US5458814A - Substituted naphthopyrans - Google Patents

Substituted naphthopyrans Download PDF

Info

Publication number
US5458814A
US5458814A US08/164,187 US16418793A US5458814A US 5458814 A US5458814 A US 5458814A US 16418793 A US16418793 A US 16418793A US 5458814 A US5458814 A US 5458814A
Authority
US
United States
Prior art keywords
alkyl
photochromic
group
phenyl
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/164,187
Inventor
Anil Kumar
Barry Van Gemert
David B. Knowles
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transitions Optical Inc
PPG Industries Inc
Original Assignee
Transitions Optical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Assigned to PPG INDUSTRIES, INC. reassignment PPG INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KNOWLES, DAVID B., KUMAR, ANIL, VAN GEMERT, BARRY
Priority to US08/164,187 priority Critical patent/US5458814A/en
Application filed by Transitions Optical Inc filed Critical Transitions Optical Inc
Priority to PCT/US1994/013968 priority patent/WO1995016215A1/en
Priority to AU12658/95A priority patent/AU1265895A/en
Priority to SG1996004909A priority patent/SG52465A1/en
Assigned to TRANSITIONS OPTICAL, INC. reassignment TRANSITIONS OPTICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HEINZE, PETER R.
Priority to US08/407,830 priority patent/US5573712A/en
Priority to US08/542,999 priority patent/US5650098A/en
Publication of US5458814A publication Critical patent/US5458814A/en
Application granted granted Critical
Priority to US08/571,000 priority patent/US5651923A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/92Naphthopyrans; Hydrogenated naphthopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/96Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters

Definitions

  • the present invention relates to certain novel naphthopyran compounds. More particularly, this invention relates to novel photochromic naphthopyran compounds and to compositions and articles containing such novel naphthopyran compounds.
  • ultraviolet rays such as the ultraviolet radiation in sunlight or the light of a mercury lamp
  • many photochromic compounds exhibit a reversible change in color.
  • the ultraviolet radiation is discontinued, such a photochromic compound will return to its original color or colorless state.
  • U.S. Pat. No. 5,066,818 describes various 3,3-diaryl-3H-naphtho[2,1-b]pyrans as having desirable photochromic properties, i.e., high colorability and acceptable fade, for ophthalmic and other applications. Also disclosed by way of comparative example in the '818 patent are the isomeric 2,2-diaryl-2H-naphtho[1,2-b]pyrans, which are reported to require unacceptably long periods of time to fade after activation.
  • U.S. Pat. No. 3,627,690 describes photochromic 2,2-di-substituted-2H-naphtho[1,2-b]pyran compositions containing minor amounts of either a base or weak-to-moderate strength acid.
  • the addition of either an acid or base to the naphthopyran composition is reported to increase the fade rate of the colored naphthopyrans, thereby making them useful in eye protection applications such as sunglasses. It is reported therein further that the fade rate of 2H-naphtho-[1,2-b]pyrans without the aforementioned additives ranges from several hours to many days to reach complete reversion.
  • U.S. Pat. No. 4,818,096 discloses a blue coloring photochromic benzo- or naphthopyran having at the position alpha to the oxygen of the pyran ring a phenyl group having a nitrogen containing substituent in the ortho or para positions.
  • the present invention relates to novel substituted 2H-naphtho-(1,2-b)pyran compounds which have been unexpectedly found to have an acceptable fade rate in addition to a high activated intensity and a high coloration rate.
  • the use of certain substituents at specific locations on the naphthol portion of the naphthopyran compound Increases the fade rate without the addition of acids or bases.
  • these compounds have certain substituents at the number 5 and 6 carbon atoms of the naphtho portion of the naphthopyran, and at the 2-position of the pyran ring. Certain substituents may also be present at the number 7, 8, 9 or 10 carbon atoms of the naphtho portion of the naphthopyran.
  • photochromic plastic materials particularly plastic materials for optical applications
  • photochromic ophthalmic plastic lenses have been investigated because of the weight advantage they offer, vis-a-vis, glass lenses.
  • photochromic transparencies for vehicles such as cars and airplanes, have been of interest because of the potential safety features that such transparencies offer.
  • Photochromic compounds that are most useful in optical applications are those which possess (a) a high quantum efficiency for coloring in the near ultraviolet, (b) a low quantum yield for bleaching with white light, and (c) a relatively fast thermal fade at ambient temperature but not so rapid a thermal fade rate that the combination of white light bleaching and thermal fade prevent coloring by the ultraviolet component of strong sunlight.
  • the aforesaid properties are desirably retained in conventional rigid synthetic plastic materials customarily used for ophthalmic and plano lenses when such materials have applied to or incorporated therein such photochromic compounds.
  • R 1 is the group, --C(O)W, W being --OR 4 or --N(R 5 )R 6 , wherein R 4 is hydrogen, allyl, C 1 -C 6 alkyl, e.g., methyl, ethyl, propyl, butyl, pentyl, and hexyl, phenyl, mono(C 1 -C 6 )alkyl substituted phenyl,mono(C 1 -C 6 )alkoxy-substituted phenyl, phenyl (C 1 -C 3 )alkyl, mono (C 1 -C 6 )alkyl substituted phenyl(C 1 -C 3 )alkyl, mono (C 1 -C 6 )alkoxy substituted phenyl(C 1 -C 3 )alkyl, (C 1 -C 6 )alkoxy(C 2 -C 4 )alkyl, or C 1 -C 6 ,
  • R 1 is the group, --C(O)W, W being the groups --OR 4 or --N(R 5 )R 6 , wherein R 4 is hydrogen, C 1 -C 4 alkyl, phenyl, mono (C 1 -C 4 )alkyl substituted phenyl, mono(C 1 -C 4 )alkoxy substituted phenyl, phenyl(C 1 -C 2 )alkyl, mono(C 1 -C 4 )alkyl substituted phenyl(C 1 -C 2 )alkyl, mono(C 1 -C 4 )alkoxy substituted phenyl(C 1 -C 2 )alkyl, mono(C 1 -C 4 )alkoxy(C 2 -C 3 )alkyl, or C 1 -C 4 haloalkyl; and R 5 and R 6 may each be selected from the group consisting of hydrogen, C 1 -C 4 alkyl, C 5 -C 7 cycl
  • the phenyl substituents may be selected from C 1 -C 4 alkyl and C 1 -C 4 alkoxy, and the halo substituents may be chloro or fluoro.
  • R 1 is the group --C(O)W, W being the group --OR 4 , wherein R 4 is a C 1 -C 3 alkyl.
  • R 2 and each R 3 in graphic formula I may be hydrogen, C 1 -C 6 alkyl, C 3 -C 7 cycloalkyl, substituted or unsubstituted phenyl, the group --OR 7 , wherein R 7 is hydrogen, (C 1 -C 6 )alkyl, phenyl(C 1 -C 3 )alkyl, mono(C 1 -C 6 )alkyl substituted phenyl(C 1 -C 3 )alkyl, mono(C 1 -C 6 )alkoxy substituted phenyl(C 1 -C 3 )alkyl, (C 1 -C 6 )alkoxy(C 2 -C 4 )alkyl, C 3 -C 7 cycloalkyl, mono (C 1 -C 4 )alkyl substituted C 3 -C 7 cycloalkyl, C 1 -C 6 haloalkyl, allyl, and the group, --CH(R 8 )X
  • R 2 and each R 3 are hydrogen, C 1 -C 3 alkyl, C 3 -C 5 cycloalkyl substituted or unsubstituted phenyl or --OR 7 , wherein R 7 is hydrogen, (C 1 -C 3 )alkyl, or the group, --CH(R 8 )X, wherein X is CN or --C(O)W and R 8 is hydrogen or methyl; or R 7 is the group --C(O)Y wherein Y is C 1 -C 3 alkyl or C 1 -C 3 alkoxy, said phenyl substituents being C 1 -C 3 alkyl or C 1 -C 3 alkoxy and n is selected from the integers 0 and 1.
  • R 1 , R 2 and R 3 in graphic formula I like letters have the same meaning unless stated otherwise.
  • B and B' in graphic formula I may each be selected from the group consisting of: (i) the substituted or unsubstituted aryl groups phenyl and naphthyl; (ii) the substituted or unsubstituted heterocyclic aromatic groups pyridyl, furanyl, benzofuranyl, thienyl, and benzothienyl, said aryl and heterocyclic substituents being selected from the group consisting of hydroxy, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy, (C 1 -C 6 )alkoxy(C 1 -C 4 )alkyl, acryloxy, methacryloxy and halogen, said halogen or (halo) groups being fluoro or chloro; (iii) the groups represented by the following graphic formulae II A and II B: ##STR2## wherein D may be oxygen or substituted nitrogen and E may be carbon or oxygen, provided that when
  • R 10 and R 11 in graphic formulae IIA and IIB may be hydrogen or C 1 -C 6 alkyl and R 9 may be hydrogen, C 1 -C 6 alkyl and C 1 -C 6 alkoxy, hydroxy, or halogen, said halogen being selected from chloro or fluoro; (iv) C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, (C 1 -C 6 )alkoxy(C 1 -C 4 )alkyl, C 3 -C 6 cycloalkyl, mono(C 1 -C 6 ) alkoxy(C 3 -C 6 )cycloalkyl, and halo(C 3 -C 6 )cycloalkyl, said halo group being selected from fluoro or chloro; and (v) B and B' taken together may form the saturated bicyclic ring compounds selected from the group consisting of adamantylidene, bornylidene, and norbornylidene.
  • B and B' are each selected from the group consisting of: (i) substituted or unsubstituted phenyl, said phenyl substituents being selected from the group consisting of C 1 -C 3 alkyl, and C 1 -C 3 alkoxy; (ii) the groups represented by graphic formulae II A and II B, wherein D is oxygen and E is carbon; R 10 and R 11 are each hydrogen or C 1 -C 3 alkyl; and R 9 is a hydrogen; (iii) C 1 -C 4 alkyl; and (iv) B and B' taken together form the saturated bicyclic ring compound adamantylidene.
  • reaction A the compounds represented by graphic formulae III and IV are dissolved in a solvent, such as carbon disulfide or methylene chloride, and reacted in the presence of a Lewis acid, such as aluminum chloride or tin tetrachloride, to form the corresponding substituted benzophenone represented by graphic formula V (or VA in Reaction B).
  • a solvent such as carbon disulfide or methylene chloride
  • a Lewis acid such as aluminum chloride or tin tetrachloride
  • the substituted or unsubstituted ketone is represented by graphic formula VA, in which B and B' may represent groups other than substituted or unsubstituted phenyl, is reacted with sodium acetylide in a suitable solvent, such as anhydrous tetrahydrofuran (THF), to form the corresponding propargyl alcohol represented by graphic formula VI.
  • a suitable solvent such as anhydrous tetrahydrofuran (THF)
  • Propargyl alcohols having B or B' groups other than substituted and unsubstituted phenyl may be prepared from commercially available ketones or ketones prepared via reaction of an acyl halide with a substituted or unsubstituted benzene, naphthalene or heteroaromatic compound.
  • 1,4-dihydroxy-2-naphthoic acid represented by graphic formula VII
  • R" halide e.g., methyl iodide, ethyl halide, benzyl bromide, etc.
  • a suitable solvent such as anhydrous dimethylformamide (DMF)
  • DMF dimethylformamide
  • a substituted or unsubstituted acetophenone, benzophenone, or benzaldehyde represented by graphic formula IX is reacted with dimethyl succinate (graphic formula X) in the presence of a base such as sodium hydride or a potassium t-butoxide in a suitable solvent such as toluene form the appropriate substituted monoester of an ⁇ -arylidene succinic acid, represented by graphic formula XI.
  • a base such as sodium hydride or a potassium t-butoxide
  • a suitable solvent such as toluene
  • Other substituents on the compound represented by graphic formula XI may be prepared by using different succinate esters, such as diethyl succinate.
  • R 2 in graphic formula I when R 2 in graphic formula I is --OH, this substituent can be converted to a variety of different groups by reacting such compound, as represented by graphic formula XIV, with acylating or alkylating agents.
  • Compound XIV may be reacted with methyl iodide (or other alkylating agent) in the presence of anhydrous potassium carbonate in a suitable solvent such as anhydrous acetone to form compounds represented by graphic formula XV, in which R 2 is a methoxy substitutent.
  • Alkylating reactions are further described in "Organic Synthesis," Vol. 31, pages 90-93, John Wiley & Sons, Inc., New York, N.Y.
  • Compound XIV may be reacted with acetyl chloride (or other acylating agent) in the presence of triethylamine in an appropriate solvent, such as methylene chloride, to form compounds represented by the graphic formula XVI, in which R 2 is an acetoxy substitutent.
  • acetyl chloride or other acylating agent
  • triethylamine in an appropriate solvent, such as methylene chloride
  • Compounds represented by graphic formula I may be used in those applications in which organic photochromic substances may be employed, such as optical lenses, e.g., vision correcting ophthalmic lenses and plano lenses, face shields, goggles, visors, camera lenses, windows, automotive windshields, aircraft and automotive transparencies, e.g., T-roofs, sidelights and backlights, plastic films and sheets, textiles and coatings, e.g., coating compositions such as paints, and verification marks on security documents, e.g., documents such as banknotes, passports and drivers' licenses for which authentication or verification of authenticity may be desired.
  • Naphthopyrans represented by graphic formula I exhibit color changes from colorless to colors ranging from yellow to red/purple.
  • a first group of organic photochromic compounds contemplated for use as complementary photochromic materials are those having an activated absorption maximum within the visible range of greater than 590 nanometers, e.g., between about greater than 590 to 700 nanometers. These materials typically exhibit a blue, blueish-green, or blueish-purple color when exposed to ultraviolet light in an appropriate solvent or matrix. Many of such compounds are described in the open literature. For example, spiro(indoline)naphthoxazines have been described, among others, in U.S. Pat. Nos. 3,562,172; 3,578,602; 4,215,010; and 4,342,668.
  • Spiro(indoline)naphthoxazines having certain substituents on the 8' and 9' positions of the naphthoxazine portion of the molecule such as 1,3,3-trimethyl-5-methoxy-9'-methoxycarbonyl-8'-acetoxy spiro[indoline-2,3'-[3H]naphth[2,1-b]-[1,4]oxazine, are the subject of co-pending U.S. patent application Ser. No. 07/993,587, filed Dec. 21, 1992.
  • Spiro(indoline)pyridobenzoxazines are described in U.S. Pat. No. 4,637,698.
  • Spiro(benzindoline)pyridobenzoxazines and spiro(benzindoline)naphthoxazines are described in U.S. Pat. No. 4,931,219.
  • Spiro(benzindoline)naphthopyrans are described in Japanese Patent Publication 62/195383.
  • Spiro(indoline)benzoxazines are described in U.S. Pat. No. 4,816,584.
  • Spiro(indoline)benzopyrans, spiro(indoline)naphthopyrans and spiro(indoline)quinopyrans are described, for example, in U.S. Pat. No. 4,880,667.
  • Benzopyrans and naphthopyrans having a nitrogen-containing substituent in the 2-position of the pyran ring are described in U.S. Pat. No. 4,818,096.
  • Spiro(indoline)pyrans are also described in the text, Techniques in Chemistry, Volume III, "Photochromism,” Chapter 3, Glenn H. Brown, Editor, John Wiley and Sons, Inc., New York, 1971.
  • a second group of organic photochromic substances contemplated for use as complementary photochromic compounds are those having at least one absorption maximum and preferably two absorption maxima, within the visible range of between about 400 and less than 550 nanometers. These materials typically exhibit a yellow to red/purple color when exposed to ultraviolet light in an appropriate solvent or matrix.
  • Such compounds include certain chromenes, i.e., benzopyrans and 3H-naphtho[2,1-b]pyrans, many of which are described in the open literature, e.g., U.S. Pat. Nos. 3,567,605; 4,826,977; and 5,066,818.
  • Naphthopyran compounds having certain substituents at the number 8 carbon atom and certain substituents at the number 7 or 9 carbon atom, all substituents being on the naphtho portion of the naphthopyran, are the subject of co-pending U.S. patent application Ser. No. 08/080,246, filed Jun. 21, 1993.
  • Naphthopyrans substituted at the 3 position of the pyran ring with (i) an aryl substituent and (ii) a phenyl substituent having a 5-or 6-member heterocyclic ring fused at the number 3 and 4 carbon atoms of the phenyl substituent are the subject of co-pending U.S. patent application Ser. No.08/080,250 filed Jun. 21, 1993.
  • Naphthopyran compounds substituted at the number 8 carbon atom on the naphtho portion of the naphthopyran ring, with for example, a methoxy group are the subject of U.S. Pat. No. 5,238,981.
  • Naphthopyran compounds, examples of which are 3-aryl-3-arylalkenyl naphthophyrans, are the subject of U.S. Pat. No. 5,274,132.
  • a third group of organic photochromic substances contemplated for use as complementary photochromic compounds are those having an absorption maximum within the visible range of between about 400 to about 500 nanometers and another absorption maximum within the visible range of between about 500 to about 700 nanometers. These materials typically exhibit color(s) ranging from yellow/brown to purple/gray when exposed to ultraviolet light in an appropriate solvent or matrix. Examples of these compounds include certain benzopyran compounds, such as those having substituents at the 2-position of the pyran ring and a substituted or unsubstituted heterocyclic ring, such as a benzothieno or benzofurano ring fused to the benz portion of the benzopyran. Such materials are the subject of co-pending U.S. patent application Ser. No. 08/304,970, filed Sep. 13, 1994.
  • Photochromic articles containing a naphthopyran(s) of the present invention may contain also one of the aforesaid complementary photochromic compounds or a mixture of such photochromic compounds, as desired. Mixtures of photochromic compounds may be used to attain certain activated colors such as a near neutral gray or brown.
  • novel substituted 2H-naphtho(1,2-b)pyran organic photochromic compounds of the present invention may be described as photochromic compounds that exhibit activated colors of from yellow to red/purple, and therefore may be used in place of or in combination with the aforesaid second group of photochromic compounds.
  • the compounds of the present invention (hereinafter referred to as a second group photochromic compound) may be combined with or used in conjunction with the first group of photochromic compounds that color to purple/blue, e.g., the spirooxazine-type compounds, or with other photochromic substances in the aforesaid second group of photochromic compounds.
  • Either members of the first or second group of photochromic compounds or mixtures of such compounds may be combined with or used in conjunction with the third group of described organic photochromic compounds that color from yellow/brown to purple/gray.
  • Each of the photochromic compounds or substances containing same described herein may be used in amounts and in a ratio such that an organic host material to which the mixture of compounds is applied or in which they are incorporated exhibits a desired resultant color, e.g., a substantially neutral color such as shades of gray or brown, when activated with unfiltered sunlight, i.e., as near a neutral color as possible given the colors of the activated photochromic compounds.
  • the relative amounts of the aforesaid photochromic compounds used will vary and depend in part upon the relative intensities of the color of the activated species of such compounds, and the ultimate color desired.
  • the weight ratio of the aforedescribed organic photochromic compound combinations i.e., (first to second), (first to third), and (second to third) will vary from about 1:3 to about 3:1, e.g., between about 0.75:1 and about 2:1.
  • the combination of the first, second, and third organic photochromic compounds may have a weight ratio that will vary from about 1:3:1 to 3:1:3.
  • a near neutral gray color exhibits a spectrum that has relatively equal absorption in the visible range between 400 and 700 nanometers, e.g., between 440 and 660 nanometers.
  • a near neutral brown color exhibits a spectrum in which the absorption in the 440-550 nanometer range is moderately larger than in the 550-700 nanometer range.
  • An alternative way of describing color is in terms of its chromaticity coordinates, which describe the qualities of a color in addition to its luminance factor, i.e., its chromaticity.
  • the photochromic compounds of the present invention may be applied to or incorporated into a host material by various methods described in the art. Such methods include dissolving or dispersing the compound within the host material, e.g., imbibition of the photochromic compound into the host material by immersion of the host material in a hot solution of the photochromic compound or by thermal transfer; providing the photochromic compound as a separate layer between adjacent layers of the host material, e.g., as a part of a polymeric film; and applying the photochromic compound as part of a coating placed on the surface of the host material.
  • dissolving or dispersing the compound within the host material e.g., imbibition of the photochromic compound into the host material by immersion of the host material in a hot solution of the photochromic compound or by thermal transfer
  • providing the photochromic compound as a separate layer between adjacent layers of the host material e.g., as a part of a polymeric film
  • applying the photochromic compound as part of a coating placed on the surface
  • impbibition or "imbibe” is intended to mean and include permeation of the photochromic substance alone into the host material, solvent assisted transfer, absorption of the photochromic substance into a porous polymer, vapor phase transfer, and other such transfer mechanisms.
  • Compatible (chemically and color-wise) tints i.e., dyes
  • the particular dye selected will vary and depend on the aforesaid need and result to be achieved.
  • the dye may be selected to complement the color resulting from the activated photochromic substances, e.g., to achieve a more neutral color or absorb a particular wavelength of incident light.
  • the dye may be selected to provide a desired hue to the host matrix when the photochromic substances is in an unactivated state.
  • the polymeric host material will usually be transparent, but may be translucent-or even opaque.
  • the polymeric product need only be transparent to that portion of the electromagnetic spectrum, which activates the photochromic substance, i.e., that wavelength of ultraviolet (UV) light that produces the open form of the substance and that portion of the visible spectrum that includes the absorption maximum wavelength of the substance in its UV activated form, i.e., the open form.
  • UV ultraviolet
  • the resin color should not be such that it masks the color of the activated form of the photochromic substance, i.e., so the change in color is readily apparent to the observer.
  • the host material article is a solid transparent or optically clear material, e.g., materials suitable for optical applications, such as plano and vision correcting ophthalmic lenses, windows, automotive transparencies, e.g., windshields, aircraft transparencies, plastic sheeting, polymeric films, etc.
  • materials suitable for optical applications such as plano and vision correcting ophthalmic lenses, windows, automotive transparencies, e.g., windshields, aircraft transparencies, plastic sheeting, polymeric films, etc.
  • host materials which may be used with the photochromic substances or compositions described herein include: polymers, i.e., homopolymers and copolymers, of polyol(allyl carbonate) monomers, polymers, i.e., homopolymers and copolymers, of polyfunctional acrylate monomers, polyacrylates, poly(alkylacrylates) such as poly(methyl methacrylate), cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene chloride), polyurethanes, polycarbonates, polyesters, poly(ethylene terephthalate), polystyrene, copoly(styrene-methyl methacrylate), copoly(styrene-acrylonitrile), polyvinylbutyral and polymers, i.e., homopolymers and copolymers, of
  • Transparent copolymers and blends of transparent polymers are also suitable as host materials.
  • the host material is an optically clear polymerized organic material prepared from a polycarbonate resin, such as the carbonate-linked resin derived from bisphenol A and phosgene, which is sold under the trademark, LEXAN; a polyester, such as the material sold under the trademark, MYLAR; a poly(methyl methacrylate), such as the material sold under the trademark, PLEXIGLAS; polymerizates of a polyol(allyl carbonate) monomer, especially diethylene glycol bis(allyl carbonate), which monomer is sold under the trademark CR-39, and polymerizates of copolymers of a polyol (allyl carbonate), e.g., diethylene glycol bis(allyl carbonate), with other copolymerizable monomeric materials, such as copolymers with vinyl acetate, e.g., copolymers of from 80-90 percent diethylene glycol bis(allyl carbonate) and
  • the amount of photochromic substance or composition containing same applied to or incorporated into a host material is not critical provided that a sufficient amount is used to produce a photochromic effect discernible to the naked eye upon activation. Generally such amount can be described as a photochromic amount. The particular amount used depends often upon the intensity of color desired upon irradiation thereof and upon the method used to incorporate or apply the photochromic substances. Typically, the more photochromic substance applied or incorporated, the greater is the color intensity. Generally, the amount of total photochromic substance incorporated into or applied to a photochromic optical host material may range from about 0.15 to about 0.35 milligrams per square centimeter of surface to which the photochromic substance(s) is incorporated or applied.
  • 4,4'-dimethoxybenzophenone (0.27 moles) was dissolved in a reaction flask containing 200 milliliters (ml) of anhydrous tetrahydrofuran saturated with acetylene and stirred at room temperature.
  • An 18 weight percent suspension of sodium acetylide in xylene/mineral oil (0.3 mole of sodium acetylide) was added to the reaction flask and the mixture was stirred. After stirring 16 hours at room temperature under a nitrogen atmosphere, the contents of the reaction flask mixture was added to a 5 weight percent aqueous hydrochloric acid and ice mixture. The resulting mixture was extracted with diethyl ether.
  • 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol (about 0.025 mole) from Step 1 and methyl-4-dihydroxy-2-naphthoate (5 gm., 0.022 mole) were added to a reaction flask containing 200 ml of toluene and stirred.
  • a catalytic amount of p-toluenesulfonic acid (about 100 milligrams) was added, and the mixture was stirred for 4 hours.
  • the reaction mixture was poured into a 10 weight percent sodium hydroxide solution. The organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. The remaining solvent, toluene, was removed under vacuum.
  • the resulting oil was purified using a silica gel column and a 1:3 mixture of chloroform:hexane as the eluant.
  • the photochromic fractions were combined and the eluent was removed under vacuum.
  • the resulting product was induced to crystallize from hexane.
  • the recovered product had a melting point of 160° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • the resulting oily concentrate was crystallized from a 1:1 hexane:diethyl ether mixture.
  • the solid obtained was suction filtered, washed with hexane and air dried.
  • the resulting product had a melting point of 175°-177° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methoxy-[2H]-naphtho[1,2-b]pyran.
  • Example 2 The procedure of Example 2 was followed except that ethyl bromoacetate was used in place of methyl iodide. The resulting product had a melting point of 123° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-ethoxycarbonylmethoxy-[2H]-naphtho[1,2-b]pyran.
  • Step 1 of Example 1 The procedure of Step 1 of Example 1 was followed except that 1-(4-methoxyphenyl)-2,2-dimethyl-1-propanone was used in place of 4,4-dimethoxybenzophenone to produce 3-(4-methoxyphenyl)-4,4-dimethyl-1-pentyn-3-ol.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 3-(4-methoxyphenyl)-4,4-dimethyl-1-pentyn-3-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • Step 1 of Example 1 The procedure of Step 1 of Example 1 was followed except that 4-methoxybenzophenone was used in place of 4,4-dimethoxybenzophenone to produce 1-(4-methoxyphenyl)-1-phenyl-2-propyn-1-ol.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1-(4-methoxyphenyl)-1-phenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2-(4-methoxyphenyl)-2-phenyl -5-methoxycarbonyl -6-hydroxy-[2H]-naphtho [1,2-b]pyran.
  • Example 3 The procedure of Example 3 was followed except that 2-(4-methoxyphenyl)-2-phenyl-5-methoxycarbonyl-6-hydroxy-[2H]naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran and bromoacetonitrile was used in place of ethyl bromoacetate.
  • the resulting product had a melting point of 125° C.
  • Step 1 of Example 1 The procedure of Step 1 of Example 1 was followed except that 4,4'-dimethylbenzophenone was used in place of 4,4'-dimethoxybenzophenone to produce 1,1-bis(4-methylphenyl)-2-propyn-1-ol.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1,1-bis(4-methylphenyl)-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2-bis(4-methylphenyl)-5-methoxycarbonyl -6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • Example 3 The procedure of Example 3 was followed except that 2,2-bis(4-methylphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran and methyl chloroformate was used in place of bromoethyl acetate.
  • the resulting product had a melting point of 166° C.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1,1-diphenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2-diphenyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • Step 3 of Example 4 The procedure of Step 3 of Example 4 was followed except that 2,2-diphenyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]-pyran.
  • the resulting product had a melting point of 190°-192° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-diphenyl-5-methoxycarbonyl-6-acetoxy -[2H]-naphtho[1,2-b ]pyran.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that methyl-4-hydroxy, 1-methyl-2-naphthoate was used in place of methyl-1,4-dihydroxy-2-naphthoate.
  • the resulting product had a melting point of 175°-176° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-[2H]-naphtho[1,2-b]pyran.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that methyl-4-hydroxy-6-methoxy-1-methyl-2-naphthoate was used in place of methyl-1,4-dihydroxy-2-naphthoate.
  • the resulting product had a melting point of 132°-133° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-9-methoxy-[2H]-naphtho[1,2-b]pyran.
  • Example 7 The procedure of Example 7 was followed except that in step 2, isobutyryl chloride was used in place of acetyl chloride.
  • the resulting product had a melting point of 173° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-diphenyl-5-methoxycarbonyl-6-(propionyloxy)-[2H]-naphtho[1,2-b]pyran.
  • Step 1 of Example 1 The procedure of Step 1 of Example 1 was followed except that 3,3-bis(trifluoromethyl)benzophenone was used in place of 4,4'-dimethoxybenzophenone to produce 1,1-bis(3-trifluoromethlyphenyl)-2-propyn-1-ol.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1,1-bis(3-trifluoromethylphenyl)-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2-bis(3-trifluoromethylphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • Step 3 of Example 4 The procedure of Step 3 of Example 4 was followed except that 2,2-bis (3-trifluoromethylphenyl)-5-methoxycarbonyl -6-hydroxy-[2H]-naphtho [1,2-b]pyran was used in place of 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • the resulting product had a melting point of 160° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(3-trifluoromethylphenyl)-5-methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran.
  • Step 1 of Example 1 The procedure of Step 1 of Example 1 was followed except that 5-(4-methoxybenzoyl)-2-methyl-2,3-dihydrobenzofuran was used in place of 4,4'-dimethoxybenzophenone to produce 1-(4-methoxyphenyl)-1-(2-methyl-2,3-dihydrobenzofur-5-yl)-2-propyn-1-ol.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1-(4-methoxyphenyl)-1-(2,3-dihydrobenzofur-5-yl)-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2-(4-methoxyphenyl)-2-(2-methyl-2,3-dihydrobenzofur-5-yl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • Example 3 The procedure of Example 3 was followed except that 2-(4-methoxyphenyl)-2-(2-methyl-2,3-dihydrobenzofur-5-yl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy[2H]-naphtho[1,2-b]pyran and ethyl bromoacetate was used in place of methyl iodide.
  • the resulting product had a melting point of 130°-131° C.
  • Step 1 of Example 1 The procedure of Step 1 of Example 1 was followed except that adamantanone was used in place of 4,4'-dimethoxybenzophenone to produce 2-ethinyl-2-hydroxyadamantane.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 2-ethinyl-2-hydroxyadamantane was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2'-spiroadamantylene-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • Example 2 The procedure of Example 2 was followed except that 2,2'-spiroadamatylene-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
  • the resulting product had a melting point of 130°-131° C.
  • a nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2'-spiroadamantylene-5-methoxycarbonyl-6-methoxy-[2H]-naphtho[1,2-b]pyran.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1,1-diphenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol and 1-hydroxynaphthalene was used in place of methyl-1,4-dihydroxy-2-naphthoate to produce 2,2-diphenyl-[2H]-naphtho[1,2-b]pyran.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 1,1-diphenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol and 3-methyl-1-hydroxynaphthalene was used in place of methyl-1,4-dihydroxy-2-naphthoate to produce 2,2-diphenyl-5-methyl-[2H]-naphtho[1,2-b]pyran.
  • Step 2 of Example 1 The procedure of Step 2 of Example 1 was followed except that 2-ethinyl-2-hydroxyadamantane was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol and 1-hydroxynaphthalene was used in place of methyl-1,4-dihydroxy-2-naphthoate to produce 2,2-spiroadamantylene-[2H]-naphtho[1,2-b]pyran.
  • Example 4 The procedure of Example 4 was followed except that in step 2,1-hydroxynaphthalene was used in the place of methyl,1-4-dihydroxy-2-naphthoate to produce 2-(4-methoxyphenyl)-2-t-butyl-[2H]naphtho[1,2-b]pyran.
  • test square polymerizates were prepared from a diethylene glycol bis(allyl carbonate) composition and measured 1/8 inch (0.3 centimeters) ⁇ 2 inches (5.1 centimeters) ⁇ 2 inches (5.1 centimeters).
  • the photochromic naphthopyran was dissolved to form a 10 weight percent solution in a 1:9 mixture of ethyl cellulose:toluene. The solution was then spin coated onto the test squares and allowed to dry. Samples were then heated in a hot-air oven at 135°-155° C. for a period of time sufficient to thermally transfer the photochromic into the test squares. After cooling, the ethyl cellulose/toluene resin film was removed from the test squares by washing with acetone.
  • test squares were imbibed by the following procedure. Each naphthopyran was dissolved into toluene to form a four (4) weight percent solution of the compound. A piece of No. 4 Whatman filter paper was saturated with the naphthopyran toluene solution and allowed to air dry. The dried filter paper was placed on one side of the test square. A piece of untreated filter paper was placed on the other side of the polymeric test square and the resulting sandwich was placed between two flat aluminum metal plates. The entire assembly was then placed in a 135°-155° C. oven for a time sufficient to thermally transfer the naphthopyran into the polymeric test square. After cooling, the test squares were washed with acetone. In both imbibition processes, the residence times in the oven for the test squares were adjusted to imbibe comparable amounts of the naphthopyran compounds. This was done in order to yield a comparable UV absorbance at the lambda max of the compound in the near UV.
  • the photochromic squares were tested for photochromic response rates on an optical bench. Prior to testing on the optical bench, the photochromic test squares were exposed to 365 nanometer ultraviolet light for about 15 minutes to activate the photochromic compounds and then placed into a 76° C. oven for about 15 minutes to bleach or inactivate the photochromic compounds. The test squares were then cooled to room temperature, exposed to fluorescent room lighting for at least 2 hours and then kept covered for at least 2 hours prior to testing on an optical bench maintained at 75° F. (23.9° C.).
  • the bench was fitted with a 150 watt Xenon arc lamp, a remote controlled shutter, a copper sulfate bath acting as a heat sink for the arc lamp, a Schott WG-320 nm cut-off filter which removes short wavelength radiation; neutral density filter(s) and a sample holder in which the square to be tested was inserted.
  • a collimated beam of light from a tungsten lamp was passed through the square at a small angle normal to the square. After passing through the square, the light from the tungsten lamp was directed through a photopic filter attached to a detector.
  • the photopic filter passes wavelengths such that the detector mimics the response of the human eye.
  • the output signals from the detector(s) were processed by a radiometer.
  • the ⁇ OD/Min which represents the sensitivity of the photochromic compound's response to UV light, was measured over the first five (5) seconds of UV exposure, then expressed on a per minute basis.
  • the saturation optical density (OD) was taken under identical conditions as the ⁇ OD/Min, except UV exposure was continued for 20 minutes for the examples in Table 1.
  • the lambda max reported in Table 1 is the wavelength in the visible spectrum at which the maximum absorption of the activated (colored) form of the photochromic compound in a diethylene glycol bis(allyl carbonate) composition occurs.
  • the Bleach Rate (T 1/2) is the time interval in seconds for the absorbance of the activated form of the naphthopyran in the test squares to reach one half the highest absorbance at room temperature (75° F., 23.9° C.) after removal of the source of activating light. Results for the Compounds of the Examples are tabulated in Table 1.
  • each tested compound of the present invention has an acceptable bleach rate, i.e., fade rate; a high ⁇ OD at saturation, i.e., activated intensity; and a high coloration rate, i.e., sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Eyeglasses (AREA)
  • Pyrane Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Described are novel reversible photochromic naphthopyran compounds, examples of which are compounds having certain substituents at the number 5 and 6 carbon atoms of the naphtho portion of the naphthopyran and at the 2-position of the pyran ring. Certain substituents may also be present at the number 7, 8, 9 or 10 carbon atoms of the naphtho portion of the naphthopyran. Also described are organic host materials that contain or that are coated with such compounds. Articles such as ophthalmic lenses or other plastic transparencies that incorporate the novel naphthopyran compounds or combinations thereof with complementary photochromic compounds, e.g., spiro(indoline) type compounds, are also described.

Description

DESCRIPTION OF THE INVENTION
The present invention relates to certain novel naphthopyran compounds. More particularly, this invention relates to novel photochromic naphthopyran compounds and to compositions and articles containing such novel naphthopyran compounds. When exposed to light radiation involving ultraviolet rays, such as the ultraviolet radiation in sunlight or the light of a mercury lamp, many photochromic compounds exhibit a reversible change in color. When the ultraviolet radiation is discontinued, such a photochromic compound will return to its original color or colorless state.
Various classes of photochromic compounds have been synthesized and suggested for use in applications in which a sunlight-induced reversible color change or darkening is desired. U.S. Pat. No. 3,567,605 (Becker) describes a series of pyran derivatives, including certain benzopyrans and naphthopyrans. These compounds are described as derivatives of chromene and are reported to undergo a color change, e.g., from colorless to yellow-orange, on irradiation by ultraviolet light at temperatures below about -30° C. Irradiation of the compounds with visible light or upon raising the temperature to above about 0° C. is reported to reverse the coloration to a colorless state.
U.S. Pat. No. 5,066,818 describes various 3,3-diaryl-3H-naphtho[2,1-b]pyrans as having desirable photochromic properties, i.e., high colorability and acceptable fade, for ophthalmic and other applications. Also disclosed by way of comparative example in the '818 patent are the isomeric 2,2-diaryl-2H-naphtho[1,2-b]pyrans, which are reported to require unacceptably long periods of time to fade after activation.
U.S. Pat. No. 3,627,690 describes photochromic 2,2-di-substituted-2H-naphtho[1,2-b]pyran compositions containing minor amounts of either a base or weak-to-moderate strength acid. The addition of either an acid or base to the naphthopyran composition is reported to increase the fade rate of the colored naphthopyrans, thereby making them useful in eye protection applications such as sunglasses. It is reported therein further that the fade rate of 2H-naphtho-[1,2-b]pyrans without the aforementioned additives ranges from several hours to many days to reach complete reversion. U.S. Pat. No. 4,818,096 discloses a blue coloring photochromic benzo- or naphthopyran having at the position alpha to the oxygen of the pyran ring a phenyl group having a nitrogen containing substituent in the ortho or para positions.
The present invention relates to novel substituted 2H-naphtho-(1,2-b)pyran compounds which have been unexpectedly found to have an acceptable fade rate in addition to a high activated intensity and a high coloration rate. In particular, the use of certain substituents at specific locations on the naphthol portion of the naphthopyran compound Increases the fade rate without the addition of acids or bases. In addition, these compounds have certain substituents at the number 5 and 6 carbon atoms of the naphtho portion of the naphthopyran, and at the 2-position of the pyran ring. Certain substituents may also be present at the number 7, 8, 9 or 10 carbon atoms of the naphtho portion of the naphthopyran.
DETAILED DESCRIPTION OF THE INVENTION
In recent years, photochromic plastic materials, particularly plastic materials for optical applications, have been the subject of considerable attention. In particular, photochromic ophthalmic plastic lenses have been investigated because of the weight advantage they offer, vis-a-vis, glass lenses. Moreover, photochromic transparencies for vehicles, such as cars and airplanes, have been of interest because of the potential safety features that such transparencies offer.
Photochromic compounds that are most useful in optical applications, such as conventional ophthalmic lenses, are those which possess (a) a high quantum efficiency for coloring in the near ultraviolet, (b) a low quantum yield for bleaching with white light, and (c) a relatively fast thermal fade at ambient temperature but not so rapid a thermal fade rate that the combination of white light bleaching and thermal fade prevent coloring by the ultraviolet component of strong sunlight. In addition, the aforesaid properties are desirably retained in conventional rigid synthetic plastic materials customarily used for ophthalmic and plano lenses when such materials have applied to or incorporated therein such photochromic compounds.
In accordance with the present invention, it has now been discovered that certain novel 2H-naphtho[1,2-b]pyran compounds having an acceptable fade rate, high activated intensity and a high coloration rate may be prepared. These compounds may be described as naphthopyrans having certain substituents at the 2 position of the pyran ring and at the number 5 and 6 carbon atoms of the naphtho- portion of the naphthopyran ring. Certain substituents may also be present at the 7, 8, 9 or 10 carbon atoms of the naphtho portion of the naphthopyran ring. These compounds may be represented by the following graphic formula: ##STR1##
In graphic formula I, R1 is the group, --C(O)W, W being --OR4 or --N(R5)R6, wherein R4 is hydrogen, allyl, C1 -C6 alkyl, e.g., methyl, ethyl, propyl, butyl, pentyl, and hexyl, phenyl, mono(C1 -C6)alkyl substituted phenyl,mono(C1 -C6)alkoxy-substituted phenyl, phenyl (C1 -C3)alkyl, mono (C1 -C6)alkyl substituted phenyl(C1 -C3)alkyl, mono (C1 -C6)alkoxy substituted phenyl(C1 -C3)alkyl, (C1 -C6)alkoxy(C2 -C4)alkyl, or C1 -C6 haloalkyl; and R5 and R6 may each be selected from the group consisting of hydrogen, C1 -C6 alkyl, C5 -C7 cycloalkyl, phenyl and mono- or di-substituted phenyl. The phenyl substituents may be C1 -C6 alkyl and C1 -C6 alkoxy and the halo substituents may be chloro or fluoro.
More preferably, R1 is the group, --C(O)W, W being the groups --OR4 or --N(R5)R6, wherein R4 is hydrogen, C1 -C4 alkyl, phenyl, mono (C1 -C4)alkyl substituted phenyl, mono(C1 -C4)alkoxy substituted phenyl, phenyl(C1 -C2 )alkyl, mono(C1 -C4)alkyl substituted phenyl(C1 -C2)alkyl, mono(C1 -C4)alkoxy substituted phenyl(C1 -C2)alkyl, mono(C1 -C4)alkoxy(C2 -C3)alkyl, or C1 -C4 haloalkyl; and R5 and R6 may each be selected from the group consisting of hydrogen, C1 -C4 alkyl, C5 -C7 cycloalkyl, phenyl and mono- or di-substituted phenyl. The phenyl substituents may be selected from C1 -C4 alkyl and C1 -C4 alkoxy, and the halo substituents may be chloro or fluoro. Most preferably, R1 is the group --C(O)W, W being the group --OR4, wherein R4 is a C1 -C3 alkyl.
R2 and each R3 in graphic formula I may be hydrogen, C1 -C6 alkyl, C3 -C7 cycloalkyl, substituted or unsubstituted phenyl, the group --OR7, wherein R7 is hydrogen, (C1 -C6)alkyl, phenyl(C1 -C3)alkyl, mono(C1 -C6)alkyl substituted phenyl(C1 -C3)alkyl, mono(C1 -C6)alkoxy substituted phenyl(C1 -C3)alkyl, (C1 -C6)alkoxy(C2 -C4)alkyl, C3 -C7 cycloalkyl, mono (C1 -C4 )alkyl substituted C3 -C7 cycloalkyl, C1 -C6 haloalkyl, allyl, and the group, --CH(R8)X, wherein X is CN, CF3, halogen or --C(O)W and R8 is hydrogen or C1 -C6 alkyl; or R7 is the group, --C(O)Y, wherein Y is hydrogen, C1 -C6 alkyl , C1 -C6 alkoxy, the substituted or unsubstituted aryl groups phenyl or naphthyl, phenoxy, C1 -C6 mono- or di-alkyl substituted phenoxy, C1 -C6 mono- or di-alkoxy substituted phenoxy, C1 -C6 alkylamino, phenylamino, C1 -C6 mono- or di-alkyl substituted phenylamino, or C1 -C6 mono- or di-alkoxy substituted phenylamino, said aryl, e.g., phenyl, substituents being selected from C1 -C6 alkyl or C1 -C6 alkoxy, said halogen or halo substituents are chloro or fluoro and n is selected from the integers 0, 1, 2, and 3. Preferably, R2 and each R3 are hydrogen, C1 -C3 alkyl, C3 -C5 cycloalkyl substituted or unsubstituted phenyl or --OR7, wherein R7 is hydrogen, (C1 -C3)alkyl, or the group, --CH(R8)X, wherein X is CN or --C(O)W and R8 is hydrogen or methyl; or R7 is the group --C(O)Y wherein Y is C1 -C3 alkyl or C1 -C3 alkoxy, said phenyl substituents being C1 -C3 alkyl or C1 -C3 alkoxy and n is selected from the integers 0 and 1. In the definitions of R1, R2 and R3 in graphic formula I, like letters have the same meaning unless stated otherwise.
B and B' in graphic formula I may each be selected from the group consisting of: (i) the substituted or unsubstituted aryl groups phenyl and naphthyl; (ii) the substituted or unsubstituted heterocyclic aromatic groups pyridyl, furanyl, benzofuranyl, thienyl, and benzothienyl, said aryl and heterocyclic substituents being selected from the group consisting of hydroxy, C1 -C6 alkyl, C1 -C6 haloalkyl, C1 -C6 alkoxy, (C1 -C6)alkoxy(C1 -C4)alkyl, acryloxy, methacryloxy and halogen, said halogen or (halo) groups being fluoro or chloro; (iii) the groups represented by the following graphic formulae II A and II B: ##STR2## wherein D may be oxygen or substituted nitrogen and E may be carbon or oxygen, provided that when D is substituted nitrogen, E is carbon, said nitrogen substituents being selected from the group consisting of hydrogen, C1 -C6 alkyl, and C1 -C5 alkyl carbonyl. R10 and R11 in graphic formulae IIA and IIB may be hydrogen or C1 -C6 alkyl and R9 may be hydrogen, C1 -C6 alkyl and C1 -C6 alkoxy, hydroxy, or halogen, said halogen being selected from chloro or fluoro; (iv) C1 -C6 alkyl, C1 -C6 haloalkyl, (C1 -C6)alkoxy(C1 -C4)alkyl, C3 -C6 cycloalkyl, mono(C1 -C6) alkoxy(C3 -C6)cycloalkyl, and halo(C3 -C6)cycloalkyl, said halo group being selected from fluoro or chloro; and (v) B and B' taken together may form the saturated bicyclic ring compounds selected from the group consisting of adamantylidene, bornylidene, and norbornylidene.
Preferably, B and B' are each selected from the group consisting of: (i) substituted or unsubstituted phenyl, said phenyl substituents being selected from the group consisting of C1 -C3 alkyl, and C1 -C3 alkoxy; (ii) the groups represented by graphic formulae II A and II B, wherein D is oxygen and E is carbon; R10 and R11 are each hydrogen or C1 -C3 alkyl; and R9 is a hydrogen; (iii) C1 -C4 alkyl; and (iv) B and B' taken together form the saturated bicyclic ring compound adamantylidene.
Compounds represented by graphic formula I may be prepared by the following steps. In Reaction A shown below, compounds represented by graphic formula V or VA are either purchased or prepared by Friedel-Crafts methods using an appropriately substituted or unsubstituted benzoyl chloride of graphic formula IV with a commercially available substituted or unsubstituted benzene compound of graphic formula III. See the publication Friedel-Crafts and Related Reactions, George A. Olah, Interscience Publishers, 1964, Vol. 3, Chapter XXXI (Aromatic Ketone Synthesis), and "Regioselective Friedel-Crafts Acylation of 1,2,3,4-Tetrahydroquinoline and Related Nitrogen Heterocycles: Effect on NH Protective Groups and Ring Size" by Ishihara, Yugi et al, J. Chem. Soc., Perkin Trans. 1, pages 3401 to 3406, 1992.
In reaction A, the compounds represented by graphic formulae III and IV are dissolved in a solvent, such as carbon disulfide or methylene chloride, and reacted in the presence of a Lewis acid, such as aluminum chloride or tin tetrachloride, to form the corresponding substituted benzophenone represented by graphic formula V (or VA in Reaction B). R and R' represent potential phenyl substituents. ##STR3##
In reaction B, the substituted or unsubstituted ketone is represented by graphic formula VA, in which B and B' may represent groups other than substituted or unsubstituted phenyl, is reacted with sodium acetylide in a suitable solvent, such as anhydrous tetrahydrofuran (THF), to form the corresponding propargyl alcohol represented by graphic formula VI. Propargyl alcohols having B or B' groups other than substituted and unsubstituted phenyl may be prepared from commercially available ketones or ketones prepared via reaction of an acyl halide with a substituted or unsubstituted benzene, naphthalene or heteroaromatic compound. ##STR4##
In reaction C, 1,4-dihydroxy-2-naphthoic acid, represented by graphic formula VII, is reacted with R" halide, e.g., methyl iodide, ethyl halide, benzyl bromide, etc., in the presence of ethyldiisopropyl amine in a suitable solvent such as anhydrous dimethylformamide (DMF), to form the corresponding 1,4-dihydroxy-2-naphthoate, which is represented by graphic formula VIII. This reaction is further described in The Journal of Organic Chemistry, 46(17), 1981, page 3477. ##STR5##
In reaction D, a substituted or unsubstituted acetophenone, benzophenone, or benzaldehyde represented by graphic formula IX is reacted with dimethyl succinate (graphic formula X) in the presence of a base such as sodium hydride or a potassium t-butoxide in a suitable solvent such as toluene form the appropriate substituted monoester of an α-arylidene succinic acid, represented by graphic formula XI. Other substituents on the compound represented by graphic formula XI may be prepared by using different succinate esters, such as diethyl succinate. Compound XI is heated with acetic anhydride and anhydrous sodium acetate to form the corresponding acetate derivative represented by the graphic formula XII. Compound XII is reacted with hydrochloric acid and an anhydrous alcohol such as anhydrous methanol to form the corresponding naphthol, represented by graphic formula XIII (or XIIIA in Reaction E). Reaction D is further described in the text Organic Reactions, Vol. VI, Chapter 1, pages 1-73, John Wiley & Sons, Inc., New York. ##STR6##
In Reaction E, the propargyl alcohol represented by graphic formula VI is coupled with the naphthol represented by graphic formula XIII A to form compounds represented by graphic formula I. In graphic formula XIII A, the methoxycarbonyl group of graphic formula XIII is replaced with "R1 ". ##STR7##
As shown in Reaction F, when R2 in graphic formula I is --OH, this substituent can be converted to a variety of different groups by reacting such compound, as represented by graphic formula XIV, with acylating or alkylating agents. For example, Compound XIV may be reacted with methyl iodide (or other alkylating agent) in the presence of anhydrous potassium carbonate in a suitable solvent such as anhydrous acetone to form compounds represented by graphic formula XV, in which R2 is a methoxy substitutent. Alkylating reactions are further described in "Organic Synthesis," Vol. 31, pages 90-93, John Wiley & Sons, Inc., New York, N.Y. Alternatively, Compound XIV may be reacted with acetyl chloride (or other acylating agent) in the presence of triethylamine in an appropriate solvent, such as methylene chloride, to form compounds represented by the graphic formula XVI, in which R2 is an acetoxy substitutent. Acylating reactions are further described in "Organic Synthesis," Vol. 32, pages 72-77, John Wiley & Sons, Inc., New York, N.Y. ##STR8##
Compounds represented by graphic formula I may be used in those applications in which organic photochromic substances may be employed, such as optical lenses, e.g., vision correcting ophthalmic lenses and plano lenses, face shields, goggles, visors, camera lenses, windows, automotive windshields, aircraft and automotive transparencies, e.g., T-roofs, sidelights and backlights, plastic films and sheets, textiles and coatings, e.g., coating compositions such as paints, and verification marks on security documents, e.g., documents such as banknotes, passports and drivers' licenses for which authentication or verification of authenticity may be desired. Naphthopyrans represented by graphic formula I exhibit color changes from colorless to colors ranging from yellow to red/purple.
Examples of contemplated naphthopyrans within the scope of the invention are the following:
(a) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran;
(b) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methoxy-[2H]-naphtho[1,2-b]pyran;
(c) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-(ethoxycarbonyl)methoxy-[2H]-naphtho[1,2-b]pyran;
(d) 2-(4-Methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran;
(e) 2-(4-Methoxyphenyl)-2-phenyl-5-methoxycarbonyl-6-(cyanomethoxy)-[2H]-naphtho[1,2-b]pyran;
(f) 2,2-Bis(4-methylphenyl)-5-methoxycarbonyl-6(methoxycarbonyloxy)-[2H]-naphtho[1,2-b]pyran;
(g) 2,2-Diphenyl-5-methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran;
(h) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-[2H]-naphtho[1,2-b]pyran;
(i) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6 -methyl-9-methoxy-[2H]-naphtho[1,2-b]pyran;
(j) 2,2-Diphenyl-5-methoxycarbonyl-6-propionyloxy-[2H]-naphtho[1,2-b]pyran;
(k) 2,2-Bis(3-trifluoromethylphenyl)-5methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran;
(l) 2-(4-Methoxyphenyl)2-(2-methyl-2,3-dihydrobenzofuran-5-yl)-5-methoxycarbonyl-6-(ethoxycarbonyl)methoxy-[2H]-naphtho[1,2-b]pyran; and
(m) 2,2'Spiroadamantylene-5-methoxycarbonyl-6-methoxy-[2H]-naphtho]1,2-b]pyran.
Commercially available photoreactive inorganic glass lenses containing silver halide particles darken to a neutral gray or brown color in sunlight. In order to duplicate this color change in a plastic lens using the organic photochromic naphthopyrans of the present invention, it is contemplated that such naphthopyrans be used in combination with other appropriate complementary organic photochromic materials so that together they produce the desired gray or brown color shade when the plastic lens containing such photochromic materials is exposed to ultraviolet light. For example, a compound which colors to yellow may be blended with a compound that colors to an appropriate purple to produce a brown shade. Similarly, a compound which is orange in its colored state will produce a shade of gray when used in conjunction with an appropriate blue color compound.
A first group of organic photochromic compounds contemplated for use as complementary photochromic materials are those having an activated absorption maximum within the visible range of greater than 590 nanometers, e.g., between about greater than 590 to 700 nanometers. These materials typically exhibit a blue, blueish-green, or blueish-purple color when exposed to ultraviolet light in an appropriate solvent or matrix. Many of such compounds are described in the open literature. For example, spiro(indoline)naphthoxazines have been described, among others, in U.S. Pat. Nos. 3,562,172; 3,578,602; 4,215,010; and 4,342,668. Spiro(indoline)naphthoxazines having certain substituents on the 8' and 9' positions of the naphthoxazine portion of the molecule such as 1,3,3-trimethyl-5-methoxy-9'-methoxycarbonyl-8'-acetoxy spiro[indoline-2,3'-[3H]naphth[2,1-b]-[1,4]oxazine, are the subject of co-pending U.S. patent application Ser. No. 07/993,587, filed Dec. 21, 1992. Spiro(indoline)pyridobenzoxazines are described in U.S. Pat. No. 4,637,698. Spiro(benzindoline)pyridobenzoxazines and spiro(benzindoline)naphthoxazines are described in U.S. Pat. No. 4,931,219. Spiro(benzindoline)naphthopyrans are described in Japanese Patent Publication 62/195383. Spiro(indoline)benzoxazines are described in U.S. Pat. No. 4,816,584. Spiro(indoline)benzopyrans, spiro(indoline)naphthopyrans and spiro(indoline)quinopyrans are described, for example, in U.S. Pat. No. 4,880,667. Benzopyrans and naphthopyrans having a nitrogen-containing substituent in the 2-position of the pyran ring are described in U.S. Pat. No. 4,818,096. Spiro(indoline)pyrans are also described in the text, Techniques in Chemistry, Volume III, "Photochromism," Chapter 3, Glenn H. Brown, Editor, John Wiley and Sons, Inc., New York, 1971.
A second group of organic photochromic substances contemplated for use as complementary photochromic compounds are those having at least one absorption maximum and preferably two absorption maxima, within the visible range of between about 400 and less than 550 nanometers. These materials typically exhibit a yellow to red/purple color when exposed to ultraviolet light in an appropriate solvent or matrix. Such compounds include certain chromenes, i.e., benzopyrans and 3H-naphtho[2,1-b]pyrans, many of which are described in the open literature, e.g., U.S. Pat. Nos. 3,567,605; 4,826,977; and 5,066,818. Examples of benzopyrans and naphthopyrans having a spiroadamantane group in the 2-position of the ring are described in U.S. Pat. No. 4,826,977. Naphthopyrans, i.e., 3H-naphtho[2,1-b]pyrans, having at least one ortho-substituted phenyl substituent at the 3-position of the pyran ring are described in U.S. Pat. No. 5,066,818. Naphthopyran compounds having certain substituents at the number 8 carbon atom and certain substituents at the number 7 or 9 carbon atom, all substituents being on the naphtho portion of the naphthopyran, are the subject of co-pending U.S. patent application Ser. No. 08/080,246, filed Jun. 21, 1993. Naphthopyrans substituted at the 3 position of the pyran ring with (i) an aryl substituent and (ii) a phenyl substituent having a 5-or 6-member heterocyclic ring fused at the number 3 and 4 carbon atoms of the phenyl substituent are the subject of co-pending U.S. patent application Ser. No.08/080,250 filed Jun. 21, 1993. Naphthopyran compounds substituted at the number 8 carbon atom on the naphtho portion of the naphthopyran ring, with for example, a methoxy group are the subject of U.S. Pat. No. 5,238,981. Naphthopyran compounds, examples of which are 3-aryl-3-arylalkenyl naphthophyrans, are the subject of U.S. Pat. No. 5,274,132.
A third group of organic photochromic substances contemplated for use as complementary photochromic compounds are those having an absorption maximum within the visible range of between about 400 to about 500 nanometers and another absorption maximum within the visible range of between about 500 to about 700 nanometers. These materials typically exhibit color(s) ranging from yellow/brown to purple/gray when exposed to ultraviolet light in an appropriate solvent or matrix. Examples of these compounds include certain benzopyran compounds, such as those having substituents at the 2-position of the pyran ring and a substituted or unsubstituted heterocyclic ring, such as a benzothieno or benzofurano ring fused to the benz portion of the benzopyran. Such materials are the subject of co-pending U.S. patent application Ser. No. 08/304,970, filed Sep. 13, 1994.
The disclosures of such photochromic compounds in the aforedescribed patents and patent applications are incorporated herein, in toto, by reference. Photochromic articles containing a naphthopyran(s) of the present invention may contain also one of the aforesaid complementary photochromic compounds or a mixture of such photochromic compounds, as desired. Mixtures of photochromic compounds may be used to attain certain activated colors such as a near neutral gray or brown.
The novel substituted 2H-naphtho(1,2-b)pyran organic photochromic compounds of the present invention may be described as photochromic compounds that exhibit activated colors of from yellow to red/purple, and therefore may be used in place of or in combination with the aforesaid second group of photochromic compounds. The compounds of the present invention (hereinafter referred to as a second group photochromic compound) may be combined with or used in conjunction with the first group of photochromic compounds that color to purple/blue, e.g., the spirooxazine-type compounds, or with other photochromic substances in the aforesaid second group of photochromic compounds. Either members of the first or second group of photochromic compounds or mixtures of such compounds may be combined with or used in conjunction with the third group of described organic photochromic compounds that color from yellow/brown to purple/gray. Each of the photochromic compounds or substances containing same described herein may be used in amounts and in a ratio such that an organic host material to which the mixture of compounds is applied or in which they are incorporated exhibits a desired resultant color, e.g., a substantially neutral color such as shades of gray or brown, when activated with unfiltered sunlight, i.e., as near a neutral color as possible given the colors of the activated photochromic compounds. The relative amounts of the aforesaid photochromic compounds used will vary and depend in part upon the relative intensities of the color of the activated species of such compounds, and the ultimate color desired. Generally, the weight ratio of the aforedescribed organic photochromic compound combinations, i.e., (first to second), (first to third), and (second to third), will vary from about 1:3 to about 3:1, e.g., between about 0.75:1 and about 2:1. The combination of the first, second, and third organic photochromic compounds may have a weight ratio that will vary from about 1:3:1 to 3:1:3.
A near neutral gray color exhibits a spectrum that has relatively equal absorption in the visible range between 400 and 700 nanometers, e.g., between 440 and 660 nanometers. A near neutral brown color exhibits a spectrum in which the absorption in the 440-550 nanometer range is moderately larger than in the 550-700 nanometer range. An alternative way of describing color is in terms of its chromaticity coordinates, which describe the qualities of a color in addition to its luminance factor, i.e., its chromaticity. In the CIE system, the chromaticity coordinates are obtained by taking the ratios of the tristimulus values to their sum, e.g., x=X/(X+Y+Z) and y=Y/(X+Y+Z). Color as described in the CIE system can be plotted on a chromaticity diagram, usually a plot of the chromaticity coordinates x and y. See pages 47-52 of Principles of Color Technology, by F. W. Billmeyer, Jr., and Max Saltzman, Second Edition, John Wiley and Sons, N.Y. (1981). As used in the specification, a near neutral color is one in which the chromaticity coordinate values of "x" and "y" for the color are within the following ranges (D65 illuminant): x=0.260 to 0.400, y=0.280 to 0.400 following activation to 40 percent luminous transmission by exposure to solar radiation (Air Mass 1 or 2).
The photochromic compounds of the present invention may be applied to or incorporated into a host material by various methods described in the art. Such methods include dissolving or dispersing the compound within the host material, e.g., imbibition of the photochromic compound into the host material by immersion of the host material in a hot solution of the photochromic compound or by thermal transfer; providing the photochromic compound as a separate layer between adjacent layers of the host material, e.g., as a part of a polymeric film; and applying the photochromic compound as part of a coating placed on the surface of the host material. The term "imbibition" or "imbibe" is intended to mean and include permeation of the photochromic substance alone into the host material, solvent assisted transfer, absorption of the photochromic substance into a porous polymer, vapor phase transfer, and other such transfer mechanisms.
Compatible (chemically and color-wise) tints, i.e., dyes, may be applied to the host material to achieve a more aesthetic result, for medical reasons, or for reasons of fashion. The particular dye selected will vary and depend on the aforesaid need and result to be achieved. In one embodiment, the dye may be selected to complement the color resulting from the activated photochromic substances, e.g., to achieve a more neutral color or absorb a particular wavelength of incident light. In another embodiment, the dye may be selected to provide a desired hue to the host matrix when the photochromic substances is in an unactivated state.
The polymeric host material will usually be transparent, but may be translucent-or even opaque. The polymeric product need only be transparent to that portion of the electromagnetic spectrum, which activates the photochromic substance, i.e., that wavelength of ultraviolet (UV) light that produces the open form of the substance and that portion of the visible spectrum that includes the absorption maximum wavelength of the substance in its UV activated form, i.e., the open form. Further, the resin color should not be such that it masks the color of the activated form of the photochromic substance, i.e., so the change in color is readily apparent to the observer. Preferably, the host material article is a solid transparent or optically clear material, e.g., materials suitable for optical applications, such as plano and vision correcting ophthalmic lenses, windows, automotive transparencies, e.g., windshields, aircraft transparencies, plastic sheeting, polymeric films, etc.
Examples of host materials which may be used with the photochromic substances or compositions described herein include: polymers, i.e., homopolymers and copolymers, of polyol(allyl carbonate) monomers, polymers, i.e., homopolymers and copolymers, of polyfunctional acrylate monomers, polyacrylates, poly(alkylacrylates) such as poly(methyl methacrylate), cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene chloride), polyurethanes, polycarbonates, polyesters, poly(ethylene terephthalate), polystyrene, copoly(styrene-methyl methacrylate), copoly(styrene-acrylonitrile), polyvinylbutyral and polymers, i.e., homopolymers and copolymers, of diallylidene pentaerythritol, particularly copolymers with polyol (allyl carbonate) monomers, e.g., diethylene glycol bis(allyl carbonate), and acrylate monomers.
Transparent copolymers and blends of transparent polymers are also suitable as host materials. Preferably, the host material is an optically clear polymerized organic material prepared from a polycarbonate resin, such as the carbonate-linked resin derived from bisphenol A and phosgene, which is sold under the trademark, LEXAN; a polyester, such as the material sold under the trademark, MYLAR; a poly(methyl methacrylate), such as the material sold under the trademark, PLEXIGLAS; polymerizates of a polyol(allyl carbonate) monomer, especially diethylene glycol bis(allyl carbonate), which monomer is sold under the trademark CR-39, and polymerizates of copolymers of a polyol (allyl carbonate), e.g., diethylene glycol bis(allyl carbonate), with other copolymerizable monomeric materials, such as copolymers with vinyl acetate, e.g., copolymers of from 80-90 percent diethylene glycol bis(allyl carbonate) and 10-20 percent vinyl acetate, particularly 80-85 percent of the bis(allyl carbonate) and 15-20 percent vinyl acetate, and copolymers with a polyurethane having terminal diacrylate functionality, as described in U.S. Pat. Nos. 4,360,653 and 4,994,208; and copolymers with aliphatic urethanes, the terminal portion of which contain allyl or acrylyl functional groups as described in U.S. Pat. No. 5,200,485; cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, polystyrene and copolymers of styrene with methyl methacrylate, vinyl acetate and acrylonitrile.
The amount of photochromic substance or composition containing same applied to or incorporated into a host material is not critical provided that a sufficient amount is used to produce a photochromic effect discernible to the naked eye upon activation. Generally such amount can be described as a photochromic amount. The particular amount used depends often upon the intensity of color desired upon irradiation thereof and upon the method used to incorporate or apply the photochromic substances. Typically, the more photochromic substance applied or incorporated, the greater is the color intensity. Generally, the amount of total photochromic substance incorporated into or applied to a photochromic optical host material may range from about 0.15 to about 0.35 milligrams per square centimeter of surface to which the photochromic substance(s) is incorporated or applied.
The present invention is more particularly described in the following examples which are intended as illustrative only, since numerous modifications and variations therein will be apparent to those skilled in the art.
EXAMPLE 1 STEP 1
4,4'-dimethoxybenzophenone (0.27 moles) was dissolved in a reaction flask containing 200 milliliters (ml) of anhydrous tetrahydrofuran saturated with acetylene and stirred at room temperature. An 18 weight percent suspension of sodium acetylide in xylene/mineral oil (0.3 mole of sodium acetylide) was added to the reaction flask and the mixture was stirred. After stirring 16 hours at room temperature under a nitrogen atmosphere, the contents of the reaction flask mixture was added to a 5 weight percent aqueous hydrochloric acid and ice mixture. The resulting mixture was extracted with diethyl ether. The organic layer was separated, washed, and dried over anhydrous sodium sulfate. The solvents, diethyl ether and tetrahydrofuran, were removed under vacuum to yield an oily product containing 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol, which was not purified further but used directly in the next step.
STEP 2
1,1-bis(4-methoxyphenyl)-2-propyn-1-ol (about 0.025 mole) from Step 1 and methyl-4-dihydroxy-2-naphthoate (5 gm., 0.022 mole) were added to a reaction flask containing 200 ml of toluene and stirred. A catalytic amount of p-toluenesulfonic acid (about 100 milligrams) was added, and the mixture was stirred for 4 hours. Afterwards, the reaction mixture was poured into a 10 weight percent sodium hydroxide solution. The organic layer was separated, washed with water, and dried over anhydrous sodium sulfate. The remaining solvent, toluene, was removed under vacuum. The resulting oil was purified using a silica gel column and a 1:3 mixture of chloroform:hexane as the eluant. The photochromic fractions were combined and the eluent was removed under vacuum. The resulting product was induced to crystallize from hexane. The recovered product had a melting point of 160° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 2
2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran (2 grams) prepared as described in Example 1, anhydrous potassium carbonate (2 grams), and methyliodide (2 grams) were added to a reaction flask containing 40 milliliters of anhydrous acetone, stirred and refluxed under an argon atmosphere. Afterwards, the acetone was removed under vacuum and 25 milliliters each of water and methylene chloride were added to the reaction mixture. The mixture was stirred for 30 minutes and the organic layer was separated, washed, and dried. The remaining solvent, methylene chloride, was removed under vacuum. The resulting oily concentrate was crystallized from a 1:1 hexane:diethyl ether mixture. The solid obtained was suction filtered, washed with hexane and air dried. The resulting product had a melting point of 175°-177° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methoxy-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 3
The procedure of Example 2 was followed except that ethyl bromoacetate was used in place of methyl iodide. The resulting product had a melting point of 123° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-ethoxycarbonylmethoxy-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 4 STEP 1
The procedure of Step 1 of Example 1 was followed except that 1-(4-methoxyphenyl)-2,2-dimethyl-1-propanone was used in place of 4,4-dimethoxybenzophenone to produce 3-(4-methoxyphenyl)-4,4-dimethyl-1-pentyn-3-ol.
STEP 2
The procedure of Step 2 of Example 1 was followed except that 3-(4-methoxyphenyl)-4,4-dimethyl-1-pentyn-3-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
STEP 3
2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran (2 grams), prepared as described above in Step 2, and triethylamine (2 grams) were added to a reaction flask containing 50 milliliters of anhydrous methylene chloride and stirred. Acetyl chloride (2 grams) was added to the reaction flask and the reaction mixture was stirred for 1 hour. Distilled water (50 milliliters) was added to the reaction flask and the reaction mixture was stirred for another half hour. Afterwards, the organic layer was separated, washed and dried over anhydrous sodium sulfate. Evaporation of solvent resulted in an oily residue that was crystallized from a 1:1 hexane:diethyl ether mixture. The solid was suction filtered, washed with hexane, and air dried. The resulting product had a melting point of 152°-159° C. A nuclear magnetic resonance (NMR) spectrum showed he product to have a structure consistent with 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-acetoxy-[2H]naphtho[1,2-b]pyran.
EXAMPLE 5 STEP 1
The procedure of Step 1 of Example 1 was followed except that 4-methoxybenzophenone was used in place of 4,4-dimethoxybenzophenone to produce 1-(4-methoxyphenyl)-1-phenyl-2-propyn-1-ol.
STEP 2
The procedure of Step 2 of Example 1 was followed except that 1-(4-methoxyphenyl)-1-phenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2-(4-methoxyphenyl)-2-phenyl -5-methoxycarbonyl -6-hydroxy-[2H]-naphtho [1,2-b]pyran.
STEP 3
The procedure of Example 3 was followed except that 2-(4-methoxyphenyl)-2-phenyl-5-methoxycarbonyl-6-hydroxy-[2H]naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran and bromoacetonitrile was used in place of ethyl bromoacetate. The resulting product had a melting point of 125° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2-(4-methoxyphenyl)- 2-phenyl -5-methoxycarbonyl -6-(cyanomethoxy)-[2H]-naphtho [1,2-b]pyran.
EXAMPLE 6 STEP 1
The procedure of Step 1 of Example 1 was followed except that 4,4'-dimethylbenzophenone was used in place of 4,4'-dimethoxybenzophenone to produce 1,1-bis(4-methylphenyl)-2-propyn-1-ol.
STEP 2
The procedure of Step 2 of Example 1 was followed except that 1,1-bis(4-methylphenyl)-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2-bis(4-methylphenyl)-5-methoxycarbonyl -6-hydroxy-[2H]-naphtho[1,2-b]pyran.
STEP 3
The procedure of Example 3 was followed except that 2,2-bis(4-methylphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran and methyl chloroformate was used in place of bromoethyl acetate. The resulting product had a melting point of 166° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methylphenyl)-5-methoxycarbonyl-6-(methoxycarbonyloxy)-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 7 STEP 1
The procedure of Step 2 of Example 1 was followed except that 1,1-diphenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2-diphenyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
STEP 2
The procedure of Step 3 of Example 4 was followed except that 2,2-diphenyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]-pyran. The resulting product had a melting point of 190°-192° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-diphenyl-5-methoxycarbonyl-6-acetoxy -[2H]-naphtho[1,2-b ]pyran.
EXAMPLE 8
The procedure of Step 2 of Example 1 was followed except that methyl-4-hydroxy, 1-methyl-2-naphthoate was used in place of methyl-1,4-dihydroxy-2-naphthoate. The resulting product had a melting point of 175°-176° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 9
The procedure of Step 2 of Example 1 was followed except that methyl-4-hydroxy-6-methoxy-1-methyl-2-naphthoate was used in place of methyl-1,4-dihydroxy-2-naphthoate. The resulting product had a melting point of 132°-133° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-9-methoxy-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 10
The procedure of Example 7 was followed except that in step 2, isobutyryl chloride was used in place of acetyl chloride. The resulting product had a melting point of 173° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-diphenyl-5-methoxycarbonyl-6-(propionyloxy)-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 11 STEP 1
The procedure of Step 1 of Example 1 was followed except that 3,3-bis(trifluoromethyl)benzophenone was used in place of 4,4'-dimethoxybenzophenone to produce 1,1-bis(3-trifluoromethlyphenyl)-2-propyn-1-ol.
STEP 2
The procedure of Step 2 of Example 1 was followed except that 1,1-bis(3-trifluoromethylphenyl)-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2-bis(3-trifluoromethylphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
STEP 3
The procedure of Step 3 of Example 4 was followed except that 2,2-bis (3-trifluoromethylphenyl)-5-methoxycarbonyl -6-hydroxy-[2H]-naphtho [1,2-b]pyran was used in place of 2-(4-methoxyphenyl)-2-t-butyl-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran. The resulting product had a melting point of 160° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2-bis(3-trifluoromethylphenyl)-5-methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 12 STEP 1
The procedure of Step 1 of Example 1 was followed except that 5-(4-methoxybenzoyl)-2-methyl-2,3-dihydrobenzofuran was used in place of 4,4'-dimethoxybenzophenone to produce 1-(4-methoxyphenyl)-1-(2-methyl-2,3-dihydrobenzofur-5-yl)-2-propyn-1-ol.
STEP 2
The procedure of Step 2 of Example 1 was followed except that 1-(4-methoxyphenyl)-1-(2,3-dihydrobenzofur-5-yl)-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2-(4-methoxyphenyl)-2-(2-methyl-2,3-dihydrobenzofur-5-yl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
STEP 3
The procedure of Example 3 was followed except that 2-(4-methoxyphenyl)-2-(2-methyl-2,3-dihydrobenzofur-5-yl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy[2H]-naphtho[1,2-b]pyran and ethyl bromoacetate was used in place of methyl iodide. The resulting product had a melting point of 130°-131° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2-(4-methoxyphenyl)-2-(2-methyl-2,3-dihydrobenzofur-5-yl)-5-methoxycarbonyl-6-ethoxycarbonylmethoxy-[2H]-naphtho[1,2-b]pyran.
EXAMPLE 13 STEP 1
The procedure of Step 1 of Example 1 was followed except that adamantanone was used in place of 4,4'-dimethoxybenzophenone to produce 2-ethinyl-2-hydroxyadamantane.
STEP 2
The procedure of Step 2 of Example 1 was followed except that 2-ethinyl-2-hydroxyadamantane was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol to produce 2,2'-spiroadamantylene-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran.
STEP 3
The procedure of Example 2 was followed except that 2,2'-spiroadamatylene-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran was used in place of 2,2-bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran. The resulting product had a melting point of 130°-131° C. A nuclear magnetic resonance (NMR) spectrum showed the product to have a structure consistent with 2,2'-spiroadamantylene-5-methoxycarbonyl-6-methoxy-[2H]-naphtho[1,2-b]pyran.
COMPARATIVE EXAMPLE 1
The procedure of Step 2 of Example 1 was followed except that 1,1-diphenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol and 1-hydroxynaphthalene was used in place of methyl-1,4-dihydroxy-2-naphthoate to produce 2,2-diphenyl-[2H]-naphtho[1,2-b]pyran.
COMPARATIVE EXAMPLE 2
The procedure of Step 2 of Example 1 was followed except that 1,1-diphenyl-2-propyn-1-ol was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol and 3-methyl-1-hydroxynaphthalene was used in place of methyl-1,4-dihydroxy-2-naphthoate to produce 2,2-diphenyl-5-methyl-[2H]-naphtho[1,2-b]pyran.
COMPARATIVE EXAMPLE 3
The procedure of Step 2 of Example 1 was followed except that 2-ethinyl-2-hydroxyadamantane was used in place of 1,1-bis(4-methoxyphenyl)-2-propyn-1-ol and 1-hydroxynaphthalene was used in place of methyl-1,4-dihydroxy-2-naphthoate to produce 2,2-spiroadamantylene-[2H]-naphtho[1,2-b]pyran.
COMPARATIVE EXAMPLE 4
The procedure of Example 4 was followed except that in step 2,1-hydroxynaphthalene was used in the place of methyl,1-4-dihydroxy-2-naphthoate to produce 2-(4-methoxyphenyl)-2-t-butyl-[2H]naphtho[1,2-b]pyran.
EXAMPLE 14 Part A
Testing was done with selected photochromic naphthopyrans incorporated into test square polymerizates by one of two different imbibition processes. The test square polymerizates were prepared from a diethylene glycol bis(allyl carbonate) composition and measured 1/8 inch (0.3 centimeters)×2 inches (5.1 centimeters)×2 inches (5.1 centimeters). In one of the imbibition processes, the photochromic naphthopyran was dissolved to form a 10 weight percent solution in a 1:9 mixture of ethyl cellulose:toluene. The solution was then spin coated onto the test squares and allowed to dry. Samples were then heated in a hot-air oven at 135°-155° C. for a period of time sufficient to thermally transfer the photochromic into the test squares. After cooling, the ethyl cellulose/toluene resin film was removed from the test squares by washing with acetone.
Alternatively, the test squares were imbibed by the following procedure. Each naphthopyran was dissolved into toluene to form a four (4) weight percent solution of the compound. A piece of No. 4 Whatman filter paper was saturated with the naphthopyran toluene solution and allowed to air dry. The dried filter paper was placed on one side of the test square. A piece of untreated filter paper was placed on the other side of the polymeric test square and the resulting sandwich was placed between two flat aluminum metal plates. The entire assembly was then placed in a 135°-155° C. oven for a time sufficient to thermally transfer the naphthopyran into the polymeric test square. After cooling, the test squares were washed with acetone. In both imbibition processes, the residence times in the oven for the test squares were adjusted to imbibe comparable amounts of the naphthopyran compounds. This was done in order to yield a comparable UV absorbance at the lambda max of the compound in the near UV.
Part B
The photochromic squares were tested for photochromic response rates on an optical bench. Prior to testing on the optical bench, the photochromic test squares were exposed to 365 nanometer ultraviolet light for about 15 minutes to activate the photochromic compounds and then placed into a 76° C. oven for about 15 minutes to bleach or inactivate the photochromic compounds. The test squares were then cooled to room temperature, exposed to fluorescent room lighting for at least 2 hours and then kept covered for at least 2 hours prior to testing on an optical bench maintained at 75° F. (23.9° C.). The bench was fitted with a 150 watt Xenon arc lamp, a remote controlled shutter, a copper sulfate bath acting as a heat sink for the arc lamp, a Schott WG-320 nm cut-off filter which removes short wavelength radiation; neutral density filter(s) and a sample holder in which the square to be tested was inserted. A collimated beam of light from a tungsten lamp was passed through the square at a small angle normal to the square. After passing through the square, the light from the tungsten lamp was directed through a photopic filter attached to a detector. The photopic filter passes wavelengths such that the detector mimics the response of the human eye. The output signals from the detector(s) were processed by a radiometer.
Change in optical density (ΔOD) was determined by inserting an imbibed square in the bleached state into the sample holder, adjusting the transmittance scale to 100%, opening the shutter from the Xenon lamp to provide ultraviolet radiation to change the imbibed square from the bleached state to an activated (i.e., darkened) state, measuring the transmittance in the activated state, and calculating the change in optical density according to the formula ΔOD=log(100% Ta) where % Ta is the percent transmittance in the activated state and the logarithm is to the base 10.
The ΔOD/Min, which represents the sensitivity of the photochromic compound's response to UV light, was measured over the first five (5) seconds of UV exposure, then expressed on a per minute basis. The saturation optical density (OD) was taken under identical conditions as the ΔOD/Min, except UV exposure was continued for 20 minutes for the examples in Table 1. The lambda max reported in Table 1 is the wavelength in the visible spectrum at which the maximum absorption of the activated (colored) form of the photochromic compound in a diethylene glycol bis(allyl carbonate) composition occurs. The Bleach Rate (T 1/2) is the time interval in seconds for the absorbance of the activated form of the naphthopyran in the test squares to reach one half the highest absorbance at room temperature (75° F., 23.9° C.) after removal of the source of activating light. Results for the Compounds of the Examples are tabulated in Table 1.
A comparison of Bleach Rate T 1/2 results for the Compounds of the Examples with the Compounds of the Comparative Examples having the same structure, except for the substituents at the 5 and 6 carbon position, is shown in Table 2.
              TABLE 1                                                     
______________________________________                                    
Results for Compounds Imbibed into a Diethylene-glycol                    
bis-(allyl carbonate) composition                                         
COM-               Δ OD/Min                                         
                             Δ OD @                                 
                                    BLEACH                                
POUND    LAMBDA    SENSITI-  SATUR- RATE                                  
EXAMPLE  MAX       VITY      ATION  T1/2(SEC.)                            
______________________________________                                    
1        497 nm    0.47      0.18   235                                   
2        510 nm    0.81      0.48   305                                   
3        508 nm    0.79      0.44   211                                   
5        494 nm    --        --     --                                    
6        482 nm    0.32      0.17   100                                   
8        476 nm    0.63      0.42   217                                   
9        522 nm    0.58      0.58   376                                   
10       470 nm    0.39      0.19   257                                   
11       455 nm    0.15      0.08   218                                   
12       517 nm    0.83      0.53   276                                   
______________________________________                                    
              TABLE 2                                                     
______________________________________                                    
Comparison of Bleach Rate (T 1/2 Results                                  
Compound          Bleach Rate                                             
Example           T 1/2 (Sec.)                                            
______________________________________                                    
7                 220                                                     
Comparative Example 1                                                     
                  >1800                                                   
Comparative Example 2                                                     
                  640                                                     
4                 433                                                     
Comparative Example 4                                                     
                  >1800                                                   
13                 98                                                     
Comparative Example 3                                                     
                  225                                                     
______________________________________                                    
The results of Table 1 show that each tested compound of the present invention has an acceptable bleach rate, i.e., fade rate; a high ΔOD at saturation, i.e., activated intensity; and a high coloration rate, i.e., sensitivity.
The results of Table 2 show in each comparison that the Compounds of the present invention have bleach rates that are much faster than the Compounds of the Comparative Examples.
The present invention has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except insofar as they are included in the accompanying claims.

Claims (24)

We claim:
1. A naphthopyran compound represented by the following graphic formula: ##STR9## wherein, (a) R1 is the group, --C(O)W, W being --OR4 or --N(R5)R6, wherein R4 is hydrogen, allyl, C1 -C6 alkyl, phenyl, mono(C1 -C6)alkyl substituted phenyl, mono(C1 -C6)alkoxy substituted phenyl, phenyl(C1 -C3 )alkyl, mono(C1 -C6)alkyl substituted phenyl(C1 -C3)alkyl, mono(C1 -C6)alkoxy substituted phenyl(C1 -C3)alkyl, (C1 -C6)alkoxy(C2 -C4)alkyl, or C1 -C6 haloalkyl and wherein R5 and R6 are each selected from the group consisting of hydrogen, C1 -C6 alkyl, C5 -C7 cycloalkyl, phenyl, mono-substituted phenyl and di-substituted phenyl, said phenyl substituents being C1 -C6 alkyl or C1 -C6 alkoxy, and said halo substituents being chloro or fluoro;
(b) R2 and R3 are hydrogen, C1 -C6 alkyl, C3 -C7 cycloalkyl, substituted or unsubstituted phenyl, the group --OR7, wherein R7 is hydrogen, (C1 -C6)alkyl, phenyl(C1 -C3)alkyl, mono(C1 -C6)alkyl substituted phenyl(C1 -C3)alkyl, mono(C1 -C6)alkoxy substituted phenyl(C1 -C3)alkyl, (C1 -C6)alkoxy(C2 -C4)alkyl, C3 -C7 cycloalkyl, mono(C1 -C4)alkyl substituted C3 -C7 cycloalkyl, C1 -C6 haloalkyl, allyl, the group, --CH(R8)X, wherein X is CN, CF3, halogen, or --C(O)W and R8 is hydrogen or C1 -C6 alkyl, or R7 is the group, --C(O)Y, wherein Y is hydrogen, C1 -C6 alkyl, C1 -C6 alkoxy, the substituted or unsubstituted aryl groups phenyl or naphthyl, phenoxy, C1 -C6 mono- or di-alkyl substituted phenoxy, C1 -C6 mono- or di-alkoxy substituted phenoxy, C1 -C6 alkylamino, phenylamino, C1 -C6 mono- or di-alkyl substituted phenylamino, or C.sub. 1 -C6 mono- or di-alkoxy substituted phenylamino, said aryl substituents being selected from C1 -C6 alkyl or C1 -C6 alkoxy, said halogen or halo substituents being chloro or fluoro and n is selected from the integers 0, 1, 2, or 3; and
(c) B and B' are each the substituted or unsubstituted aryl groups phenyl and naphthyl, said aryl substituents being selected from the group consisting of hydroxy, C1 -C6 alkyl, C1 -C6 haloalkyl, C1 -C6 alkoxy, (C1 -C6)alkoxy(C1 -C4)alkyl, acryloxy, methacryloxy and halogen, said halogen or (halo) groups being fluoro or chloro.
2. The naphthopyran of claim 1, wherein:
(a) R1 is the group, --C(O)W, W being --OR4 or --N(R5)R6, wherein R4 is hydrogen, C1 -C4 alkyl, phenyl, mono(C1 -C4)alkyl substituted phenyl, mono(C1 -C4)alkoxy substituted phenyl, phenyl(C1 -C2)alkyl, mono(C1 -C4)alkyl substituted phenyl(C1 -C2)alkyl, mono(C1 -C4)alkoxy substituted phenyl(C1 -C2)alkyl, mono(C1 -C4)alkoxy(C2 -C3)alkyl, or C1 -C4 haloalkyl, and wherein R5 and R6 are each selected from the group consisting of hydrogen, C1 -C4 alkyl, C5 -C7 cycloalkyl, phenyl and mono- or di-substituted phenyl, said phenyl substituents being selected from C1 -C4 alkyl and C1 -C4 alkoxy, said halo substituents being chloro or fluoro;
(b) R2 and R3 are hydrogen, C1 -C3 alkyl, C3 -C5 cycloalkyl, substituted or unsubstituted phenyl, or --OR7, wherein R7 is hydrogen, (C1 -C3)alkyl, or the group, --CH(R8)X, wherein X is CN, or --C(O)W and R8 is hydrogen or methyl, or R7 is the group, --C(O)Y, wherein Y is C1 -C3 alkyl or C1 -C3 alkoxy, and n is selected from the integers 0 and 1; and
(c) B and B' are each substituted or unsubstituted phenyl, said phenyl substituents being C1 -C3 alkyl or C1 -C3 alkoxy.
3. The napthopyran of claim 2, wherein:
(a) R1 is the group, --C(O)W, W being the group --OR4, wherein R4 is a C1 -C3 alkyl.
4. A naphthopyran compound selected from the group consisting of:
(a) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-hydroxy-[2H]-naphtho[1,2-b]pyran;
(b) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methoxy-[2H]-naphtho[1,2-b]pyran;
(c) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-(ethoxycarbonyl)methoxy-[2H]-naphtho[1,2-b]pyran;
(d) 2-(4-Methoxyphenyl)-2-phenyl-5-methoxycarbonyl-6-(cyanomethoxy)-[2H]-naphtho[1,2-b]pyran;
(e) 2,2-Bis(4-methylphenyl)-5-methoxycarbonyl-6-(methoxycarbonyloxy)-[2H]-naphtho-[1,2-b]pyran;
(f) 2,2-Diphenyl-5-methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran;
(g) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-[2H]-naphtho[1,2-b]pyran;
(h) 2,2-Bis(4-methoxyphenyl)-5-methoxycarbonyl-6-methyl-9-methoxy-[2H]-naphtho[1,2-b]pyran;
(i) 2,2-Diphenyl-5-methoxycarbonyl-6-propionyloxy-[2H]-naphtho[1,2-b]pyran; and
(j) 2,2-Bis(3-trifluoromethylphenyl)-5-methoxycarbonyl-6-acetoxy-[2H]-naphtho[1,2-b]pyran;
5. A photochromic article comprising an organic host material and a photochromic amount of at least one photochromic naphthopyran compound of claim 1.
6. The photochromic article of claim 5 wherein the organic host material is selected from the group consisting of polyacrylates, cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene chloride), polycarbonate, polyurethane, poly(ethylene terephthalate), polystyrene, copoly(styrene-methylmethacrylate), copoly(styrene-acrylonitrile), polyvinylbutyral and polymers of members selected form the group consisting of polyol(allyl carbonate) monomers, polyfunctional acrylate monomers, and diallylidene pentaerythritol monomers.
7. A photochromic article comprising an organic host material and a photochromic amount of at least one photochromic naphthopyran compound of claim 2.
8. The photochromic article of claim 7 wherein the organic host material is selected from the group consisting of polyacrylates, cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene chloride), polycarbonate, polyurethane, poly(ethylene terephthalate), polystyrene, copoly(styrene-methylmethacrylate), copoly(styrene-acrylonitrile), polyvinylbutyral and polymers of members selected from the group consisting of polyol(allyl carbonate) monomers, polyfunctional acrylate monomers, and diallylidene pentaerythritol monomers.
9. The photochromic article of claim 8, wherein R1 of the naphthopyran compound is the group --C(O)W, W being the group --OR4, wherein R4 is a C1 -C3 alkyl.
10. The photochromic article of claim 9 wherein the organic host material is a solid transparent homopolymer or copolymer of diethylene glycol bis(allyl carbonate), polycarbonate, poly(methylmethacrylate), polyvinylbutyral, or a polyurethane.
11. The photochromic article of claim 10 wherein the photochromic naphthopyran compound is present in an amount of from about 0.15 to 0.35 milligrams per square centimeter of organic host material surface to which the photochromic substance(s) is incorporated or applied.
12. The photochromic article of claim 11 wherein the article is a lens.
13. A photochromic article comprising, in combination, a solid transparent polymerized organic host material and a photochromic amount of:
(a) at least one organic photochromic compound having at least one activated absorption maxima within the visible range of greater than 590 nanometers associated with said host material, and
(b) at least one photochromic naphthopyran compound of claim 1.
14. The photochromic article of claim 13 wherein the organic host material is selected from the group consisting of polyacrylates, cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene chloride), polycarbonate, polyurethane, poly(ethylene terephthalate), polystyrene, copoly(styrene-methylmethacrylate), copoly(styrene-acrylonitrile, polyvinylbutyral and polymers of members selected from the group consisting of polyol(ally carbonate) monomers, polyfunctional acrylate monomers, and diallylidene pentaerythritol monomers.
15. A photochromic article comprising, in combination, a solid transparent polymerized organic host material and a photochromic amount of:
(a) at least one organic photochromic compound having at least one activated absorption maxima within the visible range of greater than 590 nanometers associated with said host material, and
(b) at least one photochromic naphthopyran compound of claim 2.
16. The photochromic article of claim 15 wherein the organic host material is selected from the group consisting of polyacrylates, cellulose acetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene chloride), polycarbonate, polyurethane, poly(ethylene terephthalate), polystyrene, copoly(styrene-methylmethacrylate), copoly(styrene-acrylonitrile, polyvinylbutyral and polymers of members selected from the group consisting of polyol(ally carbonate) monomers, polyfunctional acrylate monomers, and diallylidene pentaerythritol monomers.
17. The photochromic article of claim 16 wherein the organic host material is a solid transparent homopolymer or copolymer of diethylene glycol bis(ally carbonate), polycarbonate, poly(methylmethacrylate), polyvinylbutyral, or a polyurethane.
18. The photochromic article of claim 17 wherein the organic photochromic compound (a) is selected from the group consisting of spiro(indoline)naphthoxazines, spiro(indoline)pyridobenzoxazines, spiro(benzindoline)pyridobenzoxazines, spiro(benzindoline)naphthoxazines, spiro(benzindoline)naphthopyrans, spiro(indoline)benzoxazines, spiro(indoline)benzopyrans, spiro(indoline)naphthopyrans, spiro(indoline)quinopyrans, spiro(indoline)pyrans, 3H-naphtho[2,1-b]pyrans, and mixtures of such photochromic substances.
19. The photochromic article of claim 18 wherein each photochromic compound associated with the organic host material is present in an amount of from about 0.15 to 0.35 milligrams per square centimeter of organic host material surface to which the photochromic compound is incorporated or applied.
20. The photochromic article of claim 19 wherein the article is an ophthalmic lens.
21. A photochromic article comprising, in combination, a solid transparent polymerized organic host material and a photochromic amount of
(a) at least one organic photochromic compound represented by the graphic formula: ##STR10## wherein R1 is the group --C(O)W, and wherein W is the group --OR4, R4 being a C1 -C3 alkyl; R2 and each R3 are selected from hydrogen, C1 -C3 alkyl, or the group --OR7, wherein R7 is hydrogen, C1 -C3 alkyl, the group --CH(R8)X, wherein X is --C(O)W and R8 is hydrogen or methyl, or R7 is the group --C(O)Y wherein Y is C1 -C3 alkyl or C1 -C3 alkoxy, and n is the integer 0 or 1; and B and B' are each selected from substituted or unsubstituted phenyl, wherein the phenyl substituents are C1 -C3 alkyl and C1 -C3 alkoxy; and
(b) at least one organic photochromic compound selected from the group consisting of spiro(indoline)naphthoxazines, spiro(indoline)pyridobenzoxazines, spiro(indoline)benzoxazines, spiro(indoline) benzopyrans, spiro(indoline)naphthopyrans and 3H-naphtho[2,1-b]pyrans, the weight ratio of the photochromic compounds (a):(b) being from about 1:3 to about 3:1.
22. The photochromic article of claim 21 wherein the organic host material is a solid transparent homopolymer or copolymer of diethylene glycol bis(allyl carbonate), polycarbonate, poly(methylmethacrylate), polyvinylbutyral, or a polyurethane.
23. The photochromic article of claim 22 wherein R1 is the group --C(O)W, W being the group --OR4, R4 being methyl, R2 and each R3 are C1 -C3 alkyl or the group --OR7, wherein R7 is C1 -C3 alkyl or the group --C(O)Y, wherein Y is C1 -C3 alkyl and n is the integer 0 or 1.
24. The photochromic article of claim 23 wherein the organic photochromic compound (b) is selected from spiro(indoline) naphthoxazine or spiro(indoline)pyrido benzoxazines.
US08/164,187 1993-12-09 1993-12-09 Substituted naphthopyrans Expired - Lifetime US5458814A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US08/164,187 US5458814A (en) 1993-12-09 1993-12-09 Substituted naphthopyrans
PCT/US1994/013968 WO1995016215A1 (en) 1993-12-09 1994-12-05 Novel substituted naphthopyrans
AU12658/95A AU1265895A (en) 1993-12-09 1994-12-05 Novel substituted naphthopyrans
SG1996004909A SG52465A1 (en) 1993-12-09 1994-12-05 Novel substituted naphthopyrans
US08/407,830 US5573712A (en) 1993-12-09 1995-03-21 Substituted naphthopyrans
US08/542,999 US5650098A (en) 1993-12-09 1995-10-13 Substituted naphthopyrans
US08/571,000 US5651923A (en) 1993-12-09 1995-12-12 Substituted naphthopyrans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/164,187 US5458814A (en) 1993-12-09 1993-12-09 Substituted naphthopyrans

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US08/407,830 Division US5573712A (en) 1993-12-09 1995-03-21 Substituted naphthopyrans
US49018995A Continuation-In-Part 1993-12-09 1995-06-14
US08/542,999 Continuation-In-Part US5650098A (en) 1993-12-09 1995-10-13 Substituted naphthopyrans

Publications (1)

Publication Number Publication Date
US5458814A true US5458814A (en) 1995-10-17

Family

ID=22593367

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/164,187 Expired - Lifetime US5458814A (en) 1993-12-09 1993-12-09 Substituted naphthopyrans
US08/407,830 Expired - Lifetime US5573712A (en) 1993-12-09 1995-03-21 Substituted naphthopyrans

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/407,830 Expired - Lifetime US5573712A (en) 1993-12-09 1995-03-21 Substituted naphthopyrans

Country Status (4)

Country Link
US (2) US5458814A (en)
AU (1) AU1265895A (en)
SG (1) SG52465A1 (en)
WO (1) WO1995016215A1 (en)

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022895A1 (en) * 1995-12-20 1997-06-26 Ppg Industries, Inc. Photochromic substituted naphthopyran compounds
US5645767A (en) * 1994-11-03 1997-07-08 Transitions Optical, Inc. Photochromic indeno-fused naphthopyrans
US5650098A (en) * 1993-12-09 1997-07-22 Transitions Optical, Inc. Substituted naphthopyrans
US5651923A (en) * 1993-12-09 1997-07-29 Transitions Optical, Inc. Substituted naphthopyrans
WO1997037254A1 (en) * 1996-03-29 1997-10-09 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
US5698141A (en) * 1996-06-17 1997-12-16 Ppg Industries, Inc. Photochromic heterocyclic fused indenonaphthopyrans
WO1998004937A1 (en) * 1996-07-25 1998-02-05 Corning Incorporated Naphthopyrans, compositions and articles containing them
US5723072A (en) * 1996-06-17 1998-03-03 Ppg Industries, Inc. Photochromic heterocyclic fused indenonaphthopyrans
WO1998014443A1 (en) * 1995-06-14 1998-04-09 Ppg Industries, Inc. Novel substituted naphthopyrans
US5770115A (en) * 1996-04-19 1998-06-23 Ppg Industries, Inc. Photochromic naphthopyran compositions of improved fatigue resistance
US5783116A (en) * 1997-10-16 1998-07-21 Ppg Industries, Inc. Derivatives of carbocyclic fused naphthopyrans
US5808063A (en) * 1997-10-01 1998-09-15 Ppg Industries, Inc. Photochromic spiro(indoline) fluoranthenoxazine compounds
US5811034A (en) * 1997-10-23 1998-09-22 Ppg Industries, Inc. 7-methylidene-5-oxo-furo fused naphthopyrans
WO1998042693A2 (en) * 1997-03-25 1998-10-01 James Robinson Limited NEUTRAL COLOURING PHOTOCHROMIC 2H-NAPHTHO[1,2-b]PYRANS AND HETEROCYCLIC PYRANS
US5869658A (en) * 1997-12-15 1999-02-09 Ppg Industries, Inc. Photochromic indeno-fused naptho 2,1-b!pyrans
US5879592A (en) * 1997-12-10 1999-03-09 Ppg Industries, Inc. Water soluble photochromic compounds, compositions and optical elements comprising the compounds
US5891368A (en) * 1997-10-01 1999-04-06 Ppg Industries, Inc. Fluoranthenopyrans
US5952515A (en) * 1994-07-11 1999-09-14 Optische Werke G. Rodenstock Diaryl-2h-napthopyrans
US5955520A (en) * 1996-06-17 1999-09-21 Ppg Industries, Inc. Photochromic indeno-fused naphthopyrans
US5961892A (en) * 1998-09-11 1999-10-05 Ppg Industries Ohio, Inc. Polyalkoxylated naphthopyrans
US5989462A (en) * 1997-07-31 1999-11-23 Q2100, Inc. Method and composition for producing ultraviolent blocking lenses
GB2338479A (en) * 1997-03-25 1999-12-22 James Robinson Ltd Neutral colouring photochromic 2H-naphtho[1,2-b]pyrans and heterocyclic pyrans
WO2000002883A2 (en) * 1998-07-10 2000-01-20 Transitions Optical, Inc. Photochromic six-membered heterocyclic-fused naphthopyrans
US6022498A (en) 1996-04-19 2000-02-08 Q2100, Inc. Methods for eyeglass lens curing using ultraviolet light
US6022495A (en) * 1998-07-10 2000-02-08 Transitions Optical, Inc. Photochromic benzopyrano-fused naphthopyrans
US6022497A (en) * 1998-07-10 2000-02-08 Ppg Industries Ohio, Inc. Photochromic six-membered heterocyclic-fused naphthopyrans
EP0994871A1 (en) * 1997-06-04 2000-04-26 Transitions Optical, Inc. Novel substituted naphthopyrans
US6106744A (en) * 1997-12-03 2000-08-22 Ppg Industries Ohio, Inc. Photochromic pyrano-fused naphthopyrans
US6113814A (en) * 1998-09-11 2000-09-05 Transitions Optical, Inc. Polymerizable polyalkoxylated naphthopyrans
US6210608B1 (en) 1999-02-17 2001-04-03 Corning S.A. Naphthopyrans and phenanthropyrans annelated in C5-C6 with a bicycle group and compositions and (co) polymer matrices containing them
US6228289B1 (en) 1998-09-25 2001-05-08 Q2100, Inc. Plastic lens systems and methods
WO2001051483A1 (en) * 2000-01-12 2001-07-19 Ppg Industries Ohio, Inc. Substituted photochromic 2h-naphtho [1,2-b] pyran compounds
US6280171B1 (en) 1996-06-14 2001-08-28 Q2100, Inc. El apparatus for eyeglass lens curing using ultraviolet light
US6296785B1 (en) 1999-09-17 2001-10-02 Ppg Industries Ohio, Inc. Indeno-fused photochromic naphthopyrans
US6342459B1 (en) 1998-06-19 2002-01-29 Optische Werke G. Rodenstock Photochromic naphthopyrans
US6348604B1 (en) 1999-09-17 2002-02-19 Ppg Industries Ohio, Inc. Photochromic naphthopyrans
US6353102B1 (en) 1999-12-17 2002-03-05 Ppg Industries Ohio, Inc. Photochromic naphthopyrans
US6398987B1 (en) 1999-11-04 2002-06-04 Corning S.A. Naphthopyrans having a perfluoroalkyl substituent in position 5, preparation and compositions and matrices containing them
US6399791B1 (en) 1997-03-21 2002-06-04 Corning S.A. Naphthopyran derivatives, compositions and (co) polymer matrices containing same
US6419873B1 (en) 1999-03-19 2002-07-16 Q2100, Inc. Plastic lens systems, compositions, and methods
US20020136899A1 (en) * 2001-03-21 2002-09-26 Derojas Agustin Alberto Lens with photochromic elastomer film and method of making it
US6464484B1 (en) 2002-03-30 2002-10-15 Q2100, Inc. Apparatus and system for the production of plastic lenses
US6478989B1 (en) 1997-09-19 2002-11-12 Transitions Optical, Inc. Aromatic substituted naphthopyrans
US20030045612A1 (en) * 2000-11-28 2003-03-06 Misura Michael S. Organic photochromic compositions of improved kinetic performance
US6555028B2 (en) 1998-09-11 2003-04-29 Transitions Optical, Inc. Polymeric matrix compatibilized naphthopyrans
US6608215B2 (en) 2001-09-20 2003-08-19 Vision-Ease Lens, Inc. Oxygen-containing heterocyclic fused naphthopyrans
US6612828B2 (en) 2001-02-20 2003-09-02 Q2100, Inc. Fill system with controller for monitoring use
US6630597B1 (en) 1997-12-15 2003-10-07 Transitions Optical, Inc. Photochromic 6-aryl substituted 3H-naphtho(2,1-b)pyrans
US6632535B1 (en) 2000-06-08 2003-10-14 Q2100, Inc. Method of forming antireflective coatings
US6655946B2 (en) 2001-02-20 2003-12-02 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for conveyor and curing units
US6676399B1 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having sensors for tracking mold assemblies
US6676398B2 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having a prescription reader
US6698708B1 (en) 2000-03-30 2004-03-02 Q2100, Inc. Gasket and mold assembly for producing plastic lenses
US6702564B2 (en) 2001-02-20 2004-03-09 Q2100, Inc. System for preparing an eyeglass lens using colored mold holders
US6709257B2 (en) 2001-02-20 2004-03-23 Q2100, Inc. Eyeglass lens forming apparatus with sensor
US6712331B2 (en) 2001-02-20 2004-03-30 Q2100, Inc. Holder for mold assemblies with indicia
US6716375B1 (en) 2000-03-30 2004-04-06 Q2100, Inc. Apparatus and method for heating a polymerizable composition
US6719925B1 (en) 1999-11-04 2004-04-13 Corning Sas Naphthopyrans with a heterocycle in the 5, 6-position, preparation, and (co)polymer compositions and matrices containing them
US6723260B1 (en) 2000-03-30 2004-04-20 Q2100, Inc. Method for marking a plastic eyeglass lens using a mold assembly holder
US6726463B2 (en) 2001-02-20 2004-04-27 Q2100, Inc. Apparatus for preparing an eyeglass lens having a dual computer system controller
US6752613B2 (en) 2001-02-20 2004-06-22 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for initiation of lens curing
US6758663B2 (en) 2001-02-20 2004-07-06 Q2100, Inc. System for preparing eyeglass lenses with a high volume curing unit
US6790024B2 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having multiple conveyor systems
US6790022B1 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having a movable lamp mount
US20040186241A1 (en) * 2003-03-20 2004-09-23 Gemert Barry Van Photochromic ocular devices
US6808381B2 (en) 2001-02-20 2004-10-26 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller
US20050092972A1 (en) * 2003-11-05 2005-05-05 You-Ping Chan Benzo-, naphtho- and phenanthrochromene substituted by carbamated or ureated phenyls, preparation thereof and compositions and articles containing them
US20050127336A1 (en) * 2003-12-10 2005-06-16 Beon-Kyu Kim Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
US20050254003A1 (en) * 2004-05-13 2005-11-17 Jani Dharmendra M Photochromic blue light filtering materials and ophthalmic devices
US20050258408A1 (en) * 2001-12-20 2005-11-24 Molock Frank F Photochromic contact lenses and methods for their production
US20060014099A1 (en) * 2004-07-16 2006-01-19 Faler Dennis L Methods for producing photosensitive microparticles, aqueous compositions thereof and articles prepared therewith
US7008568B2 (en) 2001-11-20 2006-03-07 Vision-Ease Lens, Inc. Photochromic naphthopyran compounds: compositions and articles containing those naphthopyran compounds
US20060227287A1 (en) * 2005-04-08 2006-10-12 Frank Molock Photochromic ophthalmic devices made with dual initiator system
US20060226400A1 (en) * 2005-04-08 2006-10-12 Wenjing Xiao Photochromic materials with reactive substituents
US20060226402A1 (en) * 2005-04-08 2006-10-12 Beon-Kyu Kim Ophthalmic devices comprising photochromic materials having extended PI-conjugated systems
US20060228557A1 (en) * 2005-04-08 2006-10-12 Beon-Kyu Kim Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US20060226401A1 (en) * 2005-04-08 2006-10-12 Wenjing Xiao Ophthalmic devices comprising photochromic materials with reactive substituents
US20070138449A1 (en) * 2005-12-21 2007-06-21 Anu Chopra Photochromic materials having electron-withdrawing substituents
US20070145337A1 (en) * 2005-12-23 2007-06-28 Anu Chopra Photochromic 2H-naphthopyrans
US20070278461A1 (en) * 2006-05-31 2007-12-06 Transitions Optical, Inc. Photochromic materials comprising haloalkyl groups
US20090323012A1 (en) * 2008-06-27 2009-12-31 Transitions Opitcal, Inc. Liquid crystal compositions comprising mesogen containing compounds
US20090323011A1 (en) * 2008-06-27 2009-12-31 Transitions Optical, Inc. Mesogen containing compounds
US20090326186A1 (en) * 2008-06-27 2009-12-31 Transitions Optical, Inc. Mesogen containing compounds
US20100014010A1 (en) * 2008-06-27 2010-01-21 Transitions Optical, Inc. Formulations comprising mesogen containing compounds
US20100209697A1 (en) * 2004-07-16 2010-08-19 Transitions Optical, Inc. Methods for producing photosensitive microparticles, non-aqueous dispersions thereof and articles prepared therewith
US20100221661A1 (en) * 2004-07-16 2010-09-02 Transitions Optical, Inc. Methods for producing photosensitive microparticles
US20100324296A1 (en) * 2006-10-20 2010-12-23 Ludmila Sukhomlinova Dichroic-photochromic compounds and devices
WO2011053615A1 (en) 2009-10-28 2011-05-05 Transitions Optical, Inc. Photochromic materials
US8003005B2 (en) 2003-07-01 2011-08-23 Transitions Optical, Inc. Alignment facilities for optical dyes
US20110216273A1 (en) * 2008-06-27 2011-09-08 Transitions Optical, Inc. Mesogen-containing compounds
US8110127B2 (en) 2008-06-19 2012-02-07 Essilor International (Compagnie Generale D'optique) Photochromic coating exhibiting improved performance
US8147725B2 (en) 2005-04-08 2012-04-03 Transitions Optical, Inc Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US8158037B2 (en) 2005-04-08 2012-04-17 Johnson & Johnson Vision Care, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
WO2012170066A1 (en) 2011-06-06 2012-12-13 Transitions Optical, Inc. Polarizing photochromic articles
US8349210B2 (en) 2008-06-27 2013-01-08 Transitions Optical, Inc. Mesogenic stabilizers
US8431039B2 (en) 2008-06-27 2013-04-30 Transitions Optical, Inc. Mesogenic stabilizers
WO2013078086A1 (en) 2011-11-22 2013-05-30 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
WO2013086248A1 (en) 2011-12-08 2013-06-13 Ppg Industries, Inc. Photochromic materials that include indeno-fused naphthopyrans
WO2013090220A1 (en) 2011-12-15 2013-06-20 Ppg Industries, Inc. Indeno-fused naphthopyrans having ethylenically unsaturated groups
US8613868B2 (en) 2008-06-27 2013-12-24 Transitions Optical, Inc Mesogenic stabilizers
US8623238B2 (en) 2008-06-27 2014-01-07 Transitions Optical, Inc. Mesogenic stabilizers
WO2015077177A1 (en) 2013-11-20 2015-05-28 Transitions Optical, Inc. Method of forming a photochromic segmented multifocal lens
US9102652B2 (en) 2006-10-20 2015-08-11 Alphamicron Incorporated Dichroic-photochromic 2H-naphtho[1,2-b]pyran compounds and devices
US9128307B2 (en) 2012-02-20 2015-09-08 Pleotint, L.L.C. Enhanced thermochromic window which incorporates a film with multiple layers of alternating refractive index
WO2016118516A1 (en) * 2015-01-19 2016-07-28 Chromatic Technologies, Inc. Photochromic compounds
US9765173B2 (en) 2013-06-26 2017-09-19 Dic Corporation Compound containing phenolic hydroxyl group, phenolic resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board
WO2021181341A1 (en) 2020-03-11 2021-09-16 Alcon Inc. Photochromic polydiorganosiloxane vinylic crosslinkers
WO2021245551A1 (en) 2020-06-02 2021-12-09 Alcon Inc. Method for making photochromic contact lenses
WO2022090967A1 (en) 2020-10-28 2022-05-05 Alcon Inc. Method for making photochromic contact lenses
WO2022097049A1 (en) 2020-11-04 2022-05-12 Alcon Inc. Method for making photochromic contact lenses
WO2022097048A1 (en) 2020-11-04 2022-05-12 Alcon Inc. Method for making photochromic contact lenses
WO2022189941A1 (en) 2021-03-08 2022-09-15 Alcon Inc. Method for making photochromic contact lenses
WO2022208450A1 (en) 2021-04-01 2022-10-06 Alcon Inc. Method for making photochromic contact lenses
WO2023209631A1 (en) 2022-04-28 2023-11-02 Alcon Inc. Method for making uv and hevl-absorbing ophthalmic lenses

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055457A1 (en) * 1995-10-13 1998-12-10 Transitions Optical, Inc. Substituted naphthopyrans
FR2751648B1 (en) * 1996-07-25 1998-09-25 Corning Inc PHOTOCHROMIC NAPHTHOPYRANS, COMPOSITIONS AND ARTICLES CONTAINING THEM
FR2761063B1 (en) * 1997-03-21 1999-06-04 Corning Sa NAPHTOPYRANE DERIVATIVES, COMPOSITIONS AND (CO) POLYMERIC MATRICES CONTAINING THEM
GB9706203D0 (en) * 1997-03-25 1997-05-14 James Robinson Ltd Intense colouring photochromic 2H-naphthol[1,2-b]pyrans and heterocyclic pyrans
EP0926146B1 (en) * 1997-06-19 2003-02-12 Tokuyama Corporation Chromene compounds
GB9827596D0 (en) * 1998-12-15 1999-02-10 James Robinson Ltd Photochromic 2H-naphtho[1,2-b]pyrans
JP2010001297A (en) * 2009-07-31 2010-01-07 Transitions Optical Inc Substituted naphthopyrans
JPWO2022168989A1 (en) 2021-02-08 2022-08-11
JPWO2022191334A1 (en) 2021-03-12 2022-09-15
JP2023111570A (en) 2022-01-31 2023-08-10 ホヤ レンズ タイランド リミテッド Photochromic compound, photochromic composition, photochromic article, and eyeglasses
JP2023111569A (en) 2022-01-31 2023-08-10 ホヤ レンズ タイランド リミテッド Photochromic compound, photochromic composition, photochromic article, and eyeglasses

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562172A (en) * 1968-10-28 1971-02-09 Fuji Photo Film Co Ltd Photochromic compound and composition containing the same
US3567605A (en) * 1966-03-30 1971-03-02 Ralph S Becker Photochemical process
US3578602A (en) * 1967-08-30 1971-05-11 Fuji Photo Film Co Ltd Photochromic compound
US3627690A (en) * 1969-10-01 1971-12-14 Itek Corp Photochromic naphthopyran compositions
US4215010A (en) * 1978-09-08 1980-07-29 American Optical Corporation Photochromic compounds
US4342668A (en) * 1978-09-08 1982-08-03 American Optical Corporation Photochromic compounds
US4637698A (en) * 1983-11-04 1987-01-20 Ppg Industries, Inc. Photochromic compound and articles containing the same
US4816584A (en) * 1986-11-12 1989-03-28 Ppg Industries, Inc. Photochromic spiro(indoline)benzoxazines
US4818096A (en) * 1986-06-17 1989-04-04 The Plessey Company Plc Photoreactive lenses with adamantane spiro compounds
US4826977A (en) * 1986-05-15 1989-05-02 The Plessey Company Plc Photochromic spiropyran compounds
US4880667A (en) * 1985-09-24 1989-11-14 Ppg Industries, Inc. Photochromic plastic article and method for preparing same
US4931219A (en) * 1987-07-27 1990-06-05 Ppg Industries, Inc. Photochromic compound and articles containing the same
US4980089A (en) * 1989-07-12 1990-12-25 Ppg Industries, Inc. Photochromic spiropyran compounds
US4994208A (en) * 1989-04-18 1991-02-19 Ppg Industries, Inc. Photochromic polymeric article
US5066818A (en) * 1990-03-07 1991-11-19 Ppg Industries, Inc. Photochromic naphthopyran compounds
US5200116A (en) * 1990-07-23 1993-04-06 Ppg Industries, Inc. Photochromic chromene compounds
US5238981A (en) * 1992-02-24 1993-08-24 Transitions Optical, Inc. Photochromic naphthopyrans
US5244602A (en) * 1990-12-03 1993-09-14 Ppg Industries, Inc. Photochromic naphthopyrans

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567605A (en) * 1966-03-30 1971-03-02 Ralph S Becker Photochemical process
US3578602A (en) * 1967-08-30 1971-05-11 Fuji Photo Film Co Ltd Photochromic compound
US3562172A (en) * 1968-10-28 1971-02-09 Fuji Photo Film Co Ltd Photochromic compound and composition containing the same
US3627690A (en) * 1969-10-01 1971-12-14 Itek Corp Photochromic naphthopyran compositions
US4215010A (en) * 1978-09-08 1980-07-29 American Optical Corporation Photochromic compounds
US4342668A (en) * 1978-09-08 1982-08-03 American Optical Corporation Photochromic compounds
US4637698A (en) * 1983-11-04 1987-01-20 Ppg Industries, Inc. Photochromic compound and articles containing the same
US4880667A (en) * 1985-09-24 1989-11-14 Ppg Industries, Inc. Photochromic plastic article and method for preparing same
US4826977A (en) * 1986-05-15 1989-05-02 The Plessey Company Plc Photochromic spiropyran compounds
US4818096A (en) * 1986-06-17 1989-04-04 The Plessey Company Plc Photoreactive lenses with adamantane spiro compounds
US4816584A (en) * 1986-11-12 1989-03-28 Ppg Industries, Inc. Photochromic spiro(indoline)benzoxazines
US4931219A (en) * 1987-07-27 1990-06-05 Ppg Industries, Inc. Photochromic compound and articles containing the same
US4994208A (en) * 1989-04-18 1991-02-19 Ppg Industries, Inc. Photochromic polymeric article
US4980089A (en) * 1989-07-12 1990-12-25 Ppg Industries, Inc. Photochromic spiropyran compounds
US5066818A (en) * 1990-03-07 1991-11-19 Ppg Industries, Inc. Photochromic naphthopyran compounds
US5200116A (en) * 1990-07-23 1993-04-06 Ppg Industries, Inc. Photochromic chromene compounds
US5244602A (en) * 1990-12-03 1993-09-14 Ppg Industries, Inc. Photochromic naphthopyrans
US5238981A (en) * 1992-02-24 1993-08-24 Transitions Optical, Inc. Photochromic naphthopyrans

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Regioselective Friedel Crafts Acylation of 1,2,3,4-Tetrahydroquinoline and Related Nitrogen Heterocycles: Effects of NH Protective Groups and Ring Size", Ishihara, Y., et al, J. Chem. Soc., Perkin Trans. 1, pp. 3401-3406, 1992.
"Synthesis, Conformation, and Complexation Behavior of 2,9,18,25-Tetraoxa[8,8](1,4)napthalenophane", Adams, S. P. et al, J. Org. Chem., vol. 46, pp. 3474-3478, 1981.
Friedel Crafts and Related Reactions, George A. Olah, Interscience Publishers, vol. 3. Chap. XXXI, pp. 1 8, 1964. *
Friedel-Crafts and Related Reactions, George A. Olah, Interscience Publishers, vol. 3. Chap. XXXI, pp. 1-8, 1964.
Organic Reactions, vol. VI, John Wiley and Sons, Inc. Chapter 1, pp. 1 2 (1951). *
Organic Reactions, vol. VI, John Wiley and Sons, Inc. Chapter 1, pp. 1-2 (1951).
Organic Synthesis, vol. 31, John Wiley and Sons, Inc., pp. 90 and 93 (1951). *
Organic Synthesis, vol. 32, John Wiley and Sons, Inc., pp. 72 and 77 (1952). *
Regioselective Friedel Crafts Acylation of 1,2,3,4 Tetrahydroquinoline and Related Nitrogen Heterocycles: Effects of NH Protective Groups and Ring Size , Ishihara, Y., et al, J. Chem. Soc., Perkin Trans. 1, pp. 3401 3406, 1992. *
Synthesis, Conformation, and Complexation Behavior of 2,9,18,25 Tetraoxa 8,8 (1,4)napthalenophane , Adams, S. P. et al, J. Org. Chem., vol. 46, pp. 3474 3478, 1981. *

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650098A (en) * 1993-12-09 1997-07-22 Transitions Optical, Inc. Substituted naphthopyrans
US5651923A (en) * 1993-12-09 1997-07-29 Transitions Optical, Inc. Substituted naphthopyrans
US5952515A (en) * 1994-07-11 1999-09-14 Optische Werke G. Rodenstock Diaryl-2h-napthopyrans
US5645767A (en) * 1994-11-03 1997-07-08 Transitions Optical, Inc. Photochromic indeno-fused naphthopyrans
WO1998014443A1 (en) * 1995-06-14 1998-04-09 Ppg Industries, Inc. Novel substituted naphthopyrans
WO1997022895A1 (en) * 1995-12-20 1997-06-26 Ppg Industries, Inc. Photochromic substituted naphthopyran compounds
US5744070A (en) * 1995-12-20 1998-04-28 Transitions Optical, Inc. Photochromic substituted naphthopyran compounds
WO1997037254A1 (en) * 1996-03-29 1997-10-09 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
EP0890119A4 (en) * 1996-03-29 2002-07-17 Transitions Optical Inc Photochromic naphthopyran compositions of neutral color
EP0890119A1 (en) * 1996-03-29 1999-01-13 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
US5753146A (en) * 1996-03-29 1998-05-19 Transitions Optical, Inc. Photochromic naphthopyran compositions of neutral color
AU700102B2 (en) * 1996-03-29 1998-12-24 Transitions Optical, Inc Photochromic naphthopyran compositions of neutral color
US6673278B1 (en) 1996-04-19 2004-01-06 Q2100, Inc. Methods and apparatus for eyeglass lens curing using ultraviolet light and improved cooling
US6174465B1 (en) 1996-04-19 2001-01-16 Q2100, Inc. Methods for eyeglass lens curing using ultaviolet light
US6328445B1 (en) 1996-04-19 2001-12-11 Q2100, Inc. Methods and apparatus for eyeglass lens curing using ultraviolet light
US6171528B1 (en) 1996-04-19 2001-01-09 Q2100, Inc. Methods and apparatus for eyeglass lens curing using ultraviolet light
US5770115A (en) * 1996-04-19 1998-06-23 Ppg Industries, Inc. Photochromic naphthopyran compositions of improved fatigue resistance
US6576167B1 (en) 1996-04-19 2003-06-10 Q2100, Inc. Methods and apparatus for eyeglass curing using ultraviolet light and improved cooling
US6200124B1 (en) 1996-04-19 2001-03-13 Q1200 Apparatus for eyeglass lens curing using ultraviolet light
US6022498A (en) 1996-04-19 2000-02-08 Q2100, Inc. Methods for eyeglass lens curing using ultraviolet light
US6241505B1 (en) 1996-04-19 2001-06-05 Q2100, Inc. Apparatus for eyeglass lens curing using ultraviolet light
US6280171B1 (en) 1996-06-14 2001-08-28 Q2100, Inc. El apparatus for eyeglass lens curing using ultraviolet light
US5698141A (en) * 1996-06-17 1997-12-16 Ppg Industries, Inc. Photochromic heterocyclic fused indenonaphthopyrans
US5955520A (en) * 1996-06-17 1999-09-21 Ppg Industries, Inc. Photochromic indeno-fused naphthopyrans
US5723072A (en) * 1996-06-17 1998-03-03 Ppg Industries, Inc. Photochromic heterocyclic fused indenonaphthopyrans
WO1998004937A1 (en) * 1996-07-25 1998-02-05 Corning Incorporated Naphthopyrans, compositions and articles containing them
US6096246A (en) * 1996-07-25 2000-08-01 Corning Incorporated Photochromic naphthopyrans, compositions and articles containing them
AU719056B2 (en) * 1996-07-25 2000-05-04 Corning Incorporated Naphthopyrans, compositions and articles containing them
US6399791B1 (en) 1997-03-21 2002-06-04 Corning S.A. Naphthopyran derivatives, compositions and (co) polymer matrices containing same
US6248264B1 (en) 1997-03-25 2001-06-19 James Robinson Limited Neutral coloring photochromic 2H-naphtho[1,2-b] pyrans and heterocyclic pyrans
WO1998042693A2 (en) * 1997-03-25 1998-10-01 James Robinson Limited NEUTRAL COLOURING PHOTOCHROMIC 2H-NAPHTHO[1,2-b]PYRANS AND HETEROCYCLIC PYRANS
WO1998042693A3 (en) * 1997-03-25 1999-02-11 James Robinson Ltd NEUTRAL COLOURING PHOTOCHROMIC 2H-NAPHTHO[1,2-b]PYRANS AND HETEROCYCLIC PYRANS
GB2338479B (en) * 1997-03-25 2001-09-05 James Robinson Ltd Neutral colouring photochromic 2H-naphtho[1,2-b]pyrans
GB2338479A (en) * 1997-03-25 1999-12-22 James Robinson Ltd Neutral colouring photochromic 2H-naphtho[1,2-b]pyrans and heterocyclic pyrans
EP0994871A4 (en) * 1997-06-04 2002-01-02 Transitions Optical Inc Novel substituted naphthopyrans
EP0994871A1 (en) * 1997-06-04 2000-04-26 Transitions Optical, Inc. Novel substituted naphthopyrans
US6174155B1 (en) 1997-07-31 2001-01-16 Q2100, Inc. Apparatus for producing ultraviolet blocking lenses
US6368523B1 (en) 1997-07-31 2002-04-09 Q2100, Inc. Method and composition for producing ultraviolet blocking lenses
US5989462A (en) * 1997-07-31 1999-11-23 Q2100, Inc. Method and composition for producing ultraviolent blocking lenses
US6367928B1 (en) 1997-07-31 2002-04-09 Q2100, Inc. Method and composition for producing ultraviolet blocking lenses
US6712596B1 (en) 1997-07-31 2004-03-30 Q2100, Inc. System for producing ultraviolet blocking lenses
US6478989B1 (en) 1997-09-19 2002-11-12 Transitions Optical, Inc. Aromatic substituted naphthopyrans
US5808063A (en) * 1997-10-01 1998-09-15 Ppg Industries, Inc. Photochromic spiro(indoline) fluoranthenoxazine compounds
WO1999016765A1 (en) * 1997-10-01 1999-04-08 Transitions Optical, Inc. Fluoranthenopyrans
US5891368A (en) * 1997-10-01 1999-04-06 Ppg Industries, Inc. Fluoranthenopyrans
US5783116A (en) * 1997-10-16 1998-07-21 Ppg Industries, Inc. Derivatives of carbocyclic fused naphthopyrans
EP1025104B1 (en) * 1997-10-23 2003-01-22 Transitions Optical, Inc. 7-methylidene-5-oxo-furo fused naphthopyrans
US5811034A (en) * 1997-10-23 1998-09-22 Ppg Industries, Inc. 7-methylidene-5-oxo-furo fused naphthopyrans
US6106744A (en) * 1997-12-03 2000-08-22 Ppg Industries Ohio, Inc. Photochromic pyrano-fused naphthopyrans
US5879592A (en) * 1997-12-10 1999-03-09 Ppg Industries, Inc. Water soluble photochromic compounds, compositions and optical elements comprising the compounds
US6630597B1 (en) 1997-12-15 2003-10-07 Transitions Optical, Inc. Photochromic 6-aryl substituted 3H-naphtho(2,1-b)pyrans
US5869658A (en) * 1997-12-15 1999-02-09 Ppg Industries, Inc. Photochromic indeno-fused naptho 2,1-b!pyrans
US6342459B1 (en) 1998-06-19 2002-01-29 Optische Werke G. Rodenstock Photochromic naphthopyrans
US7459555B2 (en) 1998-06-19 2008-12-02 Rodenstock Gmbh Photochromic naphthopyrans
US20020052499A1 (en) * 1998-06-19 2002-05-02 Optische Werke G. Rodenstock Photochromic naphthopyrans
WO2000002883A3 (en) * 1998-07-10 2000-02-24 Transitions Optical Inc Photochromic six-membered heterocyclic-fused naphthopyrans
US6022495A (en) * 1998-07-10 2000-02-08 Transitions Optical, Inc. Photochromic benzopyrano-fused naphthopyrans
US6153126A (en) * 1998-07-10 2000-11-28 Ppg Industries Ohio, Inc. Photochromic six-membered heterocyclilc-fused naphthopyrans
US6149841A (en) * 1998-07-10 2000-11-21 Ppg Industries Ohio, Inc. Photochromic benzopyrano-fused naphthopyrans
US6022497A (en) * 1998-07-10 2000-02-08 Ppg Industries Ohio, Inc. Photochromic six-membered heterocyclic-fused naphthopyrans
WO2000002883A2 (en) * 1998-07-10 2000-01-20 Transitions Optical, Inc. Photochromic six-membered heterocyclic-fused naphthopyrans
US5961892A (en) * 1998-09-11 1999-10-05 Ppg Industries Ohio, Inc. Polyalkoxylated naphthopyrans
US6113814A (en) * 1998-09-11 2000-09-05 Transitions Optical, Inc. Polymerizable polyalkoxylated naphthopyrans
US6555028B2 (en) 1998-09-11 2003-04-29 Transitions Optical, Inc. Polymeric matrix compatibilized naphthopyrans
US6228289B1 (en) 1998-09-25 2001-05-08 Q2100, Inc. Plastic lens systems and methods
US6478990B1 (en) 1998-09-25 2002-11-12 Q2100, Inc. Plastic lens systems and methods
US6451226B1 (en) 1998-09-25 2002-09-17 Q2100, Inc. Plastic lens compositions
US6786598B2 (en) 1998-09-25 2004-09-07 Q2100, Inc. Plastic eyeglass lenses
US6444860B2 (en) 1999-02-17 2002-09-03 Corning S.A. Naphthopyrans and phenanthropyrans annelated in C5-C6 with a bicyclic group, and compositions and (co) polymer matrices containing them
US6210608B1 (en) 1999-02-17 2001-04-03 Corning S.A. Naphthopyrans and phenanthropyrans annelated in C5-C6 with a bicycle group and compositions and (co) polymer matrices containing them
US6634879B2 (en) 1999-03-19 2003-10-21 Q2100, Inc. Plastic lens systems, compositions, and methods
US6557734B2 (en) 1999-03-19 2003-05-06 Q2100, Inc. Plastic lens systems, compositions, and methods
US6729866B2 (en) 1999-03-19 2004-05-04 Q2100, Inc. Plastic lens systems
US6419873B1 (en) 1999-03-19 2002-07-16 Q2100, Inc. Plastic lens systems, compositions, and methods
US6348604B1 (en) 1999-09-17 2002-02-19 Ppg Industries Ohio, Inc. Photochromic naphthopyrans
US6296785B1 (en) 1999-09-17 2001-10-02 Ppg Industries Ohio, Inc. Indeno-fused photochromic naphthopyrans
US6398987B1 (en) 1999-11-04 2002-06-04 Corning S.A. Naphthopyrans having a perfluoroalkyl substituent in position 5, preparation and compositions and matrices containing them
US6719925B1 (en) 1999-11-04 2004-04-13 Corning Sas Naphthopyrans with a heterocycle in the 5, 6-position, preparation, and (co)polymer compositions and matrices containing them
US6353102B1 (en) 1999-12-17 2002-03-05 Ppg Industries Ohio, Inc. Photochromic naphthopyrans
WO2001051483A1 (en) * 2000-01-12 2001-07-19 Ppg Industries Ohio, Inc. Substituted photochromic 2h-naphtho [1,2-b] pyran compounds
AU777540B2 (en) * 2000-01-12 2004-10-21 Ppg Industries Ohio, Inc. Substituted photochromic 2H-naphtho (1,2-B) pyran compounds
US6340766B1 (en) 2000-01-12 2002-01-22 Transition Optical, Inc. Substituted napthopyrans
US6698708B1 (en) 2000-03-30 2004-03-02 Q2100, Inc. Gasket and mold assembly for producing plastic lenses
US6723260B1 (en) 2000-03-30 2004-04-20 Q2100, Inc. Method for marking a plastic eyeglass lens using a mold assembly holder
US6716375B1 (en) 2000-03-30 2004-04-06 Q2100, Inc. Apparatus and method for heating a polymerizable composition
US6632535B1 (en) 2000-06-08 2003-10-14 Q2100, Inc. Method of forming antireflective coatings
US6713536B2 (en) 2000-11-28 2004-03-30 Transitions Optical, Inc. Removable imbibition composition of photochromic compound and epoxy and polyol kinetic enhancing additives
US20040149966A1 (en) * 2000-11-28 2004-08-05 Misura Michael S. Organic photochromic compositions of improved kinetic performance
US20030045612A1 (en) * 2000-11-28 2003-03-06 Misura Michael S. Organic photochromic compositions of improved kinetic performance
US7147889B2 (en) 2000-11-28 2006-12-12 Transition Optical, Inc. Organic photochromic compositions of improved kinetic performance
US6790022B1 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having a movable lamp mount
US6790024B2 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having multiple conveyor systems
US6709257B2 (en) 2001-02-20 2004-03-23 Q2100, Inc. Eyeglass lens forming apparatus with sensor
US6702564B2 (en) 2001-02-20 2004-03-09 Q2100, Inc. System for preparing an eyeglass lens using colored mold holders
US6726463B2 (en) 2001-02-20 2004-04-27 Q2100, Inc. Apparatus for preparing an eyeglass lens having a dual computer system controller
US6676398B2 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having a prescription reader
US6752613B2 (en) 2001-02-20 2004-06-22 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for initiation of lens curing
US6758663B2 (en) 2001-02-20 2004-07-06 Q2100, Inc. System for preparing eyeglass lenses with a high volume curing unit
US6676399B1 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having sensors for tracking mold assemblies
US6712331B2 (en) 2001-02-20 2004-03-30 Q2100, Inc. Holder for mold assemblies with indicia
US6655946B2 (en) 2001-02-20 2003-12-02 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for conveyor and curing units
US6808381B2 (en) 2001-02-20 2004-10-26 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller
US6612828B2 (en) 2001-02-20 2003-09-02 Q2100, Inc. Fill system with controller for monitoring use
US20020136899A1 (en) * 2001-03-21 2002-09-26 Derojas Agustin Alberto Lens with photochromic elastomer film and method of making it
US6773108B2 (en) 2001-03-21 2004-08-10 Invicta Corporation Lens with photochromic elastomer film and method of making it
US6608215B2 (en) 2001-09-20 2003-08-19 Vision-Ease Lens, Inc. Oxygen-containing heterocyclic fused naphthopyrans
US7008568B2 (en) 2001-11-20 2006-03-07 Vision-Ease Lens, Inc. Photochromic naphthopyran compounds: compositions and articles containing those naphthopyran compounds
US20050258408A1 (en) * 2001-12-20 2005-11-24 Molock Frank F Photochromic contact lenses and methods for their production
US6464484B1 (en) 2002-03-30 2002-10-15 Q2100, Inc. Apparatus and system for the production of plastic lenses
US20040186241A1 (en) * 2003-03-20 2004-09-23 Gemert Barry Van Photochromic ocular devices
US20070113587A1 (en) * 2003-03-20 2007-05-24 Barry Van Gemert Photochromic ocular devices
US7584630B2 (en) 2003-03-20 2009-09-08 Transitions Optical, Inc. Photochromic ocular devices
US8003005B2 (en) 2003-07-01 2011-08-23 Transitions Optical, Inc. Alignment facilities for optical dyes
US20050092972A1 (en) * 2003-11-05 2005-05-05 You-Ping Chan Benzo-, naphtho- and phenanthrochromene substituted by carbamated or ureated phenyls, preparation thereof and compositions and articles containing them
US7250120B2 (en) 2003-11-05 2007-07-31 Corning Inc. Benzo-, naphtho- and phenanthrochromene substituted by carbamated or ureated phenyls, preparation thereof and compositions and articles containing them
KR100806455B1 (en) * 2003-12-10 2008-02-21 트랜지션즈 옵티칼 인코포레이티드 Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
US7094368B2 (en) 2003-12-10 2006-08-22 Transitions Optical, Inc. Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
CN1886406B (en) * 2003-12-10 2010-06-23 光学转变公司 Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
WO2005061514A1 (en) * 2003-12-10 2005-07-07 Transitions Optical, Inc. Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
US20050127336A1 (en) * 2003-12-10 2005-06-16 Beon-Kyu Kim Pyrano-quinolines, pyrano-quinolinones, combinations thereof, photochromic compositions and articles
US20070159594A9 (en) * 2004-05-13 2007-07-12 Jani Dharmendra M Photochromic blue light filtering materials and ophthalmic devices
US20050254003A1 (en) * 2004-05-13 2005-11-17 Jani Dharmendra M Photochromic blue light filtering materials and ophthalmic devices
US8563212B2 (en) 2004-07-16 2013-10-22 Transitions Optical, Inc. Methods for producing photosensitive microparticles, non-aqueous dispersions thereof and articles prepared therewith
US20100209697A1 (en) * 2004-07-16 2010-08-19 Transitions Optical, Inc. Methods for producing photosensitive microparticles, non-aqueous dispersions thereof and articles prepared therewith
US20100221661A1 (en) * 2004-07-16 2010-09-02 Transitions Optical, Inc. Methods for producing photosensitive microparticles
US8153344B2 (en) 2004-07-16 2012-04-10 Ppg Industries Ohio, Inc. Methods for producing photosensitive microparticles, aqueous compositions thereof and articles prepared therewith
US8563213B2 (en) 2004-07-16 2013-10-22 Transitions Optical, Inc. Methods for producing photosensitive microparticles
US20060014099A1 (en) * 2004-07-16 2006-01-19 Faler Dennis L Methods for producing photosensitive microparticles, aqueous compositions thereof and articles prepared therewith
US9097916B2 (en) 2005-04-08 2015-08-04 Johnson & Johnson Vision Care, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US20060226402A1 (en) * 2005-04-08 2006-10-12 Beon-Kyu Kim Ophthalmic devices comprising photochromic materials having extended PI-conjugated systems
US9052438B2 (en) 2005-04-08 2015-06-09 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US7556750B2 (en) 2005-04-08 2009-07-07 Transitions Optical, Inc. Photochromic materials with reactive substituents
US20090032782A1 (en) * 2005-04-08 2009-02-05 Transitions Optical, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US9028728B2 (en) 2005-04-08 2015-05-12 Transitions Optical, Inc. Photochromic materials that include indeno-fused naphthopyrans
US8741188B2 (en) 2005-04-08 2014-06-03 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials having extended pi-conjugated systems
US8647538B2 (en) 2005-04-08 2014-02-11 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
US20060226400A1 (en) * 2005-04-08 2006-10-12 Wenjing Xiao Photochromic materials with reactive substituents
US20060227287A1 (en) * 2005-04-08 2006-10-12 Frank Molock Photochromic ophthalmic devices made with dual initiator system
US9139552B2 (en) 2005-04-08 2015-09-22 Transitions Optical, Inc. Indeno-fused naphthopyrans having ethylenically unsaturated groups
US9465234B2 (en) 2005-04-08 2016-10-11 Johnson & Johnson Vision Care, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US10197707B2 (en) 2005-04-08 2019-02-05 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive sub substituents
EP2270559A2 (en) 2005-04-08 2011-01-05 Johnson and Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US8388872B2 (en) 2005-04-08 2013-03-05 Transitions Optical, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
EP3633423A1 (en) 2005-04-08 2020-04-08 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US11256002B2 (en) 2005-04-08 2022-02-22 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US20060226401A1 (en) * 2005-04-08 2006-10-12 Wenjing Xiao Ophthalmic devices comprising photochromic materials with reactive substituents
US8158037B2 (en) 2005-04-08 2012-04-17 Johnson & Johnson Vision Care, Inc. Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US20090072206A1 (en) * 2005-04-08 2009-03-19 Beon-Kyu Kim Ophthalmic devices comprising photochromic materials having extended pi-conjugated systems
US11874434B2 (en) 2005-04-08 2024-01-16 Johnson & Johnson Vision Care, Inc. Ophthalmic devices comprising photochromic materials with reactive substituents
US20060228557A1 (en) * 2005-04-08 2006-10-12 Beon-Kyu Kim Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US8147725B2 (en) 2005-04-08 2012-04-03 Transitions Optical, Inc Photochromic materials having extended pi-conjugated systems and compositions and articles including the same
US20070138449A1 (en) * 2005-12-21 2007-06-21 Anu Chopra Photochromic materials having electron-withdrawing substituents
US7556751B2 (en) 2005-12-21 2009-07-07 Transitions Optical, Inc. Photochromic materials having electron-withdrawing substituents
US20070145337A1 (en) * 2005-12-23 2007-06-28 Anu Chopra Photochromic 2H-naphthopyrans
US20070278461A1 (en) * 2006-05-31 2007-12-06 Transitions Optical, Inc. Photochromic materials comprising haloalkyl groups
US9102652B2 (en) 2006-10-20 2015-08-11 Alphamicron Incorporated Dichroic-photochromic 2H-naphtho[1,2-b]pyran compounds and devices
US8697890B2 (en) 2006-10-20 2014-04-15 Alphamicron Incorporated Dichroic-photochromic 2H-naphtho[1,2-b]pyran compounds and devices
US20100324296A1 (en) * 2006-10-20 2010-12-23 Ludmila Sukhomlinova Dichroic-photochromic compounds and devices
US8110127B2 (en) 2008-06-19 2012-02-07 Essilor International (Compagnie Generale D'optique) Photochromic coating exhibiting improved performance
US20100014010A1 (en) * 2008-06-27 2010-01-21 Transitions Optical, Inc. Formulations comprising mesogen containing compounds
EP2698413A2 (en) 2008-06-27 2014-02-19 Transitions Optical, Inc. Mesogen containing compounds
US20110216273A1 (en) * 2008-06-27 2011-09-08 Transitions Optical, Inc. Mesogen-containing compounds
US7910019B2 (en) 2008-06-27 2011-03-22 Transitions Optical, Inc. Mesogen containing compounds
US8349210B2 (en) 2008-06-27 2013-01-08 Transitions Optical, Inc. Mesogenic stabilizers
US8613868B2 (en) 2008-06-27 2013-12-24 Transitions Optical, Inc Mesogenic stabilizers
US8623238B2 (en) 2008-06-27 2014-01-07 Transitions Optical, Inc. Mesogenic stabilizers
US8628685B2 (en) 2008-06-27 2014-01-14 Transitions Optical, Inc Mesogen-containing compounds
US20090326186A1 (en) * 2008-06-27 2009-12-31 Transitions Optical, Inc. Mesogen containing compounds
US8431039B2 (en) 2008-06-27 2013-04-30 Transitions Optical, Inc. Mesogenic stabilizers
EP2698412A2 (en) 2008-06-27 2014-02-19 Transitions Optical, Inc. Mesogen containing compounds
EP2698411A2 (en) 2008-06-27 2014-02-19 Transitions Optical, Inc. Mesogen containing compounds
US7910020B2 (en) 2008-06-27 2011-03-22 Transitions Optical, Inc. Liquid crystal compositions comprising mesogen containing compounds
US20090323011A1 (en) * 2008-06-27 2009-12-31 Transitions Optical, Inc. Mesogen containing compounds
US20090323012A1 (en) * 2008-06-27 2009-12-31 Transitions Opitcal, Inc. Liquid crystal compositions comprising mesogen containing compounds
WO2011053615A1 (en) 2009-10-28 2011-05-05 Transitions Optical, Inc. Photochromic materials
US8518305B2 (en) 2009-10-28 2013-08-27 Transitions Optical, Inc. Photochromic materials
WO2011112325A1 (en) 2010-03-08 2011-09-15 Transitions Optical, Inc. Methods for producing photosensitive microparticles, non-aqueous dispersions thereof and articles prepared therewith
WO2011112327A1 (en) 2010-03-08 2011-09-15 Transitions Optical, Inc. Methods for producing photosensitive microparticles
WO2012128944A1 (en) 2011-03-18 2012-09-27 Transitions Optical, Inc. Mesogen-containing compounds
WO2012170066A1 (en) 2011-06-06 2012-12-13 Transitions Optical, Inc. Polarizing photochromic articles
WO2013078086A1 (en) 2011-11-22 2013-05-30 Transitions Optical, Inc. Photochromic compounds having at least two photochromic moieties
WO2013086248A1 (en) 2011-12-08 2013-06-13 Ppg Industries, Inc. Photochromic materials that include indeno-fused naphthopyrans
WO2013090220A1 (en) 2011-12-15 2013-06-20 Ppg Industries, Inc. Indeno-fused naphthopyrans having ethylenically unsaturated groups
US9128307B2 (en) 2012-02-20 2015-09-08 Pleotint, L.L.C. Enhanced thermochromic window which incorporates a film with multiple layers of alternating refractive index
US9765173B2 (en) 2013-06-26 2017-09-19 Dic Corporation Compound containing phenolic hydroxyl group, phenolic resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board
US10493486B2 (en) 2013-11-20 2019-12-03 Transitions Optical, Inc. Method of forming a photochromic segmented multifocal lens
WO2015077177A1 (en) 2013-11-20 2015-05-28 Transitions Optical, Inc. Method of forming a photochromic segmented multifocal lens
WO2016118516A1 (en) * 2015-01-19 2016-07-28 Chromatic Technologies, Inc. Photochromic compounds
WO2021181307A1 (en) 2020-03-11 2021-09-16 Alcon Inc. Photochromic polydiorganosiloxane vinylic crosslinkers
WO2021181341A1 (en) 2020-03-11 2021-09-16 Alcon Inc. Photochromic polydiorganosiloxane vinylic crosslinkers
US11945895B2 (en) 2020-03-11 2024-04-02 Alcon Inc. Photochromic polydiorganosiloxane vinylic crosslinkers
WO2021245551A1 (en) 2020-06-02 2021-12-09 Alcon Inc. Method for making photochromic contact lenses
US11999908B2 (en) 2020-06-02 2024-06-04 Alcon Inc. Method for making photochromic contact lenses
WO2022090967A1 (en) 2020-10-28 2022-05-05 Alcon Inc. Method for making photochromic contact lenses
US11945181B2 (en) 2020-10-28 2024-04-02 Alcon Inc. Method for making photochromic contact lenses
US11886045B2 (en) 2020-11-04 2024-01-30 Alcon Inc. Method for making photochromic contact lenses
WO2022097048A1 (en) 2020-11-04 2022-05-12 Alcon Inc. Method for making photochromic contact lenses
US11975499B2 (en) 2020-11-04 2024-05-07 Alcon Inc. Method for making photochromic contact lenses
WO2022097049A1 (en) 2020-11-04 2022-05-12 Alcon Inc. Method for making photochromic contact lenses
WO2022189940A1 (en) 2021-03-08 2022-09-15 Alcon Inc. Method for making photofunctional contact lenses
WO2022189941A1 (en) 2021-03-08 2022-09-15 Alcon Inc. Method for making photochromic contact lenses
US12111443B2 (en) 2021-03-08 2024-10-08 Alcon Inc. Method for making photochromic contact lenses
WO2022208450A1 (en) 2021-04-01 2022-10-06 Alcon Inc. Method for making photochromic contact lenses
US11833771B2 (en) 2021-04-01 2023-12-05 Alcon Inc. Method for making photochromic contact lenses
WO2023209631A1 (en) 2022-04-28 2023-11-02 Alcon Inc. Method for making uv and hevl-absorbing ophthalmic lenses

Also Published As

Publication number Publication date
US5573712A (en) 1996-11-12
SG52465A1 (en) 1998-09-28
WO1995016215A1 (en) 1995-06-15
AU1265895A (en) 1995-06-27

Similar Documents

Publication Publication Date Title
US5458814A (en) Substituted naphthopyrans
US5651923A (en) Substituted naphthopyrans
US5658501A (en) Substituted naphthopyrans
US5650098A (en) Substituted naphthopyrans
CA2187100C (en) Novel substituted naphthopyrans
US5645767A (en) Photochromic indeno-fused naphthopyrans
AU683189B2 (en) Novel photochromic indeno-fused naphthopyrans
US5514817A (en) Substituted phenanthropyrans
US5458815A (en) Photochromic naphthopyran compounds
US5466398A (en) Photochromic substituted naphthopyran compounds
US5658500A (en) Substituted naphthopyrans
US6022495A (en) Photochromic benzopyrano-fused naphthopyrans
US5955520A (en) Photochromic indeno-fused naphthopyrans
US5783116A (en) Derivatives of carbocyclic fused naphthopyrans
WO1999031082A1 (en) PHOTOCHROMIC 6-ARYL SUBSTITUTED 3H-NAPHTHO[2,1-b]PYRANS
US5891368A (en) Fluoranthenopyrans
EP1000025B1 (en) Substituted naphthopyrans
EP0994871B1 (en) Novel substituted naphthopyrans
AU3377397A (en) Substituted naphthopyrans

Legal Events

Date Code Title Description
AS Assignment

Owner name: PPG INDUSTRIES, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, ANIL;VAN GEMERT, BARRY;KNOWLES, DAVID B.;REEL/FRAME:006809/0849

Effective date: 19931209

AS Assignment

Owner name: TRANSITIONS OPTICAL, INC.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEINZE, PETER R.;REEL/FRAME:007397/0923

Effective date: 19950313

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12