US5420147A - Method of treating epithelial disorders - Google Patents
Method of treating epithelial disorders Download PDFInfo
- Publication number
- US5420147A US5420147A US08/233,491 US23349194A US5420147A US 5420147 A US5420147 A US 5420147A US 23349194 A US23349194 A US 23349194A US 5420147 A US5420147 A US 5420147A
- Authority
- US
- United States
- Prior art keywords
- alkyl
- formula
- substituted
- hydrogen
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 150000001875 compounds Chemical class 0.000 claims abstract description 87
- 239000000203 mixture Substances 0.000 claims abstract description 81
- -1 aminopyridinyl Chemical group 0.000 claims description 103
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 62
- 239000001257 hydrogen Substances 0.000 claims description 52
- 229910052739 hydrogen Inorganic materials 0.000 claims description 52
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 41
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 37
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 claims description 36
- 229930002330 retinoic acid Natural products 0.000 claims description 36
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 28
- 150000003254 radicals Chemical class 0.000 claims description 24
- 239000002253 acid Substances 0.000 claims description 23
- 125000003545 alkoxy group Chemical group 0.000 claims description 23
- 125000005843 halogen group Chemical group 0.000 claims description 23
- 229960001727 tretinoin Drugs 0.000 claims description 20
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 18
- 125000001544 thienyl group Chemical group 0.000 claims description 15
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims description 14
- 230000004069 differentiation Effects 0.000 claims description 14
- 125000004076 pyridyl group Chemical group 0.000 claims description 14
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 13
- 125000002541 furyl group Chemical group 0.000 claims description 13
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 10
- 125000006619 (C1-C6) dialkylamino group Chemical group 0.000 claims description 9
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 210000002919 epithelial cell Anatomy 0.000 claims description 9
- 230000035755 proliferation Effects 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 8
- 208000035475 disorder Diseases 0.000 claims description 8
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 8
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 125000002883 imidazolyl group Chemical group 0.000 claims description 7
- 230000009885 systemic effect Effects 0.000 claims description 7
- 238000011200 topical administration Methods 0.000 claims description 7
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 claims description 6
- 229960005280 isotretinoin Drugs 0.000 claims description 6
- 238000007910 systemic administration Methods 0.000 claims description 6
- 230000001613 neoplastic effect Effects 0.000 claims description 5
- 230000001855 preneoplastic effect Effects 0.000 claims description 5
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 claims description 5
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 125000000335 thiazolyl group Chemical group 0.000 claims description 5
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 4
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 claims description 4
- 125000004916 (C1-C6) alkylcarbonyl group Chemical group 0.000 claims description 3
- 125000003302 alkenyloxy group Chemical group 0.000 claims description 3
- 125000005133 alkynyloxy group Chemical group 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000002537 cosmetic Substances 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 3
- 125000001425 triazolyl group Chemical group 0.000 claims description 3
- WVKPYYLOFMTDHB-UHFFFAOYSA-N 2-norbornyl radical Chemical group C1CC2[CH]CC1C2 WVKPYYLOFMTDHB-UHFFFAOYSA-N 0.000 claims description 2
- UGFHIPBXIWJXNA-UHFFFAOYSA-N liarozole Chemical compound ClC1=CC=CC(C(C=2C=C3NC=NC3=CC=2)N2C=NC=C2)=C1 UGFHIPBXIWJXNA-UHFFFAOYSA-N 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims 6
- 150000002431 hydrogen Chemical class 0.000 claims 2
- 241001465754 Metazoa Species 0.000 abstract description 8
- 230000004060 metabolic process Effects 0.000 abstract description 7
- 239000012964 benzotriazole Chemical class 0.000 abstract description 6
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical class C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 abstract description 5
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 abstract description 4
- 150000004492 retinoid derivatives Chemical class 0.000 abstract description 3
- 208000017520 skin disease Diseases 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 56
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 42
- 239000000243 solution Substances 0.000 description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 31
- 239000004480 active ingredient Substances 0.000 description 24
- 235000019441 ethanol Nutrition 0.000 description 24
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 238000002360 preparation method Methods 0.000 description 19
- 239000002502 liposome Substances 0.000 description 18
- 239000000543 intermediate Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000008213 purified water Substances 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 238000002156 mixing Methods 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 11
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 10
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 9
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 9
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000006071 cream Substances 0.000 description 8
- 239000003480 eluent Substances 0.000 description 8
- 150000002632 lipids Chemical class 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002674 ointment Substances 0.000 description 8
- 239000003755 preservative agent Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 229960001701 chloroform Drugs 0.000 description 7
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000007126 N-alkylation reaction Methods 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- 230000000699 topical effect Effects 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 206010000496 acne Diseases 0.000 description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000003906 humectant Substances 0.000 description 5
- 239000012442 inert solvent Substances 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 5
- 150000002828 nitro derivatives Chemical class 0.000 description 5
- 150000003904 phospholipids Chemical class 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- 208000002874 Acne Vulgaris Diseases 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004166 Lanolin Substances 0.000 description 4
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000010934 O-alkylation reaction Methods 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 4
- 239000007868 Raney catalyst Substances 0.000 description 4
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 4
- 229910000564 Raney nickel Inorganic materials 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 150000001556 benzimidazoles Chemical class 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 238000004440 column chromatography Methods 0.000 description 4
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000003925 fat Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 4
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 4
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 4
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 4
- 230000003780 keratinization Effects 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 235000019388 lanolin Nutrition 0.000 description 4
- 229940039717 lanolin Drugs 0.000 description 4
- 239000006210 lotion Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000006396 nitration reaction Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000002304 perfume Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 4
- 229960003415 propylparaben Drugs 0.000 description 4
- 238000007363 ring formation reaction Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 201000009030 Carcinoma Diseases 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N acetic acid anhydride Natural products CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 230000002152 alkylating effect Effects 0.000 description 3
- 239000000010 aprotic solvent Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 150000001565 benzotriazoles Chemical class 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 229960000541 cetyl alcohol Drugs 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 229940107161 cholesterol Drugs 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000006481 deamination reaction Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000005059 halophenyl group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 206010021198 ichthyosis Diseases 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 3
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 3
- 229960002216 methylparaben Drugs 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 235000010288 sodium nitrite Nutrition 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 2
- GGHRFYKUUNNECR-UHFFFAOYSA-N 5-[imidazol-1-yl(phenyl)methyl]-1-methylbenzimidazole Chemical compound C=1C=C2N(C)C=NC2=CC=1C(N1C=NC=C1)C1=CC=CC=C1 GGHRFYKUUNNECR-UHFFFAOYSA-N 0.000 description 2
- DCGOMTSIZLGUOK-UHFFFAOYSA-N 6-[imidazol-1-yl(phenyl)methyl]-2-methyl-1h-benzimidazole Chemical compound C1=C2NC(C)=NC2=CC=C1C(N1C=NC=C1)C1=CC=CC=C1 DCGOMTSIZLGUOK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 206010002983 Apocrine miliaria Diseases 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 206010008570 Chloasma Diseases 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- 208000002506 Darier Disease Diseases 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- 208000014771 Fox-Fordyce Disease Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 206010023369 Keratosis follicular Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 239000000232 Lipid Bilayer Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000003351 Melanosis Diseases 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 2
- 206010033554 Palmoplantar keratoderma Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920001214 Polysorbate 60 Polymers 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 241000700157 Rattus norvegicus Species 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 201000010272 acanthosis nigricans Diseases 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 239000003098 androgen Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000004984 aromatic diamines Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 150000003851 azoles Chemical class 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 229960004365 benzoic acid Drugs 0.000 description 2
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 2
- 239000001202 beta-cyclodextrine Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 2
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 229950005499 carbon tetrachloride Drugs 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 229960004106 citric acid Drugs 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 150000002429 hydrazines Chemical class 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- OWFXIOWLTKNBAP-UHFFFAOYSA-N isoamyl nitrite Chemical compound CC(C)CCON=O OWFXIOWLTKNBAP-UHFFFAOYSA-N 0.000 description 2
- 201000004607 keratosis follicularis Diseases 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229940100688 oral solution Drugs 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000003408 phase transfer catalysis Methods 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 2
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 2
- 229940113124 polysorbate 60 Drugs 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 238000012797 qualification Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 150000004508 retinoic acid derivatives Chemical class 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- ILJOYZVVZZFIKA-UHFFFAOYSA-M sodium;1,1-dioxo-1,2-benzothiazol-3-olate;hydrate Chemical compound O.[Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 ILJOYZVVZZFIKA-UHFFFAOYSA-M 0.000 description 2
- 235000011076 sorbitan monostearate Nutrition 0.000 description 2
- 239000001587 sorbitan monostearate Substances 0.000 description 2
- 229940035048 sorbitan monostearate Drugs 0.000 description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- IOGXOCVLYRDXLW-UHFFFAOYSA-N tert-butyl nitrite Chemical compound CC(C)(C)ON=O IOGXOCVLYRDXLW-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 235000010384 tocopherol Nutrition 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- 125000005951 trifluoromethanesulfonyloxy group Chemical group 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- GBNMCZVTSGCHBC-UHFFFAOYSA-N (1-methylbenzimidazol-5-yl)-phenylmethanol Chemical compound C=1C=C2N(C)C=NC2=CC=1C(O)C1=CC=CC=C1 GBNMCZVTSGCHBC-UHFFFAOYSA-N 0.000 description 1
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- 125000006700 (C1-C6) alkylthio group Chemical group 0.000 description 1
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical compound CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 1
- WGMHMVLZFAJNOT-UHFFFAOYSA-N 1-ethoxyethylideneazanium;chloride Chemical compound [Cl-].CCOC(C)=[NH2+] WGMHMVLZFAJNOT-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- LRYZPFWEZHSTHD-HEFFAWAOSA-O 2-[[(e,2s,3r)-2-formamido-3-hydroxyoctadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium Chemical class CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](NC=O)COP(O)(=O)OCC[N+](C)(C)C LRYZPFWEZHSTHD-HEFFAWAOSA-O 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- DPJCXCZTLWNFOH-UHFFFAOYSA-N 2-nitroaniline Chemical class NC1=CC=CC=C1[N+]([O-])=O DPJCXCZTLWNFOH-UHFFFAOYSA-N 0.000 description 1
- 125000006024 2-pentenyl group Chemical group 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- 125000000474 3-butynyl group Chemical group [H]C#CC([H])([H])C([H])([H])* 0.000 description 1
- BJXFTLGWQJWGJJ-UHFFFAOYSA-N 4-(1-imidazol-1-yl-2-methylpropyl)benzene-1,2-diamine Chemical compound C1=CN=CN1C(C(C)C)C1=CC=C(N)C(N)=C1 BJXFTLGWQJWGJJ-UHFFFAOYSA-N 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- RJTJMHFDXWPNLQ-UHFFFAOYSA-N 4-[imidazol-1-yl(phenyl)methyl]benzene-1,2-diamine Chemical compound C1=C(N)C(N)=CC=C1C(N1C=NC=C1)C1=CC=CC=C1 RJTJMHFDXWPNLQ-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- TYLJXSAUJTUXJF-UHFFFAOYSA-N 5-[imidazol-1-yl(phenyl)methyl]-2h-benzotriazole Chemical compound C1=NC=CN1C(C=1C=C2N=NNC2=CC=1)C1=CC=CC=C1 TYLJXSAUJTUXJF-UHFFFAOYSA-N 0.000 description 1
- WPROWTUSIPKVAI-UHFFFAOYSA-N 6-(1-imidazol-1-yl-2-methylpropyl)-2-methyl-1h-benzimidazole Chemical compound C=1C=C2NC(C)=NC2=CC=1C(C(C)C)N1C=CN=C1 WPROWTUSIPKVAI-UHFFFAOYSA-N 0.000 description 1
- OCKGENZNMANSOQ-UHFFFAOYSA-N 6-(1-imidazol-1-yl-2-methylpropyl)-2-methyl-1h-benzimidazole;dihydrochloride Chemical compound Cl.Cl.C=1C=C2NC(C)=NC2=CC=1C(C(C)C)N1C=CN=C1 OCKGENZNMANSOQ-UHFFFAOYSA-N 0.000 description 1
- XZALPTAJWPPUJT-UHFFFAOYSA-N 6-[(3-chlorophenyl)-(triazol-1-yl)methyl]-2-methyl-1h-benzimidazole Chemical compound C=1C=C2NC(C)=NC2=CC=1C(N1N=NC=C1)C1=CC=CC(Cl)=C1 XZALPTAJWPPUJT-UHFFFAOYSA-N 0.000 description 1
- ITFAJEMBWOSTNE-UHFFFAOYSA-N 6-[chloro-(3-chlorophenyl)methyl]-2-methyl-1h-benzimidazole;hydrochloride Chemical compound Cl.C=1C=C2NC(C)=NC2=CC=1C(Cl)C1=CC=CC(Cl)=C1 ITFAJEMBWOSTNE-UHFFFAOYSA-N 0.000 description 1
- IXBGNPXVSIGYPW-UHFFFAOYSA-N 6-[imidazol-1-yl(phenyl)methyl]-1h-benzimidazole Chemical compound C1=NC=CN1C(C=1C=C2N=CNC2=CC=1)C1=CC=CC=C1 IXBGNPXVSIGYPW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- 101100177155 Arabidopsis thaliana HAC1 gene Proteins 0.000 description 1
- 208000023095 Autosomal dominant epidermolytic ichthyosis Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- 206010012455 Dermatitis exfoliative Diseases 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 201000009040 Epidermolytic Hyperkeratosis Diseases 0.000 description 1
- TXHUMRBWIWWBGW-UHFFFAOYSA-N Estradiol undecylate Natural products C1CC2=CC(O)=CC=C2C2C1C1CCC(OC(=O)CCCCCCCCCC)C1(C)CC2 TXHUMRBWIWWBGW-UHFFFAOYSA-N 0.000 description 1
- RSEPBGGWRJCQGY-RBRWEJTLSA-N Estradiol valerate Chemical compound C1CC2=CC(O)=CC=C2[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CCCC)[C@@]1(C)CC2 RSEPBGGWRJCQGY-RBRWEJTLSA-N 0.000 description 1
- 239000004258 Ethoxyquin Substances 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 101000975474 Homo sapiens Keratin, type I cytoskeletal 10 Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000002260 Keloid Diseases 0.000 description 1
- 102100023970 Keratin, type I cytoskeletal 10 Human genes 0.000 description 1
- 206010023347 Keratoacanthoma Diseases 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 206010027145 Melanocytic naevus Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 229920003091 Methocel™ Polymers 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000007256 Nevus Diseases 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 101100434170 Oryza sativa subsp. japonica ACR2.1 gene Proteins 0.000 description 1
- 101100434171 Oryza sativa subsp. japonica ACR2.2 gene Proteins 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-L Oxalate Chemical compound [O-]C(=O)C([O-])=O MUBZPKHOEPUJKR-UHFFFAOYSA-L 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical class OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 206010067155 Reactive perforating collagenosis Diseases 0.000 description 1
- 244000171263 Ribes grossularia Species 0.000 description 1
- 235000002357 Ribes grossularia Nutrition 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 244000235659 Rubus idaeus Species 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 208000009163 Sebaceous of Jadassohn Nevus Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- JPBAVLUULZJFFO-JENHRLMUSA-N [(2s)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O JPBAVLUULZJFFO-JENHRLMUSA-N 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- KPAMAAOTLJSEAR-UHFFFAOYSA-N [N].O=C=O Chemical compound [N].O=C=O KPAMAAOTLJSEAR-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 208000009621 actinic keratosis Diseases 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000000058 anti acne agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003217 anti-cancerogenic effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 229940124340 antiacne agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 125000005129 aryl carbonyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Natural products CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 1
- JEQRBTDTEKWZBW-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1=C(O)OC(C)=CC1=O JEQRBTDTEKWZBW-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 208000033286 epidermolytic ichthyosis Diseases 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- TXHUMRBWIWWBGW-GVGNIZHQSA-N estradiol undecylate Chemical compound C1CC2=CC(O)=CC=C2[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CCCCCCCCCC)[C@@]1(C)CC2 TXHUMRBWIWWBGW-GVGNIZHQSA-N 0.000 description 1
- 229950005281 estradiol undecylate Drugs 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- DECIPOUIJURFOJ-UHFFFAOYSA-N ethoxyquin Chemical compound N1C(C)(C)C=C(C)C2=CC(OCC)=CC=C21 DECIPOUIJURFOJ-UHFFFAOYSA-N 0.000 description 1
- 235000019285 ethoxyquin Nutrition 0.000 description 1
- 229940093500 ethoxyquin Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 239000007941 film coated tablet Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 150000003948 formamides Chemical class 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002321 glycerophosphoglycerophosphoglycerols Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000001117 keloid Anatomy 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 201000011486 lichen planus Diseases 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 208000008588 molluscum contagiosum Diseases 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 229940098462 oral drops Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 201000008743 palmoplantar keratosis Diseases 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- LLYCMZGLHLKPPU-UHFFFAOYSA-N perbromic acid Chemical compound OBr(=O)(=O)=O LLYCMZGLHLKPPU-UHFFFAOYSA-N 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000003444 phase transfer catalyst Substances 0.000 description 1
- 150000008103 phosphatidic acids Chemical class 0.000 description 1
- 150000008105 phosphatidylcholines Chemical class 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 206010035116 pityriasis rubra pilaris Diseases 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010483 polyoxyethylene sorbitan monopalmitate Nutrition 0.000 description 1
- 239000000249 polyoxyethylene sorbitan monopalmitate Substances 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000010956 selective crystallization Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- KKKDGYXNGYJJRX-UHFFFAOYSA-M silver nitrite Chemical compound [Ag+].[O-]N=O KKKDGYXNGYJJRX-UHFFFAOYSA-M 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- ODZPKZBBUMBTMG-UHFFFAOYSA-N sodium amide Chemical compound [NH2-].[Na+] ODZPKZBBUMBTMG-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 229940080236 sodium cetyl sulfate Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- CSMWJXBSXGUPGY-UHFFFAOYSA-L sodium dithionate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)S([O-])(=O)=O CSMWJXBSXGUPGY-UHFFFAOYSA-L 0.000 description 1
- 229940075931 sodium dithionate Drugs 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- GGHPAKFFUZUEKL-UHFFFAOYSA-M sodium;hexadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCCOS([O-])(=O)=O GGHPAKFFUZUEKL-UHFFFAOYSA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940075554 sorbate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 229940100611 topical cream Drugs 0.000 description 1
- 229940042129 topical gel Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 208000030057 verrucous nevus Diseases 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
Definitions
- Retinoids in particular retinoic acid and its derivatives, are substances which are known to have a broad spectrum of biological activity. More specifically, these substances affect the differentiation, maintenance and proliferation of various cell types.
- retinoids such as, all-trans-retinoic acid, 13-cis-retinoic acid, and their derivatives to modulate differentiation in several cell types, whether they are of epithelial or mesenchymal origin, is extensively studied and reviewed in J. Clin. Chem. Clin. Biochem., 26, 479-488 (1983); Pharmacological Reviews, 36, 935-1005 (1984) and Arch. Dermatol., 117, 160-180 (1981).
- retinoids particularly the retinoic acids
- Other known uses of retinoic acid were reviewed in the Journal of American Academy of Dermatology, 4, 505-516 (1981) and the Journal of Medical Chemistry, 25, 1269-1277 (1982) and include, in addition to acne treatment, treatment of senile comedones, nevus comedonicus, linear verrucous nevus, plantar, pseudofolliculitis, keratoacanthoma, solar keratosis of extremities, callosites, keratosis palmaris et plantaris, Darier's disease, ichthyosis, psoriasis, acanthosis nigricans, lichen planus, molluscum contagiosum, reactive perforating collagenosis, melasma, corneal epithelial abrasion, Fox-Ford
- Retinoids such as, all-trans-retinoic acid, 13-cis-retinoic acid and their derivatives, have also been used in the treatment of carcinomas.
- the compounds of the invention overcome the problems associated with art known retinoid therapy by suppressing the metabolism of endogenous or exogenously administered retinoic acid.
- the present invention provides a method of treating mammals suffering from disorders which are characterized by an increased proliferation and/or abnormal differentiation of epithelial cells, by the systemic or topical administration to said mammals of an effective amount of an appropriately substituted benzimidazole or benzotriazole which suppresses the plasma elimination of endogenous or exogenously administered retinoic acid.
- an appropriately substituted benzimidazoles or benzotriazoles are disclosed in our applications U.S. Pat. No 4,859,684 and U.S. Ser. No. 223,486 which corresponds to EP-A 293,978.
- Particular compounds for use in the present invention are compounds of formula ##STR1## a pharmaceutically acceptable acid addition salt thereof or a stereochemically isomeric form thereof, wherein
- R, R 1 , R 2 , --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- and A in formula (I) have the following meaning --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical having the formula
- R is hydrogen or C 1-6 alkyl
- R 1 is hydrogen; C 1-10 alkyl; C 3-7 cycloalkyl; Ar 1 or Ar 1 --C 1-6 alkyl;
- R 2 is hydrogen; C 3-7 cycloalkyl; Ar 1 ; C 1-10 alkyl; C 1-6 alkyl substituted with Ar 1 or C 3-7 cycloalkyl; hydroxy; C 1-10 alkyloxy; C 1-6 alkyloxy substituted with Ar 1 or C 3-7 cycloalkyl; C 3-6 alkenyloxy optionally substituted with Ar 2 ; C 3-6 alkynyloxy optionally substituted with Ar 2 ; or Ar 1 -oxy;
- A is a bivalent radical having the formula ##STR2## wherein the carbon atom in the bivalent radical (a) and (b) is connected to --NR 2 ;
- R 3 being hydrogen; halo; C 1-4 alkyl substituted with up to 4 halo atoms; C 3-7 cycloalkyl; Ar 1 ; quinolinyl; indolinyl; C 1-10 alkyl; C 1-6 alkyl substituted with Ar 1 , C 3-7 cycloalkyl, quinolinyl, indolinyl or hydroxy; C 1-10 alkyloxy; C 1-6 alkyloxy substituted with Ar 1 or C 3-7 cycloalkyl; C 2-6 alkenyl optionally substituted with Ar 1 ; Ar 2 -oxy; C 1-6 alkyloxycarbonyl; carboxyl; C 1-6 alkylcarbonyl; Ar 1 -carbonyl or Ar 1 --(CHOH)--;
- said X being O or S
- R 4 being hydrogen, C 1-6 alkyl or Ar 2 --C 1-6 alkyl;
- Ar 1 is phenyl, substituted phenyl, pyridinyl, aminopyridinyl, imidazolyl, thienyl, halothienyl, furanyl, halofuranyl or thiazolyl; and Ar 2 is phenyl or substituted phenyl; said substituted phenyl in Ar 1 and Ar 2 being phenyl substituted with 1, 2 or 3 substituents each independently selected from halo, hydroxy, trifluoromethyl, C 1-6 alkyl, C 1-6 alkyloxy, cyano, amino, mono- and di(C 1-6 alkyl)amino, nitro, carboxyl, formyl and C 1-6 alkyloxycarbonyl; and wherein
- R, R 5 , R 6 , R 7 and --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- in formula (II) have the following meaning --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical having the formula
- R is hydrogen or C 1-6 alkyl
- R 5 is hydrogen; C 1-10 alkyl; C 3-7 cycloalkyl; Ar 3 ; Ar 4 --C 1-6 alkyl; C 2-6 alkenyl or C 2-6 alkynyl;
- R 6 is hydrogen; C 1-10 alkyl optionally substituted with Ar 3 , C 3-7 cycloalkyl, hydroxy or C 1-6 alkyloxy; Ar 3 ; C 2-6 alkenyl; C 2-6 alkynyl; C 3-7 cycloalkyl; bicyclo[2.2.1]heptan-2-yl; 2,3-dihydro-1H-indenyl; 1,2,3,4-tetrahydronaphthalenyl; or a radical of formula OR 7 ,
- R 7 is hydrogen; C 2-6 alkenyl optionally substituted with Ar 4 ; C 2-6 alkynyl; pyrimidinyl, di(Ar 4 )methyl; 1-C 1-4 alkyl-4-piperidinyl; or C 1-10 alkyl optionally substituted with halo, hydroxy, C 1-6 alkyloxy, amino, mono- and di(C 1-6 alkyl)-amino, trifluoromethyl, carboxyl, C 1-6 alkyloxycarbonyl, Ar 3 , Ar 4 --O--, Ar 4 --S--, C 3-7 cycloalkyl, 2,3-dihydro-1,4-benzodioxinyl, 1H-benzimidazolyl, C 1-4 alkyl substituted 1H-benzimidazolyl, (1,1'-biphenyl)-4-yl or with 2,3-dihydro-2-oxo-1H-benzimidazolyl;
- R 8 is hydrogen, nitro, amino, mono- and di(C 1-6 alkyl)amino, halo, C 1-6 alkyl, hydroxy or C 1-6 alkyloxy;
- Ar 3 is phenyl, substituted phenyl, naphthalenyl, pyridinyl, aminopyridinyl, imidazolyl, triazolyl, thienyl, halothienyl, furanyl, C 1-6 alkylfuranyl, halofuranyl or thiazolyl;
- Ar 4 is phenyl, substituted phenyl or pyridinyl, said substituted phenyl in Ar 3 and Ar 4 being phenyl substituted with up to 3 substituents each independently selected from halo, hydroxy, hydroxymethyl, trifluoromethyl, C 1-6 alkyl, C 1-6 alkyloxy, C 1-6 alkyloxycarbonyl, carboxyl, formyl, (hydroxyimino)methyl, cyano, amino, mono- and di(C 1-6 alkyl)amino and nitro.
- said substituted phenyl is phenyl substituted with one or two substituents each independently selected
- halo is genetic to fluoro, chloro, bromo and iodo
- C 1-6 alkyl is meant to include straight chained and branched saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl, propyl, 2-methylpropyl, butyl, pentyl, hexyl and the like
- C 1-10 alkyl is meant to include C 1-6 alkyl radicals, as defined hereinabove, and the higher homologs thereof having from 7 to 10 carbon atoms
- C 3-7 cycloalkyl is genetic to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
- C 2-6 alkenyl defines straight chained and branched hydrocarbon radicals containing one double bond having from 2 to 6 carbon atoms such as, for example, ethenyl, 2-propenyl, 3-butenyl, 2-butenyl, 2-pentenyl, 3-pentenyl, 3-methyl-2-butenyl and the like;
- C 2-6 alkynyl defines straight chained and branched hydrocarbon radicals containing one triple bond and having from 2 to 6 carbon atoms such as, for example, 2-propynyl, 2-butynyl, 3-butynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl and the like; and when a C 2-6 alkenyl or a C 2-6 alkynyl is substituted on a heteroatom, then the carbon atom of said C 2-6 alkenyl or said C 2-6 alkynyl connected to said heteroatom preferably is saturated.
- Particular compounds for use in the method of the present invention are those compounds of formula (I) wherein the 1H-azol-1-ylmethyl moiety is substituted on either the 5 or 6 position of the benzimidazole ring; and/or R is hydrogen; and/or R 1 is hydrogen; C 1-6 alkyl; C 3-7 cycloalkyl; phenyl; substituted phenyl; thienyl or furanyl optionally substituted with halo; and/or R 2 is hydrogen; C 3-7 cycloalkyl; phenyl; substituted phenyl; pyridinyl; C 1-6 alkyl optionally monosubstituted with phenyl, C 3-7 cycloalkyl, pyridinyl or thienyl; hydroxyl, C 1-6 alkyloxy optionally monosubstituted with phenyl, pyridinyl, thienyl or C 3-6 cycloalkyl; C 3-6 alkenyloxy optional
- R is hydrogen
- R 5 is hydrogen
- R 6 is hydrogen; C 1-6 alkyl; C 3-6 alkenyl; C 3-6 alkynyl; C 3-7 cycloalkyl; phenyl; substituted phenyl; bicylo[2.2.1]heptan-2-yl; 2,3-dihydro-1H-indenyl; 1,2,3,4-tetrahydronaphthalenyl; C 1-6 alkyl monosubstituted with phenyl, substituted phenyl, naphthalenyl, thi
- More particular compounds for use in the method of the present invention are those particular compounds of formula (I) wherein R 1 is hydrogen, C 1-6 alkyl, phenyl, substituted phenyl, thienyl or furanyl; R 2 is hydrogen, C 1-6 alkyl, or C 1-4 alkyl substituted with phenyl; R 3 is hydrogen, C 1-6 alkyl, phenyl, pyridinyl, C 1-6 alkyl, C 1-6 alkyl monosubstituted with phenyl or C 2-6 alkenyl optionally monosubstituted with furanyl or phenyl; and R 4 is hydrogen.
- R 1 is hydrogen, C 1-6 alkyl, phenyl, substituted phenyl, thienyl or furanyl
- R 2 is hydrogen, C 1-6 alkyl, or C 1-4 alkyl substituted with phenyl
- R 3 is hydrogen, C 1-6 alkyl, phenyl, pyridinyl, C
- R 5 is hydrogen, C 1-6 alkyl, phenyl, substituted phenyl, thienyl or furanyl
- R 6 is hydrogen, C 1-6 alkyl, C 1-6 alkyl substituted with phenyl, or a radical of formula --OR 7 with R 7 being hydrogen or C 1-6 alkyl.
- Preferred compounds for use in the method of the present invention are those particular compounds of formula (I) wherein R 1 is C 1-4 alkyl, phenyl, phenyl substituted with one or two halo, C 1-4 alkyl or C 1-4 alkyloxy substituents, or thienyl; R 2 is hydrogen or C 1-4 alkyl; and R 3 is hydrogen or C 1-4 alkyl.
- R 5 is C 1-4 alkyl, phenyl or phenyl substituted with one or two halo, C 1-4 alkyl or C 1-4 alkyloxy substituents; and R 6 is hydrogen or C 1-4 alkyl.
- More preferred compounds for use in the method of the present invention are those preferred compounds of formula (I) wherein R 1 is phenyl or halophenyl, and R 2 and R 3 are both independently hydrogen or C 1-4 alkyl.
- Most preferred compounds for use in the method of the present invention are 5-[(1H-imidazol-1-yl)phenylmethyl]-1H-benzimidazole, ( ⁇ )-5-[(1H-imidazol-1-yl)phenylmethyl]-2-methyl-1H-benzimidazole, 5-[(1H-imidazol-1-yl)phenylmethyl]-1-methyl-1H-benzimidazole, 5-[1-(1H-imidazole-1-yl)-2-methylpropyl]-2-methyl-1H-benzimidazole, 5-[(3-chlorophenyl) (1H-imidazol-1-yl)methyl]-1H-benzimidazole or ( ⁇ )-5-[(1H-imidazol-1-yl)phenylmethyl]-2-methyl-1H-benzimidazole, the pharmaceutically acceptable acid addition salts and possible stereoisomers thereof.
- the compounds of formula (I) and (II) can be prepared by N-alkylating an azole of formula (III) or an alkali metal salt thereof with a benzimidazole of formula (IV) or a benzomazole of formula (V).
- W represents an appropriate reactive leaving group such as, for example, halo, e.g. fluoro, chloro, bromo, iodo or a sulfonyloxy group, e.g.
- N-alkylations are conveniently carried out by stimng the reactants in the presence of a suitable solvent such as, for example, an aromatic hydrocarbon, e.g., benzene, methylbenzene, dimethylbenzene, and the like; an ester, e.g. ethyl acetate, ⁇ -butyrolacetone and the like; a ketone, e.g.
- a suitable solvent such as, for example, an aromatic hydrocarbon, e.g., benzene, methylbenzene, dimethylbenzene, and the like; an ester, e.g. ethyl acetate, ⁇ -butyrolacetone and the like; a ketone, e.g.
- an ether e.g., 1,4-dioxane, 1,1'-oxybisethane, tetrahydrofuran and the like
- a polar aprotic solvent e.g., N
- an appropriate base such as, for example, an alkali or an earth alkaline metal carbonate, hydrogen carbonate, hydroxide, amide or hydride, e.g., sodium hydroxide, potassium hydroxide, potassium carbonate, sodium hydride and the like or an organic base, such as, for example, N,N-dimethyl-4-pyridinamine, pyridine, N,N-diethylethanamine or N-(1-methylethyl)-2-propanamine may be employed to pick up the acid which is liberated during the course of the reaction.
- an appropriate base such as, for example, an alkali or an earth alkaline metal carbonate, hydrogen carbonate, hydroxide, amide or hydride, e.g., sodium hydroxide, potassium hydroxide, potassium carbonate, sodium hydride and the like
- an organic base such as, for example, N,N-dimethyl-4-pyridinamine, pyridine, N,N-diethylethanamine or N-(1-methyle
- azole (Ill) or to convert the azole first into a suitable salt form thereof such as, for example, an alkali or earth alkaline metal salt, by reacting (III) with an appropriate base as defined hereinabove and subsequently using said salt form in the reaction with the alkylating reagents of formulae (IV) or (V).
- a suitable salt form thereof such as, for example, an alkali or earth alkaline metal salt
- Said alkylation may also be carried out by applying art-known conditions of phase transfer catalysis reactions.
- P 1 represents a protective group such as, for example, C 1-6 alkylcarbonyl, C 1-6 alkyloxycarbonyl, arylcarbonyl or a tri(C 1-6 alkyl)silyl group.
- a protective group such as, for example, C 1-6 alkylcarbonyl, C 1-6 alkyloxycarbonyl, arylcarbonyl or a tri(C 1-6 alkyl)silyl group.
- (VI-a) and (VI-b) W - is an anion arising from an acid such as, for example, hydrochloric acid, hydrobromic acid, methanesulfonic acid, 4-methylbenzenesulfonic acid and the like acids.
- the endo-N-alkylation reaction of (III-y) with (IV) or (V) is carried out according to similar procedures as described hereinabove for the preparation of a compound of formula (I) starting from (III) and (II).
- Said deamination reaction is conveniently conducted by reaction with an acidic nitrite solution in the presence of an appropriate reductant, or by reaction with an alkylnitrite such as, for example, 1,1-dimethylethylnitrite or isoamylnitrite and the like.
- said deamination reaction is conducted with an aqueous solution of nitrous acid or of a nitrite salt in a suitable acid in the presence of a reducing agent such as, for example, hypophosphorous acid, formic acid, at a lower temperature.
- a reducing agent such as, for example, hypophosphorous acid, formic acid
- the compounds of formulae (I) and (II) may also be prepared by reacting an intermediate of formula (VII) or (VIII) with a reagent of formula (IX) such as, for example, a 1,1'-carbonylbis[1H-imidazole].
- a reagent of formula (IX) such as, for example, a 1,1'-carbonylbis[1H-imidazole].
- Said reactions may conveniently be conducted in a suitable solvent such as, for example, an ether, e.g., 1,4-dioxane, tetrahydrofuran; a halogenated hydrocarbon, e.g., di- or trichloromethane; a hydrocarbon, e.g., benzene, methylbenzene; N,N-dimethylformamide, N,N-dimethylacetamide, or mixtures of such solvents.
- a suitable solvent such as, for example, an ether, e.g., 1,4-dioxane, tetrahydrofuran; a halogenated hydrocarbon, e.g., di- or trichloromethane; a hydrocarbon, e.g., benzene, methylbenzene; N,N-dimethylformamide, N,N-dimethylacetamide, or mixtures of such solvents.
- a suitable solvent such as, for example,
- the compounds of formula (I) may also be prepared by reacting a ketone or aldehyde of formula (X) or (XI) with an azole (III) in the presence of formic acid or formamides as reducing agents. ##STR9##
- the compounds of formula (I) and (II) can alternatively be prepared according to cyclization procedures outlined in the art for the preparation of benzimidazoles from benzenediamines or ortho nitrobenzeneamines, e.g. U.S. Pat. No. 4,859,684, or for the preparation of benzotriazoles starting from appropriate benzenediamines or halonitrobenzene derivatives, e.g. U.S. Ser. No. 223,486, which corresponds to EP-A-293,978.
- benzimidazoles of formula (I) can be prepared by cyclizing an appropriately substituted 1,2-benzenediamine with a carboxylic acid or a functional derivative thereof such as, for example the halide, anhydride, amide and ester form thereof in a suitable acidic medium.
- a carboxylic acid or a functional derivative thereof such as, for example the halide, anhydride, amide and ester form thereof in a suitable acidic medium.
- the benzotriazoles of formula (II) wherein R 6 is other than OR 7 said compounds being represented by formula (II-a) and said radical by R 6-a , can generally be prepared from an appropriate aromatic diamine of formula (XII) by reaction with a suitable diazotizing reagent. ##STR10##
- Suitable diazotizing reagents are alkylnitrites, e.g. 1,1-dimethylethylnitrite, isoamylnitrite and the like; nitronium tetrafluoroborate, nitrous acid in aqueous solution, or more particularly aqueous solutions of nitrite salts such as, for example, sodium nitrite, potassium nitrite, silver nitrite and the like, in the presence of a mineral and/or organic acid such as, for example, hydrohalic acids, e.g.
- hydrochloric, hydrobromic and the like acids hydrochloric, hydrobromic and the like acids
- carboxylic acids e.g. formic, acetic, trifluoroacetic, propanoic, benzoic, methanesulfonic and the like acids.
- Said reaction can conveniently be conducted by stirring the aromatic diamine of formula (XII) in the presence of a suitable diazotizing reagent as defined hereinabove, at a low temperature, in an aqueous solution, optionally in admixture with organic cosolvents such as, for example, alkanols, e.g. methanol, ethanol and the like.
- a suitable diazotizing reagent as defined hereinabove
- organic cosolvents such as, for example, alkanols, e.g. methanol, ethanol and the like.
- the compounds of formula (II) wherein R 7 is other than hydrogen, said compounds being represented by formula (II-b) and said radical by R 7-a , can generally be prepared by O-alkylating a compound of formula (II) wherein R 7 is hydrogen, said compounds being represented by formula (II-c), with an appropriate alkylating reagent of formula R 7a --W (XIII).
- W represents an appropriate reactive leaving group such as, for example, halo, e.g. chloro, bromo, iodo, or a sulfonyloxy group, e.g.
- Said O-alkylation reaction can conveniently be carried out by mixing the reactants, optionally in a reaction-inert solvent such as, for example, water, an aromatic solvent, e.g. benzene, methylbenzene, dimethylbenzene, chlorobenzene, methoxybenzene and the like; a C 1-6 alkanol, e.g. methanol, ethanol, 1-butanol and the like; a ketone, e.g. 2-propanone, 4-methyl-2-pentanone and the like; an ester, e.g. ethyl acetate, ⁇ -butyrolactone and the like; an ether, e.g.
- a reaction-inert solvent such as, for example, water, an aromatic solvent, e.g. benzene, methylbenzene, dimethylbenzene, chlorobenzene, methoxybenzene and the like; a C 1-6 alkanol, e.g. methanol
- a dipolar aprotic solvent e.g. N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, pyridine, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone, 1,3-dimethyl-2-imid
- an appropriate base such as, for example, an alkali metal or an earth alkaline metal carbonate, hydrogen carbonate, hydroxide, oxide, carboxylate, alkoxide, hydride or amide, e.g. sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, calcium oxide, sodium acetate, sodium methoxide, sodium hydride, sodium amide and the like, or an organic base such as, for example, an amine, e.g.
- N,N-diethylethanamine, N-(1-methylethyl)-2-propanamine, 4-ethylmorpholine, 1,4-diazabicyclo[2.2.2]octane, pyridine and the like may optionally be used to pick up the acid which is formed during the course of the reaction.
- an iodide salt preferably an alkali metal iodide, or a crown ether, e.g. 1,4,7,10,13,16-hexaoxacyclooctadecane and the like, may be appropriate. Stirring and somewhat elevated temperatures may enhance the rate of the reaction; more in particular the reaction may be conducted at the reflux temperature of the reaction mixture. Additionally, it may be advantageous to conduct said O-alkylation under an inert atmosphere such as, for example, oxygen-free argon or nitrogen gas.
- an inert atmosphere such as, for example, oxygen-free argon or nitrogen gas.
- said O-alkylation may be carried out by applying art-known conditions of phase transfer catalysis reactions.
- Said conditions comprise stirring the reactants, with an appropriate base and optionally under an inert atmosphere as defined hereinabove, in the presence of a suitable phase transfer catalyst such as, for example, a trialkylphenylmethylammonium, tetraalkylammonium, tetraalkylphosphonium, tetraarylphosphonium halide, hydroxide, hydrogen sulfate and the like catalysts.
- phase transfer catalyst such as, for example, a trialkylphenylmethylammonium, tetraalkylammonium, tetraalkylphosphonium, tetraarylphosphonium halide, hydroxide, hydrogen sulfate and the like catalysts.
- the compounds of formula (II-c) in turn can be prepared by cyclizing an appropriately substituted nitrobenzene derivative of formula (XIV) wherein W 1 represents a reactive leaving group, with hydrazine, a hydrate thereof or an acid addition salt thereof. ##STR12##
- the reactive leaving group W 1 represents, groups such as, for example, halo, e.g. chloro, bromo or preferably fluoro, nitro, sulfonyloxy groups, e.g. methanesulfonyloxy, 4-methylbenzenesulfonyloxy and the like, aryloxy, C 1-6 alkyloxy or C 1-6 alkylthio and the like groups.
- Said cyclization may be carded out by stirring the reactants in a reaction-inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol, 1-butanol and the like, an aromatic hydrocarbon, e.g. benzene, methylbenzene, dimethylbenzene and the like, or a mixture of such solvents.
- a reaction-inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol, 1-butan
- Said reduction may be conducted, for example, by catalytic hydrogenation in the presence of hydrogen and an appropriate hydrogenation catalyst such as, for example, platinum, palladium, platinum(IV) oxide, Raney-nickel and the like, in the presence of a reaction inert organic solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol, butanol and the like.
- an appropriate hydrogenation catalyst such as, for example, platinum, palladium, platinum(IV) oxide, Raney-nickel and the like
- a reaction inert organic solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol, butanol and the like.
- Said reduction may alternatively be conducted by reducing the starting material with a reducing agent such as, for example, titanium(III)chloride or tin(II)chloride in hydrochloric acid, optionally in the presence of a reaction-inert solvent.
- a reducing agent such as, for example, titanium(III)chloride or tin(II)chloride in hydrochloric acid, optionally in the presence of a reaction-inert solvent.
- said reduction is camed out by converting the hydroxy group into a, readily leaving group, such as, for example, an ether --O--CH 2 --Z wherein Z is an electronwithdrawing group such as cyano, C 1-6 alkyloxycarbonyl, aminocarbonyl, mono- or di(C 1-6 alkyl)aminocarbonyl and the like, by reaction with an O-alkylating reagent of formula W--CH 2 --Z, and stirring the thus obtained ether intermediates in the presence of a base such as, for example, an alkali or earth alkaline metal carbonate, hydrogen carbonate, hydroxide, alkoxide or amide, in an appropriate solvent such as, for example, a dipolar aprotic solvent, e.g.
- a base such as, for example, an alkali or earth alkaline metal carbonate, hydrogen carbonate, hydroxide, alkoxide or amide
- an appropriate solvent such as, for example, a dipolar aprotic solvent, e.
- the compounds of formula (II) wherein R 6 is other than hydrogen and OR 7 may be prepared by N-alkylating a compound of formula (II-a-1) with a reagent of formula RR 6-b --W, wherein W is a leaving group as defined hereinabove. ##STR14##
- Said N-alkylation reaction of (I-a-1) may conveniently be conducted following the procedures described hereinabove for the preparation of the compounds of formula (II-b) from the compounds of formula (II-c).
- the compounds of formula (I-x) and (II-x) may also be prepared, for example, by cyclizing an intermediate of formula (XV) or (XVI) and desulfurating the thus obtained intermediate of formula (XVII) or (XVIII). ##STR15##
- R 9 representing hydrogen or C 1-6 alkyl and R 14 represents C 1-6 alkyl or both R 10 taken together form a C 2-3 alkanediyl radical.
- Said cyclization reaction may conveniently be conducted by stirring and heating an intermediate (XV) or (XVI) in an aqueous acidic solvent, e.g. in aqueous hydrochloric or sulfuric acid.
- the thus obtained intermediate (XVII) or (XVIII) may be desulfurated following art-known procedures, e.g., by treatment with Raney nickel in the presence of an alkanol, e.g. methanol, ethanol and the like, or by treatment with nitric acid, optionally in the presence of sodium nitrite.
- the compounds of formula (I-y) and (II-y) may be prepared from a hydrazine derivative of formula (XIX) or (XX) by reaction with s-triazine following the procedures described in J. Org. Chem., 1956, 1037. ##STR16##
- intermediate hydrazine (XIX) or (XX) and the corresponding intermediate amines may also be convened into azoles, wherein --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical of formula (x), (y) or (z) following procedures described in U.S. Pat. No. 4,267,179, incorporated herein by reference.
- Suitable reducing agents for use in the above nitro-to-amine reduction are, for example, hydrogen in the presence of an appropriate hydrogenation catalyst such as, for example, palladium-on-charcoal, platinum-on-charcoal, Raney-nickel and the like catalysts.
- Said reduction can conveniently be conducted in a reaction inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol and the like, optionally at an elevated pressure and/or temperature.
- Alternatively said reduction can also be conducted by reacting the nitro derivative (XXI) with a reducing agent such as sodium dithionate in water optionally in admixture with an alkanol, e.g. methanol, ethanol and the like.
- the nitro derivative (XXI) in turn can be prepared from an intermediate (XXIII) by reaction with a suitable amine of formula (XXII).
- Said reaction can conveniently be conducted by stirring and, if desired, heating the reactants in a reaction-inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, propanol, butanol, 1,2-ethanediol and the like, an ether, e.g. 1,1'-oxybisethane, tetrahydrofuran, 1,4-dioxane and the like a dipolar aprotic solvent, e.g.
- a reaction-inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, propanol, butanol, 1,2-ethanediol and the like, an ether, e.g. 1,1'-oxybisethane, tetrahydrofuran, 1,
- a suitable base to pick up the acid which is liberated during the reaction may be appropriate; particularly convenient however is the use of an excess of the amine of formula (XXII).
- the intermediates of formula (XXIII) can conveniently be prepared by nitration of a benzene derivative of formula (XXIV) following art-known nitration procedures.
- Said nitration reaction is conveniently conducted by treating the intermediate (XXIV) with nitric acid or the nitrate salt of (XXIV), in the presence concentrated sulfuric acid at low or ambient temperature. In some instances it may be appropriate to heat the reactants.
- Said nitration can be conducted without an additional solvent or may also be performed in a suitable solvent such as, for example, a halogenated hydrocarbon, e.g. trichloromethane, tetrachloromethane and the like, a carboxylic acid or a derivative thereof, e.g. acetic acid, acetic anhydride and the like solvents.
- the intermediate hydrazines (XIX) or (XX) and amines may conveniently be prepared from a ketone of formula (X) or (XI) or by reaction with either an acid addition salt thereof, or with hydroxylamine or hydrazine or an acid addition salt or a solvate thereof, and reducing the thus obtained oxime or hydrazone, for example, by catalytic hydrogenation in the presence of hydrogen and an appropriate hydrogenation catalyst, e.g. Raney nickel and the like.
- an appropriate hydrogenation catalyst e.g. Raney nickel and the like.
- the intermediates of formula (XV) and (XVI) can be prepared from the corresponding amines of formula (XXV) and (XXVI) by reaction with a reagent of formula (XXVII) and optionally S-alkylating the thus obtained thiourea with a C 1-6 alkylhalide.
- Diastereoisomers may be separated by physical separation methods such as selective cyrstallization and chromatographic techniques, e.g., counter current distribution, and enantiomers may be separated from each other by the selective crystallization of their diastereomeric salts with optically active acids.
- Pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically.
- An additional feature of the invention comprises the fact that those compounds of formula (I) wherein --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical of formula (y) or (z) or wherein --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical of formula (x) and R is C 1-6 alkyl, the pharmaceutically acceptable acid addition salts thereof and the stereochemically isomeric forms thereof are novel compounds.
- novel compounds are those novel compounds wherein --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical of formula (y) or (z).
- Preferred novel compounds within the invention are those particular novel compounds wherein --A 1 ⁇ A 2 --A 3 ⁇ A 4 -- is a bivalent radical of formula (y); and/or R 1 is phenyl or halophenyl; and/or R 2 is hydrogen or C 1-4 alkyl; and/or R 3 is hydrogen or C 1-4 alkyl.
- the use of the compounds of formula (I) and (II), their pharmaceutically acceptable acid addition salts and their possible stereochemically isomeric forms in the method of the present invention is based on their useful property to delay the metabolism of retinoids, such as, all-trans-retinoic acid, 13-cis-retinoic acid and their derivatives.
- retinoids such as, all-trans-retinoic acid, 13-cis-retinoic acid and their derivatives.
- the latter results in more sustained/higher tissue concentrations of retinoids and improved control of differentiation and growth of various cell types.
- Said property to delay the metabolism of retinoids can easily be evidenced in various in vivo experiments.
- a particular test procedure is described hereinafter as the "Metabolism of endogenous or exogenously administered all-trans-retinoic acid"-test.
- the compounds of formula (I) and (II) can be used to control the rate of growth and differentiation of normal, preneoplastic and neoplastic epithelial cells.
- retinoids such as, 13-cis-retinoic acid, all-trans-retinoic acid and their derivatives to modulate differentiation and proliferation in several cell types is extensively studied and reviewed in J. Clin. Chem. Clin, Biochem., 26, 479-488 (1983); Pharmacological Reviews 36, 935-1005,(1984),Arch. Dermatol. 117, 160-180; (1981) and Journal of Medicinal Chemistry 25, 1269-1277, (1982).
- the compounds of formulae (I) and (II), their pharmaceutically acceptable acid addition salts and their possible stereochemically isomeric forms are therefore useful in a method of treating disorders which are characterized by an increased proliferation and/or abnormal differentiation of epithelial cells.
- the compounds of the invention can be used for treatment of carcinoma, which is essentially a derailment of cellular differentiation occurring in epithelial tissues.
- the compounds of the invention do not only exhibit an anticarcinogenic effect on estrogen or androgen dependent carcinoma cells but also show an unexpected effect on cells of which the growth and differentiation is not substantially mediated by or insensitive to the actions of androgens or estrogens, in particular on cells of which the growth and differentiation is sensitive to the actions of retinoids.
- Other uses include the ability to cure and/or reduce a variety of disorders of keratinization such as, for example, acne, psoriasis, lameliar ichthyosis, plantar warts, callosites, acanthosis nigricans, lechen planus, molluscum, melasma, corneal epithelial abrasion, geograpic tongue, Fox-Fordyce disease, cutaneous metasiatic melanoma and heloids, epidermolytic hyperkeratosis, Darier's disease, pityriasis rubra pilaris, congenital icthyosiform erythroderma, hyperkeratosis palmaris et plantaris, and similar disordes.
- disorders of keratinization such as, for example, acne, psoriasis, lameliar ichthyosis, plantar warts, callosites, acanthos
- the anti-tumor activity especially in retinoic acid sensitive tumors, may be demonstrated in several retinoic acid-sensitive cell lines and solid tumors such as, for example, in Ta3-Ha induced mamma tumors in female mice.
- an effective amount would be from 0.001 mg/kg to 50 mg/kg body weight and more preferably from 0.01 mg/kg to 10 mg/kg body weight.
- compositions there may be cited all compositions usually employed for systemically or topically administering drugs.
- an effective amount of the particular compound, optionally in acid-addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which career may take a wide variety of forms depending on the form of preparation desired for administration.
- a pharmaceutically acceptable carrier which career may take a wide variety of forms depending on the form of preparation desired for administration.
- These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection.
- any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represents the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed.
- the carrier will usually comprise sterile water, at least in large pan, though other ingredients, for example, to aid solubility, may be included.
- Injectable solutions may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution.
- Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be convened, shortly before use, to liquid form preparations.
- the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin.
- compositions usually employed for topically administering drugs e.g., creams, gellies, dressings, shampoos, tinctures, pastes, ointments, salves, powders, liquid or semi-liquid formulation and the like.
- Application of said compositions may be by aerosol e.g. with a propellent such as nitrogen carbon dioxide, a freon, or without a propellent such as a pump spray, drops, lotions, or a semisolid such as a thickened composition which can be applied by a swab.
- a propellent such as nitrogen carbon dioxide, a freon
- a propellent such as a pump spray
- drops lotions
- a semisolid such as a thickened composition which can be applied by a swab.
- semisold compositions such as salves, creams, pastes, gellies, ointments and the like will conveniently be used.
- Dosage unit form as used in the specification and claims herein refers to physically discreate units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powders packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.
- compositions are preparations of the cosmetic type, such as toilet waters, packs, lotions, skin milks or milky lotions.
- Said preparations contain, besides the active ingredient of formula (I) or (II), components usually employed in such preparations.
- components usually employed in such preparations.
- examples of such components are oils, fats, waxes, surfactants, humechants, thickening agents, antioxidants, viscosity stabilizers, chelating agents, buffers, preservatives, perfumes, dyestuffs, lower alkanols, and the like.
- further ingredients may be incorporated in the compositions, e.g. antiinflammatory agents, antibacterials, antifungals, disinfectants, vitamins, sunscreens, antibiotics, or other anti-acne agents.
- oils comprise fats and oils such as olive oil and hydrogenated oils; waxes such as beeswax and lanolin; hydrocarbons such as liquid paraffin, ceresin, and squalane; fatty acids such as stearic acid and oleic acid; alcohols such as cetyl alcohol, stearyl alcohol, lanolin alcohol, and hexadecanol: and esters such as isopropyl myristate, isopropyl palmitate and butyl stearate.
- oils comprise fats and oils such as olive oil and hydrogenated oils; waxes such as beeswax and lanolin; hydrocarbons such as liquid paraffin, ceresin, and squalane; fatty acids such as stearic acid and oleic acid; alcohols such as cetyl alcohol, stearyl alcohol, lanolin alcohol, and hexadecanol: and esters such as isopropyl myristate, isopropyl palmitate and butyl
- anionic surfactants such as sodium stearate, sodium cetylsulfate, polyoxyethylene laurylether phosphate, sodium N-acyl glutamate; cationic surfactants such as stearyldimethylbenzylammonium chloride and stearyltrimethylammonium chloride; ampholytic surfactants such as alkylaminoethylglycine hydrochloride solutions and lecithin; and nonionic surfactants such as glycerin monostearate, sorbitan monostearate, sucrose fatty acid esters, propylene glycol monostearate, polyoxyethylene oleylether, polyethylene glycol monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene coconut fatty acid monoethanolamide, polyoxyethylene polyoxypropylene glycol (e.g.
- humectants include glycerin, 1,3-butylene glycol, and propylene glycol
- examples of lower alcohols include ethanol and isopropanol
- examples of thickening agents include xanthan gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol and sodium carboxymethyl cellulose
- examples of antioxidants comprise butylated hydroxytoluene, butylated hydroxyanisole, propyl gallate, citric acid and ethoxyquin
- examples of chelating agents include disodium edetate and ethanehydroxy diphosphate
- examples of buffers comprise citric acid, sodium citrate, boric acid, borax, and disodium hydrogen phosphate
- examples of preservatives are methyl parahydroxybenzoate, ethyl parahydroxybenzoate, dehydroacetic acid, salicylic acid and benzo
- compositions typically from 0.01 to 10% in particular from 0.1 to 5% and more in particular from 0.2 to 2.5% of the active ingredient of formula (I) or (II) will be incorporated in said compositions.
- the carrier for example consists of 1 to 20%, in particular 5 to 15% of a humectant, 0.1 to 10% in particular from 0.5 to 5% of a thickener and water; or said carrier may consist of 70 to 99%, in particular 20 to 95% of a surfactant, and 0 to 20%, in particular 2.5 to 15% of a fat; or 80 to 99.9% in particular 90 to 99% of a thickener: or 5 to 15% of a surfactant, 2-15% of a humectant, 0 to 80% of an oil, very small ( ⁇ 2%) amounts of preservative, colouring agent and/or perfume, and water.
- the carrier for example consists of 2 to 10% of a lower alcohol, 0.1 to 10% or in particular 0.5 to 1% of a surfactant, 1 to 20%, in particular 3 to 7% of a humectant, 0 to 5% of a buffer, water and small amounts ( ⁇ 2%) of preservative, dyestuff and/or perfume.
- the carrier typically consists of 10-50% of oil, 1 to 10% of surfactant, 50-80% of water and 0 to 3% of preservative and/or perfume.
- all % symbols refer to weight by weight percentage.
- referred to in said preparations may be any such component used in the cosmetic arts but preferably will be one or more of the components mentioned hereinabove. Further, when in the above compositions one or more of the components make up the major part of the composition, the other ingredients can evidently be not present at their indicated maximum concentration and therefore will make up the remainder of the composition.
- compositions for use in the method of the present invention are those wherein the active ingredient of formula (I) or (II) is formulated in liposome-containing compositions.
- Liposomes are artificial vesicles formed by amphiphatic molecules such as polar lipids, for example, phosphatidyl cholines, ethanolamines and serines, sphingomyelins, cardiolipins, plasmalogens, phosphatidic acids and cerebiosides. Liposomes are formed when suitable amphiphathic molecules are allowed to swell in water or aqueous solutions to form liquid crystals usually of multilayer structure comprised of many bilayers separated from each other by aqueous material (also referred to as coarse liposomes).
- Another type of liposome known to be consisting of a single bilayer encapsulating aqueous material is referred to as a unilamellar vesicle. If water-soluble materials are included in the aqueous phase during the swelling of the lipids they become entrapped in the aqueous layer between the lipid bilayers.
- Water-soluble active ingredients such as, for example, most of the salt forms of the compound of formula (I) or (II) are encapsulated in the aqueous spaces between the molecular layers.
- the lipid soluble active ingredient of formula (I) or (II) is predominantly incorporated into the lipid layers, although polar head groups may protrude from the layer into the aqueous space.
- the encapsulation of these compounds can be achieved by a number of methods. The method most commonly used involves casting a thin film of phospholipid onto the walls of a flask by evaporation from an organic solvent. When this film is dispersed in a suitable aqueous medium, multilamellar liposomes are formed. Upon suitable sonication, the coarse liposomes form smaller similarly closed vesicles.
- Water-soluble active ingredients are usually incorporated by dispersing the cast film with an aqueous solution of the compound. The unencapsulated compound is then removed by centrifugation, chromatography, dialysis or other art-known suitable procedures. The lipid-soluble active ingredient is usually incorporated by dissolving it in the organic solvent with the phospholipid prior to casting the film. If the solubility of the material in the lipid phase is not exceeded or the amount present is not in excess of that which can be bound to the lipid, liposomes prepared by the above method usually contain most of the material bound in the lipid bilayers; separation of the liposomes from unencapsulated material is not required.
- a particularly convenient method for preparing liposome formulated forms of the active ingredient of formula (I) or (II) is the method described in EP-A-253,619, incorporated herein by reference.
- this method single bilayered liposomes containing encapsulated active ingredients are prepared by dissolving the lipid component in an organic medium, injecting the organic solution of the lipid component under pressure into an aqueous component while simultaneously mixing the organic and aqueous components with a high speed homogenizer or mixing means, whereupon the liposomes are formed spontaneously.
- the single bilayered liposomes containing the encapsulated active ingredient of formula (I) or (II) can be employed directly or they can be employed in a suitable pharmaceutically acceptable carrier for topical administration.
- the viscosity of the liposomes can be increased by the addition of one or more suitable thickening agents such as, for example xanthan gum, hydroxypropyl cellulose, hydroxypropyl methylcellulose and mixtures thereof.
- suitable thickening agents such as, for example xanthan gum, hydroxypropyl cellulose, hydroxypropyl methylcellulose and mixtures thereof.
- the aqueous component may consist of water alone or it may contain electrolytes, buffered systems and other ingredients, such as, for example, preservatives.
- Suitable electrolytes which can be employed include metal salts such as alkali metal and alkaline earth metal salts.
- the preferred metal salts are calcium chloride, sodium chloride and potassium chloride.
- the concentration of the electrolyte may vary from zero to 260 mM, preferably from 5 mM to 160 mM.
- the aqueous component is placed in a suitable vessel which can be adapted to effect homogenization by effecting great turbulence during the injection of the organic component. Homogenization of the two components can be accomplished within the vessel, or, alternatively, the aqueous and organic components may be injected separately into a mixing means which is located outside the vessel. In the latter case, the liposomes are formed in the mixing means and then transferred to another vessel for collection purpose.
- the organic component consists of a suitable non-toxic, pharmaceutically acceptable solvent such as, for example ethanol, glycerol, propylene glycol and polyethylene glycol, and a suitable phospholipid which is soluble in the solvent.
- suitable phospholipids which can be employed include lecithin, phosphatidylcholine, phosphatidylethanol-amine, phosphatydylserine, phosphatidylinositol, lysophosphatidylcholine and phospha-tidyl glycerol, for example.
- Other lipophilic additives may be employed in order to selectively modify the characteristics of the liposomes. Examples of such other additives include stearylamine, phosphatidic acid, tocopherol, cholesterol and lanolin extracts.
- ingredients which can prevent oxidation of the phospholipids may be added to the organic component.
- examples of such other ingredients include tocopherol, butylated hydroxyanisole, butylated hydroxytoluene, ascorbyl palmitate and ascorbyl oleate.
- Preservatives such as benzoic acid, methyl paraben and propyl paraben may also be added.
- the liposome-formulated forms of the active ingredient of formula (I) or (II), particularly those obtained in the above-referred method of preparing such liposome formulated forms, may be used as such or in combination with any of the aforementioned carriers to prepare ointments, creams, gelees, toilet waters, etc. . . .
- covers e.g. plasters, bandages, dressings, gauze pads and the like, containing an appropriate amount of a composition as referred hereinabove.
- a liquid formulation containing the active agent e.g. with an aseptic aqueous solution, or strewn with a powdery solid composition, or smeared, covered or coated with a semi-liquid composition.
- compositions which comprise an inert carrier, an effective amount of a compound of formula (I) and/or (II), an acid addition salt or a stereochemically isomeric form thereof and an effective amount of a retinoic acid, a derivative thereof or a stereochemically isomeric form thereof.
- retinoic acids and the compounds of formula (I) and/or (II) act in a synergistic manner. Indeed, the combined effect of both substances is greater than the sum of their respective effects when administered separately.
- the above described retinoic acid containing compositions are particularly useful for treating acne or for retarding the effects of aging of the skin and generally improve the quality of the skin, particularly human facial skin.
- a pharmaceutical or cosmetical composition containing retinoic acid or a derivative thereof as the active ingredient in intimate admixture with a dermatologically acceptable carrier can be prepared according to conventional compounding techniques, such as those known for topical application of retinoic acid and its derivatives.
- composition for topical application are in form of a cream, ointment or lotion comprising from 0.005 to 0.5% (particularly from 0.01 to 0.1%) all-trans-retinoic acid, 13-cis-retinoic acid or a derivative thereof and from 0.1 to 5% of a compound of formula (I) and/or (II), a dermatologically acceptable acid addition salt thereof or a stereochemically isomeric form thereof, in a semi-solid or liquid diluent or carrier.
- compositions should preferably be non-irritating and as far as possible they should be odorless and non-toxic.
- the composition usually contain, besides water or an organic solvent, several of certain organic emollients, emulsifiers for the aqueous and/or non aqueous phases of the compositions, wetting agents preservatives and agents that facilitate the penetration and remainence of the active agents in the skin.
- the retinoic acid containing compositions of the invention are applied topically to the area to be treated or protected, at regular intervals, as needed, generally about 7 to about 21 times per week.
- the duration of the treatment will depend upon the nature and severity of the condition to be treated as well as the frequency of application of the composition.
- mice Male Wistar rats weighing 200 ⁇ 210 g were orally treated with vehicle (PEG 200) or with 40 mg/kg of a compound of formula (I). One hour later, the animals were anesthetized with ether and injected intrajugularly with 0.50 ml saline solution containing 20 ⁇ g of all-trans-retinoic acid. Two hours after this injection, rats were killed by decapitation and blood was collected on heparin. Blood samples were centrifuged (1000 g, 15 min) and plasma was recovered to determine the quantity of plasmatic all-trans-retinoic acid. The samples were analyzed by means of HPLC with UV-detection at 350 nm. Qualification was achieved by peak area integration and external standardization.
- mice Male Wistar rats weighing 200 ⁇ 210 g were orally treated with vehicle (PEG 200) or with 40 mg/kg of a compound of formula (I). Two hours after drug administration, the rats were killed by decapitation and blood was collected on heparin. Blood samples were centrifuged (1000 g, 15 min) and plasma was recovered to determine the quantity of plasmatic all-trans-retinoic acid. The samples were analyzed by means of HPLC with UV-detection at 350 nm. Qualification was achieved by peak area integration and external standardization. Under the conditions used, plasma concentrations of the retinoic acid in vehicle-pretreated animals were not detectable ( ⁇ 0.5 ng/ml), whereas compound nos. 1, 2, 7, 13, 21, 22, 27, 28 and 33 enhanced the,recovery of all-trans-retinoic acid from the plasma to a least 1 ng/ml.
- Ovariectomized rats were injected subcutaneously with a sesame oil solution containing 100 ⁇ g of estradiol undecylate (Progynon Depot®, Schering) in a volume of 0.1 ml per 100 g body weight.
- a sesame oil solution containing 100 ⁇ g of estradiol undecylate (Progynon Depot®, Schering) in a volume of 0.1 ml per 100 g body weight.
- the animals were treated intravaginally with 200 ⁇ l of vehicle (PEG 200), all-trans-retinoic acid (1 or 4 ⁇ g) or all-trans-retinoic acid (1 ⁇ g) together with 3 mg of a compound of formula (I).
- Vaginas were immediately dissected and trimmed of fat and connective tissue.
- the third middle of the organ (0.5 cm length) was fixed in liquid nitrogen for histological analysis.
- compositions exemplify typical pharmaceutical and cosmetical compositions in dosage unit form suitable for systemic or topical administration to warm-blooded animals in accordance with the present invention.
- Active ingredient as used throughout these examples relates to a compound of formula (I), a pharmaceutically acceptable acid addition salt or a stereochemically isomeric form thereof.
- the wet powder mixture was sieved, dried and sieved again.
- the whole was mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.
- 75 mg of stearyl alcohol, 2 mg of cetyl alcohol, 20 mg of sorbitan monostearate and 10 mg of isopropyl myristate are introduced into a doublewall jacketed vessel and heated until the mixture has completely molten.
- This mixture is added to a separately prepared mixture of purified water, 200 mg of propylene glycol and 15 mg of polysorbate 60 having a temperature of 70° to 75° C. while using a homogenizer for liquids.
- the resulting emulsion is allowed to cool to below 25° C. while continuously mixing.
- a solution of 20 mg of active ingredient of formula (I) or (II), 1 mg of polysorbate 80 and purified water and a solution of 2 mg of sodium sulfite anhydrous in purified water are next added to the emulsion while continuously mixing.
- the cream (1 g) is homogenized and filled into suitable tubes.
- a mixture of 2 g of active ingredient of formula (I) or (II) microfine, 20 g of phosphatidyl choline, 5 g of cholesterol and 10 g of ethyl alcohol is stirred and heated at 55°-60° C. until complete solution and is added to a solution of 0.2 g of methyl paraben, 0.02 g of propyl paraben, 0.15 g of disodium edetate and 0.3 g of sodium chloride in purified water while homogenizing. 1.5 g of hydroxypropylmethylcellulose in purified water is added ad 100 g and the mixing is continued until swelling is complete.
- a mixture of 10 g of phosphatidyl choline and 1 g of cholesterol in 7.5 g of ethyl alcohol is stirred and heated at 40° C. until complete solution.
- 2 g of active ingredient of formula (I) or (II) microfine is dissolved in purified water by mixing while heating at 40° C.
- the alcoholic solution is added slowly to the aqueous solution while homogenizing during 10 minutes.
- 1.5 g of hydroxypropylmethylcellulose in purified water is added while mixing until swelling is complete.
- the resulting solution is adjusted to pH 5.0 with sodium hydroxide 1N and diluted with the rest of the purified water ad 100 g.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
A method for treating skin disorders in warm-blooded animals, said method comprising administering to said warm-blooded animals an effective amount of an appropriately substituted benzimidazole or benzotriazole which suppresses the metabolism of retinoids. Compositions comprising said compounds and an effective amount of a retinoid.
Description
This application is a divisional of application Ser. No. 07/927,571, filed Aug. 10, 1992, now U.S. Pat. No. 5,342,957, which in turn was a divisional of application Ser. No. 07,434,962, filed Nov. 13, 1989, now U.S. Pat. No. 5,157,046, which in turn was a continuation-in-part of application Ser. No. 07/277,152, filed Nov. 29, 1988, now abandoned.
Retinoids, in particular retinoic acid and its derivatives, are substances which are known to have a broad spectrum of biological activity. More specifically, these substances affect the differentiation, maintenance and proliferation of various cell types. The ability of retinoids, such as, all-trans-retinoic acid, 13-cis-retinoic acid, and their derivatives to modulate differentiation in several cell types, whether they are of epithelial or mesenchymal origin, is extensively studied and reviewed in J. Clin. Chem. Clin. Biochem., 26, 479-488 (1983); Pharmacological Reviews, 36, 935-1005 (1984) and Arch. Dermatol., 117, 160-180 (1981).
It is known that certain retinoids, particularly the retinoic acids, are used topically for treatment of acne as set forth in U.S. Pat. No. 3,729,568. Other known uses of retinoic acid were reviewed in the Journal of American Academy of Dermatology, 4, 505-516 (1981) and the Journal of Medical Chemistry, 25, 1269-1277 (1982) and include, in addition to acne treatment, treatment of senile comedones, nevus comedonicus, linear verrucous nevus, plantar, pseudofolliculitis, keratoacanthoma, solar keratosis of extremities, callosites, keratosis palmaris et plantaris, Darier's disease, ichthyosis, psoriasis, acanthosis nigricans, lichen planus, molluscum contagiosum, reactive perforating collagenosis, melasma, corneal epithelial abrasion, Fox-Fordyce disease, cutaneous metastatic melanoma and keloids or hypertrophic scars.
Retinoids such as, all-trans-retinoic acid, 13-cis-retinoic acid and their derivatives, have also been used in the treatment of carcinomas.
There are however a number of drawbacks associated with the therapeutic applications of retinoids. The topical applications of retinoids on the one hand often cause significant irritation and peeling due to the relatively high concentrations of retinoid which have to be applied. Systemic applicaticns on the other hand are limited by the toxicity and rapid degradation of the administered retinoids.
The compounds of the invention overcome the problems associated with art known retinoid therapy by suppressing the metabolism of endogenous or exogenously administered retinoic acid.
The present invention provides a method of treating mammals suffering from disorders which are characterized by an increased proliferation and/or abnormal differentiation of epithelial cells, by the systemic or topical administration to said mammals of an effective amount of an appropriately substituted benzimidazole or benzotriazole which suppresses the plasma elimination of endogenous or exogenously administered retinoic acid. A number of appropriately substituted benzimidazoles or benzotriazoles are disclosed in our applications U.S. Pat. No 4,859,684 and U.S. Ser. No. 223,486 which corresponds to EP-A 293,978. Particular compounds for use in the present invention are compounds of formula ##STR1## a pharmaceutically acceptable acid addition salt thereof or a stereochemically isomeric form thereof, wherein
R, R1, R2, --A1 ═A2 --A3 ═A4 -- and A in formula (I) have the following meaning --A1 ═A2 --A3 ═A4 -- is a bivalent radical having the formula
--CH═N--CH═CH-- (x);
--CH═N--CH═N-- (y); or
--CH═N--N═CH-- (z);
R is hydrogen or C1-6 alkyl;
R1 is hydrogen; C1-10 alkyl; C3-7 cycloalkyl; Ar1 or Ar1 --C1-6 alkyl;
R2 is hydrogen; C3-7 cycloalkyl; Ar1 ; C1-10 alkyl; C1-6 alkyl substituted with Ar1 or C3-7 cycloalkyl; hydroxy; C1-10 alkyloxy; C1-6 alkyloxy substituted with Ar1 or C3-7 cycloalkyl; C3-6 alkenyloxy optionally substituted with Ar2 ; C3-6 alkynyloxy optionally substituted with Ar2 ; or Ar1 -oxy;
A is a bivalent radical having the formula ##STR2## wherein the carbon atom in the bivalent radical (a) and (b) is connected to --NR2 ;
said R3 being hydrogen; halo; C1-4 alkyl substituted with up to 4 halo atoms; C3-7 cycloalkyl; Ar1 ; quinolinyl; indolinyl; C1-10 alkyl; C1-6 alkyl substituted with Ar1, C3-7 cycloalkyl, quinolinyl, indolinyl or hydroxy; C1-10 alkyloxy; C1-6 alkyloxy substituted with Ar1 or C3-7 cycloalkyl; C2-6 alkenyl optionally substituted with Ar1 ; Ar2 -oxy; C1-6 alkyloxycarbonyl; carboxyl; C1-6 alkylcarbonyl; Ar1 -carbonyl or Ar1 --(CHOH)--;
said X being O or S;
said R4 being hydrogen, C1-6 alkyl or Ar2 --C1-6 alkyl;
wherein Ar1 is phenyl, substituted phenyl, pyridinyl, aminopyridinyl, imidazolyl, thienyl, halothienyl, furanyl, halofuranyl or thiazolyl; and Ar2 is phenyl or substituted phenyl; said substituted phenyl in Ar1 and Ar2 being phenyl substituted with 1, 2 or 3 substituents each independently selected from halo, hydroxy, trifluoromethyl, C1-6 alkyl, C1-6 alkyloxy, cyano, amino, mono- and di(C1-6 alkyl)amino, nitro, carboxyl, formyl and C1-6 alkyloxycarbonyl; and wherein
R, R5, R6, R7 and --A1 ═A2 --A3 ═A4 -- in formula (II) have the following meaning --A1 ═A2 --A3 ═A4 -- is a bivalent radical having the formula
--CH═N--CH═CH-- (x);
--CH═N--CH═N--(y); or
--CH═N--N═CH-- (z);
R is hydrogen or C1-6 alkyl;
R5 is hydrogen; C1-10 alkyl; C3-7 cycloalkyl; Ar3 ; Ar4 --C1-6 alkyl; C2-6 alkenyl or C2-6 alkynyl;
R6 is hydrogen; C1-10 alkyl optionally substituted with Ar3, C3-7 cycloalkyl, hydroxy or C1-6 alkyloxy; Ar3 ; C2-6 alkenyl; C2-6 alkynyl; C3-7 cycloalkyl; bicyclo[2.2.1]heptan-2-yl; 2,3-dihydro-1H-indenyl; 1,2,3,4-tetrahydronaphthalenyl; or a radical of formula OR7,
R7 is hydrogen; C2-6 alkenyl optionally substituted with Ar4 ; C2-6 alkynyl; pyrimidinyl, di(Ar4)methyl; 1-C1-4 alkyl-4-piperidinyl; or C1-10 alkyl optionally substituted with halo, hydroxy, C1-6 alkyloxy, amino, mono- and di(C1-6 alkyl)-amino, trifluoromethyl, carboxyl, C1-6 alkyloxycarbonyl, Ar3, Ar4 --O--, Ar4 --S--, C3-7 cycloalkyl, 2,3-dihydro-1,4-benzodioxinyl, 1H-benzimidazolyl, C1-4 alkyl substituted 1H-benzimidazolyl, (1,1'-biphenyl)-4-yl or with 2,3-dihydro-2-oxo-1H-benzimidazolyl;
R8 is hydrogen, nitro, amino, mono- and di(C1-6 alkyl)amino, halo, C1-6 alkyl, hydroxy or C1-6 alkyloxy;
wherein Ar3 is phenyl, substituted phenyl, naphthalenyl, pyridinyl, aminopyridinyl, imidazolyl, triazolyl, thienyl, halothienyl, furanyl, C1-6 alkylfuranyl, halofuranyl or thiazolyl; Ar4 is phenyl, substituted phenyl or pyridinyl, said substituted phenyl in Ar3 and Ar4 being phenyl substituted with up to 3 substituents each independently selected from halo, hydroxy, hydroxymethyl, trifluoromethyl, C1-6 alkyl, C1-6 alkyloxy, C1-6 alkyloxycarbonyl, carboxyl, formyl, (hydroxyimino)methyl, cyano, amino, mono- and di(C1-6 alkyl)amino and nitro. Preferably said substituted phenyl is phenyl substituted with one or two substituents each independently selected from halo, C1-6 alkyl, C1-6 alkyloxy and trifluoromethyl.
As used in the foregoing definitions the term halo is genetic to fluoro, chloro, bromo and iodo; the term "C1-6 alkyl" is meant to include straight chained and branched saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, 1-methylethyl, 1,1-dimethylethyl, propyl, 2-methylpropyl, butyl, pentyl, hexyl and the like; "C1-10 alkyl" is meant to include C1-6 alkyl radicals, as defined hereinabove, and the higher homologs thereof having from 7 to 10 carbon atoms; the term "C3-7 cycloalkyl" is genetic to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. "C2-6 alkenyl" defines straight chained and branched hydrocarbon radicals containing one double bond having from 2 to 6 carbon atoms such as, for example, ethenyl, 2-propenyl, 3-butenyl, 2-butenyl, 2-pentenyl, 3-pentenyl, 3-methyl-2-butenyl and the like; "C2-6 alkynyl" defines straight chained and branched hydrocarbon radicals containing one triple bond and having from 2 to 6 carbon atoms such as, for example, 2-propynyl, 2-butynyl, 3-butynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl and the like; and when a C2-6 alkenyl or a C2-6 alkynyl is substituted on a heteroatom, then the carbon atom of said C2-6 alkenyl or said C2-6 alkynyl connected to said heteroatom preferably is saturated.
It is to be understood that the ##STR3## both hereinafter refered as the 1H-azol-1-ylmethyl moiety, may be substituted on either the 4, 5, 6 or 7 position of the benzimidazole or benzotriazole heterocyclic ring, preferably on the 5 or 6 position, with the 5 position being preferred.
It is evident that the compounds of formula (I) may also contain in their structure a tautomeric system and consequently these compounds can be present in each of their tautomeric forms.
Particular compounds for use in the method of the present invention are those compounds of formula (I) wherein the 1H-azol-1-ylmethyl moiety is substituted on either the 5 or 6 position of the benzimidazole ring; and/or R is hydrogen; and/or R1 is hydrogen; C1-6 alkyl; C3-7 cycloalkyl; phenyl; substituted phenyl; thienyl or furanyl optionally substituted with halo; and/or R2 is hydrogen; C3-7 cycloalkyl; phenyl; substituted phenyl; pyridinyl; C1-6 alkyl optionally monosubstituted with phenyl, C3-7 cycloalkyl, pyridinyl or thienyl; hydroxyl, C1-6 alkyloxy optionally monosubstituted with phenyl, pyridinyl, thienyl or C3-6 cycloalkyl; C3-6 alkenyloxy optionally monosubstituted with phenyl; or C3-6 alkynyloxy; and/or R3 is hydrogen; C1-4 alkyl substituted with up to 4 halo atoms; C3-7 cycloalkyl; phenyl; substituted phenyl; imidazolyl; thiazolyl; thienyl; furanyl; quinolinyl; pyridinyl optionally substituted with amino, C1-10 alkyl; C1-5 alkyl optionally monosubstituted with phenyl, pyridinyl, imidazolyl, thienyl, indolyl or hydroxyl; C1-4 alkyloxy optionally monosubstituted with phenyl; C2-6 alkenyl optionally monosubstituted with pyridinyl, furanyl, imidazolyl or phenyl; carboxyl; C1-4 alkyloxycarbonyl; phenylcarbonyl; or hydroxy and phenylmethyl; and/or R4 is hydrogen or phenyl C1-4 alkyl.
Other particular compounds for use in the method of the present invention are those compounds of formula (II) wherein the 1H-azol-1-ylmethyl moiety is substituted on either the 5 or 6 position of the benzotriazole ring; and/or R is hydrogen; and/or R5 is hydrogen; C1-6 alkyl; phenyl; substituted phenyl; C3-7 cycloalkyl; thienyl or furanyl optionally substituted with halo; and/or R6 is hydrogen; C1-6 alkyl; C3-6 alkenyl; C3-6 alkynyl; C3-7 cycloalkyl; phenyl; substituted phenyl; bicylo[2.2.1]heptan-2-yl; 2,3-dihydro-1H-indenyl; 1,2,3,4-tetrahydronaphthalenyl; C1-6 alkyl monosubstituted with phenyl, substituted phenyl, naphthalenyl, thienyl, furanyl, C1-4 alkylfuranyl, C3-7 cycloalkyl, hydroxy, C1-4 alkyloxy; or R6 is a radical --OR7 with R7 being hydrogen, C1-6 alkyl, C3-6 alkenyl, phenylC3-6 alkenyl, C3-6 alkynyl, pyrimidinyl, diphenylmethyl, (1-C1-4 alkyl-4-piperidinyl), C1-6 alkyl substituted with halo, hydroxy, amino, mono-or di(C1-6 alkyl)amino, trifluoromethyl, carboxyl, C1-6 alkyloxycarbonyl, phenyl, substituted phenyl, thienyl, furanyl, C1-4 alkylfuranyl, pyridinyl, phenoxy, phenylthio, 2,3-dihydro-1,4-benzodioxinyl, 1H-benzimidazolyl, C1-4 alkyl substituted 1Hbenzimidazolyl, (1,1'-biphenyl)-4-yl or 2,3-dihydro-2-oxo-1H-benzimidazolyl; and/or R8 is hydrogen.
More particular compounds for use in the method of the present invention are those particular compounds of formula (I) wherein R1 is hydrogen, C1-6 alkyl, phenyl, substituted phenyl, thienyl or furanyl; R2 is hydrogen, C1-6 alkyl, or C1-4 alkyl substituted with phenyl; R3 is hydrogen, C1-6 alkyl, phenyl, pyridinyl, C1-6 alkyl, C1-6 alkyl monosubstituted with phenyl or C2-6 alkenyl optionally monosubstituted with furanyl or phenyl; and R4 is hydrogen.
Other more particular compounds of the present invention are those particular compounds of formula (II) wherein R5 is hydrogen, C1-6 alkyl, phenyl, substituted phenyl, thienyl or furanyl; R6 is hydrogen, C1-6 alkyl, C1-6 alkyl substituted with phenyl, or a radical of formula --OR7 with R7 being hydrogen or C1-6 alkyl.
Preferred compounds for use in the method of the present invention are those particular compounds of formula (I) wherein R1 is C1-4 alkyl, phenyl, phenyl substituted with one or two halo, C1-4 alkyl or C1-4 alkyloxy substituents, or thienyl; R2 is hydrogen or C1-4 alkyl; and R3 is hydrogen or C1-4 alkyl.
Other preferred compounds for use in the method of the present invention are those particular compounds of fomula (II) wherein R5 is C1-4 alkyl, phenyl or phenyl substituted with one or two halo, C1-4 alkyl or C1-4 alkyloxy substituents; and R6 is hydrogen or C1-4 alkyl.
More preferred compounds for use in the method of the present invention are those preferred compounds of formula (I) wherein R1 is phenyl or halophenyl, and R2 and R3 are both independently hydrogen or C1-4 alkyl.
Other more preferred compound for use in the method of the present invention are those preferred compounds of formula (II) wherein R5 is phenyl or halophenyl and R6 is hydrogen or C1-4 alkyl.
Most preferred compounds for use in the method of the present invention are 5-[(1H-imidazol-1-yl)phenylmethyl]-1H-benzimidazole, (±)-5-[(1H-imidazol-1-yl)phenylmethyl]-2-methyl-1H-benzimidazole, 5-[(1H-imidazol-1-yl)phenylmethyl]-1-methyl-1H-benzimidazole, 5-[1-(1H-imidazole-1-yl)-2-methylpropyl]-2-methyl-1H-benzimidazole, 5-[(3-chlorophenyl) (1H-imidazol-1-yl)methyl]-1H-benzimidazole or (±)-5-[(1H-imidazol-1-yl)phenylmethyl]-2-methyl-1H-benzimidazole, the pharmaceutically acceptable acid addition salts and possible stereoisomers thereof.
The compounds of formula (I) and (II) can be prepared by N-alkylating an azole of formula (III) or an alkali metal salt thereof with a benzimidazole of formula (IV) or a benzomazole of formula (V). ##STR4## In formula (IV) and (V) W represents an appropriate reactive leaving group such as, for example, halo, e.g. fluoro, chloro, bromo, iodo or a sulfonyloxy group, e.g. 4-methylbenzenesulfonyloxy, benzenesulfonyloxy, 2-naphthalenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy and the like reactive leaving groups.
The above described N-alkylations are conveniently carried out by stimng the reactants in the presence of a suitable solvent such as, for example, an aromatic hydrocarbon, e.g., benzene, methylbenzene, dimethylbenzene, and the like; an ester, e.g. ethyl acetate, γ-butyrolacetone and the like; a ketone, e.g. 2-propanone, 4-methyl-2-penta-none and the like; an ether, e.g., 1,4-dioxane, 1,1'-oxybisethane, tetrahydrofuran and the like; a polar aprotic solvent, e.g., N,N-dimethylformamide, N,N-dimethyl-acetamide, dimethyl sulfoxide, 1-methyl-2-pyrrolidinone, acetonitrile, hexamethyl-phosphor triamide, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone, 1,3-dimethyl-2-imidazolidinone, benzonitrile and the like; and mixtures of such solvents. Somewhat elevated temperatures may be appropriate to enhance the rate of the reaction and in some cases the reaction may even be carried out at the reflux temperature of the reaction mixture. The addition of an appropriate base such as, for example, an alkali or an earth alkaline metal carbonate, hydrogen carbonate, hydroxide, amide or hydride, e.g., sodium hydroxide, potassium hydroxide, potassium carbonate, sodium hydride and the like or an organic base, such as, for example, N,N-dimethyl-4-pyridinamine, pyridine, N,N-diethylethanamine or N-(1-methylethyl)-2-propanamine may be employed to pick up the acid which is liberated during the course of the reaction. In some instances it may be advantageous to use an excess of the azole (Ill) or to convert the azole first into a suitable salt form thereof such as, for example, an alkali or earth alkaline metal salt, by reacting (III) with an appropriate base as defined hereinabove and subsequently using said salt form in the reaction with the alkylating reagents of formulae (IV) or (V). Additionally, it may be advantageous to conduct said N-alkylation reaction under an inert atmosphere such as, for example, oxygen-free argon or nitrogen gas. Said alkylation may also be carried out by applying art-known conditions of phase transfer catalysis reactions.
Compounds of formula (I) and (II) wherein --X1 ═X2 -- is a bivalent radical of formula (x), said compounds being represented by formula (I-x) and (II-x), may also be prepared by reacting a benzimidazole (IV) or benzotriazole (V) with a 1-protected imidazole of formula (III-x) following the N-alkylation procedures described hereinabove for the preparation of compounds of formula (I) or (II) starting from (III) and (IV) and from (III) and (V). ##STR5##
In (III-x) P1 represents a protective group such as, for example, C1-6 alkylcarbonyl, C1-6 alkyloxycarbonyl, arylcarbonyl or a tri(C1-6 alkyl)silyl group. In some instances the reaction of (III-x) with (IV) or (V) first yields a 1-protected imidazolium salt of formula (VI-a) or (VI-b) which may in situ, or if desired, after isolating and further purifying it, be deprotected by stirring it in an aqueous basic solution or acidic solution. ##STR6##
In (VI-a) and (VI-b) W- is an anion arising from an acid such as, for example, hydrochloric acid, hydrobromic acid, methanesulfonic acid, 4-methylbenzenesulfonic acid and the like acids.
Compounds of formula (I) and (II) wherein --X1 ═X2 -- is a bivalent radical of formula (y), said compounds being represented by formula (I-y) and (II-y), can also be prepared by endo-N-alkylation of a triazolamine of formula (III-y) with a benzimidazole (IV) and a benzotriazole (V) and subsequent deamination of the thus prepared triazolium salt, wherein W- is an anion as defined hereinabove. ##STR7##
The endo-N-alkylation reaction of (III-y) with (IV) or (V) is carried out according to similar procedures as described hereinabove for the preparation of a compound of formula (I) starting from (III) and (II). Said deamination reaction is conveniently conducted by reaction with an acidic nitrite solution in the presence of an appropriate reductant, or by reaction with an alkylnitrite such as, for example, 1,1-dimethylethylnitrite or isoamylnitrite and the like. Preferably, said deamination reaction is conducted with an aqueous solution of nitrous acid or of a nitrite salt in a suitable acid in the presence of a reducing agent such as, for example, hypophosphorous acid, formic acid, at a lower temperature.
The compounds of formulae (I) and (II) may also be prepared by reacting an intermediate of formula (VII) or (VIII) with a reagent of formula (IX) such as, for example, a 1,1'-carbonylbis[1H-imidazole]. ##STR8## Said reactions may conveniently be conducted in a suitable solvent such as, for example, an ether, e.g., 1,4-dioxane, tetrahydrofuran; a halogenated hydrocarbon, e.g., di- or trichloromethane; a hydrocarbon, e.g., benzene, methylbenzene; N,N-dimethylformamide, N,N-dimethylacetamide, or mixtures of such solvents. In order to enhance the reaction rate, it may be advantageous to heat the reaction mixture.
The compounds of formula (I) may also be prepared by reacting a ketone or aldehyde of formula (X) or (XI) with an azole (III) in the presence of formic acid or formamides as reducing agents. ##STR9##
The compounds of formula (I) and (II) can alternatively be prepared according to cyclization procedures outlined in the art for the preparation of benzimidazoles from benzenediamines or ortho nitrobenzeneamines, e.g. U.S. Pat. No. 4,859,684, or for the preparation of benzotriazoles starting from appropriate benzenediamines or halonitrobenzene derivatives, e.g. U.S. Ser. No. 223,486, which corresponds to EP-A-293,978.
For example, benzimidazoles of formula (I) can be prepared by cyclizing an appropriately substituted 1,2-benzenediamine with a carboxylic acid or a functional derivative thereof such as, for example the halide, anhydride, amide and ester form thereof in a suitable acidic medium. The above and similar cyclization procedures for making the compounds of formula (I) are outlined in U.S. Pat. No. 4,859,684 which is incorporated herein by reference.
The benzotriazoles of formula (II) wherein R6 is other than OR7, said compounds being represented by formula (II-a) and said radical by R6-a, can generally be prepared from an appropriate aromatic diamine of formula (XII) by reaction with a suitable diazotizing reagent. ##STR10##
Suitable diazotizing reagents are alkylnitrites, e.g. 1,1-dimethylethylnitrite, isoamylnitrite and the like; nitronium tetrafluoroborate, nitrous acid in aqueous solution, or more particularly aqueous solutions of nitrite salts such as, for example, sodium nitrite, potassium nitrite, silver nitrite and the like, in the presence of a mineral and/or organic acid such as, for example, hydrohalic acids, e.g. hydrochloric, hydrobromic and the like acids; perchloric acid, perbromic acid, periodic acid, phosphoric acid, sulfuric acid, nitric acid and the like; carboxylic acids, e.g. formic, acetic, trifluoroacetic, propanoic, benzoic, methanesulfonic and the like acids.
Said reaction can conveniently be conducted by stirring the aromatic diamine of formula (XII) in the presence of a suitable diazotizing reagent as defined hereinabove, at a low temperature, in an aqueous solution, optionally in admixture with organic cosolvents such as, for example, alkanols, e.g. methanol, ethanol and the like.
The compounds of formula (II) wherein R7 is other than hydrogen, said compounds being represented by formula (II-b) and said radical by R7-a, can generally be prepared by O-alkylating a compound of formula (II) wherein R7 is hydrogen, said compounds being represented by formula (II-c), with an appropriate alkylating reagent of formula R7a --W (XIII). ##STR11## In formula (XIII) and hereinafter W represents an appropriate reactive leaving group such as, for example, halo, e.g. chloro, bromo, iodo, or a sulfonyloxy group, e.g. 4-methylbenzenesulfonyloxy, benzenesulfonyloxy, 2-naphthalenesulfonyloxy, methanesulfonyloxy, trifluoromethanesulfonyloxy and the like reactive leaving groups.
Said O-alkylation reaction can conveniently be carried out by mixing the reactants, optionally in a reaction-inert solvent such as, for example, water, an aromatic solvent, e.g. benzene, methylbenzene, dimethylbenzene, chlorobenzene, methoxybenzene and the like; a C1-6 alkanol, e.g. methanol, ethanol, 1-butanol and the like; a ketone, e.g. 2-propanone, 4-methyl-2-pentanone and the like; an ester, e.g. ethyl acetate, γ-butyrolactone and the like; an ether, e.g. 1,1'-oxybisethane, tetrahydrofuran, 1,4-dioxane and the like; a dipolar aprotic solvent, e.g. N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, pyridine, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone, 1,3-dimethyl-2-imidazolidinone, 1,1,3,3-tetramethylurea, 1-methyl-2-pyrrolidinone, nitrobenzene, acetonitrile and the like; or a mixture of such solvents. The addition of an appropriate base such as, for example, an alkali metal or an earth alkaline metal carbonate, hydrogen carbonate, hydroxide, oxide, carboxylate, alkoxide, hydride or amide, e.g. sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, calcium oxide, sodium acetate, sodium methoxide, sodium hydride, sodium amide and the like, or an organic base such as, for example, an amine, e.g. N,N-diethylethanamine, N-(1-methylethyl)-2-propanamine, 4-ethylmorpholine, 1,4-diazabicyclo[2.2.2]octane, pyridine and the like, may optionally be used to pick up the acid which is formed during the course of the reaction. Further, it may be advantageous to convert the compound (II-c) fast into a suitable salt form thereof such as, for example, an alkali or earth alkaline metal salt, by reacting (II-c) with an appropriate base as defined hereinabove and subsequently using said salt form in the reaction with the alkylating reagent of formula (XIII). In some instances the addition of an iodide salt, preferably an alkali metal iodide, or a crown ether, e.g. 1,4,7,10,13,16-hexaoxacyclooctadecane and the like, may be appropriate. Stirring and somewhat elevated temperatures may enhance the rate of the reaction; more in particular the reaction may be conducted at the reflux temperature of the reaction mixture. Additionally, it may be advantageous to conduct said O-alkylation under an inert atmosphere such as, for example, oxygen-free argon or nitrogen gas.
Alternatively, said O-alkylation may be carried out by applying art-known conditions of phase transfer catalysis reactions. Said conditions comprise stirring the reactants, with an appropriate base and optionally under an inert atmosphere as defined hereinabove, in the presence of a suitable phase transfer catalyst such as, for example, a trialkylphenylmethylammonium, tetraalkylammonium, tetraalkylphosphonium, tetraarylphosphonium halide, hydroxide, hydrogen sulfate and the like catalysts. Somewhat elevated temperatures may be appropriate to enhance the rate of the reaction.
The compounds of formula (II-c) in turn can be prepared by cyclizing an appropriately substituted nitrobenzene derivative of formula (XIV) wherein W1 represents a reactive leaving group, with hydrazine, a hydrate thereof or an acid addition salt thereof. ##STR12##
The reactive leaving group W1 represents, groups such as, for example, halo, e.g. chloro, bromo or preferably fluoro, nitro, sulfonyloxy groups, e.g. methanesulfonyloxy, 4-methylbenzenesulfonyloxy and the like, aryloxy, C1-6 alkyloxy or C1-6 alkylthio and the like groups. Said cyclization may be carded out by stirring the reactants in a reaction-inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol, 1-butanol and the like, an aromatic hydrocarbon, e.g. benzene, methylbenzene, dimethylbenzene and the like, or a mixture of such solvents. Somewhat elevated temperatures may be appropriate to enhance the rate of the reaction and preferably the reaction is camm out at the reflux temperature of the reaction mixture.
The compounds of formula (II-a) wherein R7-a is hydrogen, said compounds being represented by formula (II-a-1) may also be prepared from the compounds of formula (II-c) following an-known reduction procedures. ##STR13##
Said reduction may be conducted, for example, by catalytic hydrogenation in the presence of hydrogen and an appropriate hydrogenation catalyst such as, for example, platinum, palladium, platinum(IV) oxide, Raney-nickel and the like, in the presence of a reaction inert organic solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol, butanol and the like.
Said reduction may alternatively be conducted by reducing the starting material with a reducing agent such as, for example, titanium(III)chloride or tin(II)chloride in hydrochloric acid, optionally in the presence of a reaction-inert solvent. Preferably said reduction is camed out by converting the hydroxy group into a, readily leaving group, such as, for example, an ether --O--CH2 --Z wherein Z is an electronwithdrawing group such as cyano, C1-6 alkyloxycarbonyl, aminocarbonyl, mono- or di(C1-6 alkyl)aminocarbonyl and the like, by reaction with an O-alkylating reagent of formula W--CH2 --Z, and stirring the thus obtained ether intermediates in the presence of a base such as, for example, an alkali or earth alkaline metal carbonate, hydrogen carbonate, hydroxide, alkoxide or amide, in an appropriate solvent such as, for example, a dipolar aprotic solvent, e.g. dimethyl sulfoxide, N,N-dimethylformamide and the like solvents, thus eliminating OHC--Z and yielding the desired benzotriazole of formula (II-a-1). Said O-alkylation and elimination can easily be conducted in a one-pot procedure.
The compounds of formula (II) wherein R6 is other than hydrogen and OR7, said compounds being represented by formula (II-a-2) and said radical by R6-b, may be prepared by N-alkylating a compound of formula (II-a-1) with a reagent of formula RR6-b --W, wherein W is a leaving group as defined hereinabove. ##STR14##
Said N-alkylation reaction of (I-a-1) may conveniently be conducted following the procedures described hereinabove for the preparation of the compounds of formula (II-b) from the compounds of formula (II-c).
Alternatively, some compounds of formula (I) and (II) may also be prepared according to procedures analogous to those described in the literature for the preparation of azoles by cyclizing an appropriate starting material.
The compounds of formula (I-x) and (II-x) may also be prepared, for example, by cyclizing an intermediate of formula (XV) or (XVI) and desulfurating the thus obtained intermediate of formula (XVII) or (XVIII). ##STR15##
In formulae (XV) and (XVI) and (XVII) and (XVIII) R9 representing hydrogen or C1-6 alkyl and R14 represents C1-6 alkyl or both R10 taken together form a C2-3 alkanediyl radical.
Said cyclization reaction may conveniently be conducted by stirring and heating an intermediate (XV) or (XVI) in an aqueous acidic solvent, e.g. in aqueous hydrochloric or sulfuric acid. The thus obtained intermediate (XVII) or (XVIII) may be desulfurated following art-known procedures, e.g., by treatment with Raney nickel in the presence of an alkanol, e.g. methanol, ethanol and the like, or by treatment with nitric acid, optionally in the presence of sodium nitrite.
The compounds of formula (I-y) and (II-y) may be prepared from a hydrazine derivative of formula (XIX) or (XX) by reaction with s-triazine following the procedures described in J. Org. Chem., 1956, 1037. ##STR16##
The intermediate hydrazine (XIX) or (XX) and the corresponding intermediate amines may also be convened into azoles, wherein --A1 ═A2 --A3 ═A4 -- is a bivalent radical of formula (x), (y) or (z) following procedures described in U.S. Pat. No. 4,267,179, incorporated herein by reference.
The intermediates and the starting materials in the foregoing are known and may be prepared according to art-known methodologies of preparing said or similar compounds. Intermediates and starting compounds in the preparation are specifically described in U.S. Pat. No. 4,859,684 which is incorporated herein by reference. Intermediates of formula (II) are described in U.S. Ser. No. 223,486 which corresponds to EP-A-293,978. A number of such preparation methods will be described hereinafter in more detail.
The intermediates of formula (XII) can generally be prepared from the corresponding nitro derivatives of formula (XXI) by reaction with an appropriate reducing agent. ##STR17##
Suitable reducing agents for use in the above nitro-to-amine reduction are, for example, hydrogen in the presence of an appropriate hydrogenation catalyst such as, for example, palladium-on-charcoal, platinum-on-charcoal, Raney-nickel and the like catalysts. Said reduction can conveniently be conducted in a reaction inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, 2-propanol and the like, optionally at an elevated pressure and/or temperature. Alternatively said reduction can also be conducted by reacting the nitro derivative (XXI) with a reducing agent such as sodium dithionate in water optionally in admixture with an alkanol, e.g. methanol, ethanol and the like.
The nitro derivative (XXI) in turn can be prepared from an intermediate (XXIII) by reaction with a suitable amine of formula (XXII). ##STR18## Said reaction can conveniently be conducted by stirring and, if desired, heating the reactants in a reaction-inert solvent such as, for example, an alkanol, e.g. methanol, ethanol, propanol, butanol, 1,2-ethanediol and the like, an ether, e.g. 1,1'-oxybisethane, tetrahydrofuran, 1,4-dioxane and the like a dipolar aprotic solvent, e.g. N,N-dimethylformamide, dimethylsulfoxide, acetonitrile and the like, a halogenated solvent, e.g. trichloromethane, tetrachloromethane and the like; or a mixture of such solvents. The addition of a suitable base to pick up the acid which is liberated during the reaction may be appropriate; particularly convenient however is the use of an excess of the amine of formula (XXII).
The intermediates of formula (XXIII) can conveniently be prepared by nitration of a benzene derivative of formula (XXIV) following art-known nitration procedures. ##STR19## Said nitration reaction is conveniently conducted by treating the intermediate (XXIV) with nitric acid or the nitrate salt of (XXIV), in the presence concentrated sulfuric acid at low or ambient temperature. In some instances it may be appropriate to heat the reactants. Said nitration can be conducted without an additional solvent or may also be performed in a suitable solvent such as, for example, a halogenated hydrocarbon, e.g. trichloromethane, tetrachloromethane and the like, a carboxylic acid or a derivative thereof, e.g. acetic acid, acetic anhydride and the like solvents.
The intermediate hydrazines (XIX) or (XX) and amines may conveniently be prepared from a ketone of formula (X) or (XI) or by reaction with either an acid addition salt thereof, or with hydroxylamine or hydrazine or an acid addition salt or a solvate thereof, and reducing the thus obtained oxime or hydrazone, for example, by catalytic hydrogenation in the presence of hydrogen and an appropriate hydrogenation catalyst, e.g. Raney nickel and the like.
The intermediates of formula (XV) and (XVI) can be prepared from the corresponding amines of formula (XXV) and (XXVI) by reaction with a reagent of formula (XXVII) and optionally S-alkylating the thus obtained thiourea with a C1-6 alkylhalide. ##STR20##
From formulae (I) and (II) it is evident that the compounds of this invention may have several asymmetric carbon atoms in their structure. Each of these chiral centers may be present in a R- and a S-configuration, this R- and S-notation being in correspondence with the rules described by R. S. Cahn, C. Ingold and V. Prelog in Angew. Chem., Int. Ed. Engl., 5, 385,511 (1966).
Pure stereochemically isomeric forms of the compounds of formulae (I) and (II) may be obtained by the application of art-known procedures. Diastereoisomers may be separated by physical separation methods such as selective cyrstallization and chromatographic techniques, e.g., counter current distribution, and enantiomers may be separated from each other by the selective crystallization of their diastereomeric salts with optically active acids.
Pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically.
Stereochemically isomeric forms of the compounds of formulae (I) and (II) are naturally intended to be embraced within the scope of the invention.
An additional feature of the invention comprises the fact that those compounds of formula (I) wherein --A1 ═A2 --A3 ═A4 -- is a bivalent radical of formula (y) or (z) or wherein --A1 ═A2 --A3 ═A4 -- is a bivalent radical of formula (x) and R is C1-6 alkyl, the pharmaceutically acceptable acid addition salts thereof and the stereochemically isomeric forms thereof are novel compounds.
Particular novel compounds are those novel compounds wherein --A1 ═A2 --A3 ═A4 -- is a bivalent radical of formula (y) or (z).
Preferred novel compounds within the invention are those particular novel compounds wherein --A1 ═A2 --A3 ═A4 -- is a bivalent radical of formula (y); and/or R1 is phenyl or halophenyl; and/or R2 is hydrogen or C1-4 alkyl; and/or R3 is hydrogen or C1-4 alkyl.
Some of the compounds of formula (I) and (II) which can be used as active ingredient in the compositions and methods of treatment according to the present invention are listed in the following tables with the purpose of illustrating the invention and not to limit it thereto.
TABLE 1 __________________________________________________________________________ ##STR21## Comp No. p* A.sup.1 A.sup.2 A.sup.3 A.sup.4 R.sup.1 R.sup.2 R.sup.3 mp. __________________________________________________________________________ (°C.)/salt 1 5 CHCHNCH C.sub.6 H.sub.5 H H 186.2 2 5 CHCHNCH C.sub.6 H.sub.5 H CH.sub.3 118.4 3 5 CHCHNCH 2-thienyl- H H 101.0 4 5 CHCHNCH 2-thienyl- H CH.sub.3 108.9 5 5 CHCHNCH 4-FC.sub.6 H.sub.4 H CH.sub. 3 110.6 6 5 CHCHNCH 2,4-(Cl).sub.2 C.sub.6 H.sub.3 H CH.sub.3 138.4 7 5 CHCHNCH 3-ClC.sub.6 H.sub.4 H CH.sub.3 113.3 8 5 CHCHNCH 3-CH.sub.3 C.sub.6 H.sub.4 H H 104.8 9 5 CHCHNCH C.sub.6 H.sub.5 H 2-pyridyl- 123.3 10 5 CHCHNCH c.C.sub.3 H.sub.5 H H 73.5 11 5 CHCHNCH C.sub.6 H.sub.5 H 3-pyridiyl- 133.1 12 6 NCHNCH H OH 3-pyridiyl- 219.3 13 5 CHCHNCH C.sub.6 H.sub.5 H C.sub.6 H.sub.5 134.5 14 6 NCHNCH H OCH.sub.3 3-pyridiyl- 141.5 15 5 NCHNCH H H CH.sub.3 241.0/2HCl 16 5 NCHNCH H H H 184.4 17 5 NCHNCH H H C.sub.6 H.sub.5 239.7 18 5 NCHNCH H H 3-pyridiyl- 222.5 19 5 CHCHNCH C.sub.6 H.sub.5 H C.sub.6 H.sub.5 CH.sub.2 189.9 20 5 CHCHNCH C.sub.4 H.sub.9 H CH.sub.3 -- 21 5 CHCHNCH C.sub.6 H.sub.5 CH.sub.3 H 138.7 22 5 CHCHNCH i-C.sub.3 H.sub.7 H CH.sub.3 214.8/2HCl/H.sub.2 O 23 5 CHCHNCH C.sub.6 H.sub.5 H ##STR22## 134.7 (E) 24 5 CHCHNCH C.sub.3 H.sub.7 H CH.sub.3 174.2/1.5(COOH).sub.2 1 25 5 CHCHNCH C.sub.6 H.sub.5 H ##STR23## 140.6 (E) 26 5 CHCHNCH 2-furanyl- H H 150.9 27 5 CHCHNCH C.sub.6 H.sub.5 H CH.sub.3 77.2/H.sub.2 O/** 28 5 CHCHNCH 3-ClC.sub.6 H.sub.4 H H 200.2/HCl 29 5 CHCHNCH 3-ClC.sub.6 H.sub.4 CH.sub.3 H 131.2/1/2H.sub.2 O 30 5 CHCHNCH 3-ClC.sub.6 H.sub.4 C.sub.6 H.sub.5 CH.sub.2 H 59.6/1/2EtOH 31 5 NCHNCH 3-ClC.sub.6 H.sub.4 H CH.sub.3 205.4/2(COOH).sub.2 32 5 NCHNCH 3-ClC.sub.6 H.sub.4 H H 210.0 33 5 CHCHNCH C.sub.6 H.sub.5 H CH.sub.3 128.5/H.sub.2 __________________________________________________________________________ O *:p indicates the position of the 1.sub.-- Hazol-1-ylmethylmoiety on the benzimidazole ring ** = [α].sub.D = -29.57° (c = 0.5% in methanol)
TABLE 2 __________________________________________________________________________ ##STR24## Comp. No. A.sup.1 A.sup.2 A.sup.3 A.sup.4 p* R.sup.5 R.sup.6 mp. (°C.)/salt __________________________________________________________________________ 34 CHCHNCH 5 C.sub.6 H.sub.5 CH.sub.3 111.9/HNO.sub.3 35 CHCHNCH 5 C.sub.6 H.sub.5 H 178.8 36 CHCHNCH 6 C.sub.6 H.sub.5 CH.sub.3 102.7 37 NCHNCH 5 C.sub.6 H.sub.5 H 182.7 38 CHCHNCH 6 4-ClC.sub.6 H.sub.4 CH.sub.3 151.5/HCl/H.sub.2 O 39 NCHNCH 6 4-ClC.sub.6 H.sub.4 CH.sub.3 178.9 __________________________________________________________________________ *p indicates the position of the 1.sub.-- H-azol-1-ylmethyl moiety on the benzotriazole ring.
The use of the compounds of formula (I) and (II), their pharmaceutically acceptable acid addition salts and their possible stereochemically isomeric forms in the method of the present invention is based on their useful property to delay the metabolism of retinoids, such as, all-trans-retinoic acid, 13-cis-retinoic acid and their derivatives. The latter results in more sustained/higher tissue concentrations of retinoids and improved control of differentiation and growth of various cell types. Said property to delay the metabolism of retinoids can easily be evidenced in various in vivo experiments. A particular test procedure is described hereinafter as the "Metabolism of endogenous or exogenously administered all-trans-retinoic acid"-test. As such, the compounds of formula (I) and (II) can be used to control the rate of growth and differentiation of normal, preneoplastic and neoplastic epithelial cells. The ability of retinoids, such as, 13-cis-retinoic acid, all-trans-retinoic acid and their derivatives to modulate differentiation and proliferation in several cell types is extensively studied and reviewed in J. Clin. Chem. Clin, Biochem., 26, 479-488 (1983); Pharmacological Reviews 36, 935-1005,(1984),Arch. Dermatol. 117, 160-180; (1981) and Journal of Medicinal Chemistry 25, 1269-1277, (1982).
The compounds of formulae (I) and (II), their pharmaceutically acceptable acid addition salts and their possible stereochemically isomeric forms are therefore useful in a method of treating disorders which are characterized by an increased proliferation and/or abnormal differentiation of epithelial cells. In particular the compounds of the invention can be used for treatment of carcinoma, which is essentially a derailment of cellular differentiation occurring in epithelial tissues. The compounds of the invention do not only exhibit an anticarcinogenic effect on estrogen or androgen dependent carcinoma cells but also show an unexpected effect on cells of which the growth and differentiation is not substantially mediated by or insensitive to the actions of androgens or estrogens, in particular on cells of which the growth and differentiation is sensitive to the actions of retinoids. Other uses include the ability to cure and/or reduce a variety of disorders of keratinization such as, for example, acne, psoriasis, lameliar ichthyosis, plantar warts, callosites, acanthosis nigricans, lechen planus, molluscum, melasma, corneal epithelial abrasion, geograpic tongue, Fox-Fordyce disease, cutaneous metasiatic melanoma and heloids, epidermolytic hyperkeratosis, Darier's disease, pityriasis rubra pilaris, congenital icthyosiform erythroderma, hyperkeratosis palmaris et plantaris, and similar disordes.
The anti-tumor activity, especially in retinoic acid sensitive tumors, may be demonstrated in several retinoic acid-sensitive cell lines and solid tumors such as, for example, in Ta3-Ha induced mamma tumors in female mice.
Those of skill in treating disorders which are characterized by an excessive proliferation and/or abnormal differentiation of tissues could determine the effective amount from the test results presented hereinafter. In general it is contemplated than an effective amount would be from 0.001 mg/kg to 50 mg/kg body weight and more preferably from 0.01 mg/kg to 10 mg/kg body weight.
The compounds of formulae (I) and (II) used the method of the invention are most preferably applied in the form of appropriate compositions. As appropriate compositions there may be cited all compositions usually employed for systemically or topically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in acid-addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which career may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represents the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large pan, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be convened, shortly before use, to liquid form preparations. In the compositons suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin.
As appropriate compositions for topical application there may be cited all compositions usually employed for topically administering drugs, e.g., creams, gellies, dressings, shampoos, tinctures, pastes, ointments, salves, powders, liquid or semi-liquid formulation and the like. Application of said compositions may be by aerosol e.g. with a propellent such as nitrogen carbon dioxide, a freon, or without a propellent such as a pump spray, drops, lotions, or a semisolid such as a thickened composition which can be applied by a swab. In particular compositions, semisold compositions such as salves, creams, pastes, gellies, ointments and the like will conveniently be used.
It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discreate units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powders packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.
Other such compositions are preparations of the cosmetic type, such as toilet waters, packs, lotions, skin milks or milky lotions. Said preparations contain, besides the active ingredient of formula (I) or (II), components usually employed in such preparations. Examples of such components are oils, fats, waxes, surfactants, humechants, thickening agents, antioxidants, viscosity stabilizers, chelating agents, buffers, preservatives, perfumes, dyestuffs, lower alkanols, and the like. If desired, further ingredients may be incorporated in the compositions, e.g. antiinflammatory agents, antibacterials, antifungals, disinfectants, vitamins, sunscreens, antibiotics, or other anti-acne agents.
Examples of oils comprise fats and oils such as olive oil and hydrogenated oils; waxes such as beeswax and lanolin; hydrocarbons such as liquid paraffin, ceresin, and squalane; fatty acids such as stearic acid and oleic acid; alcohols such as cetyl alcohol, stearyl alcohol, lanolin alcohol, and hexadecanol: and esters such as isopropyl myristate, isopropyl palmitate and butyl stearate. As examples of surfactants there may be cited anionic surfactants such as sodium stearate, sodium cetylsulfate, polyoxyethylene laurylether phosphate, sodium N-acyl glutamate; cationic surfactants such as stearyldimethylbenzylammonium chloride and stearyltrimethylammonium chloride; ampholytic surfactants such as alkylaminoethylglycine hydrochloride solutions and lecithin; and nonionic surfactants such as glycerin monostearate, sorbitan monostearate, sucrose fatty acid esters, propylene glycol monostearate, polyoxyethylene oleylether, polyethylene glycol monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene coconut fatty acid monoethanolamide, polyoxyethylene polyoxypropylene glycol (e.g. the materials sold under the trademark "Pluronic"), polyoxyethylene castor oil, and polyoxyethylene lanolin. Examples of humectants include glycerin, 1,3-butylene glycol, and propylene glycol; examples of lower alcohols include ethanol and isopropanol; examples of thickening agents include xanthan gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyethylene glycol and sodium carboxymethyl cellulose; examples of antioxidants comprise butylated hydroxytoluene, butylated hydroxyanisole, propyl gallate, citric acid and ethoxyquin; examples of chelating agents include disodium edetate and ethanehydroxy diphosphate; examples of buffers comprise citric acid, sodium citrate, boric acid, borax, and disodium hydrogen phosphate; and examples of preservatives are methyl parahydroxybenzoate, ethyl parahydroxybenzoate, dehydroacetic acid, salicylic acid and benzoic acid.
For preparing ointments, creams, toilet waters, skin milks, and the like, typically from 0.01 to 10% in particular from 0.1 to 5% and more in particular from 0.2 to 2.5% of the active ingredient of formula (I) or (II) will be incorporated in said compositions. In ointments or creams, the carrier for example consists of 1 to 20%, in particular 5 to 15% of a humectant, 0.1 to 10% in particular from 0.5 to 5% of a thickener and water; or said carrier may consist of 70 to 99%, in particular 20 to 95% of a surfactant, and 0 to 20%, in particular 2.5 to 15% of a fat; or 80 to 99.9% in particular 90 to 99% of a thickener: or 5 to 15% of a surfactant, 2-15% of a humectant, 0 to 80% of an oil, very small (<2%) amounts of preservative, colouring agent and/or perfume, and water. In a toilet water, the carrier for example consists of 2 to 10% of a lower alcohol, 0.1 to 10% or in particular 0.5 to 1% of a surfactant, 1 to 20%, in particular 3 to 7% of a humectant, 0 to 5% of a buffer, water and small amounts (<2%) of preservative, dyestuff and/or perfume. In a skin milk, the carrier typically consists of 10-50% of oil, 1 to 10% of surfactant, 50-80% of water and 0 to 3% of preservative and/or perfume. In the aforementioned preparations, all % symbols refer to weight by weight percentage. The humectant, surfactant, oil, etc. . . . referred to in said preparations may be any such component used in the cosmetic arts but preferably will be one or more of the components mentioned hereinabove. Further, when in the above compositions one or more of the components make up the major part of the composition, the other ingredients can evidently be not present at their indicated maximum concentration and therefore will make up the remainder of the composition.
Particular compositions for use in the method of the present invention are those wherein the active ingredient of formula (I) or (II) is formulated in liposome-containing compositions. Liposomes are artificial vesicles formed by amphiphatic molecules such as polar lipids, for example, phosphatidyl cholines, ethanolamines and serines, sphingomyelins, cardiolipins, plasmalogens, phosphatidic acids and cerebiosides. Liposomes are formed when suitable amphiphathic molecules are allowed to swell in water or aqueous solutions to form liquid crystals usually of multilayer structure comprised of many bilayers separated from each other by aqueous material (also referred to as coarse liposomes). Another type of liposome known to be consisting of a single bilayer encapsulating aqueous material is referred to as a unilamellar vesicle. If water-soluble materials are included in the aqueous phase during the swelling of the lipids they become entrapped in the aqueous layer between the lipid bilayers.
Water-soluble active ingredients such as, for example, most of the salt forms of the compound of formula (I) or (II) are encapsulated in the aqueous spaces between the molecular layers. The lipid soluble active ingredient of formula (I) or (II) is predominantly incorporated into the lipid layers, although polar head groups may protrude from the layer into the aqueous space. The encapsulation of these compounds can be achieved by a number of methods. The method most commonly used involves casting a thin film of phospholipid onto the walls of a flask by evaporation from an organic solvent. When this film is dispersed in a suitable aqueous medium, multilamellar liposomes are formed. Upon suitable sonication, the coarse liposomes form smaller similarly closed vesicles.
Water-soluble active ingredients are usually incorporated by dispersing the cast film with an aqueous solution of the compound. The unencapsulated compound is then removed by centrifugation, chromatography, dialysis or other art-known suitable procedures. The lipid-soluble active ingredient is usually incorporated by dissolving it in the organic solvent with the phospholipid prior to casting the film. If the solubility of the material in the lipid phase is not exceeded or the amount present is not in excess of that which can be bound to the lipid, liposomes prepared by the above method usually contain most of the material bound in the lipid bilayers; separation of the liposomes from unencapsulated material is not required.
A particularly convenient method for preparing liposome formulated forms of the active ingredient of formula (I) or (II) is the method described in EP-A-253,619, incorporated herein by reference. In this method, single bilayered liposomes containing encapsulated active ingredients are prepared by dissolving the lipid component in an organic medium, injecting the organic solution of the lipid component under pressure into an aqueous component while simultaneously mixing the organic and aqueous components with a high speed homogenizer or mixing means, whereupon the liposomes are formed spontaneously.
The single bilayered liposomes containing the encapsulated active ingredient of formula (I) or (II) can be employed directly or they can be employed in a suitable pharmaceutically acceptable carrier for topical administration. The viscosity of the liposomes can be increased by the addition of one or more suitable thickening agents such as, for example xanthan gum, hydroxypropyl cellulose, hydroxypropyl methylcellulose and mixtures thereof. The aqueous component may consist of water alone or it may contain electrolytes, buffered systems and other ingredients, such as, for example, preservatives. Suitable electrolytes which can be employed include metal salts such as alkali metal and alkaline earth metal salts. The preferred metal salts are calcium chloride, sodium chloride and potassium chloride. The concentration of the electrolyte may vary from zero to 260 mM, preferably from 5 mM to 160 mM. The aqueous component is placed in a suitable vessel which can be adapted to effect homogenization by effecting great turbulence during the injection of the organic component. Homogenization of the two components can be accomplished within the vessel, or, alternatively, the aqueous and organic components may be injected separately into a mixing means which is located outside the vessel. In the latter case, the liposomes are formed in the mixing means and then transferred to another vessel for collection purpose.
The organic component consists of a suitable non-toxic, pharmaceutically acceptable solvent such as, for example ethanol, glycerol, propylene glycol and polyethylene glycol, and a suitable phospholipid which is soluble in the solvent. Suitable phospholipids which can be employed include lecithin, phosphatidylcholine, phosphatidylethanol-amine, phosphatydylserine, phosphatidylinositol, lysophosphatidylcholine and phospha-tidyl glycerol, for example. Other lipophilic additives may be employed in order to selectively modify the characteristics of the liposomes. Examples of such other additives include stearylamine, phosphatidic acid, tocopherol, cholesterol and lanolin extracts.
It may be advantageous to use micronized forms of the active ingredient of formula (I) or (II), i.e., material having an average particle size of less than 10 microns, as the high surface area will facilitate the dissolution of the liposomal components.
In addition, other ingredients which can prevent oxidation of the phospholipids may be added to the organic component. Examples of such other ingredients include tocopherol, butylated hydroxyanisole, butylated hydroxytoluene, ascorbyl palmitate and ascorbyl oleate. Preservatives such as benzoic acid, methyl paraben and propyl paraben may also be added.
The liposome-formulated forms of the active ingredient of formula (I) or (II), particularly those obtained in the above-referred method of preparing such liposome formulated forms, may be used as such or in combination with any of the aforementioned carriers to prepare ointments, creams, gelees, toilet waters, etc. . . .
Apart from the above-described compositions, use may be made of covers, e.g. plasters, bandages, dressings, gauze pads and the like, containing an appropriate amount of a composition as referred hereinabove. In some cases use may be made of plasters, bandages, dressings, gauze pads and the like which have been impregnated or sprinkled with a liquid formulation containing the active agent, e.g. with an aseptic aqueous solution, or strewn with a powdery solid composition, or smeared, covered or coated with a semi-liquid composition.
In a further aspect of the invention there are provided particular pharmaceutical or cosmetical compositions which comprise an inert carrier, an effective amount of a compound of formula (I) and/or (II), an acid addition salt or a stereochemically isomeric form thereof and an effective amount of a retinoic acid, a derivative thereof or a stereochemically isomeric form thereof.
It can be demonstrated that the retinoic acids and the compounds of formula (I) and/or (II) act in a synergistic manner. Indeed, the combined effect of both substances is greater than the sum of their respective effects when administered separately. As evidenced by the data obtained in the "vaginal keratinization"-test described hereinafter. The above described retinoic acid containing compositions are particularly useful for treating acne or for retarding the effects of aging of the skin and generally improve the quality of the skin, particularly human facial skin. A pharmaceutical or cosmetical composition containing retinoic acid or a derivative thereof as the active ingredient in intimate admixture with a dermatologically acceptable carrier can be prepared according to conventional compounding techniques, such as those known for topical application of retinoic acid and its derivatives. Conventional pharmaceutical compounding techniques for topical application of retinoic acid are described for example in, U.S. Pat. Nos. 3,906,108 and 4,247,547, which are incorporated herein by reference. Preferred composition for topical application are in form of a cream, ointment or lotion comprising from 0.005 to 0.5% (particularly from 0.01 to 0.1%) all-trans-retinoic acid, 13-cis-retinoic acid or a derivative thereof and from 0.1 to 5% of a compound of formula (I) and/or (II), a dermatologically acceptable acid addition salt thereof or a stereochemically isomeric form thereof, in a semi-solid or liquid diluent or carrier.
These preferred composition should preferably be non-irritating and as far as possible they should be odorless and non-toxic. For convenience in applying to the skin, the composition usually contain, besides water or an organic solvent, several of certain organic emollients, emulsifiers for the aqueous and/or non aqueous phases of the compositions, wetting agents preservatives and agents that facilitate the penetration and remainence of the active agents in the skin.
In use, the retinoic acid containing compositions of the invention are applied topically to the area to be treated or protected, at regular intervals, as needed, generally about 7 to about 21 times per week. The duration of the treatment will depend upon the nature and severity of the condition to be treated as well as the frequency of application of the composition.
The following examples are intended to illustrate the scope of the present invention in all its aspects, and not to limit it thereto.
Experimental part
A. Preparation of the compounds
A mixture of 29.4 parts of 5-[chloro(3-chlorophenyl)methyl]-2-methyl-1H-benzimidazole monohydrochloride, 18.6 parts of 1H-1,2,3-triazole and 240 parts of acetonitrile was stirred for 3 hours at reflux temperature. After evaporation to dry, the residue was taken up in water and treated with potassium carbonate. The product was extracted three times with 39 parts of dichloromethane. The combined extracts were dried, filtered and evaporated to dry. The residue was purified by column chromatography over silica gel using a mixture of dichloromethane and methanol (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was converted into the ethanedioate salt in ethanol. The salt was filtered off and recrystallized from a mixture of ethanol and 2-propanone. The product was filtered off and dried, yielding 6.3 parts (14.0%) of 5-[(3-chlorophenyl)(1H-1,2,3-triazol-1-yl)methyl]-2-methyl-1H-benzimidazole ethanedioate(1:2); mp. 205.4° C. (comp.31). EXAMPLE 2
A mixture of 5.6 parts of 1-methyl-α-phenyl-1H-benzimidazole-5-methanol, 4.05 parts of 1,1'-carbonylbis[1H-imidazole] and 54 parts tetrahydrofuran was stirred for 4 hours at reflux temperature. The tetrahydrofuran layer was evaporated and water was added to the residue. The decanted oil was dissolved in dichloromethane. The organic layer was dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane, methanol and methanol, saturated with ammonia, (90:5:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was further purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (93:7 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was washed with 2,2'-oxybispropane and dried, yielding 2.9 parts (42.9%) of 5-[(1H-imidazol-1-yl)phenylmethyl]-1-methyl-1H-benzimidazole; mp. 138.7° C. (comp. 21).
A mixture of 6.2 parts of 4-[1-(1H-imidazol-1-yl)-2-methylpropyl]-1,2-benzenediamine, 6.5 parts of ethyl ethanimidate hydrochloride and 80 parts of ethanol was stirred for 3 hours at reflux temperature. After evaporation to dry, the residue was taken up in water and sodium carbonate. The product was extracted three times with 120 parts of trichloromethane. The combined extracts were dried, filtered and evaporated. The residue was purified by column chromatography over silica gel using a mixture of trichloromethane and methanol (95:5 by volume) as eluent. The pure fractions were collected and the eluent was evaporated. The residue was convened into the hydrochloride salt in a mixture of 2-propanone and ethanol. The salt was filtered off and crystallized from a mixture of ethanol and 2-propanone. The product was filtered off and dried, yielding 4 parts (44% ) of 5-[1-(1H-imidazol-1yl)-2-methylpropyl]-2-methyl-1H-benzimidazole dihydrochloride.monohydrate; mp. 214.8° C. (comp. 22).
To a stirred and cooled (5° C.) solution of 5.2 parts of 4-[(1H-imidazol-1-yl)phenylmethyl]-1,2-benzenediamine in 4.8 parts of acetic acid and 20 parts of water was added a solution of 1.38 parts of sodium nitrite in 10 parts of water. The whole was stirred for 1 hour at room temperature. The reaction mixture was treated with a sodium hydrogen carbonate solution and the product was extracted with dichloromethane. The extract was dried, filtered and evaporated. The residue was crystallized from 64 parts of ethyl acetate. The product was filtered off and dried, yielding 4.7 parts (85.3%) of 5-[(1H-imidazol-1-yl)phenylmethyl]-1H-benzotriazole; mp. 178.8° C. (comp. 35).
All other compounds listed in Tables I and II can be obtained by analogous methods of preparation.
B. Pharmaceutical Examples
Metabolism of exogenously administered all-trans-retinoic acid
Male Wistar rats weighing 200˜210 g were orally treated with vehicle (PEG 200) or with 40 mg/kg of a compound of formula (I). One hour later, the animals were anesthetized with ether and injected intrajugularly with 0.50 ml saline solution containing 20 μg of all-trans-retinoic acid. Two hours after this injection, rats were killed by decapitation and blood was collected on heparin. Blood samples were centrifuged (1000 g, 15 min) and plasma was recovered to determine the quantity of plasmatic all-trans-retinoic acid. The samples were analyzed by means of HPLC with UV-detection at 350 nm. Qualification was achieved by peak area integration and external standardization. Under the conditions used, plasma concentrations of the retinoic acid in vehicle-pretreated animals were not detectable (<0.5 ng/ml), whereas compound nos. 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 19, 20, 21, 22, 24, 28, 29, 30, 33 and 34 enhanced the recovery of all-trans-retinoic acid from the plasma to a least 8 ng/ml after dosing with 40 mg/kg.
Metabolism of endogenous all-trans-retinoic acid
Male Wistar rats weighing 200˜210 g were orally treated with vehicle (PEG 200) or with 40 mg/kg of a compound of formula (I). Two hours after drug administration, the rats were killed by decapitation and blood was collected on heparin. Blood samples were centrifuged (1000 g, 15 min) and plasma was recovered to determine the quantity of plasmatic all-trans-retinoic acid. The samples were analyzed by means of HPLC with UV-detection at 350 nm. Qualification was achieved by peak area integration and external standardization. Under the conditions used, plasma concentrations of the retinoic acid in vehicle-pretreated animals were not detectable (<0.5 ng/ml), whereas compound nos. 1, 2, 7, 13, 21, 22, 27, 28 and 33 enhanced the,recovery of all-trans-retinoic acid from the plasma to a least 1 ng/ml.
Vaginal keratinization.
Ovariectomized rats were injected subcutaneously with a sesame oil solution containing 100 μg of estradiol undecylate (Progynon Depot®, Schering) in a volume of 0.1 ml per 100 g body weight. One and two days later, the animals were treated intravaginally with 200 μl of vehicle (PEG 200), all-trans-retinoic acid (1 or 4 μg) or all-trans-retinoic acid (1 μg) together with 3 mg of a compound of formula (I). One day after the second topical treatment, the animals were sacrificed. Vaginas were immediately dissected and trimmed of fat and connective tissue. The third middle of the organ (0.5 cm length) was fixed in liquid nitrogen for histological analysis. Hereto, a series of 10 μm cross-section were cut at -25° C., mounted onto gelatin-coated glass slides and stained with hematoxylin and eosin. The slides were examined under light microscopy at 100-400×magnification. The condition of the vaginal mucosa was scored (keratinization score) as
0: absence of keratinized squamae attached to the epithelial cells.
+: presence of keratinized squamae partially covering the epithelial cells.
++: presence of keratinized squamae covering the entire vaginal epithellium.
Results
______________________________________ score ______________________________________ vehicle (PEG 200) ++ 4 μg retinoic acid 0 1 μg retinoic acid ++ 1 μg retinoic acid + 3 mg comp. No. 21 0 ______________________________________
C) Composition Examples
The following formulations exemplify typical pharmaceutical and cosmetical compositions in dosage unit form suitable for systemic or topical administration to warm-blooded animals in accordance with the present invention.
"Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I), a pharmaceutically acceptable acid addition salt or a stereochemically isomeric form thereof.
500 g of the A.I. was dissolved in 0.5 l of 2-hydroxypropanoic acid and 1.5 l of the polyethylene glycol at 60°≈80° C. After cooling to 30°40° C. there were added 35 l of polyethylene glycol and the mixture was stirred well. Then there was added a solution of g of sodium saccharin in 2.5 l of purified water and while stirring there were added 2.5 l of cocoa flavor and polyethylene glycol q.s. to a volume of 50 l, providing an oral drop solution comprising 10 mg of the A.I. (per ml). The resulting solution was filled into suitable containers.
9 g of methyl 4-hydroxybenzoate and 1 part of propyl 4-hydroxy-benzoate were dissolved in 4 l of boiling purified water. In 3 l of this solution were dissolved first 10 g of 2,3-dihydroxybutanedioic acid and thereafter 20 g of the A.I. The latter solution was combined with the remaining pan of the former solution and 12 l 1,2,3-propane-triol and 3 l of sorbitol 70% solution were added thereto. 40 g of sodium saccharin were dissolved in 0.5 l of water and 2 ml of raspberry and 2 ml of gooseberry essence were added. The latter solution was combined with the former, water was added q.s. to a volume of 20 l providing an oral solution comprising 5 mg of the A.I. per teaspoonful (5 ml). The resulting solution was filled in suitable containers.
20 g of the A.I., 6 g sodium lauryl sulfate, 56 g starch, 56 g lactose, 0.8 g colloidal silicon dioxide, and 1.2 g magnesium stearate were vigorously stirred together. The resulting mixture was subsequently filled into 1000 suitable hardened gelatin capsules, each comprising 20 mg of the A.I.
A mixture of 100 g of the A.I., 570 g lactose and 200 g starch was mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinylpyrrolidone (Kollidon-K 90®) in about 200 ml of water. The wet powder mixture was sieved, dried and sieved again. Then there was added 100 g microcrystalline cellulose (Avicel®) and 15 g hydrogenated vegetable oil (Sterotex®). The whole was mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.
Coating
To a solution of 10 g methyl cellulose (Methocel 60 HG®) in-75 ml of denaturated ethanol there was added a solution of 5 g of ethyl cellulose (Ethocel 22 cps®) in 150 ml of dichloromethane. Then there were added 75 ml of dichloromethane and 2.5 ml 1,2,3-propane-triol. 10 g of polyethylene glycol was molten and dissolved in 75 ml of dichloromethane. The latter solution was added to the former and then there were added 2.5 g of magnesium octadecanoate, 5 g of polyvinylpyrrolidone and 30 ml of concentrated colour suspension (Opaspray K-1-2109®) and the whole was homogenated. The tablet cores were coated with the thus obtained mixture in a coating apparatus.
1.8 g methyl 4-hydroxybenzoate and 0.2 g propyl 4-hydroxybenzoate were dissolved in about 0.5 l of boiling water for injection. After cooling to about 50° C. there were added while stirring 4 g lactic acid, 0.05 g propylene glycol and 4 g of the A.I. The solution was cooled to room temperature and supplemented with water for injection q.s. ad 1 l volume, giving a solution of 4 mg A.I. per ml. The solution was sterilized by filtration (U.S.P. XVII p. 811) and filled in sterile containers.
3 g A.I. was dissolved in a solution of 3 g 2,3-dihydroxybutane-dioic acid in 25 ml polyethylene glycol 400. 12 g surfactant (SPAN(®) and triglycerides (Witepsol 555®) q.s. ad 300 g were molten together. The latter mixture was mixed well with the former solution. The thus obtained mixture was poured into moulds at a temperature of 37°-38° C. to form 100 suppositories each containing 30 mg of the active ingredient.
75 mg of stearyl alcohol, 2 mg of cetyl alcohol, 20 mg of sorbitan monostearate and 10 mg of isopropyl myristate are introduced into a doublewall jacketed vessel and heated until the mixture has completely molten. This mixture is added to a separately prepared mixture of purified water, 200 mg of propylene glycol and 15 mg of polysorbate 60 having a temperature of 70° to 75° C. while using a homogenizer for liquids. The resulting emulsion is allowed to cool to below 25° C. while continuously mixing. A solution of 20 mg of active ingredient of formula (I) or (II), 1 mg of polysorbate 80 and purified water and a solution of 2 mg of sodium sulfite anhydrous in purified water are next added to the emulsion while continuously mixing. The cream (1 g) is homogenized and filled into suitable tubes.
To a solution of 200 mg of hydroxypropyl β-cyclodextrine in purified water is added 20 mg of active ingredient of formula (I) or (II) while stirring. Hydrochloric acid is added until complete solution and then sodium hydroxide is added until pH 6.0. This solution is added to a dispersion of 10 mg of carrageenan PJ in 50 mg of propylene glycol while mixing. While mixing slowly the mixture is heated to 50° C. and allowed to cool to about 35° C. whereupon 50 mg of ethyl alcohol 95% is added. The rest of the purified water is added q.s. ad 1 g and the mixture is mixed to homogenous.
To a solution of 200 mg of hydroxypropyl β-cyclodextrine in purified water is added 20 mg of active ingredient of formula (I) or (II) while stirring. Hydrochloric acid is added until complete solution and next sodium hydroxide is added until pH 6.0. While stirring, 50 mg of glycerol and 35 mg of polysorbate 60 are added and the mixture is heated to 70° C. The resulting mixture is added to a mixture of 100 mg of mineral oil, 20 mg of stearyl alcohol, 20 mg of cetyl alcohol, 20 mg of glycerol monostearate and 15 mg of sorbate 60 having a temperature of 70° C. while mixing slowly. After cooling down to below 25° C., the rest of the purified water is added q.s. ad 1 g and the mixture is mixed to homogenous.
A mixture of 2 g of active ingredient of formula (I) or (II) microfine, 20 g of phosphatidyl choline, 5 g of cholesterol and 10 g of ethyl alcohol is stirred and heated at 55°-60° C. until complete solution and is added to a solution of 0.2 g of methyl paraben, 0.02 g of propyl paraben, 0.15 g of disodium edetate and 0.3 g of sodium chloride in purified water while homogenizing. 1.5 g of hydroxypropylmethylcellulose in purified water is added ad 100 g and the mixing is continued until swelling is complete.
A mixture of 10 g of phosphatidyl choline and 1 g of cholesterol in 7.5 g of ethyl alcohol is stirred and heated at 40° C. until complete solution. 2 g of active ingredient of formula (I) or (II) microfine is dissolved in purified water by mixing while heating at 40° C. The alcoholic solution is added slowly to the aqueous solution while homogenizing during 10 minutes. 1.5 g of hydroxypropylmethylcellulose in purified water is added while mixing until swelling is complete. The resulting solution is adjusted to pH 5.0 with sodium hydroxide 1N and diluted with the rest of the purified water ad 100 g.
Claims (8)
1. A pharmaceutical or cosmetic composition comprising an inert carrier, an effective amount of a retinoic acid, a derivative thereof or a stereochemically isomeric form thereof and an effective amount of a compound of formula ##STR25## a pharmaceutically acceptable acid addition salt thereof or a stereochemically isomeric form thereof, wherein
R, R1, R2, --A1 ═A2 --A3 ═A4 -- and A in formula (I) have the following meaning --A1 ═A2 --A3 ═A4 -- is a bivalent radical having the formula
--CH═N--CH═CH-- (x);
--CH═N--CH═N-- (y); or
13 CH═N--N═CH-- (z);
R is hydrogen or C1-6 alkyl;
R1 is hydrogen; C1-10 alkyl; C3-7 cycloalkyl; Ar1 or Ar1 --C1-6 alkyl;
R2 is hydrogen; C3-7 cycloalkyl; Ar1 ; C1-10 alkyl; C1-6 alkyl substituted with Ar1 or C3-7 cycloalkyl; hydroxy; C1-10 alkyloxy; C1-6 alkyloxy substituted with Ar1 or C3-7 cycloalkyl; C3-6 alkenyloxy optionally substituted with Ar2 ; C3-6 alkynyloxy optionally substituted with Ar2 ; or Ar1 -oxy;
A is a bivalent radical having the formula ##STR26## wherein the carbon atom in the bivalent radical (a) and (b) is connected to --NR2 ;
said R3 being hydrogen; halo; C1-4 alkyl substituted with up to 4 halo atoms; C3-7 cycloalkyl; Ar1 ; quinolinyl; indolinyl; C1-10 alkyl; C1-6 alkyl substituted with Ar1, C3-7 cycloalkyl, quinolinyl, indolinyl or hydroxy; C1-10 alkyloxy; C1-6 alkyloxy substituted with Ar1 or C3-7 cycloalkyl; C2-6 alkenyl optionally substituted with Ar1 ; Ar2 -oxy; C1-6 alkyloxycarbonyl; carboxyl; C1-6 alkylcarbonyl; Ar1 -carbonyl or Ar1 --(CHOH)--;
said X being O or S;
said R4 being hydrogen, C1-6 alkyl or Ar2 --C1-6 alkyl;
wherein Ar1 is phenyl, substituted phenyl, pyridinyl, aminopyridinyl, imidazolyl, thienyl, halothienyl, furanyl, halofuranyl or thiazolyl; and Ar2 is phenyl or substituted phenyl; said substituted phenyl in Ar1 and Ar2 being phenyl substituted with 1, 2 or 3 substituents each independently selected from halo, hydroxy, trifluoromethyl, C1-6 alkyl, C1-6 alkyloxy, cyano, amino, mono- and di(C1-6 alkyl)amino, nitro, carboxyl, formyl and C1-6 alkyloxycarbonyl; and wherein
R, R5, R6, R7 and --A1 ═A2 --A3 ═A4 -- in formula (II) have the following meaning --A1 ═A2 --A3 ═A4 -- is a bivalent radical having the formula
--CH═N--CH═CH-- (x);
--CH═N--CH═N-- (y); or
--CH═N--N═CH-- (z);
R is hydrogen or C1-6 alkyl;
R5 is hydrogen; C1-10 alkyl; C3-7 cycloalkyl; Ar3 ; Ar4 --C1-6 alkyl; C2-6 alkenyl or C2-6 alkynyl;
R6 is hydrogen; C1-10 alkyl optionally substituted with Ar3, C3-7 cycloalkyl, hydroxy or C1-6 alkyloxy; Ar3 ; C2-6 alkenyl; C2-6 alkynyl; C3-7 cycloalkyl; bicyclo[2.2.1]heptan-2-yl; 2,3-dihydro-1H-indenyl; 1,2,3,4-tetrahydronaphthalenyl; or a radical of formula OR7,
R7 is hydrogen; C2-6 alkenyl optionally substituted with Ar4 ; C2-6 alkynyl; pyrimidinyl, di(Ar4)methyl; 1-C1-4 alkyl-4-piperidinyl; or C1-10 alkyl optionally substituted with halo, hydroxy, C1-6 alkyloxy, amino, mono- and di(C1-6 alkyl)-amino, trifluoromethyl, carboxyl, C1-6 alkyloxycarbonyl, Ar3, Ar4 --O--, Ar4 --S--, C3-7 cycloalkyl, 2,3-dihydro-1,4-benzodioxinyl, 1H-benzimidazolyl, C1-4 alkyl substituted 1H-benzimidazolyl, (1,1'-biphenyl)-4-yl or with 2,3-dihydro-2-oxo-1H-benzimidazolyl;
R8 is hydrogen, nitro, amino, mono- and di(C1-6 alkyl)amino, halo, C1-6 alkyl, hydroxy or C1-6 alkyloxy;
wherein Ar3 is phenyl, substituted phenyl, naphthalenyl, pyridinyl, aminopyridinyl, imidazolyl, triazolyl, thienyl, halothienyl, furanyl, C1-6 alkylfuranyl, halofuranyl or thiazolyl; Ar4 is phenyl, substituted phenyl or pyridinyl, said substituted phenyl in Ar3 and Ar4 being phenyl substituted with up to 3 substituents each independently selected from halo, hydroxy, hydroxymethyl, trifluoromethyl, C1-6 alkyl, C1-6 alkyloxy, C1-6 alkyloxycarbonyl, carboxyl, formyl, (hydroxyimino)methyl, cyano, amino, mono- and di(C1-6 alkyl)amino and nitro.
2. A composition according to claim 1 wherein said retinoic acid is all-trans-retinoic acid.
3. A composition according to claim 1 wherein retinoic acid is 13-cis-retinoic acid.
4. The composition of claim 1 wherein the compound of Formula (I) is 5-[(3-chlorophenyl) (1H-imidazol-1-yl)methyl]-1H-benzimidazole, a pharmaceutically acceptable acid addition salt thereof, or a stereochemically isomeric form thereof.
5. A method of treating subjects suffering from disorders which are characterized by an increased proliferation and/or abnormal differentiation of normal, preneoplastic or neoplastic epithelial cells by the systemic or topical administration to said subjects of a composition as defined in claim 1.
6. A method of treating subjects suffering from disorders which are characterized by an increased proliferation and/or abnormal differentiation of normal, preneoplastic or neoplastic epithelial cells by the systemic or topical administration to said subjects of a composition as defined in claim 1.
7. A method of treating subjects suffering from disorders which are characterized by an increased proliferation and/or abnormal differentiation of normal, preneoplastic or neoplastic epithelial cells by the systemic or topical administration to said subjects of a composition as defined in claim 3.
8. A method of treating subjects suffering from disorders which are characterized by an increased proliferation and/or abnormal differentiation of normal, preneoplastic or neoplastic epithelial cells by the systemic or topical administration to said subjects of a composition as defined in claim 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/233,491 US5420147A (en) | 1988-11-29 | 1994-04-26 | Method of treating epithelial disorders |
US08/409,369 US5500435A (en) | 1988-11-29 | 1995-03-23 | Method of treating epithelial disorders |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27715288A | 1988-11-29 | 1988-11-29 | |
US07/434,962 US5157046A (en) | 1988-11-29 | 1989-11-13 | Method of treating epithelial disorders |
US07/927,571 US5342957A (en) | 1988-11-29 | 1992-08-10 | Benzimidazoles useful in treating epithelial disorders |
US08/233,491 US5420147A (en) | 1988-11-29 | 1994-04-26 | Method of treating epithelial disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/927,571 Division US5342957A (en) | 1988-11-29 | 1992-08-10 | Benzimidazoles useful in treating epithelial disorders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/409,369 Division US5500435A (en) | 1988-11-29 | 1995-03-23 | Method of treating epithelial disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US5420147A true US5420147A (en) | 1995-05-30 |
Family
ID=27402875
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/927,571 Expired - Lifetime US5342957A (en) | 1988-11-29 | 1992-08-10 | Benzimidazoles useful in treating epithelial disorders |
US08/233,491 Expired - Lifetime US5420147A (en) | 1988-11-29 | 1994-04-26 | Method of treating epithelial disorders |
US08/409,369 Expired - Lifetime US5500435A (en) | 1988-11-29 | 1995-03-23 | Method of treating epithelial disorders |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/927,571 Expired - Lifetime US5342957A (en) | 1988-11-29 | 1992-08-10 | Benzimidazoles useful in treating epithelial disorders |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/409,369 Expired - Lifetime US5500435A (en) | 1988-11-29 | 1995-03-23 | Method of treating epithelial disorders |
Country Status (1)
Country | Link |
---|---|
US (3) | US5342957A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999035115A1 (en) * | 1998-01-02 | 1999-07-15 | University College Cardiff Consultants Limited | Benzyl and benzylidene tetralins and derivatives |
US20060074119A1 (en) * | 2002-08-08 | 2006-04-06 | Andrews Clarence W Iii | Thiophene compounds |
US20090232780A1 (en) * | 2008-02-07 | 2009-09-17 | Massachusetts Eye & Ear Infirmary | Compounds that enhance atoh1 expression |
US10933018B2 (en) | 2015-10-30 | 2021-03-02 | Timber Pharmaceuticals Llc | Isotretinoin formulations and uses and methods thereof |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CZ20024220A3 (en) * | 2000-06-30 | 2003-06-18 | Unilever N. V. | Skin care composition |
US7405235B2 (en) * | 2001-05-04 | 2008-07-29 | Paratek Pharmaceuticals, Inc. | Transcription factor modulating compounds and methods of use thereof |
CA2562763A1 (en) | 2004-04-23 | 2006-07-20 | Paratek Pharmaceuticals, Inc. | Transcription factor modulating compounds and methods of use thereof |
DE102008022221A1 (en) * | 2008-05-06 | 2009-11-12 | Universität des Saarlandes | Inhibitors of human aldosterone synthase CYP11B2 |
US20110059962A1 (en) * | 2009-04-22 | 2011-03-10 | Alekshun Michael N | Transcription factor modulating compounds and methods of use thereof |
US9056874B2 (en) | 2012-05-04 | 2015-06-16 | Novartis Ag | Complement pathway modulators and uses thereof |
CN105229003B (en) | 2013-03-14 | 2017-03-15 | 诺华股份有限公司 | 2- (1H-indol-4-ylmethyl) -3H-imidazo [4,5-B ] pyridine-6-carbonitrile derivatives as complement factor B inhibitors for the treatment of ophthalmic diseases |
US9676728B2 (en) | 2013-10-30 | 2017-06-13 | Novartis Ag | 2-benzyl-benzimidazole complement factor B inhibitors and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4859684A (en) * | 1986-09-15 | 1989-08-22 | Janssen Pharmaceutica N.V. | (1H-imidazol-1-ylmethyl) substituted benzimidazole derivatives and use thereof in treating androgen dependent disorders |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5157046A (en) * | 1988-11-29 | 1992-10-20 | Janssen Pharmaceutica N.V. | Method of treating epithelial disorders |
-
1992
- 1992-08-10 US US07/927,571 patent/US5342957A/en not_active Expired - Lifetime
-
1994
- 1994-04-26 US US08/233,491 patent/US5420147A/en not_active Expired - Lifetime
-
1995
- 1995-03-23 US US08/409,369 patent/US5500435A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4859684A (en) * | 1986-09-15 | 1989-08-22 | Janssen Pharmaceutica N.V. | (1H-imidazol-1-ylmethyl) substituted benzimidazole derivatives and use thereof in treating androgen dependent disorders |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999035115A1 (en) * | 1998-01-02 | 1999-07-15 | University College Cardiff Consultants Limited | Benzyl and benzylidene tetralins and derivatives |
US20060074119A1 (en) * | 2002-08-08 | 2006-04-06 | Andrews Clarence W Iii | Thiophene compounds |
US20080269298A1 (en) * | 2002-08-08 | 2008-10-30 | Andrews Clarence W | Benzimidazol-1-YL-thiophene compounds for the treatment of cancer |
US20090232780A1 (en) * | 2008-02-07 | 2009-09-17 | Massachusetts Eye & Ear Infirmary | Compounds that enhance atoh1 expression |
US8188131B2 (en) | 2008-02-07 | 2012-05-29 | Massachusetts Eye & Ear Infirmary | Compounds that enhance Atoh1 expression |
US8859597B2 (en) | 2008-02-07 | 2014-10-14 | Massachusetts Eye & Ear Infirmary | Compounds that enhance Atoh1 expression |
US9433610B2 (en) | 2008-02-07 | 2016-09-06 | Massachusetts Eye & Ear Infirmary | Compounds that enhance Atoh1 expression |
US10406163B2 (en) | 2008-02-07 | 2019-09-10 | Massachusetts Eye & Ear Infirmary | Compounds that enhance Atoh1 expression |
US11160808B2 (en) | 2008-02-07 | 2021-11-02 | Massachusetts Eye & Ear Infirmary | Compounds that enhance Atoh1 expression |
US10933018B2 (en) | 2015-10-30 | 2021-03-02 | Timber Pharmaceuticals Llc | Isotretinoin formulations and uses and methods thereof |
US11471408B2 (en) | 2015-10-30 | 2022-10-18 | Timber Pharmaceuticals Llc | Isotretinoin formulations and uses and methods thereof |
Also Published As
Publication number | Publication date |
---|---|
US5342957A (en) | 1994-08-30 |
US5500435A (en) | 1996-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0371559B1 (en) | Use of benzimidazoles in the treatment of epithelial disorders | |
US5157046A (en) | Method of treating epithelial disorders | |
US5028606A (en) | (1H-azol-1-ylmethyl)substituted quinoxaline derivatives | |
US5037829A (en) | (1H-azol-1-ylmethyl) substituted quinazoline derivatives | |
US5420147A (en) | Method of treating epithelial disorders | |
EP0371564B1 (en) | (1H-azol-1-ylmethyl)substituted quinoline, quinazoline or quinoxaline derivatives | |
DE3884055T2 (en) | (1H-Azol-1-ylmethyl) substituted benzotriazole derivatives. | |
CA2132098C (en) | Antimicrobial imidazoles for regulating the greasiness of the skin | |
DE69824885T2 (en) | ANILIDES AS VITAMIN A ACID MIMETICS | |
US5185346A (en) | (1H-azol-1-ylmethyl)substituted quinoline derivatives | |
US5441954A (en) | (1h-azol-1-ylmethyl) substituted quinoline derivatives | |
AU698199B2 (en) | 6-{triazolyl{3-(trifluoromethyl)phenyl}methyl}-2- quinolinones and -quinolinethiones | |
US5476853A (en) | Agent for use as an anti-irritant | |
KR0149162B1 (en) | (1h-azol-1-yemethyl)substituted quinoline, quinazoline or quinoxaline derivatives | |
IE19950033A1 (en) | Topical compositions comprising benzimidazoles and benzotriazoles | |
NZ279227A (en) | Dextrorotatory (+)-5-[3-chlorophenyl]-1h-imidazol-1-ylmethyl]-1h-benzimidazole derivatives (liarozole) | |
DK175785B1 (en) | Treatment of epithelial skin disorders - with benzimidazole(s) and benzotriazole(s) | |
IE83627B1 (en) | Use of piperazine acetamide derivatives against reperfusion damage | |
WO1995022541A1 (en) | Enantiomerically pure(-)-liarozole | |
MXPA97004667A (en) | 6- [triazolil [3-trifluoromethyl) phenyl] methyl] -2-quinolinones and quinolinotium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |