US5309218A - Gas ring laser gyroscopes - Google Patents

Gas ring laser gyroscopes Download PDF

Info

Publication number
US5309218A
US5309218A US06/682,402 US68240284A US5309218A US 5309218 A US5309218 A US 5309218A US 68240284 A US68240284 A US 68240284A US 5309218 A US5309218 A US 5309218A
Authority
US
United States
Prior art keywords
gain medium
resonator cavity
bypass
laser
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/682,402
Inventor
Virgil R. Laul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Corp
Original Assignee
Northrop Grumman Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northrop Grumman Corp filed Critical Northrop Grumman Corp
Priority to US06/682,402 priority Critical patent/US5309218A/en
Assigned to NORTHROP CORPORATION reassignment NORTHROP CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: LAUL, VIRGIL R.
Application granted granted Critical
Publication of US5309218A publication Critical patent/US5309218A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

In a gas ring laser gyroscope characterized by a gain medium for producing at least one monochromatic narrow electromagnetic beam reflected to form a loop about the gain medium, the improvement wherein bypass channels are provided, displaced from the beam path, for reducing gas flow in the beam path. The bypass channels may extend about the gain medium and across the beam loop and may include controllable restrictions therein for selecting the flow rates therethrough.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to ring laser gyroscopes, and more particularly, to improvements in the structure of gas laser gyroscopes reducing gas flows therein.
2. Description of the Prior Art
The use of ring laser gyroscopes as guidance instruments has been known in the past. Typically, such lasers take the form of a closed resonator loop in which oppositely injected laser beams are bent into closed paths by various turning mirrors. Any rotation about an axis orthogonal to the plane of the loop then results in opposite frequency shifts of the two beams and the resulting beat frequency then provides a quantitative measure of the turning rate.
In this general arrangement the laser beams are typically turned by mirrors at the end of straight segments, one or more of which providing the location for the laser gain tube or the gain medium. Thus, the geometry of the ring laser gyroscope typically includes straight line segments of a resonator tube through which the beams are passed.
While the recent past has seen suggestions of solid state lasers for ring gyroscope use, the practicalities still dictate the use of gas lasers with substantial preference still remaining for the He-Ne (helium/neon) laser. Gas lasers, however, exhibit induced flows generally described by the work of I. Langmuir (1923) J. Franklin Institute 196,751 which are partly explained in terms of light velocity changes in a moving refractive medium, i.e., the Fresnel-Fizeau drag effect. Additionally, Doppler shifts are associated with the flow which, again, affect the frequency of the laser. This induced velocity change, therefore, inserts substantial null errors into the ring laser which, heretofore, has been carried as a readout bias. Any drifts, however, in this Langmuir flow present large potential for gyroscope errors and substantial research has been expended at reducing this induced flow.
Typical of these efforts are the teachings of U.S. Pat. No. 4,284,329 to Smith et al in which a partial restriction is inserted into the flow path. Alternatively, an opposite, compensating discharge path is provided, as in U.S. Pat. No. 4,397,027 to Zampiello et al. Each of these solutions, while suitable for their purposes, depend on cancellation or restriction of substantial gas flows and thus entail manipulations of large volumes which, in themselves, are prone to generate large errors. Thus, the prevailing practices in the past require close control at restricting or compensating large effects and consequently demand extreme accuracy in the implementation thereof.
Accordingly, techniques which directly address the phenomenon of gas flow are desired and it is one such technique that is disclosed herein.
SUMMARY OF THE INVENTION
Accordingly, it is the general purpose and object of the present invention to provide equalization paths in gas ring laser gyroscopes for reducing the gas flows therein.
Other objects of the invention are to provide passive equalization paths for reducing the Langmuir flows associated with gas lasers.
Yet further objects of the invention are to provide means for reducing pressure differentials between the cathode and anode of a gas laser.
Briefly, these and other objects are accomplished within the present invention by providing a passive gas bypass for equalizing the pressures across the discharge path of a gas laser gyro which may be conformed as a split discharge configuration gain medium confined to one leg of the resonator. In each of the foregoing embodiments the gas bypass channel is geometrically arranged to establish only one breakdown path at initiation, i.e., the gain path of the gyro.
Subject to the foregoing discharge requirements a further embodiment is disclosed herein essentially in the form of an open resonator which, nevertheless, provides only one path across which discharge occurs. This last embodiment offers the further advantages of a substantial cavity in which nonstationary thermal inequalities are dispersed thus reducing a major source of error.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagrammatic illustration of a gas ring laser gyroscope, constructed in accordance with one embodiment of the present invention;
FIG. 2 is a side view detail taken in section along line 2--2 of FIG. 1;
FIG. 3 is yet another diagrammatic illustration of a ring laser gyro constructed in accordance with a further embodiment of the present invention; and
FIG. 4 is a further diagrammatic illustration of a ring laser gyro in accordance with yet another embodiment of the invention herein.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The implementations offered herein provide solutions to phenomena understood with some imprecision and for that reason the explanatory discourse that follows is general only. Moreover, the implementations are intended to be exemplary only and no intent to limit the scope of the invention is expressed by the selection thereof.
As shown in FIG. 1 a ring laser gyro generally illustrated as a triangular resonator cavity structure 10, includes in one leg thereof a gain medium 11, illustrated as a split discharge medium comprising a common cathode 15 deployed centrally between two adjacent anodes 16 and 17. Typical of such split discharge configurations each segment thereof, i.e., segments 11a and 11b, once the discharge is set off, will include flow patterns generally referred as the Langmuir flow. In accordance with the accepted models this flow occurs as result of the electron flow E, positive ion flow I and a resulting neutral atom flow V. Thus the neutral neon atoms in a He-Ne laser, which are the same atoms excited to produce the stimulated emission, are set in motion along the center of the gain medium tube and it is at this same center that laser radiation exists.
In the foregoing model the electron flow E is along the walls of the tube to the anodes 16 and 17. The positive ion flow I, once again, proximate the walls, is then towards the cathode 15 where it is neutralized and builds up a pressure shown by gradient lines IP1 and IP2. To compensate this imbalance in momentum exchange currents of neutral gas CN1 and CN2 are formed which have a net velocity component V towards the cathode along the tube center. According to the well-known Fresnel-Fizeau effect the velocity of light V in this central moving medium is expressed as: ##EQU1## where C is the speed of light in a vacuum, and n is the index of refraction. Thus, substantial null shifts are imposed on the laser depending on the beam direction relative this flow.
In the past this null shift was simply treated as a net effect or zero offset and the measurement was directly superposed thereover. Since this zero offset, however, often reaches levels of 5 to 10 deg/hr. any uncompensated errors then result in errors unacceptable for navigation or guidance. Accordingly, any reduction in the flow down the tube center directly reduces the magnitude of any uncompensated errors.
In accordance with the invention herein substantial flow reductions can be achieved by way of a set of bypasses shown as bypass channels 21, 22 and 23 respectively tied between the anode 16, the cathode 15, the anode 17 and a plenum chamber 25. The alignment of channels 21, 22 and 23 is substantially orthogonal to the beam path in vertical deployment over the anodes and the common cathode. Thus, the pressure gradients at the anodes AP1 and AP2 will set up flows in the bypass channels 21 and 23 which has been found to approximate the following relationship: ##EQU2## where F is the flow reduction factor through the gain medium, DB is the diameter of the bypass, DG is the diameter of the gain tube, K is the ratio of the plenum diameter to the bypass tube diameter and the factor 1.5 reflects an approximation of the gain tube length.
Accordingly, a flow reduction through the gain medium is achieved which is only weakly dependent of the bypass length. It is therefore convenient to select bypass lengths through which discharge can not occur.
As shown further in FIGS. 1 and 2, the foregoing bypass arrangement may include an adjustable restriction in the form of a plunger valve 28 at the juncture of bypass channel 22 and the plenum chamber 25. This central restriction arrangement is thus available to provide damping for any unwanted flow resonances and to adjust the bypass flow.
As is conventionally required, a power source 31 is connected between the anodes 16 and 17 and the common cathode 15 and the triangular beam pattern established by way of mirrors 32, 33 and 34 at the ends of resonator tubes 36, 37 and 38 where tube 36 aligns to receive the gain medium 11. The bypass manifolding comprising bypass channels 21, 22 and 23 and the plenum chamber 25 then straddles the gain medium 11 forming a path offset from the axis of tube 36. Within this bypass manifold flows then occur along the arrows BA1 and BA2, once again, from anodes 16 and 17 to the cathode 15.
In a further implementation illustrated in FIG. 3 the plurality of bypasses is set out comprising an equalizing bypass channel 122 extending across the gain medium 111 which equalizes the end pressure thereof. As result of this bypass equal pressures are developed at the ends of the gain medium thus reducing any flow inequalities therethrough. The gain medium, once more, may take the form of a split discharge tube on either side of a common cathode 115 aligned below a center compensating bypass channel 123 communicating with a transfer channel 124 extending across the other resonator tube segments 137 and 138 which, together with the resonator tube 136 on which the gain medium 111 is inserted, form the resonator loop of the ring laser gyro 110. In the foregoing arrangement resonator segments 136, 137 and 138, once again, span the distances between turning mirrors 132, 133 and 134, the resonating tube portions between the gain medium 111 and the transfer channel 124 forming enlarged sections 137a, 138a and 136a to accommodate the compensating flows.
Thus, the bypass channel 122 equalizes the pressures at the ends of gain medium 111 while the combination of the channels 123 and 124 reduce the absolute flow levels within the discharge tubes. In this manner the errors as result of directional inequalities are equalized to a large extent by the bypass channel 122. Errors which depend on the absolute flow levels which, in turn, are reduced by the circulation through channels 123 and 124. Of course, all the bypass channels, once again, may be provided with the requisite restrictions 122b, 123b and 124b both to damp any circulation resonances and to control the level of flow.
In yet a further embodiment, illustrated in FIG. 4, a ring gyro configuration essentially of an open resonator form is disclosed. As shown in this figure a gain medium 211, again of the split discharge form, is inserted into a cavity 220 in which mirrors 231, 232 and 233 set up the beam path of the gyro. As is typical of all ring laser gyros the gain medium 211 provides the two oppositely directed traveling waves, shown as beam loops 211a and 211b which, however, are unconstrained over most of their path by the section of a resonator tube. The beam constraint, therefore, occurs at the mirrors with the open resonator cavity 220 then forming an enlarged section for reducing the Langmuir flows. These flows are illustrated as the dispersed momentum exchange currents NC21 and NC22 around structural blocks 241 and 242 which set the discharge paths.
In this last embodiment the volumetric aspects of the open resonator cavity disperse the effect of any non-stationary thermal effects, thus improving accuracy while at the same time dispersing the Langmuir flows.
Obviously, many modifications and changes may be made to the foregoing description without departing from the spirit of the invention. It is therefore intended that the scope of the invention be determined solely on the claims appended hereto.

Claims (8)

What is claimed is:
1. In a gas laser assembly characterized by a resonator cavity opening into a gain medium which is conformed to inject a laser beam into said resonator cavity and turning means disposed in said resonator cavity for returning said beam to said gain medium, the improvement comprising:
a bypass tube connected across said gain medium for equalizing pressure differences at the ends thereof.
2. Apparatus according to claim 1 wherein:
said gain medium comprises an electrical discharge tube, having a cathode and and an anode connected across a source of electrical excitation, said discharge tube opening into said resonator cavity, and a gas contained within said discharge tube and said resonator cavity.
3. Apparatus according to claim 2 wherein:
said bypass tube is conformed to open into said discharge tube adjacent said anode and said cathods.
4. Apparatus according to claim 3 wherein:
said bypass tube includes restrictions on the interior thereof for limiting the gas flow therethrough.
5. In a gas ring laser gyroscope characterized by a resonator cavity extending across a laser gain medium, said laser gain medium including at least two discharge paths formed across an anode and a cathode for injecting a first and a second oppositely directed beam into said resonator cavity, the improvement comprising:
bypass means formed across said resonator cavity and across said gain medium for equalizing the pressures at the junctures thereof.
6. Apparatus according to claim 5 wherein:
said gain medium is conformed as a split discharge tube including said cathode centrally located therein and said anodes proximate the ends thereof.
7. Apparatus according to claim 6 wherein:
said bypass means comprises an enlargement of said resonator cavity offset from the path of said first and second beam.
8. Apparatus according to claim 6 wherein:
said bypass means comprises a manifolded cavity opening into said split discharge tube adjacent to said cathode and said anodes.
US06/682,402 1984-12-17 1984-12-17 Gas ring laser gyroscopes Expired - Lifetime US5309218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US06/682,402 US5309218A (en) 1984-12-17 1984-12-17 Gas ring laser gyroscopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/682,402 US5309218A (en) 1984-12-17 1984-12-17 Gas ring laser gyroscopes

Publications (1)

Publication Number Publication Date
US5309218A true US5309218A (en) 1994-05-03

Family

ID=24739542

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/682,402 Expired - Lifetime US5309218A (en) 1984-12-17 1984-12-17 Gas ring laser gyroscopes

Country Status (1)

Country Link
US (1) US5309218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160962A1 (en) * 2001-01-08 2003-08-28 Jarrett Mark J. Manifold for processing a stacked array of laser block assemblies
US20150204669A1 (en) * 2013-08-08 2015-07-23 Honeywell International Inc. System and method for reducing gas flow bias in an rf-excited ring laser gyro

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503005A (en) * 1967-10-17 1970-03-24 Honeywell Inc Ring laser which is biased to permit two equal intensity transition frequencies to be generated in opposite directions
US4325033A (en) * 1979-07-02 1982-04-13 Rockwell International Corporation Pneumatically dithered laser gyro

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503005A (en) * 1967-10-17 1970-03-24 Honeywell Inc Ring laser which is biased to permit two equal intensity transition frequencies to be generated in opposite directions
US4325033A (en) * 1979-07-02 1982-04-13 Rockwell International Corporation Pneumatically dithered laser gyro

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160962A1 (en) * 2001-01-08 2003-08-28 Jarrett Mark J. Manifold for processing a stacked array of laser block assemblies
US6819430B2 (en) * 2001-01-08 2004-11-16 Honeywell International, Inc. Manifold for processing a stacked array of laser block assemblies
US20150204669A1 (en) * 2013-08-08 2015-07-23 Honeywell International Inc. System and method for reducing gas flow bias in an rf-excited ring laser gyro

Similar Documents

Publication Publication Date Title
Gaster et al. Large-scale structures in a forced turbulent mixing layer
US5430755A (en) Pressure-equalized self-compensating discharge configuration for triangular ring laser gyroscopes
RU2381449C2 (en) Solid-state laser gyroscope with stabilised scaling factor
US5309218A (en) Gas ring laser gyroscopes
US3642373A (en) Ring-shaped laser with means for cancelling the fizeau effect
US4687331A (en) Ring laser gyroscope
US6069699A (en) Triaxial laser rate gyro symmetrized with respect to its axis of activation
CA1212748A (en) Ring laser rotational rate sensor
US4325033A (en) Pneumatically dithered laser gyro
Sagdeev et al. The effect of mass loading outside cometary bow shock for the plasma and wave measurements in the coming cometary missions
US5080487A (en) Ring laser gyroscope with geometrically induced bias
EP0393085B1 (en) Ring laser gyro frame design resistant to thermal gradient effects
Poedts et al. The continuous spectrum of MHD waves in 2D solar loops and arcades. First results on poloidal mode coupling for poloidal magnetic fields
US5386288A (en) Split gain multimode ring laser gyroscope and method
US5495335A (en) Ring laser gyroscope with a non-loss inducing mode suppression mechanism
Mikhailov et al. On the plasma pressure limit in stellarators
Bretenaker et al. Resonant diffraction mechanism, nonreciprocity, and lock-in in the ring-laser gyroscope
Garside Mode pulling in ring lasers
US5323227A (en) Quad gain ring laser gyroscope with independent gain regions
Anan'ev et al. Method for calculating the efficiency of lasers with unstable resonators
Petru et al. Single-frequency HeNe laser with a central maximum of output power
US5347360A (en) Ring laser gyro
CA1292543C (en) Ring laser gyro frame design resistant to thermal gradient effects
Keen et al. The ion-sound instability and its associated multi-mode phenomena
Maslov et al. Hypersonic shear layer stability experiments

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORTHROP CORPORATION HAWTHORNE CALIFORNIA A CORP.O

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LAUL, VIRGIL R.;REEL/FRAME:004357/0176

Effective date: 19841130

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12