US5313856A - Multistage transmission and shifting process therefor - Google Patents

Multistage transmission and shifting process therefor Download PDF

Info

Publication number
US5313856A
US5313856A US07/910,172 US91017292A US5313856A US 5313856 A US5313856 A US 5313856A US 91017292 A US91017292 A US 91017292A US 5313856 A US5313856 A US 5313856A
Authority
US
United States
Prior art keywords
speed
transmission
gear
input shaft
gear stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/910,172
Inventor
Arthur Schneider
Christian Klarhoefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Assigned to VOLKSWAGEN AG reassignment VOLKSWAGEN AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLARHOEFER, CHRISTIAN, SCHNEIDER, ARTHUR
Application granted granted Critical
Publication of US5313856A publication Critical patent/US5313856A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • B60W2710/0661Speed change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0407Synchronisation before shifting by control of clutch in parallel torque path

Definitions

  • the gradient set point can be predetermined as a function of several other parameters.
  • One of these parameters is the torque transmitted through the transmission input shaft before initiation of the shifting operation. This depends on the engine torque and on the inertia of all rotating parts upstream from the transmission input shaft and connected to it. Because the gradient set point depends on at least one of those torques, the torque to be transmitted over the additional gear stage must be between the torque transmitted before the shifting operation is initiated and the torque transmitted after the shifting operation is completed.
  • the set point of the gradient is reduced by the instantaneous value of the transmission input shaft speed before it reaches the synchronous speed.
  • Reaching the synchronous speed means that the ratio of the speeds of the transmission input and output shafts corresponds to the transmission ratio of the gear stage to be engaged.
  • the new gear stage is engaged.
  • the engagement process requires a certain finite time period. Within this time period, the input shaft speed should be as close as possible to the synchronous speed.
  • the gradient is reduced before reaching the synchronous speed as mentioned above. The time available for engaging the new gear stage is thus lengthened.
  • the time at which the gradient is changed may be determined in various ways. It should also be pointed out that the gradient may be changed or in several steps.
  • FIG. 4 is a graphical representation showing the variation of engine torque and of the difference between the transmission input shaft speed and the synchronous speed during upshifting
  • FIGS. 5-7 are graphical representations showing torque and speed variations corresponding to those of FIGS. 2-4 which occur during downshifting.
  • FIG. 8 is a schematic diagram showing another representative embodiment of a multistage transmission according to this invention.
  • FIG. 1 shows schematically a typical embodiment of the invention including a multistage transmission 11 having an input shaft 12 connected by a start-up and separating clutch 13 to a flywheel 14 of a driving engine 15.
  • the input shaft 12 can be connected to the transmission output shaft 22 which leads to the drive wheels of the vehicle, by each of a series of pairs of gears 16-19 corresponding to the transmission gear stages, and by the sliding sleeves 20 and 21.
  • the transmission also has a further gear stage 23, consisting of a pair of gear wheels 24 and a clutch 25, which can be engaged between the gear input shaft 12 and the gear output shaft 22, providing the highest-ratio transmission gear.
  • the clutch 25 is shown as a multidisk clutch, but it could also be a cone clutch, a magnetic clutch or a hydrodynamic or hydrostatic clutch.
  • the torque transmitted by the multidisk clutch 25 can be set at a predetermined maximum level and the loose wheel of the pair of gear wheels 24 in this stage can be connected by the multidisk clutch 25 to the transmission input shaft 12.
  • the clutch 25 can be actuated by a first actuating device 26 even when there is a complete connection between the input shaft and the output shaft through another stage in the multistage transmission 11, as shown in FIG. 1, for example, by the first gear stage consisting of the gear wheel pair 16.
  • the typical example of a multistage transmission 11 shown in FIG. 1 includes a control unit 27 and also has a torque control device 28 connected to the drive engine 15 and another torque control device 29 with a second actuating device 30 connected to the start-up and separating clutch 13.
  • a control unit 27 controls the control unit 27.
  • FIGS. 2-4 illustrate diagrammatically the variations of the torques and speeds during upshifting, for example, from the first gear stage to the second gear stage.
  • the times t 1 -t 5 are the same throughout FIGS. 2-4.
  • the process of upshifting begins at the time t 1 .
  • the additional gear stage 23 is selected.
  • This stage has a higher transmission ratio than the first gear stage consisting of the gear wheel pair 16 which is shown engaged in FIG. 1. Consequently, the multidisk clutch 25 cannot be completely engaged in this phase of the shifting operation.
  • the multidisk clutch 25 is controlled in such a way that the torque M LK which is transmitted through this stage is approximately the same as the torque being transmitted through the first gear stage which was previously engaged.
  • the maximum torque M LK ,MAX transmitted in this way by the multidisk clutch 25 is reached at a time t 2 and is then maintained through appropriate control of the first operating device 26 by the control unit 27.
  • Engagement of the additional gear stage 23 also causes the engine speed n MOT to drop.
  • the engine speed drops to the point that the synchronous speed of the transmission input shaft 12 for engaging the second gear stage consisting of the gear wheel pair 17 is reached at t 4 .
  • the speed difference n DIFF is shown as the deviation in the speed of the transmission input shaft n EIN from the synchronous speed.
  • n DIFF 0 and thus the synchronous speed is reached.
  • the engine speed n MOT drops steadily from the start of the shifting operation at time t 1 and reaches the synchronous speed at time t 4 with a reduction in the rate of change in speed approximately at or shortly before reaching the synchronous speed.
  • the rate of change in engine speed n MOT is referred to herein as the gradient.
  • the goal at this point is to avoid interrupting the application of torque to the transmission output shaft 22 if possible.
  • the actual shifting operation i.e., engaging and disengaging the clutch sleeves 20 and 21, should require as little torque as possible.
  • the drop in engine speed n MOT described here necessarily results from the torque M LK transmitted to the multidisk clutch 25.
  • the torque M LK should be as constant as possible in the course of the shifting operation, but it is difficult to measure per se.
  • the change in engine speed n MOT namely, the gradient, is used instead as a measure of the torque M LK .
  • the speed n MOT is also the speed of the transmission input shaft n EIN .
  • FIGS. 3 and 4 show that there is a constant clutch torque M LK and a constant gradient of the speed n MOT between the times t 2 and t 3 .
  • the speed n MOT is lowered to the point that the loose wheel of the pair of gear wheels 17 of the second gear is synchronized with the transmission output shaft 22 and the clutch sleeve 21 can then be actuated.
  • This clutch engagement process requires a certain finite period of time. For this reason, the speed at the transmission input shaft n EIN , and the engine speed n MOT , should pass the synchronous point as slowly as possible.
  • the gradient is reduced after the time t 3 and before reaching the synchronous speed. This reduces the pressure in the multidisk clutch 25 and thus also the transmitted torque M LK .
  • the gradient is reduced after a certain period of time which is measured from the start of the shifting operation t 1 .
  • the gradient is reduced after the actual transmission input speed n EIN-IST or the actual engine speed n MOT-IST has been reduced to provide a certain difference from the synchronous speed.
  • the gradient is changed as a function of the difference between the actual speed and the synchronous speed.
  • the gradient is changed as a function of the difference between the actual transmission input speed n EIN-IST and the transmission input speed n EIN at the beginning of the shifting operation (n EIN-START ).
  • FIG. 2 shows the variation of the torque m AUS on the transmission output shaft 22 during the shifting operation.
  • the torque transmitted by the first gear stage is fully effective.
  • the torque transmitted through the additional gear stage 23 is built up, while the torque transmitted through the first gear stage is reduced at the same time.
  • the first gear stage is released and most of the original torque is transmitted through the additional gear stage 23.
  • the gradient is lowest and thus also the output torque M AUS is at its lowest point.
  • the torque M LK transmitted by the multidisk clutch 25 is selected so that a torque M AUS , which corresponds to the torques transmitted by the engaged gear stages before and after the shifting operation, is produced at the transmission output shaft 22. Accordingly, the torque M AUS between the times t 2 and t 3 has a value which is somewhere between the torque M AUS up to time t 1 and the torque M AUS after time t 5 .
  • the gradient is thus not a fixed parameter but instead depends, among other things, on the torque M MOT of the driving engine and the gear stage to be engaged.
  • the engine torque M MOT can be determined, for example, by measuring the pressure in the manifold passage of the engine.
  • approximate characteristic data are stored in the control unit 27 to assign a gradient set point to each of a number of combinations of engine torque M MOT and transmission ratio.
  • the gradient is monitored and regulated by an appropriate adjustment of the pressing force in the multidisk clutch.
  • the transmission ratio of the original gear stage provides part of the stored characteristic data used as the basis for gradient adjustment. It is especially advantageous, although more expensive, to use a combination of both the original transmission ratio and the ratio of the gear stage into which the transmission is being shifted for this purpose. For example, it is conceivable that, after a heavy load and acceleration, the load is reduced and then it is possible to shift when driving to the next higher gear stage. The same thing is also true of shifting down.
  • the transmission ratio of the new gear is thus not necessarily derived from the transmission ratio of either the old gear or the new gear alone.
  • the torque on the multidisk clutch 25 also depends on the moment of inertia associated with the transmission input shaft 12 This depends essentially on the rotating masses in the driving engine 15, the flywheel 14 and the separating clutch 13. The torques stored as part of the characteristic data are adjusted accordingly.
  • the multidisk clutch 25 is actuated briefly in order to remove torque from the engaged gear stage so that the clutch sleeve 21 can be disengaged from the loose wheel of the pair of gear wheels 17 by spring force. This process is completed at the time t 2 .
  • the engine then accelerates as a function of the accelerator position and optionally as a function of the torque control device 28 and in accordance with control signals from the control unit 27. For this purpose, an engine idling volumetric control valve may be controlled.
  • the start-up and separating clutch 13 is also involved in the shifting operation.
  • this clutch is controlled by the second actuating device 30 in such a way that it transmits the torque applied to its input side only up to a certain maximum level.
  • the multidisk clutch 25 can then be designed for lower loads and thus has a simpler design. Furthermore, this can lead to a substantial reduction in the cost of the control device, especially since the actuating device 30, which is usually provided for start-up anyway, can also be used to adjust the clutch torque M LK and the gradient as required in accordance with the shifting operation. In addition or as an alternative, such an adjustment can also be dependant on the engine torque applied.
  • the gear stage 31 can be adjusted to provide the transmission ratio of the second gear stage in shifting from first to second gear and this can be accomplished before the operation of upshifting.
  • the second gear can thus be engaged as soon as a frictional engagement has been achieved in the multidisk clutch 25. At the same time, friction is reduced and the thermal output of the clutch and also its wear are minimized.
  • the pulley halves 32 and 33 are arranged as fixed wheels on the transmission input shaft 12. These pulley halves are axially adjustable on the input shaft 12 such that no driving torque can be transmitted by the belt 37 at least temporarily and the degree of belt engagement can be varied The function of the multidisk clutch 25 is thus replaced by the interaction of the pulley halves 32 and 33 with the belt 37.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

A multistage transmission has a plurality of gear stages and an additional gear stage which may be engaged to transmit part of the input shaft torque before disengagement of an engaged gear stage. A friction clutch is used to engage the additional stage. Alternatively, a variable-ratio pulley connection may be used for the additional stage. Synchronization of the transmission input shaft with a gear stage to be engaged is attained by controlling the change in input shaft speed in accordance with a selected speed gradient.

Description

BACKGROUND OF THE INVENTION
This invention relates to multistage transmissions and to processes for shifting multistage transmissions.
In conventional multistage transmissions having an input shaft and an output shaft arranged so that the output shaft is axially parallel to the input shaft and can be connected to the input shaft by a pair of gear wheels, the flow of torque from the drive engine through the transmission to the motor vehicle wheels must be interrupted when shifting into a new gear. The length of this interruption in driving force is determined by the period of time needed to synchronize the transmission gears which are to be engaged after shifting.
European Published Application No. 01 73 117 discloses a process for shifting a multistage transmission in which the driving torque of the engine is transmitted to the motor vehicle wheels through a temporary engageable gear stage during the interruption in driving force that occurs during the process of shifting to a higher gear. The temporary gear engagement takes place simultaneously with the interruption in driving force so that the driving torque of the engine is transferred in sequence first from the lower gear stage to the temporary gear stage and then to the higher gear stage in order to transmit a driving force during the shift-up process.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a process for shifting a multistage transmission which overcomes the disadvantages of the prior art.
Another object of the invention is to provide an improved shifting process for a multistage transmission in which the torque available for driving the motor vehicle during shifting has an especially favorable characteristic.
These and other objects of the invention are attained by partially engaging a temporary gear stage while the original gear stage is still engaged, disengaging the original gear stage while the temporary gear stage is at least partially engaged, and controlling the speed of the transmission input shaft as a function of an operating characteristic of the vehicle engine to synchronize the gears of the next gear stage to be engaged.
Thus, a gear stage for initiating the process of shifting up is engaged when the original gear stage is still engaged and the driving torque is divided in two paths in the multistage transmission. In other words, a portion of the torque is still transmitted through the original gear stage while the rest of the driving force is transmitted to the drive train through another gear stage. Finally, when the original gear stage is disengaged, e.g., after the driving torque transmitted through the path drops below a given level, only the other gear stage transmits the driving torque. Because of this branching of the driving torque, the torque available for driving the motor vehicle has an especially favorable characteristic.
At the same time, a change in the speed of the transmission input shaft is produced because of the driving torque transmitted through the additional gear stage. During this process, the transmission input shaft speed changes to a certain extent and this change has, for example, a negative speed gradient during the process of shifting up. As a result, a suitable driving torque is available at the transmission output even during the process of changing gears.
The process of shifting down is carried out similarly. In contrast to shifting up, the change in the speed of the transmission input shaft is positive because the input shaft turns at a faster speed in a lower gear than in a higher gear at the same driving speed. Accordingly, the change in speed has a positive gradient.
It is advantageous to provide feedback and control of this gradient for revising or adjusting the transmission input shaft speed. Deviation of the gradient from a given set point is thus minimized.
The gradient set point can be predetermined as a function of several other parameters. One of these parameters is the torque transmitted through the transmission input shaft before initiation of the shifting operation. This depends on the engine torque and on the inertia of all rotating parts upstream from the transmission input shaft and connected to it. Because the gradient set point depends on at least one of those torques, the torque to be transmitted over the additional gear stage must be between the torque transmitted before the shifting operation is initiated and the torque transmitted after the shifting operation is completed.
It is also advantageous to determine the set point of the gradient as a function of the original and/or the new gear stage. In this way, it is possible to assure that the torque conveyed through the additional gear stage is not greater or smaller than certain limit values.
In an especially advantageous embodiment of this invention, the set point of the gradient is reduced by the instantaneous value of the transmission input shaft speed before it reaches the synchronous speed. Reaching the synchronous speed means that the ratio of the speeds of the transmission input and output shafts corresponds to the transmission ratio of the gear stage to be engaged. Upon reaching the synchronous speed during the shifting operation, the new gear stage is engaged. The engagement process requires a certain finite time period. Within this time period, the input shaft speed should be as close as possible to the synchronous speed. For this purpose, the gradient is reduced before reaching the synchronous speed as mentioned above. The time available for engaging the new gear stage is thus lengthened.
The time at which the gradient is changed may be determined in various ways. It should also be pointed out that the gradient may be changed or in several steps.
In accordance with another aspect of the invention, a multistage transmission includes a device for controlling or regulating the change in speed of the transmission input shaft. Moreover, the transmission of the invention may include a gear stage having a gear ratio which is adjustable continuously or in stages so that it can be adjusted to the ratio of the gear stage to be engaged, thereby reducing heat and friction losses.
BRIEF DESCRIPTION OF THE DRAWINGS
Further objects and advantages of the invention will be apparent from a reading of the following description in conjunction with the accompanying drawings, in which:
FIG. 1 is a schematic diagram illustrating a representative embodiment of a multistage transmission arranged according to the invention;
FIG. 2 is a graphical representation showing the variation of torque at the transmission output shaft during upshifting from first gear to second gear;
FIG. 3 is a graphical representation showing the variation of driving torque transmitted by a temporary gear stage during upshifting;
FIG. 4 is a graphical representation showing the variation of engine torque and of the difference between the transmission input shaft speed and the synchronous speed during upshifting;
FIGS. 5-7 are graphical representations showing torque and speed variations corresponding to those of FIGS. 2-4 which occur during downshifting; and
FIG. 8 is a schematic diagram showing another representative embodiment of a multistage transmission according to this invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 shows schematically a typical embodiment of the invention including a multistage transmission 11 having an input shaft 12 connected by a start-up and separating clutch 13 to a flywheel 14 of a driving engine 15. The input shaft 12 can be connected to the transmission output shaft 22 which leads to the drive wheels of the vehicle, by each of a series of pairs of gears 16-19 corresponding to the transmission gear stages, and by the sliding sleeves 20 and 21. The transmission also has a further gear stage 23, consisting of a pair of gear wheels 24 and a clutch 25, which can be engaged between the gear input shaft 12 and the gear output shaft 22, providing the highest-ratio transmission gear.
The clutch 25 is shown as a multidisk clutch, but it could also be a cone clutch, a magnetic clutch or a hydrodynamic or hydrostatic clutch. In this embodiment, the torque transmitted by the multidisk clutch 25 can be set at a predetermined maximum level and the loose wheel of the pair of gear wheels 24 in this stage can be connected by the multidisk clutch 25 to the transmission input shaft 12. In this connection, the clutch 25 can be actuated by a first actuating device 26 even when there is a complete connection between the input shaft and the output shaft through another stage in the multistage transmission 11, as shown in FIG. 1, for example, by the first gear stage consisting of the gear wheel pair 16. Rather than using the highest available gear stage 24 as the temporary gear stage to be used in shifting, it is possible to provide an additional pair of gear wheels for this purpose.
According to the invention, the typical example of a multistage transmission 11 shown in FIG. 1 includes a control unit 27 and also has a torque control device 28 connected to the drive engine 15 and another torque control device 29 with a second actuating device 30 connected to the start-up and separating clutch 13. These components, as well as the first actuating device 26, can be controlled by the control unit 27.
The operation of the multistage transmission 11 described above will now be explained in greater detail with reference to the drawings. FIGS. 2-4 illustrate diagrammatically the variations of the torques and speeds during upshifting, for example, from the first gear stage to the second gear stage. The times t1 -t5 are the same throughout FIGS. 2-4. The process of upshifting begins at the time t1. By actuating the multidisk clutch 25 with the first actuating device 26, the additional gear stage 23 is selected. This stage has a higher transmission ratio than the first gear stage consisting of the gear wheel pair 16 which is shown engaged in FIG. 1. Consequently, the multidisk clutch 25 cannot be completely engaged in this phase of the shifting operation.
Because of the higher transmission ratio of the additional gear stage 23 in comparison with the engaged first gear stage, some torque is transmitted from the engine 15 to the transmission output shaft 22 by partial engagement of the multidisk clutch 25 and the amount of torque thus transmitted can be controlled by varying the pressure within the multidisk clutch 25. During this operation, the multidisk clutch 25 is controlled in such a way that the torque MLK which is transmitted through this stage is approximately the same as the torque being transmitted through the first gear stage which was previously engaged. The maximum torque MLK,MAX transmitted in this way by the multidisk clutch 25 is reached at a time t2 and is then maintained through appropriate control of the first operating device 26 by the control unit 27. If the driver changes the accelerator position, the control unit 27 may be arranged to provide a corresponding adjustment in the operation of the multidisk clutch 25. After reaching the maximum torque MLK,MAX, the first gear, which was previously engaged, is disengaged at t3 by disconnecting the clutch sleeve 21.
Engagement of the additional gear stage 23 also causes the engine speed nMOT to drop. After disengagement of the first gear, the engine speed drops to the point that the synchronous speed of the transmission input shaft 12 for engaging the second gear stage consisting of the gear wheel pair 17 is reached at t4. In FIG. 4, the speed difference nDIFF is shown as the deviation in the speed of the transmission input shaft nEIN from the synchronous speed. At the time t4, nDIFF =0 and thus the synchronous speed is reached.
It can be seen in FIG. 4 that the engine speed nMOT drops steadily from the start of the shifting operation at time t1 and reaches the synchronous speed at time t4 with a reduction in the rate of change in speed approximately at or shortly before reaching the synchronous speed. The rate of change in engine speed nMOT is referred to herein as the gradient. The goal at this point is to avoid interrupting the application of torque to the transmission output shaft 22 if possible. At the same time, the actual shifting operation, i.e., engaging and disengaging the clutch sleeves 20 and 21, should require as little torque as possible.
To do this, as described above, at least part of the torque is transmitted through the additional gear stage 23. The drop in engine speed nMOT described here necessarily results from the torque MLK transmitted to the multidisk clutch 25. The torque MLK should be as constant as possible in the course of the shifting operation, but it is difficult to measure per se. The change in engine speed nMOT, namely, the gradient, is used instead as a measure of the torque MLK. In the present practical example, the speed nMOT is also the speed of the transmission input shaft nEIN.
To control the torque MLK transmitted to the multidisk clutch 25, a certain gradient is selected and the first actuating device 26 is controlled by the control unit 27 in order to reach that torque. Preferably, the actual engine speed nMOT is measured at intervals, the instantaneous gradient is calculated, and the deviation of the gradient from a given set point is used to regulate the first actuating device 26. Thus, a closed-loop control circuit is utilized.
FIGS. 3 and 4 show that there is a constant clutch torque MLK and a constant gradient of the speed nMOT between the times t2 and t3. The speed nMOT is lowered to the point that the loose wheel of the pair of gear wheels 17 of the second gear is synchronized with the transmission output shaft 22 and the clutch sleeve 21 can then be actuated. This clutch engagement process requires a certain finite period of time. For this reason, the speed at the transmission input shaft nEIN, and the engine speed nMOT, should pass the synchronous point as slowly as possible. Ideally, the speed difference nDIFF (=nEIN -synchronous speed) should not become negative. In order to achieve this, the gradient is reduced after the time t3 and before reaching the synchronous speed. This reduces the pressure in the multidisk clutch 25 and thus also the transmitted torque MLK.
Various possibilities are provided for selecting the specific time to reduce the gradient. In one possibility, the gradient is reduced after a certain period of time which is measured from the start of the shifting operation t1. In another version, the gradient is reduced after the actual transmission input speed nEIN-IST or the actual engine speed nMOT-IST has been reduced to provide a certain difference from the synchronous speed. Thus, the gradient is changed as a function of the difference between the actual speed and the synchronous speed. In still another version, the gradient is changed as a function of the difference between the actual transmission input speed nEIN-IST and the transmission input speed nEIN at the beginning of the shifting operation (nEIN-START).
When the gradient is changed substantially from a given gradient value, there are large changes in the clutch torque MLK. In order to limit such discontinuities in torque, it is advantageous to reduce the gradient several times and in small increments or continuously. Accordingly, a soft torque change curve is shown in FIG. 3.
FIG. 2 shows the variation of the torque mAUS on the transmission output shaft 22 during the shifting operation. Up to the time t1, the torque transmitted by the first gear stage is fully effective. After the time t1, the torque transmitted through the additional gear stage 23 is built up, while the torque transmitted through the first gear stage is reduced at the same time. At the time t2, the first gear stage is released and most of the original torque is transmitted through the additional gear stage 23. At the time t3, there is also a reduction in the output torque MAUS at the transmission output shaft 22 due to the change in gradient. At the time t4, the gradient is lowest and thus also the output torque MAUS is at its lowest point. After engaging the second gear at the time t5, the multidisk clutch 25 is released and all of the driving torque is transmitted through the second gear stage.
The torque MLK transmitted by the multidisk clutch 25 is selected so that a torque MAUS, which corresponds to the torques transmitted by the engaged gear stages before and after the shifting operation, is produced at the transmission output shaft 22. Accordingly, the torque MAUS between the times t2 and t3 has a value which is somewhere between the torque MAUS up to time t1 and the torque MAUS after time t5. The gradient is thus not a fixed parameter but instead depends, among other things, on the torque MMOT of the driving engine and the gear stage to be engaged. The engine torque MMOT can be determined, for example, by measuring the pressure in the manifold passage of the engine.
Preferably, approximate characteristic data are stored in the control unit 27 to assign a gradient set point to each of a number of combinations of engine torque MMOT and transmission ratio. During the shifting operation, the gradient is monitored and regulated by an appropriate adjustment of the pressing force in the multidisk clutch.
In another embodiment of the invention, the transmission ratio of the original gear stage provides part of the stored characteristic data used as the basis for gradient adjustment. It is especially advantageous, although more expensive, to use a combination of both the original transmission ratio and the ratio of the gear stage into which the transmission is being shifted for this purpose. For example, it is conceivable that, after a heavy load and acceleration, the load is reduced and then it is possible to shift when driving to the next higher gear stage. The same thing is also true of shifting down. The transmission ratio of the new gear is thus not necessarily derived from the transmission ratio of either the old gear or the new gear alone.
The torque on the multidisk clutch 25 also depends on the moment of inertia associated with the transmission input shaft 12 This depends essentially on the rotating masses in the driving engine 15, the flywheel 14 and the separating clutch 13. The torques stored as part of the characteristic data are adjusted accordingly.
In addition, it is also possible, at least at low speeds, to select the gradient as a function of the engine speed. On the other hand, an undesirably low engine speed might be produced during the shifting process if the gradient were too large. In this case, the control unit might eliminate initiation of a shifting operation.
FIGS. 5-7 show the torque and speed curves for downshifting. In these illustrations, the times t1 -t4 are the same throughout.
At the time t1, i.e., at the beginning of the shifting operation, the multidisk clutch 25 is actuated briefly in order to remove torque from the engaged gear stage so that the clutch sleeve 21 can be disengaged from the loose wheel of the pair of gear wheels 17 by spring force. This process is completed at the time t2. The engine then accelerates as a function of the accelerator position and optionally as a function of the torque control device 28 and in accordance with control signals from the control unit 27. For this purpose, an engine idling volumetric control valve may be controlled.
Before reaching the synchronous speed, i.e., before the speed difference is nDIFF =0, the multidisk clutch 25 is actuated again at the time t3. The clutch torque MLK transmitted by this actuation is shown in FIG. 6. The friction in the multidisk clutch 25 thus counteracts the acceleration of the engine so that there is a reduction in the gradient at the time t3. control by using the gradient begins in shifting down after the time t2 or after the time t3. The gradient value used in shifting down is obtained from the stored characteristic data just as in shifting up. In another embodiment of this invention, to optimize the shifting operation, different characteristic data are stored for the downshifting operation.
At the time t4, the synchronous speed is reached and the new gear, for example, the first gear, is engaged by actuating the clutch sleeve 21. At the same time, the multidisk clutch 25 is released again and the driving torque is then transmitted fully through the new gear.
When downshifting from the fifth gear stage, it is only necessary to release the multidisk clutch 25 to initiate the shifting operation in order to allow the full engine acceleration up to synchronous speed of the new lower gear stage. The remaining steps correspond to the process described above. Similarly, a shortened shifting operation takes place in shifting up into the fifth gear. After actuating the multidisk clutch 25, the fourth gear is disengaged by actuation of the clutch sleeve 20. Then the actuation of the multidisk clutch 25 is retained until complete engagement occurs and the additional gear stage 23 is used as the fifth gear.
In another embodiment, the start-up and separating clutch 13 is also involved in the shifting operation. In other words, this clutch is controlled by the second actuating device 30 in such a way that it transmits the torque applied to its input side only up to a certain maximum level. The multidisk clutch 25 can then be designed for lower loads and thus has a simpler design. Furthermore, this can lead to a substantial reduction in the cost of the control device, especially since the actuating device 30, which is usually provided for start-up anyway, can also be used to adjust the clutch torque MLK and the gradient as required in accordance with the shifting operation. In addition or as an alternative, such an adjustment can also be dependant on the engine torque applied.
FIG. 8 illustrates another embodiment of the multistage transmission of the invention. In contrast to FIG. 1, the loose wheels of the gear stages here are mounted on the transmission input shaft 12 and the fixed wheels are mounted on the transmission output shaft 22. The essential difference in comparison with the multistage transmission shown in FIG. 1 is that a gear stage 31 corresponding to the gear stage 23 in FIG. 1 is designed with a belt drive providing a continuously adjustable transmission ratio. For this purpose, two pulley halves 32 and 33 are mounted as loose wheels on the transmission input shaft 12 and two pulley halves 35 and 36 are provided on an intermediate shaft 34 and the pulleys are connected by a belt 37. A pinion 38 affixed to the intermediate shaft 34 engages the driven pinion of the gear wheel pair 19 of the fourth gear stage and thus permits the required reversal of direction of rotation which is necessary for proper driving of the transmission output shaft 22.
The transmission ratio of the gear stage 31 can be adjusted continuously by means of a conventional axial adjustment of the pulley halves 32 and 33 on the one hand, and the pulley halves 35 and 36 on the other hand. Like the multistage transmission of FIG. 1, the pulley halves 32 and 33 that rotate as loose wheels here can be connected to the transmission input shaft 12 by the multidisk clutch 25.
Because the transmission ratio can be adjusted continuously in the gear stage 31, the amount of driving torque to be transmitted through the gear stage that is to be engaged temporarily can be adjusted in accordance with the driving torque to be transmitted by the gear wheels engaged at the time of initiation and termination of the shifting operation. Thus, for example, the gear stage 31 can be adjusted to provide the transmission ratio of the second gear stage in shifting from first to second gear and this can be accomplished before the operation of upshifting. The second gear can thus be engaged as soon as a frictional engagement has been achieved in the multidisk clutch 25. At the same time, friction is reduced and the thermal output of the clutch and also its wear are minimized.
In another embodiment of the multistage transmission (not shown) similar to FIG. 1, the pulley halves 32 and 33 are arranged as fixed wheels on the transmission input shaft 12. These pulley halves are axially adjustable on the input shaft 12 such that no driving torque can be transmitted by the belt 37 at least temporarily and the degree of belt engagement can be varied The function of the multidisk clutch 25 is thus replaced by the interaction of the pulley halves 32 and 33 with the belt 37.
Although the invention has been described herein with reference to specific embodiments, many modifications and variations therein will readily occur to those skilled in the art. Accordingly, all such variations and modifications are included within the intended scope of the invention.

Claims (15)

We claim:
1. A method of shifting a vehicle transmission having a transmission input shaft connectable to a drive motor, a transmission output shaft, a plurality of gear stages, each including a pair of gear wheels supported on the transmission input shaft and the transmission output shaft, respectively, one of each pair of gear wheels being fixed on its supporting shaft and the other of each pair of gear wheels being supported as a loose wheel on its supporting shaft and being connectable thereto by a coupling device for the purpose of engaging the corresponding gear, and at least one additional gear stage comprising applying torque from the transmission input shaft at least partly through the additional gear stage to the transmission output shaft in order to relieve a previously engaged gear stage and vary the speed of the transmission input shaft, disengaging the previously engaged gear stage by disconnecting the loose wheel thereof from the corresponding transmission shaft, synchronizing the speed of the transmission input shaft to a synchronous speed for a next gear stage to be engaged by controlling the change of speed of the transmission input shaft in accordance with a speed gradient value which is a function of at least one operating characteristic of the drive motor and engaging the next gear stage to be engaged by connecting the loose wheel thereof to the corresponding transmission shaft.
2. A method according to claim 1 wherein the change in speed of the transmission input shaft is accomplished by feedback and control of the speed gradient value thereof.
3. A method according to claim 1 wherein the speed gradient value is determined as a function of the engine torque or of the torque applied to the transmission input shaft.
4. A method according to claim 1 wherein the speed gradient value is determined as a function of at least one of the gear stages between which the transmission is being shifted.
5. A method according to claim 1 wherein the speed gradient value is reduced on approaching the synchronous speed to allow the next gear stage to be engaged.
6. A method according to claim 1 wherein the speed gradient value is reduced after a selected period of time following initiation of the input shaft speed change before reaching the synchronous speed.
7. A method according to claim 1 wherein the speed gradient value is reduced as a function of the proximity of the actual transmission input shaft speed to the synchronous speed and before reaching the synchronous speed.
8. A method according to claim 1 wherein the speed gradient value is reduced as a function of the absolute value of the difference between the instantaneous speed of the transmission input shaft and the transmission input shaft speed at the beginning of the shifting operation.
9. A method according to claim 1 wherein the transmission input shaft torque applied is determined by at least one of the pressure in the manifold passage of the motor, the speed gradient of the motor, and the moment of inertia of rotating parts associated with the input shaft.
10. A method according to claim 1 wherein the additional gear stage is connected to one of the transmission input and output shafts by an additional clutch that can be operated in a partially engaged condition and wherein either the engagement condition or the torque transmission is controlled by a change in the engaging force of the additional clutch.
11. A method according to claim 10 wherein the change in speed to attain the synchronous speed is controlled by the change in engaging force on the additional clutch.
12. A method according to claim 1 wherein the change in speed to attain the synchronous speed takes place by controlling the drive motor.
13. A method according to claim 10 wherein the change in speed to attain the synchronous speed in downshifting takes place first by controlling the drive motor and then by optional closing of the additional clutch just before reaching the synchronous speed.
14. A multistage vehicle transmission comprising a transmission input shaft connectable to a drive motor, a transmission output shaft, a plurality of gear stages, each including a pair of gear wheels supported on the transmission input shaft and the transmission output shaft, respectively, one of each pair of gear wheels being fixed on its supporting shaft and the other of each pair of gear wheels being supported as a loose wheel on its supporting shaft and being connectable thereto by a coupling device for the purpose of engaging the corresponding gear, an additional gear stage with a transmission ratio which is smaller than that of at least one of the gear stages, and control means for controlling the speed change of the transmission input shaft in accordance with a speed gradient value which is a function of at least one operating characteristic of the drive motor by acting upon at least one of the drive motor and the additional gear stage.
15. A multistage transmission comprising a transmission input shaft connectable to a drive motor, a transmission output shaft, a plurality of gear stages, each including a pair of gear wheels supported on the transmission input shaft and the transmission output shaft, respectively, one of each pair of gear wheels being fixed on its supporting shaft and the other of each pair of gear wheels being supported as a loose wheel on its supporting shaft and being connectable thereto by a coupling device for the purpose of engaging the corresponding gear, an additional gear stage with a transmission ratio which is smaller than that of at least one of the gear stages, and control means for controlling the speed change of the transmission input shaft by acting upon at least one of the drive motor and the additional gear stage, wherein the gear ratio of the additional gear stage can be adjusted continuously or in stages.
US07/910,172 1990-03-01 1990-12-17 Multistage transmission and shifting process therefor Expired - Fee Related US5313856A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4006357 1990-03-01
DE4006357 1990-03-01
PCT/EP1990/002217 WO1991013271A1 (en) 1990-03-01 1990-12-17 Process for changing a step-by-step variable gear

Publications (1)

Publication Number Publication Date
US5313856A true US5313856A (en) 1994-05-24

Family

ID=6401159

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/910,172 Expired - Fee Related US5313856A (en) 1990-03-01 1990-12-17 Multistage transmission and shifting process therefor

Country Status (6)

Country Link
US (1) US5313856A (en)
EP (1) EP0517705B1 (en)
JP (1) JP2898405B2 (en)
DE (1) DE59006381D1 (en)
ES (1) ES2057856T3 (en)
WO (1) WO1991013271A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726567A1 (en) * 1997-06-23 1998-12-24 Zahnradfabrik Friedrichshafen Synchronisation method for main gear-shaft of HGV transmission
FR2786842A1 (en) * 1998-12-04 2000-06-09 Renault Process and gearbox for changing gear with drive under load for a motor vehicle
US20010011484A1 (en) * 1999-12-17 2001-08-09 Gunter Ruhle Automated drive train for a motor vehicle and method of controlling a drive train
FR2808065A1 (en) 2000-04-21 2001-10-26 Renault Hydraulically controlled transmission for motor vehicles, uses controlled solenoid valves to selectively connect pressure source to engine coupling clutch or gear engagement clutches
EP1167833A2 (en) * 2000-06-23 2002-01-02 Hitachi, Ltd. Powershift of a dog clutch type vehicle transmission
US20020053247A1 (en) * 2000-11-08 2002-05-09 Hitachi, Ltd. Automatic transmission and vehicle
EP1174646A3 (en) * 2000-07-17 2002-08-07 Hitachi, Ltd. Automatic transmission control method and automatic transmission controller
EP1127731A3 (en) * 2000-02-22 2002-08-14 Hitachi, Ltd. Gear shift control device and control method for a vehicle
WO2002064996A1 (en) * 2001-02-12 2002-08-22 Volvo Lastvagnar Ab Motor vehicle drive unit
GB2375576A (en) * 2001-05-19 2002-11-20 Luk Lamellen & Kupplungsbau Gear changing method and apparatus
FR2827553A1 (en) * 2001-07-23 2003-01-24 Renault Method for controlling drive, comprises primary clutch connected to secondary shaft through first primary shaft and gears and second primary shaft connected to secondary shaft through shunt clutch
US20030089582A1 (en) * 2001-11-15 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Power transmission system
US20030230156A1 (en) * 2002-04-24 2003-12-18 Sunao Ishihara Power transmission system
DE10224064A1 (en) * 2002-05-31 2003-12-18 Daimler Chrysler Ag Operating method for automatic gear change transmission in motor vehicle, by determining gradient of rotation speed of transmission and calculating disconnect time point for synchronization member
US6679133B1 (en) * 1998-12-03 2004-01-20 Hitachi, Ltd. Gear-type automatic transmission and car using the gear type automatic transmission
EP1211442A3 (en) * 2000-12-01 2004-04-21 Hitachi, Ltd. Control device for automatic transmission and control method therefor
US20040224820A1 (en) * 2003-05-07 2004-11-11 Tetsuo Matsumura Method of controlling a vehicle and system of controlling the same
US20040230360A1 (en) * 2001-11-29 2004-11-18 Hitachi, Ltd. Method of controlling a vehicle, apparatus for controlling the same, transmission and apparatus for controlling the same
US20050037891A1 (en) * 2003-08-13 2005-02-17 Hitachi, Ltd. Transmission, and control system and control method for the transmission
EP1528285A2 (en) * 2003-10-31 2005-05-04 RLE International Produktionsentwicklungsgesellschaft mbH Powershift transmission
EP1314915A3 (en) * 2001-11-26 2005-09-28 Hitachi, Ltd. Method and control system for improving shift feeling in automated transmissions
EP1150045A3 (en) * 2000-04-28 2006-01-11 Fuji Jukogyo Kabushiki Kaisha Control system for reducing a shift shock in a transmission
US20070271021A1 (en) * 2004-05-14 2007-11-22 Continental Teves Ag & Co. Ohg Method for Compensating for Gradient Influence When Determining a Reference Velocity
US20130045836A1 (en) * 2011-08-16 2013-02-21 Zf Friedrichshafen Ag Control unit and method to operate a vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017291A (en) * 1998-03-16 2000-01-25 Eaton Corporation Control system/method for input shaft retarder-assisted upshifts
DE19814569C2 (en) * 1998-04-01 2001-09-27 Daimler Chrysler Ag Gear change gear with a gear synchronizing gear
DE19917293A1 (en) * 1999-04-16 2000-10-19 Volkswagen Ag Method for removing a gear step in an automated step change transmission
FR2794512B1 (en) * 1999-06-04 2001-07-27 Renault METHOD OF CONTROLLING CHANGED SPEEDS UNDER TORQUE
JP2016148353A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Gear change control device
CN110871780B (en) * 2019-10-17 2021-09-21 蓝黛科技集团股份有限公司 Series-parallel hybrid electric vehicle system based on AMT and control method
CN113007287B (en) * 2021-03-02 2022-04-19 李渝 Hollow gear set suspension gearbox with super multi-gear

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442346A (en) * 1966-02-22 1969-05-06 Zahnradfabrik Friedrichshafen Vehicle transmission system and power take-off
US4187742A (en) * 1976-07-02 1980-02-12 Automobiles Peugeot Control of an automatic gearbox in an automobile
US4529072A (en) * 1981-03-27 1985-07-16 Aisin Seiki Kabushikikaisha Automatic clutch control system
US4544057A (en) * 1982-02-05 1985-10-01 Automotive Products Plc Rotary transmission
US4627312A (en) * 1984-08-10 1986-12-09 Hitachi, Ltd. Automatic transmission
US4790418A (en) * 1987-04-30 1988-12-13 Ford Motor Company Transmission clutch loop transfer control
US4823643A (en) * 1986-12-27 1989-04-25 Isuzu Motors Limited Electronic automatic gear transmission control apparatus
US4860607A (en) * 1986-06-20 1989-08-29 Toyota Jidosha Kabushiki Kaisha Automatic transmission for automotive vehicle
US4884667A (en) * 1987-07-22 1989-12-05 Isuzu Motors Ltd. Automatic change gear control means
EP0367020A1 (en) * 1988-10-31 1990-05-09 Volkswagen Aktiengesellschaft Method for gear shift of a change speed gear
US4989477A (en) * 1990-01-11 1991-02-05 General Motors Corporation Double transition closed throttle downshift control in an automatic transmissions
US5014573A (en) * 1989-12-11 1991-05-14 General Motors Corporation Double transition upshift control in an automatic transmission
US5050457A (en) * 1989-05-25 1991-09-24 Aichi Kikai Kogyo Kabushiki Kaisha Continuously variable transmission
US5070747A (en) * 1989-12-26 1991-12-10 General Motors Corporation Adaptive powered downshift control of an automatic transmission
US5085105A (en) * 1989-02-28 1992-02-04 Nissan Motor Co., Ltd. Downshift control for automatic transmission

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442346A (en) * 1966-02-22 1969-05-06 Zahnradfabrik Friedrichshafen Vehicle transmission system and power take-off
US4187742A (en) * 1976-07-02 1980-02-12 Automobiles Peugeot Control of an automatic gearbox in an automobile
US4529072A (en) * 1981-03-27 1985-07-16 Aisin Seiki Kabushikikaisha Automatic clutch control system
US4544057A (en) * 1982-02-05 1985-10-01 Automotive Products Plc Rotary transmission
US4627312A (en) * 1984-08-10 1986-12-09 Hitachi, Ltd. Automatic transmission
US4860607A (en) * 1986-06-20 1989-08-29 Toyota Jidosha Kabushiki Kaisha Automatic transmission for automotive vehicle
US4823643A (en) * 1986-12-27 1989-04-25 Isuzu Motors Limited Electronic automatic gear transmission control apparatus
US4790418A (en) * 1987-04-30 1988-12-13 Ford Motor Company Transmission clutch loop transfer control
US4884667A (en) * 1987-07-22 1989-12-05 Isuzu Motors Ltd. Automatic change gear control means
EP0367020A1 (en) * 1988-10-31 1990-05-09 Volkswagen Aktiengesellschaft Method for gear shift of a change speed gear
US5085105A (en) * 1989-02-28 1992-02-04 Nissan Motor Co., Ltd. Downshift control for automatic transmission
US5050457A (en) * 1989-05-25 1991-09-24 Aichi Kikai Kogyo Kabushiki Kaisha Continuously variable transmission
US5014573A (en) * 1989-12-11 1991-05-14 General Motors Corporation Double transition upshift control in an automatic transmission
US5070747A (en) * 1989-12-26 1991-12-10 General Motors Corporation Adaptive powered downshift control of an automatic transmission
US4989477A (en) * 1990-01-11 1991-02-05 General Motors Corporation Double transition closed throttle downshift control in an automatic transmissions

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726567A1 (en) * 1997-06-23 1998-12-24 Zahnradfabrik Friedrichshafen Synchronisation method for main gear-shaft of HGV transmission
DE19726567B4 (en) * 1997-06-23 2006-12-21 Zf Friedrichshafen Ag Transmission main shaft synchronization method
US6679133B1 (en) * 1998-12-03 2004-01-20 Hitachi, Ltd. Gear-type automatic transmission and car using the gear type automatic transmission
US20040116249A1 (en) * 1998-12-03 2004-06-17 Hitachi, Ltd. Gear-type automatic transmission and an automobile using the gear-type automatic transmission
US6889570B2 (en) 1998-12-03 2005-05-10 Hitachi, Ltd. Gear-type automatic transmission and an automobile using the gear-type automatic transmission
FR2786842A1 (en) * 1998-12-04 2000-06-09 Renault Process and gearbox for changing gear with drive under load for a motor vehicle
US20010011484A1 (en) * 1999-12-17 2001-08-09 Gunter Ruhle Automated drive train for a motor vehicle and method of controlling a drive train
US6604438B2 (en) * 1999-12-17 2003-08-12 Getrag Getroebe-Und Zahnradfabrik Herman Hagenmeyer Gmbh & Cie. Automated drive train for a motor vehicle and method of controlling a drive train
US20050016306A1 (en) * 1999-12-17 2005-01-27 Getrag Gettriebe-Und Zzhnradfabrik, Automated drive train for a motor vehicle and method of controlling a drive train
US7263423B2 (en) * 2000-02-22 2007-08-28 Hitachi, Ltd. Control device and control method for a vehicle
US6449546B1 (en) 2000-02-22 2002-09-10 Hitachi, Ltd. Control device and control method for a vehicle
EP1659317A1 (en) * 2000-02-22 2006-05-24 Hitachi, Ltd. Gear shift control device and control method for a vehicle
US7037238B2 (en) 2000-02-22 2006-05-02 Hitachi, Ltd. Control device and control method for a vehicle
US20060276302A1 (en) * 2000-02-22 2006-12-07 Hitachi, Ltd. Control device and control method for a vehicle
US6892125B2 (en) 2000-02-22 2005-05-10 Hitachi, Ltd. Control device and control method for a vehicle
US6560521B1 (en) 2000-02-22 2003-05-06 Hitachi, Ltd. Control device and control method for a vehicle
EP1127731A3 (en) * 2000-02-22 2002-08-14 Hitachi, Ltd. Gear shift control device and control method for a vehicle
US20040116248A1 (en) * 2000-02-22 2004-06-17 Hiroshi Sakamoto Control device and control method for a vehicle
US20050005721A1 (en) * 2000-02-22 2005-01-13 Hitachi, Ltd. Control device and control method for a vehicle
US7313473B2 (en) 2000-02-22 2007-12-25 Hitachi, Ltd. Control device and control method for a vehicle
FR2808065A1 (en) 2000-04-21 2001-10-26 Renault Hydraulically controlled transmission for motor vehicles, uses controlled solenoid valves to selectively connect pressure source to engine coupling clutch or gear engagement clutches
EP1150045A3 (en) * 2000-04-28 2006-01-11 Fuji Jukogyo Kabushiki Kaisha Control system for reducing a shift shock in a transmission
EP1167833B1 (en) * 2000-06-23 2006-07-12 Hitachi, Ltd. Powershift of a dog clutch type vehicle transmission
US7086301B2 (en) 2000-06-23 2006-08-08 Hitachi, Ltd. Apparatus and method of controlling a vehicle
EP1167833A2 (en) * 2000-06-23 2002-01-02 Hitachi, Ltd. Powershift of a dog clutch type vehicle transmission
US6502474B2 (en) 2000-06-23 2003-01-07 Hitachi, Ltd. Apparatus and method of controlling a vehicle
US6890284B2 (en) 2000-06-23 2005-05-10 Hitachi, Ltd. Apparatus and method of controlling a vehicle
US6536296B2 (en) 2000-06-23 2003-03-25 Hitachi, Ltd. Apparatus and method of controlling a vehicle
US20050044976A1 (en) * 2000-06-23 2005-03-03 Hiroshi Sakamoto Apparatus and method of controlling a vehicle
US20040087413A1 (en) * 2000-07-17 2004-05-06 Hitachi, Ltd. Automatic transmission control method and automatic transmission controller
EP1174646A3 (en) * 2000-07-17 2002-08-07 Hitachi, Ltd. Automatic transmission control method and automatic transmission controller
US20020053247A1 (en) * 2000-11-08 2002-05-09 Hitachi, Ltd. Automatic transmission and vehicle
US6848329B2 (en) * 2000-11-08 2005-02-01 Hitachi, Ltd. Automatic transmission and vehicle
EP1205685A3 (en) * 2000-11-08 2005-07-06 Hitachi, Ltd. Automatic transmission for vehicles
EP1211442A3 (en) * 2000-12-01 2004-04-21 Hitachi, Ltd. Control device for automatic transmission and control method therefor
WO2002064996A1 (en) * 2001-02-12 2002-08-22 Volvo Lastvagnar Ab Motor vehicle drive unit
US6871131B2 (en) * 2001-05-19 2005-03-22 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Transmission systems
GB2375576A (en) * 2001-05-19 2002-11-20 Luk Lamellen & Kupplungsbau Gear changing method and apparatus
WO2002095268A1 (en) * 2001-05-19 2002-11-28 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Transmission systems
US20040138800A1 (en) * 2001-05-19 2004-07-15 Luk Lamellen Und Kupplungsbau Transmission systems
FR2827553A1 (en) * 2001-07-23 2003-01-24 Renault Method for controlling drive, comprises primary clutch connected to secondary shaft through first primary shaft and gears and second primary shaft connected to secondary shaft through shunt clutch
EP1279549A1 (en) * 2001-07-23 2003-01-29 Renault s.a.s. Engine and drivetrain control method
US20030089582A1 (en) * 2001-11-15 2003-05-15 Honda Giken Kogyo Kabushiki Kaisha Power transmission system
US6776062B2 (en) * 2001-11-15 2004-08-17 Honda Giken Kogyo Kabushiki Kaisha Power transmission system
EP1314915A3 (en) * 2001-11-26 2005-09-28 Hitachi, Ltd. Method and control system for improving shift feeling in automated transmissions
EP1921350A3 (en) * 2001-11-26 2010-06-23 Hitachi, Ltd. Method and control system for improving shift feeling in automated transmissions
EP1977944A3 (en) * 2001-11-29 2008-10-15 Hitachi Ltd. Transmission control method and apparatus for a vehicle
US7211028B2 (en) 2001-11-29 2007-05-01 Hitachi, Ltd. Method of controlling a vehicle, apparatus for controlling the same, transmission and apparatus for controlling the same
US20040230360A1 (en) * 2001-11-29 2004-11-18 Hitachi, Ltd. Method of controlling a vehicle, apparatus for controlling the same, transmission and apparatus for controlling the same
EP1316463A3 (en) * 2001-11-29 2005-12-28 Hitachi, Ltd. Transmission control method and apparatus for a vehicle
US6895832B2 (en) * 2002-04-24 2005-05-24 Honda Giken Kogyo Kabushiki Kaisha Power transmission system
US20030230156A1 (en) * 2002-04-24 2003-12-18 Sunao Ishihara Power transmission system
DE10224064A1 (en) * 2002-05-31 2003-12-18 Daimler Chrysler Ag Operating method for automatic gear change transmission in motor vehicle, by determining gradient of rotation speed of transmission and calculating disconnect time point for synchronization member
DE10224064B4 (en) * 2002-05-31 2005-09-22 Daimlerchrysler Ag Method for operating an automated change-speed gearbox for a motor vehicle
US7090615B2 (en) * 2003-05-07 2006-08-15 Hitachi, Ltd. Method of controlling a vehicle and system of controlling the same
US20060247091A1 (en) * 2003-05-07 2006-11-02 Hitachi, Ltd. Method of controlling a vehicle and system of controlling the same
US20040224820A1 (en) * 2003-05-07 2004-11-11 Tetsuo Matsumura Method of controlling a vehicle and system of controlling the same
US7534195B2 (en) * 2003-05-07 2009-05-19 Hitachi, Ltd. Method of controlling a vehicle and system of controlling the same
US7252622B2 (en) * 2003-08-13 2007-08-07 Hitachi, Ltd. Transmission, and control system and control method for the transmission
US20050037891A1 (en) * 2003-08-13 2005-02-17 Hitachi, Ltd. Transmission, and control system and control method for the transmission
EP1528285A3 (en) * 2003-10-31 2006-09-06 RLE International Produktionsentwicklungsgesellschaft mbH Powershift transmission
EP1528285A2 (en) * 2003-10-31 2005-05-04 RLE International Produktionsentwicklungsgesellschaft mbH Powershift transmission
US20070271021A1 (en) * 2004-05-14 2007-11-22 Continental Teves Ag & Co. Ohg Method for Compensating for Gradient Influence When Determining a Reference Velocity
US8574124B2 (en) * 2011-08-16 2013-11-05 Zf Friedrichshafen Ag Control unit and method to operate a vehicle
US20130045836A1 (en) * 2011-08-16 2013-02-21 Zf Friedrichshafen Ag Control unit and method to operate a vehicle

Also Published As

Publication number Publication date
DE59006381D1 (en) 1994-08-11
JPH05504391A (en) 1993-07-08
JP2898405B2 (en) 1999-06-02
EP0517705A1 (en) 1992-12-16
ES2057856T3 (en) 1994-10-16
WO1991013271A1 (en) 1991-09-05
EP0517705B1 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US5313856A (en) Multistage transmission and shifting process therefor
KR100354186B1 (en) Control Method of Automatic Transmission
US5259260A (en) Multiple step transmission
US5407401A (en) Arrangement of controlling the output torque of an automatic transmission
US5915512A (en) Method for shifting a twin-clutch transmission and twin-clutch transmission arrangement
KR100318246B1 (en) Automatic mechanical shift control device and method
US6591705B1 (en) Transmission
KR100296557B1 (en) Clutch engagement device and method in tooth butt or torque lock state
US5168778A (en) CVT downshift control strategy to minimize slip at the drive pulley
US8328688B2 (en) Ratio shift control system and method for a multiple-ratio automatic transmission
US20030054920A1 (en) Method of controlling a transmission
US5136897A (en) Smooth upshift control method/system
US6413189B1 (en) Method and device for controlling a motor vehicle drive train
US6698304B2 (en) Method for controlling a dual clutch transmission
US4576062A (en) High efficiency gear transmission
US6588292B2 (en) Transmission including clutch and shaft driving device
JP2009198008A (en) Gear ratio control method of power split type automatic transmission and power split type automatic transmission
US7337052B2 (en) Method for automatically controlling a transmission brake of an automatic transmission configured as a countershaft transmission
US20020010052A1 (en) Method and apparatus of controlling transmission system
EP2289755B1 (en) Automatic transmission control apparatus
US20110021315A1 (en) Shift control method in an automated manual transmission
EP0364269B1 (en) Transmission ratio control system for a continuously variable transmission
EP0591244A1 (en) A clutch control system.
US20120330520A1 (en) Method for controlling a gearbox brake
CN109058451A (en) A kind of automobile automatic shifting control method

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOLKSWAGEN AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNEIDER, ARTHUR;KLARHOEFER, CHRISTIAN;REEL/FRAME:006831/0050

Effective date: 19930624

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20020524