US5530317A - High-pressure metal halide discharge lamp with electrodes substantially free of thorium oxide - Google Patents

High-pressure metal halide discharge lamp with electrodes substantially free of thorium oxide Download PDF

Info

Publication number
US5530317A
US5530317A US08/320,037 US32003794A US5530317A US 5530317 A US5530317 A US 5530317A US 32003794 A US32003794 A US 32003794A US 5530317 A US5530317 A US 5530317A
Authority
US
United States
Prior art keywords
oxide
sub
metal halide
electrodes
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/320,037
Inventor
Martin F. C. Willemsen
Paul D. Goodell
Willem Van Erk
Hui-Meng Chow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Assigned to U.S. PHILIPS CORPORATION reassignment U.S. PHILIPS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOW, HUI-MENG, GOODELL, PAUL D., WILLEMSEN, MARTIN F.C., VAN ERK, WILLEM
Application granted granted Critical
Publication of US5530317A publication Critical patent/US5530317A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/44One or more circuit elements structurally associated with the tube or lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • H01J61/0737Main electrodes for high-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material

Definitions

  • the invention relates to a high-pressure metal halide discharge lamp provided with a light-transmitting lamp vessel which is sealed in a vacuumtight manner and contains an ionizable filling with rare gas and metal halide, and in which tungsten electrodes are arranged connected to current conductors which issue to the exterior through the lamp vessel, which electrodes are provided with an oxidic electron emitter.
  • the electrodes of the known lamp are provided with, for example coated with, a cermet of tungsten and metal oxide chosen from the oxides of scandium, aluminium, dysprosium, thorium, yttrium, and zirconium and mixtures thereof.
  • the cermet in this case comprises 2 to 30% by weight metal oxide.
  • the cermet is porous so that the electrodes have a low thermal conductivity and consequently quickly assume their operational temperature.
  • the complicated structure of the electrodes and the resulting complicated manufacture of the electrodes constitute a disadvantage.
  • Another disadvantage of the known lamp is the use of the radioactive thorium oxide. This represents a severe strain on the environment, both during its manufacture and during manufacture of the electrodes, and also at the end of lamp life.
  • Another disadvantage is that the emitter is comparatively quickly exhausted when oxides other than thorium oxide are used.
  • Emitter is usually present in or on electrodes in discharge lamps for facilitating the emission of electrons.
  • the electrode In proportion as the emitter has a lower work function compared with the electrode material without emitter the electrode will assume a lower temperature during operation. The evaporation of electrode material and deposition of the vapour on the lamp vessel are smaller then.
  • the lamp has a higher luminous maintenance: its initial luminous efficacy (lm/W) is better maintained during lamp life. It is in particular the noxious thorium oxide which has a low work function.
  • EP 0,136,726-A2 discloses a high-pressure sodium discharge lamp in which similar oxidic materials are used as emitters. In or on the electrodes there are present one or several of the oxides of yttrium, lanthanum, cerium, hafnium, thorium, beryllium and scandium. These oxides are more stable than BaO which is sometimes used as an emitter in high-pressure sodium discharge lamps, and are accordingly supposed to counteract the loss of sodium from the lamp vessel.
  • U.S. Pat. No. 3,700,951 discloses high-pressure sodium and high-pressure mercury discharge lamps which have refractory electrodes with an emitter arranged in a cylinder at the free end of each of these electrodes, which emitter is made of tungsten, molybdenum or tantalum with a first metal chosen from the lanthanides and thorium and a second metal chosen from elements having atomic numbers 22 to 28, 44 to 46 and 76 to 78, the alloy of said first and second metal moistening the tungsten, molybdenum or tantalum.
  • These lamps have similar disadvantages as does the lamp mentioned first.
  • U.S. Pat. No. 4,303,848 discloses a high-pressure discharge lamp in which a sintered body has been placed on an electrode rod of tungsten, which body is built up from tungsten, molybdenum, tantalum, and mixtures thereof, with an oxide of yttrium, zirconium, aluminium and mixtures thereof, and with an alkaline earth compound serving as the emitter.
  • the purpose of the oxide is to replace thorium oxide in preventing contact between the alkaline earth compound and the metal. Therefore, comparatively large quantities of oxide of up to 30% by weight are used.
  • the electrodes comprise, distributed in their mass, a first oxide chosen from hafnium oxide and zirconium oxide and a second oxide chosen from among yttrium oxide, lanthanum oxide, scandium oxide and cerium oxide, and are substantially free from thorium oxide, while the second oxide accounts for M mole % of the sum of the second oxide and the first oxide, M having the values listed in Table 1:
  • each second oxide has its own quantity of first oxide in relation to which it has a molar percentage M.
  • M Y Y 2 O 3 *100%/(Y 2 O 3 + ⁇ M I O 2 ⁇ )
  • the percentual (molar) quantity M of the second oxide is given in relation to the sum of the second oxide and its own quantities of each of the first oxides. For example, if the lamp comprises Y 2 O 3 and two first oxides, then the following is true:
  • the electrodes of the high-pressure metal halide discharge lamp according to the invention are substantially free from thorium oxide. Nevertheless, the lamp has a good lumen maintenance. This is remarkable because the first oxides have a comparatively high work function A (eV) which is only slightly lower than that of tungsten itself and much higher than that of thorium oxide, as is evident from Table 2.
  • the first oxides are hardly suitable for use as emitters, least of all for the purpose of the invention.
  • the first oxides would cause a comparatively high electrode temperature because they emit with difficulty, and the tungsten vapour pressure would be comparatively high and blackening of the lamp vessel comparatively quick.
  • the second oxides have a considerably lower work function than the first, although slightly higher than ThO 2 , as is evident from Table 3.
  • the second oxides have a comparatively high volatility at elevated temperature.
  • yttrium oxide is found to have lost 39.85% and 79.2% of its mass after heating for 10 hours in vacuo at 2625 and 2775K, respectively.
  • Deposition of the--white--oxide on the lamp vessel is indeed less detrimental to the lumen maintenance of the lamp than deposition of black tungsten, but an electrode having a second oxide as its emitter will soon have spent its emitter.
  • Table 4 shows that the emitter material mass loss ⁇ m 2625K and ⁇ m 2775K at 2625 and 2775K, respectively, is much lower for electrodes of the lamp according to the invention than for electrodes containing only yttrium oxide. It is noted in this connection that the temperature of 2775K is not reached in all lamp types during normal operation. This temperature and the vacuum conditions, accordingly, were only chosen for obtaining a clear indication as to the stability of the emitter material in a short test.
  • hafnium oxide and yttrium oxide yield stable mixtures of oxides with a structure of the fluorite type over a wide range of stoicheometries. This may explain the wide mixing range in which these oxides can be used successfully as emitter materials in the electrodes.
  • Other combinations of a first oxide and a second oxide also yield such stable mixtures of oxides and/or stable mixed oxides at or close to the composition M II 2 M I 2 O 7 , in which M II is the metal of the second oxide and M I the metal of the first oxide, albeit with different solubilities of the components in these mixed oxides.
  • Such stable mixed oxides may have structures of the fluorite, pyrochlore, or other crystallographic type. In general, the mixed oxides have a higher melting point and/or a lower vapour pressure than the corresponding second oxide.
  • an emitter will generally be chosen to have a comparatively high content of the second oxide, because this has a comparatively low work function.
  • the emitter may be optimized in that the loss of emitter material of the electrode is lower in the case of a lower content.
  • yttrium oxide used as the second oxide
  • scandium oxide used as the second oxide
  • M approximately 33 mole %).
  • the emitter material is present distributed throughout the mass of the electrode and not in a layer provided at the surface of the electrode, as is the case in all embodiments described in the cited U.S. Pat. No. 4,574,219. It can only evaporate then when it has come to the surface of the electrode through transport along the boundaries of the tungsten particles, while evaporated emitter material can be supplemented from the mass.
  • the structure of the electrode is also important in that the emitter material, which is enveloped in tungsten during storage of the electrode and during lamp manufacture, cannot or substantially not be exposed to influences of the ambient air and to pollution and/or dissociation owing to, for example, moisture.
  • the mixed oxides are less sensitive to such influences than are their components. This is illustrated by an experiment in which pellets of La 2 Hf 2 O 7 , of La 2 O 3 +HfO 2 , and of La 2 O 3 were stored exposed to air. After 48 hours of storage the weight gain of these pellets was 0, 1.4, and 2.99% respectively.
  • the structure is also important in that it renders it possible for the high-pressure metal halide discharge lamp to be operated, if so desired, at electrode temperatures at which the emitter material, which is enveloped under pressure, would be molten under atmospheric pressure. Owing to the incorporation in tungsten, it cannot change its composition anywhere except at the electrode surface.
  • the stability of the emitter material allows manufacturing steps of the electrode, such as sintering, at comparatively high temperatures under atmospheric pressure.
  • the quantity of emitter material in the electrodes may be chosen between wide limits, also depending on the type of high-pressure metal halide discharge lamp. In general, 1 to 30% by volume will suffice, which will result, also depending on the oxides chosen, in quantities of up to no more than approximately 10% by weight. With quantities in the lower portion of the volume range indicated, electrodes may be readily obtained which have the emitter material finely dispersed in the tungsten matrix. In the higher portion, from approximately 25% by volume upwards, a transition is seen to a structure with a network of emitter material in the tungsten matrix, which accelerates the transport of emitter material to the electrode surface.
  • an emitter material content of up to 5% by weight is usually sufficient, for example, approximately 2% by weight; for other high-pressure metal halide discharge lamps this is a content of approximately 10% by weight.
  • a cyclical process takes place in lamps with rare-earth halides which returns first and second oxides to the electrodes in the form of the corresponding halides.
  • aluminium oxide which is useful in the lamp according to the cited U.S. Pat. No. 4,574,219, in substantial quantities is detrimental in the lamp according to the invention. Firstly, this oxide is found to evaporate substantially during heating steps in the manufacture of the electrode material; secondly, it is found to lead to a coarsening of the structure of the material.
  • Loss of emitter material at the surface is found to be compensated from the mass through diffusion. If a comparatively quick evaporation of the emitter material at the surface takes place owing to lamp operation with a high electrode temperature, and diffusion of emitter material along particle boundaries of the tungsten is not sufficient for compensation, a comparatively high emitter material content can be used so that the emitter material is present partly in a network structure and an accelerated transport to the surface also takes place by way of the network.
  • Sintered electrodes manufactured by powder metallurgy were used for testing the emitter material.
  • the powder material was manufactured by various techniques, for example, by the sol-gel method, ball mill operation, etc. Little difference was found in the properties of the electrodes obtained.
  • Sintered electrodes are highly suitable for small quantities of material and small numbers of electrodes. Preference is given, however, to the lamp according to the invention with electrodes manufactured from drawn material, obtained through drawing of sintered rods. Drawn material is characterized by tungsten crystals which have a much greater dimension in the longitudinal direction of the wire or rod than transversely thereto.
  • the tungsten of the electrodes may have the usual impurities and additions which control the particle growth of tungsten such as potassium, aluminium and silicon up to a total of, for example, 0.01% by weight of the tungsten.
  • the electrodes may have various shapes and dimensions.
  • an electrode may have a winding at or adjacent its free end, for example of tungsten wire, for example of the tungsten material of which the electrode itself was manufactured. Such a winding may be used for providing a desired temperature gradient across the electrode during lamp operation or for facilitating starting.
  • the electrodes may be of, for example, spherical or hemispherical shape at their free ends.
  • the electrodes may be arranged, for example, next to or opposite one another in the lamp vessel.
  • the lamp vessel may be made of a glass with a high SiO 2 content, for example of quartz glass, but alternatively, for example, of a crystalline material such as, for example, polycrystalline aluminium oxide or sapphire.
  • the lamp vessel may be accommodated in a closed outer envelope, if so desired.
  • the high-pressure metal halide discharge lamp is provided with a light-transmitting lamp vessel 1, made of quartz glass in the drawing, which is closed in a vacuumtight manner.
  • the lamp vessel contains an ionizable filling with rare gas and metal halide.
  • the filling of the lamp shown comprises mercury, iodides of sodium, thallium, holmium, thulium, and dysprosium, and 100 mbar argon.
  • Tungsten electrodes 2 are arranged in the lamp vessel and connected to current conductors 3, made of molybdenum in the Figure, which issue to the exterior through the lamp vessel.
  • the electrodes are provided with an oxidic electron emitter.
  • the lamp shown has a quartz glass outer envelope 4 which carries lamp caps 5.
  • the electrodes-2 have, distributed in their mass, a first oxide chosen from hafnium oxide and zirconium oxide and a second oxide chosen from yttrium oxide, lanthanum oxide, scandium oxide and cerium oxide, and are substantially free from thorium oxide, the second oxide accounting for M mole % of the sum of the second oxide and first oxide together, M having the values listed in Table 1.
  • the lamp shown consumes a power of 75 W.
  • the lamp was manufactured with electrodes containing various emitter materials according to the invention and was compared with lamps which have other emitter materials but are identical in all other respects.
  • the electrodes were manufactured in that tungsten powder was mixed with powder of the relevant oxides. The mixture was densified and sintered, whereby rod-shaped electrodes of 360 ⁇ m thickness were obtained with a density representing a high percentage of the theoretical density, approximately 97%. Electrodes of lower density may also be used, however, for other types of lamps, such as types not containing rare-earth metal and/or scandium in the filling.
  • the lamps were operated for 1000 h and their electrode temperatures were measured, as was their lumen maintenance (maint.). After 1000 hours of operation, individual lamps of each type were opened and the thickness d was measured of the electrode surface layer in which no emitter material was present.
  • the lamp having electrodes containing only tungsten has a high electrode temperature, while the electrodes emit with difficulty and lumen maintenance is low.
  • the lamp shows strong blackening owing to the evaporation and deposition of tungsten caused by the high temperature.
  • Electrodes with yttrium oxide or with hafnium oxide have a somewhat lower, but still comparatively high temperature, and result in a comparable bad maintenance. There is a strong, in the case of hafnium oxide very strong oxide depletion at the surface. The oxides evaporate and are supplemented too slowly from the electrode mass.
  • Sintered electrodes with thorium oxide have a temperature comparable to that of electrodes with hafnium oxide, but yield a better maintenance.
  • the depletion depth is also smaller than in the preceding lamps.
  • Lamps with electrodes from drawn wire have the lowest electrode temperature and a high, indeed the highest maintenance. There is a remarkable difference with lamps having sintered thoriated tungsten electrodes both as regards the temperature and as regards maintenance.
  • the lamp according to the invention has an electrode temperature which is only 50° higher than that of the preceding lamp, but 100° lower than that of the sintered thoriated tungsten electrode. Lumen maintenance is comparable to that of the lamp having drawn thoriated electrodes, but much better than that of the lamp having sintered thoriated electrodes. The depletion depth, accordingly, is very small. The evaporation of emitter material is small and is substantially compensated from the mass. Remarkable are the differences, in temperature as well as in depletion depth and in maintenance, between the lamp according to the invention and the lamp containing only the first or only the second oxide. This clearly demonstrates the synergetic effect of these oxides.
  • lamps which had a rare gas, mercury and a mixture of sodium iodide, thallium iodide and indium iodide as their ionizable filling. These lamps had electrodes selected from those mentioned in Table 6. Their maintenance and luminous efficacy after 1000 hours of operation are represented in said table, too.

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

The high-pressure metal halide discharge lamp has tungsten electrodes in a light-transmitting lamp vessel which is closed in a vacuumtight manner. The electrodes comprise an emitter which is distributed throughout their mass and is formed by a first oxide chosen from hafnium oxide and zirconium oxide and by a second oxide chosen from yttrium oxide, lanthanum oxide, cerium oxide and scandium oxide, and are substantially free from thorium oxide. The lamp retains its initial light output to a high degree throughout its life.

Description

BACKGROUND OF THE INVENTION
The invention relates to a high-pressure metal halide discharge lamp provided with a light-transmitting lamp vessel which is sealed in a vacuumtight manner and contains an ionizable filling with rare gas and metal halide, and in which tungsten electrodes are arranged connected to current conductors which issue to the exterior through the lamp vessel, which electrodes are provided with an oxidic electron emitter.
Such a high-pressure metal halide discharge lamp is known from U.S. Pat. No. 4,574,219.
Near their free ends, the electrodes of the known lamp are provided with, for example coated with, a cermet of tungsten and metal oxide chosen from the oxides of scandium, aluminium, dysprosium, thorium, yttrium, and zirconium and mixtures thereof. The cermet in this case comprises 2 to 30% by weight metal oxide.
It is the object of these electrodes to render it possible that the lamp quickly enters its operational state after starting and that a preceding period of a glow discharge is avoided. For this purpose, the cermet is porous so that the electrodes have a low thermal conductivity and consequently quickly assume their operational temperature.
The complicated structure of the electrodes and the resulting complicated manufacture of the electrodes constitute a disadvantage. Another disadvantage of the known lamp is the use of the radioactive thorium oxide. This represents a severe strain on the environment, both during its manufacture and during manufacture of the electrodes, and also at the end of lamp life. Another disadvantage is that the emitter is comparatively quickly exhausted when oxides other than thorium oxide are used.
Emitter is usually present in or on electrodes in discharge lamps for facilitating the emission of electrons. In proportion as the emitter has a lower work function compared with the electrode material without emitter the electrode will assume a lower temperature during operation. The evaporation of electrode material and deposition of the vapour on the lamp vessel are smaller then. A result of this is that the lamp has a higher luminous maintenance: its initial luminous efficacy (lm/W) is better maintained during lamp life. It is in particular the noxious thorium oxide which has a low work function.
EP 0,136,726-A2 discloses a high-pressure sodium discharge lamp in which similar oxidic materials are used as emitters. In or on the electrodes there are present one or several of the oxides of yttrium, lanthanum, cerium, hafnium, thorium, beryllium and scandium. These oxides are more stable than BaO which is sometimes used as an emitter in high-pressure sodium discharge lamps, and are accordingly supposed to counteract the loss of sodium from the lamp vessel.
U.S. Pat. No. 3,700,951 discloses high-pressure sodium and high-pressure mercury discharge lamps which have refractory electrodes with an emitter arranged in a cylinder at the free end of each of these electrodes, which emitter is made of tungsten, molybdenum or tantalum with a first metal chosen from the lanthanides and thorium and a second metal chosen from elements having atomic numbers 22 to 28, 44 to 46 and 76 to 78, the alloy of said first and second metal moistening the tungsten, molybdenum or tantalum. These lamps have similar disadvantages as does the lamp mentioned first.
U.S. Pat. No. 4,303,848 discloses a high-pressure discharge lamp in which a sintered body has been placed on an electrode rod of tungsten, which body is built up from tungsten, molybdenum, tantalum, and mixtures thereof, with an oxide of yttrium, zirconium, aluminium and mixtures thereof, and with an alkaline earth compound serving as the emitter. The purpose of the oxide here is to replace thorium oxide in preventing contact between the alkaline earth compound and the metal. Therefore, comparatively large quantities of oxide of up to 30% by weight are used.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a high-pressure metal halide discharge lamp of the kind described in the opening paragraph whose electrodes are substantially free from thorium oxide, while the lamp nevertheless has a comparatively high lumen maintenance.
According to the invention, this object is achieved in that the electrodes comprise, distributed in their mass, a first oxide chosen from hafnium oxide and zirconium oxide and a second oxide chosen from among yttrium oxide, lanthanum oxide, scandium oxide and cerium oxide, and are substantially free from thorium oxide, while the second oxide accounts for M mole % of the sum of the second oxide and the first oxide, M having the values listed in Table 1:
              TABLE 1                                                     
______________________________________                                    
first oxide (I)                                                           
             second oxide (II)                                            
                          M (mole % II)                                   
______________________________________                                    
HfO.sub.2    Y.sub.2 O.sub.3                                              
                           5-60                                           
ZrO.sub.2    Y.sub.2 O.sub.3                                              
                           5-65                                           
HfO.sub.2    La.sub.2 O.sub.3                                             
                          30-40                                           
ZrO.sub.2    La.sub.2 O.sub.3                                             
                          30-40                                           
HfO.sub.2    Ce.sub.2 O.sub.3                                             
                          25-40                                           
ZrO.sub.2    Ce.sub.2 O.sub.3                                             
                          30-35                                           
HfO.sub.2    Sc.sub.2 O.sub.3                                             
                           5-44                                           
ZrO.sub.2    Sc.sub.2 O.sub.3                                             
                           5-44                                           
______________________________________                                    
When the lamp contains more than one second oxide, each second oxide has its own quantity of first oxide in relation to which it has a molar percentage M. For example: supposing the lamp contains Y2 O3 and La2 O3 and a first oxide MI O2, then the molar percentages MY =Y2 O3 *100%/(Y2 O3 +{MI O2 }) and MLa =La2 O3 *100%/(La2 O3 +[MI O2 ]) comply with the values of the Table, and the total (molar) quantity MI O2 ={MI O2 }+[MI O2 ].
When the lamp has two first oxides, then the percentual (molar) quantity M of the second oxide is given in relation to the sum of the second oxide and its own quantities of each of the first oxides. For example, if the lamp comprises Y2 O3 and two first oxides, then the following is true:
M.sub.Y =Y.sub.2 O.sub.3 *100%/(HfO.sub.2 +Y.sub.2 O.sub.3 +ZrO.sub.2)=5-60
The electrodes of the high-pressure metal halide discharge lamp according to the invention are substantially free from thorium oxide. Nevertheless, the lamp has a good lumen maintenance. This is remarkable because the first oxides have a comparatively high work function A (eV) which is only slightly lower than that of tungsten itself and much higher than that of thorium oxide, as is evident from Table 2.
              TABLE 2                                                     
______________________________________                                    
        substance                                                         
               A (eV)                                                     
______________________________________                                    
        W      4.5                                                        
        ZrO.sub.2                                                         
               4                                                          
        HfO.sub.2                                                         
               3.8                                                        
        ThO.sub.2                                                         
               2.6                                                        
______________________________________                                    
On the basis of these data, one would have to conclude that the first oxides are hardly suitable for use as emitters, least of all for the purpose of the invention. The first oxides would cause a comparatively high electrode temperature because they emit with difficulty, and the tungsten vapour pressure would be comparatively high and blackening of the lamp vessel comparatively quick.
The second oxides have a considerably lower work function than the first, although slightly higher than ThO2, as is evident from Table 3.
              TABLE 3                                                     
______________________________________                                    
        substance                                                         
               A (eV)                                                     
______________________________________                                    
        Y.sub.2 O.sub.3                                                   
               2.8                                                        
        La.sub.2 O.sub.3                                                  
               3.1                                                        
        Ce.sub.2 O.sub.3                                                  
               3.2                                                        
        ThO.sub.2                                                         
               2.6                                                        
______________________________________                                    
The second oxides, however, have a comparatively high volatility at elevated temperature. When distributed throughout the mass of tungsten electrodes in a quantity of 30% by volume, for example, yttrium oxide is found to have lost 39.85% and 79.2% of its mass after heating for 10 hours in vacuo at 2625 and 2775K, respectively. Deposition of the--white--oxide on the lamp vessel is indeed less detrimental to the lumen maintenance of the lamp than deposition of black tungsten, but an electrode having a second oxide as its emitter will soon have spent its emitter.
Surprisingly, the combination of a first oxide with a second oxide in the tungsten electrode leads to a substantially smaller loss of emitter material, as was demonstrated by a furnace experiment in which the electrodes listed in Table 4 were heated in vacuo for 10 hours.
              TABLE 4                                                     
______________________________________                                    
            vol %    M (mole  Δm.sub.2625K                          
                                      Δm.sub.2775K                  
electrode   oxide    %)       (%)     (%)                                 
______________________________________                                    
W + Y.sub.2 O.sub.3                                                       
            30       100      39.85   79.2                                
W + HfO.sub.2                                                             
            30        0       8.0     11.5                                
W + Y.sub.2 O.sub.3 + HfO.sub.2                                           
            30       20       8.0     8.1                                 
W + Y.sub.2 O.sub.3 + HfO.sub.2                                           
            30       43       14.6    20                                  
W + Y.sub.2 O.sub.3 + HfO.sub.2                                           
            30       57       8.85    12.0                                
W + Y.sub.2 O.sub.3 + HfO.sub.2                                           
             7       25       6.85    6.95                                
W + Y.sub.2 O.sub.3 + HfO.sub.2                                           
             7       33       4.1     5.3                                 
W + Y.sub.2 O.sub.3 + HfO.sub.2                                           
             7       50       7.1     9.1                                 
______________________________________                                    
Table 4 shows that the emitter material mass loss Δm2625K and Δm2775K at 2625 and 2775K, respectively, is much lower for electrodes of the lamp according to the invention than for electrodes containing only yttrium oxide. It is noted in this connection that the temperature of 2775K is not reached in all lamp types during normal operation. This temperature and the vacuum conditions, accordingly, were only chosen for obtaining a clear indication as to the stability of the emitter material in a short test.
It is remarkable that the oxide loss in the presence of hafnium oxide (lines 3 to 8 of Table 4) is much lower than in the absence of this oxide (line 1). It is even more remarkable that the loss is very low in the case of a comparatively low oxide content of 7% by volume (lines 6 to 8), even lower than the in itself much smaller loss of hafnium oxide of an electrode comprising this oxide only (line 2).
It was found that hafnium oxide and yttrium oxide yield stable mixtures of oxides with a structure of the fluorite type over a wide range of stoicheometries. This may explain the wide mixing range in which these oxides can be used successfully as emitter materials in the electrodes. Other combinations of a first oxide and a second oxide also yield such stable mixtures of oxides and/or stable mixed oxides at or close to the composition MII 2 MI 2 O7, in which MII is the metal of the second oxide and MI the metal of the first oxide, albeit with different solubilities of the components in these mixed oxides. Such stable mixed oxides may have structures of the fluorite, pyrochlore, or other crystallographic type. In general, the mixed oxides have a higher melting point and/or a lower vapour pressure than the corresponding second oxide.
In an actual lamp according to the invention, an emitter will generally be chosen to have a comparatively high content of the second oxide, because this has a comparatively low work function. On the other hand, the emitter may be optimized in that the loss of emitter material of the electrode is lower in the case of a lower content. When yttrium oxide is used as the second oxide, the same quantity up to 2.33 times as much first oxide will preferably be added thereto (M=30-50 mole % ). When scandium oxide is used as the second oxide, somewhat less than equal quantities up to two times as much of a first oxide is preferably added thereto ( M=30-44 mole %). When a different second oxide is used, approximately twice the quantity of first oxide will preferably accompany it (M=approximately 33 mole %).
Similar data of other combinations of a first and a second oxide are represented in Table 4a.
              TABLE 4a                                                    
______________________________________                                    
           vol %  M (mole  Δm.sub.2625K                             
                                    Δm.sub.2775K                    
           oxide  %)       (%)      (%)                                   
______________________________________                                    
W + Sc.sub.2 O.sub.3                                                      
             30       100             72.1                                
W + Sc.sub.2 O.sub.3 + ZrO.sub.2                                          
             30       20              9.6                                 
W + Sc.sub.2 O.sub.3 + ZrO.sub.2                                          
             30       40              9.9                                 
W + Sc.sub.2 O.sub.3 + ZrO.sub.2                                          
              8       40              5.2                                 
W + Sc.sub.2 O.sub.3 + ZrO.sub.2                                          
             30       40              7.3                                 
W + La.sub.2 O.sub.3                                                      
             30       100      >80                                        
W + Ce.sub.2 O.sub.3                                                      
             30       100      >80                                        
W + La.sub.2 O.sub.3 + ZrO.sub.2                                          
             30       33       57.0                                       
W + La.sub.2 O.sub.3 + HfO.sub.2                                          
             30       33       45.0                                       
W + Ce.sub.2 O.sub.3 + ZrO.sub.2                                          
             30       33       39.2                                       
W + Ce.sub.2 O.sub.3 + HfO.sub.2                                          
             30       33       7.6                                        
______________________________________                                    
It is also essential to the invention that the emitter material is present distributed throughout the mass of the electrode and not in a layer provided at the surface of the electrode, as is the case in all embodiments described in the cited U.S. Pat. No. 4,574,219. It can only evaporate then when it has come to the surface of the electrode through transport along the boundaries of the tungsten particles, while evaporated emitter material can be supplemented from the mass.
The structure of the electrode is also important in that the emitter material, which is enveloped in tungsten during storage of the electrode and during lamp manufacture, cannot or substantially not be exposed to influences of the ambient air and to pollution and/or dissociation owing to, for example, moisture. In addition, the mixed oxides are less sensitive to such influences than are their components. This is illustrated by an experiment in which pellets of La2 Hf2 O7, of La2 O3 +HfO2, and of La2 O3 were stored exposed to air. After 48 hours of storage the weight gain of these pellets was 0, 1.4, and 2.99% respectively.
The structure is also important in that it renders it possible for the high-pressure metal halide discharge lamp to be operated, if so desired, at electrode temperatures at which the emitter material, which is enveloped under pressure, would be molten under atmospheric pressure. Owing to the incorporation in tungsten, it cannot change its composition anywhere except at the electrode surface. The stability of the emitter material allows manufacturing steps of the electrode, such as sintering, at comparatively high temperatures under atmospheric pressure.
The quantity of emitter material in the electrodes may be chosen between wide limits, also depending on the type of high-pressure metal halide discharge lamp. In general, 1 to 30% by volume will suffice, which will result, also depending on the oxides chosen, in quantities of up to no more than approximately 10% by weight. With quantities in the lower portion of the volume range indicated, electrodes may be readily obtained which have the emitter material finely dispersed in the tungsten matrix. In the higher portion, from approximately 25% by volume upwards, a transition is seen to a structure with a network of emitter material in the tungsten matrix, which accelerates the transport of emitter material to the electrode surface. When used in lamps with rare-earth halides and/or scandium halide in the ionizable filling, an emitter material content of up to 5% by weight is usually sufficient, for example, approximately 2% by weight; for other high-pressure metal halide discharge lamps this is a content of approximately 10% by weight. A cyclical process takes place in lamps with rare-earth halides which returns first and second oxides to the electrodes in the form of the corresponding halides.
It is noted that aluminium oxide, which is useful in the lamp according to the cited U.S. Pat. No. 4,574,219, in substantial quantities is detrimental in the lamp according to the invention. Firstly, this oxide is found to evaporate substantially during heating steps in the manufacture of the electrode material; secondly, it is found to lead to a coarsening of the structure of the material.
Loss of emitter material at the surface is found to be compensated from the mass through diffusion. If a comparatively quick evaporation of the emitter material at the surface takes place owing to lamp operation with a high electrode temperature, and diffusion of emitter material along particle boundaries of the tungsten is not sufficient for compensation, a comparatively high emitter material content can be used so that the emitter material is present partly in a network structure and an accelerated transport to the surface also takes place by way of the network.
Sintered electrodes manufactured by powder metallurgy were used for testing the emitter material. The powder material was manufactured by various techniques, for example, by the sol-gel method, ball mill operation, etc. Little difference was found in the properties of the electrodes obtained. Sintered electrodes are highly suitable for small quantities of material and small numbers of electrodes. Preference is given, however, to the lamp according to the invention with electrodes manufactured from drawn material, obtained through drawing of sintered rods. Drawn material is characterized by tungsten crystals which have a much greater dimension in the longitudinal direction of the wire or rod than transversely thereto.
The tungsten of the electrodes may have the usual impurities and additions which control the particle growth of tungsten such as potassium, aluminium and silicon up to a total of, for example, 0.01% by weight of the tungsten.
Depending on the type of high-pressure metal halide discharge lamp, the electrodes may have various shapes and dimensions. Thus an electrode may have a winding at or adjacent its free end, for example of tungsten wire, for example of the tungsten material of which the electrode itself was manufactured. Such a winding may be used for providing a desired temperature gradient across the electrode during lamp operation or for facilitating starting. Alternatively, the electrodes may be of, for example, spherical or hemispherical shape at their free ends.
The electrodes may be arranged, for example, next to or opposite one another in the lamp vessel. The lamp vessel may be made of a glass with a high SiO2 content, for example of quartz glass, but alternatively, for example, of a crystalline material such as, for example, polycrystalline aluminium oxide or sapphire. The lamp vessel may be accommodated in a closed outer envelope, if so desired.
BRIEF DESCRIPTION OF THE DRAWING
An embodiment of the high-pressure metal halide discharge lamp according to the invention is shown in the drawing in side elevation.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the drawing, the high-pressure metal halide discharge lamp is provided with a light-transmitting lamp vessel 1, made of quartz glass in the drawing, which is closed in a vacuumtight manner. The lamp vessel contains an ionizable filling with rare gas and metal halide. The filling of the lamp shown comprises mercury, iodides of sodium, thallium, holmium, thulium, and dysprosium, and 100 mbar argon. Tungsten electrodes 2 are arranged in the lamp vessel and connected to current conductors 3, made of molybdenum in the Figure, which issue to the exterior through the lamp vessel. The electrodes are provided with an oxidic electron emitter. The lamp shown has a quartz glass outer envelope 4 which carries lamp caps 5.
The electrodes-2 have, distributed in their mass, a first oxide chosen from hafnium oxide and zirconium oxide and a second oxide chosen from yttrium oxide, lanthanum oxide, scandium oxide and cerium oxide, and are substantially free from thorium oxide, the second oxide accounting for M mole % of the sum of the second oxide and first oxide together, M having the values listed in Table 1.
              TABLE 1                                                     
______________________________________                                    
first oxide (I)                                                           
             second oxide (II)                                            
                          M (mole % II)                                   
______________________________________                                    
HfO.sub.2    Y.sub.2 O.sub.3                                              
                           5-60                                           
ZrO.sub.2    Y.sub.2 O.sub.3                                              
                           5-65                                           
HfO.sub.2    La.sub.2 O.sub.3                                             
                          30-40                                           
ZrO.sub.2    La.sub.2 O.sub.3                                             
                          30-40                                           
HfO.sub.2    Ce.sub.2 O.sub.3                                             
                          25-40                                           
ZrO.sub.2    Ce.sub.2 O.sub.3                                             
                          30-35                                           
HfO.sub.2    Sc.sub.2 O.sub.3                                             
                           5-44                                           
ZrO.sub.2    Sc.sub.2 O.sub.3                                             
                           5-44                                           
______________________________________                                    
The lamp shown consumes a power of 75 W.
The lamp was manufactured with electrodes containing various emitter materials according to the invention and was compared with lamps which have other emitter materials but are identical in all other respects. The electrodes were manufactured in that tungsten powder was mixed with powder of the relevant oxides. The mixture was densified and sintered, whereby rod-shaped electrodes of 360 μm thickness were obtained with a density representing a high percentage of the theoretical density, approximately 97%. Electrodes of lower density may also be used, however, for other types of lamps, such as types not containing rare-earth metal and/or scandium in the filling.
The lamps were operated for 1000 h and their electrode temperatures were measured, as was their lumen maintenance (maint.). After 1000 hours of operation, individual lamps of each type were opened and the thickness d was measured of the electrode surface layer in which no emitter material was present.
The results are listed in Table 5.
              TABLE 5                                                     
______________________________________                                    
                            maint.                                        
electrode           T (K)   (%)      d (μm)                            
______________________________________                                    
W                   2820    65       --                                   
W + 2 vol % Y.sub.2 O.sub.3                                               
                    2760    72       330                                  
W + 2 vol % HfO.sub.2                                                     
                    2730    69       680                                  
W + 2 vol % ThO.sub.2                                                     
                    2710    80       250                                  
W + 2 vol % ThO.sub.2 *                                                   
                    2560    94        30                                  
W + 1 vol % HfO.sub.2 + 1 vol % Y.sub.2 O.sub.3                           
                    2610    92        40                                  
______________________________________                                    
 *from drawn wire.                                                        
It is clear from Table 5 that the lamp having electrodes containing only tungsten has a high electrode temperature, while the electrodes emit with difficulty and lumen maintenance is low. The lamp shows strong blackening owing to the evaporation and deposition of tungsten caused by the high temperature.
Electrodes with yttrium oxide or with hafnium oxide have a somewhat lower, but still comparatively high temperature, and result in a comparable bad maintenance. There is a strong, in the case of hafnium oxide very strong oxide depletion at the surface. The oxides evaporate and are supplemented too slowly from the electrode mass.
Sintered electrodes with thorium oxide have a temperature comparable to that of electrodes with hafnium oxide, but yield a better maintenance. The depletion depth is also smaller than in the preceding lamps.
Lamps with electrodes from drawn wire have the lowest electrode temperature and a high, indeed the highest maintenance. There is a remarkable difference with lamps having sintered thoriated tungsten electrodes both as regards the temperature and as regards maintenance.
The lamp according to the invention has an electrode temperature which is only 50° higher than that of the preceding lamp, but 100° lower than that of the sintered thoriated tungsten electrode. Lumen maintenance is comparable to that of the lamp having drawn thoriated electrodes, but much better than that of the lamp having sintered thoriated electrodes. The depletion depth, accordingly, is very small. The evaporation of emitter material is small and is substantially compensated from the mass. Remarkable are the differences, in temperature as well as in depletion depth and in maintenance, between the lamp according to the invention and the lamp containing only the first or only the second oxide. This clearly demonstrates the synergetic effect of these oxides.
Other lamps were made which had a rare gas, mercury and a mixture of sodium iodide, thallium iodide and indium iodide as their ionizable filling. These lamps had electrodes selected from those mentioned in Table 6. Their maintenance and luminous efficacy after 1000 hours of operation are represented in said table, too.
              TABLE 6                                                     
______________________________________                                    
electrode           maint. (%)                                            
                              η (%)                                   
______________________________________                                    
W + 18 vol % ThO.sub.2                                                    
                    92        74                                          
W + 30 vol % (Y.sub.2 O.sub.3 + HfO.sub.2)                                
                    90        67                                          
W + 30 vol % La.sub.2 Hf.sub.2 O.sub.7                                    
                    95        75                                          
______________________________________                                    
It is apparent from Table 6, that the lamps having thoriated electrodes are only slightly better than the lamps having Y2 O3 /HfO2 as the emitter in the electrodes. La2 Hf2 O7 even gives better results with respect to maintenace as well as luminous efficacy than thoria.

Claims (16)

We claim:
1. A high-pressure metal halide discharge lamp, comprising:
a light-transmitting lamp vessel sealed in a vacuumtight manner and containing an ionizable filling with rare gas and metal halide, tungsten electrodes arranged within said lamp vessel between which a discharge is maintained during lamp operation, and current conductors connected to said electrodes which issue to the exterior through the lamp vessel, which electrodes comprise, distributed in their mass, an oxidic electron emitter including a first oxide chosen from hafnium oxide and zirconium oxide and a second oxide chosen from among yttrium oxide, lanthanum oxide, scandium oxide and cerium oxide, and are substantially free from thorium oxide, while the second oxide accounts for M mole % of the sum of the second oxide and the first oxide, M having the values listed in Table 1:
              TABLE 1                                                     
______________________________________                                    
first oxide (I)                                                           
             second oxide (II)                                            
                          M (mole % II)                                   
______________________________________                                    
HfO.sub.2    Y.sub.2 O.sub.3                                              
                           5-60                                           
ZrO.sub.2    Y.sub.2 O.sub.3                                              
                           5-65                                           
HfO.sub.2    La.sub.2 O.sub.3                                             
                          30-40                                           
ZrO.sub.2    La.sub.2 O.sub.3                                             
                          30-40                                           
HfO.sub.2    Ce.sub.2 O.sub.3                                             
                          25-40                                           
ZrO.sub.2    Ce.sub.2 O.sub.3                                             
                          30-35                                           
HfO.sub.2    Sc.sub.2 O.sub.3                                             
                           5-44                                           
ZrO.sub.2    Sc.sub.2 O.sub.3                                             
                           5-44                                           
______________________________________                                    
2. A high-pressure metal halide discharge lamp as claimed in claim 1, characterized in that, (a) with yttrium oxide chosen as the second oxide, the first oxide is present within the range of 1 to 2.33 times the molar quantity of the yttrium oxide, (b) with lanthanum oxide chosen as the second oxide, approximately twice as much of the first oxide is present relative to the lanthanum oxide and (c) with cerium oxide present as the second oxide, approximately twice as much of the first oxide is present relative to the cerium oxide.
3. A high-pressure metal halide discharge lamp as claimed in claim 2, characterized in that hafnium oxide is the first oxide.
4. A high-pressure metal halide discharge lamp as claimed in claim 2, characterized in that the oxidic electron emitter accounts for up to 10% by weight of the electrodes.
5. A high-pressure metal halide discharge lamp as claimed in claim 4, characterized in that the lamp contains a metal halide chosen from the group comprising scandium halide and rare-earth halides, and the oxidic electron emitter accounts for up to 5% by weight of the electrodes.
6. A high-pressure metal halide discharge lamp as claimed in claim 5, characterized in that the oxidic electron emitter accounts for approximately 2% by weight of the electrodes.
7. A high-pressure metal halide discharge lamp as claimed in claim 2, characterized in that the oxidic electron emitter accounts for up to 10% by weight of the electrodes.
8. A high-pressure metal halide discharge lamp as claimed in claim 7, characterized in that the lamp contains a metal halide chosen from the group comprising scandium halide and rare-earth halides, and the oxidic electron emitter accounts for up to 5% by weight of the electrodes.
9. A high-pressure metal halide discharge lamp as claimed in claim 8, characterized in that the oxidic electron emitter accounts for approximately 2% by weight of the electrodes.
10. A high-pressure metal halide discharge lamp as claimed in claim 1, characterized in that hafnium oxide is the first oxide.
11. A high-pressure metal halide discharge lamp as claimed in claim 10, characterized in that the oxidic electron emitter accounts for up to 10% by weight of the electrodes.
12. A high-pressure metal halide discharge lamp as claimed in claim 11, characterized in that the lamp contains a metal halide chosen from the group comprising scandium halide and rare-earth halides, and the oxidic electron emitter accounts for up to 5% by weight of the electrodes.
13. A high-pressure metal halide discharge lamp as claimed in claim 12, characterized in that the oxidic electron emitter accounts for approximately 2% by weight of the electrodes.
14. A high-pressure metal halide discharge lamp as claimed in claim 1, characterized in that the oxidic electron emitter accounts for up to 10% by weight of the electrodes
15. A high-pressure metal halide discharge lamp as claimed in claim 14, characterized in that the lamp contains a metal halide chosen from the group comprising scandium halide and rare-earth halides, and the oxidic electron emitter accounts for up to 5% by weight of the electrodes.
16. A high-pressure metal halide discharge lamp as claimed in claim 15, characterized in that the oxidic electron emitter accounts for approximately 2% by weight of the electrodes.
US08/320,037 1993-10-07 1994-10-07 High-pressure metal halide discharge lamp with electrodes substantially free of thorium oxide Expired - Fee Related US5530317A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9301051A BE1007595A3 (en) 1993-10-07 1993-10-07 HIGH-metal halide discharge LAMP.
BE09301051 1993-10-07

Publications (1)

Publication Number Publication Date
US5530317A true US5530317A (en) 1996-06-25

Family

ID=3887399

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/320,037 Expired - Fee Related US5530317A (en) 1993-10-07 1994-10-07 High-pressure metal halide discharge lamp with electrodes substantially free of thorium oxide

Country Status (8)

Country Link
US (1) US5530317A (en)
EP (1) EP0647964B1 (en)
JP (1) JPH07153421A (en)
KR (1) KR950012517A (en)
CN (1) CN1069440C (en)
BE (1) BE1007595A3 (en)
DE (1) DE69405183T2 (en)
ES (1) ES2108932T3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046544A (en) * 1997-12-22 2000-04-04 U.S. Philips Corporation High-pressure metal halide discharge lamp
US6489723B2 (en) * 2000-05-08 2002-12-03 Ushiodenki Kabushiki Kaisha Ultra-high pressure mercury lamp
US20040169476A1 (en) * 2002-03-05 2004-09-02 Dietmar Ehrlichmann Mercury short arched lamp with a cathode containing lanthanum oxide
US20050052134A1 (en) * 2003-07-21 2005-03-10 Varanasi C. V. Dopant-free tungsten electrodes in metal halide lamps
US20050104521A1 (en) * 2002-03-05 2005-05-19 Stephan Berndanner Short arc high-pressure discharge lamp
US20060220559A1 (en) * 2005-03-31 2006-10-05 Ushio Denki Kabushiki Kaisha High-load and high-intensity discharge lamp
US20070103082A1 (en) * 2005-11-08 2007-05-10 Koito Manufacturing Co., Ltd. Arc tube for discharge lamp device
US20090302764A1 (en) * 2004-04-21 2009-12-10 Koninklijke Philips Electronics, N.V. Method for the thermal treatment of tungsten electrodes free from thorium oxide for high-pressure discharge lamps
US20120062101A1 (en) * 2009-05-14 2012-03-15 Bernhard Winzek Discharge Lamp Comprising Coated Electrode
US9502201B2 (en) 2008-12-08 2016-11-22 A.L.M.T. Corp. Tungsten electrode material and thermionic emission current measuring device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530293A1 (en) * 1995-08-17 1997-02-20 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure discharge lamp
JP2001266798A (en) 2000-03-15 2001-09-28 Nec Corp High-pressure discharge lamp
JP3759498B2 (en) * 2001-03-30 2006-03-22 松下電器産業株式会社 Metal halide lamp for automotive headlamp
JP4708611B2 (en) * 2001-07-09 2011-06-22 新日本無線株式会社 Cathode for discharge lamp
CN101263577B (en) 2004-07-06 2011-09-28 皇家飞利浦电子股份有限公司 Lamp with an improved lamp behaviour
JP4696697B2 (en) * 2005-06-03 2011-06-08 ウシオ電機株式会社 Super high pressure mercury lamp
WO2007026288A2 (en) * 2005-09-02 2007-03-08 Philips Intellectual Property & Standards Gmbh High-pressure gas discharge lamp
JP5293172B2 (en) * 2008-12-26 2013-09-18 ウシオ電機株式会社 Discharge lamp
CN103975414B (en) * 2012-07-03 2017-03-08 株式会社东芝 Tungsten alloy part and the discharge lamp using this tungsten alloy part, transmitting tube and magnetron
DE102012215184A1 (en) 2012-08-27 2014-02-27 Osram Gmbh High pressure discharge lamp
CN104183461A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode and ceramic halogen lamp
CN104183456A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode and ceramic halogen lamp
CN104183462A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode and ceramic halogen lamp
CN104183457A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode
CN104183460A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode and ceramic halogen lamp
CN104183463A (en) * 2013-05-28 2014-12-03 海洋王照明科技股份有限公司 Ceramic halogen lamp electrode and ceramic halogen lamp
CN106206215B (en) * 2016-08-21 2018-03-09 北京工业大学 A kind of compound La of binary2O3、Ta2O5Doping molybdenum cathode material and preparation method thereof
CN108533992A (en) * 2018-04-19 2018-09-14 绍兴文理学院 A kind of selective radiation light source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700951A (en) * 1970-02-11 1972-10-24 Thorn Lighting Ltd Discharge lamps having improved thermionic cathodes
US4052634A (en) * 1975-06-20 1977-10-04 U.S. Philips Corporation High-pressure gas discharge lamp and electron emissive electrode structure therefor
US4136227A (en) * 1976-11-30 1979-01-23 Mitsubishi Denki Kabushiki Kaisha Electrode of discharge lamp
US4303848A (en) * 1979-08-29 1981-12-01 Toshiba Corporation Discharge lamp and method of making same
EP0136726A2 (en) * 1983-10-06 1985-04-10 GTE Products Corporation Emissive material for high intensity sodium vapor discharge device
US4574219A (en) * 1984-05-25 1986-03-04 General Electric Company Lighting unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU527753B2 (en) * 1978-09-07 1983-03-24 Tokyo Shibaura Denki Kabushiki Kaisha Discharge lamp electrode
JPS6431343A (en) * 1987-07-28 1989-02-01 Iwasaki Electric Co Ltd Metal halide lamp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700951A (en) * 1970-02-11 1972-10-24 Thorn Lighting Ltd Discharge lamps having improved thermionic cathodes
US4052634A (en) * 1975-06-20 1977-10-04 U.S. Philips Corporation High-pressure gas discharge lamp and electron emissive electrode structure therefor
US4136227A (en) * 1976-11-30 1979-01-23 Mitsubishi Denki Kabushiki Kaisha Electrode of discharge lamp
US4303848A (en) * 1979-08-29 1981-12-01 Toshiba Corporation Discharge lamp and method of making same
EP0136726A2 (en) * 1983-10-06 1985-04-10 GTE Products Corporation Emissive material for high intensity sodium vapor discharge device
US4574219A (en) * 1984-05-25 1986-03-04 General Electric Company Lighting unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046544A (en) * 1997-12-22 2000-04-04 U.S. Philips Corporation High-pressure metal halide discharge lamp
US6489723B2 (en) * 2000-05-08 2002-12-03 Ushiodenki Kabushiki Kaisha Ultra-high pressure mercury lamp
US20040169476A1 (en) * 2002-03-05 2004-09-02 Dietmar Ehrlichmann Mercury short arched lamp with a cathode containing lanthanum oxide
US20050104521A1 (en) * 2002-03-05 2005-05-19 Stephan Berndanner Short arc high-pressure discharge lamp
US7279839B2 (en) 2002-03-05 2007-10-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Short arc high-pressure discharge lamp
US7583030B2 (en) * 2003-07-21 2009-09-01 Advanced Lighting Technologies, Inc. Dopant-free tungsten electrodes in metal halide lamps
US20050052134A1 (en) * 2003-07-21 2005-03-10 Varanasi C. V. Dopant-free tungsten electrodes in metal halide lamps
US8087966B2 (en) * 2004-04-21 2012-01-03 Koninklijke Philips Electronics N.V. Method for the thermal treatment of tungsten electrodes free from thorium oxide for high-pressure discharge lamps
US20090302764A1 (en) * 2004-04-21 2009-12-10 Koninklijke Philips Electronics, N.V. Method for the thermal treatment of tungsten electrodes free from thorium oxide for high-pressure discharge lamps
US7569994B2 (en) 2005-03-31 2009-08-04 Ushio Denki Kabushiki Kaisha High-load and high-intensity discharge lamp
US20060220559A1 (en) * 2005-03-31 2006-10-05 Ushio Denki Kabushiki Kaisha High-load and high-intensity discharge lamp
US20070103082A1 (en) * 2005-11-08 2007-05-10 Koito Manufacturing Co., Ltd. Arc tube for discharge lamp device
US8471473B2 (en) * 2005-11-08 2013-06-25 Koito Manufacturing Co., Ltd. Arc tube for discharge lamp device
US9502201B2 (en) 2008-12-08 2016-11-22 A.L.M.T. Corp. Tungsten electrode material and thermionic emission current measuring device
US20120062101A1 (en) * 2009-05-14 2012-03-15 Bernhard Winzek Discharge Lamp Comprising Coated Electrode
US8710743B2 (en) * 2009-05-14 2014-04-29 Osram Gmbh Discharge lamp comprising coated electrode

Also Published As

Publication number Publication date
EP0647964A1 (en) 1995-04-12
BE1007595A3 (en) 1995-08-16
DE69405183D1 (en) 1997-10-02
EP0647964B1 (en) 1997-08-27
CN1069440C (en) 2001-08-08
ES2108932T3 (en) 1998-01-01
CN1112285A (en) 1995-11-22
DE69405183T2 (en) 1998-02-26
KR950012517A (en) 1995-05-16
JPH07153421A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
US5530317A (en) High-pressure metal halide discharge lamp with electrodes substantially free of thorium oxide
EP0657399B1 (en) High-pressure discharge lamp having a ceramic discharge vessel, sintered body suitable therefor, and methods for producing the said sintered body
US3708710A (en) Discharge lamp thermoionic cathode containing emission material
US4303848A (en) Discharge lamp and method of making same
US5111108A (en) Vapor discharge device with electron emissive material
US6046544A (en) High-pressure metal halide discharge lamp
US5138224A (en) Fluorescent low pressure discharge lamp having sintered electrodes
US3563797A (en) Method of making air stable cathode for discharge device
US3919581A (en) Thoria-yttria emission mixture for discharge lamps
US2911376A (en) Activating material for electrodes in electric discharge devices
JP2005519436A6 (en) Mercury short arc lamp with cathode containing lanthanum oxide
JP2005519436A (en) Mercury short arc lamp with cathode containing lanthanum oxide
EP0200109B1 (en) Gettered high pressure sodium lamp
US4479074A (en) High intensity vapor discharge lamp with sintering aids for electrode emission materials
US4620128A (en) Tungsten laden emission mix of improved stability
EP0193714B1 (en) High pressure sodium lamp having improved pressure stability
US4806826A (en) High pressure sodium vapor discharge device
US2959702A (en) Lamp and mount
CA1227521A (en) Emissive material for high intensity sodium vapor discharge device
JPS6360498B2 (en)
JPH0213420B2 (en)
JP2864525B2 (en) Metal halide lamp
JPS61233961A (en) Discharge tube for light source
Tsuchihashi et al. IMPROVEMENT OF Dy-T1-In HALIDE LAMPS BY APPLYING Dy203 EMITTER TO ELECTRODES
JPS5826444A (en) High-pressure sodium lamp

Legal Events

Date Code Title Description
AS Assignment

Owner name: U.S. PHILIPS CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILLEMSEN, MARTIN F.C.;GOODELL, PAUL D.;VAN ERK, WILLEM;AND OTHERS;REEL/FRAME:007412/0248;SIGNING DATES FROM 19950313 TO 19950320

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20080625