US5345670A - Method of making a surface-mount power magnetic device - Google Patents

Method of making a surface-mount power magnetic device Download PDF

Info

Publication number
US5345670A
US5345670A US07/989,394 US98939492A US5345670A US 5345670 A US5345670 A US 5345670A US 98939492 A US98939492 A US 98939492A US 5345670 A US5345670 A US 5345670A
Authority
US
United States
Prior art keywords
lead
sheet winding
sheet
lead frame
magnetic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/989,394
Inventor
Lennart D. Pitzele
Matthew A. Wilkowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia Bell Labs
AT&T Corp
Original Assignee
Nokia Bell Labs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Bell Labs filed Critical Nokia Bell Labs
Priority to US07/989,394 priority Critical patent/US5345670A/en
Assigned to AMERICAN TELEPHONE AND TELEGRAPH COMPANY reassignment AMERICAN TELEPHONE AND TELEGRAPH COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PITZELE, LENNART DANIEL, WILKOWSKI, MATTHEW ANTHONY
Application granted granted Critical
Publication of US5345670A publication Critical patent/US5345670A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type
    • H01F17/04Fixed inductances of the signal type with magnetic core
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/027Casings specially adapted for combination of signal type inductors or transformers with electronic circuits, e.g. mounting on printed circuit boards
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/04Arrangements of electric connections to coils, e.g. leads
    • H01F2005/046Details of formers and pin terminals related to mounting on printed circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49121Beam lead frame or beam lead device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • Y10T29/49171Assembling electrical component directly to terminal or elongated conductor with encapsulating
    • Y10T29/49172Assembling electrical component directly to terminal or elongated conductor with encapsulating by molding of insulating material

Abstract

A magnetic device (10), suitable for attachment to a substrate, includes at least one sheet winding (24) having a pair of spaced-apart terminations (26), each receiving an upwardly rising portion (28) of a lead (12). The sheet winding terminations and upwardly-rising lead portions, together with at least a portion of the sheet windings, are then encapsulated with masses of insulative material (18, 19 and 34). A ferromagnetic core (20,22) surrounds at least a portion of the sheet windings to impart a desired magnetic property to the device.

Description

TECHNICAL FIELD

This invention relates generally to a magnetic device, such as an inductor or a transformer, especially suited for mounting on a surface of a substrate, and to a method of making such a magnetic device.

BACKGROUND OF THE INVENTION

Power magnetic devices, such as inductors and transformers, are employed in many different types of electrical circuits, such as power supply circuits for example. In practice, most power magnetic devices are fabricated of one or more windings, formed by an electrical member, such as a wire of a circular or rectangular cross section, or a planar conductor, which is wound or mounted to a bobbin of insulative material, e.g., plastic or the like. In some instances, the electrical member is soldered to terminations on the bobbin. Alternatively, the electrical member may be threaded through the bobbin for connection directly to a metallized area on a circuit board. A ferromagnetic core is typically affixed about the bobbin to impart a greater reactance to the power magnetic device.

As with other types of electronic components, there is a trend in the design of power magnetic devices towards achieving increased density and higher power. To achieve higher power, the resistance of the power magnetic device must be reduced, typically, by increasing the cross-sectional area of the electrical member forming the device winding(s). To increase the density of the power magnetic device, the bobbin is usually made very thin in the region constituting the core of the device to optimize the electrical member resistance. Conversely, the remainder of the bobbin is usually made thick to facilitate attachment of the electrical member to the bobbin terminals and/or to facilitate attachment of terminals on the bobbin to a circuit board. As a result of the need to make such a bobbin thin in some regions and thick in others, the bobbin is often subject to stresses at transition points between such thick and thin regions.

Another problem associated with present-day power magnetic devices is the lack of planarity of the device terminations. Because of the need to optimize the winding thickness of the power magnetic device in order to provide the requisite number of turns while minimizing the winding resistance, the thickness of the electrical member forming each separate winding of the device is often varied. The variation in the winding thickness often results in a lack of planarity of the device terminations, which is especially critical when the device is to be mounted onto a surface of a substrate such as a printed circuit board.

Thus, there is need for a power magnetic device which substantially overcomes the deficiency of past devices.

SUMMARY OF THE INVENTION

Briefly, in accordance with a preferred embodiment, there is provided a power magnetic device which is especially well suited for attachment to the surface of a substrate. The power magnetic device comprises at least one sheet winding having a pair of spaced-apart terminations. Each sheet winding termination at least partially receives an upwardly rising portion of a separate lead lying coplanar with every other lead. The sheet winding terminations and upwardly rising portion of each lead, together with the sheet winding itself, are encapsulated with an insulative material such that each lead has a portion extending out from the encapsulant. A ferromagnetic core surrounds at least a portion of the sheet winding(s) to impart a greater reactance to the power magnetic device. The portion of each lead of the power magnetic device extending out from the encapsulant is typically formed to facilitate attachment of the power magnetic device to a surface of a substrate such as a printed wiring board or the like.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a perspective view of a power magnetic device in accordance with a preferred embodiment of the invention;

FIG. 2 is a cross-sectional view of the device of FIG. 1;

FIG. 3 is a perspective view of an assembly comprised of a lead frame stock on which sheet windings are layered to fabricate the device of FIG. 1; and

FIG. 4 is a perspective view of the assembly of FIG. 3 after encapsulation, showing how a core assembly is attached thereto to fabricate the power magnetic device of FIG. 1.

DETAILED DESCRIPTION

FIG. 1 shows a power magnetic device 10 in accordance with the invention. The device 10 has a plurality of leads 12 which, in the illustrated embodiment of FIG. 1, are arranged in two opposed banks 14 and 16. While the illustrated embodiment is depicted as having four and six leads in the banks 14 and 16, respectively, a greater or lesser number of leads is possible. Each of the leads 12 in each of the banks 14 and 16 extends out from a separate one of a pair of insulative bodies 18 and 19 spaced apart by a gap g. The gap g between the bodies 18 and 19 is enclosed by a pair of core halves 20 and 22 lying in opposed, face-to-face relationship. Each of the core halves 20 and 22 is fabricated from a ferromagnetic material.

Referring now to FIG. 2, at the heart of the power magnetic device 10 is at least one, and preferably a plurality of sheet windings 24. The details of each sheet winding are best seen in FIG. 3. Referring to FIG. 3, each sheet winding 24 is comprised of a generally circular conductive element 25 having a pair of radially, outwardly extending, spaced-apart terminations 26, each having an aperture 27 therethrough. Preferably, the conductive member 25 may be formed of a unitary structure which is punched or etched from a metallic strip of copper or the like and coated with a dielectric. Alternatively, the conductive member 25 of each sheet winding 24 may be formed of a flat, wound-wire coil.

In practice, the power magnetic device 10 is fabricated in the following manner. Referring to FIG. 3, a lead frame stock 30 is first fabricated from a strip of metal, such as copper or the like. The lead frame stock 30 is either punched or etched, and then is manipulated to create the opposed banks 14 and 16 of leads 12 such that each lead is provided with the upwardly rising portion 28. In the process of fabricating the lead frame stock 30, the leads 12 of each of the banks 14 and 16 are made integral to each other by way of a set of internal webs or dams 32, and by a flashing 33 about the periphery of the leads.

After fabrication of the lead frame stock 30, then at least one, and preferably a plurality of the sheet windings 24 are stacked one above the other such that the aperture 27 in each sheet winding termination 26 receives the upwardly rising portion 28 of a separate one of the leads 12 in a particular one of the banks 14 and 16. As may now be appreciated, the sheet windings 24 can be of the same or different thicknesses, provided that the combined thickness of all the sheet windings is less than the height of the upwardly rising portion 28 of each lead 12. Thus, the sheet windings 24 can vary in thickness without adversely affecting the planarity of the leads 12.

Once the sheet windings 24 are stacked one above the other, as seen in FIG. 3, the sheet winding terminations 26 are soldered or otherwise mechanically bonded to the corresponding, upwardly rising lead portions 28, using a mass reflow bonding technique as is well known in the art. The lead frame stock 30 of FIG. 2 is then placed in a mold (not shown) consisting of upper and lower mold halves. The sheet winding terminations 26 and the upwardly rising portion 28 of the leads 12 in each of the banks 14 and 16 reside in a pair of spaced-apart mold cavities (not shown) in the lower mold half, separated from the upper mold half by the lead frame stock 30. The lower mold half typically has an intermediate cavity (not shown) lying between the two cavities accommodating a separate one of the lead banks 14 and 16. The central cavity accommodates the central portion of the sheet windings 24. As will become better understood hereinafter, the depth of each of the two cavities accommodating the upwardly rising portion of the lead banks 14 and 16 is greater than that of the cavity accommodating the central portion of the sheet windings 24. It should be understood that the mold may be configured to mold a plurality of devices at one time.

During the molding process, a quantity of insulative encapsulant (not shown), typically plastic or the like, is then admitted into each mold cavity. Typically, the molding process employs high pressure (in excess of 350 psi) to force the insulative material into the mold cavities, thereby allowing the use of highly thermally filled materials which typically have a high viscosity and also eliminating air voids in such insulative material. The result of the molding process is the formation of the insulative bodies 18 and 19 of FIG. 2 which encapsulate the sheet winding terminations 26 and the upwardly rising lead portions 28 of each of the lead banks 14 and 16, respectively, and the formation of an insulative body 34 which encapsulates the central portion of the sheet windings 24. The insulative body 34 serves to impart a large measure of rigidity to the sheet windings 24. Note that the insulative body 34 is of a height much less than the height of the bodies 18 and 19, leaving an "open" region above and below the encapsulated stack of sheet windings.

Referring to FIG. 4, after the molding process, then, each of the core halves 20 and 22, which are formed from a ferromagnetic material, is glued to the top and bottom of the insulative body 34, as best seen in FIG. 4, so as to fill the "open" regions thereabove and therebelow, respectively. Finally, the dams 32 and the peripheral flashing 33 of FIG. 3 of the lead frame stock 30 are trimmed from the leads 12, and the leads are then formed as seen in FIG. 4 to complete the magnetic device and facilitate its attachment to a surface of a substrate (not shown) such as a printed circuit board. Alternatively, the leads 12 could be formed for insertion in corresponding apertures in a circuit board. Rather than trim all of the dams 32, it may be desirable to allow selected ones of the dams to remain in place to effectively short-circuit one or more pairs of the leads 12 to increase the current-carrying capability of the device 10.

The above-described construction of the magnetic device 10 affords a number of distinct advantages. By molding the device 10 in the manner described, a far greater strength is afforded to the stack of sheet windings 24 than would be afforded by a conventional bobbin. Moreover, the fact that the device 10 is fabricated without a bobbin allows it to have a reduced size without any diminution in strength. Further, by molding the device 10 in the manner described, more highly thermally filled materials can be used, allowing for better heat dissipation, and also air voids in such material can be eliminated. By eliminating such air voids, the dielectric property of the insulation about the sheet windings is maintained at a high level. Additionally, fabricating the power magnetic device 10 from the lead frame stock 30 allows for greater co-planarity of the leads 12, which better facilitates attachment of the device 10 on the surface of a substrate. Also, the use of the lead frame 30 allows for assembly techniques, employed in the construction of integrated circuits, to be employed in fabricating the power magnetic device 10.

The foregoing describes a bobbinless power magnetic device 10 which offers increased strength and greater coplanarity as compared to devices utilizing a bobbin.

Claims (5)

We claim:
1. A method of manufacturing a magnetic device for attachment to a substrate, comprising the steps of:
placing at least one generally planar sheet winding, having a pair of spaced-apart terminations, onto a lead frame stock such that each termination receives an upwardly rising portion of a separate lead integral with the lead frame stock so as to make an electrical connection with the winding termination;
encapsulating each sheet winding termination and the upwardly rising portion of each lead with a mass of insulative material;
attaching a ferromagnetic core about a portion of each sheet winding completely separating each lead from the lead frame stock; and
forming each lead for attachment to a substrate.
2. The method according to claim 1 wherein a plurality of sheet windings are placed one above the other such that each sheet winding termination receives the upwardly rising portion of a separate lead of the lead frame.
3. The method according to claim 2 wherein the leads of the lead frame are arranged in two spaced-apart banks and wherein the step of encapsulating each sheet winding termination and upwardly rising portion of each lead includes the step of molding a mass of insulative material about each bank of leads.
4. The method according to claim 1 wherein the step of attaching a core comprises gluing each of a pair of core halves on opposite sides of a portion of each sheet winding.
5. The method according to claim 1 further including the step of solder-bonding each sheet winding termination to the upwardly rising portion of a separate lead.
US07/989,394 1992-12-11 1992-12-11 Method of making a surface-mount power magnetic device Expired - Lifetime US5345670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/989,394 US5345670A (en) 1992-12-11 1992-12-11 Method of making a surface-mount power magnetic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/989,394 US5345670A (en) 1992-12-11 1992-12-11 Method of making a surface-mount power magnetic device
EP19930309626 EP0601791A1 (en) 1992-12-11 1993-12-01 Surface-mount power magnetic device and method of making the same
JP33986793A JPH06215953A (en) 1992-12-11 1993-12-07 Magnet element and its manufacturing method

Publications (1)

Publication Number Publication Date
US5345670A true US5345670A (en) 1994-09-13

Family

ID=25535080

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/989,394 Expired - Lifetime US5345670A (en) 1992-12-11 1992-12-11 Method of making a surface-mount power magnetic device

Country Status (3)

Country Link
US (1) US5345670A (en)
EP (1) EP0601791A1 (en)
JP (1) JPH06215953A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469334A (en) * 1991-09-09 1995-11-21 Power Integrations, Inc. Plastic quad-packaged switched-mode integrated circuit with integrated transformer windings and mouldings for transformer core pieces
US5479146A (en) * 1993-07-21 1995-12-26 Fmtt, Inc. Pot core matrix transformer having improved heat rejection
EP0726642A1 (en) * 1995-02-08 1996-08-14 AT&T Corp. High frequency surface mount transformer-diode power module
US5724016A (en) * 1995-05-04 1998-03-03 Lucent Technologies Inc. Power magnetic device employing a compression-mounted lead to a printed circuit board
US5804952A (en) * 1996-12-05 1998-09-08 Lucent Technologies Inc. Encapsulated package for a power magnetic device and method of manufacture therefor
WO1999017317A1 (en) * 1997-09-29 1999-04-08 Pulse Engineering, Inc. Microelectronic component carrier and method of its manufacture
DE19818673A1 (en) * 1998-04-27 1999-10-28 Thomson Brandt Gmbh Kitchen sink
US6073339A (en) * 1996-09-20 2000-06-13 Tdk Corporation Of America Method of making low profile pin-less planar magnetic devices
US6138344A (en) * 1997-08-08 2000-10-31 Lucent Technologies Inc. Methods of manufacturing a magnetic device and tool for manufacturing the same
US6239683B1 (en) 1995-05-04 2001-05-29 Tyco Electronics Logistics A.G. Post-mountable planar magnetic device and method of manufacture thereof
US6353379B1 (en) 2000-02-28 2002-03-05 Lucent Technologies Inc. Magnetic device employing a winding structure spanning multiple boards and method of manufacture thereof
US20040095737A1 (en) * 2000-07-31 2004-05-20 Delta Electronics, Inc Method for packing electronic device by interconnecting frame body and frame leads with insulating block and its packing structure
US20050046534A1 (en) * 2003-07-08 2005-03-03 Gilmartin Michael T. Form-less electronic device and methods of manufacturing
US20050168216A1 (en) * 2002-01-23 2005-08-04 Mitsubishi Denki Kabushiki Kaisha Rotation angle detector
DE19945013C5 (en) * 1999-09-20 2005-10-13 Epcos Ag Planar
US20050241415A1 (en) * 2004-04-28 2005-11-03 Damon Germanton Load sensor plate
US20060097831A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Power module
US20060097832A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Encapsulated package for a magnetic device
US20060096088A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Method of manufacturing an encapsulated package for a magnetic device
US20060097833A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Encapsulated package for a magnetic device
US20070075817A1 (en) * 2005-10-05 2007-04-05 Lotfi Ashraf W Magnetic device having a conductive clip
US7378932B1 (en) 2007-05-11 2008-05-27 Ice Components, Inc. Reduced size high-frequency surface-mount current sense transformer
US7426780B2 (en) 2004-11-10 2008-09-23 Enpirion, Inc. Method of manufacturing a power module
US20090066300A1 (en) * 2007-09-10 2009-03-12 Lotfi Ashraf W Power Converter Employing a Micromagnetic Device
US20090066467A1 (en) * 2007-09-10 2009-03-12 Lotfi Ashraf W Micromagnetic Device and Method of Forming the Same
US20090085702A1 (en) * 2007-09-29 2009-04-02 Delta Electronics, Inc. Connector and Power Transformer Structure Comprising the Same
US20090160594A1 (en) * 2007-12-20 2009-06-25 Kabushiki Kaisha Toshiba Coiled component and electronic apparatus
US20090309686A1 (en) * 2008-06-12 2009-12-17 Power Integrations, Inc. Low profile coil-wound bobbin
US20100163068A1 (en) * 2008-12-17 2010-07-01 L'oreal Nail varnish comprising at least one polysaccharide ester or alkyl ether and at least one plant resin
US20100265029A1 (en) * 2009-04-17 2010-10-21 Delta Electronics, Inc. Winding structure for a transformer and winding
US7920042B2 (en) 2007-09-10 2011-04-05 Enpirion, Inc. Micromagnetic device and method of forming the same
US20110101949A1 (en) * 2008-04-16 2011-05-05 Douglas Dean Lopata Power Converter with Controller Operable in Selected Modes of Operation
US20110101948A1 (en) * 2008-04-16 2011-05-05 Douglas Dean Lopata Power Converter with Controller Operable in Selected Modes of Operation
US7955868B2 (en) 2007-09-10 2011-06-07 Enpirion, Inc. Method of forming a micromagnetic device
US8018315B2 (en) 2007-09-10 2011-09-13 Enpirion, Inc. Power converter employing a micromagnetic device
US8133529B2 (en) 2007-09-10 2012-03-13 Enpirion, Inc. Method of forming a micromagnetic device
US8139362B2 (en) 2005-10-05 2012-03-20 Enpirion, Inc. Power module with a magnetic device having a conductive clip
US8153473B2 (en) 2008-10-02 2012-04-10 Empirion, Inc. Module having a stacked passive element and method of forming the same
US8266793B2 (en) 2008-10-02 2012-09-18 Enpirion, Inc. Module having a stacked magnetic device and semiconductor device and method of forming the same
US8339802B2 (en) 2008-10-02 2012-12-25 Enpirion, Inc. Module having a stacked magnetic device and semiconductor device and method of forming the same
US8541991B2 (en) 2008-04-16 2013-09-24 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US20130278371A1 (en) * 2012-03-27 2013-10-24 Pulse Electronics, Inc. Flat coil planar transformer and methods
US8631560B2 (en) 2005-10-05 2014-01-21 Enpirion, Inc. Method of forming a magnetic device having a conductive clip
US8692532B2 (en) 2008-04-16 2014-04-08 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US8698463B2 (en) 2008-12-29 2014-04-15 Enpirion, Inc. Power converter with a dynamically configurable controller based on a power conversion mode
US8701272B2 (en) 2005-10-05 2014-04-22 Enpirion, Inc. Method of forming a power module with a magnetic device having a conductive clip
US20140275915A1 (en) * 2013-03-13 2014-09-18 Medtronic, Inc. Implantable medical device including a molded planar transformer
US8867295B2 (en) 2010-12-17 2014-10-21 Enpirion, Inc. Power converter for a memory module
US9054086B2 (en) 2008-10-02 2015-06-09 Enpirion, Inc. Module having a stacked passive element and method of forming the same
USD743400S1 (en) * 2010-06-11 2015-11-17 Ricoh Company, Ltd. Information storage device
US9299691B2 (en) 2012-11-30 2016-03-29 Enpirion, Inc. Semiconductor device including alternating source and drain regions, and respective source and drain metallic strips
US9509217B2 (en) 2015-04-20 2016-11-29 Altera Corporation Asymmetric power flow controller for a power converter and method of operating the same
US9548714B2 (en) 2008-12-29 2017-01-17 Altera Corporation Power converter with a dynamically configurable controller and output filter
US10446309B2 (en) 2016-04-20 2019-10-15 Vishay Dale Electronics, Llc Shielded inductor and method of manufacturing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629067A1 (en) * 1996-07-18 1998-01-22 Rene Weiner Bobbins for a flat coil
US6335671B1 (en) * 1999-08-20 2002-01-01 Tyco Electronics Logistics Ag Surface mount circuit assembly
EP1085537A3 (en) * 1999-09-14 2001-04-11 Mannesmann VDO Aktiengesellschaft Planar transformer, manufacturing process of its winding and compact electrical device comprising such a planar transformer
US6628531B2 (en) 2000-12-11 2003-09-30 Pulse Engineering, Inc. Multi-layer and user-configurable micro-printed circuit board
US7936244B2 (en) 2008-05-02 2011-05-03 Vishay Dale Electronics, Inc. Highly coupled inductor
DE102011075707A1 (en) * 2011-05-12 2012-11-15 SUMIDA Components & Modules GmbH Transformer with laminated winding
NL2011129C2 (en) 2013-07-09 2015-01-12 Eco Logical Entpr B V Compact electrical device and electrodynamic loudspeaker, electric motor, screener and adjustable coupling based on them.
NL2013278B1 (en) * 2014-07-30 2016-07-22 Compact Electro-Magnetic Tech And Eco-Logical Entpr B V Method for manufacturing an electrical device, as well as device obtained with that method.
NL2013277B1 (en) * 2014-07-30 2016-09-21 Compact Electro-Magnetic Tech And Eco-Logical Entpr B V Electrical device, in particular a coil or a transformer.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857146A (en) * 1972-04-13 1974-12-31 Suisse Horlogerie Method of making a quartz bar resonator
US3913195A (en) * 1974-05-28 1975-10-21 William D Beaver Method of making piezoelectric devices
US5179365A (en) * 1989-12-29 1993-01-12 At&T Bell Laboratories Multiple turn low profile magnetic component using sheet windings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932828A (en) * 1973-10-23 1976-01-13 Coils, Inc. Encapsulated coil and method of making the same
JPH0471326B2 (en) * 1985-07-02 1992-11-13 Matsushita Electric Ind Co Ltd
JPH02130808A (en) * 1988-11-10 1990-05-18 Fujitsu Ltd Transformer
US5034854A (en) * 1989-06-01 1991-07-23 Matsushita Electric Industrial Co., Ltd. Encased transformer
US4967175A (en) * 1989-11-13 1990-10-30 Tektronix, Inc. Inductor and carrier suitable for attaching to a hybrid substrate or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857146A (en) * 1972-04-13 1974-12-31 Suisse Horlogerie Method of making a quartz bar resonator
US3913195A (en) * 1974-05-28 1975-10-21 William D Beaver Method of making piezoelectric devices
US5179365A (en) * 1989-12-29 1993-01-12 At&T Bell Laboratories Multiple turn low profile magnetic component using sheet windings

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469334A (en) * 1991-09-09 1995-11-21 Power Integrations, Inc. Plastic quad-packaged switched-mode integrated circuit with integrated transformer windings and mouldings for transformer core pieces
US5479146A (en) * 1993-07-21 1995-12-26 Fmtt, Inc. Pot core matrix transformer having improved heat rejection
EP0726642A1 (en) * 1995-02-08 1996-08-14 AT&T Corp. High frequency surface mount transformer-diode power module
US6262649B1 (en) 1995-05-04 2001-07-17 Tyco Electronics Logistics Ag Power magnetic device employing a leadless connection to a printed circuit board and method of manufacture thereof
US5724016A (en) * 1995-05-04 1998-03-03 Lucent Technologies Inc. Power magnetic device employing a compression-mounted lead to a printed circuit board
US6239683B1 (en) 1995-05-04 2001-05-29 Tyco Electronics Logistics A.G. Post-mountable planar magnetic device and method of manufacture thereof
US6128817A (en) * 1995-05-04 2000-10-10 Lucent Technologies Inc. Method of manufacturing a power magnetic device mounted on a printed circuit board
US6073339A (en) * 1996-09-20 2000-06-13 Tdk Corporation Of America Method of making low profile pin-less planar magnetic devices
US5804952A (en) * 1996-12-05 1998-09-08 Lucent Technologies Inc. Encapsulated package for a power magnetic device and method of manufacture therefor
US6138344A (en) * 1997-08-08 2000-10-31 Lucent Technologies Inc. Methods of manufacturing a magnetic device and tool for manufacturing the same
US5986894A (en) * 1997-09-29 1999-11-16 Pulse Engineering, Inc. Microelectronic component carrier and method of its manufacture
WO1999017317A1 (en) * 1997-09-29 1999-04-08 Pulse Engineering, Inc. Microelectronic component carrier and method of its manufacture
US6154111A (en) * 1998-04-27 2000-11-28 Deutsche Thomson-Brandt Gmbh Storage coil
DE19818673A1 (en) * 1998-04-27 1999-10-28 Thomson Brandt Gmbh Kitchen sink
DE19945013C5 (en) * 1999-09-20 2005-10-13 Epcos Ag Planar
US6353379B1 (en) 2000-02-28 2002-03-05 Lucent Technologies Inc. Magnetic device employing a winding structure spanning multiple boards and method of manufacture thereof
US6928725B2 (en) 2000-07-31 2005-08-16 Delta Electronics, Inc. Method for packing electronic device by interconnecting frame body and frame leads with insulating block and its packing structure
US20040095737A1 (en) * 2000-07-31 2004-05-20 Delta Electronics, Inc Method for packing electronic device by interconnecting frame body and frame leads with insulating block and its packing structure
US20050168216A1 (en) * 2002-01-23 2005-08-04 Mitsubishi Denki Kabushiki Kaisha Rotation angle detector
US7356910B2 (en) * 2002-01-23 2008-04-15 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a rotation angle detector
US20050046534A1 (en) * 2003-07-08 2005-03-03 Gilmartin Michael T. Form-less electronic device and methods of manufacturing
US8368500B2 (en) 2003-07-08 2013-02-05 Pulse Electronics, Inc. Form-less electronic device assemblies and methods of operation
US8098125B2 (en) 2003-07-08 2012-01-17 Pulse Electronics, Inc. Form-less electronic device assemblies and methods of operation
US7876189B2 (en) 2003-07-08 2011-01-25 Pulse Engineering, Inc. Form-less electronic device assemblies and methods of operation
US20100026438A1 (en) * 2003-07-08 2010-02-04 Gilmartin Michael T Form-less electronic device assemblies and methods of operation
US7598837B2 (en) 2003-07-08 2009-10-06 Pulse Engineering, Inc. Form-less electronic device and methods of manufacturing
US8643456B2 (en) 2003-07-08 2014-02-04 Pulse Electronics, Inc. Form-less electronic device assemblies and methods of operation
US20050241415A1 (en) * 2004-04-28 2005-11-03 Damon Germanton Load sensor plate
US20070084299A1 (en) * 2004-04-28 2007-04-19 Damon Germanton Load sensor plate
US7204010B2 (en) * 2004-04-28 2007-04-17 Measurement Specialties, Inc. Method of making a load sensor plate
US7462317B2 (en) 2004-11-10 2008-12-09 Enpirion, Inc. Method of manufacturing an encapsulated package for a magnetic device
US7180395B2 (en) 2004-11-10 2007-02-20 Enpirion, Inc. Encapsulated package for a magnetic device
US8043544B2 (en) 2004-11-10 2011-10-25 Enpirion, Inc. Method of manufacturing an encapsulated package for a magnetic device
US7426780B2 (en) 2004-11-10 2008-09-23 Enpirion, Inc. Method of manufacturing a power module
US7256674B2 (en) 2004-11-10 2007-08-14 Enpirion, Inc. Power module
US20080301929A1 (en) * 2004-11-10 2008-12-11 Lotfi Ashraf W Method of Manufacturing a Power Module
US8528190B2 (en) 2004-11-10 2013-09-10 Enpirion, Inc. Method of manufacturing a power module
US20060097831A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Power module
US20090065964A1 (en) * 2004-11-10 2009-03-12 Lotfi Ashraf W Method of Manufacturing an Encapsulated Package for a Magnetic Device
US20060097832A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Encapsulated package for a magnetic device
US20060097833A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Encapsulated package for a magnetic device
US20060096088A1 (en) * 2004-11-10 2006-05-11 Lotfi Ashraf W Method of manufacturing an encapsulated package for a magnetic device
US7276998B2 (en) 2004-11-10 2007-10-02 Enpirion, Inc. Encapsulated package for a magnetic device
US8701272B2 (en) 2005-10-05 2014-04-22 Enpirion, Inc. Method of forming a power module with a magnetic device having a conductive clip
US8139362B2 (en) 2005-10-05 2012-03-20 Enpirion, Inc. Power module with a magnetic device having a conductive clip
US7688172B2 (en) 2005-10-05 2010-03-30 Enpirion, Inc. Magnetic device having a conductive clip
US8384506B2 (en) 2005-10-05 2013-02-26 Enpirion, Inc. Magnetic device having a conductive clip
US8631560B2 (en) 2005-10-05 2014-01-21 Enpirion, Inc. Method of forming a magnetic device having a conductive clip
US10304615B2 (en) 2005-10-05 2019-05-28 Enpirion, Inc. Method of forming a power module with a magnetic device having a conductive clip
US20070075817A1 (en) * 2005-10-05 2007-04-05 Lotfi Ashraf W Magnetic device having a conductive clip
US7378932B1 (en) 2007-05-11 2008-05-27 Ice Components, Inc. Reduced size high-frequency surface-mount current sense transformer
US20090066300A1 (en) * 2007-09-10 2009-03-12 Lotfi Ashraf W Power Converter Employing a Micromagnetic Device
US7952459B2 (en) 2007-09-10 2011-05-31 Enpirion, Inc. Micromagnetic device and method of forming the same
US8618900B2 (en) 2007-09-10 2013-12-31 Enpirion, Inc. Micromagnetic device and method of forming the same
US8018315B2 (en) 2007-09-10 2011-09-13 Enpirion, Inc. Power converter employing a micromagnetic device
US20090066467A1 (en) * 2007-09-10 2009-03-12 Lotfi Ashraf W Micromagnetic Device and Method of Forming the Same
US8339232B2 (en) 2007-09-10 2012-12-25 Enpirion, Inc. Micromagnetic device and method of forming the same
US7955868B2 (en) 2007-09-10 2011-06-07 Enpirion, Inc. Method of forming a micromagnetic device
US8133529B2 (en) 2007-09-10 2012-03-13 Enpirion, Inc. Method of forming a micromagnetic device
US7544995B2 (en) 2007-09-10 2009-06-09 Enpirion, Inc. Power converter employing a micromagnetic device
US9299489B2 (en) 2007-09-10 2016-03-29 Enpirion, Inc. Micromagnetic device and method of forming the same
US7920042B2 (en) 2007-09-10 2011-04-05 Enpirion, Inc. Micromagnetic device and method of forming the same
US8232856B2 (en) * 2007-09-29 2012-07-31 Delta Electronics, Inc. Connector and power transformer structure comprising the same
US20090085702A1 (en) * 2007-09-29 2009-04-02 Delta Electronics, Inc. Connector and Power Transformer Structure Comprising the Same
US20090160594A1 (en) * 2007-12-20 2009-06-25 Kabushiki Kaisha Toshiba Coiled component and electronic apparatus
US20110101949A1 (en) * 2008-04-16 2011-05-05 Douglas Dean Lopata Power Converter with Controller Operable in Selected Modes of Operation
US9246390B2 (en) 2008-04-16 2016-01-26 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US8686698B2 (en) 2008-04-16 2014-04-01 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US20110101948A1 (en) * 2008-04-16 2011-05-05 Douglas Dean Lopata Power Converter with Controller Operable in Selected Modes of Operation
US8541991B2 (en) 2008-04-16 2013-09-24 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US8692532B2 (en) 2008-04-16 2014-04-08 Enpirion, Inc. Power converter with controller operable in selected modes of operation
US20090309686A1 (en) * 2008-06-12 2009-12-17 Power Integrations, Inc. Low profile coil-wound bobbin
US8451082B2 (en) 2008-06-12 2013-05-28 Power Integrations, Inc. Low profile coil-wound bobbin
US8102237B2 (en) * 2008-06-12 2012-01-24 Power Integrations, Inc. Low profile coil-wound bobbin
US8153473B2 (en) 2008-10-02 2012-04-10 Empirion, Inc. Module having a stacked passive element and method of forming the same
US8339802B2 (en) 2008-10-02 2012-12-25 Enpirion, Inc. Module having a stacked magnetic device and semiconductor device and method of forming the same
US9054086B2 (en) 2008-10-02 2015-06-09 Enpirion, Inc. Module having a stacked passive element and method of forming the same
US8266793B2 (en) 2008-10-02 2012-09-18 Enpirion, Inc. Module having a stacked magnetic device and semiconductor device and method of forming the same
US20100163068A1 (en) * 2008-12-17 2010-07-01 L'oreal Nail varnish comprising at least one polysaccharide ester or alkyl ether and at least one plant resin
US9548714B2 (en) 2008-12-29 2017-01-17 Altera Corporation Power converter with a dynamically configurable controller and output filter
US8698463B2 (en) 2008-12-29 2014-04-15 Enpirion, Inc. Power converter with a dynamically configurable controller based on a power conversion mode
US20100265029A1 (en) * 2009-04-17 2010-10-21 Delta Electronics, Inc. Winding structure for a transformer and winding
US9989887B2 (en) 2010-06-11 2018-06-05 Ricoh Company, Ltd. Apparatus and method for preventing an information storage device from falling from a removable device
US9256158B2 (en) 2010-06-11 2016-02-09 Ricoh Company, Limited Apparatus and method for preventing an information storage device from falling from a removable device
USD758482S1 (en) 2010-06-11 2016-06-07 Ricoh Company, Ltd. Toner bottle
USD743400S1 (en) * 2010-06-11 2015-11-17 Ricoh Company, Ltd. Information storage device
USD757161S1 (en) 2010-06-11 2016-05-24 Ricoh Company, Ltd. Toner container
US9599927B2 (en) 2010-06-11 2017-03-21 Ricoh Company, Ltd. Apparatus and method for preventing an information storage device from falling from a removable device
US8867295B2 (en) 2010-12-17 2014-10-21 Enpirion, Inc. Power converter for a memory module
US9627028B2 (en) 2010-12-17 2017-04-18 Enpirion, Inc. Power converter for a memory module
US20130278371A1 (en) * 2012-03-27 2013-10-24 Pulse Electronics, Inc. Flat coil planar transformer and methods
US9378885B2 (en) * 2012-03-27 2016-06-28 Pulse Electronics, Inc. Flat coil windings, and inductive devices and electronics assemblies that utilize flat coil windings
US9553081B2 (en) 2012-11-30 2017-01-24 Enpirion, Inc. Semiconductor device including a redistribution layer and metallic pillars coupled thereto
US9443839B2 (en) 2012-11-30 2016-09-13 Enpirion, Inc. Semiconductor device including gate drivers around a periphery thereof
US9299691B2 (en) 2012-11-30 2016-03-29 Enpirion, Inc. Semiconductor device including alternating source and drain regions, and respective source and drain metallic strips
US20140275915A1 (en) * 2013-03-13 2014-09-18 Medtronic, Inc. Implantable medical device including a molded planar transformer
US9509217B2 (en) 2015-04-20 2016-11-29 Altera Corporation Asymmetric power flow controller for a power converter and method of operating the same
US10084380B2 (en) 2015-04-20 2018-09-25 Altera Corporation Asymmetric power flow controller for a power converter and method of operating the same
US10446309B2 (en) 2016-04-20 2019-10-15 Vishay Dale Electronics, Llc Shielded inductor and method of manufacturing

Also Published As

Publication number Publication date
JPH06215953A (en) 1994-08-05
EP0601791A1 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US6291259B1 (en) Stackable ball grid array semiconductor package and fabrication method thereof
TWI258154B (en) Electronic transformer/inductor devices and methods for making same
US4547961A (en) Method of manufacture of miniaturized transformer
US4543553A (en) Chip-type inductor
US4314221A (en) Inductance device
EP0649152B1 (en) Transformer integrable with a semiconductor integrated circuit and method for producing thereof
KR960003766B1 (en) Plastic pin grid array package
US6204744B1 (en) High current, low profile inductor
US4654472A (en) Electronic component package with multiconductive base forms for multichannel mounting
US5469334A (en) Plastic quad-packaged switched-mode integrated circuit with integrated transformer windings and mouldings for transformer core pieces
US7523542B2 (en) Method of manufacturing a magnetic element
JP2978117B2 (en) Surface mount components using pot type core
US5386206A (en) Layered transformer coil having conductors projecting into through holes
US6535095B2 (en) Wound type common mode choke coil
US7057486B2 (en) Controlled induction device and method of manufacturing
US20020067232A1 (en) Inductor and manufacturing method therefor
US3185947A (en) Inductive module for electronic devices
KR20120011875A (en) Surface mount magnetic components and methods of manufacturing the same
US5656985A (en) Electronic surface mount package
EP0869518B1 (en) Choke coil
US4498067A (en) Small-size inductor
US7667565B2 (en) Current measurement using inductor coil with compact configuration and low TCR alloys
US7688172B2 (en) Magnetic device having a conductive clip
US5781091A (en) Electronic inductive device and method for manufacturing
EP1103993A1 (en) Surface-mount coil and method for manufacturing same

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMERICAN TELEPHONE AND TELEGRAPH COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:PITZELE, LENNART DANIEL;WILKOWSKI, MATTHEW ANTHONY;REEL/FRAME:006350/0584

Effective date: 19921209

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12