US5374202A - Electrical connector spacer - Google Patents
Electrical connector spacer Download PDFInfo
- Publication number
- US5374202A US5374202A US07/974,101 US97410192A US5374202A US 5374202 A US5374202 A US 5374202A US 97410192 A US97410192 A US 97410192A US 5374202 A US5374202 A US 5374202A
- Authority
- US
- United States
- Prior art keywords
- contact
- spacer
- housing
- receiving area
- female
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/40—Securing contact members in or to a base or case; Insulating of contact members
- H01R13/42—Securing in a demountable manner
- H01R13/426—Securing by a separate resilient retaining piece supported by base or case, e.g. collar or metal contact-retention clip
Definitions
- the present invention relates to electrical connectors and, more particularly, to a spacer for a contact in an electrical connector and a method of assembling the connector.
- U.S. Pat. No. 4,655,525 to Hunt et al. discloses an electrical connector with a locking insert.
- U.S. Pat. No. 3,471,822 to Van Baelen discloses a terminal junction system having retainers, a contact strip, and a housing with barrier blocks.
- Other relevant U.S. patents include U.S. Pat. Nos. 4,090,764; 3,456,231; 3,725,852; 3,397,384; and 4,580,863.
- an electrical contact spacer for use in an electrical connector comprising a top section and a bottom section.
- the top section forms a top ledge and an aperture through the top ledge is adapted to allow a portion of a male contact to pass therethrough.
- the bottom section has flared legs. Each of the legs extends in general cantilever fashion from the top section and flares away from a center longitudinal access of the spacer.
- the spacer is comprised of a deflectable material such that the legs can be deflected in towards the center axis.
- an electrical connector comprising a housing, a female contact, and a contact spacer.
- the housing has at least one contact receiving area.
- the female contact is located in the contact receiving area.
- the contact spacer surrounds the female contact and has legs compressed by the housing in the receiving area to grab the female contact.
- the spacer also comprises a top shelf located at the top of the female contact with an aperture therethrough adapted to limit the size of a male contact that can be inserted through the aperture into the female contact.
- a method of assembling an electrical connector comprising steps of inserting a female contact into a spacer, the spacer having means for positioning the female contact at a predetermined position in the spacer and, having legs flared away from a center axis of the spacer; and inserting the spacer and female contact into a contact receiving area of a connector housing, the flared legs being deflected inward by the housing towards the female contact to thereby friction grab the female contact and also form a friction grip between the spacer and the housing in the contact receiving area.
- FIG. 1 is a partial perspective view of an electrical connection system incorporating features of the present invention.
- FIG. 2 is a cross-sectional view of the system shown in FIG. 1 taken along line 2--2.
- FIG. 3 is a cross-sectional view of an alternate embodiment of the present invention.
- FIG. 4 is a plan bottom view of the housing top of the terminal block for the system shown in FIG. 1.
- FIG. 4A is a cross-sectional view of the housing top shown in FIG. 4 taken along line A--A.
- FIG. 4B is a cross-sectional view of the housing top shown in FIG. 4 taken along line B--B.
- FIG. 5A is a plan top view of a first type of housing bottom of a terminal block for use with the housing top shown in FIG. 4.
- FIG. 5B is a plan top view of a second type of housing bottom of a terminal block for use with the housing top shown in FIG. 4.
- FIG. 5C is a plan top view of a third type of housing bottom of a terminal block for use with the housing top shown in FIG. 4.
- FIG. 5D is a cross-sectional view of the housing bottoms shown in FIGS. 5A-5C taken along lines D--D.
- FIG. 5E is a cross-sectional view of the housing bottoms shown in FIGS. 5A-5C taken along lines E--E.
- FIG. 6 is a plan top view of a contact terminal for use with the first type of housing bottom shown in FIG. 5A and showing in dashed lines configurations of two other contact terminals for use with the two other types of housing bottoms shown in FIGS. 5B and 5C.
- FIGS. 7A, 7B, and 7C are schematic plan top views of three different types of terminal blocks.
- FIG. 8A is a perspective view of a contact spacer used in the terminal block shown in FIG. 3.
- FIG. 8B is a cross-sectional view of the contact spacer shown in FIG. 8A.
- FIG. 1 there is shown a partial perspective view of an electrical connection system 10 incorporating features of the present invention.
- an electrical connection system 10 incorporating features of the present invention.
- the present invention will be described with reference to the embodiments shown in the drawings, it should be understood that the present invention can be incorporated into different types of embodiments.
- any suitable size, shape or type of members or materials could be used.
- the system 10 generally comprises a mounting track 12, a plurality of terminal blocks or signal connectors 14, and a plurality of grounding blocks or grounding modules 16 (only one of which is shown).
- the system 10 has generally been provided for use in an aircraft.
- the track 12 is preferably made of electrically conductive metal.
- the track 12 has a snap-lock ledge 18, a cam surface 20 proximate the ledge 18, a first series of holes 22 for mounting the track 12 to a frame of the aircraft, a second series of holes 24 for mounting the grounding blocks 16 to the track 12, and a lateral ridge 26 for mounting a marking strip 28 along the length of the track 12.
- the track is adapted to have a plurality of signal connectors removably snap-lock connected to it and, a plurality of grounding blocks fixedly connected to the track.
- the signal connectors or terminal blocks 14 each comprise a housing 30, at least one terminal 32, retaining clips 34, and a grommet 36.
- the housing 30 is comprised of a housing top 38 and a housing bottom 40 made of a dielectric material.
- FIG. 4 shows a bottom view of the housing top 38 shown in FIG. 2.
- the top 38 has a plurality of contact receiving areas 42.
- the bottom surface 44 of the top 38 has a pattern of grooves 46 extending into the bottom surface.
- a cross-sectional view at the grooves 46 before connection of the housing top and housing bottom to each other is shown in FIG. 4A.
- the housing top 38 has sixteen contact receiving areas 42 that are grouped in sets of two and separated by the pattern of grooves 46.
- the housing top 38 is adapted to be used with any one of the housing bottoms 40a, 40b, 40c shown in FIGS. 5A-5C as further understood below.
- a snap-lock latch 86 Located on one side of the top 38 is a snap-lock latch 86.
- the latch 86 extends from the top 38 in general cantilever fashion and includes a snap-lock ledge 88.
- the top 38 is preferably made of a polymer material such that the latch 86 can be deflected towards the top 38.
- located on opposite sides of the latch 86 are studs 87 adapted to prevent inadvertent or accidental movement of the latch 86.
- the third type of housing bottom 40c shown in FIG. 5C is being used.
- the top surfaces 48a, 48b, 48c of the bottoms 40a, 40b, 40c each have a different pattern of tongues 50 (see FIGS. 5D and 5E).
- All three types of bottoms 40a, 40b, 40c have a long tongue 52 extending from their top surfaces along the center of the surface and, surrounding peripheral tongues 54 also extending from their top surfaces.
- the first type of bottom 40a has no other tongues and thus establishes the two areas 55, 56.
- the second type of bottom 40b has two additional tongues 57, 58 that have a general zig-zag shape and extend between the center tongue 52 and the end tongues 54.
- the third type of bottom 40c has the tongues 57, 58 and four additional general zig-zag shaped tongues 63, 64, 65, 66 to establish eight areas 67, 68, 69, 70, 71, 72, 73, 74.
- any suitable type of tongue pattern can be provided.
- Each of the three types of bottoms 40a, 40b, 40c also comprise toes 76 and a key 78 on a first side and, a spring leg 80 (see FIG. 2) on an opposite second side.
- a space 82 is provided at the underside of the bottoms 40 to allow the terminal blocks 14 to be mounted over fasteners 84 that fasten the track 12 to the aircraft frame.
- the spring leg 80 preferably extends from the bottom 40 in a general cantilever fashion.
- the bottom 40 is preferably made of a polymer material such that the spring leg 80 is deflectable towards the toes 76.
- the spring leg 80 is located on the same side of the terminal block 14 as the snap-lock latch 86 and is deflectable in the same direction.
- the spring leg 80 is generally parallel to the latch 86.
- the bottom 40 is positioned with its tongues 50 located in the grooves 46 of the top 38 and ultrasonically welded to thereby fix the bottom 40 to the top 38 and from a seal at the welded areas of the tongues in the grooves.
- any suitable type of connection and sealing method could be used.
- the terminals 32 Prior to connecting the bottom 40 to the top 38, the terminals 32, retaining clips 34, and contact spacers 90 (see FIGS. 8A and 8B) are inserted into the receiving areas 42.
- the contact terminals 32 preferably comprise a plurality of socket contacts 92 interconnected by a busing strip 94.
- the contact spacers need not be provided and, the retaining clips 34 could be provided as integrally formed with the terminals 32.
- the terminals 32 are provided with eight contacts 92 as shown as A in FIG. 6, or four contacts 92 as illustrated by area B in dashed lines in FIG. 6, or two contacts 92 as illustrated by area c in dashed lines in FIG. 6.
- any suitable number of contacts can be provided on each terminal.
- FIG. 7A schematically illustrates an embodiment of a first signal connector 14a that comprises two A terminals (each having eight contacts) with the bottom 40a shown in FIG. 5A.
- FIG. 7B schematically illustrates an embodiment of a second signal connector 14b that comprises four B terminals (each having four contacts) with the bottom 40b shown in FIG. 5B.
- FIG. 7A schematically illustrates an embodiment of a first signal connector 14a that comprises two A terminals (each having eight contacts) with the bottom 40a shown in FIG. 5A.
- FIG. 7B schematically illustrates an embodiment of a second signal connector 14b that comprises four B terminals (each having four contacts) with the bottom 40b shown in FIG. 5B.
- the terminals 32 are preferably comprised of sheet metal that has been cut and preformed to provide a one-piece terminal having multiple contacts 92 electrically and mechanically interconnected to each other by the busing strip 94.
- the contacts 92 are female contacts with eight inwardly bent spring legs 111 that form male contact receiving areas 112.
- the housing 30 is preferably adapted to be useable with terminals having any one of a number of different size contacts, each having different size receiving areas 112 to be able to receive different size male contacts. Therefore, it should be noted that any suitable type of terminals could be used.
- the spacer 90 is shown before insertion into the housing top 38.
- the spacer 90 is preferably comprised of a dielectric polymer or plastic material and includes a top section 96 and a bottom section 98.
- the top section 96 has a top ledge 100 with an aperture 102 passing through the ledge 100 into a general bell shaped interior receiving area 104.
- the top section 96 and bottom section 98 combine to form the bell shaped interior receiving area 104.
- the bottom section 98 has a plurality of flared legs 106. Each of the legs 106 extends in general cantilever fashion from the top section 96 and flares away from the center longitudinal of the spacer 90.
- the spacer material is a deflectable material such that the legs 106 can be deflected in towards the center axis.
- the housing top contact receiving areas 42 have stop ledges 108 at their tops.
- the retainer clips 34 are inserted into the areas 42 and are stopped at the ledges 108.
- the spacers 90 Prior to inserting the contacts 92 of the terminals 32 into the areas 42, the spacers 90 are positioned over the contacts 92.
- the contacts 92 are received in the receiving areas 104 and a bottom surface 110 of the ledge 100 contacts the top of the contact 92 to thereby precisely position the contact and spacer relative to each other. With the spacers 90 positioned on the contacts 92, they are inserted into the contact receiving areas 42 through the bottom of the housing top.
- the interior walls of the areas 42 cause the legs 106 to be deflected or deformed inward.
- the legs 106 are compressed by the top housing to grab the contacts 92, thereby friction holding the contacts 92 to the spacers 90.
- the legs 106 also form a friction hold of the spacers 90 with the top housing 38.
- the top surface of each of the spacer ledges 100 contact the bottom of a retainer clips 34 and thereby sandwich the retainer clips 34 between the ledges 108 and the ledges 100.
- the aperture 102 is smaller than the receiving space 104, and is adapted to limit the size of a male contact (not shown) that can be inserted through the aperture 102 into the female contact 92.
- the aperture is smaller than a potential expanded size of a male contact receiving area 112 (see FIG. 6) of the female contact to thereby protect the female contact 92 from having an oversize male contact connected to it; thereby preventing the female contact 92 from damage by an oversized male contact.
- the inner perimeter of the spacers 90 proximate the top shelf 100 is slightly smaller than the outer perimeter of a top of the female contact 92 to thereby form a friction hold even before the contacts 92 and spacers 90 are inserted in the top housing 38.
- the thickness of the spacers 90 is suitably selected based upon the diameter of the receiving areas 42 and the outer diameter of the contacts 92.
- the housing top 38 can be used with different size female contacts by selecting spacers with an appropriate thickness.
- the spacers 90 need not be provided or, alternate forms of spacers could be provided.
- the housing bottom 40 is then connected to the housing top 38.
- the busing strips 94 of the two terminal A and A extend along the bottom of the housing top 38 and are sandwiched between the top and bottom housings; one at area 55 and one at area 56 (see FIG. 5A).
- the tongues 52 extends into grooves 112 and the tongues 54 extend into grooves 113.
- the housing top and bottom form two sealed areas D and E; thereby sealing off the A terminals from each other.
- the grommet 36 is then connected to the housing top 38 by suitable means, such as epoxy adhesive.
- the grooves 114 and 116 do not have tongues located in them. Rather, the busing strips 94 are located between the housing top and housing bottom at these grooves 114, 116.
- the tongues 57 and 58 also extend into the grooves 114 (see FIG. 4) and, when ultrasonically welded, form the four sealed off areas F, G, H, I (see FIG. 7B) each area with a single B terminal.
- the grooves 116 do not have tongues located in them. Thus, no seal is formed at grooves 116.
- the tongues 63, 64, 65, 66 also extend into the grooves 116 (see FIG.
- the ground modules 16 each generally comprise a housing 120, a contact terminal 32, long rivet-type fasteners 122, a grommet 124, retainer clips 34, and spacers 90.
- the housing 120 is preferably made of a molded polymer material, but may also be comprised of metal.
- the housing 120 has a plurality of contact receiving apertures 126 and a plurality of fastener receiving apertures 128. Similar to the signal module 14, the retainer clips 34 in the ground module 16 are inserted into the receiving apertures 126, followed by the spacers 90 and contacts 92, to sandwich the retainer clips 34 between a ledge 130 of the housing 120 and the top shelf 100 of the spacers 90.
- the spacers 90 form a friction hold of the contacts 92 and the housing 120 inside the receiving apertures 126.
- the fastener receiving apertures 128 include a top ledge 132.
- the fasteners 122 have a first head at a first end 134 and a second head at a second end 136.
- the first end 134 also includes a ledge 138.
- the busing strip 94 includes holes 140. Portions of the fastener first ends 134 extend through these holes 140. The ledge 138 is thus allowed to abut against the top surface of the busing strip 94.
- the grounding module 16 in the embodiment shown, is fixedly attached to the track 12 by the fasteners 122.
- the fasteners 122 not only fasten the housing 120 to the track 12, but also electrically and mechanically fasten the terminal 32 to the track 12.
- the track 12 functions not only as a mounting track, but also as a grounding-mounting track.
- the assembly and mounting of the grounding module 16 generally comprise the following steps.
- the fasteners 122 are positioned in the fastener receiving apertures 128.
- the ends 134 and 136 have not yet been deformed.
- the retainer clips 34, contacts 92 and spacers 90 are positioned into the receiving apertures 126.
- the busing strip 94 is located adjacent the bottom of the housing 120 with the first ends 134 of the fasteners 122 extending through the holes 140 in the busing strip 94.
- the bottom of the housing 120 and the busing strip 94 are then positioned against the track 12 with the fastener first ends 134 extending into the holes 24 in the track 12.
- the two ends 134 and 136 of the fasteners 122 are deformed to form the rivet-like heads shown in FIG. 2.
- the rivet-like head at the first end 134 and the ledge 138 cooperate to form a good electrical connection of the busing strip 94 with the track 12.
- the rivet-like head at the second end 136 acts against top ledge 132 to keep the housing 122 attached to the track 12.
- the grommet 124 is then attached to the housing 120, such as by use of epoxy adhesive (not shown).
- One of the unique features of the grounding module 16 is its ability to cooperate with the track 12 in the mounting of the signal modules 14 to the track 12.
- One side of the housing 120 includes two toe ledges 140 located on opposite sides of a key receiving area 142.
- the key receiving area 142 is suitably sized and shaped to have the key 78 inserted into it.
- the toe ledges 140 are suitably sized and shaped to have the toes 76 inserted under them.
- the signal modules 14 are merely snap-lock connected to the track 12.
- the first side of the signal module 14 is positioned with the toes 76 positioned under the ledges 140 and the key 78 located in the key receiving area 142.
- the toes 76 act as locking portions to at least partially assist in mounting the signal connector 14 to the track (via the ground module).
- the second side of the signal module 14 is then pushed down.
- the snap-lock latch 86 is deflected and wedged in by the top ramp on the snap-lock ledge 18.
- the spring leg 80 is also deflected and wedged in by the cam surface 20.
- the deflection and deformation of the spring leg 80 causes the signal module 14 to be pushed against the ground module 16.
- the snap-lock latch 86 snaps into its final position as shown in FIG. 2. This prevents the forces generated by the spring leg 80 from pushing the module 14 off of the track 12.
- the key 78 must be located in the key receiving area 142 in order for the signal module 14 to be mounted to the track 12 because the spring leg 80 would otherwise hit surface 21 (not cam surface 20). When the spring leg 80 hits surface 21, the spring leg 80 prevents further downward motion of the housing 30 and, thus, prevents the latch 86 from connecting with ledge 18.
- the signal module 14 can be removed from the track 12 by merely depressing the snap-lock latch 86 and tilting the module 14, sliding the toes 76 out from under the toe ledges 140, and removing the module 14.
- the purpose of providing the connection system described above is primarily due to the environment for which the system was designed; an aircraft. Thus, a lightweight and dependable system was needed that could easily endure the vibrations encountered on an aircraft frame without the signal or ground modules vibrating on the track and, without risk that the modules might inadvertently become dismounted from the track.
- the system 10a does not include ground modules.
- the system 10a has a track 12a with a toe ledge 150 and key receiving area (not shown).
- a track 12a with a toe ledge 150 and key receiving area (not shown).
- key receiving area not shown.
- the signal module 14a is slightly different than the signal modules described above.
- the signal module 14a has a housing top 38a with relatively large contact receiving apertures 42a in order to accommodate larger male contacts.
Landscapes
- Connector Housings Or Holding Contact Members (AREA)
Abstract
Description
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/974,101 US5374202A (en) | 1992-11-10 | 1992-11-10 | Electrical connector spacer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/974,101 US5374202A (en) | 1992-11-10 | 1992-11-10 | Electrical connector spacer |
Publications (1)
Publication Number | Publication Date |
---|---|
US5374202A true US5374202A (en) | 1994-12-20 |
Family
ID=25521599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/974,101 Expired - Lifetime US5374202A (en) | 1992-11-10 | 1992-11-10 | Electrical connector spacer |
Country Status (1)
Country | Link |
---|---|
US (1) | US5374202A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5964624A (en) * | 1997-02-06 | 1999-10-12 | Air Lb International S.A. | Electrical connection device having improved contact reliability |
EP1107393A2 (en) * | 1999-10-12 | 2001-06-13 | Smiths Industries Public Limited Company | Electrical connector assemblies |
FR2901421A1 (en) * | 2006-05-22 | 2007-11-23 | Cie Deutsch Societe Par Action | Plug-in part`s i.e. male plug, electrical contact maintaining clip for electrical connector, has longitudinal grooves defining elastically deformable lips, where cut angle of edge of one of lips is equal to cut angle of edge of another lip |
EP1998411A2 (en) * | 2007-06-01 | 2008-12-03 | ERICH JAEGER GmbH & Co. KG | Electric plug connector |
US20190305455A1 (en) * | 2018-03-29 | 2019-10-03 | Amphenol Corporation | Electrical socket |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1150520A (en) * | 1956-05-09 | 1958-01-15 | M T I Le Materiel Tech Ind | Improvements to electrical connection devices for removable devices |
US2992403A (en) * | 1957-04-01 | 1961-07-11 | Grayhill | Electrical jack |
US3009130A (en) * | 1959-03-23 | 1961-11-14 | Amp Inc | Pin-socket connector |
US3397384A (en) * | 1965-11-17 | 1968-08-13 | Deutsch Co Elec Comp | Arrangement for electrical terminals |
US3456231A (en) * | 1967-05-23 | 1969-07-15 | Amp Inc | Interconnection wiring system |
US3506947A (en) * | 1968-03-18 | 1970-04-14 | Curtis Dev & Mfg Co | Mounting for electrical terminal blocks and sockets and the like |
US3576520A (en) * | 1969-04-11 | 1971-04-27 | Amp Inc | Mounting means for terminal junction modules |
US3725852A (en) * | 1970-11-24 | 1973-04-03 | Lb Air | Waterproof electrical connector |
US4090764A (en) * | 1973-12-19 | 1978-05-23 | The Deutsch Company Electronic Components Division | Modular electrical connector |
US4111517A (en) * | 1976-10-15 | 1978-09-05 | Cgee Alsthom | Junction block with two fixing orientations |
US4113982A (en) * | 1976-04-26 | 1978-09-12 | Hego Electric Gmbh | Means for mounting on channel-section supporting rails |
US4157858A (en) * | 1977-05-27 | 1979-06-12 | Cgee Alsthom | Device for fixing a casing on a section bar with parallel rims |
US4333703A (en) * | 1980-05-19 | 1982-06-08 | International Telephone And Telegraph Corporation | Contact retention assembly |
US4425018A (en) * | 1980-04-17 | 1984-01-10 | C.A. Weidmuller Gmbh & Co. | Modular electrical plug and socket connectors |
US4454382A (en) * | 1981-03-23 | 1984-06-12 | Cgee Alsthom | Structure for fixing a device on a supporting channel bar |
US4581489A (en) * | 1983-07-29 | 1986-04-08 | Jacques Nozick | Modular connection system for a telephone distribution frame |
US4580863A (en) * | 1985-02-19 | 1986-04-08 | Amp Incorporated | Electrical contact socket which is manufactured with simplified tooling |
US4702707A (en) * | 1986-08-15 | 1987-10-27 | Amp Incorporated | Power contact having removable mating components |
FR2605464A1 (en) * | 1986-10-20 | 1988-04-22 | Lb Air | Device for mounting, onto a support, modular elements, especially connection modules and electrical connectors |
-
1992
- 1992-11-10 US US07/974,101 patent/US5374202A/en not_active Expired - Lifetime
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1150520A (en) * | 1956-05-09 | 1958-01-15 | M T I Le Materiel Tech Ind | Improvements to electrical connection devices for removable devices |
US2992403A (en) * | 1957-04-01 | 1961-07-11 | Grayhill | Electrical jack |
US3009130A (en) * | 1959-03-23 | 1961-11-14 | Amp Inc | Pin-socket connector |
US3397384A (en) * | 1965-11-17 | 1968-08-13 | Deutsch Co Elec Comp | Arrangement for electrical terminals |
US3456231A (en) * | 1967-05-23 | 1969-07-15 | Amp Inc | Interconnection wiring system |
US3506947A (en) * | 1968-03-18 | 1970-04-14 | Curtis Dev & Mfg Co | Mounting for electrical terminal blocks and sockets and the like |
US3576520A (en) * | 1969-04-11 | 1971-04-27 | Amp Inc | Mounting means for terminal junction modules |
US3725852A (en) * | 1970-11-24 | 1973-04-03 | Lb Air | Waterproof electrical connector |
US4090764A (en) * | 1973-12-19 | 1978-05-23 | The Deutsch Company Electronic Components Division | Modular electrical connector |
US4113982A (en) * | 1976-04-26 | 1978-09-12 | Hego Electric Gmbh | Means for mounting on channel-section supporting rails |
US4111517A (en) * | 1976-10-15 | 1978-09-05 | Cgee Alsthom | Junction block with two fixing orientations |
US4157858A (en) * | 1977-05-27 | 1979-06-12 | Cgee Alsthom | Device for fixing a casing on a section bar with parallel rims |
US4425018A (en) * | 1980-04-17 | 1984-01-10 | C.A. Weidmuller Gmbh & Co. | Modular electrical plug and socket connectors |
US4333703A (en) * | 1980-05-19 | 1982-06-08 | International Telephone And Telegraph Corporation | Contact retention assembly |
US4454382A (en) * | 1981-03-23 | 1984-06-12 | Cgee Alsthom | Structure for fixing a device on a supporting channel bar |
US4581489A (en) * | 1983-07-29 | 1986-04-08 | Jacques Nozick | Modular connection system for a telephone distribution frame |
US4580863A (en) * | 1985-02-19 | 1986-04-08 | Amp Incorporated | Electrical contact socket which is manufactured with simplified tooling |
US4702707A (en) * | 1986-08-15 | 1987-10-27 | Amp Incorporated | Power contact having removable mating components |
FR2605464A1 (en) * | 1986-10-20 | 1988-04-22 | Lb Air | Device for mounting, onto a support, modular elements, especially connection modules and electrical connectors |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5964624A (en) * | 1997-02-06 | 1999-10-12 | Air Lb International S.A. | Electrical connection device having improved contact reliability |
EP1107393A2 (en) * | 1999-10-12 | 2001-06-13 | Smiths Industries Public Limited Company | Electrical connector assemblies |
EP1107393A3 (en) * | 1999-10-12 | 2003-05-28 | Smiths Industries Public Limited Company | Electrical connector assemblies |
FR2901421A1 (en) * | 2006-05-22 | 2007-11-23 | Cie Deutsch Societe Par Action | Plug-in part`s i.e. male plug, electrical contact maintaining clip for electrical connector, has longitudinal grooves defining elastically deformable lips, where cut angle of edge of one of lips is equal to cut angle of edge of another lip |
EP1998411A2 (en) * | 2007-06-01 | 2008-12-03 | ERICH JAEGER GmbH & Co. KG | Electric plug connector |
EP1998411A3 (en) * | 2007-06-01 | 2009-12-02 | ERICH JAEGER GmbH & Co. KG | Electric plug connector |
US20190305455A1 (en) * | 2018-03-29 | 2019-10-03 | Amphenol Corporation | Electrical socket |
US10541489B2 (en) * | 2018-03-29 | 2020-01-21 | Amphenol Corporation | Electrical socket with contoured contact beams |
US10950964B2 (en) | 2018-03-29 | 2021-03-16 | Amphenol Corporation | Electrical socket with contoured contact beams |
US11444402B2 (en) | 2018-03-29 | 2022-09-13 | Amphenol Corporation | Electrical socket with contoured contact beams |
US11929571B2 (en) | 2018-03-29 | 2024-03-12 | Amphenol Corporation | Electrical socket with contoured contact beams |
US12119582B2 (en) | 2018-03-29 | 2024-10-15 | Amphenol Corporation | Electrical socket with contoured contact beams |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106486806B (en) | Connector assembly with blade connector | |
US7549889B2 (en) | Battery post electrical terminal assembly | |
US5800186A (en) | Printed circuit board assembly | |
US5632649A (en) | Hold-down device for a board mount connector | |
EP0189342B1 (en) | Connector assembly for a flat panel | |
KR970003361B1 (en) | Floating type electric connector | |
US5074807A (en) | Component holding device | |
KR940022953A (en) | Terminals of electrical connectors and manufacturing method thereof | |
US4184735A (en) | Discrete connector | |
US5380226A (en) | Electrical terminal block | |
US7374449B2 (en) | Electrical contact element and contact arrangement | |
US6468091B2 (en) | Electrical distribution center | |
JPH07211377A (en) | Electric conector and contact for use therein | |
US5310364A (en) | Grounding block | |
US6000951A (en) | Electrical ribbon wire connectors | |
US5320564A (en) | Track connection system for electrical connectors | |
US5374202A (en) | Electrical connector spacer | |
US4003617A (en) | Solderless electrical connector for printed circuit | |
US5356316A (en) | Combined electrical connector mounting track and grounding connector assembly | |
US5538445A (en) | Electrical connector having an improved terminal retention means | |
US5006080A (en) | Electrical connector | |
US4611880A (en) | Multipiece electrical connector | |
KR20050004200A (en) | An electrical connector | |
US20020142643A1 (en) | Snap-in relay socket system | |
US5403209A (en) | Electrical connector having uniform contact receiving slots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BURNDY CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANDERSON, JAMES D.;REEL/FRAME:006322/0232 Effective date: 19921102 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: FCI USA, PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:BURNDY CORPORATION;REEL/FRAME:013684/0508 Effective date: 19990607 |
|
AS | Assignment |
Owner name: FCI USA, INC., PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:BURNDY CORPORATION;REEL/FRAME:013897/0562 Effective date: 20010426 |
|
AS | Assignment |
Owner name: SOURIAU USA, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FCI USA, INC.;REEL/FRAME:014066/0066 Effective date: 20030430 |
|
FPAY | Fee payment |
Year of fee payment: 12 |