A1 (en) * | 1998-06-11 | 2003-12-04 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US20040098008A1 (en) * | 2002-05-31 | 2004-05-20 | Taylor William C. | Precisely guided lancet |
US20040181249A1 (en) * | 2003-03-10 | 2004-09-16 | Pathway Medical Technologies, Inc. | Bearing system to support a rotatable operating head in an intracorporeal device |
US20040236362A1 (en) * | 2003-05-20 | 2004-11-25 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US20040243165A1 (en) * | 2001-07-11 | 2004-12-02 | Masufumi Koike | Lancet and piercing device |
US20040249406A1 (en) * | 2003-03-20 | 2004-12-09 | Griffin Carl E. | Lancing device with decoupled lancet |
US20040248312A1 (en) * | 2003-06-06 | 2004-12-09 | Bayer Healthcare, Llc | Sensor with integrated lancet |
US20040254599A1 (en) * | 2003-03-25 | 2004-12-16 | Lipoma Michael V. | Method and apparatus for pre-lancing stimulation of puncture site |
US20040260326A1 (en) * | 2003-03-24 | 2004-12-23 | Lipoma Michael V. | Lancing device with floating lancet |
US20050288699A1 (en) * | 2004-06-29 | 2005-12-29 | Stat Medical Devices, Inc. | Adjustable disposable/single-use lancet device and method |
WO2006030201A1 (en) | 2004-09-13 | 2006-03-23 | Microsample Ltd. | Method and apparatus for sampling and analysis of fluids |
US20060106411A1 (en) * | 2004-11-16 | 2006-05-18 | Stat Medical Devices Inc. | Adjustable disposable/single-use blade lancet device and method |
US7105006B2 (en) | 2003-08-15 | 2006-09-12 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US20070060937A1 (en) * | 2005-08-30 | 2007-03-15 | Liu Chen H | Safety needle holder |
WO2007104960A1 (en) | 2006-03-13 | 2007-09-20 | Microsample Ltd. | Method and apparatus for piercing the skin and delivery or collection of liquids |
US20070282362A1 (en) * | 2004-03-30 | 2007-12-06 | Bjorn Berg | Sampler Device |
US20090299224A1 (en) * | 2005-06-08 | 2009-12-03 | Jae Chern Yoo | Lancet device and method for sampling and injecting blood using the lancet device |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7704265B2 (en) | 2005-11-03 | 2010-04-27 | Stat Medical Devices, Inc. | Disposable/single-use blade lancet device and method |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
WO2010086380A1 (en) | 2009-01-30 | 2010-08-05 | Pronota N.V. | Biomarker for diagnosis, prediction and/or prognosis of acute heart failure and uses thereof |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7905898B2 (en) | 2003-08-15 | 2011-03-15 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
USD634426S1 (en) | 2010-04-08 | 2011-03-15 | Facet Technologies, Llc | Lancing device |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
WO2011048173A1 (en) | 2009-10-21 | 2011-04-28 | Pronota N.V. | Mcam as a biomarker for fluid homeostasis |
US20110160759A1 (en) * | 2007-02-09 | 2011-06-30 | Stat Medical Devices, Inc. | Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
WO2011128357A2 (en) | 2010-04-13 | 2011-10-20 | Pronota N.V. | Biomarkers for hypertensive disorders of pregnancy |
US8043318B2 (en) | 2007-02-08 | 2011-10-25 | Stat Medical Devices, Inc. | Push-button lance device and method |
US8066728B2 (en) | 2004-11-30 | 2011-11-29 | Stat Medical Devices, Inc. | Disposable or single-use lancet device and method |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8353924B2 (en) | 1999-11-02 | 2013-01-15 | Stat Medical Devices, Inc. | Single use lancet assembly |
US8360994B2 (en) | 2005-09-30 | 2013-01-29 | Intuity Medical, Inc. | Arrangement for body fluid sample extraction |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8715309B2 (en) | 2002-04-29 | 2014-05-06 | Steven Schraga | Lancet device |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8801631B2 (en) | 2005-09-30 | 2014-08-12 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
US8814896B2 (en) | 1999-11-02 | 2014-08-26 | Stat Medical Devices, Inc. | Single use lancet assembly |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US8919605B2 (en) | 2009-11-30 | 2014-12-30 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8969097B2 (en) | 2005-06-13 | 2015-03-03 | Intuity Medical, Inc. | Analyte detection devices and methods with hematocrit-volume correction and feedback control |
US9095292B2 (en) | 2003-03-24 | 2015-08-04 | Intuity Medical, Inc. | Analyte concentration detection devices and methods |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
EP2924439A1 (en) | 2010-03-26 | 2015-09-30 | Mycartis N.V. | Ltbp2 as a biomarker for predicting or prognosticating mortality |
US9179867B2 (en) | 2007-06-19 | 2015-11-10 | Stat Medical Devices, Inc. | Lancet device with depth adjustment and lancet removal system and method |
US9204833B2 (en) | 2012-03-27 | 2015-12-08 | Phlebotics, Inc. | Cartridge for automated blood sampling system |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9282918B2 (en) | 2005-01-28 | 2016-03-15 | Stat Medical Devices, Inc. | Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit |
US9307939B2 (en) | 2007-03-30 | 2016-04-12 | Stat Medical Devices, Inc. | Lancet device with combined trigger and cocking mechanism |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9636051B2 (en) | 2008-06-06 | 2017-05-02 | Intuity Medical, Inc. | Detection meter and mode of operation |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9782114B2 (en) | 2011-08-03 | 2017-10-10 | Intuity Medical, Inc. | Devices and methods for body fluid sampling and analysis |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9833183B2 (en) | 2008-05-30 | 2017-12-05 | Intuity Medical, Inc. | Body fluid sampling device—sampling site interface |
USD806246S1 (en) | 2016-02-25 | 2017-12-26 | Steven Schraga | Lancet cover |
US20180242895A1 (en) * | 2015-05-25 | 2018-08-30 | Coyote Bioscience Yixing Co., Ltd. | Device and method for sample collection |
US10070811B2 (en) | 2014-06-26 | 2018-09-11 | Stat Medical Devices, Inc. | Lancing device with depth adjustment and lancet removal system and method |
CN109647559A (en) * | 2019-01-21 | 2019-04-19 | 上海陶术生物科技有限公司 | A kind of full-automatic liquid relief station with anti-drip structure |
US10330667B2 (en) | 2010-06-25 | 2019-06-25 | Intuity Medical, Inc. | Analyte monitoring methods and systems |
US10383556B2 (en) | 2008-06-06 | 2019-08-20 | Intuity Medical, Inc. | Medical diagnostic devices and methods |
US10702199B2 (en) | 2015-06-17 | 2020-07-07 | Hitachi High-Tech Corporation | Blood collecting device |
US10729386B2 (en) | 2013-06-21 | 2020-08-04 | Intuity Medical, Inc. | Analyte monitoring system with audible feedback |
US10772550B2 (en) | 2002-02-08 | 2020-09-15 | Intuity Medical, Inc. | Autonomous, ambulatory analyte monitor or drug delivery device |
US11395614B2 (en) | 2012-01-25 | 2022-07-26 | Tasso, Inc. | Methods, systems, and devices relating to open microfluidic channels |
US11510659B2 (en) * | 2018-09-14 | 2022-11-29 | Tasso, Inc. | Bodily fluid collection devices and related methods |
US11642057B2 (en) | 2015-12-21 | 2023-05-09 | Tasso, Inc. | Devices, systems and methods for actuation and retraction in fluid collection |
US11998334B2 (en) | 2014-08-01 | 2024-06-04 | Tasso, Inc. | Devices, systems and methods for gravity-enhanced microfluidic collection, handling and transferring of fluids |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5674236A (en) * | 1996-04-30 | 1997-10-07 | Medtronic, Inc. | Lancet for capillary puncture blood samples |
US7887494B2 (en) * | 2005-09-30 | 2011-02-15 | Intuity Medical, Inc. | Fluid sample transport devices and methods |
JP5002266B2 (en) * | 2006-01-11 | 2012-08-15 | キヤノン株式会社 | Body fluid collection device |
JP5028697B2 (en) * | 2008-02-18 | 2012-09-19 | 富士フイルム株式会社 | Suction syringe and endoscope suction syringe |
JP5267399B2 (en) * | 2009-02-03 | 2013-08-21 | パナソニック株式会社 | Sample collection device |
CA3005826C (en) * | 2013-04-15 | 2021-11-23 | Becton, Dickinson And Company | Biological fluid collection device and biological fluid separation and testing system |
JP6339663B2 (en) * | 2013-04-15 | 2018-06-06 | ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company | Biological fluid collection device and biological fluid collection inspection system |
KR20210066481A (en) * | 2019-11-28 | 2021-06-07 | 가톨릭관동대학교산학협력단 | Disposable blood collection device |
CN112547144B (en) * | 2020-11-13 | 2022-04-26 | 青岛大学附属医院 | Capillary tube for storing and adding sample stabilizer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4553541A (en) * | 1981-03-23 | 1985-11-19 | Becton, Dickinson And Co. | Automatic retractable lancet assembly |
US5026388A (en) * | 1989-09-26 | 1991-06-25 | Ingalz Thomas J | Single-use skin puncture device |
US5318584A (en) * | 1992-04-13 | 1994-06-07 | Boehringer Mannheim Gmbh | Blood lancet device for withdrawing blood for diagnostic purposes |
US5356420A (en) * | 1992-08-03 | 1994-10-18 | Przedsiebiorstwo Zagraniczne Htl | Device for puncturing |
-
1994
- 1994-04-11 JP JP09813094A patent/JP3393920B2/en not_active Expired - Fee Related
- 1994-12-09 US US08/353,108 patent/US5569287A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4553541A (en) * | 1981-03-23 | 1985-11-19 | Becton, Dickinson And Co. | Automatic retractable lancet assembly |
US5026388A (en) * | 1989-09-26 | 1991-06-25 | Ingalz Thomas J | Single-use skin puncture device |
US5318584A (en) * | 1992-04-13 | 1994-06-07 | Boehringer Mannheim Gmbh | Blood lancet device for withdrawing blood for diagnostic purposes |
US5356420A (en) * | 1992-08-03 | 1994-10-18 | Przedsiebiorstwo Zagraniczne Htl | Device for puncturing |
Cited By (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5741291A (en) * | 1996-02-23 | 1998-04-21 | Yoo; Tae Woo | Acupuncture of the bleeding |
US5984940A (en) * | 1997-05-29 | 1999-11-16 | Atrion Medical Products, Inc. | Lancet device |
US6156050A (en) * | 1997-05-29 | 2000-12-05 | Atrion Medical Products, Inc. | Lancet device |
US5871494A (en) * | 1997-12-04 | 1999-02-16 | Hewlett-Packard Company | Reproducible lancing for sampling blood |
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US8439872B2 (en) | 1998-03-30 | 2013-05-14 | Sanofi-Aventis Deutschland Gmbh | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US7947057B2 (en) | 1998-06-11 | 2011-05-24 | Stat Medical Devices, Inc. | Lancet having adjustable penetration depth |
US8834503B2 (en) | 1998-06-11 | 2014-09-16 | Stat Medical Devices, Inc. | Lancet having adjustable penetration depth |
US7311718B2 (en) | 1998-06-11 | 2007-12-25 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US20080045992A1 (en) * | 1998-06-11 | 2008-02-21 | Stat Medical Devices, Inc., Of North Miami, Fl | Lancet having adjustable penetration depth |
US6156051A (en) * | 1998-06-11 | 2000-12-05 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US6022366A (en) * | 1998-06-11 | 2000-02-08 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US7175641B1 (en) | 1998-06-11 | 2007-02-13 | Stat Medical Devices, Inc. | Lancet having adjustable penetration depth |
US20030225430A1 (en) * | 1998-06-11 | 2003-12-04 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
WO2000040150A1 (en) * | 1999-01-04 | 2000-07-13 | Terumo Kabushiki Kaisha | Assembly having lancet and means for collecting and detecting body fluid |
US6283982B1 (en) | 1999-10-19 | 2001-09-04 | Facet Technologies, Inc. | Lancing device and method of sample collection |
US6749618B2 (en) | 1999-10-19 | 2004-06-15 | Therasense, Inc. | Lancing device and method of sample collection |
US20040225311A1 (en) * | 1999-10-19 | 2004-11-11 | Therasense, Inc. | Lancing device and method of sample collection |
US8366729B2 (en) | 1999-10-19 | 2013-02-05 | Abbott Diabetes Care Inc. | Lancing device and method of sample collection |
US20080021493A1 (en) * | 1999-10-19 | 2008-01-24 | Therasense, Inc. | Lancing Device and Method of Sample Collection |
US8353924B2 (en) | 1999-11-02 | 2013-01-15 | Stat Medical Devices, Inc. | Single use lancet assembly |
US8814896B2 (en) | 1999-11-02 | 2014-08-26 | Stat Medical Devices, Inc. | Single use lancet assembly |
US20030088261A1 (en) * | 2000-01-28 | 2003-05-08 | Stat Medical Device Inc. | Adjustable tip for a lancet device and method |
US6530937B1 (en) | 2000-01-28 | 2003-03-11 | Stat Medical Devices, Inc. | Adjustable tip for a lancet device and method |
US8709032B2 (en) | 2000-01-28 | 2014-04-29 | Stat Medical Devices, Inc. | Adjustable tip for a lancet device and method |
US6613064B2 (en) * | 2000-04-04 | 2003-09-02 | P.Z. “Htl” S.A. | Arrangement regulating depth of the puncture, used in the device for puncturing |
US6616616B2 (en) * | 2000-09-26 | 2003-09-09 | Roche Diagnostics Corporation | Lancet system |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US7803123B2 (en) | 2001-01-22 | 2010-09-28 | Roche Diagnostics Operations, Inc. | Lancet device having capillary action |
US6866675B2 (en) * | 2001-01-22 | 2005-03-15 | Roche Diagnostics Operations, Inc. | Lancet device having capillary action |
US8257276B2 (en) | 2001-01-22 | 2012-09-04 | Roche Diagnostics Operations, Inc. | Lancet device having capillary action |
US20020103499A1 (en) * | 2001-01-22 | 2002-08-01 | Perez Edward P. | Lancet device having capillary action |
US20020096317A1 (en) * | 2001-01-23 | 2002-07-25 | Colin Hargreaves | Heat exchanger tube |
US8679033B2 (en) | 2001-06-12 | 2014-03-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US8641643B2 (en) | 2001-06-12 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US7909775B2 (en) | 2001-06-12 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8382683B2 (en) | 2001-06-12 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US7981055B2 (en) | 2001-06-12 | 2011-07-19 | Pelikan Technologies, Inc. | Tissue penetration device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8360991B2 (en) | 2001-06-12 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8282577B2 (en) | 2001-06-12 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US9937298B2 (en) | 2001-06-12 | 2018-04-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8622930B2 (en) | 2001-06-12 | 2014-01-07 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US8216154B2 (en) | 2001-06-12 | 2012-07-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8211037B2 (en) | 2001-06-12 | 2012-07-03 | Pelikan Technologies, Inc. | Tissue penetration device |
US8206319B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8206317B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8123700B2 (en) | 2001-06-12 | 2012-02-28 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8016774B2 (en) | 2001-06-12 | 2011-09-13 | Pelikan Technologies, Inc. | Tissue penetration device |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US8016847B2 (en) * | 2001-07-11 | 2011-09-13 | Arkray, Inc. | Lancet and lancing apparatus |
US20040243165A1 (en) * | 2001-07-11 | 2004-12-02 | Masufumi Koike | Lancet and piercing device |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US7357808B2 (en) | 2002-01-31 | 2008-04-15 | Facet Technologies, Llc | Single use device for blood microsampling |
US20030144609A1 (en) * | 2002-01-31 | 2003-07-31 | Kennedy Gwenn E. | Single use device for blood microsampling |
US20080065133A1 (en) * | 2002-01-31 | 2008-03-13 | Kennedy Gwenn E | Lancing device with reuse prevention mechanism |
US10772550B2 (en) | 2002-02-08 | 2020-09-15 | Intuity Medical, Inc. | Autonomous, ambulatory analyte monitor or drug delivery device |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7875047B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9907502B2 (en) | 2002-04-19 | 2018-03-06 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
US7938787B2 (en) | 2002-04-19 | 2011-05-10 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7988644B2 (en) | 2002-04-19 | 2011-08-02 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8636673B2 (en) | 2002-04-19 | 2014-01-28 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8562545B2 (en) | 2002-04-19 | 2013-10-22 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8062231B2 (en) | 2002-04-19 | 2011-11-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9339612B2 (en) | 2002-04-19 | 2016-05-17 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US8496601B2 (en) | 2002-04-19 | 2013-07-30 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8157748B2 (en) | 2002-04-19 | 2012-04-17 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197423B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8202231B2 (en) | 2002-04-19 | 2012-06-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7713214B2 (en) | 2002-04-19 | 2010-05-11 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8235915B2 (en) | 2002-04-19 | 2012-08-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8491500B2 (en) | 2002-04-19 | 2013-07-23 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8808201B2 (en) * | 2002-04-19 | 2014-08-19 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8430828B2 (en) | 2002-04-19 | 2013-04-30 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
US8414503B2 (en) | 2002-04-19 | 2013-04-09 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8403864B2 (en) | 2002-04-19 | 2013-03-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8388551B2 (en) | 2002-04-19 | 2013-03-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for multi-use body fluid sampling device with sterility barrier release |
US8366637B2 (en) | 2002-04-19 | 2013-02-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US8845549B2 (en) | 2002-04-19 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US8382682B2 (en) | 2002-04-19 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8715309B2 (en) | 2002-04-29 | 2014-05-06 | Steven Schraga | Lancet device |
US7322996B2 (en) | 2002-05-31 | 2008-01-29 | Facet Technologies, Llc | Precisely guided lancet |
US20040098008A1 (en) * | 2002-05-31 | 2004-05-20 | Taylor William C. | Precisely guided lancet |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US20040181249A1 (en) * | 2003-03-10 | 2004-09-16 | Pathway Medical Technologies, Inc. | Bearing system to support a rotatable operating head in an intracorporeal device |
US7288102B2 (en) * | 2003-03-20 | 2007-10-30 | Facet Technologies, Llc | Lancing device with decoupled lancet |
US20040249406A1 (en) * | 2003-03-20 | 2004-12-09 | Griffin Carl E. | Lancing device with decoupled lancet |
US7494498B2 (en) | 2003-03-24 | 2009-02-24 | Facet Technologies, Llc | Lancing device with floating lancet |
US20040260326A1 (en) * | 2003-03-24 | 2004-12-23 | Lipoma Michael V. | Lancing device with floating lancet |
US9095292B2 (en) | 2003-03-24 | 2015-08-04 | Intuity Medical, Inc. | Analyte concentration detection devices and methods |
US8142466B2 (en) | 2003-03-24 | 2012-03-27 | Facet Technologies, Llc | Lancing device with floating lancet |
US20090105741A1 (en) * | 2003-03-24 | 2009-04-23 | Facet Technologies, Llc | Lancing device with floating lancet |
US20040254599A1 (en) * | 2003-03-25 | 2004-12-16 | Lipoma Michael V. | Method and apparatus for pre-lancing stimulation of puncture site |
US20040236362A1 (en) * | 2003-05-20 | 2004-11-25 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US7621931B2 (en) | 2003-05-20 | 2009-11-24 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8251921B2 (en) | 2003-06-06 | 2012-08-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US20040248312A1 (en) * | 2003-06-06 | 2004-12-09 | Bayer Healthcare, Llc | Sensor with integrated lancet |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US7905898B2 (en) | 2003-08-15 | 2011-03-15 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US8888804B2 (en) | 2003-08-15 | 2014-11-18 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US7105006B2 (en) | 2003-08-15 | 2006-09-12 | Stat Medical Devices, Inc. | Adjustable lancet device and method |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8296918B2 (en) | 2003-12-31 | 2012-10-30 | Sanofi-Aventis Deutschland Gmbh | Method of manufacturing a fluid sampling device with improved analyte detecting member configuration |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US20070282362A1 (en) * | 2004-03-30 | 2007-12-06 | Bjorn Berg | Sampler Device |
US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US20050288699A1 (en) * | 2004-06-29 | 2005-12-29 | Stat Medical Devices, Inc. | Adjustable disposable/single-use lancet device and method |
US8257380B2 (en) | 2004-06-29 | 2012-09-04 | Stat Medical Devices, Inc. | Adjustabable disposable/single-use lancet device and method |
US8092394B2 (en) * | 2004-09-13 | 2012-01-10 | Microsample Ltd. | Method and apparatus for sampling and analysis of fluids |
WO2006030201A1 (en) | 2004-09-13 | 2006-03-23 | Microsample Ltd. | Method and apparatus for sampling and analysis of fluids |
US20070232956A1 (en) * | 2004-09-13 | 2007-10-04 | Microsample Ltd. | Method and Apparatus for Sampling and Analysis of Fluids |
US8105347B2 (en) | 2004-11-16 | 2012-01-31 | Stat Medical Devices, Inc. | Adjustable disposable/single-use blade lancet device and method |
US20060106411A1 (en) * | 2004-11-16 | 2006-05-18 | Stat Medical Devices Inc. | Adjustable disposable/single-use blade lancet device and method |
US8066728B2 (en) | 2004-11-30 | 2011-11-29 | Stat Medical Devices, Inc. | Disposable or single-use lancet device and method |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US9282918B2 (en) | 2005-01-28 | 2016-03-15 | Stat Medical Devices, Inc. | Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit |
US9289161B2 (en) | 2005-01-28 | 2016-03-22 | Stat Medical Divices, Inc. | Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit |
US20090299224A1 (en) * | 2005-06-08 | 2009-12-03 | Jae Chern Yoo | Lancet device and method for sampling and injecting blood using the lancet device |
CN101203177B (en) * | 2005-06-08 | 2010-05-19 | 三星电子股份有限公司 | Lancet device |
US8969097B2 (en) | 2005-06-13 | 2015-03-03 | Intuity Medical, Inc. | Analyte detection devices and methods with hematocrit-volume correction and feedback control |
US9366636B2 (en) | 2005-06-13 | 2016-06-14 | Intuity Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
US10226208B2 (en) | 2005-06-13 | 2019-03-12 | Intuity Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
US11419532B2 (en) | 2005-06-13 | 2022-08-23 | Intuity Medical, Inc. | Analyte detection devices and methods with hematocrit/volume correction and feedback control |
US20070060937A1 (en) * | 2005-08-30 | 2007-03-15 | Liu Chen H | Safety needle holder |
US10433780B2 (en) | 2005-09-30 | 2019-10-08 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
US8382681B2 (en) | 2005-09-30 | 2013-02-26 | Intuity Medical, Inc. | Fully integrated wearable or handheld monitor |
US11986298B2 (en) | 2005-09-30 | 2024-05-21 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
US10441205B2 (en) | 2005-09-30 | 2019-10-15 | Intuity Medical, Inc. | Multi-site body fluid sampling and analysis cartridge |
US10842427B2 (en) | 2005-09-30 | 2020-11-24 | Intuity Medical, Inc. | Body fluid sampling arrangements |
US8360993B2 (en) | 2005-09-30 | 2013-01-29 | Intuity Medical, Inc. | Method for body fluid sample extraction |
US9060723B2 (en) | 2005-09-30 | 2015-06-23 | Intuity Medical, Inc. | Body fluid sampling arrangements |
US8795201B2 (en) | 2005-09-30 | 2014-08-05 | Intuity Medical, Inc. | Catalysts for body fluid sample extraction |
US8360994B2 (en) | 2005-09-30 | 2013-01-29 | Intuity Medical, Inc. | Arrangement for body fluid sample extraction |
US8801631B2 (en) | 2005-09-30 | 2014-08-12 | Intuity Medical, Inc. | Devices and methods for facilitating fluid transport |
US9380974B2 (en) | 2005-09-30 | 2016-07-05 | Intuity Medical, Inc. | Multi-site body fluid sampling and analysis cartridge |
US9839384B2 (en) | 2005-09-30 | 2017-12-12 | Intuity Medical, Inc. | Body fluid sampling arrangements |
US7704265B2 (en) | 2005-11-03 | 2010-04-27 | Stat Medical Devices, Inc. | Disposable/single-use blade lancet device and method |
US8454642B2 (en) | 2005-11-03 | 2013-06-04 | Stat Medical Devices, Inc. | Disposable/single-use blade lancet device and method |
US8876846B2 (en) | 2005-11-03 | 2014-11-04 | Stat Medical Devices, Inc. | Disposable/single-use blade lancet device and method |
US20090099478A1 (en) * | 2006-03-13 | 2009-04-16 | Microsample Ltd | Method and apparatus for piercing the skin and delivery or collection of liquids |
WO2007104960A1 (en) | 2006-03-13 | 2007-09-20 | Microsample Ltd. | Method and apparatus for piercing the skin and delivery or collection of liquids |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8043318B2 (en) | 2007-02-08 | 2011-10-25 | Stat Medical Devices, Inc. | Push-button lance device and method |
US9017356B2 (en) | 2007-02-09 | 2015-04-28 | Stat Medical Devices, Inc. | Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit |
US20110160759A1 (en) * | 2007-02-09 | 2011-06-30 | Stat Medical Devices, Inc. | Multi-lancet unit, method and lancet device using the multi-lancet unit, and method of assembling and/or making the multi-lancet unit |
US9307939B2 (en) | 2007-03-30 | 2016-04-12 | Stat Medical Devices, Inc. | Lancet device with combined trigger and cocking mechanism |
US9179867B2 (en) | 2007-06-19 | 2015-11-10 | Stat Medical Devices, Inc. | Lancet device with depth adjustment and lancet removal system and method |
US10307095B2 (en) | 2007-06-19 | 2019-06-04 | Stat Medical Devices, Inc. | Lancet device with depth adjustment and lancet removal system and method |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US11045125B2 (en) | 2008-05-30 | 2021-06-29 | Intuity Medical, Inc. | Body fluid sampling device-sampling site interface |
US9833183B2 (en) | 2008-05-30 | 2017-12-05 | Intuity Medical, Inc. | Body fluid sampling device—sampling site interface |
US11399744B2 (en) | 2008-06-06 | 2022-08-02 | Intuity Medical, Inc. | Detection meter and mode of operation |
US9636051B2 (en) | 2008-06-06 | 2017-05-02 | Intuity Medical, Inc. | Detection meter and mode of operation |
US11986293B2 (en) | 2008-06-06 | 2024-05-21 | Intuity Medical, Inc. | Medical diagnostic devices and methods |
US11553860B2 (en) | 2008-06-06 | 2023-01-17 | Intuity Medical, Inc. | Medical diagnostic devices and methods |
US10383556B2 (en) | 2008-06-06 | 2019-08-20 | Intuity Medical, Inc. | Medical diagnostic devices and methods |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
WO2010086380A1 (en) | 2009-01-30 | 2010-08-05 | Pronota N.V. | Biomarker for diagnosis, prediction and/or prognosis of acute heart failure and uses thereof |
WO2011048173A1 (en) | 2009-10-21 | 2011-04-28 | Pronota N.V. | Mcam as a biomarker for fluid homeostasis |
WO2011048168A1 (en) | 2009-10-21 | 2011-04-28 | Pronota N.V. | Biomarker for diagnosis, prediction and/or prognosis of acute heart failure and uses thereof |
US9897610B2 (en) | 2009-11-30 | 2018-02-20 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
US8919605B2 (en) | 2009-11-30 | 2014-12-30 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
US11933789B2 (en) | 2009-11-30 | 2024-03-19 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
US11002743B2 (en) | 2009-11-30 | 2021-05-11 | Intuity Medical, Inc. | Calibration material delivery devices and methods |
EP2924439A1 (en) | 2010-03-26 | 2015-09-30 | Mycartis N.V. | Ltbp2 as a biomarker for predicting or prognosticating mortality |
USD634426S1 (en) | 2010-04-08 | 2011-03-15 | Facet Technologies, Llc | Lancing device |
WO2011128357A2 (en) | 2010-04-13 | 2011-10-20 | Pronota N.V. | Biomarkers for hypertensive disorders of pregnancy |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US10330667B2 (en) | 2010-06-25 | 2019-06-25 | Intuity Medical, Inc. | Analyte monitoring methods and systems |
US11382544B2 (en) | 2011-08-03 | 2022-07-12 | Intuity Medical, Inc. | Devices and methods for body fluid sampling and analysis |
US11672452B2 (en) | 2011-08-03 | 2023-06-13 | Intuity Medical, Inc. | Devices and methods for body fluid sampling and analysis |
US9782114B2 (en) | 2011-08-03 | 2017-10-10 | Intuity Medical, Inc. | Devices and methods for body fluid sampling and analysis |
US11051734B2 (en) | 2011-08-03 | 2021-07-06 | Intuity Medical, Inc. | Devices and methods for body fluid sampling and analysis |
US11395614B2 (en) | 2012-01-25 | 2022-07-26 | Tasso, Inc. | Methods, systems, and devices relating to open microfluidic channels |
US9204833B2 (en) | 2012-03-27 | 2015-12-08 | Phlebotics, Inc. | Cartridge for automated blood sampling system |
US10729386B2 (en) | 2013-06-21 | 2020-08-04 | Intuity Medical, Inc. | Analyte monitoring system with audible feedback |
US11071482B2 (en) | 2014-06-26 | 2021-07-27 | Stat Medical Devices, Inc. | Lancet device with depth adjustment and lancet removal system and method |
US10070811B2 (en) | 2014-06-26 | 2018-09-11 | Stat Medical Devices, Inc. | Lancing device with depth adjustment and lancet removal system and method |
US11998334B2 (en) | 2014-08-01 | 2024-06-04 | Tasso, Inc. | Devices, systems and methods for gravity-enhanced microfluidic collection, handling and transferring of fluids |
US12127837B2 (en) | 2014-08-01 | 2024-10-29 | Tasso, Inc. | Devices, systems and methods for gravity-enhanced microfluidic collection, handling and transferring of fluids |
US20180242895A1 (en) * | 2015-05-25 | 2018-08-30 | Coyote Bioscience Yixing Co., Ltd. | Device and method for sample collection |
US10702199B2 (en) | 2015-06-17 | 2020-07-07 | Hitachi High-Tech Corporation | Blood collecting device |
US11642057B2 (en) | 2015-12-21 | 2023-05-09 | Tasso, Inc. | Devices, systems and methods for actuation and retraction in fluid collection |
USD806246S1 (en) | 2016-02-25 | 2017-12-26 | Steven Schraga | Lancet cover |
US11510659B2 (en) * | 2018-09-14 | 2022-11-29 | Tasso, Inc. | Bodily fluid collection devices and related methods |
CN109647559A (en) * | 2019-01-21 | 2019-04-19 | 上海陶术生物科技有限公司 | A kind of full-automatic liquid relief station with anti-drip structure |
Also Published As
Publication number | Publication date |
---|---|
JP3393920B2 (en) | 2003-04-07 |
JPH07213925A (en) | 1995-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5569287A (en) | Means for collecting and spotting small amount of blood | |
US7225689B2 (en) | Sample testing device with funnel collector | |
US7257991B2 (en) | Sample testing device | |
US7803123B2 (en) | Lancet device having capillary action | |
EP1928299B1 (en) | Fluid sample transport devices | |
EP2986222B1 (en) | Biological fluid sampling transfer device and biological fluid separation and testing system | |
US5238649A (en) | Specimen test unit | |
US7374545B2 (en) | Device for sampling blood droplets under vacuum conditions | |
US20090112125A1 (en) | Integrated blood sampling and testing device and method of use thereof | |
US5251786A (en) | Biological fluid collection and delivery apparatus and method | |
US20030060730A1 (en) | Wicking methods and structures for use in sampling bodily fluids | |
CN112034150B (en) | Sample collection and detection device and method | |
US20070031293A1 (en) | Method and apparatus for collecting and diluting a liquid sample | |
AU2005202538A1 (en) | Apparatus for the manufacture of medical devices | |
CN103126689A (en) | Body fluid sampling device | |
US5195534A (en) | Biological fluid collection and dispensing apparatus and method | |
US6050956A (en) | Hemolyzing tube and a method of preparing a hemolysis blood sample within tube | |
GB2409411A (en) | Blood collection system | |
JP2024537926A (en) | Urine test kit | |
GB2236680A (en) | Blood sampling method | |
CN118209714A (en) | Detection device | |
IL196366A (en) | Integrated blood sampling and testing device and method of use thereof | |
MXPA06004359A (en) | Sample testing device with funnel collector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJI PHOTO FILM CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TEZUKA, SHIGERU;TSURUTA, HIKARU;KOIZUMI, TERUAKI;AND OTHERS;REEL/FRAME:007266/0760 Effective date: 19941205 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20081029 |